
Department of Engineering

1

A formulation of the autoregressive HMM
for speech synthesis

Matt Shannon
sms46@eng.cam.ac.uk

William Byrne
bill.byrne@eng.cam.ac.uk

Technical Report
CUED/F-INFENG/TR.629

31 August 2009

Cambridge University Engineering Department
Trumpington Street

Cambridge, CB2 1PZ
U.K.

Abstract

We present a formulation of the autoregressive HMM for speech synthesis and compare
it to the standard HMM synthesis framework and the trajectory HMM. We give details
of how to do efficient parameter estimation and synthesis with the autoregressive HMM
and discuss consequences of the autoregressive HMM model.

There are substantial similarities between the three models, which we explore. The
advantages of the autoregressive HMM are that it uses the same model for parameter
estimation and synthesis in a consistent way, in contrast to the standard HMM syn-
thesis framework, and that it supports easy and efficient parameter estimation, in
contrast to the trajectory HMM.

mailto:sms46@eng.cam.ac.uk
mailto:bill.byrne@eng.cam.ac.uk

1

1 Introduction

It has been shown that it is possible to synthesize natural sounding speech with HMMs
and the quality of the best HMM-based synthesis systems now rivals the best unit selection
synthesis systems [1]. A breakthrough that helped make this possible was realizing how
to use dynamic feature information during synthesis by respecting the constraints between
static and dynamic features [2].

However the established approach to HMM-based synthesis is inconsistent in the enforce-
ment of these constraints [3]. During synthesis we take the constraints between static and
dynamic features into account, whereas during parameter estimation we assume the static
and dynamic feature sequences are independent.

This is a recognized problem and has been addressed previously. Zen showed how a tra-
jectory HMM [3] could be employed so that the same model is used for both parameter
estimation and synthesis in a consistent way. Synthesis quality improved as a result [3].
However parameter estimation for the trajectory HMM is more complicated than for the
standard HMM, requiring alignment with a delayed-decision Viterbi algorithm and gradient-
based parameter re-estimation procedures [3]. The challenge remains to find a model which
can easily and consistently be used for both parameter estimation and synthesis.

In this technical report we give a formulation of the autoregressive HMM [4, 5, 6, 7] for
speech synthesis. The autoregressive HMM relaxes the traditional HMM conditional inde-
pendence assumption, allowing state output distributions which depend on past output as
well as the current state. In this way the autoregressive HMM explicitly models some of
the dynamics of speech.

Autoregressive HMMs have been used before for speech recognition [4, 5, 6, 8] but to our
knowledge they have not been previously investigated for speech synthesis. Note that for the
autoregressive HMM considered here the observations are acoustic feature vectors. This is
distinct from the hidden filter HMM (also sometimes called the autoregressive HMM) [9, 10]
for which the observations are waveform samples.

In §2 we specify the autoregressive HMM model, show how to do efficient parameter estim-
ation and synthesis, and investigate aspects of the autoregressive HMM model. In §3 we
review the standard HMM synthesis framework and the trajectory HMM. In §4 we compare
the autoregressive HMM to the standard HMM synthesis framework and the trajectory
HMM. Finally in §5 we give conclusions.

2 Autoregressive HMM

In this section we specify the autoregressive HMM model, show how to do efficient parameter
estimation and synthesis, and investigate aspects of the autoregressive HMM model.

2.1 Model

We first describe a general generative model for sequences of acoustic feature vectors. Con-
ceptually we first generate a hidden state sequence θ = θ1:T and then generate an observed

2

or output feature vector sequence c = c1:T given this state sequence. We consider models
with a joint probability distribution of the form:

P (c, θ) =
∏

t

P (θt|θt−1)P (ct|c1:t−1, θt) (1)

The state transition probabilities P (θt|θt−1) are conditioned only on the previous state. The
state output distributions P (ct|c1:t−1, θt) are conditioned on both the current state and all
past output. This is in contrast to the standard HMM assumption that the state output
distribution P (ct|θt) is conditionally independent of past output.

The autoregressive HMM with summarizers specializes the above to a particular form of
output distribution P (ct|c1:t−1, θt). We assume ct is conditionally Gaussian, with covariance
depending only on the state θt. Rather than allowing the mean for each state to be an
arbitrary function of past output c1:t−1, we restrict it to be an affine function of a fixed set
of summarizers of past output. Each summarizer fd is a function that takes the entire past
output c1:t−1 and produces a vector-valued summary fd(c1:t−1). We consider state output
distributions of the form:

P (ct|c1:t−1, θt) = N (ct|µθt
(c1:t−1), Σθt

) (2)

µq(c1:t−1) =
D∑

d=1

Ad
q

(
fd(c1:t−1)− µd

q

)
+ µ0

q (3)

where Σq is a state-dependent covariance matrix, Ad
q is a rectangular matrix for each sum-

mary d and state q, µ0
q is a state-dependent bias vector, and following Woodland [6], we

have introduced redundant bias vectors µd
q for each summary d and state q as a trick to

make re-estimation easier. The set of parameters specifying the autoregressive HMM is
therefore (Ad

qij , µ
d
qi, µ

0
qi, Σqij), where q ranges over states, i and j range over feature vector

components, d ranges over summarizers, and Ad
qij is the (i, j)-component of the matrix Ad

q

in (3).

Using diagonal square matrices in (3), that is Ad
qij = ad

qiδij and Σqij = σ2
qiδij for some ad

qi

and σ2
qi, our state output distributions become:

P (ct|c1:t−1, θt) =
∏

i

N
(
cti|µθti(c1:t−1), σ2

θti

)
(4)

µqi(c1:t−1) =
D∑

d=1

ad
qi

(
fd

i (c1:t−1)− µd
qi

)
+ µ0

qi (5)

The set of parameters specifying the autoregressive HMM is now (ad
qi, µ

d
qi, µ

0
qi, σ

2
qi).

We further assume that the ith summarizer fd
i (c1:t−1) depends only on the ith feature vector

component c(1:t−1)i, and so P (c|θ) =
∏

i P (ci|θ), i.e. the feature vector sequence components
are independent given the state sequence. This is a common assumption when modelling
speech using HMMs. We generally refer to this model simply as the autoregressive HMM.

We are free to choose the summarizers (fd) to be anything which might distill useful in-
formation about past output. However for simplicity we usually take each fd to be a fixed
linear combination of the past K feature vectors1:

fd(c1:t−1) =
−1∑

k=−K

wd
kct+k (6)

1see §2.5.1 for a discussion of what to do for the initial frames t ≤ K

3

window offset

-3 -2 -1 0

w1
· 1.0

w2
· -1.0 1.0

w3
· 1.0 -2.0 1.0
(a) typical autoregressive

window offset

-3 -2 -1 0

w1
· 1.0

w2
· 1.0

w3
· 1.0

(b) canonical autoregressive

window offset

-6 -5 -4 -3 -2 -1 0

w1
· 1.0

w2
· 1.0

w3
· 1.0

(c) fixed offset autoregressive

window offset

-1 0 +1

w1
· -0.5 0.0 0.5

w2
· 1.0 -2.0 1.0

(d) standard HMM synthesis

Table 1: examples of window coefficients

θ1 θ2 θ3 θ4 θ5 θ6

c1 c2 c3 c4 c5 c6

Figure 1: graphical model for a simple autoregressive HMM

We call the linear summarizers windows, with window coefficients wd
k. These window coef-

ficients are only non-zero in the past (k < 0). An example of autoregressive window coeffi-
cients is shown in Table 1(a).

By setting the windows to be wd
k = δ−d

k as in Table 1(b) we recover a canonical autoregressive
HMM [4, 5, 7]. By setting the windows to be delta functions at fixed offsets from the current
time as in Table 1(c) we obtain the form of model used by Woodland [6] and Chin [8].

Note that we only explicitly deal with the static feature vector sequence c for the autore-
gressive HMM. However the role played by linear summarizers here is somewhat similar to
that of dynamic features in the standard HMM framework. For comparison standard HMM
synthesis windows are shown in Table 1(d).

The graphical model for the autoregressive HMM with linear summarizers of depth K = 2
is shown in Figure 1.

4

2.2 Parameter estimation

In this section we cover maximum likelihood estimation of the parameters (ad
qi, µ

d
qi, µ

0
qi, σ

2
qi)

of the autoregressive HMM. We use expectation maximization (EM) [11] for parameter
re-estimation, and show how to use decision tree clustering to cope with data sparsity.

Nothing in this section depends on the summarizers being linear. Indeed the training
procedure needs to know only the value fd(c1:t−1) of each summarizer at each time t, which
we write more concisely as fd(t) or fd

t .

2.2.1 Forward-Backward algorithm

Define:

αq(t) , P (c1:t, θt = q)

βq(t) , P (ct+1:T |c1:t, θt = q)

Then we have the following recursions:

αq(t) =
∑

p

αp(t− 1)upqP (ct|c1:t−1, θt = q) (7)

βq(t) =
∑

r

uqrP (ct+1|c1:t, θt+1 = r)βr(t + 1) (8)

where upq , P (θt = q|θt−1 = p) is the state transition probability. This allows us to
efficiently compute α and β, and thus the state occupancies γq(t) , P (θt = q|c):

γq(t) =
αq(t)βq(t)∑
q αq(t)βq(t)

The above is very general, and would work for any output distributions of the form P (ct|c1:t−1, θt).
In particular it does not depend on the specific form of output distribution given in (2) and
(3).

Note the similarity to Forward-Backward for the standard HMM framework. We can use the
same implementation as for the standard case, replacing only the state output probability
calculation.

We can extend the above algorithm to the case of a hidden semi-Markov model (HSMM)
with an explicit duration model by using an expanded state space, as for the standard HMM
synthesis framework [12, 13, 14].

2.2.2 Parameter re-estimation overview

In this section we give an overview of the parameter re-estimation procedure for the autore-
gressive HMM. Technical details and proofs are given in §2.2.3.

We use the notation: 〈
g
〉

q
,

∑
t γq(t)g(t)∑

t γq(t)

5

to denote the weighted average of an arbitrary real-valued function g(t) with respect to the
occupancies γq(t) of state q. To efficiently compute the statistic

〈
g
〉

q
we first accumulate∑

t γq(t)g(t) then divide by the state occupancy
∑

t γq(t).

The re-estimation formulae giving the updated parameter values (âd
qi, µ̂

d
qi, µ̂

0
qi, σ̂

2
qi) are:

µ̂0
qi =

〈
ci

〉
q

(9)

µ̂d
qi =

〈
fd

i

〉
q

(10)
D∑

e=1

Rde
qi â

e
qi = rd

qi (11)

σ̂2
qi = r0

qi −
D∑

d=1

âd
qir

d
qi (12)

where

Rde
qi ,

〈
fd

i fe
i

〉
q
−
〈
fd

i

〉
q

〈
fe

i

〉
q

rd
qi ,

〈
cif

d
i

〉
q
−
〈
ci

〉
q

〈
fd

i

〉
q

r0
qi ,

〈
cici

〉
q
−
〈
ci

〉
q

〈
ci

〉
q

and where q ranges over states, i ranges over feature vector components, and 1 ≤ d, e ≤ D.

If R
(1:D)(1:D)
qi is not invertible then (11) has multiple equally-good solutions and we may

pick arbitrarily between them, for instance by using the Moore-Penrose pseudo-inverse
âqi = R+

qirqi, which can be efficiently computed by singular value decomposition. We use
variance floors on σ2

qi to avoid singularities in the likelihood function.

Note that computing the (âd
qi) using (11) involves inverting a D×D matrix for each q and

i. For typical cases with D = 3 or D = 4 summarizers this is not computationally intensive.

We need to accumulate various quantities for the re-estimation formulae. Defining a dummy
summarizer f0(t) , ct, we need the statistics

〈
fd

i

〉
q

and
〈
fd

i fe
i

〉
q

with corresponding accu-
mulators: ∑

t

γq(t)fd
i (t) (13)∑

t

γq(t)fd
i (t)fe

i (t) (14)

where q ranges over states, i ranges over feature vector components, and 0 ≤ d, e ≤ D.

2.2.3 Details of parameter re-estimation

For clarity, in this section we will leave the index i implicit, so c is a sequence of scalars, µq

is a scalar, etc.

From (1) and (4):

log P (c|θ) =
∑

t

log P (ct|c1:t−1, θt)

= −T
2 log 2π + 1

2

∑
t

log τθt − 1
2

∑
t

τθt (ct − µθt(c1:t−1))
2

6

where τq , 1/σ2
q . Adding a dummy summarizer f0

t , ct and setting a0
q = −1 to simplify

writing subsequent expressions, from (5) we can write:

log P (c|θ) = C + 1
2

∑
t

log τθt
− 1

2

∑
t

D∑
d,e=0

τθt
ad

θt
ae

θt
(fd

t − µd
θt

)(fe
t − µe

θt
)

where C = −T
2 log 2π.

For expectation maximization we want to consider the expectation of log P (c|θ) with re-
spect to some distribution Q over θ (typically the posterior over θ given the current model
parameters). We get the following EM auxiliary function:

EQ log P (c|θ) =
∑

θ

Q(θ) log P (c|θ)

= C + 1
2

∑
t,q

γq(t) log τq − 1
2

∑
t,q

D∑
d,e=0

γq(t)τqa
d
qa

e
q(f

d
t − µd

q)(f
e
t − µe

q)

= C + 1
2

∑
q

γq log τq − 1
2

∑
q

γqτq

 D∑
d,e=0

Rde
q ad

qa
e
q +

(
D∑

d=0

ad
q(µ̂

d
q − µd

q)

)2

where

γq(t) , Q({θt = q}) =
∑

θ:θt=q

Q(θ)

γq ,
∑

t

γq(t)

Rde
q ,

〈
fdfe

〉
q
−
〈
fd
〉

q

〈
fe
〉

q

µ̂d
q ,

〈
fd
〉

q

We can see that maximizing EQ log P (c|θ) with respect to the parameters (µ0:D
q , a1:D

q , τq) is
equivalent to maximizing the following expression separately for each q with γq 6= 0:

log τq − τq

 D∑
d,e=0

Rde
q ad

qa
e
q +

(
D∑

d=0

ad
q(µ̂

d
q − µd

q)

)2
 (15)

If γq = 0 then the parameters for that state q don’t affect the likelihood, and we choose
them to keep their previous values.

Considering (15) as a function of µ0:D
q given a1:D

q and τq, we can see that this achieves its
maximum whenever

∑D
d=0 ad

q(µ̂
d
q − µd

q) = 0 for all q, and in particular when µd
q = µ̂d

q for all
d and q.

The fact the maximum in µ0:D
q isn’t unique is due to the redundant means µ1:D

q we intro-
duced in §2.1. We can see now how this trick makes re-estimation easier. Without loss
of generality we could set µ1:D

q = 0, but then the maximum value of µ0
q would depend on

a1:D
q and the maximum value of a1:D

q already depends on µ0
q, so we would need to jointly

re-estimate them. This could be done without too much trouble, for example by treating
the mean µ0

q as the coefficient aconst
q of a constant summarizer f const(c1:t−1) , 1. However

using the above trick is arguably easier, and saves us a dimension on the matrix inversion.

7

In fact the above trick is exactly what results from treating the mean as a constant sum-
marizer and using the block matrix inversion lemma to reduce the dimensionality of the
required inverse by 1.

Plugging
∑D

d=0 ad
q(µ̂

d
q−µd

q) = 0 into (15), we now want to maximize the following expression
with respect to a1:D

q given τq, subject to a0
q = −1:

log τq − τq

D∑
d,e=0

Rde
q ad

qa
e
q (16)

This is equivalent to minimizing the following expression with respect to a1:D
q :

D∑
d,e=0

Rde
q ad

qa
e
q =

D∑
d,e=1

Rde
q ad

qa
e
q − 2

D∑
d=1

rd
qad

q + r0
q (17)

where

rd
q , Rd0

q =
〈
cfd
〉

q
−
〈
c
〉

q

〈
fd
〉

q

r0
q , R00

q =
〈
cc
〉

q
−
〈
c
〉

q

〈
c
〉

q

The derivative of (17) with respect to a1:D
q is 0 if and only if R

(1:D)(1:D)
q a1:D

q = r1:D
q . However

it is not immediately obvious that this equation always has a solution, or that any solution
is a global minimum.

To see this, note that R
(0:D)(0:D)
q is positive semi-definite since it is a convex combination of

positive semi-definite matrices, and so
∑D

d,e=0 Rde
q ad

qa
e
q is a positive semi-definite quadratic

form in a0:D
q . It can be shown that any affine map from Rn to Rm induces a pullback taking

positive semi-definite quadratic forms on Rm to translated positive semi-definite quadratic
forms on Rn, where a translated quadratic form is anything of the form Q′(x) = Q(x−µ)+c
for some quadratic form Q. Therefore (17) is a translated positive semi-definite quadratic
form in a1:D

q . In particular this means (17) is bounded below, that the global minimum is
attained somewhere, and that any point where the derivative is zero is a global minimum.

Therefore there is guaranteed to be a solution to R
(1:D)(1:D)
q â1:D

q = r1:D
q , or more concisely

Rqâq = rq, and any such âq is a global minimum. For instance we may choose the solution
with minimum Euclidean norm, corresponding to the Moore-Penrose pseudo-inverse âq =
R+

q rq. In the common case where Rq is invertible the unique minimum is at âq = Rq
−1rq.

The global minimum value of (17) is r0
q −

∑D
d=1 rd

q âd
q . This value is independent of the

minimum âq chosen, and is non-negative since (17) is non-negative.

Note also that since (17) is bounded below, (15) cannot be made arbitrarily large for fixed
τq. Thus there is no need to use flooring or other techniques to avoid singularities in the
likelihood function when choosing â1:D

q .

Finally, plugging an optimal value â1:D
q into (16), we want to maximize the following ex-

pression with respect to τq:
log τq − τqσ̂

2
q (18)

where

σ̂2
q , r0

q −
D∑

d=1

rd
qad

q

8

We saw above that σ̂2
q ≥ 0. If σ̂2

q > 0 then the unique maximum in τq is at 1/τq = σ̂2
q , that

is σ2
q = σ̂2

q .

If σ̂2
q = 0 then we can make the likelihood arbitrarily large by choosing small σ2

q . Singular-
ities like this in the likelihood function are a weakness of maximum likelihood estimation
in general. A standard hack to get around this in the case of variances is to set a minimum
value for variances, called a variance floor [15]. If σ̂2

q is less than the variance floor then
σ2

q is set to the floor. For the standard HMM framework the variance floor for each feature
vector component is often set to a constant fraction of the global variance of that component
over the whole training corpus, and this is the approach we adopt here.

There are three special cases above: γq = 0, Rq not invertible and σ̂2
q = 0. We might ask

when these occur. A key quantity is the non-zero occupancy number Nq , #{t : γq(t) > 0}.
Note that Nq = 0 if and only if γq = 0. If Nq < D + 1 then Rq is always non-invertible
and σ̂2

q is typically 0. If Nq = D + 1 then Rq is typically invertible and σ̂2
q is typically 0. If

Nq > D + 1 then Rq is typically invertible and σ̂2
q is typically non-zero. Note that Nq ≥ γq

and Nq may be much larger if many times contribute small occupancies, so EM’s soft
assignment helps to avoid these special cases compared with hard assignment. Intuitively
we can say that these special cases tend to occur only for states which definitely aren’t seen
much in the training corpus.

The maximum value of the auxiliary function is:

EQ log P (c|θ) = C + 1
2

∑
q

γq

(
− log σ̂2

q − 1
)

(19)

= −T
2 (log 2π + 1)− 1

2

∑
q

γq log σ̂2
q (20)

since
∑

q γq = T .

2.2.4 Decision tree clustering

In systems with large state spaces there is typically not enough data to robustly ML-estimate
the output distributions for every state – indeed the majority of states may never be seen
in the training corpus. A standard solution is to cluster the states and use one set of
shared parameters for all the states in each cluster, and decision tree clustering [16] is a
standard clustering method. In this section we show how to do decision tree clustering for
the autoregressive HMM.

A clustering is represented by a partition C of state space, where we constrain the states q ∈
C in a cluster C ∈ C to have identical output distributions. Given state-level accumulators
(13) and (14) for an unclustered system we can compute accumulators for an arbitrary
state-clustered system just by summing, for each cluster, the state-level accumulators for
that cluster. Thus we can compute the maximum likelihood before and after a hypothesized
split. From (22) the change in likelihood for a split of cluster C into two pieces C1 and C2

is:
∆(C → C1, C2) , 1

2γC

∑
i

log σ̂2
Ci − 1

2γC1

∑
i

log σ̂2
C1i − 1

2γC2

∑
i

log σ̂2
C2i (21)

Note that this depends only on C, C1 and C2 and not on other details of the clustering C.

To compute the change in likelihood for a hypothesized split we therefore need to sum the
accumulators for all the states in C1 and use these to compute the optimal values (σ̂2

C1i),

9

and then do the same for C2 (or slightly more efficiently the accumulators for C2 can be
computed directly from the accumulators for C and C1 by subtraction).

Thus the decision tree clustering procedure is as follows. We perform Forward-Backward
with an unclustered system and compute state-level accumulators (13) and (14). Starting
with all states in one cluster, we recursively split each leaf node according to the allowed
question that maximizes the change in likelihood. We don’t split a node when the maximum
change in likelihood obtainable by splitting falls below a pre-specified threshold, or when
there are no allowed questions. We have a pre-specified minimum occupancy for a cluster,
and an allowed question is one that doesn’t violate this minimum occupancy constraint.
Note that the order in which we choose nodes to split doesn’t affect the outcome.

Note that for the autoregressive HMM the updated parameter values (âd
qi, µ̂

d
qi, µ̂

0
qi, σ̂

2
qi)

together with state occupancies (γq) are not sufficient to recover the accumulators (13)
and (14). This is in contrast to the standard HMM framework where there is a simple
correspondence between re-estimated parameter values and accumulators (given the state
occupancies). Furthermore we believe there is no way to deduce σ̂2

Ci from the re-estimated
parameter values for each q ∈ C. This means we must pass the decision tree clustering
algorithm the accumulators themselves, and not just the re-estimated parameter values
together with occupancies as for the standard HMM.

Given a clustering constructed as above we can easily adapt the procedure in §2.2.2 to re-
estimate the shared parameters. For each cluster C we just use a shared accumulator for all
the states in the cluster, then re-estimate the shared set of parameters (âd

Ci, µ̂
d
Ci, µ̂

0
Ci, σ̂

2
Ci)

using the same procedure as in §2.2.2. The maximum likelihood (20) becomes:

EQ log P (ci|θ) = −T
2 (log 2π + 1)− 1

2

∑
C∈C

γC log σ̂2
Ci (22)

2.3 P (c|θ) is Gaussian

For the autoregressive HMM with linear summarizers, the distribution P (c|θ) over output
sequences c given a state sequence θ is a multidimensional Gaussian. In this section we
show this, and derive an explicit form for the mean and precision matrix in terms of the
state sequence.

As elsewhere we assume the feature vector sequence components are independent given the
state sequence, though in fact P (c|θ) is still Gaussian in the general vector autoregressive
HMM with linear summarizers case. Thus we want to show P (ci|θ) is a multidimensional
Gaussian for each static sequence component i. For clarity, in this section we will leave the
index i implicit, so c is a sequence of scalars, µq is a scalar, etc.

From (1) and (4):

log P (c|θ) =
∑

t

log P (ct|c1:t−1, θt)

= −T
2 log 2π − 1

2

∑
t

log(σ2
θt

)− 1
2

∑
t

(
ct − µθt

(c1:t−1)
σθt

)2

c=− 1
2

∑
t

z2
t

10

where the constant does not depend on c and the residual zt is defined as:

zt ,
ct − µθt

(c1:t−1)
σθt

Now µq is an affine function of the summarizers as in (4), and the summarizers are linear
functions of the past output c1:t−1 as in (6). Therefore zt is an affine combination of c1:t,
that is:

zt =
∑

s

Ltscs − bt

for some sequence bt and lower triangular matrix Lts. In fact:

Lts = ls−t
θt

bt = bθt

where

lsq ,
−1
σq

D∑
d=0

ad
qw

d
s

bq ,
−1
σq

D∑
d=0

ad
qµ

d
q

and where we have introduced a dummy summarizer f0
t , ct with window coefficients w0

k =
δ0
k and autoregressive coefficient a0

q = −1 to simplify writing the expressions. Considering
the sequences c, z and b as vectors over time, we have z = Lc− b. Therefore:∑

t

z2
t =

∑
t

zTz = cT(LTL)c− 2cT(LTb) + bTb

We can see that P (c|θ) is Gaussian, with natural parameters P = LTL and b = LTb. By
definition the mean of the Gaussian µ satisfies Pµ = b so LTLµ = LTb. But L is invertible,
since it is lower triangular with diagonal elements (1/σθt

), and so we get Lµ = b.

Note that L is a Cholesky-like decomposition of the precision matrix P , the only difference
being that the conventional Cholesky decomposition results in a lower triangular matrix
times its transpose, rather than the transpose times a lower triangular matrix. Furthermore,
since L is band diagonal, so is P . If K is the maximum window depth as in (6) then we
can see that L is (K + 1)-diagonal, so P is (2K + 1)-diagonal.

We note in passing that the residual sequence z|θ ∼ N (0, I), since c|θ ∼ N (µ, Σ), so
(Lc− b)|θ ∼ N (Lµ− b, LΣLT), which is just N (0, I).

The above leads to a nice decomposition of the overall precision matrix P as the sum over
time of local contributions that depend only on the state at that time. Similarly the overall
b-value b decomposes as the sum over time of local contributions. Specifically, if we define:

P
st

q , lsql
t
q = τq

(
D∑

d=0

ad
qw

d
s

)(
D∑

d=0

ad
qw

d
t

)
(23)

b
s

q , lsqbq = τq

(
D∑

d=0

ad
qw

d
s

)(
D∑

d=0

ad
qµ

d
q

)
(24)

11

then

P
st

=
∑

u

P
(s−u)(t−u)

θu
(25)

b
s

=
∑

u

b
(s−u)

θu
(26)

Thus the overall precision matrix P is the sum of overlapping local contributions P θu for
each time u, where each local contribution is a (K +1)×(K +1) matrix which depends only
on the state θu at that time. Similarly the overall b-value b is the sum of overlapping local
contributions bθu

for each time u, where each local contribution is a (K + 1)-dimensional
vector which depends only on the state θu at that time. These decompositions into local
contributions given by (25) and (26) are shown schematically below:

P =

b =

(27)

We can see from (23) that each local contribution lqlq
T to the precision matrix is the outer

product of a (K + 1)-dimensional vector with itself, where this vector is a state-dependent
linear combination of window coefficients.

2.4 Synthesis

During synthesis we produce an output feature sequence c for a given word sequence. From
the point of view of synthesis there is a strong similarity between the the standard HMM
synthesis framework, the trajectory HMM and the autoregressive HMM with linear sum-
marizers. As we show in §2.3 and §3.4, in all three cases P (c|θ) is a multidimensional
Gaussian over vector sequences with band diagonal precision matrix. This is the only fact
that many existing algorithms rely on to do efficient synthesis. Therefore to use the autore-
gressive HMM with existing synthesis algorithms we only need to be able to compute the
parameters of the Gaussian P (c|θ), and this can be done efficiently using (25) and (26).
In this section we show explicitly how to adapt two current synthesis algorithms for the
autoregressive HMM.

It is common to use synthesis methods that first choose the state sequence θ based on P (θ)
and then choose an output sequence c given this state sequence based on P (c|θ). However
we may also choose the state sequence and output sequence jointly based on P (c, θ). For
example EM parameter generation (case 2 in [17]) iteratively maximizes P (c) using expect-
ation maximization (or more precisely it can be interpreted in this way for an appropriate
model P (c, θ)). Although we don’t consider this method below the autoregressive HMM is
well suited to this approach and it is easy to adapt EM generation for the autoregressive
HMM.

12

2.4.1 Synthesis using dynamic features

For synthesis using dynamic features ([2] and case 1 in [17]), we first choose a state sequence
θ and then choose the feature sequence c which maximizes P (c|θ).

For both the autoregressive HMM with linear summarizers (§2.3) and the standard HMM
synthesis framework (§3.4) P (c|θ) is a multidimensional Gaussian so the maximum value
is at its mean µ , E[c|θ]. The natural parameters of this Gaussian can be computed
efficiently using (25) and (26) for the autoregressive HMM or (40) and (41) for the standard
HMM synthesis framework, and from these we can compute the mean µ by solving Pµ = b,
which can be done using Cholesky decomposition P = LLT followed by forward substitution
Ly = b and backward substitution LTµ = y. This is efficient since P is band diagonal.

In fact there is an even more straightforward way to compute µ for the autoregressive HMM
with linear summarizers. We have:

E[ct|θ] = E [E[ct|c1:t−1, θ]]
= E[µθt

(c1:t−1)]
= µθt(Ec1:t−1)

where we have used the general fact EX = E[E[X|Y]] and the fact that for linear sum-
marizers the mean functions µq(c1:t−1) in (3) are affine-linear. Therefore the mean vector
sequence µ can be computed efficiently by a one-pass forward recursion over time:

µt = µθt(µ1:t−1) (28)

These two methods are in fact closely related. In §2.3 we mention that for the autoregressive
HMM we are given a Cholesky-like decomposition P = LTL essentially for free. And above
we could equally have solved Pµ = b using the Cholesky-like decomposition P = LTL
instead of the standard Cholesky decomposition P = LLT. If we use the Cholesky-like
decomposition to solve for µ by doing a backward then a forward substitution, then (28) is
precisely the last forward substitution Lµ = b, and we have effectively solved the backward
substitution LTb = b analytically beforehand.

2.4.2 Synthesis considering global variance

Standard techniques in HMM synthesis, such as synthesis using dynamic features, are found
to produce utterances that sound “flat” or “dull” [18]. In particular, it is found that
synthesized utterances tend to have far less global variance (GV) than natural ones, where
the global variance v(ci) of the ith component of the feature vector sequence is defined as
[18]:

v(ci) ,
1
T

∑
t

c2
ti −

(
1
T

∑
t

cti

)2

Toda [18] introduced parameter generation considering global variance as a way to alle-
viate this lack of global variance, while using existing models. The distribution of global
variances observed in training utterances is modelled by a Gaussian, typically treating each
component of the feature vector as independent. The HMM and GV parameters are trained

13

independently of each other. During synthesis, we use some form of gradient descent to op-
timize a cost function that is a weighted sum of the HMM log probability of the output
sequence and the GV log probability of the output sequence (keeping the state sequence
fixed). This procedure is found to dramatically improve the naturalness of synthetic speech
[18].

It is trivial to adapt this for use with the autoregressive HMM with linear summarizers.
Since we keep the state sequence fixed during gradient descent, the HMM log probability is
in both cases just a multidimensional Gaussian. Therefore we can do parameter generation
considering global variance for the autoregressive HMM simply by passing the appropriate
multidimensional Gaussian to the GV generation algorithm.

2.5 Other considerations

2.5.1 End effects

For the autoregressive HMM with linear summarizers given by (6) the value of the summar-
izer fd at time t depends on the output at previous times ct−K:t−1. For the initial frames
where t ≤ K this means we have a dependence on the output at times t ≤ 0. However these
outputs are not specified in our training corpus and we do not want to have to specify them
for every utterance we synthesize.

Here we take the simple approach of arbitrarily assuming ct = 0 for t ≤ 0 when computing
the summarizers at time t ≤ K. This is expected to have a small overall effect as long as
our training corpus has few very short utterances and we are not trying to synthesize very
short utterances, where ‘very short’ means tens of frames for the standard windows. In
practice these conditions are usually satisfied.

Similar end effect issues occur in the standard HMM synthesis framework when computing
delta coefficients for the initial and final frames of an utterance. The delta coefficient at
time T depends on the static coefficient at time T + 1, for example.

For the autoregressive HMM we do not have to worry about times after the end of the
utterance, since it is trivial to analytically marginalize over all possible future state and
output sequences (θT+1:∞, cT+1:∞).

2.5.2 Equivalent summarizer sets

There is a systematic redundancy in the specification of sets of summarizers for the autore-
gressive HMM. We define a notion of equivalence for summarizer sets below. Two systems
with equivalent summarizer sets trained on the same data produce an identical model P (c, θ)
and so identical synthesized utterances. For example the summarizers defined by Table 1(a)
and Table 1(b) are equivalent but neither is equivalent to Table 1(c). This redundancy is
worth taking into account when choosing summarizer sets.

The basic idea is as follows. The model P (c, θ) depends only on the summarizers (fd
i) and

parameters (ad
qi, µ

d
qi, µ

0
qi) through (5). If we change the set of summarizers in a particular

way and change the parameters accordingly we can end up with the same mean functions
(µqi(c1:t−1)) and so the same model P (c, θ).

14

More precisely, consider the vector space F of functions from past output c1:t−1 to R. Each
summarizer fd

i is in F . Let F ⊂ F be the set of summarizers (fd
i) and define Fi ,

{
fd

i : d
}
.

From (5) we can see that the set of possible mean functions for feature vector component i
is just the linear span

〈
Fi, 1

〉
where 1 is the constant summarizer 1(c1:t−1) , 1. We call two

sets of summarizers F and F̃ equivalent if they have the same span
〈
Fi

〉
=
〈
F̃i

〉
for each

i. In this case the two sets of summarizers have the same set of possible mean functions
µqi(c1:t−1) for each i, and so the same set of possible output distributions P (ct|c1:t−1, θt),
and so the same set of possible generative models P (c, θ). Therefore given any set of model
parameters λ , (ad

qi, µ
d
qi, µ

0
qi, σ

2
qi) for F we can find a set of model parameters λ̃ for F̃ such

that:
P (c, θ|λ, F) = P (c, θ|λ̃, F̃) ∀c, θ (29)

We call the parameter sets λ and λ̃ equivalent if (29) is satisfied.

We will assume that for a given summarizer set F the output distributions uniquely determ-
ine the parameter set, i.e. no two parameter sets for F are equivalent. This is typically the
case unless we have redundant summarizers that are a linear combination of other summar-
izers, and even in this case the following analysis holds with equivalence classes of parameter
sets instead of parameter sets. By the above we have a bijection φ from parameter sets for
F to parameter sets for F̃ :

φ : λ
∼=7−→ λ̃ (30)

Synthesis procedures such as synthesis using dynamic features and synthesis considering
global variance generate identical output for equivalent parameter sets. This is because
they only depend on the overall generative model P (c, θ) and by (29) this is identical for
equivalent parameter sets.

Parameter estimation procedures such as expectation maximization and decision tree clus-
tering respect this bijection, in the sense that applying φ then doing training gives the same
result as doing training then applying φ. The root of this property is the fact that these
are both likelihood-based methods, and a reparameterization of parameter space transforms
the likelihood simply as a function – in particular the maximum after reparameterization
is just the transform of the maximum before reparameterization. This equivalence could
therefore be expected to hold for any likelihood-based training procedure. Here we show it
explicitly for EM and decision tree clustering.

The full EM auxiliary function is:

A(λ) ,
∑

θ

Q(θ) log P (c, θ|λ, F) (31)

where Q(θ) , P (θ|c, λprev, F) where λprev is the parameter set from the previous iteration.
Suppose F and F̃ are equivalent sets of summarizers and consider applying an EM iteration
to both λprev for F and λ̃prev , φ(λprev) for F̃ . Let Q̃ and Ã be the quantities for F̃

corresponding to Q and A for F . By (29) Q(θ) = Q̃(θ) since λprev and φ(λprev) are
equivalent. Furthermore A(λ) = Ã(φ(λ)) since λ and φ(λ) are equivalent. Therefore the
range of possible values of A and Ã is the same. If there is a unique parameter set λ̂ that
attains the maximum of A then φ(λ̂) is the unique parameter set that attains the maximum
of Ã, that is EM respects φ.

There is a slight subtlety in the case where there are multiple values of λ which attain the
maximum of A, and the above claim does not hold precisely. For example in §2.2.3 the

15

pseudo-inverse was suggested as a way to choose between the multiple values. However
in general EM-with-pseudo-inverse does not respect the isomorphism φ, since φ does not
respect the Euclidean norm used to define the pseudo-inverse.

For decision tree clustering the situation is similar. Suppose F and F̃ are equivalent sets
of summarizers and consider applying decision tree clustering to both λprev for F and
λ̃prev , φ(λprev) for F̃ . By (29) the computed occupancies (γq(t)) are identical. Moreover
given a clustering C the optimal variance σ̂2

Ci given by (12) is the same in both cases, since
this is just the result of applying EM for the clustering C. Now suppose during decision
tree construction that the clustering so far is the same in both cases. Then the occupancies
and optimal variance before and after a potential split will be the same in both cases, so
by (21) the change in likelihood for the split will be the same, and so the same split will
be selected. Therefore identical decision trees will be constructed. The parameter sets for
the final clustering will also be equivalent, subject to the same proviso as above regarding
uniqueness of the EM maximum, since each is the result of applying EM for this clustering.
Thus decision tree clustering respects φ.

What about initialization? If two systems with different summarizer sets are initialized
differently then they may remain different after re-estimation and decision tree clustering.
This obviously depends on the details of initialization. One initialization scheme is to
use two model re-estimation [15] where a monophone standard HMM is used to compute
occupancies which are then used to re-estimate autoregressive output distributions. In this
case Q(θ) will be identical, since it comes from the same standard HMM, and as we saw
above this means the re-estimated parameter sets will be equivalent.

For linear summarizers each summarizer fd
i is a linear combination of past output in the ith

feature vector component c(1:t−1)i. Given a linear summarizer set F , let V , RK where K
is greater than or equal to the maximum window depth. Then each summarizer is a linear
map from V to R, that is fd

i ∈ V ∗. Since V ∼= V ∗ we can represent each summarizer as an
element of V . In fact the components of the representation of fd

i in terms of the canonical
basis for V = RK are precisely the window coefficients wd

ik (where we normally assume the
same windows are used for all i so this is just wd

k). Therefore two window sets (wd
k) and

(w̃d
k) define equivalent summarizers if and only if

〈
(wd)

〉
=
〈
(w̃d)

〉
where wd is a vector

with components wd
k.

An example of equivalent window sets are Table 1(a) and Table 1(b). Neither is equivalent
to Table 1(c). Viewing wd

k as a matrix as laid out in these tables, window sets are equivalent
if and only if their matrices have the same row span.

In light of this equivalence we can view our choice of summarizers not as choosing a set of
elements of F so much as choosing a linear subspace of F . For linear summarizers we are
not choosing sets of window coefficients so much as a linear subspace of RK for some depth
K.

3 Standard HMM synthesis framework

In this section we review enough of the standard HMM synthesis framework and the tra-
jectory HMM to allow us to compare them to the autoregressive HMM.

16

3.1 Model for parameter estimation

In the standard HMM framework the hidden state sequence θ = θ1:T and observed feature
vector sequence c = c1:T are the same as for the autoregressive HMM. However in addition
to the static feature vector sequence c, a set of D dynamic feature vector sequences (od) is
computed from c. Each dynamic feature vector sequence od is computed using:

od
t ,

KR∑
k=−KL

wd
kct+k (32)

Here we call (wd
k) the window coefficients and we call KL, KR and K , KL+KR respectively

the left-depth, right-depth and depth of the set of windows. For notational convenience we
define o0

t to be the static sequence ct, i.e. w0
k = δ0

k. Standard HMM synthesis window
coefficients with D = 2 dynamic windows of depth KL = KR = 1 and K = 2 are shown
in Table 1(d). These window coefficients are chosen to approximately compute first and
second derivatives. Together the dynamic feature vectors at time t form an observation
ot , o0:D

t .

Note the similarity of these windows to those used for the autoregressive HMM with linear
summarizers. However for the standard HMM there is no restriction to have wd

k = 0 for
k ≥ 0.

During parameter estimation we ignore the relationship (32) between static and dynamic
feature vector sequences. In fact we assume the observations ot at successive times are in-
dependent given the state sequence. The joint probability distribution of the state sequence
θ and observation sequence o = o1:T is of the form:

P (o, θ) =
∏

t

P (θt|θt−1)P (ot|θt) (33)

and we model ot as conditionally Gaussian, with state-dependent mean and covariance:

P (ot|θt) = N (ot|µθt
, Σθt

) (34)

We typically further assume diagonal covariance matrices Σde
qij = 1/τd

qiδijδ
de and so:

P (ot|θt) =
∏
d,i

N
(
od

ti|µd
θti, 1/τd

θti

)
(35)

The set of parameters specifying an HMM in the standard framework is therefore (µd
qi, τ

d
qi),

where µd
qi is the mean and τd

qi is the precision for state q, feature vector component i and
window d.

This model allows efficient parameter estimation using expectation maximization [15].

3.2 Model for synthesis

Because it ignores the constraints (32) between static and dynamic features, most of the
probability mass for the model in §3.1 is on observation sequences o that are incoherent,
meaning that they don’t respect these constraints. Synthesizing using that model will there-
fore typically output an incoherent observation sequence. If we throw away the dynamics

17

and just use the static feature vector sequence the resulting synthesized utterance sounds
awful, since each frame was generated independently given the state sequence and so lacks
realistic time dynamics. Clearly for synthesis we need adjust to the model in §3.1.

From another point of view, for synthesis we want a distribution over static feature vector
sequences P (c|θ), but the parameter estimation model gives us a distribution over observa-
tion sequences PPE(o|θ), and worse one that assigns probability zero to the set of coherent
observation sequences, which are in fact the only ones possible!

One solution is to restrict the parameter estimation distribution PPE(o|θ) to coherent ob-
servation sequences. We set:

P (c|θ) ,
1
Zθ

PPE(W (c)|θ) (36)

where W (c) is the observation sequence corresponding to static feature vector sequence c as
computed by (32). The normalization constant Zθ is required because not all observation
sequences are coherent. We use joint distribution P (c, θ) = P (c|θ)P (θ) with P (θ) = PPE(θ)
unchanged.

In §2.4.1 we reviewed how to do synthesis using dynamic features for this model – that
is, how to find the output sequence c which maximizes P (c|θ). Historically the procedure
to compute arg maxc PPE(c|θ) [2] preceded its interpretation as maximizing P (c|θ) for a
particular model [3].

Note that in the case of diagonal covariance matrices the output sequence components
(ci) are independent given the state sequence. Indeed from (33), (35) and (36) we have
P (c|θ) =

∏
i P (ci|θ) where:

P (ci|θ) =
1
Zi

θ

∏
t,d

N
(
od

ti|µd
θti, 1/τd

θti

)
(37)

3.3 Trajectory HMM

Using different models for parameter estimation and synthesis is inconsistent. The trajectory
HMM [3, 19] uses the standard synthesis model from §3.2 for both synthesis and parameter
estimation. However parameter estimation for the trajectory HMM is more complicated
than for the standard HMM, requiring alignment with a delayed-decision Viterbi algorithm
and gradient-based parameter re-estimation procedures [3]. The root of these complications
is the fact that the normalization constant Zθ in (36) depends on the entire state sequence
θ meaning that P (c, θ) no longer factorizes nicely with respect to the state sequence.

3.4 P (c|θ) is Gaussian

The standard synthesis model from §3.2 gives a Gaussian distribution P (c|θ) over output
sequences [3]. Here we re-derive this result using notation that highlights the similarities
and differences to the autoregressive HMM.

We assume diagonal covariance matrices, so as we saw in §3.2 the feature vector sequence
components are independent given the state sequence. Thus we want to show P (ci|θ) is a

18

multidimensional Gaussian for each static sequence component i. For clarity, in this section
we will leave the index i implicit, so c is a sequence of scalars, µd

q is a scalar, etc.

From (37):

log P (ci|θ)
c=
∑
u,d

logN
(
od

u|µd
θu

, 1/τd
θu

)
= −T (D+1)

2 log 2π + 1
2

∑
u,d

log τd
θu
− 1

2

∑
u,d

τd
θu

(
od

u − µd
θu

)2
c=− 1

2

∑
u,d

τd
θu

(
(od

u)2 − 2µd
θu

od
u

)
= − 1

2

∑
u,d

∑
s,t

τd
θu

wd
s−uwd

t−ucsct +
∑
u,d

∑
s

τd
θu

µd
θu

wd
s−ucs

= − 1
2

∑
s,t

P
st

csct +
∑

s

b
s
cs

where

P
st

q ,
D∑

d=0

τd
q wd

swd
t (38)

b
s

q ,
D∑

d=0

τd
q µd

qw
d
s (39)

and

P
st

,
∑

u

P
(s−u)(t−u)

θu
(40)

b
s

,
∑

u

b
(s−u)

θu
(41)

We can see that P (ci|θ) is Gaussian with precision matrix P and b-value b.

As for the autoregressive HMM with linear summarizers we have a nice decomposition of
the overall precision matrix P and b-value b as the sum over time of local contributions.
Specifically (40) shows that the overall precision matrix P is the sum of overlapping local
contributions P θu

for each time u, where each local contribution is a (K + 1) × (K + 1)
matrix which depends only on the state θu at that time. Similarly (41) shows that the
overall b-value b is the sum of overlapping local contributions bθu for each time u, where
each local contribution is a (K + 1)-dimensional vector which depends only on the state
θu at that time. As for the autoregressive HMM (27) provides a schematic view of these
decompositions into local contributions.

We can see from (38) that each local contribution to the precision matrix is a state-
dependent linear combination of a fixed set of (K + 1) × (K + 1) matrices, where each
of these fixed matrices wd(wd)T is the outer product of a vector of window coefficients with

19

standard trajectory AR

consistent × X X

easy and efficient parameter
estimation X × X

output distribution joint
Gaussian

joint
Gaussian

linear
Gaussian

P (c|θ) is Gaussian built from
local contribs X X X

form of local contribs

linear
comb of

self
products

linear
comb of

self
products

self
product
of linear
comb

typical free params 6 6 5

synthesis using dynamic
features X X X

synthesis considering global
variance X X X

Table 2: Summary of similarities and differences between the standard HMM synthesis
framework, the trajectory HMM and the autoregressive HMM

itself.

4 Comparison

In this section we compare the standard HMM synthesis framework, the trajectory HMM
and the autoregressive HMM with linear summarizers. A summary of the similarities and
differences between these three models is shown in Table 2. We also discuss to what extent
the standard model used for synthesis can be emulated using an autoregressive HMM.

The autoregressive HMM and trajectory HMM both use the same probabilistic model dur-
ing parameter estimation as during synthesis, and are therefore consistent. As we saw in
§3.1 and §3.2 the standard HMM synthesis framework does not – the constraints between
static and dynamic features are incorporated during synthesis but ignored during parameter
estimation.

The joint distribution P (c, θ) factorizes nicely over time for the autoregressive HMM (1) and
similarly P (o, θ) factorizes nicely over time for the standard parameter estimation model
(33). The trajectory HMM does not shared this property due to the normalization constant
in (36). This allows the autoregressive HMM and standard HMM synthesis framework to
support easy and efficient parameter estimation using expectation maximization, whereas
the trajectory HMM requires more complicated parameter estimation procedures [3].

The linear Gaussian state output distributions (2), (3) and (6) used for the autoregressive
HMM with linear summarizers are different to the joint Gaussian state output distributions
(34) used for the standard HMM framework and the trajectory HMM.

20

The different forms of state output distribution still lead to similar distributions over output
sequences. As we showed in §2.3 and §3.4, in all three cases P (c|θ) is Gaussian with band-
diagonal precision matrix and the precision matrix P decomposes into a sum over time of
local contributions that depend only on the state at that time.

However the form of these local contributions is different. For the autoregressive HMM each
local contribution (23) takes the form of the self product of a linear combination of fixed
basis vectors whereas for the standard HMM synthesis framework each local contribution
(38) takes the form of a linear combination of self products of fixed basis vectors.2

4.1 Emulating the standard model for synthesis

In this section we discuss emulating a standard HMM synthesis model (§3.2) with an autore-
gressive HMM. That is, we are given a standard HMM and we want to find parameters for
an autoregressive HMM with linear summarizers that give the same model in some sense.
Clearly this cannot be done for the full model P (c, θ) since the two models are genuinely
different, but it is interesting to investigate how far we can get.

Given a state sequence it turns out we can emulate any standard HMM with an autore-
gressive one, meaning that we can choose parameters for the autoregressive one such that
the two distributions P (c|θ) are identical. To see this, firstly note that the precision matrix
in (38) is (2K +1)-diagonal, where K is the depth of the window set being used. In general
if a set of random variables (x1:T) is jointly Gaussian then the conditionals P (xt|x1:t−1)
are linear Gaussian, meaning that the mean is an affine combination of x1:t−1 and the
variance is fixed. Furthermore it is a general result that if the joint distribution has a
precision matrix that is (2K + 1)-diagonal then the process is K-Markov, meaning that
P (xt|x1:t−1) = P (xt|xt−K:t−1), so the conditional distribution of xt only depends on the
previous K values.3 Putting these results together, we see that for a given state sequence we
can exactly emulate any standard HMM with an autoregressive HMM (with K windows).

This raises the question of whether we can find a single autoregressive HMM which emulates
the standard HMM’s P (c|θ) for any state sequence θ. In general we can’t emulate a given
standard HMM local contribution with an autoregressive local contribution, no matter how
many windows we use, since a linear combination of, say, 3 self products isn’t in general
expressible as the self product of any single vector. Now if we wanted to emulate a standard
HMM with an autoregressive one, so that the precision matrices were the same for every
state sequence, it’s hard to imagine how we’d be able to achieve this without making all the
state-dependent local contributions equal, since the state sequence is arbitrary. Therefore
in general it is presumably impossible to emulate P (c|θ) for all θ.

4.2 Model complexity

For autoregressive HMM, for each state q and feature vector component i we have D + 1
mean values µ0:D

qi of which D values are redundant, D autoregressive coefficients a1:D
qi , and a

2by the self product of a vector a we mean the outer product of a with itself, i.e. the matrix aaT.
3we can verify both of these facts at the same time by considering the general formulae for conditioning

and for marginalizing a jointly Gaussian distribution with respect to a subset of its components. For our
purposes, for each time t, we condition the present and future xt:T on the past x1:t−1, then marginalize
over the future xt+1:T .

21

single variance value σ2
qi. Here D is the number of summarizers. The total model complexity

is therefore D + 2 free parameters per state per feature vector component. For example if
D = 3 there are 5 free parameters.

For the standard HMM framework and trajectory HMM, for each state q and feature vector
component i we have D + 1 mean values and D + 1 variance values. Here D is the number
of dynamic features – for example D = 2 for a system with static, delta and delta-delta
coefficients. The total model complexity is therefore 2D + 2 free parameters per state per
feature vector component. Typically D = 2 so there are 6 free parameters.

Note that for the autoregressive HMM the number of free parameters is different from
the number of accumulated values. We accumulate D + 1 mean values for

〈
fd

i

〉
q

and
1
2 (D + 1)(D + 2) values for

〈
fd

i fe
i

〉
q
. Thus for the autoregressive HMM we accumulate a

total of 1
2 (D + 1)(D + 4) values per state per feature vector component. For example if

D = 3 we accumulate 14 values.

5 Conclusion

We have presented a formulation of the autoregressive HMM for speech synthesis and com-
pared it to the standard HMM synthesis framework and the trajectory HMM. We have given
details of how to do efficient parameter estimation and synthesis with the autoregressive
HMM and discussed consequences of the autoregressive HMM model. There are substantial
similarities between the three models – in particular we have shown that in all three cases
the output distribution given a state sequence is a multidimensional Gaussian built up from
local contributions. We have also highlighted some important differences between the three
models. In light of the similarities to and key advantages over current models we believe
the autoregressive HMM represents an attractive candidate for an efficient and consistent
model of speech for speech synthesis.

Acknowledgements

This research was funded by the European Community’s Seventh Framework Programme
(FP7/2007-2013), grant agreement 213845 (EMIME).

22

References

[1] A. Black, H. Zen, and K. Tokuda, “Statistical parametric speech synthesis,” in Proc.
ICASSP 2007, pp. 1229–1232, 2007.

[2] K. Tokuda, T. Kobayashi, and S. Imai, “Speech parameter generation from HMM using
dynamic features,” in Proc. ICASSP 1995, vol. 1, 1995.

[3] H. Zen, K. Tokuda, and T. Kitamura, “An Introduction of Trajectory Model into
HMM-Based Speech Synthesis,” in Proc. Fifth ISCA Workshop on Speech Synthesis,
2004.

[4] C. Wellekens, “Explicit time correlation in hidden Markov models for speech recogni-
tion,” in Proc. ICASSP 1987, vol. 12, 1987.

[5] P. Kenny, M. Lennig, and P. Mermelstein, “A linear predictive HMM for vector-valued
observations with applications to speech recognition,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 38, no. 2, pp. 220–225, 1990.

[6] P. Woodland, “Hidden Markov models using vector linear prediction and discriminative
output distributions,” in Proc. ICASSP 1992, vol. 1, pp. 509–512, 1992.

[7] J. Bilmes, “Graphical models and automatic speech recognition,” in Mathematical
foundations of speech and language processing (M. Johnson, S. Khudanpur, M. Osten-
dorf, and R. Rosenfeld, eds.), Springer-Verlag, 2004.

[8] K. Chin and P. Woodland, “Maximum mutual information training of hidden Markov
models with vector linear predictors,” in Proc. Interspeech 2002, 2002.

[9] A. Poritz, “Linear predictive hidden Markov models and the speech signal,” in Proc.
ICASSP 1982, vol. 7, 1982.

[10] B. Juang and L. Rabiner, “Mixture autoregressive hidden Markov models for speech
signals,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 6,
pp. 1404–1413, 1985.

[11] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via
the EM algorithm,” Journal of the Royal Statistical Society, Series B (Methodological),
pp. 1–38, 1977.

[12] S. Yu and H. Kobayashi, “An efficient forward-backward algorithm for an explicit-
duration hidden Markov model,” IEEE Signal Processing Letters, vol. 10, no. 1, pp. 11–
14, 2003.

[13] H. Zen, “Implementing an HSMM-based speech synthesis system using an efficient
forward-backward algorithm,” Technical Report TR-SP-0001, Nagoya Institute of
Technology, 2007.

[14] HTS working group, “HMM-based speech synthesis system (HTS).” http://hts.sp.
nitech.ac.jp/. accessed 17 April 2009.

http://hts.sp.nitech.ac.jp/
http://hts.sp.nitech.ac.jp/

23

[15] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The HTK book version 3.4.
Cambridge University Engineering Department, 2006. http://htk.eng.cam.ac.uk/
docs/docs.shtml.

[16] S. Young, J. Odell, and P. Woodland, “Tree-based state tying for high accuracy acoustic
modelling,” in Proc. ARPA Human Language Technology Workshop, pp. 307–312, 1994.

[17] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech para-
meter generation algorithms for HMM-based speech synthesis,” in Proc. ICASSP 2000,
vol. 3, 2000.

[18] T. Toda and K. Tokuda, “Speech Parameter Generation Algorithm Considering Global
Variance for HMM-Based Speech Synthesis,” in Proc. Interspeech 2005, 2005.

[19] H. Zen, Reformulating the HMM as a trajectory model by imposing explicit relationships
between static and dynamic features. PhD thesis, Nagoya Institute of Technology, 2006.

http://htk.eng.cam.ac.uk/docs/docs.shtml
http://htk.eng.cam.ac.uk/docs/docs.shtml

	Introduction
	Autoregressive HMM
	Model
	Parameter estimation
	Forward-Backward algorithm
	Parameter re-estimation overview
	Details of parameter re-estimation
	Decision tree clustering

	P(c |) is Gaussian
	Synthesis
	Synthesis using dynamic features
	Synthesis considering global variance

	Other considerations
	End effects
	Equivalent summarizer sets

	Standard HMM synthesis framework
	Model for parameter estimation
	Model for synthesis
	Trajectory HMM
	P(c |) is Gaussian

	Comparison
	Emulating the standard model for synthesis
	Model complexity

	Conclusion
	References

