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Abstract
A concise overview is giv en of various numerical methods that can be used to analyse localisation and
failure in engineering materials. The importance of the cohesive-zone approach is emphasised and var-
ious ways of incorporating the cohesive-zone methodology in discretisation methods are discussed.
Next, a simple continuum damage (decohesion) model which preserves well-posedness of boundary-
value problems via gradient enhancement is recalled. Using a meshless method the importance of the
higher-order gradient terms is assessed. Finally, the model is used in finite element reliability analyses
to quantify the probability of the emergence of various possible failure modes.
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1. Introduction

Failure in most engineering materials is preceded by the emergence of narrow zones of intense strain-
ing. During this phase of so-called strain localisation, the deformation pattern in a body rather sudden-
ly changes from relatively smooth into one in which thin zones of highly strained material dominate.
In fact, these strain localisation zones act as a precursor to ultimate fracture and failure. Thus, in order
to accurately analyse the failure behaviour of materials it is of pivotal importance that the strain locali-
sation phase is modelled in a physically consistent and mathematically correct manner and that proper
numerical tools are used.

Until the mid-1980s analyses of localisation phenomena in materials were commonly carried out using
standard, rate-independent continuum models. This is reasonable when the principal aim is to deter-
mine the behaviour in the pre-localisation regime and some properties at incipient localisation. How-
ev er, there is a major difficulty in the post-localisation regime, since localisation in standard, rate-inde-
pendent solids is intimately related to a local change in the character of the governing set of partial dif-
ferential equations. If this happens, the rate boundary value problem becomes ill-posed and numerical
solutions suffer from spurious mesh sensitivity.

To remedy this problem, one must either introduce higher-order terms in the continuum representation
that reflect the changes in the microstructure or take into account the inherent viscosity of most engi-
neering materials. An alternative possibility is to by-pass the strain localisation phase and to directly
incorporate the discontinuity that arises as an outcome of the strain localisation process. The latter pos-
sibility is pursued with so-called cohesive-zone models. We will start by describing them and discuss
how they can be introduced in a numerical context. We will show that finite elements with ‘embedded’
localisation zones do not rigorously incorporate discontinuities in finite element models. Conversely,
finite element formulations that exploit the partition-of-unity property of the shape functions [1] can,
as will be discussed. Indeed, this concept even enables the modelling of a gradual transition from a
(higher-order) continuum description to a genuine discontinuum in a numerical context. This is ex-
tremely powerful, since now the entire failure process, from small-scale yielding or the initiation of
voids and micro-cracks up to the formation of a macroscopically observable crack, can be simulated in
a consistent and natural fashion.

Like for finite element methods, the shape functions of meshless discretisations, e.g., the element-free
Galerkin method [2], form partitions of unity. Meshless methods have a tremendous advantage for
models in which higher-order terms are incorporated, since they inherently provide for the required
higher-order continuity. Accordingly, enhanced continuum models can be implemented easily and the
importance of the higher-order gradients can be assessed.

Finally, we will indicate how the heterogeneous character of materials at a macroscopic scale can be
incorporated in numerical analyses of inelastic solids. In particular, the effect of stochastically dis-
tributed imperfections on the failure load in inelastic solids will be quantified in the framework of the
finite element reliability method.
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2 Cohesive-Zone Models

2.1 Formulation

An important issue when considering failure is the observation that most engineering materials are not
perfectly brittle in the Griffith sense, but display some ductility after reaching the strength limit. In
fact, there exists a small zone in front of the crack tip, in which small-scale yielding, micro-cracking or
void growth and coalescence take place. If this fracture process zone is sufficiently small compared to
the structural dimensions, linear-elastic fracture mechanics concepts apply. Howev er, if this is not the
case, the cohesive forces that exist in this fracture process zone must be taken into account, and cohe-
sive-zone models must be utilised. In such models, the degrading mechanisms in front of the crack tip
are lumped into a discrete line, and a stress-displacement (σ − u) relationship across this line repre-
sents the degrading mechanisms in the fracture process zone. Evidently, the shape of the stress-dis-
placement relation is material dependent. The area under this curve represents the energy that is need-
ed to create a unit area of fully developed crack. It is commonly named the fracture energy Gf and has
the dimensions of J/m2. Formally, the definition of the fracture energy reads:

Gf = ∫ σ du (1)

with σ and u the stress and the displacement across the fracture process zone. Cohesive-zone models
were introduced by Dugdale [3] and Barenblatt [4] for elastic-plastic fracture in ductile metals, and for
quasi-brittle materials Hillerborg [5] published his so-called Fictitious Crack Model, which ensured a
discretisation-independent energy release upon crack propagation.

In the past years, cohesive-zone models have shown a strong revival and have been recognised to be an
important tool for describing fracture and failure in engineering materials. Especially when the crack
path is known in advance, either from experimental evidence, or because of the structure of the materi-
al, cohesive-zone models have been used with great success. Then, the mesh lay-out can be made such
that the crack path coincides with element boundaries. By inserting interface elements between contin-
uum elements along the potential crack path, a cohesive crack can be modelled exactly [6,7]. To allow
for arbitrary crack propagation, Xu and Needleman [8] have inserted interface elements equipped with
a cohesive-zone model between all continuum elements. Although analyses with this approach provide
much insight, see also [9,10], they suffer from a certain mesh sensitivity, since crack propagation is not
entirely free, but restricted to element boundaries, and, more importantly, the approach is not suitable
for large-scale analyses.

Distributing the fracture energy Gf over the full width of an element leads to so-called smeared formu-
lations [11,12]. Since the fracture energy is now smeared out over the width of the area in which the
crack localises, we obtain

Gf = ∫ ∫ σ dε (x) d x (2)

with x the coordinate orthogonal to the crack direction. When we assume that the strains are constant
over a band width w (an assumption commonly made in numerical analyses), we obtain

Gf = wgf (3)

with gf the work dissipated per unit volume of fully damaged material.
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Figure 1. Deformed SiC/C specimen beyond the peak load (fine discretisation).
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Figure 2. Load-displacement curves for SiC/C specimen computed using a cohesive-zone model.

When doing so, the global load-displacement diagram can become almost insensitive to the discretisa-
tion. This is exemplified in Figures 1 and 2. Figure 1 shows the deformed mesh of a silicium-carbide
specimen that is reinforced with carbon fibres (SiC/C composite). The dimensions of the specimen are
30 µm × 30 µm and a uniform loading is applied to the vertical sides. The fibres are assumed to re-
main elastic and the bond between the fibres and the matrix material is assumed to be perfect. A soft-
ening (decohesion) effect is solely adopted for the matrix material, for which a simple Von Mises plas-
ticity model with linear isotropic softening has been used. After onset of softening a clear localisation
zone develops, as shown in Figure 1 for a fine discretisation of 15568 triangular elements. Figure 2
shows that, at variance with results without the introduction of a fracture energy, cf. [13], the comput-
ed load-displacement curves are rather insensitive to the discretisation, since the coarse mesh (973 ele-
ments), the medium mesh (3892 elements) and the fine mesh practically coincide. Nevertheless, in
spite of the reasonable results, the smearing out of the cohesive-zone model cannot prevent the local
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change of character of the governing equations and the boundary-value problem still becomes ill-
posed at a certain stage in the loading process. As a consequence, for another problem, or for slightly
different material parameters, mesh-sensitive results may again be obtained.

2.2 Finite elements with embedded discontinuities

Finite element models with so-called embedded discontinuities provide a more elegant approach to im-
plement cohesive-zone models in a smeared context [14-19]. There are two versions of these models,
namely the strong discontinuity approach and the weak discontinuity approach. We will depart from
the latter approach and define an element in which a band is defined within the element where the
strains are different in magnitude than the strains in the remainder of the element:

ε +
ij = ε ij +

α +

2
(ni m j + n j mi) (4)

and

ε −
ij = ε ij +

α −

2
(ni m j + n j mi) (5)

with n a vector normal to the band and m related to the deformation mode, e.g., m = n for mode-I be-
haviour and n orthogonal to m for mode-II behaviour. α + and α − are scalars indicating the magnitude
of the strain inside and outside of the band, respectively, measured relative to the average, continuous
strain ε ij in the element. The enhanced strain modes (second part of eqs (4)-(5)) are discontinuous
across element boundaries. Consequently, they can be solved for at element level.

The stress-strain relation in the band can be specified independently from that in the bulk of the ele-
ment. Typically, a softening relation is prescribed which results in an energy dissipation per unit vol-
ume gf upon complete loss of material coherence. For a band with a width w, which is incorporated in
the finite element formulation, we thus retrieve the fracture energy

Gf = w ∫ σ d ε (6)

that is dissipated for the creation of a unit area of fully developed crack.

A problem resides in the determination of the length of the crack band, lelem in a specific element. Ob-
viously, for a given length lelem the total energy dissipation in an element reads

Gf,elem = lelemGf (7)

If the crack length in an element is estimated incorrectly, the energy that is dissipated in each element
is also wrong, and so will be the total load-displacement diagram [19]. Different possibilities exist to
calculate lelem, e.g. to relate lelem to the area of the element Aelem, to assume that the enhanced mode
passes through the element midpoint and to calculate the band length accordingly, or to let the band
connect at the element boundaries and to compute the band length in this fashion.

While the above considerations have been set up for the so-called weak discontinuity approach, in
which the displacement is continuous, it is also possible to let the enhanced strain modes be unbound-
ed. This so-called strong discontinuity approach can be conceived as a limiting case of the weak dis-
continuity approach for w → 0 [20]. The strain then locally attains the form of a Dirac function and the
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displacement becomes discontinuous across a single discrete plane. Nevertheless, the integral over
time of the product of the traction and the difference in velocities between both sides still equals the
fracture energy.

The embedded discontinuity approaches enhance the deformational capabilities of the elements, espe-
cially when the standard Bubnov-Galerkin approach is replaced by a Petrov-Galerkin method, which
properly incorporates the discontinuity kinematics [20]. As a consequence, the high local strain gradi-
ents inside localisation bands are better captured. However, a true discontinuity is not captured because
the kinematics of eqs (4) and (5) are diffused over the element when the governing equations are cast
in a weak format, either via a Bubnov-Galerkin or via a Petrov-Galerkin procedure.

2.3 Modelling of discontinuities by exploiting the partition-of-unity property

A method in which a discontinuity in the displacement field is captured rigorously has been developed
recently on the basis of the partition-of-unity concept [21,22]. A collection of functions φ i , associated
with node i, form a partition of unity if

n

i=1
Σ φ i(x) = 1 (8)

with n the number of discrete nodal points [1]. For a set of functions φ i that satisfy eq. (8), a field u
can be interpolated as follows

u(x) =
n

i=1
Σ φ i(x) 


ai +

m

j=1
Σ ψ j(x)bij




(9)

with ai the ‘regular’ nodal degrees-of-freedom, ψ j(x) the enhanced basis terms, and bij the additional
degrees-of-freedoms at node i which represent the amplitude of the jth enhanced basis term ψ j(x).

A piecewise smooth displacement field u which incorporates a discontinuity with a unit normal vector
n pointing in an arbitrary, but fixed direction can be described by:

u(x) = u(x) + HΓd
(x) ũ(x) (10)

with u the standard, continuous displacement field on which the discontinuity has been superimposed.
The discontinuous field is represented by the smooth field ũ and the Heaviside function HΓd

, centered
at the discontinuity plane Γd . The displacement decomposition in eq. (10) has a structure similar to
the interpolation of eq. (9). Accordingly, the partition-of-unity concept can be used in a straightfor-
ward fashion to incorporate discontinuities, and thus, cohesive-zone models in a manner that preserves
the truly discontinuous character. Indeed, in conventional finite element notation, the displacement
field of an element that contains a single discontinuity can be represented as:

u = u + HΓd
ũ = Na + HΓd

Nb = N(a + HΓd
b) (11)

where N contains the standard shape functions, and a and b collect the conventional and the additional
nodal degrees-of-freedom, respectively. The numerical development now follows standard lines by
casting the balance of momentum in a weak format, and, in the spirit of a Bubnov-Galerkin approach,
taking a decomposition as in eq. (11) also for the test function. For small displacement gradients a
complete derivation can be found in [23], while the extension to large displacement gradients is given
in [24].
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It is emphasised that in this concept, the additional degrees-of-freedom cannot be condensed at ele-
ment level, because, at variance with the ‘embedded’ displacement discontinuity approach, it is node-
oriented and not element-oriented. It is this property which makes it possible to represent a disconti-
nuity in a rigorous manner.

From eqs (9) and (11) we infer that the partition-of-unity concept can naturally be conceived as a mul-
tiscale approach. Decomposing u(x) formally as

u(x) = uC (x) + uF (x) (12)

with

uC (x) =
n

i=1
Σ φ i(x)ai (13)

representing the coarse-scale and

uF (x) =
n

i=1
Σ φ i(x)

m

j=1
Σ ψ j(x)bij (14)

representing the fine scale. A more formal relation to the Variational Multiscale Formulation [25] has
been given in the companion paper by Munts et al. [26].

As an example we consider the double cantilever beam of Figure 3 with an initial delamination length
a0. This case, in which failure is a consequence of a combination of delamination growth and struc-
tural instability, has been analysed using conventional interface elements by Allix and Corigliano [27].
The beam is subjected to an axial compressive force 2P, while two small perturbing forces P0 are ap-
plied to trigger the buckling mode. Two finite element discretisations have been employed, a fine mesh
with three elements over the thickness and 250 elements along the length of the beam, and a coarse
mesh with only one (!) element over the thickness and 100 elements along the length. Figure 4 shows
that the calculation with the coarse mesh approaches the results for the fine mesh very well. For in-
stance, the numerically calculated buckling load is in good agreement with the analytical solution.
Steady-state delamination growth starts around a lateral displacement u = 4 mm. From this point on-
wards, delamination growth interacts with geometrical instability. Figure 5 presents the deformed
beam for the coarse mesh at a tip displacement u = 6 mm. Note that the displacements are plotted at
true scale, but that the difference in displacement between upper and lower part of the beam is for the
major part due to the delamination and that the strains remain small. Another way of post-processing
the results could have obviated this slightly misleading picture.

P
P

P0,u

P0

a0=10 mm

l=20 mm

h=0.2 mm

 

Figure 3. Double cantilever beam with initial delamination under compression.
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Figure 4. Load-displacement curves for delamination buckling test.

Figure 5. Deformation of coarse mesh after buckling and delamination growth (true scale).

3 Continuum-discontinuum transition

The above approach enables the gradual and consistent transition from a continuum to a discontinuum
description. In [28] tractionless discontinuities have been inserted in a softening, viscoplastic medium
when the stress has become lower than a threshold level, say 1% of the initial yield strength. Accord-
ingly, the viscous property of the continuum has been used to ensure a mesh-independent analysis in
the softening continuum prior to local failure and the creation of a traction-free discontinuity.

For many materials the viscosity is so low that addition of it to the constitutive model is not sufficient
to restore well-posedness of the boundary value problem during the strain localisation phase. Indeed,
models that exploit the non-local interactions in the fracture process zone can be physically better mo-
tivated and numerically more effective. Among these models, the gradient-enhanced models have
shown to be computationally the most efficient, either in a plasticity-based format [29-31], a damage-
based format [32,33], or a combination of both [34]. Especially the gradient-enhanced damage model
of Peerlings et al. [32,33] has proven to be very robust and effective, not only for damage evolution
under monotonic loading conditions, but also for fatigue loading [35]. For this reason it is summarised
below.

Scalar-based damage models are normally rooted in an injective relation between the stress tensor σσ
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and the strain tensor εε :

σσ = (1 − ω )De: εε (15)

Herein De is the elastic stiffness tensor with the virgin elastic constants E (Young’s modulus) and ν
(Poisson’s ratio). ω is a monotically increasing damage parameter, with an initial value 0, for the in-
tact material, and an ultimate value 1, at complete loss of material coherence. It is a function of a his-
tory parameter κ : ω = ω (κ ), with κ linked to a non-local strain measure ε via a loading function

f = ε − κ (16)

such that loading occurs if f = 0, ḟ = 0 and ω < 1. The non-local strain measure is coupled to a local
strain measure ε̃ = ε̃ (εε ) via:

ε − c1∇2ε − c2∇4ε = ε̃ (17)

with c1 and c2 material parameters with the dimension length squared, respectively of length to the
power four.

4 Meshless methods for localisation and failure

A clear disadvantage of the use of higher-order continuum theories is the higher continuity that may be
required for the shape functions that are used in the interpolation of the non-local variable. The sec-
ond-order implicit gradient damage theory (eqs (15)-(17) with c2 = 0) is such that after partical inte-
gration C0-interpolation polynomials suffice for the interpolation of ε . Howev er, this no longer holds
when the fourth-order term is retained. Then, and also because of the moving elastic-plastic boundary
in gradient plasticity models, C1-continuous shape functions are required, with all computational in-
conveniences that come to it. Here, meshless methods, which can easily be constructed such that they
incorporate C∞-continuous shape functions, have a clear advantage. Below we shall apply one such
method, namely the element-free Galerkin method [2], to second and fourth-order implicit gradient
damage models.

In the element-free Galerkin method, approximants uh are constructed as

uh = pT(x) a(x) (18)

with p a vector that contains monomials and a a coefficient vector. The approximants are found by
minimising the moving weighted least squares sum with respect to a:

J =
n

i=1
Σ wi(x) 


pT(xi) a(x) − ui




(19)

with p(xi) the value of p in node i, wi the weight function attached to this node and ui the nodal dis-
placement. The weight functions should be smooth and should contain a certain minimum number of
other nodes within its domain of influence.

For a three-point bending beam, analyses have been carried out using the element-free Galerkin
method both for the second and for the fourth-order gradient damage model. It appeared that the re-
sults for both formulations are virtually identical [36].

The higher-order continuity that is incorporated in meshless methods makes them well suited for local-
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René de Borst, Harm Askes, Miguel A. Gutié rrez, Joris J.C. Remmers, Garth N. Wells

isation and failure analyses using higher-order continuum models. Moreover, the flexibility is also in-
creased compared to conventional finite element methods, since there is no direct connectivity, which
makes placing nodes in regions with high strain gradients particularly simple. This can also be
achieved by finite element methods with spatial adaptivity. Originally, adaptivity for localisation analy-
ses was applied using standard continuum models [37]. However, it soon became clear that the inher-
ent loss of ellipticity prevented error estimators to work properly [38]. Contemporary approaches
therefore apply mesh adaptivity techniques for failure analyses in conjunction with cohesive-zone
models or with regularised continuum models [38-40]. Along the same line of reasoning, the discreti-
sation itself cannot provide a regularisation, neither for finite element methods, nor for meshless meth-
ods. Indeed, for the latter class of methods the nodal spacing directly relates to the width of the locali-
sation zone that is resolved if no regularisation is provided for the continuum model.

5 Stochastically Distributed Imperfections

So far, the discussion has concentrated on localisation and the ensuing failure in solids which have uni-
form strength and stiffness properties. In reality, strength and stiffness have a random distribution over
any structure. The distribution and the size of imperfections may have a profound influence on the lo-
calisation pattern and, therefore, on the ultimate failure load, as was demonstrated more than half a
century ago by Koiter in his landmark dissertation [41] on the influence of imperfections in elastic
solids. We may expect that this observation holds a fortiori if material degradation plays a role.

Thus, for realistic analyses of localisation and failure, material parameters like Young’s modulus, the
tensile strength and the fracture energy should be considered as random fields, and the most probable
realisation(s) should be sought which lead to failure or violate a certain serviceability criterion. Indeed,
in such analyses, not only the scatter in material parameters, but also the uncertainty in the boundary
conditions should be considered. The simplest, but also the most expensive method, would be to start a
nonlinear analysis from different random distributions and to obtain the statistics of the response by
carrying out a sufficient number of such Monte-Carlo simulations [42]. Evidently, this is very expen-
sive and a more versatile approach is to utilise the finite element reliability method [43,44].

In the latter approach, the statistics of a certain measure for failure or loss of serviceability, say Q, are
approximated as follows. First, the material parameters (or the boundary conditions) which are as-
sumed to have a random distribution, are discretised and are assembled in a vector V, which is charac-
terised by a joint probability density function fv. Although the discretisation that is used to form V
can be different from the finite element discretisation that is used later, it simplifies the implementation
if the random cells coincide with finite elements or patches of finite elements. To facilitate further
computations, the vector V of random variables is usually converted into a vector Y which consists of
uncorrelated variables with a standard normal distribution. A crucial step is then the (nonlinear) me-
chanical transformation, which, given a random distribution of the material parameters and/or bound-
ary conditions, computes a random response, assembled in Q. If q0 denotes the threshold value of the
measure Q that is used to assess failure or serviceability, the realisation v of V is sought which furnish-
es a local maximum of its own probability density through a suitable optimisation algorithm. A weak-
ness of the approach is that it generates a local maximum, which implies that to obtain a good global
estimate of the likelihood of failure or loss of serviceability the algorithm must be started from differ-
ent initial conditions.
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Figure 6. Test configuration for double-notched tensile specimen.

As an example we take the double-edge notched specimen of Figure 6. For detailed information re-
garding the parameters that have been used and the way in which the analysis has been carried out, the
reader is referred to [43,44]. Tensile tests on specimens as depicted in Figure 6 tend to be sensitive to
the boundary conditions, in particular when the brittleness of the material increases. When an imper-
fection is not imposed in the material, nor an asymmetry in the boundary conditions, the deformations
will remain symmetric throughout the entire loading path. However, if either of these occurs, asym-
metric crack propagation evolves from one of the notches at a generic stage in the loading process. The
probability that either of these failure modes occurs can be simulated via the approach discussed above
where the tensile strength is randomised, while starting from a symmetric as well as from an asymmet-
ric realisation. In particular, the influence of the boundary conditions can be quantified. For instance,
taking the upper loading platen fixed of the double-notched specimen, the probability of failure was
found to be Ps = 5. 84 × 10−2, irrespective whether the algorithm was started from a symmetric or from
an asymmetric realisation. Indeed, the failure mode was purely symmetric. However, when the upper
loading platen is allowed to rotate freely, an asymmetric mode was found with a probability of failure
that is significantly higher than that of the symmetric model, namely Pa = 0. 41. Again, this result was
obtained irrespective of the starting realisation, which, for the symmetric realisation, is probably at-
tributable to numerical round-off errors. Next, the analysis was repeated for a longer specimen
(L = 250mm), while keeping the loading platens fixed. Not surprisingly, a symmetric failure mode was
found with a probability of failure Ps which is almost the same as for the shorter specimen. However,
an asymmetric failure mode now also emerged, with a probability of failure Pa = 0. 13, which is purely
a consequence of the increased rotational freedom of the longer specimen.

It is emphasised that the inclusion of randomness of the material parameters in the analysis does not
resolve the issue of loss of ellipticity at the onset of localisation when standard, rate-independent con-
tinuum models are considered [42]. Indeed, the above simulations were carried out using the implicit
second-gradient continuum damage model of eqs (15)-(17). Here, the situation is similar to the use of
mesh adaptivity techniques, which are also unable to remedy the loss of well-posedness which is the
fundamental cause of the spurious results which are obtained when analysing localisation in standard,
rate-independent continuum models.
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