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Abstract. A p-adaptive scheme is developed in order to overcome volumetric locking in low
order finite elements. A special adaptive scheme is used which is based on the partition of
unity concept. This allows higher order polynomial terms to be added locally to the underlying
finite element interpolations basis through the addition of extra degrees of freedom at existing
nodes. During the adaptive process, no new nodes are added to the mesh. Volumetric locking is
overcome by introducing higher order polynomial terms in regions where plastic flow occurs.
The model is able to overcome volumetric locking for plane strain, axisymmetric and three-
dimensional problems.
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1 Introduction

Volumetric locking in low-order finite elements during plastic flow is an enduring problem in
computational plasticity. When using low-order finite elements, volumetric locking leads to an
over-prediction of the collapse load or leads to a hardening-like response making it impossible
to predict a collapse load.

This poor response in light of the popularity of low-order finite elements is unfortunate, and has
stimulated much research into improving the performance of low-order finite elements during
isochoric and dilatant/contractive plastic deformation. The most simple approach for overcom-
ing volumetric locking under plane strain conditions when using linear triangles is the use of
crossed triangle patches [1]. This simple and popular approach is effective for many cases, al-
though it breaks down under axisymmetric conditions and can prove difficult when meshing
on complex geometries. Another approach is to interpolate the hydrostatic pressure and dis-
placements separately, leading to extra nodal or internal degrees of freedom. However, it is
difficulty to construct such elements using linear triangles that satisfy the necessary stability
conditions [2]. For four-noded quadrilaterals elements, there exist several solutions for over-
coming volumetric locking. Most methods involve modifications of the strain field. One method
is the B-bar approach [3], however this method fails for dilatant or contractive plastic flow [4].
So-called Enhanced Assumed Strain (EAS) methods [5] have been used to effectively over-
come volumetric locking in quadrilateral elements, although the method fails for elements with
triangular geometry [6].

None of the above mentioned methods are effective for overcoming volumetric locking in ele-
ments based on triangular geometry for plane strain, axisymmetric and three-dimensional cases.
This is despite elements based on triangular geometry being popular in use and highly suited for
meshing irregular geometries. The only robust solution for overcoming volumetric locking in
all cases in the use of higher order finite elements [7]. This concept is followed here, with a new
adaptive scheme proposed for overcoming volumetric locking during plastic flow using low-
order elements based on triangular geometry. The partition of unity concept [8–10] is used to
develop a p-adaptive scheme which allows the displacement interpolation to be enriched locally
without the addition of extra nodes to the mesh. The amplitudes of higher order polynomial
terms added to the interpolation are represented by extra degrees of freedom at existing nodes.

The proposed adaptive method is illustrated through numerical examples. Plane strain, axisym-
metric and three-dimensional examples are analysed using a perfectly plastic Von Mises model.

2 Adaptive formulation

It has been shown that a fieldu over a volumeΩ can be interpolated by [8–10]:

u(x) =
nn

∑
i=1

ϕi(x)

 
ai+

nbasis

∑
j=1

γj(x)bi j

!
(1)

whereϕϕϕ is a collection of functions forming a partition of unity,x 2 Ω is the spatial position,
nn is the total number of discrete nodal points,ai is a discrete value associated with the discrete
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point (nodal point)i, γj containsnbasis basis functions andbi j containsnbasis discrete values
associated with each nodal pointi. A collection of functionsϕϕϕ forms a partition of unity if:

nn

∑
i=1

ϕi(x) = 1: (2)

By using finite element shape functions as partitions of unity, it is possible to use equation (1)
to facilitate a form of p-adaptivity. The nodal valuesai can be considered the ‘regular’ nodal
degrees of freedom and the nodal valuesbi j can be considered as ‘enhancements’. By using
finite element shape functions as partition of unity functions and by adding ‘enhanced’ degrees
of freedom to a node, the support of that node is enhanced. Crucially, enhancements can be
introduced node-per-node, so only nodes requiring enhancement have extra degrees of freedom.
The key difference with hierarchical methods [11] is that extra degrees of freedom are located
at existing nodes, rather than at mid-side points or within an element.

In finite element notation, the displacement field with enhancements is expressed as:

u(x) = N(x)a+N(x)Nγ(x)b (3)

whereu is a vector containing the displacement components,N contains the usual matrix con-
taining the element shape functionsNi, Nγ is a matrix containing enhanced basis termsγγγ and
the vectorb contains the enhanced degrees of freedom. The strain field is expressed:

εεε(x) = B(x)a+Bγ(x)b (4)

whereB is of the usual form containing spatial derivatives of the shape functions andBγ con-
tains spatial derivatives ofNNγ.

For a single nodei the matrix containing the enhanced basis terms is of the form:

Ni
γ =

2
4γ1 γ2 : : : γnbasis

0 0 : : : 0 0 0 : : : 0
0 0 : : : 0 γ1 γ2 : : : γnbasis

0 0 : : : 0
0 0 : : : 0 0 0 : : : 0 γ1 γ2 : : : γnbasis

3
5

: (5)

The matrixBγ for a nodei is of the form:

Bi
γ =

2
666666666664

∂ (Niγ1)

∂x : : :

∂ (Niγnbasis
)

∂x 0 : : : 0 0 : : : 0

0 : : : 0
∂ (Niγ1)

∂y : : :

∂ (Niγnbasis
)

∂y 0 : : : 0

0 : : : 0 0 : : : 0
∂ (Niγ1)

∂ z : : :

∂ (Niγnbasis
)

∂ z
∂ (Niγ1)

∂y : : :

∂ (Niγnbasis
)

∂y
∂ (Niγ1)

∂x : : :

∂ (Niγnbasis
)

∂x 0 : : : 0

0 : : : 0
∂ (Niγ1)

∂ z : : :

∂ (Niγnbasis
)

∂ z
∂ (Niγ1)

∂x : : :

∂ (Niγnbasis
)

∂x
∂ (Niγ1)

∂ z : : :

∂ (Niγnbasis
)

∂ z 0 : : : 0
∂ (Niγ1)

∂y : : :

∂ (Niγnbasis
)

∂y

3
777777777775

: (6)

The format of the enhancement makes it straightforward to implement in standard finite element
codes. It is stressed that the adaptive procedure does not require the introduction of any addi-
tional nodal points or special constraints, as is needed for conventional p-adaptive procedures.
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3 Local polynomial enrichment to overcome volumetric locking

To enhance linear triangular elements, whose shape functions contain polynomial terms up tox
andy, quadratic enhancement can be achieved using the enhanced basis:

γγγp=2
nspat=2 =

n�
x� xi

�2
;

�
x� xi

��
y� yi

�
;

�
y� yi

�2o
(7)

wherex andy are spatial coordinates,xi andyi are the spatial coordinates of the node being en-
hanced andnspatis the spatial dimension. This basis is of the form used by [12] to enhance linear
triangles. It was shown by [12] that linear triangles enhanced by the basis in equation (7) pass
the patch test in arrangements of more than one element. The equivalent quadratic enhanced
basis for four-noded tetrahedral elements is of the form:

γγγp=2
nspat=3 =

n�
x� xi

�2
;

�
x� xi

��
y� yi

�
;

�
x� xi

��
z� zi

�
;

�
y� yi

�2
;�

y� yi

��
z� zi

�
;

�
z� zi

�2
o

: (8)

Note that the polynomial enhancement is centred at a node. This avoids difficulties with numer-
ical conditioning if a node is located far from the origin.

An attractive feature of this approach is that it involves only the linear shape functions. There
is no need to develop higher order shape functions to achieve a higher order of interpolation,
nor are mid-side nodes required. It is possible to shown that the proposed enhancement leads
to a formulation capable to reproducing complete quadratic polynomials. The reader is referred
to [12] and [13] for details.

To overcome locking, quadratic enhancements are added locally to nodes in regions where
plastic flow is occurring. More specifically, when plastic flow is detected at an integration point,
all nodes whose support contains the integration points are enhanced. In implementation, a
calculation is performed using linear base elements, and when plastic flow is detected, nodes
are enhanced. To simplify the implementation, nodes at which essential boundary conditions
are imposed are not enhanced. This simplifies greatly the imposition of essential boundary
conditions.

4 Numerical examples

To test the adaptive scheme for overcoming volumetric locking, a series of punch tests are
performed under plane strain and axisymmetric conditions and in three-dimensions. The sim-
ulations are performed using a perfectly plastic Von Mises model. The material parameters
are taken as: Young’s modulusE = 1:0 MPa, Poisson’s ratioν = 0:49 and yield strength
σ̄ = 0:01 MPa. For two-dimensional examples, linear triangles are used as the underlying el-
ement for enhancement and in three-dimensions, linear tetrahedra are used as the underlying
element.

The discussion in this section focuses on overcoming volumetric locking. A discussion over the
efficiency and the number of extra degrees of freedom required can be found in [13].
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Figure 1: Plane strain punch test configuration. All dimensions in millimetres.

4.1 Plane strain

To test the model under plane strain conditions, Prandtl’s punch test is analysed. An infinitely
stiff plate is pushed into a semi-infinite halfspace. The test is illustrated in figure 1. The test is
analysed for four different cases. The first case involves standard linear triangular elements in a
diagonal arrangement. The mesh used is shown in figure 2a. The second case involves a mesh
of crossed linear triangular elements, a configuration which is known to exhibit a locking-free
response under plane strain conditions. The crossed triangle mesh is shown in figure 2b. The
third case uses the mesh shown in figure 2a, with quadratic elements. The adaptive model is the
fourth case, using the diagonal mesh in figure 2a.

The load-displacement responses for the four cases are shown in figure 3. Standard linear tri-
angles in the diagonal mesh configuration clearly exhibit a locking response, with no peak load
approached. As expected, the crossed linear triangle arrangement and the quadratic triangles do
not lock, reaching a flat plateau in the load–displacement responses. The adaptive model using
the diagonal linear triangles as the underlying element also does not lock, with a response that
is indistinguishable from the crossed triangles arrangement. The adaptive mesh shows an overly
stiff response in the elastic stage since the adaptive scheme does not overcome locking of the
elastic response. For typical elasto-plastic calculations where elastic strains are small compared
to plastic strains, this is of little consequence and is only an issue when the elastic response is
nearly incompressible.

4.2 Axisymmetric

A similar test to the plane strain example is analysed for the axisymmetric case. An infinitely
stiff circular plate (radius = 0.25mm) is pushed into the centre of a cylinder of radius = 1mm and
depth = 1mm. The sides and lower boundary of the cylinder are fully restrained. Again, four dif-
ferent cases are tested: diagonal linear triangles (figure 4a); crossed linear triangles (figure 4b);
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(a)

(b)

Figure 2: Discretisations for plane strain analyses with (a) diagonal and (b) crossed triangles.
Both meshes are constructed with 960 elements.
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Figure 3: Load–displacement response for the plane strain punch test with (a) diagonal linear
triangles, (b) crossed linear triangles, (c) diagonal quadratic triangles and (d) diagonal linear
triangles with enhancement.
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(a)

(b)

Figure 4: Discretisations (in deformed configuration) for axisymmetric analyses with (a) di-
agonal (with enhancement) and (b) crossed triangles. Both meshes are constructed with 2048
elements.

diagonal quadratic triangles (figure 4a); and enhanced diagonal linear triangles (figure 4a). The
two different meshes used are shown in figure 4. The meshes are shown in the deformed con-
figuration.

The load–displacement responses for the four cases are shown in figure 5. Again, as expected,
the diagonal linear triangles exhibit a severe locking response. The crossed triangles arrange-
ment also exhibits a locking response, although less severe than the diagonal arrangement. The
enhanced model however does not exhibit locking, and predicts a peak load very close to the
response predicted by the mesh constructed with quadratic triangular elements.
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Figure 5: Load–displacement response for the axisymmetric punch test with (a) diagonal linear
triangles, (b) crossed linear triangles, (c) diagonal quadratic triangles and (d) diagonal linear
triangles with enhancement.
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Figure 6: Three-dimensional punch test. The bottom and side surfaces of the prism are fully
restrained and the infinitely stiff plate is located in the centre of the top surface. All dimensions
in millimetres.

4.3 Three-dimensional

The three-dimensional punch test is shown in figure 6. The plate in assumed to be infinitely
stiff and is pushed into the box. The sides and bottom of the box are fully restrained. The three-
dimensional punch test is performed for two cases, the first with standard linear tetrahedra and
the second with enhanced linear tetrahedra. The mesh used for the analysis, in a deformed
configuration, is shown in figure 7. Using symmetry, only one quarter of the box is modelled.

The load–displacement responses for the three-dimensional punch test are shown in figure 8.
The standard linear tetrahedra exhibit a severe locking response, while the enhanced mesh is
able to predict a peak load and avoid volumetric locking.
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Figure 7: Deformed three-dimensional mesh for the punch simulation. Using symmetry, only
one quarter of the block is modelled.
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Figure 8: Load–displacement response for the three-dimensional punch test with (a) linear tetra-
hedra and (b) enhanced tetrahedra.
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5 Conclusions

A p-adaptive scheme has been developed which allows volumetric locking to be robustly and
efficiently overcome during localised plastic flow. Using the partition of unity concept, the finite
element interpolation order is increased in regions where plastic flow is occurring. This is done
through the addition of extra degrees of freedom at existing nodes, rather than adding extra
nodal points. The method has been shown to be effective for plane strain, axisymmetric and
three dimensional cases using linear underlying finite elements. The method is potentially very
efficient since degrees of freedom are added only to regions where plastic flow is occurring. The
method is also simple in implementation since it involves low order shape functions and mesh
generation is simplified since only apex nodes are required.
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