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Abstract. Localisation processes, such as shear banding and necking, have been investigated
following a macroscopic and a microscopic approach. Both approaches have been
formulated within a finite deformation plasticity framework. Additional terms have been used
to regularise the problem and solve mesh dependency. In the macroscopic model viscosity is
introduced as a means to control the thickness of the shear band, while in the microscopic
model the nonlocal interaction of dislocations acts as a stabiliser. The micro-mechanical
model is formulated in a crystal plasticity framework. A diffusion term that represents cross-
slip of dislocations is included in the evolution equations for dislocation densities. The effect
of the viscous term (macro-model) and the diffusion-like term (micro-model) in the
constitutive relation on the resulting formation of localised shear modes is studied. An
analysis of a strip in tension oriented for multiple slip is presented for both models.
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1 Introduction

The response of mechanical systems at the level of interest is largely determined by processes
at scales many times smaller (micro- or meso-level). For this reason, the analysis of the
micro- or meso-level mechanisms that determine the deformation and failure behaviour at
higher levels is of paramount importance. The analysis of shear banding in crystalline
materials involves different length scales. Therefore an attempt is made to perform an
analysis of shear banding at two lev els: a macro-level at which the material is considered
homogeneous and a micro-level with a single crystal structure at which the motion of
dislocations cause slip that accumulates in shear banding at a higher level. At both levels a
length scale effect is introduced to control the shear band thickness. In this fashion, a
bridging of length scales can be established.

First, a macroscopic model is used first for the analysis of shear banding. A von Mises
viscoplastic model is formulated in a finite deformation framework. The viscous length scale
is introduced to determine the shear band width. The same finite deformation framework is
used for a model with a sound micro-mechanical basis. A single crystal plasticity model is
chosen, in which shear banding manifests itself by the occurrence of slip lines produced by
dislocations in the crystal lattice. A length scale effect is introduced by spatial coupling
contributions of the micro-mechanisms. Since dislocations are the true carriers of plastic
deformation, gradient plasticity models were formulated in which gradient terms related to
dislocation motion were included to account for the spatial interaction, e.g. [4,6,7,11]. In this
paper, dislocation glide and cross-slip will be shown to provide a spatial coupling mechanism
through a second-order gradient term. The dislocation based gradient plasticity model is
outlined in Section 4 for the case of multiple slip in an f.c.c. crystal. The problem to be
solved is a coupled problem in which a mechanical equation representing the single crystal
model is used together with a reaction-diffusion type equation describing the nonlocal
dislocation motion on specific slip systems.

The macroscopic and the microscopic model have been used for the analysis of shear
banding in a strip loaded in uniaxial tension. By comparing the thickness of the shear band,
the microscopic parameters (dislocation ‘diffusivity’) can be coupled to the macroscopic
parameters (viscosity). Consequently, a length scale effect at macro-level can be given a
micro-structural basis.

2 Macroscopic model for localisation

A macroscopic model for the modelling of localisation processes, such as shear banding and
necking, is formulated within a finite deformation plasticity framework using the
multiplicative decomposition of the deformation gradient F into an elastic part Fe and a plastic
part Fp

(1)F = FeFp .

The plastic part Fp defines the intermediate configuration. The plastic flow rule is written as
(2)Ḟp

(Fp)−1 = λ̇n(S,κκ ) ,

where λ is the plastic multiplier and n is the direction of plastic flow. The discretisation of
this equation consists of taking the direction of the plastic flow n constant throughout the
increment and equal to its final value nt+∆t

(3)Ḟp
t+∆t = exp(∆λnt+∆t)F

p
t .
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The elastic response is expressed in terms of a logarithmic elastic strain tensor. The second
Piola-Kirchhoff stress tensor is related to the intermediate plastic configuration S = Fe −1ττ Fe−T

(ττ is the Kirchhoff stress tensor) which is calculated from the elastic part of the deformation
according to

(4)S = S( 1
2

log Ce)

where Ce = (Fe)TFe is the elastic right Cauchy-Green deformation tensor.
In rate-independent elasto-plasticity the stress state cannot be outside the yield surface

defined by the yield function f (S,κ ). For isotropic hardening/softening, the yield function,
f (S,κ ) depends on the history of loading. The plastic multiplier is then determined from the
Kuhn-Tucker loading/unloading conditions

(5)λ̇ ≥ 0, f (S,κ ) ≤ 0, λ̇ f (S,κ ) = 0, λ̇ ḟ (S,κ ) = 0 .

In the case of viscoplasticity the current stress state can lie outside the yield surface and
the Kuhn-Tucker loading/unloading conditions are no longer applicable. The viscoplastic flow
is determined by the plastic relaxation equation

(6)λ̇ =
1

η
Φ(S,κ )

or in discrete format

(7)∆λ =
∆t

η
Φt+∆t

where η is a viscosity parameter and the overstress Φ is governed by the yield function, such
that Φ = 0 when f ≤ 0 and Φ > 0 when f > 0.

Without loss of generality, we assume a linear isotropic elastic response and having in
mind applications for metals a J2 flow theory is commonly used. This implies associative
plastic flow and a von Mises yield function that is given by

(8)f (S,κ ) = √ 3J2 − σ (κ ) .

In case of associative plasticity, viscoplastic flow is determined by the gradient of the yield
surface

(9)n =
∂Φ
∂S

where J2 is the second invariant of the deviatoric stress and σ (κ ) is the yield stress dependent
on the equivalent plastic strain κ , which is defined according to

(10)κ =
t

0
∫ κ̇ dt ,

and

(11)
κ̇ = √ 2

3
ε̇̇ε p .. ε̇̇ε p ,

where ε̇̇ε p is the viscoplastic strain rate tensor. It can be easily shown that for von Mises
plasticity κ̇ = λ̇ .
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3 Numerical examples - macroscopic model

To inv estigate shear banding with the macroscopic model, a strip in plane strain tension is
analysed. A 4 mm by 10 mm strip is pulled by applying a constant axial velocity v0 = 0.1
mm/s at the top and the bottom of the specimen (see Figure 1). The two vertical edges of the
strip are traction free. The elastic material parameters for a representative metallic material
are as follows: the Young’s modulus is 100000 N/mm2 and Poisson’s ratio is 0.3. Von Mises
plasticity is used with a linear hardening law according to

(12)σ (κ ) = σ0 + hκ ,

in which the initial yield stress σ0 = 390 N/mm2 and the hardening modulus h = -2000 N/mm2.
The viscosity parameter η is taken as 0.5 s. In order to trigger shear banding, a small
imperfection (reduction of the initial yield stress by 2.5 %) is applied slightly to the right of
the centre of the strip (see Figure 1). Three different meshes were used with 320 (mesh 1),
720 (mesh 2) and 1280 (mesh 3) 6-noded triangular elements.

v0

v0

r2r1

macroscopic model:
von Mises plasticity

microscopic model:
single crystal plasticity
with crystal orientation:

Figure 1. Strip analysed with micro-model and macro-model.

The results after the development of significant shear banding are shown in Figure 2
(deformations are multiplied by a factor of 30). A double shear band emanates from the
imperfect zone in the strip. It is clear that the thickness of the band is independent of the size
of the finite element. The three different meshes give practically the same results. Viscosity
regularises this quasi-static problem. Variation of the viscosity results in a variation of the
thickness of the band (see Figure 3). An increase of the viscosity widens the shear band or
ev en prevents localised deformation in the strip. A decrease of viscosity has the opposite
effect.
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Figure 2. Deformed models (mesh 1,2,3 from left to right) at t = 0.1 s.

Figure 3. Deformed models (mesh 3) for η = 0.3 s (left), η = 0.5 s (centre)
and η = 0.7 s (right) at t = 0.1 s.

4 Microscopic model for localisation

The finite deformation plasticity model discussed in Section 2 is now giv en a micro-structural
basis. The micro-structure is incorporated by considering the metal as a single crystal with
hardening behaviour that arises from dislocation density evolution. Deformation of a single
crystal is assumed to arise from two main mechanisms: (i) the dislocation motion on active
slip systems and (ii) the distortion of the crystal lattice. The kinematic scheme for a finite
deformation together with a constitutive formulation for a single crystal is presented e.g. in
[1,8].

The multiplicative decomposition of the deformation gradient F, cf. eqn(1), is used again,
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(13)F = FeFp ,

where the elastic part Fe now describes the stretching and rotation of the lattice and the plastic
part Fp defines the cumulative effect of dislocation motion. A slip system α is specified by
the vectors sα and mα defined in an intermediate configuration as the corresponding slip
direction and slip plane normal, respectively. When the single crystal undergoes deformation,
the lattice stretches and rotates and the slip system α in the updated configuration is governed
by

(14)sα = Fesα

and
(15)mα = mα (Fe)−1 .

Since sα and mα are orthogonal in the undeformed lattice, so are sα and mα in the deformed
lattice.

Differentiation of eqn(13) gives the velocity gradient
(16)ḞF−1 = Ḟe

(Fe)−1 + FeḞp
(Fp)−1(Fe)−1 ,

in which a superimposed dot denotes the material time derivative. The first and second terms
in eqn(16) represent the elastic and the plastic part of the velocity gradient, respectively.
Because plastic deformation is assumed to occur only by shearing on the slip systems we have

(17)FeḞp
(Fp)−1(Fe)−1 =

α
Σ γ̇ α sα ⊗ mα ,

with γ̇ α denoting the slip strain rate. Using eqns(14) and (15), eqn(17) can be rewritten to
yield the flow rule given in [8]

(18)Ḟp
(Fp)−1 =

α
Σ γ̇ α sα ⊗ mα .

We introduce the resolved shear stress on system α , τ α , which is work conjugate to the slip
strain rate γ̇ α , via

(19)τ α = sα ττ mα ,

where ττ is the Kirchhoff stress (for derivation see e.g. [1]). To relate the rate of shear
deformation to the resolved shear stress τ on a slip system α , we make use of a viscous
power-law of the form (see e.g. [3])

(20)γ̇ α =




γ̇ α
0 [(τ α /gα ) 1/m − 1]

0

if τ α > gα

otherwise

in which γ̇ α
0 is a reference shear strain rate, m is the strain rate sensitivity exponent and gα is

the yield stress on slip system α . The hardening of the material is specified by the evolution
of the yield stress gα . A slip system α is considered as active if τ α is larger than the threshold
gα . In macroscopic hardening models the evolution with time of the yield stress is generally
defined in terms of the slip strain rate as

(21)ġα =
β
Σ hα β γ̇ β .

The strain hardening matrix hα β is dependent on internal variables which evolves with γ β , and
local interaction between slip systems with different orientations is taken into account via the
off-diagonal terms in hα β . In the micro-mechanically based model a dependence of hα β on the
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dislocation density, which plays the role of an internal variable, will be assumed.
The expression for the yield stress is taken in the form [5]

(22)gα = aGb√ β ≠α
Σ ρ β

where G is the shear modulus, b is the magnitude of the dislocation Burgers vector, a is a
constant and ρα is the density of dislocations moving on the slip system α , with α = 1, 2 for
double-conjugate slip and α = 1 − 12 for a face-centred cubic (f.c.c.) crystal. According to
eqn(22), the yield stress for one slip system is assumed to be determined by the dislocation
density on the other slip systems only. In other words, latent hardening is included while self-
hardening of a particular slip system is neglected. Also, the reference shear strain rate γ̇0 is
related to the dislocation density via

(23)γ̇ α
0 = k ρα α = 1, 2,

where k is a constant. The evolution of the dislocation density is defined by
(24)ρ̇α = γ̇ α (J√ ρ β − K ρα ) + D∇2 ρα ; α ≠ β

suggesting that the mean free path of dislocations of a slip system is determined by the
dislocation density of the other slip system. The recovery process is assumed to involve two
dislocations of the same slip system giving rise to the negative term on the right-hand-side of
eqn(24). The coefficient J in the athermal dislocation storage term is considered to be a
constant while the coefficient K is the thermally activated recovery term, which is generally
temperature and strain rate dependent. The isotropic dislocation diffusion term in eqn.(24)
represents the cross-slip effect. The diffusivity D is determined by the cross-slip frequency of
dislocations and the active slip plane spacing. Taking the derivative of (22) with respect to
time and making use of eqn.(24) yields the equations from which the hardening matrix can be
computed according to

(25)
hα β =

∂ġα

∂γ̇ β =







∂ġ1

∂γ̇ 1

∂ġ2

∂γ̇ 1

∂ġ1

∂γ̇ 2

∂ġ2

∂γ̇ 2







.

The model presented has the following features. Strain softening associated with local lattice
rotation may give rise to strain localisation at later stages of deformation when it can no
longer be restrained by strain hardening, cf. [1,2]. In the present model, this effect decreases
because of the gradient terms which force the evolving dislocation densities to saturate. Due
to the positive sign of D the ‘diffusion-like’ terms in the equations will act against strain
localisation and will thus play a stabilising role. The algorithmic aspects of the model are
described in [10].

5 Numerical examples - microscopic model

To inv estigate the behaviour of the gradient plasticity model for dislocation motion in a single
crystal, the strip in tension is considered again (see Figure 1). Multiple slip in a rectangular
strip of an f.c.c. crystal is analysed. The crystallographic orientation in the strip is according
to an (a1, a2, a3) = ([1 0 1],[0 1 0],[1 0 1]) coordinate system, which for axial tension results in
active slip on the (111) plane in the directions [110] and [011] with resultant r1 and on the (111)
plane in the directions [110] and [011] with resultant r2 (see Figure 1). The values for the
material constants employed are : G = 75000 N/mm2, a = 0.3, b = 2.5⋅10−7 mm, ρ0 =
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1 ⋅ 108 mm−2, m = 0. 005, k = 1/ρ0, K = 10, J = 4 ⋅ 106 mm−1, D/√ ρ0 = 2 mm3/s. As with the
macroscopic model a small imperfection was used to trigger shear banding, cf. Section 3
(reduction of constant a by 2.5 %). The meshes described in Section 3 were used again.

The results after a certain amount of crystallographic slip are shown in Figure 4. The
deformed models for the three different meshes show that one shear band becomes dominant
due to the asymmetric location of the imperfection and the structure of the mesh
(deformations are multiplied by a factor of 30). The shear band has a specific thickness which
is predominantly set by the material parameters J and D and also by the dimensions of the
strip and the boundary conditions. It is obvious that the direction of the shear band is not
aligned with the mesh. It runs steeper than 45 degrees.

Figure 4. Deformed models (mesh 1,2,3 from left to right) at t = 0.1 s.

Figure 5. Deformed models (mesh 3) for D/2 (left), D (centre)
and D × 2 (right) at t = 0.1 s.
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Figure 4 shows the insensitivity of the results to the finite element size. The thickness of
the band is slightly overpredicted with the coarsest mesh, but the two finer meshes show the
same shear banding process. Next, the amount of coupling is varied through the magnitude of
the dislocation diffusivity D. Increasing diffusivity widens the shear band, while a decrease
of D leads to a slightly thinner band (see Figure 5).

6 Coupling micro-scale to macro-scale

Analyses at two different scales of observation have been carried out. The introduction of a
length scale sets the width of the shear band in the micro-model and the macro-model. The
viscous length scale at macro-level is purely phenomenological, while the length scale at
micro-level has a micro-mechanical basis. By comparing the width of the shear band in the
two finite element computations the macroscopic length scale can be coupled to the
microscopic length scale.

In the micro-model the length scale effect is represented by the diffusivity D. The
diffusivity is determined by the cross-slip frequency ω and the active slip plane spacing d
according to

(26)D = ω d2 .

In the macro-model that is used the viscosity η plays the role of a length scale parameter (see
e.g. [9]). By comparing the analyses from Figure 3 with the analyses in Figure 5 a similar
shear band thickness is obtained for D/√ ρ0 = 2 mm3/s and for η = 0.5 s. This is a very
simple approach and should be seen as a first attempt to give a microscopic argumentation for
higher-order terms that are included in macroscopic models. The microscopic model
‘informs’ the larger scale model on the length scale effect. Two remarks should be made. The
comparison which was carried out here was done for one analysis. For a proper coupling
between slip plane spacing d (or diffusivity D) and viscosity η more analyses should be
carried out. Material parameters and the size of the specimen should be varied. Furthermore,
both length scale effects are dependent on the rate of loading. For this reason, tests at different
loading rate should be carried out. A second remark is concerned with the failure pattern.
Viscous regularisation is slightly stronger than the nonlocal regularisation by dislocation
diffusion in the micro-model. For this reason a more symmetric failure pattern is obtained
with the macro-model. This makes the coupling of parameters also more difficult.
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