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Abstract

Background: High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting
application area for array-based technologies. In this paper, we explore several data sets which make use of
Illumina’s GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative
expression measurements for alleles at approximately 1500 positions in the genome.

Results: We analyze data from a mixture experiment where genomic DNA samples from pairs of individuals of
known genotypes are pooled to create allelic imbalances at varying levels for the majority of SNPs on the array.
We observe that GoldenGate has less sensitivity at detecting subtle allelic imbalances (around 1.3 fold) compared
to extreme imbalances, and note the benefit of applying local background correction to the data. Analysis of data
from a dye-swap control experiment allowed us to quantify dye-bias, which can be reduced considerably by
careful normalization. The need to filter the data before carrying out further downstream analysis to remove non-
responding probes, which show either weak, or non-specific signal for each allele, was also demonstrated.
Throughout this paper, we find that a linear model analysis of the data from each SNP is a flexible modelling
strategy that allows for testing of allelic imbalances in each sample when replicate hybridizations are available.

Conclusions: Our analysis shows that local background correction carried out by Illumina’s software, together with
quantile normalization of the red and green channels within each array, provides optimal performance in terms of
false positive rates. In addition, we strongly encourage intensity-based filtering to remove SNPs which only
measure non-specific signal. We anticipate that a similar analysis strategy will prove useful when quantifying ASE
on Illumina’s higher density Infinium BeadChips.

Background
Preferential expression of one of the two alleles of a
gene has been widely studied in the context of develop-
ment, where key mechanisms such as genomic imprint-
ing and X-inactivation lead to extreme allelic imbalances
[1]. Allele-specific expression has been linked to the sus-
ceptibility of many human diseases [2-4].
Various experimental techniques exist for measuring

ASE [5], including microarray-based approaches that
have been used in a number of studies to screen for
ASE in a high-throughput manner [6-11]. With microar-
rays, SNPs that fall within the coding regions of tran-
scripts are used to quantify allelic imbalances in
expression. Probes that distinguish between the signal

from allele A and allele B in genomic DNA (gDNA) can
be used to measure the relative amount of expression
from each allele when mRNA (converted to cDNA) is
hybridized to the array. Typically both gDNA and
cDNA hybridizations are carried out on each sample.
For individuals who are heterozygous (AB) at a particu-
lar SNP, which is usually determined by the gDNA
hybridization, a distortion in the expected 1:1 ratio of
allele A to allele B in the cDNA signal is an indication
of ASE.
Illumina’s two-color GoldenGate technology has been

used to measure ASE in pancreatic cancer [10] and lym-
phoblastoid cell lines [12]. The GoldenGate assay applied
to genotyping allows around 1500 SNPs to be investi-
gated simultaneously in a Sentrix Array Matrix (SAM),
which is made up of 96 separate arrays [13]. Each array
contains around 30 replicate probes for each SNP. The
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assay consists of a PCR with universal primers that
amplify DNA at the chosen loci to produce labelled
material which is complementary to the appropriate 50
mer probe on the array at one end, and fluorescently
labelled with either Cy5 (red) or Cy3 (green) dye depend-
ing on which nucleotide (allele A or allele B) is present.
The relative signal for a given SNP provides a surrogate
measure of the genotype, with high green intensity indi-
cative of an AA genotype, high red intensity indicative of
a BB genotype and an intermediate intensity in both
channels an AB genotype. The GoldenGate assay allows
for a custom panel of SNPs to be chosen for the array. As
mentioned previously, these SNPs need to fall within a
transcript to be useful for ASE profiling.
The fluorescence of each probe is quantified by Illu-

mina’s scanning software (BeadScan) and summarized
values for each SNP are output by the BeadStudio soft-
ware. The default preprocessing steps used in this analy-
sis have been shown to offer good performance on
spike-in data sets for Illumina’s single-channel expres-
sion data [14]. In this paper, we investigate whether this
holds true for two-color GoldenGate data. Along with
the usual preprocessing steps of background correction
[15], quality assessment and normalization [16], adjust-
ment for dye effects [17,18] needs to be considered.
Recent examinations of two-color data from Illumina’s
Infinium platform have revealed that normalization can
reduce dye-bias [19].
In this paper, we focus on the data analysis issues that

arise when Illumina GoldenGate BeadArrays are used to
measure ASE. This paper is organized as follows. We
first present the raw data from a series of arrays, and
explore the general signal characteristics. Next, we
examine a published control data set that allows us to
quantify dye effects. We then look at the results from a
mixture experiment, which is designed to produce
known allelic imbalance at varying degrees for the
majority of SNPs on each array, to assess the ability of
different preprocessing methods to recover the true
positives. Finally, we investigate what effect a gene’s
expression level has on our ability to measure ASE.

Results and Discussion
Signal characteristics and quality assessment
Boxplots of the raw red and green intensities from a set
of 96 arrays with both gDNA and cDNA hybridizations
(Figure 1, panels A and B) show that the overall signal
from the cDNA arrays is systematically lower than the
signal from the gDNA arrays. Diagnostic plots such as
this can be used to flag arrays with poor signal to
exclude from further analysis; in Figure 1, we see that
the 4th and 7th arrays have systematically lower signal
over a compressed dynamic range compared to other
arrays in the series. After examining these plots for

many hundreds of arrays (data not shown), we find low
interquartile range (IQR) of the log2 signal to be a good
predictor of failed hybridizations, and use a threshold
criterion of IQR ≤ 1 in either channel to flag poor qual-
ity arrays to exclude from further analysis [20,21].
Density plots of the intensities from each channel

(Figure 1, panels C and D) show that the shape of the
signal distribution depends on the sample type. For the
gDNA arrays, the major signal peak occurs at higher
intensities (Figure 1C), whereas for the cDNA arrays
(Figure 1D), the reverse is true, with a peak at lower
intensities. This has obvious implications for normaliza-
tion; the cDNA and gDNA data must be treated sepa-
rately given their very different signal characteristics.
The fundamental signal differences between the gDNA

and cDNA hybridizations can also be seen by looking at
their respective MA-plots (Figure 1, panel E and F)
which display log-ratios (M-values) versus average inten-
sities (A-values). For a typical gDNA array, three major
clusters of points (one for each genotype: AA, AB and
BB) can be seen in the MA-plot (Figure 1E). The data
from a typical cDNA array (Figure 1F) is more diffuse,
with a cluster of points occurring at low intensity, which
presumably represents signal from SNPs in transcripts
which are either non-expressed, or below the limits of
detection using the GoldenGate technology.

Dye effects
Although dye effects have been well characterized for
spotted arrays, their existence for Illumina two-channel
arrays has not been widely studied. By analyzing the
summarized data from a dye-swap experiment, we
assessed the magnitude of the dye effect for both gDNA
and cDNA samples, and looked at whether within-array
quantile normalization, as applied in other papers which
analyze two-color data from various Illumina platforms
[19,22], is beneficial.
SNP-wise linear models were fitted separately to the

gDNA and cDNA log-ratios and average intensities.
Each linear model summarizes the values from replicate
arrays, and includes a global intercept (or dye effect)
term, which measures the degree of asymmetry of the
log-ratios when the dyes are swapped. Figure 2 (panels
A and B) shows how the dye effect estimated for the
non-normalized gDNA and cDNA data changes with
average intensity. In these plots, there is a clear increas-
ing trend for dye effect as average intensity increases.
Probes at lower intensities tend to have a negative bias
towards the Cy3 channel, while probes with higher
intensities generally have a positive bias towards the Cy5
channel. Figure 2C shows the dye effects before and
after within-array quantile normalization. After normali-
zation, these effects are closer to zero and on a more
comparable scale. This is desirable, since dye-bias
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Figure 1 Various plots of the raw signal from GoldenGate arrays measuring ASE. Panels A and B show boxplots of the summarized log2
(Cy5) and log2(Cy3) intensities respectively from a representative SAM. The data from each array were plotted in a separate boxplot, and color
coded by sample (blue - gDNA, red - cDNA). Arrays 4 and 7 have low signal in both channels (IQR ≤ 1) and were excluded from downstream
analysis. Density plots for each channel from two typical gDNA and cDNA arrays are presented in panels C and D respectively. These plots also
show the systematic difference in overall signal between gDNA and cDNA hybridizations. Smoothed MA-plots for the gDNA (E) and cDNA
(F) also highlight the differences. In these plots, a higher density of points is represented by a darker shade of blue.
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represents a technical effect which is a nuisance variable
for the purpose of measuring ASE.
For genotyping, the presence of dye-bias does not

pose a problem, since the goal is to distinguish between
three possible states (AA, AB or BB) which are generally
well separated. For this application, the actual level of
each group is mostly unimportant. However, when mea-
suring ASE, dye-bias is of greater concern, as analysis
methods typically search for systematic shifts in the het-
erozygous (AB) cDNA log-ratios away from the baseline
heterozygote level inferred from the gDNA log-ratios.
Such shifts are more likely to be driven by dye-bias in
the absence of careful normalization. In addition, the
magnitude of the dye effects need not be the same for
RNA and DNA samples, and analysis methods which
assume this may give rise to more false positives.
Although having dye-swap data allows us to model

and correct for dye effects explicitly, in practice, this is
not routinely possible using standard GoldenGate proto-
col. Hence throughout this paper, we have quantile nor-
malized the data in an attempt to remove the dye effect
as much as possible.

Sensitivity and Specificity
The design of the mixture experiment produces known
allelic imbalances. SNPs which are of the same genotype

in the different pooled individuals form the true nega-
tive set, while SNPs with different genotypes are true
positives for allelic imbalance. The mixture experiment
we analyze is made up of two independent series (A and
B) which pool DNA from different pairs of individuals
(see Methods). Figure 3 shows examples of true posi-
tives (top and middle panel) and true negatives (bottom
panel) for allelic imbalance. When both individuals are
homozygous for different alleles at a given SNP (top
panel), we see a trend from large positive or negative
log-ratios at the extreme 100:0 and 0:100 mixtures,
which get closer to zero as the mixtures become more
even in concentration (50:50). This class of SNPs are
the easiest to detect, as they exhibit allelic imbalance
over a large range. The second class of true positives are
SNPs which are homozygous in one individual and het-
erozygous in the second (Figure 3, middle panel). These
SNPs are more difficult to measure changes for than the
first category, since their allelic imbalance occurs over a
compressed dynamic range. Finally, the true negative
cases are SNPs for which both individuals have the
same genotype (Figure 3, bottom panel). Alterations in
the mixing proportion does not alter the ratio of allele
A to allele B for these SNPs.
The built-in truth for each SNP from our mixture

experiment, along with access to the raw data, allows us

Figure 2 Quantification of dye effects. Smoothed scatter plots of the estimated dye effect from the SNP-wise linear models for the non-
normalized gDNA (A) and cDNA (B) data versus average intensity are shown. In these plots, a higher density of points is represented by a darker
shade of blue. For each analysis, the log-ratios are calculated as log2(Cy5/Cy3). Probes at lower intensities tend to have a bias towards the Cy3
channel (negative dye effect), while probes with higher intensities generally have a bias towards the Cy5 channel (positive dye-bias). Panel C
shows the estimated dye effect before and after quantile normalization. The dye effect is systematically larger, and more variable before quantile
normalization for both sample types. After quantile normalization, the dye effects are centered around zero.
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to measure the sensitivity and specificity of different
preprocessing options applied to the data. In Figure 4,
we see the Receiver Operator Characteristic (ROC)
curves for series A and B for each of the mixtures calcu-
lated using the true positives and true negatives deter-
mined a priori using the independent HapMap
genotypes for each pair of individuals (see Figure 3 and
Methods). Each curve plots the sensitivity versus

specificity of recovering SNPs with known allelic imbal-
ance as the log-odds of detection is varied.
What is clear, and not unexpected from this analysis,

is that the true positive rate declines as the mixing pro-
portions of the samples become more even. This implies
that GoldenGate can detect larger allelic imbalances
more confidently than more subtle changes, which are
more difficult to distinguish from experimental noise.
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Figure 3 Log-ratios for 3 SNPs from the mixture experiment. The left and right hand columns show SNPs from series A and B respectively.
Each series consists of similar titrations, which have each been replicated on 3 arrays. The data is ordered by increasing amount of sample 1 in
the mixture (from 0:100 to 100:0). From top to bottom, we see SNPs which exhibit extreme ASE, intermediate ASE and no ASE respectively. Such
SNPs provide the truth for our ROC analysis (Figures 4 and 5). The examples in the top and middle rows are true positives, of which there are
782 in series A and 808 in series B. The bottom example is a true negative, of which there are 533 in series A and 502 in series B.
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For all mixtures down to the most similar 56:44 and
44:56 comparisons (which corresponds to subtle abso-
lute fold-changes of around 1.3), our analysis (see Meth-
ods) produces better results than selecting SNPs at
random.
We next look at the effect of Illumina’s local back-

ground subtraction on the true positive rate. Figure 5
shows ROC curves for the 33:67 mixture from series A
(top left) and the 64:36 mixture from series B (top right)
which show that local background correction offers sys-
tematically better performance, delivering more true
positives compared to not background correcting the
data. For nearly all mixtures, the area under each ROC
curve is larger when local background subtraction has
been applied (Figure 5, bottom left and bottom right),
representing a global performance gain.

Intensity-based filtering
The method used to detect ASE in Tan et al. (2008)
[10] and Serre et al. (2008) [12] involves linear interpo-
lation of the AB heterozygote signal from the AA and
BB homozygote log-ratios. Briefly, for each SNP, the
center (median or mean), upper (median + 2 MADs or
mean + 2 SDs) and lower (median - 2 MADs or mean -
2 SDs) confidence intervals are calculated using the
cDNA log-ratios from the AA and BB genotypes

respectively. This calculation is repeated for the gDNA
log-ratios. Next, the cDNA upper confidence intervals
are regressed against the gDNA lower confidence inter-
vals and the cDNA lower confidence intervals are
regressed against the gDNA upper confidence intervals.
The respective centers for the homozygous genotypes
are also regressed against each other. These regression
lines provide upper and lower limits. ASE is called when
the observed cDNA log-ratio from a heterozygous indi-
vidual falls above or below the interpolated upper or
lower value obtained using the gDNA log-ratio from the
same individual.
After examining many plots of cDNA log-ratios versus

gDNA log-ratios, it is clear that for some probes there is
a strong linear relationship between these values (Figure
6, panels A and B). In these situations, ASE can be
detected. There are also many examples where the two
alleles cannot be clearly differentiated in the cDNA sam-
ples, as shown in Figure 6C. In this plot, the presence of
allele A or allele B does not produce a noticeable differ-
ence in the homozygous cDNA log-ratios.
To explore this phenomenon, we fitted a separate lin-

ear model for each SNP, which regressed the average
cDNA log-ratio from each individual against the average
gDNA log-ratio for the homozygotes (see Methods).
This analysis summarizes the information displayed in
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Figure 4 ROC plots from the mixture experiment. Data from series A (left) and series B (right) are shown for each mixture. A clear and not
unexpected trend seen here is for the true positive rate to decrease as the mixture proportions become closer together. The 56:44 and 44:56
mixtures show the lowest true positive rates across the range of false positive rates, while the most extreme mixtures (0:100, 100:0, 5:95, 95:5)
produce the highest true positive rates. The true positive set of SNPs (782 for series A and 808 for series B) were those with different genotypes
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Figure 6 into two values per SNP, a slope and an inter-
cept. Figure 7 shows the slope or intercept versus aver-
age intensity calculated across all samples for the
different SNP panels in Tan et al. (2008). For slope of
the regression line, we see a clear increasing trend as
average intensity increases. For intercept, there is no
strong intensity-based trend.

A similar relationship also holds when average inten-
sity is quantified using a different microarray platform
(Figure 8). For each transcript interrogated for ASE in
the CEU (Centre d’Étude du Polymorphisme Humain
samples collected from UT, USA) samples in Tan et al.
(2008), an average expression level across the CEU ser-
ies from Stranger et al. (2007) [23] was calculated. This

Figure 5 A comparison of different background correction methods. ROC plots for data processed with and without local background
correction for the series A 33:67 mixture (top left) and series B 64:36 mixture (top right) are shown. These curves were calculated using the
relevant true positive and true negative sets outlined in Figure 3 and Methods. In both cases, locally background corrected data (black line)
offers more true positives than data which has not been background corrected (gray line). Looking at the results from all mixtures, we see that
for series A (bottom left) and series B (bottom right), local background correction gives more true positives in almost all situations when
performance is measured using area under the ROC curve.
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data set measured expression in the same lymphoblas-
toid cell lines from CEU individuals using a different
platform (Illumina WG-6 microarrays).
Intuition would suggest that the strength of the

regression line should be related to the overall expres-
sion level of the transcript in which the coding SNP
falls. Lowly expressed, or non-expressed transcripts pro-
vide little or no starting template for the GoldenGate
assay to PCR amplify and label, which produces either
weak signal or signal that is pure noise. This results in a
low slope in our regression analysis. Figure 8 indicates
that this is not due to the GoldenGate protocol working
less well for these transcripts, as a similar trend can be
seen when expression level is quantified using an inde-
pendent array platform.
In light of these observations, we have found it useful

to remove SNPs with average intensity below a particu-
lar threshold [20,21]. This has the effect of removing
SNPs with non-specific allele A and allele B signals,
which should reduce the number of false positives
obtained by an appropriate ASE testing procedure. Fig-
ure 7 can be used to select this threshold; for lower cut-
offs, more SNPs with non-specific signal (low slope) will
be analyzed. In general the higher the average intensity,
the greater the ability to distinguish between the two
alleles. The cut-off can be adjusted depending upon the
stringency desired.

Conclusions
Our survey of ASE experiments which use the Illumina
GoldenGate platform has highlighted a number of
important data analysis issues to consider. Analysis of a
dye-swap data set generated in-house by Illumina

reveals significant dye effects in the log-ratios of both
gDNA and cDNA hybridizations prior to normalization.
Applying within-array quantile normalization reduces
this effect considerably, and is recommended in analyses
of data from the GoldenGate platform.
Our mixture data set showed that ASE can be

detected more reliably when the imbalances are large,
with the true positive rate diminishing fairly monotoni-
cally as the mixtures get closer together (down to 56:44
or approximately 1.3 fold). This experiment provides an
overestimate of how well the GoldenGate assay will per-
form in practice, as the pooling of gDNA samples
ensures a relatively constant amount of template is
available for each SNP as input to the assay. In cDNA
samples, this amount will vary depending on the expres-
sion level of the transcript. In Serre et al. (2008), imbal-
ances down to 60:40 or 1.5-fold could be distinguished
from experimental noise in cDNA samples. To measure
smaller changes, other technologies such as second-gen-
eration sequencing methods [24,25] are likely to be
more sensitive.
We find that the default background adjustment per-

formed by Illumina improves the detection of true ASE
using our control data. The benefit of local background
subtraction has also been shown in analyses of control
data from Illumina’s single-channel expression arrays
[14]. The need to apply intensity-based filtering to
remove non-responding SNPs was also highlighted.
Throughout this paper, we have used linear models and
the limma package to summarize data from replicate
hybridizations and derive test statistics for ASE. When
replicate data are not available, other tests may be more
appropriate, such as SNP-wise tests for increased

Figure 6 Plots of cDNA versus gDNA log-ratios for 3 SNPs located in known imprinted genes. Averaged log-ratios from the 44 CEU
samples in Tan et al. (2008) are shown. The first example (PEG10) provides a clear example of ASE, with the AB cDNA log-ratios (red) at similar
levels to either the AA, of BB cDNA log-ratios, which is indicative of silencing. For this SNP, there is a clear linear trend between the
homozygous cDNA and gDNA log-ratios. In the second example (IGF2R), there is again a linear trend, although in this case, there is no evidence
for ASE, with the AB log-ratios around zero. In the final example (GABRG3), there is no obvious linear trend. This SNP provides an example of
non-specific signal, where the cDNA log-ratios lie around zero irrespective of the alleles present.
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variation in heterozygote log-ratios in cDNA versus
gDNA samples (Mark Dunning, personal communica-
tion). While the dye-bias issue is Illumina-specific, the
remaining points raised in this paper are likely to be
pertinent when other array-based technologies are used
to measure ASE. A major limitation of GoldenGate is
that it only allows a relatively small number of genes to
be surveyed for ASE per panel. Current higher density

microarrays, which genotype around 1 million SNPs per
array, will allow studies to scale up genome-wide. The
majority of SNPs on these arrays, which fall in non-cod-
ing regions, will however be non-informative for ASE.
A final consideration when analyzing ASE using micro-

arrays is the impact copy number variation will have on
the signal. In general, genotype calling methods assume
three distinct clusters for each SNP (AA, AB, BB) in the

Figure 7 Intensity trends in slope and intercept for the regression analysis between the cDNA and gDNA log-ratios. The slopes and
intercepts were calculated from the data in Tan et al. (2008) for SNPs with at least 3 AA and 3 BB individuals from the complete set of 142
samples. The average intensity for each SNP (calculated using the same data) is plotted on the x-axis. In total 277 SNPs are plotted from panel 1
and 261 from panel 2. Log-ratios were calculated after within-array quantile normalization of the Cy5 and Cy3 intensities. This figure shows an
increasing trend for slope as average intensity increases. There is no such trend for intercept.
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gDNA signal. In the presence of copy number variation,
there may be additional clusters which will cause pro-
blems for standard genotype calling methods. Incorrect
genotypes can lead to misleading results, as the calls play
an important role in any test for ASE, which can only be
ascertained at heterozygous loci. Bearing this in mind, we
recommend that ASE calls in copy number variable
regions be carefully scrutinized to avoid false positives.

Methods
Data sets
Four ASE data sets were analyzed in this paper. First,
one SAM that included 48 gDNA and 48 cDNA arrays
from the CEU samples in Dimas et al. (2008) [20] were
analyzed to obtain a preliminary view of the data (Figure
1). The raw data from this experiment are available in
the ArrayExpress database [26] under accession number
E-TABM-927.
The second data set was the dye-swap experiment

from Tan et al. (2008) [10], which consisted of cDNA
and gDNA samples from 3 HapMap individuals hybri-
dized in duplicate using both regular and dye-swapped
chemistry. Data from this set of 24 arrays were provided
by Aik Choon Tan (personal communication).
The third data set was from a mixture experiment.

The raw data from this experiment are available in the
ArrayExpress database [26] under accession number

E-TABM-855. Arrays containing the same custom SNP
panel as Dimas et al. (2008) [20] were used. Two series
(A and B) were generated using different pairs of Hap-
Map individuals. For each pair, individuals were selected
from the CEU and YRI populations that had the greatest
differences for as many SNPs as possible from the cus-
tom panel. In series A, gDNA from HapMap individuals
NA12892 and NA19092 were mixed in the following
proportions: 0%:100%, 5%:95%, 91%:9%, 83%:17%,
67%:33%, 64%:36%, 60%:40%, 56%:44%, 50%:50%,
44%:56%, 40%:60%, 36%:64%, 33%:67%, 17%:83%,
9%:91%, 5%:95% and 100%:0%. In series B, gDNA from
individuals NA07022 and NA19143 were pooled in the
following proportions: 0%:100%, 91%:9%, 83%:17%,
67%:33%, 64%:36%, 60%:40%, 56%:44%, 50%:50%,
44%:56%, 40%:60%, 36%:64%, 33%:67%, 17%:83%, 9%:91%
and 100%:0%. Genotypes for each SNP were downloaded
from HapMart [27]. For SNPs that were either homozy-
gous and different (AA:BB or BB:AA), or heterozygous
and homozygous (AA:AB, BB:AB, AB:AA or AB:BB) in
a given pair of individuals, allelic imbalances should be
present. These SNPs (782 in series A and 808 in series
B) form our true positive set. SNPs which have the
same genotype for each individual (AA:AA, BB:BB or
AB:AB) should not change with mixing concentration.
These SNPs (533 in series A and 502 in series B) make
up the true negative set. SNPs with missing data in

Figure 8 Intensity trends in slope for the regression between the cDNA and gDNA log-ratios where average intensity has been
ascertained using a different microarray platform. Slopes from the regression of cDNA log-ratios against gDNA log-ratios from the 44 CEU
individuals in Tan et al. (2008) for SNPs with at least 3 individuals of each homozygous genotype (AA, BB) versus average intensity measured on
the Illumina WG-6 arrays from Stranger et al. (2007) are shown. In panel 1, 155 SNPs are plotted and in panel 2, 152 SNPs are shown. As
observed in Figure 7, we see a trend for increasing slope with increasing intensity.
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HapMart (NN) were excluded from the analysis (15 in
series A and 20 in series B), as were SNPs with IDs
which could not be found in HapMart (206). Each mix-
ture was hybridized in triplicate using the experimental
protocol described in Dimas et al. (2008) [20].
The HapMap and Pancreatic cancer data from Tan

et al. (2008) [10] were also analyzed. Duplicates from
142 individuals and 2 panels of markers (which we
name panel 1 and 2 and contain 927 and 1188 SNPs
respectively) were analyzed.
To measure expression of each gene independently,

the Illumina WG-6 expression data from Stranger et al.
(2007) [23] were downloaded. These arrays use both dif-
ferent probes and chemistry to measure the level of
gene expression compared to GoldenGate in many of
the same samples (14 out of 42). The normalized CEU
intensities were averaged across all samples to obtain an
average expression level for each probe. Probes were
matched between platforms using gene symbols.

Data preprocessing
The bead-level data from each array in the mixture
experiment were summarized by calculating the per
bead type average of 4 quantities after outlier removal
both with and without the local background estimates
subtracted: the log2(Cy3) and log2(Cy5) intensities, aver-
age log-intensities ( A Cy Cy= ×( )1

2 2 5 3log ) and log-
ratios (M = log2(Cy5/Cy3)). For each quantity, outlier
beads (those with values more than 3 MADs above or
below the median) were removed prior to calculating
the average. The local background intensities were esti-
mated using an average of the five dimmest pixels
within the 17 × 17 pixel area around each bead centre,
as per Illumina’s default image analysis.
To obtain normalized data, the summary log2(Cy3)

and log2(Cy5) values from each array were quantile nor-
malized (within-array) and log-ratios were calculated.
This analysis was carried out in R [28] using the beadar-
ray [29] and beadarraySNP packages.
BeadStudio output from the dye-swap experiment in

Tan et al. (2008) was provided by Aik Choon Tan (per-
sonal communication). For each array, log-ratios and
average log-intensities were calculated both with and
without quantile normalization between channels.
The remaining data from Tan et al. (2008) were

downloaded from the GEO database [30] using the
GEOquery Bioconductor package [31]. This data set
consisted of replicate arrays of both gDNA and cDNA
samples for 142 individuals. The red and green intensi-
ties from each array were quantile normalized, and log-
ratios and average log-intensities were calculated for
each SNP on each array.
The two-dimensional smoothed scatter plots (Figure 1,

panels E and F and Figure 2, panels A and B) were

generated in R [28] using the smoothScatter function
with the default options.

Linear model analysis
To summarize the data from replicate arrays, SNP-wise
linear models were fitted to the log-ratios [32] using the
limma package [33]. For each experiment, the models
were fitted separately for the cDNA and gDNA data
sets. For SNP i, we can write the linear model as

E Xi iy( ) =  (1)

where yi = (yi1, ..., yiN)
T is the vector of log-ratios from

arrays 1, ..., N, X is a known design matrix with full
column rank, and bi = (bi1, ..., biK)T is a SNP-specific
vector of regression coefficients.
The linear model assumes

var yij i( ) =  2 (2)

where  i
2 is an unknown factor. We assume the log-

ratios yij are normally distributed and that the values
from different arrays are independent. Ordinary least
squares estimators of bi ( 

∧

i
) and  i

2 ( si
2 , residual

mean square) were obtained for each SNP.
For the mixture experiment, contrasts given by ai =

CTbi, where C is a contrast matrix which gives all pair-
wise comparisons between a given mixture and the
50:50 mixture. This corrects for systematic dye-biases or
genotype effects, which shift the baseline away from 0.
Moderated t-statistics were calculated using the

empirical Bayes shrinkage procedure of Smyth (2004)
[32] to test the null hypothesis aik = 0. Since the mix-
ture experiment uses samples from individuals with
known genotypes, we know a priori which SNPs will
have a differential allelic response. Sensitivity and speci-
ficity were calculated for the concentrations in each ser-
ies by ranking SNPs by their log-odds.
For the dye-swap experiment, SNP-wise regression

models as described above (Equation 1) which included
an intercept (dye effect) term were fitted separately for
the log2 cDNA and gDNA log-ratios, both before and
after within-array quantile normalization.

Regression between cDNA and gDNA log-ratios
We assessed the degree of linear trend between the
cDNA and gDNA log-ratios from Tan et al. (2008) [10]
(Figure 6) more globally by regressing the average
cDNA log-ratios from the above linear models (Equa-
tion 1) against the average gDNA log-ratios for the
homozygous individuals only. The model included both
a slope and intercept term that was separately estimated
for each SNP. For Figure 7, these regression parameters
are plotted versus average intensity (estimated using the
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same arrays) for SNPs with at least 3 AA and 3 BB
homozygotes (277 in panel 1 and 261 in panel 2). The
requirement for at least 6 observations ensured that the
slope and intercept terms were reasonably well esti-
mated. This analysis was repeated for the CEU indivi-
duals only in Figure 8, which shows the slope for 155
SNPs from panel 1 and 152 from panel 2 versus the
average intensity calculated from WG-6 expression
arrays.

Abbreviations
The following is a summary of the abbreviations used in this paper: ASE:
allele-specific expression; CEU: Centre d’Étude du Polymorphisme Humain
samples collected from UT, USA, which are part of the HapMap project
[3435]; MAD: median absolute deviation; PCR: Polymerase chain reaction;
ROC: Receiver Operator Characteristic, a method used to assess sensitivity
and specificity; SAM: Sentrix Array Matrix, a collection of 96 BeadArrays in
96-well plate format; SNP: Single Nucleotide Polymorphism; WG-6: whole-
genome, expression BeadChips from Illumina which contain 6 individual
BeadArrays; YRI: samples from individuals from Yoruba in Ibadan, Nigeria,
which are part of the HapMap project [3435].
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