
The semantics of Chemical Markup
Language (CML): dictionaries and
conventions

Authors: Peter Murray-Rusta*, Joe Townsenda, Sam Adamsa, Weerapong Phadungsukananb, Jens

Thomasc.

a Unilever Centre for Molecular Science Informatics, Department of Chemistry, Lensfield Road,

Cambridge CB2 1EW

b Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA

c STFC Daresbury Laboratory, Daresbury Science and Innovation Campus, Warrington WA4 4AD

*pm286@cam.ac.uk

Abstract

The semantic architecture of CML consists of conventions, dictionaries and units. The conventions

conform to a top-level specification and each convention can constrain compliant documents through

machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes

machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML

document, and provide human-readable descriptions. An additional set of conventions and dictionaries

are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable

and addressable through unique URIs.

Introduction

From an early stage, Chemical Markup Language (CML) was designed so that it could accommodate an

indefinitely large amount of chemical and related concepts. This objective has been achieved by

developing a dictionary mechanism where many of the semantics are added not through hard-coded

elements and attributes but by linking to semantic dictionaries. CML has a number of objects and object

containers which are abstract and which can be used to represent the structure and datatype of objects.

The meaning of these, both for humans and machines, is then realised by linking an appropriate element

in a dictionary.

The dictionary approach was inspired by the CIF dictionaries1 from the International Union of

Crystallography (IUCr) and has a similar (in many places isomorphous) structure to that project. The

design allows for an indefinitely large number of dictionaries created by communities within chemistry

who recognise a common semantic approach and who are prepared to create the appropriate

dictionaries. At an early stage, CML provided for this with the concept of “convention”. This attribute is

an indication that the current element and its descendants obey semantics defined by a group of

scientists using a particularly unique label.

FIGURE 1: The primary semantic components of CML. Elements in a document link to conventions,

dictionaries and units through attributes. The referenced resources are themselves constrained by

specification documents (convention spec, dictionary spec, system of units) with unique URIs. Within the

dictionaries and the unit collections, every entry has a unique ID and when combined with the dictionary

URI produces a globally-unique identifier.

During the evolution of CML we explored a number of syntactic approaches to representing and

imposing semantics through dictionaries. These have ranged from a formally controlled ontology

(ChemAxiom2) which is consistent with OWL2.03 and the biosciences’ Open Biological and Biomedical

Ontologies (OBO)4 framework, to uncontrolled folksonomy-like tagging. Although we have implemented

ChemAxiom and it is part of the bioscientists’ description of chemistry, we regard it as too challenging

for the current practice of chemistry and unnecessary for its communication. This is because chemistry

has a well-understood (albeit implicit) ontology and the last 15 years have confirmed that it is highly

stable. The power of declaration logic is therefore not required in building semantic structures. The

consequence is that some of the mechanics of the semantics must be hard-coded, but this is a relatively

small part and primarily consists of the linking mechanism and the treatment of scientific units of

measurement. At the other end of the spectrum, we have found that the folksonomy approach is

difficult to control without at least some formal semantic labelling. We have also found that there is

considerable variation in how sub-communities approach their subject, and we do not wish to be

prescriptive (even if we could). For example, the computational solids group (CMLComp) insisted that a

molecule should not contain bonds as they did not exist, whereas the chemical informatics community is

concerned not only that bonds should exist but that they should be annotated with their formal bond

order.

The design of CML has always been based on the need for dictionaries, and has also recognised that

there are different conventions within chemical practice. The original design (Figure 2) shows the linked

dictionary concept and this has proved resilient and is the basis of the current architecture. However,

the precise representation has varied over the years. This article represents a convergence and

crystallisation of the semantic environment of CML, and we believe that there are now no immediate

requirements for early refinement. This paper can therefore be used, we hope, for several years as a

reference in a more robust manner than has been possible up to now. However, the exact practice of

the CML community will be primarily governed by public discussions on mailing lists and formal releases

of software and specifications.

FIGURE 2: The original design for CML semantic architecture (1996). This shows how different groups

can create their own semantics and inter-operate. The concept has been proven over 15 years with

appropriate changes to the terminology (i.e. we now talk of linked metadata rather than a

hyperglossary).

This practice and principles are general to all the semantic elements in this article, and is best illustrated

in the requirements for creating a convention and enforcing it. In the spirit of communal development,

any sub-community is at liberty to create their own convention without formal permission from any

central governance, subject to the requirement that it must be valid against the (very flexible) CML

Schema 35. This is done by associating the convention with a unique namespace identifier and the

convention specification shows how this must be done, but does not dictate the contents or scope of

any convention. In this way, an indefinite number of sub-communities can develop and ‘do their own

thing’ without breaking the CML semantics. The success of a convention is then a social, not technical,

phenomenon. If group A develops a convention and groups B, C and D adopt it then there is wide

interoperability. If A develops a convention and B develops an alternative then there is fragmentation.

It's not always a bad thing to have “more than one way to do it”6, but it can it make life very complex for

software developers.

The price for this freedom is that a community cannot by default expect other users of CML to adopt

their convention. If a community wishes its convention to be used, it needs to educate it in how CML can

support it, and almost always to create or re-use software to support the convention. Thus, for example,

the CMLSpect convention is supported by the JSpecView7 software, which has a vigorous community of

practice. Similarly, the CMLCryst convention (not yet released) is being driven by the development of the

CrystalEye8 knowledgebase and its adoption by the IUCr.

The dictionary reference mechanism (the dictRef attribute) was designed to have a namespace-

oriented value; i.e. it has a prefix as well as a local name. Although this approach is not formally

supported by XML, it is widespread in approaches such as XSD Schema. This has turned out to be a

valuable design as it is isomorphic to the use of namespaced URIs and indeed the dictRef attribute

can be automatically translated to and from the URI formulation. This means that CML is semantically

compatible with the emergence of Linked Open Data (LOD) on the Open web, and that CML documents

and dictionaries can be used in this with little more than syntactic conversion. In our own practice, we

now enforce the discipline that dictRef values must be QNames and that both the namespace and

the local entry should be resolvable.

The role attribute has been used for a variety of purposes in the past but is now developed as a general

“tagging” tool.

The semantic tools (dictionary, convention and role) have been fluid over the last decade and there are

examples where their use is not compatible with this paper. However, the tools to support them will

work with modern CML libraries.

The current tools in CML for adding semantics are therefore:

 convention. This represents a community of practice in chemistry and the attribute is used

to label an element and its descendants which practice these semantics.

 dictRef. The formal mechanism of associating semantics with an abstract data object.

 role. An uncontrolled attribute which can be used in a folksonomy-like manner

(microformats) and which has similarities to HTML’s class attribute.

 units and unitType. Attributes which allow scientific units of measurement to be added to

numeric quantities in CML.

We now discuss each of these approaches in detail.

Convention

The initial (1996) use of convention was limited to certain elements such as bond to represent the

different values that different communities might use. It has now grown to be a key concept in defining

communities of practice, having started to be used ca. 2005 when individuals and groups worked to

create sub-domains of CML. The leading areas were reactions (mainly enzymes), spectroscopy,

crystallography and computational chemistry (compchem). It emerged from these exercises that the

elements and attributes of CML were sufficient to support the sub-community but that additional

semantics in their use and constraints was necessary. Thus, for example, the CMLSpect9 community

decided that a spectrum must have a child representing the data in the spectrum (it is still possible to

have an empty spectrum in CML but it would be used by a different community for a different purpose).

Conventions specify a minimal set of elements and document structure that a community has agreed to.

Other elements may be included in a document, but may be transparently ignored by processing

software.

Thus, a convention offers the following:

 an announcement that an identified community cares about a sub-domain of chemistry.

 a prose description of the scope and constraints and practice of the convention

 a validator10 that determines whether a given document conforms to a convention (and where it

deviates)

In addition for software developers it offers:

 a statement as to what the components in a convention are, and how they can be combined.

 indications of what constraints may/must/should be imposed on CML documents valid against

this convention.

 an indication or a guarantee as to what CML components may be found in a conformant

document

 an indication of their semantics

CML Schema 3 is less restrictive than Schema 2.411 and is designed to be used in conjunction with

conventions. The loosening of the restrictions in the schema mean that it is schema-valid to create

documents which do not make chemical sense (such as molecules being the children of atoms and

bonds being defined in a molecule with no atoms present). The chemical validity and constraints are

now imposed through the use of conventions and XSLT/XPath. @convention signifies that the

element and its descendants must obey a convention, probably enforced by software and with defined

semantics. There MUST* be a convention document describing a convention.

Currently supported conventions (see Figure 1) are:

 dictionary (for which the namespace is http://www.xml-cml.org/convention/dictionary)

 molecular (namespace: http://www.xml-cml.org/convention/molecular)

 compchem (namespace: http://www.xml-cml.org/convention/compchem)

 unit-dictionary (namespace: http://www.xml-cml.org/convention/unit-dictionary)

 unitType-dictionary (namespace: http://www.xml-cml.org/convention/unitType-

dictionary)

Examples of constraints implemented in the molecular convention are:

 an atomArray must have at least one atom child

 the value of an atom’s id must be unique within the eldest containing molecule

 a bond element must have an atomRefs2 attribute

 a bond must be between atoms within the same molecule

Dictionaries

In a similar way, a dictionary ecology12 has developed supporting an extensible set of concepts in CML

documents. The dictionaries add semantics to the CML primitives, particularly property and

parameter. Thus, for example, a melting point is described by a property which is linked to a

dictionary reference (dictRef). Therefore any concept which can be represented by the abstract CML

elements can have additional semantics from a dictionary. Because the dictionary itself is semantic, it is

possible to describe constraints and elaborations in the dictionary that can then be added to the

document. For example, a dictionary can specify scientific units of measurement which would be the

default for a reported property or parameter. Our current concept is that there are core dictionaries

which are likely to be commonly used in many areas of chemistry. These include common physical

properties (e.g. melting point) and common metadata such as users and dates. Conventions will almost

certainly have one or more dictionaries so that compchem has an extended dictionary of concepts such

as convergent limits, energies, gradients and so forth. The MACiE13 dictionary used the IUPAC Gold

Book14 to define terms in reactions and the Atmospheric Chemistry dictionary is again taken from

IUPAC15.

*
 The keyword ‘MUST’ should be interpreted as described in RFC 2119 (http://www.ietf.org/rfc/rfc2119.txt).

http://www.xml-cml.org/convention/dictionary

One important way of creating dictionaries is to extract terms and discourse from CML documents. A

particular example is the markup of concepts created in computational chemistry and here we often

associate a given program or code with a dictionary specific to that program/code. Thus, for example, a

program/code might use a set of keywords found nowhere else; currently around six such dictionaries

exist, and the number is increasing. In these cases we often find the need for a hierarchy so that a code

might use code-specific dictionary terms in addition to those in the general computational chemistry

dictionary. Different programs sometimes produce data with the same label but a different

interpretation; does “density” mean electron density or mass density? There can be any number of

dictionaries (and we envisage one for each code, or ideally fewer). Each dictionary has a unique

namespace so there are no collisions. The entries can be minimal (id, term, definition, etc.) but will

usually indicate the data structure (scalar, array etc.), data type, constraints etc. The descriptions

can be HTML and include all sorts of additional material (including SVG).

Applying @dictRef to an element asserts that it is defined in some way by a dictionary entry but does

not generally transmit to descendants of that element. Thus:

 <property @dictRef='foo:cpuInfo'> ...</property>

 might specify that this property must be interpreted with the help of the cpuInfo entry in the foo

dictionary. The @dictRef construct is most generally used for primitive types (scalar, array or

matrix) though we are starting to see its use for compound types (e.g. parameter constraining a

property). There MUST† be a dictionary entry for a dictRef.

Example (from http://www.xml-cml.org/convention/dictionary):

<?xml version="1.0" encoding="UTF-8" ?>

<dictionary xmlns="http://www.xml-cml.org/schema"

 xmlns:convention="http://www.xml-cml.org/convention/"

 xmlns:unit="http://www.xml-cml.org/unit/nonSi/"

 xmlns:unitType="http://www.xml-cml.org/unit/unitType/"

 xmlns:xhtml="http://www.w3.org/1999/xhtml"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 convention="convention:dictionary"

 title="fundamental chemistry concepts"

 namespace="http://www.xml-cml.org/dictionary/dummy/"

 dictionaryPrefix="dummy">

 <description>

 <xhtml:p>This is an example dictionary

 </xhtml:p>

 </description>

 <entry id="molecmass" term="Molecular Mass" dataType="xsd:double"

unitType="unitType:amount" units="unit:dalton">

 <definition>

†
 The keyword ‘MUST’ should be interpreted as described in RFC 2119 (http://www.ietf.org/rfc/rfc2119.txt).

 <xhtml:p>

 The mass of one mole of a substance in unified atomic mass

units (Dalton).

 </xhtml:p>

 </definition>

 <description>

 <xhtml:p>

 The molecular mass (m) of a substance is the mass of one

molecule of that substance, in unified atomic mass unit(s) u (equal to 1/12

the mass of one atom of the isotope carbon-12). This is numerically

equivalent to the relative molecular mass (Mr) of a molecule, frequently

referred to by the term molecular weight, which is the ratio of the mass of

that molecule to 1/12 of the mass of carbon-12 and is a dimensionless number.

Thus, it is incorrect to express relative molecular mass (molecular weight)

in daltons (Da). Unfortunately, the terms molecular weight and molecular mass

have been confused on numerous websites, which often state that molecular

weight was used in the past as another term for molecular mass.

 </xhtml:p>

 <xhtml:p>

 Molecular mass differs from more common measurements of the

mass of chemicals, such as molar mass, by taking into account the isotopic

composition of a molecule rather than the average isotopic distribution of

many molecules. As a result, molecular mass is a more precise number than

molar mass; however it is more accurate to use molar mass on bulk samples.

This means that molar mass is appropriate most of the time except when

dealing with single molecules.

 </xhtml:p>

 </description>

 </entry>

 <entry id="molarmass" term="Molar Mass" dataType="xsd:double"

unitType="unitType:amount" units="unit:dalton">

 <definition>

 <xhtml:p>

 The mass per amount of substance.

 </xhtml:p>

 </definition>

 <description>

 <xhtml:p>

 Molar mass, symbol M, is a physical property characteristic

of a given substance (chemical element or chemical compound), namely its mass

per amount of substance. The base SI unit for mass is the kilogram and that

for amount of substance is the mole. Thus, the derived unit for molar mass is

kg/mol. However, for both practical and historical reasons, molar masses are

almost always quoted in grams per mole (g/mol or g mol−1), especially in

chemistry.

 </xhtml:p>

 <xhtml:p>

 Molar mass is closely related to the relative molar mass (Mr)

of a compound, the older term formula weight and to the standard atomic

masses of its constituent elements. However, it should be distinguished from

the molecular mass (also known as molecular weight), which is the mass of one

molecule (of any single isotopic composition) and is not directly related to

the atomic mass, the mass of one atom (of any single isotope). The dalton,

symbol Da, is also sometimes used as a unit of molar mass, especially in

biochemistry, with the definition 1 Da = 1 g/mol, despite the fact that it is

strictly a unit of molecular mass (1 Da = 1.660 538 782(83)×10−27 kg).

 </xhtml:p>

 </description>

 </entry>

</dictionary>

Roles

A third approach to semantics is driven by the need to ‘tag’ information, and for this we provide the role

attribute. Roles are less formalised than dictRef or convention in that they do not (at this time) need

to refer to a formal specification, and are therefore available for folksonomies and human-readable ad

hoc semantics. They may, of course, link to formal semantic documents if required, though this cannot

be enforced except by convention.

@role signifies how an element is to be interpreted. In some CML architectures, @role might be used

as a human readable tag - i.e. part of a folksonomy, while in other cases @convention could be used

as a machine-readable tag and impose machine semantics. There are currently no constrained semantics

or vocabulary for @role.

Units

The final component of the semantic framework is scientific units of measurement. In these we specify

the type of the unit (unitType), which itself has a specific dictionary16. Every units attribute

therefore has a unitType and the units are described in their own dictionaries where we expect a

variety of approaches. Dictionaries of CGS (centimetre gram second) units, atomic units and even units

connected with a particular (compchem) code may all be encountered.

These "essentials" are adapted from NIST Special Publication 811 (SP 811)17 and NIST Special Publication

330 (SP 330)18. We use the terminology from NIST, with some variation, and quote verbatim to avoid

confusion:

“A quantity in the general sense is a property ascribed to phenomena, bodies, or

substances that can be quantified for, or assigned to, a particular phenomenon, body, or

substance. Examples are mass and electric charge.”

CML uses the term “unitType” to describe this concept (in part to avoid confusion with the next

definition). This also shows the strong computational relationship between unit and its type. We believe

that essentially all uses of “unitType” map onto quantity.

“A quantity in the particular sense is a quantifiable or assignable property ascribed to a

particular phenomenon, body, or substance. Examples are the mass of the moon and the

electric charge of the proton.”

CML does not currently use this concept explicitly. Quantities are usually either parameters or

properties (but not all parameters and properties (e.g. string values) map to quantities).

“A physical quantity is a quantity that can be used in the mathematical equations of

science and technology.”

CML honours this concept in that unitTypes can be associated with equations though this is complex

and not yet widespread.

“A unit is a particular physical quantity, defined and adopted by convention, with which

other particular quantities of the same kind are compared to express their value.”

CML maps onto this concept through the units attribute and dictionary.

“The value of a physical quantity is the quantitative expression of a particular physical

quantity as the product of a number and a unit, the number being its numerical value.

Thus, the numerical value of a particular physical quantity depends on the unit in which

it is expressed.”

CML supports this in the scalar, array and matrix elements which, if numeric, should be

supported by a units attribute.

CML will honour specifications of units and unitTypes created by authorities such as NIST as they

should rightly be the creators and disseminators. A UnitsML19 has been many years in incubation but

now seems to be close to production release. CML will continue to use its own semantics for units but

may also include interoperability with NIST.

The CML system of units goes somewhat beyond NIST in that it is not limited to physical science and has

to support concepts such as mg (drug)/ kg (animal) where the semantics of the experiment have to be

linked (this is not a simple dimensionless number – “drug” and “animal” do not cancel). CML units allow

for dimensions and other concepts to be associated with “dimensionless”, such as ppm). CML software

(JUMBO20) allows for the values and units to be recomputed (“unit conversion”) and for simple

dimensional analysis. Entries in unitType dictionaries conforming to the unitType dictionary

convention must specify dimensions.

Users can create their own unitTypes and units as long as these conform to the CML conventions.

There are many biological units (e.g. “The optimum dose of rIL2 was 100-500 units (Jurkat units)/ml,”21)

which do not fit easily into the seven primary SI concepts, but are still critical attributes of the

experiment. The general structure of the dictionaries is likely to be:

 A single, community-driven and maintained dictionary for unitTypes. Since there are

infinitely many of these (e.g. fifth virial coefficient units), we see this being gradually and

carefully extended.

 A number of local unitTypes (e.g. Jurkats).

 A single dictionary for SI units22 (paralleling the unitTypes).

 A small number of core dictionaries for units in different non-SI systems23 (e.g. CGS, atomic

units, etc.)

 A larger number of convention-specific units dictionaries.

Creating dictionaries

The biosciences have several approaches for creating ontologies, such as the Gene Ontology (GO)24. GO

was designed as a thesaurus to which individuals and groups could contribute. It has a directed acyclic

graph (DAG) structure, where an entry can have several parents and several children. The hierarchy

honours the broader/narrower term approach and used three axes (cellular component, molecular

function, biological process) but is designed primarily for human navigability rather than machine

computability. It and other dictionaries have been transformed to fuller OWL-compliant ontologies using

the file format guide provided25.

We use the following approaches for creating dictionaries:

 Borrow from established dictionaries (IUPAC, IUCr, Wikipedia) and convert to CML. The main

challenge is that many of the terms are broad concepts and follow human rather than machine

conventions. This approach was used for the MaCiE dictionary with terms borrowed from IUPAC

where possible and with a hierarchy expressed in CML. We have also translated the IUCr’s CIF

dictionary into CML format26, and this is used in, for example, the CrystalEye system.

 Observe and collect discourse/practice, both in program input/output and formulaic text. We

create or collect a corpus of documents and extract the common terms. Assuming that they are

associated with cml:property or cml:parameter they will require a dictRef. The

target of this dictRef is an entry in a dictionary and the first task is to determine which

dictionary is most appropriate.

These processes lead to a community of dictionaries, with an implied but not necessarily explicit

hierarchy.

Detailed use cases of dictionary construction

 With the ChemicalTagger27 system, we have built a natural language framework which

recognises parts of speech and phrase. With over 100,000 patents analysed we have a large

corpus representing the current usage in describing chemical synthesis. The automatic analysis28

of this corpus throws up a variety of abstractions common to many of the texts, in particular for

the actions and methods used to describe chemical syntheses. Currently we have extracted 21

types of action phrase from this corpus:

Add, ApparatusAction, Concentrate, Cool, Degass, Dissolve, Dry,

Extract, Filter, Heat, Partition, Precipitate, Purify, Quench,

Recover, Remove, Stir, Synthesize, Wait, Wash and Yield.

Coupled with these phrases are qualifiers (sometimes English language adverbs) and specific

uses of nouns which can be additionally used to label a text. This is an example of a small natural

language driven dictionary into which a large number of specific terms can be entered.

 In the Quixote project29 30we are creating a semantic infrastructure for compchem. Unlike

crystallography, where the community has for many years sat in real and virtual committee to

decide on dictionaries and their contents, compchem has very little common practice in this

area. There is no commonality of approach to labelling either the input or output of compchem

calculations. Our belief is that there is a strong implicit similarity, even isomorphism, between

the main computational codes, and that by analysing the discourse (i.e. the logfiles), we can

collect and systematise the types of object referenced in the logfiles. To do this, we have taken a

number of codes (Gaussian31 (various versions), GAMESS-UK32, Jaguar33, NWChem34, Quantum

ESPRESSO35) and analysed much of their logfile structure and vocabulary. Although the level of

detail varies between programs, there are somewhere between 100-500 concepts in total which

can be precisely labelled and which could contribute to a communal dictionary. We are in the

process of building a table (spreadsheet) of the terms which occur in codes and their occurrence

(or absence) in each code. These normally occur as CML parameters. The concepts currently

cover the following areas:

 Environment of the calculation. This includes machine configurations, version of code, time

constraints, human and institutional metadata and other control parameters.

 The method of calculation e.g. the functional.

 The basis set or pseudo-potential.

 Any physical constraints imposed on the system (e.g. pressure, temperature or electric

field).

 Levels of accuracy or cut-off desired in the calculation.

 Strategy of calculation and algorithms used (e.g. search for a transition state, reaction

coordinates, frequencies etc.)

The output files normally deal with outcomes of running the job (e.g. abnormal termination, level of

convergence achieved, elapsed time) and calculated properties.

Most of these concepts are common to all codes and where possible we are creating entries in a single

common compchem dictionary36. In some cases, however, methods and properties are unique to one

code, and many of the intricate details in the logfiles are not directly transferable. For that reason, we

are using a hierarchy of dictionaries with the following components:

1. A dictionary common to all or most of computational chemistry (compchem dictionary).

2. A series of dictionaries, one per code, which is initially used to collect defined quantities in the

output. At regular stages the community will decide whether these map onto concepts in the

main compchem dictionary, and, in those cases, transfer their usage to that dictionary.

FIGURE 3: A compchem-compliant document read into the Avogadro37 browser and computational

chemistry manager. The structure of the document is shown with the primary subdivisions. Each piece

of information is in a precisely specified position in the hierarchy, so that it may easily be discovered by

processing software. For example the hostname must occur as a scalar child of parameter with a

specific @dictRef, and so on.

Software support for dictionaries and units

The dictionary and units are more general than CML but we have yet to find much activity in this area in

physical science which could add generality. For that reason the following elements are strongly

established in CML:

 Dictionary

 Entry

 Unit type (and unit type list)

 Unit (in unit list)

We have implemented many of the desired lookup and normalisation functions in JUMBO and we

expect that this will remain for some considerable time. Moreover, any scientific discipline which wishes

to use dictionaries and units should find that our design and implementation can be readily understood

and may be appropriate for their domain.

Conclusion.

The use of conventions and dictionaries has proved of enormous value in the development and

robustification of CML. With well-defined protocols, groups can take the formal specifications and build

their own systems such that they not only do what they want, but do not break other CML software. We

are currently working actively on computational chemistry and, with a wide range of different codes and

types of problem, we expect to be able to show that the current architecture is capable of supporting

these.

Assuming that semantic computational chemistry becomes widespread, the dictionaries will act as a

catalyst to those communities to add more terms and to revise the precise usage of the concepts. It will

also act as a demonstration to other areas of chemistry of the value of the convention/dictionary

approach.

REFERENCES

1
 IUCr CIF dictionaries. [http://www.iucr.org/resources/cif/dictionaries] Accessed 2011-05-25

2
 Adams N, Cannon EO, Murray-Rust P: ChemAxiom – An Ontological Framework for Chemistry in Science. Nature

Precedings 2009-09-03. DOI: 10.1038/npre.2009.3714.1
3
 OWL 2 Web Ontology Language. [http://www.w3.org/TR/owl2-overview/] Accessed 2011-05-25

4
 Open Biological and Biomedical Ontologies (OBO). [http://www.obofoundry.org/] Accessed 2011-05-25

5
 CMl Schema 3. [http://www.xml-cml.org/schema/schema3/index.php] Accessed 2011-05-25

6
 “There’s more than one way to do it”, Perl motto.

[http://en.wikipedia.org/wiki/There%27s_more_than_one_way_to_do_it] Accessed 2011-05-25
7
 JSpecView software. [http://jspecview.sourceforge.net/] Accessed 2011-05-25

8
 CrystalEye. [http://wwmm.ch.cam.ac.uk/crystaleye/]

9
 Kuhn S, Helmus T, Lancashire R, Murray-Rust P, Rzepa H, Steinbeck C, Willighagen E: Chemical markup, XML, and

the world wide web. 7. CMLSpect, an XML vocabulary for spectral data. J. Chem. Inf. Model. 2007, 47, 2015-2034.
DOI: 10.1021/ci600531a
10

CML validators. [http://validator.xml-cml.org/] Accessed 2011-05-25
11

 CML Schema 2.4. [http://xml-cml.org/schema/schema24/index.php] Accessed 2011-05-25
12

 CML dictionary ecology. [http://www.xml-cml.org/convention/dictionary] Accessed 2011-05-25
13

 Holliday G, Bartlett G, Almonacid D, O’Boyle N, Murray-Rust P, Thornton J, Mitchell, J: MACiE: a database of
enzyme reaction mechanisms. Bioinformatics 2005, 21, 4315-4316. DOI: 10.1093/bioinformatics/bti693
14

 IUPAC Compendium of Chemical Terminology – the Gold Book. [http://goldbook.iupac.org/] Accessed 2011-05-
25
15

 IUPAC Project: Glossary of atmospheric chemistry. [http://www.iupac.org/web/ins/1999-033-1-600] Accessed
2011-06-03
16

 CML unitType dictionary. [http://www.xml-cml.org/unit/unitType/] Accessed 2011-05-25
17

 Thompson A, Taylor BN: Guide for the Use of the International System of Units (SI). NIST Special Publication 118
(2008 edition) [http://www.nist.gov/pml/pubs/sp811/index.cfm] Accessed 2011-05-25
18

 Taylor BN, Thompson A (eds.): The International System of Units (SI). NIST Special Publication 330 (2008
edition). [http://www.nist.gov/pml/pubs/sp330/index.cfm] Accessed 2011-05-25
19

 Units markup language (UnitsML). [http://unitsml.nist.gov/] Accessed 2011-05-25
20

 JUMBO. [http://sourceforge.net/projects/cml/] Accessed 2011-05-25
21

 Marumo K, Ueno M, Muraki J, Tachibana M, Deguchi N, Jitsukawa S, Hata M, Tazaki H: Antitumor effects of
interleukin 2 against renal cell carcinoma: basic study and clinical application. Urol Int. 1991, 47 Suppl. 1, 132-
137.
22

 CML SI units dictionary. [http://xml-cml.org/unit/si/] Accessed 2011-05-25
23

 CML non-SI units dictionary. [http://xml-cml.org/unit/nonSi/] Accessed 2011-05-25
24

 The Gene Ontology, GO. [http://www.geneontology.org/] Accessed 2011-05-25
25

 GO file format guide. [http://www.geneontology.org/GO.format.shtml] Accessed 2011-05-25
26

 CML CIF dictionary. [http://xml-cml.org/dictionary/cif/] Accessed 2011-05-25
27

 Hawizy L, Jessop DM, Adams N, Murray-Rust P: ChemicalTagger: A tool for Semantic Text-mining in Chemistry.
J. Cheminf. 2011, 3, 17.
28

 ‘Mining Open patents’ paper, this issue.
29

 Quixote project on QC databases. [http://quixote.wikispot.org/] Accessed 2011-05-25
30

 Quixote paper, this issue.
31

 Official Gaussian website. [http://www.gaussian.com/] Accessed 2011-05-25
32

 GAMESS-UK software. [http://www.cse.scitech.ac.uk/ccg/software/gamess-uk/] Accessed 2011-05-25
33

 Jaguar software, Schrödinger Inc. [http://www.schrodinger.com/products/14/7/] Accessed 2011-05-25
34

 NWChem software. [http://www.nwchem-sw.org/] Accessed 2011-05-25
35

 Quantum ESPRESSO software. [http://www.quantum-espresso.org/] Accessed 2011-05-25
36

 CML compchem dictionary. [http://xml-cml.org/dictionary/compchem/] Accessed 2011-05-25
37

 Avogadro software. [http://avogadro.openmolecules.net] Accessed 2011-05-25

http://dx.doi.org/10.1021/ci600531a
http://dx.doi.org/10.1021/ci600531a
http://www.jcheminf.com/content/3/1/17

