
1

OSCAR4: a flexible architecture for

chemical text-mining

Authors: David M. Jessop, Sam Adams, Egon L.Willighagen, Lezan Hawizy, Peter Murray-Rust*

Unilever Centre for Molecular Science Informatics, Department of Chemistry, Lensfield Road,

Cambridge CB2 1EW (* Corresponding author: pm286@cam.ac.uk)

Abstract

The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of

named entities and data in chemistry publications, has been developed since 2002. Recent work has

resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This

library features a clean API that permits client programmers to easily incorporate it into external

applications. OSCAR4 offers a foundation upon which chemistry specific text-mining tools can be

built, and its development and usage are discussed.

Introduction

A large amount of factual data in chemistry and neighbouring disciplines is published in the form of

text and components within text rather than as structured semantic information. If we can discover

and extract this information, the textual literature becomes an enormous additional chemical

resource. As an example, we estimate that about 10 million chemical syntheses per year are

published in the public literature (articles, patents, theses) and the conventional method is a natural

language narrative (most commonly in English). It is extremely tedious and error-prone to extract

information from this by hand, and for this reason many chemical abstracting services limit their

scope and also frequently lag behind the current publication list.

The discipline of text-mining has now reached a state where much natural language in textual form

can be analysed rapidly and with high precision and recall. Methodologies applied to the problem of

chemical named entity recognition include dictionary- and rule-based methods, as well as machine

learning and hybrid approaches
1

2

3

4

5

6

7

8

9

10

11
. We have been working in this area for

approximately 10 years and the OSCAR4 software, together with OPSIN (the Open Parser for

Systematic IUPAC Nomenclature)
12

13

 and ChemicalTagger
14

15

, represent the public state-of-the-art

in chemical text analysis and extraction.

The OSCAR (Open-Source Chemistry Analysis Routines) software has been developed over a period

of years and a number of projects. Between 2002 and 2004, sponsors including the Royal Society of

Chemistry (RSC), Nature and the International Union of Crystallography (IUCr) supported a number

of summer studentships. These projects were focused on the development of software with limited

2

capacity for the automated interpretation of chemical documents, and resulted in two main

software components – the Experimental Data Checker
16

17

 and OSCAR2.

The Experimental Data Checker was conceived as a tool to be used as part of the RSC’s publication

process. The tool is capable of recognising sections of reported experimental data within plain text

input using regular expressions to match the highly-stylised and journal-mandated formats in which

they are reported in the literature (as shown in Figure 1). Once this information has been identified

and interpreted, the tool performs elementary checks on the characterisation data to ensure that it

does not conflict with the reported structure.

FIGURE 1: A screenshot of the Experimental Data Checker (OSCAR-Data) showing identification and

markup of plain text experimental data. The initial application of OSCAR was to parse the highly

stylised data used to report spectra and other analytical proofs of synthesis. This functionality is very

widely-used and has been re-integrated into OSCAR4 rather than being a separate application.

The Experimental Data Checker application relied upon a core library of analysis routines, and it was

this library that was the first to bear the name OSCAR. Further development of this library in the

summer of 2004 resulted in OSCAR2, which used XML formatting to represent the document

undergoing processing, and applied XML annotations to the document to indicate recognised

sections of text. OSCAR2 implemented a naïve Bayesian system based on n-grams and a simple

grammar in order to identify chemical names within a text. These improvements were later

extended as part of the OSCAR3 project.

In 2005, the EPSRC awarded a grant (“Sciborg”) to develop natural language processing (NLP) tools

for chemistry and science. The chemistry component of this project focused on the development of

3

the OSCAR2 methodology and resulted in the creation of OSCAR3
18

. OSCAR3 focuses on the

recognition of and, where appropriate, the resolution of connection tables for chemical named

entities. OSCAR3 employs a naïve Bayesian model to identify “chemical” tokens in text and offers a

choice of two methods for the identification of multi-token named entities. The first of these, the

PatternRecogniser, uses predetermined regular-expression style heuristics while the second, the

MEMMRecogniser19, employs machine learning in the form of a Maximum Entropy Markov Model

(MEMM). OSCAR3 uses these methods to identify four classes of named entity (Chemical, Reaction,

Chemical Adjective and Enzyme) as well as dictionary lookup to identify a pre-determined set of

ontology terms and a discrete finite automaton based method to identify chemical prefixes.

FIGURE 2: OSCAR3 markup displaying recognised chemical entities (CM). A mouse-over action on an

annotated term displays the associated metadata, in this case for 2,5-dichlorobenzylamine, and

displays an image representing the structure generated by the Chemistry Development Kit (CDK)
20

21

22

 (right). OSCAR3 concentrated on the identification and interpretation of chemical entities in text

(named entity recognition, NER). The primary purpose was to identify and extract the following

types of object: chemicals (CM), ontology terms (ONT; looked-up from ChEBI
23

24

25

, FIX
26

 and REX
27

etc.), reactions (RN; as identified by linguistic constructs, e.g. “methylated”), chemical adjectives (CJ)

mainly formed from chemical nouns), enzymes (ASE) and chemical prefixes (CPR), highlighted in

different colours. These concepts are maintained in OSCAR4.

In order to convert chemical names to connection tables (Figure 2), OSCAR3 uses dictionary-based

methods and, where this is not successful, OPSIN. Early versions of OSCAR directly included the

OPSIN code, but this was later re-factored into a separate library.

4

By 2008, OSCAR was in common use in many laboratories for the identification and extraction of

chemical terms (chemical named entities) in a variety of texts. Our original metrics
18

 showed that the

precision and recall were domain-dependent and varied considerably with the purpose and style of

chemical texts. Feedback from users was informal but it was clear that they were modifying OSCAR

for their particular purposes both in vocabulary and recognition methods. As a result we embarked

on a major re-factoring program in order to robustify the OSCAR software and simplify the API, and

this paper describes the results.

It is very difficult to get funding for software engineering projects, especially when apparently little

changes on the surface. We are grateful to the following bodies for their funding and interest:

1. OMII-UK. This organisation existed to support and robustify the products of the UK eScience

program. Many of these were middleware products but OSCAR was seen by the UK eScience

community as an example of a widely-deployable component that could be used in a

modern manner in many branches of science. The OMII-UK project carried out an initial

scoping and re-factoring of the OSCAR3 source.

2. The OSCAR-ChEBI project. This was a competitive funding resource for eScience products

and we worked with the European Bioinformatics Institute (EBI) to develop OSCAR as an

appropriate tool for the extraction and verification of chemistry in the ChEBI ontology.

3. CheTA. This was a JISC-funded project led by our group in conjunction with the National

Centre for Text Mining (NaCTeM) to evaluate the relative merits of human annotation and

machine annotation of documents. Part of this project involved OSCAR running under the

UIMA
28

/U-Compare
29

30

 framework and required a re-factoring
31

.

As a result of these projects, which probably amounted to two person-years of effort in the re-

factoring, OSCAR4 has now been released in a usable form.

Limitation of OSCAR3 and design goals for OSCAR4

OSCAR3 is a powerful tool for chemical natural language processing, but early attempts to develop

software using it as a library rather than as a standalone application – the ChemicalTagger
14

 and

PatentEye
32

33

 projects – exposed weaknesses in the code in this regard. The architecture of the

software was built around the principle that the software would be running as a server on the user’s

local machine. In order to function correctly, it required a properly configured workspace. Many key

components were implemented as mutable singletons, compromising the thread-safety of the

application and meaning that safe reconfiguration of a workflow required a complete shutdown and

restart of the Java virtual machine (JVM). Furthermore, the implementations of the various OSCAR

components required that a document be formatted in SciXML as it underwent processing.

Consequently, the use of OSCAR3 by a client programmer to build secondary applications was

unintuitive, and the distribution and successful use of such applications was found, as part of the

Green Chain Reaction, to require an unacceptably high level of support.

5

Early attempts to resolve these problems
31

 involved the extraction of the OSCAR3 tokeniser,

MEMMRecogniser and PatternRecogniser components from the main OSCAR3 codebase and

their conversion into modules suitable for use in the popular text-mining framework U-Compare.

This work allowed the use of OSCAR as part of a drag-and-drop workflow, but not its direct

integration into another application. Consequently, a comprehensive overhaul of the OSCAR3 code

began in autumn 2010 with the aim of producing a well-engineered, simple, modularised version of

OSCAR that retained the core OSCAR3 functionality and could be easily integrated into external

applications. This most recent development has been designated OSCAR4 and is discussed in the

remainder of this paper.

The development of OSCAR4 sought to address a number of specific issues. These are summarised

below and subsequently discussed in greater detail.

1. To produce an OSCAR library with a simple API, suitable for use by client programmers who

may not be familiar with the internal workings of OSCAR. Consequently, while it is desirable

for users to be able to customise the behaviour of OSCAR in a number of ways, initialisation

of OSCAR components must by default produce configurations that “just work” – the

‘convention over configuration’ paradigm.

2. In order to run, OSCAR3 required the existence of a properly configured workspace – a

directory on the executing machine that contains the OSCAR chemical name dictionary, the

InChI
34

35

 binary file and a properties file along with subdirectories intended to contain

further resource files. When OSCAR3 is first run this workspace is automatically created, and

when OSCAR3 is used as a library the workspace is automatically created in the working

directory. This behaviour was deemed undesirable, unnecessary and found to be a cause of

difficulties in producing distributable OSCAR-dependent software. Consequently, the

removal of the requirement for a workspace was considered a high priority of the OSCAR4

project.

3. Much of the OSCAR3 code required that a document undergoing processing is formatted in

SciXML. Though converters are provided to transform HTML into plain text and plain text

into SciXML, the requirement to perform this transformation is frustrating to the client

programmer in that it prevents him from working directly with plain text or with a custom

XML format which may very well be the native format of a document that he wishes to

process. Consequently, the removal of this SciXML dependence was considered important.

4. In addition to its core functionality – the recognition and interpretation of chemical named

entities – OSCAR3 included a wide range of secondary functions including the OSCAR3

server. This server runs on the local machine and provides an interactive demonstration of

the capacity of OSCAR3 for text processing as well as a number of other utilities including

the capacity to manually annotate a text from within a browser window, a servlet for the

interconversion and depiction of chemical names and formats and an experimental Hearst

pattern
36

 based system for the extraction of chemical relations from text. The OSCAR3

6

codebase had the resemblance of a ‘treasure trove’ which made code maintenance a more

complex task than necessary. The separation of a library containing the core OSCAR

functionality from these secondary functions was therefore considered desirable.

5. Much of the architecture of OSCAR3 lacked clear definition. Excessive use is made of

mutable singletons which, while aiding performance by eliminating the need for re-

initialisation of components, allows for complex interactions in the code, making it difficult

to understand, debug and re-factor. This problem was compounded by the manner in which

program logic is partially controlled by a properties object backed by a serialised file. Some

of the property values can be modified at runtime while others, once accessed by the

objects that rely upon them, are duplicated in memory and cannot be further changed.

Attempts to resolve these complex interactions can have unintended consequences since

the unit test coverage in OSCAR3 is sparse. Consequently, the improvement of the

architecture of the OSCAR software was considered a vital part of the OSCAR4 project.

6. It has been known for some time that the speed of OSCAR3 operation could be improved by

introducing certain optimisations into the code. Using the YourKit Java profiler
37

, a number

of performance blackspots were identified and subsequently eliminated. This work was

started after the final version of OSCAR3 (OSCAR3 alpha 5
38

) and continued as part of the

OSCAR4 project.

Library as a design

OSCAR4 has been deliberately written as a Java library, rather than an application or service.

Consequently, the decoupling of the core OSCAR functionality from applications that use this

functionality has been achieved. The usage of the library has been simplified as much as possible

with the introduction of the Oscar API object – a class intended to wrap the functionality of the

wider library and provide default implementations of the various components. As a result, OSCAR4

can be called from external software, as shown in the examples in Figure 3.

Figure 3: Java code using the OSCAR4 API to a) identify chemical named entities (CNEs) in a block of

text and b) identify CNEs and resolve their connection tables where possible.

7

Figure 4: Graphic representing the structure of the OSCAR4 API output object. Named entities

reference their position in the input text, the confidence in their identification and resolved

structures in various formats (SMILES
39

40

, InChI, CML
41

 etc.)

In the first of the examples in Figure 3, OSCAR4 is used to detect named entities in an input string,

returning a List of NamedEntity objects. In the second, it is used to both detect named entities

and, where these named entities correspond to chemical names, to resolve these names to chemical

structures – returning a List of ResolvedNamedEntity objects. The ResolvedNamedEntity class

links a NamedEntity to a list of chemical structures in a number of formats – SMILES, InChI and

CML – while the NamedEntity class stores such information as the surface (raw text) and type (e.g.

compound or reaction) of the named entity and the indices that define its position within the source

text. The outputs of these examples are illustrated in Figure 4.

The examples above show how OSCAR4 can be used without the need for any understanding of the

underlying technology or implementations. An overview of the workflow managed by the Oscar API

object is shown in Figure 5.

8

Figure 5: Workflow of the OSCAR4 API object

The input is first passed to the Tokeniser to produce a list of TokenSequence objects, each of

which roughly corresponds to a paragraph of text and contains a list of Token objects. The Token

represents a string of characters that mostly correspond to words but also to punctuation or other

discrete units of text e.g. “C2H6O” or “42”. In NLP tools, tokenisation commonly occurs at whitespace

or punctuation boundaries, however due to the form of some of the domain-specific entities found

in chemical texts such as “C-H” a custom Tokeniser is used. The TokenSequences are then

passed to a ChemicalEntityRecogniser – an interface for a class capable of identifying a list of

NamedEntities, which are subsequently passed to the ChemNameDictRegistry to create a list

of ResolvedNamedEntities if required.

This workflow can be customised by the user, who can use the set() methods of the Oscar class to

replace the components of the default configuration with suitable customised or custom-built

alternatives. Specifically, the user can select which implementation of

ChemicalEntityRecogniser to use or can specify which set of ontology terms are to be

recognised and which model the default ChemicalEntityRecogniser should use, and which

dictionary registry, i.e. set of chemical name dictionaries, to use for name to structure resolution. In

addition to this, the public APIs of the individual components can be used to assume a greater

degree of control over the execution of the workflow.

9

OSCAR4 provides three implementations of the ChemicalEntityRecogniser. The first, the

RegexRecogniser, finds terms that match a given regular expression and is intended to find serial

numbers corresponding to compounds e.g. “NSC-2648”. The others, the PatternRecogniser and

the MEMMRecogniser, use more complex strategies to identify chemical named entities and feature

subcomponents that can be customised by the user to produce the desired behaviour.

Figure 6: PatternRecogniser architecture

The architecture of the PatternRecogniser is shown in Figure 6. A list of “chemical” words is

drawn from an internal dictionary composed mostly of words derived from the ChEBI database and

from a corpus of manually-annotated documents, while a list of “non-chemical” words is determined

by removing those words that occur in the chemical word list from a standard English dictionary.

These lists are used to build an n-gram model which is used by a naïve Bayesian classifier to

determine whether novel tokens are “chemical” or “non-chemical”. Multi-token named entities, e.g.

“ethyl acetate”, that occur within the input text are then identified by regex-style matching of

chemical tokens to a set of pre-specified pattern definitions such as “*yl *ate”.

10

Figure 7: MEMMRecogniser architecture

The architecture of the MEMMRecogniser is shown in Figure 7, in which chemical named entities

are identified using a Maximum Entropy Markov Model (MEMM). The feature set that is generated

for each token includes features that describe the token in question, such as the n-grams that

describe it and the probability that it is chemical as predicted by the n-gram model as previously, as

well as contextual features that describe its neighbouring tokens. Using these features, the MEMM

model assigns a chemical token as being either the first token in a named entity or a subsequent

token in a named entity. Given these assignments, multi-token named entities can be constructed.

Novel MEMM models can be built from a corpus of hand-annotated documents by the user, and

OSCAR4 is supplied with two pre-generated models. One of these models was built from a set of

papers from RSC journals
42

, while the other was built from a set of abstracts retrieved from

PubMed
43

.

Architecture and tests

The OSCAR4 library has been separated into a number of modules with each performing a defined

role in the operation of the OSCAR code, such as the tokenisation of text or the provision of chemical

11

name dictionaries. This allows client programmers to use as much or as little of OSCAR in their

applications as required, without the need to unnecessarily pull in a large, comprehensive, single

JAR. The process of creating the sub-projects had the additional advantage of highlighting the ways

in which the separate components interact. During this process, the readability of the OSCAR code

was improved by imposing a number of the idioms of ‘clean code’, and the reliability of the code was

improved by the creation of appropriate unit and regression tests. At the time of writing, OSCAR4

has nearly 500 tests. As a result, the OSCAR4 code is far more robust than OSCAR3, so a developer

can work both with and on the core OSCAR code with a far greater degree of confidence.

The mutable singletons that were commonplace in OSCAR3 have been largely removed. Instead,

when setting up custom workflows, a user has the choice of either calling the

getDefaultInstance() method or the default constructor as appropriate – each of which

returns a preconfigured instance of the class – or using the custom constructor which uses

dependency injection to supply the OSCAR components upon which the class depends. For example,

the OntologyTerms class represents a set of ontology terms and their corresponding ontology IDs.

The following two methods of obtaining an OntologyTerms object are available:

OntologyTerms.getDefaultInstance();

new OntologyTerms(ListMultimap <String, String> terms);

The first method returns the default OSCAR4 OntologyTerms object, which contains an

amalgamation of the terms from the ChEBI, FIX and REX ontologies while the second supplies a

multimap of ontology terms to IDs. The use of this design pattern throughout the codebase permits,

but by no means requires, a user to assume a high degree of control over the functioning of OSCAR.

The use of the properties file and object to control elements of the program execution has been

removed. Instead, the required information is either specified as part of a constructor’s signature or

using a set() method on the object in question. This improves the thread-safety of OSCAR,

particularly in a multiuser environment, and contributes to its usability since a user can now trivially

see what features may be customised from the outline of the class as opposed to needing to know

which and how properties are used by which components.

Input and Output Formats

As previously discussed, OSCAR3 required that input documents be converted into SciXML before

processing can occur, using the document formatting as a base against which annotations for

identified named entities can be referenced – whether as inline or standoff annotations. OSCAR4

removes this requirement by operating on plain text and producing NamedEntity and

DataAnnotation objects to represent recognised sections of text and does not currently produce

serialised output, though some support for the serialisation of annotations into XML documents is

12

planned for future releases. It should be realised, however, that there is no single, fool-proof

approach to this problem. Different XML schema may use different methods to indicate where in the

document section breaks and even text content occur, while it cannot be guaranteed that well-

formed inline annotations can be generated for a given input document. Client programmers are

therefore recommended to consume NamedEntity objects directly rather than rely upon serialised

output, though it is realised that users are likely to want to be able to create serialised, marked-up

copies of their documents as well.

Non-core functionality

As much non-critical code as possible has been removed from the OSCAR4 codebase to reflect the

philosophy that OSCAR4 should act as a library. While some minor supporting code remains, such as

that required for generation of key resource files, the majority has been removed entirely as it is

envisaged that much of the former functionality could be better implemented by developers with

specific use cases.

A number of useful non-core functions are provided in dependent libraries developed at the

Unilever Centre in Cambridge. Specifically, subsidiary modules exist to provide the capacity to run

OSCAR4 from the command-line, as part of UIMA or Taverna
44

 workflows and from the Bioclipse
45

scripting interface, as shown in Figure 8.

13

Figure 8: OSCAR4 run within Bioclipse’s scripting interface (centre pane) to identify named entities in

a block of text and save the connection tables to file (extractedMols.sdf) for viewing (right

pane).

Performance

A number of modifications were introduced to the OSCAR code with the aim of reducing the time

required to process documents. Performance hotspots were identified using the YourKit Java profiler

and where possible eliminated. Some such improvements focused on the time taken to initialise the

various OSCAR components, such as supplying a pre-calculated, serialised copy of the n-gram models

used for named entity recognition rather than regenerating them each time OSCAR is loaded. Others

improved the speed at which OSCAR can process a document by optimising extremely tight loops in

the code, such as eliminating unnecessary string declaration while calculating n-gram features and

avoiding recompilation of regular expressions. Further improvements were made ad hoc, as the

OSCAR4 developers encountered obvious bottlenecks while working on the code.

In order to quantify the improvement in speed of operation, the time taken by both OSCAR4 version

4.0.1 and OSCAR3 alpha 5 to perform two tasks was measured. The first task measured the time

taken to initialise the software to the point that it was ready to begin the task of finding named

entities in text; the second task aimed to measure the speed at which the software could process

bulk text and consisted of processing the full text of the 68 patents published by the European

Patent Office in the week of 2009-05-06 – a total of 11468 paragraphs of text. All the tasks were run

on a desktop computer equipped with an Intel Pentium 4 (3.00GHz) CPU and 1GB of RAM,

purchased c. 2005, running openSUSE 11.1 and using the Java 1.6.0_22 32-bit virtual machine with a

maximum heap size of 512MB. The results are summarised in Table 1 and Table 2.

Software

version

OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser

Mean time

(s)

14.4 17.3 19.7 24.6

Standard

deviation

(ms)

40.8 40.0 72.6 88.6

Table 1: Results of the initialisation task

Software

version

OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser

Mean time

(s)

446 541 150 276

14

Standard

deviation

(s)

1.85 1.14 0.556 1.53

Table 2: Results of the bulk processing task

From these data, it can be seen that OSCAR4 performs significantly faster than OSCAR3. Initialisation

times for the MEMMRecogniser and PatternRecogniser have been reduced by 17% and 20%

respectively, while bulk processing times have been reduced by 18% and 46% respectively. The

OSCAR4 MEMMRecogniser and PatternRecogniser processed approximately 26 and 76

paragraphs per second respectively, demonstrating that bulk processing of text is achievable on an

acceptable timescale on desktop computers.

Deployment

OSCAR4 has generated significant interest in the community, and has been the subject of two

meetings at the Unilever Centre for Molecular Science Informatics in Cambridge. The talks from the

second of these are available to view online
46

. To our knowledge, the software has been adopted by

the National Centre for Text Mining (NaCTeM), the European Bioinformatics Institute (EBI) and the

European Patent Office (EPO) as well as various pharmaceutical companies.

We are aware of successful and straightforward integrations into the Bioclipse and Taverna

frameworks, and believe that this is similarly straightforward for other Java environments. We were

also pleased to see that at the recent MIOSS meeting at the EBI, OSCAR and OPSIN had been

integrated into the .NET environment. For example, OPSIN was demonstrated as running within the

JVM in Microsoft Excel, which is acceptable to commercial organisations as the JVM is of proven

security.

Conclusions

This is a useful opportunity to reflect on the high cost of producing robust, re-usable software.

OSCAR3, and OPSIN, were produced as a continuing activity by a mixture of summer students, PhDs

and PDRAs and, until ca. 2009, evolved rather than having a top-down software design. When the

project became valuable to the world, it was a clear indication that re-factoring was going to be

essential, and it is important to realise the necessary but high cost of doing this. In times of lean

funding, it will become increasingly difficult to obtain this type of support, and therefore it is always

tempting to transfer academic code to commercial entities which can raise revenue.

The downside of this is that we know of very few commercial codes, and certainly none in chemical

text analysis, that provide public metrics let alone expose the architecture on which the program is

based. Text-mining as an academic subject requires metrics and increasingly requires Openness of

15

the components of the system, as we have done in OSCAR and OPSIN. We are investigating

continuing business models where we can continue to re-factor and improve the product while not

closing the code and therefore reducing scientific credibility and innovation.

Further Reading

The OSCAR4 libraries are available from https://maven.ch.cam.ac.uk

The OSCAR4 Javadoc is available at http://apidoc.ch.cam.ac.uk/oscar4-4.0.1

The source code, mailing list, tutorials and support are available at

https://bitbucket.org/wwmm/oscar4/wiki/Home

The source code used to measure OSCAR performance is available at

https://bitbucket.org/dmj30/oscar-performance

Acknowledgements

We gratefully acknowledge OMII-UK, JISC (ChETA project) and EPSRC (Sciborg, Pathways to Impact

awards) for funding and Dr Charlotte Bolton for her assistance in the preparation of this article.

Authors’ Contributions

DMJ wrote the manuscript and was lead developer in the OSCAR4 re-factoring.

SEA was the architect and project manager for the OSCAR4 re-factoring and was involved in the

original Experimental Data Checker project.

ELW contributed to the OSCAR4 re-factoring and investigated its use in Bioclipse.

LH contributed to the OSCAR4 re-factoring and was involved in the CheTA project.

PMR had the overall vision for, and was involved in, all stages of the various OSCAR projects, and

wrote the manuscript.

REFERENCES

1
 Kemp N, Lynch M: Extraction of Information from the Text of Chemical Patents. 1. Identification of Specific

Chemical Names. J. Chem. Inf. Comput. Sci. 1998, 38, 544-551
2
 Wilbur WJ, Hazard JF, Divita G, Mork JG, Aronson AR, Browne AC: Analysis of Biomedical Text for Chemical

Names: A Comparison of Three Methods. Proc. AMIA Symp. 1999 176-180

16

3
 Wren JF: A scalable machine-learning approach to recognize chemical names within large text databases.

BMC Bioinformatics. 2006 7 (Suppl. 2) S3
4
 Klinger R, Kolářik C, Fluck J, Hofmann-Apitius M, Friedrich CM: Detection of IUPAC and IUPAC-like chemical

names. Bioinformatics 2008 24 i268-276
5
 Hettne KM, Stierum RH, Schuemie MJ, Hendriksen PJM, Schijvenaars BJA, van Mulligen EM, Kleinjans J, Kors

JA: A dictionary to identify small molecules and drugs in free text. Bioinformatics 2009 25 2983-2991
6
 Jiao D, Wild DJ: Extraction of CYP Chemical Interactions from Biomedical Literature Using Natural Language

Processing Methods. J. Chem. Inf. Comput. Sci. 2009 49 263-269
7
 Kolářik C, Klinger R, Friedrich CM, Hofmann-Apitius M, Fluck J: Chemical Names: Terminological Resources

and Corpora Annotation. In Proceedings of the Workshop on building and evaluating resources for biomedical

text mining (6
th

 edition of the Language Resources and Evaluation Conference) 2008 51-58. Marrakech
8
 Grego T, Pezik P, Couto FM, Rebholz-Chuhmann D: Identification of Chemical Entities in Patent Documents.

In Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living,

2009 Berlin, Germany. Springer-Verlag 942–949
9
 Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA: Automatic vs manual curation of

a multi-source chemical dictionary: the impact on text mining. Journal of Cheminformatics. 2010 2:3
10

 Müller B, Klinger R, Gurulingappa H, Mevissen H, Hofmann-Apitius M, Fluck J, Friedrich CM: Abstracts versus

Full Texts and Patents: A Quantitative Analysis of Biomedical Entities. In Advances in Multidisciplinary

Retrieval. Springer-Verlag 2006: 152-165
11

 Sun B, Mitra P, Giles CL, Mueller KT: Identifying, Indexing and Ranking Chemical Formulae and Chemical

Names in Digital Documents. ACM Trans. Inf. Syst. 29 Article 12
12

 Lowe DM, Corbett PT, Murray-Rust P, Glen RC: Chemical name to structure: OPSIN, an open source

solution. J. Chem. Inf. Model. 2011, 51, 739-753. DOI: 10.1021/ci100384d
13

 OPSIN [http://opsin.ch.cam.ac.uk/] Accessed 2011-06-15
14

 Hawizy L, Jessop DM, Adams N, Murray-Rust P: ChemicalTagger: A tool for semantic text-mining in

chemistry. J.Cheminf. 2011, 3, 17. DOI: 10.1186/1758-2946-3-17
15

 ChemicalTagger [http://chemicaltagger.ch.cam.ac.uk/] Accessed 2011-06-15
16

 Adams SE, Goodman JM, Kidd RJ, McNaught AD, Murray-Rust P, Norton FR, Townsend JA, Waudby CA:

Experimental data checker: better information for organic chemists. Org. Biomol. Chem. 2004, 2, 3067-3070.

DOI: 10.1039/b411699m
17

 RSC Experimental Data Checker

[http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/AuthoringTools/ExperimentalDataChec

ker/index.asp] Accessed 2011-06-15
18

 Corbett P. Murray-Rust P: High-Throughput Identification of Chemistry in Life Science Texts. In

Computational Life Sciences II, Second International Symposium, CompLife 2006, Cambridge, UK, September

27-29, 2006, Proceedings. Lecture Notes in Computer Science. Edited by Berthold MR, Glen RC, Fischer I.

Heidelberg: Springer; 2006: 107-118.
19

 Corbett P, Copestake A: Cascaded classifiers for confidence-based chemical named entity recognition. BMC

Bioinformatics, 2008, 9(Suppl 11):S4. DOI:10.1186/1471-2105-9-S11-S4
20

 Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL: Recent Developments of the Chemistry

Development Kit (CDK) - An Open-Source Java Library for Chemo- and Bioinformatics. Curr. Pharm. Des.

2006, 12, 2111-2120.
21

 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttman E, Willighagen E: The Chemistry Development Kit (CDK):

An Open-Source Java Library for Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 43, 493-500.

DOI: 10.1021/ci025584y
22

 Chemical Development Kit (CDK) [http://sourceforge.net/projects/cdk/] Accessed 2011-06-15
23

 Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcantara R, Darsow M, Guedj M,

Ashburner M: ChEBI: a database and ontology for chemical entities of biological interest. Nucl. Acids Res.

2008, 36(Suppl. 1), D344-D350. DOI: 10.1093/nar/gkm791
24

 de Matos P, Alcántara R, Dekker A, Ennis M, Hastings J, Haug K, Spiteri I, Turner S, Steinbeck C: Chemical

Entities of Biological Interest: an update. Nucl. Acids Res. 2009 38 (Suppl. 1) D249-D254, DOI:

10.1093/nar/gkp886
25

 ChEBI [http://www.ebi.ac.uk/chebi/] Accessed 2011-06-15
26

 FIX ontology [http://www.berkeleybop.org/ontologies/owl/FIX] Accessed 2011-06-15
27

 REX ontology [http://www.berkeleybop.org/ontologies/owl/REX] Accessed 2011-06-15
28

 UIMA [http://uima.apache.org/] Accessed 2011-06-15

17

29

 U-Compare [http://u-compare.org/] Accessed 2011-06-15
30

 Kano Y, Baumgartner W, McCrohon L, Ananiadou S, Cohen KB, Hunter L, Tsujii J: U-compare: Share and

compare text mining tools with UIMA. Bioinformatics, 2009, 25, 1997-1998. DOI:

10.1093/bioinformatics/btp289
31

 Kolluru B, Hawizy L, Murray-Rust P, Tsuji J, Ananiadou S: Using workflows to explore and optimise named

entity recognition for chemistry. PLoS ONE, 2011, 6, e20181. DOI: 10.1371/journal.pone.0020181
32

 Jessop DM. PhD thesis. University of Cambridge 2011.
33

 Jessop DM, Adams S, Murray-Rust P: Mining chemical information from Open patents. J. Cheminf. 2011,

this issue.
34

 McNaught, A: The IUPAC International Chemical Identifier. Chemistry International 2006, November-

December, 12-14.
35

 IUPAC International Chemical Indentifier [http://www.iupac.org/inchi/] Accessed 2011-06-15
36

 Hearst MA: Automatic acquisition of hyponyms from large text corpora. In COLING ’92 Proceedings of the

14
th

 conference on Computational linguistics – Volume 2 539-545
37

 YourKit java profiler [http://www.yourkit.com/] Accessed 2011-06-15
38

 OSCAR3 alpha 5 [http://sourceforge.net/projects/oscar3-chem/] Accessed 2011-06-15
39

 Weininger, D: SMILES, a chemical language and information system. 1. Introduction to methodology and

encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36.
40

 Weininger D, Weininger A, Weininger JL: SMILES. 2. Algorithm for generation of unique SMILES notation. J.

Chem. Inf. Comput. Sci. 1989, 29, 97-101.
41

 Murray-Rust P, Rzepa HS: Chemical Markup, XML and the Worldwide Web. 1. Basic Principles. J. Chem. Inf.

Comput. Sci. 1999, 39 928-942.
42

 "Annotation of Chemical Named Entities", BioNLP 2007
43

 "Cascaded Classifiers for Confidence-Based Chemical Named Entity Recognition", BioNLP 2008 (This one is

already cited above)
44

 Taverna [http://www.taverna.org.uk/] Accessed 2011-06-15
45

 Bioclipse [http://www.bioclipse.net/] Accessed 2011-06-15
46

 OSCAR4 Launch. [http://sms.cam.ac.uk/collection/1130934] Accessed 2011-06-15

Figure 2

Figure 3

Figure 4

Figure 6

Figure 7

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

