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Abstract 

 

The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of 

named entities and data in chemistry publications, has been developed since 2002. Recent work has 

resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This 

library features a clean API that permits client programmers to easily incorporate it into external 

applications. OSCAR4 offers a foundation upon which chemistry specific text-mining tools can be 

built, and its development and usage are discussed. 

Introduction 

 

A large amount of factual data in chemistry and neighbouring disciplines is published in the form of 

text and components within text rather than as structured semantic information. If we can discover 

and extract this information, the textual literature becomes an enormous additional chemical 

resource. As an example, we estimate that about 10 million chemical syntheses per year are 

published in the public literature (articles, patents, theses) and the conventional method is a natural 

language narrative (most commonly in English). It is extremely tedious and error-prone to extract 

information from this by hand, and for this reason many chemical abstracting services limit their 

scope and also frequently lag behind the current publication list. 

The discipline of text-mining has now reached a state where much natural language in textual form 

can be analysed rapidly and with high precision and recall. Methodologies applied to the problem of 

chemical named entity recognition include dictionary- and rule-based methods, as well as machine 

learning and hybrid approaches
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. We have been working in this area for 

approximately 10 years and the OSCAR4 software, together with OPSIN (the Open Parser for 

Systematic IUPAC Nomenclature)
12
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 and ChemicalTagger
14

 
15

, represent the public state-of-the-art 

in chemical text analysis and extraction.  

The OSCAR (Open-Source Chemistry Analysis Routines) software has been developed over a period 

of years and a number of projects. Between 2002 and 2004, sponsors including the Royal Society of 

Chemistry (RSC), Nature and the International Union of Crystallography (IUCr) supported a number 

of summer studentships. These projects were focused on the development of software with limited 



2 

 

capacity for the automated interpretation of chemical documents, and resulted in two main 

software components – the Experimental Data Checker
16

 
17

 and OSCAR2. 

The Experimental Data Checker was conceived as a tool to be used as part of the RSC’s publication 

process. The tool is capable of recognising sections of reported experimental data within plain text 

input using regular expressions to match the highly-stylised and journal-mandated formats in which 

they are reported in the literature (as shown in Figure 1). Once this information has been identified 

and interpreted, the tool performs elementary checks on the characterisation data to ensure that it 

does not conflict with the reported structure. 

 

FIGURE 1: A screenshot of the Experimental Data Checker (OSCAR-Data) showing identification and 

markup of plain text experimental data. The initial application of OSCAR was to parse the highly 

stylised data used to report spectra and other analytical proofs of synthesis. This functionality is very 

widely-used and has been re-integrated into OSCAR4 rather than being a separate application.  

The Experimental Data Checker application relied upon a core library of analysis routines, and it was 

this library that was the first to bear the name OSCAR. Further development of this library in the 

summer of 2004 resulted in OSCAR2, which used XML formatting to represent the document 

undergoing processing, and applied XML annotations to the document to indicate recognised 

sections of text. OSCAR2 implemented a naïve Bayesian system based on n-grams and a simple 

grammar in order to identify chemical names within a text. These improvements were later 

extended as part of the OSCAR3 project. 

In 2005, the EPSRC awarded a grant (“Sciborg”) to develop natural language processing (NLP) tools 

for chemistry and science. The chemistry component of this project focused on the development of 
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the OSCAR2 methodology and resulted in the creation of OSCAR3
18

. OSCAR3 focuses on the 

recognition of and, where appropriate, the resolution of connection tables for chemical named 

entities. OSCAR3 employs a naïve Bayesian model to identify “chemical” tokens in text and offers a 

choice of two methods for the identification of multi-token named entities. The first of these, the 

PatternRecogniser, uses predetermined regular-expression style heuristics while the second, the 

MEMMRecogniser19, employs machine learning in the form of a Maximum Entropy Markov Model 

(MEMM). OSCAR3 uses these methods to identify four classes of named entity (Chemical, Reaction, 

Chemical Adjective and Enzyme) as well as dictionary lookup to identify a pre-determined set of 

ontology terms and a discrete finite automaton based method to identify chemical prefixes. 

 

 

FIGURE 2: OSCAR3 markup displaying recognised chemical entities (CM). A mouse-over action on an 

annotated term displays the associated metadata, in this case for 2,5-dichlorobenzylamine, and 

displays an image representing the structure generated by the Chemistry Development Kit (CDK)
20
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 (right). OSCAR3 concentrated on the identification and interpretation of chemical entities in text 

(named entity recognition, NER). The primary purpose was to identify and extract the following 

types of object: chemicals (CM), ontology terms (ONT; looked-up from ChEBI
23

 
24

 
25

, FIX
26

 and REX
27

 

etc.), reactions (RN; as identified by linguistic constructs, e.g. “methylated”), chemical adjectives (CJ) 

mainly formed from chemical nouns), enzymes (ASE) and chemical prefixes (CPR), highlighted in 

different colours. These concepts are maintained in OSCAR4. 

 

In order to convert chemical names to connection tables (Figure 2), OSCAR3 uses dictionary-based 

methods and, where this is not successful, OPSIN. Early versions of OSCAR directly included the 

OPSIN code, but this was later re-factored into a separate library.  



4 

 

By 2008, OSCAR was in common use in many laboratories for the identification and extraction of 

chemical terms (chemical named entities) in a variety of texts. Our original metrics
18

 showed that the 

precision and recall were domain-dependent and varied considerably with the purpose and style of 

chemical texts. Feedback from users was informal but it was clear that they were modifying OSCAR 

for their particular purposes both in vocabulary and recognition methods. As a result we embarked 

on a major re-factoring program in order to robustify the OSCAR software and simplify the API, and 

this paper describes the results. 

It is very difficult to get funding for software engineering projects, especially when apparently little 

changes on the surface. We are grateful to the following bodies for their funding and interest: 

1. OMII-UK. This organisation existed to support and robustify the products of the UK eScience 

program. Many of these were middleware products but OSCAR was seen by the UK eScience 

community as an example of a widely-deployable component that could be used in a 

modern manner in many branches of science. The OMII-UK project carried out an initial 

scoping and re-factoring of the OSCAR3 source.  

2. The OSCAR-ChEBI project. This was a competitive funding resource for eScience products 

and we worked with the European Bioinformatics Institute (EBI) to develop OSCAR as an 

appropriate tool for the extraction and verification of chemistry in the ChEBI ontology.  

3. CheTA. This was a JISC-funded project led by our group in conjunction with the National 

Centre for Text Mining (NaCTeM) to evaluate the relative merits of human annotation and 

machine annotation of documents. Part of this project involved OSCAR running under the 

UIMA
28

/U-Compare
29

 
30

 framework and required a re-factoring
31

.  

As a result of these projects, which probably amounted to two person-years of effort in the re-

factoring, OSCAR4 has now been released in a usable form. 

 

Limitation of OSCAR3 and design goals for OSCAR4 

 

OSCAR3 is a powerful tool for chemical natural language processing, but early attempts to develop 

software using it as a library rather than as a standalone application – the ChemicalTagger
14

 and 

PatentEye
32

 
33

 projects – exposed weaknesses in the code in this regard. The architecture of the 

software was built around the principle that the software would be running as a server on the user’s 

local machine. In order to function correctly, it required a properly configured workspace. Many key 

components were implemented as mutable singletons, compromising the thread-safety of the 

application and meaning that safe reconfiguration of a workflow required a complete shutdown and 

restart of the Java virtual machine (JVM). Furthermore, the implementations of the various OSCAR 

components required that a document be formatted in SciXML as it underwent processing. 

Consequently, the use of OSCAR3 by a client programmer to build secondary applications was 

unintuitive, and the distribution and successful use of such applications was found, as part of the 

Green Chain Reaction, to require an unacceptably high level of support. 
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Early attempts to resolve these problems
31

 involved the extraction of the OSCAR3 tokeniser, 

MEMMRecogniser and PatternRecogniser components from the main OSCAR3 codebase and 

their conversion into modules suitable for use in the popular text-mining framework U-Compare. 

This work allowed the use of OSCAR as part of a drag-and-drop workflow, but not its direct 

integration into another application. Consequently, a comprehensive overhaul of the OSCAR3 code 

began in autumn 2010 with the aim of producing a well-engineered, simple, modularised version of 

OSCAR that retained the core OSCAR3 functionality and could be easily integrated into external 

applications. This most recent development has been designated OSCAR4 and is discussed in the 

remainder of this paper. 

 

The development of OSCAR4 sought to address a number of specific issues. These are summarised 

below and subsequently discussed in greater detail. 

 

1. To produce an OSCAR library with a simple API, suitable for use by client programmers who 

may not be familiar with the internal workings of OSCAR. Consequently, while it is desirable 

for users to be able to customise the behaviour of OSCAR in a number of ways, initialisation 

of OSCAR components must by default produce configurations that “just work” – the 

‘convention over configuration’ paradigm. 

2. In order to run, OSCAR3 required the existence of a properly configured workspace – a 

directory on the executing machine that contains the OSCAR chemical name dictionary, the 

InChI
34

 
35

 binary file and a properties file along with subdirectories intended to contain 

further resource files. When OSCAR3 is first run this workspace is automatically created, and 

when OSCAR3 is used as a library the workspace is automatically created in the working 

directory. This behaviour was deemed undesirable, unnecessary and found to be a cause of 

difficulties in producing distributable OSCAR-dependent software. Consequently, the 

removal of the requirement for a workspace was considered a high priority of the OSCAR4 

project. 

3. Much of the OSCAR3 code required that a document undergoing processing is formatted in 

SciXML. Though converters are provided to transform HTML into plain text and plain text 

into SciXML, the requirement to perform this transformation is frustrating to the client 

programmer in that it prevents him from working directly with plain text or with a custom 

XML format which may very well be the native format of a document that he wishes to 

process. Consequently, the removal of this SciXML dependence was considered important. 

4. In addition to its core functionality – the recognition and interpretation of chemical named 

entities – OSCAR3 included a wide range of secondary functions including the OSCAR3 

server. This server runs on the local machine and provides an interactive demonstration of 

the capacity of OSCAR3 for text processing as well as a number of other utilities including 

the capacity to manually annotate a text from within a browser window, a servlet for the 

interconversion and depiction of chemical names and formats and an experimental Hearst 

pattern
36

 based system for the extraction of chemical relations from text. The OSCAR3 
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codebase had the resemblance of a ‘treasure trove’ which made code maintenance a more 

complex task than necessary. The separation of a library containing the core OSCAR 

functionality from these secondary functions was therefore considered desirable. 

5. Much of the architecture of OSCAR3 lacked clear definition. Excessive use is made of 

mutable singletons which, while aiding performance by eliminating the need for re-

initialisation of components, allows for complex interactions in the code, making it difficult 

to understand, debug and re-factor. This problem was compounded by the manner in which 

program logic is partially controlled by a properties object backed by a serialised file. Some 

of the property values can be modified at runtime while others, once accessed by the 

objects that rely upon them, are duplicated in memory and cannot be further changed. 

Attempts to resolve these complex interactions can have unintended consequences since 

the unit test coverage in OSCAR3 is sparse. Consequently, the improvement of the 

architecture of the OSCAR software was considered a vital part of the OSCAR4 project. 

6. It has been known for some time that the speed of OSCAR3 operation could be improved by 

introducing certain optimisations into the code. Using the YourKit Java profiler
37

, a number 

of performance blackspots were identified and subsequently eliminated. This work was 

started after the final version of OSCAR3 (OSCAR3 alpha 5
38

) and continued as part of the 

OSCAR4 project. 

 

Library as a design 

 

OSCAR4 has been deliberately written as a Java library, rather than an application or service. 

Consequently, the decoupling of the core OSCAR functionality from applications that use this 

functionality has been achieved. The usage of the library has been simplified as much as possible 

with the introduction of the Oscar API object – a class intended to wrap the functionality of the 

wider library and provide default implementations of the various components. As a result, OSCAR4 

can be called from external software, as shown in the examples in Figure 3. 

 

Figure 3: Java code using the OSCAR4 API to a) identify chemical named entities (CNEs) in a block of 

text and b) identify CNEs and resolve their connection tables where possible. 
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Figure 4: Graphic representing the structure of the OSCAR4 API output object. Named entities 

reference their position in the input text, the confidence in their identification and resolved 

structures in various formats (SMILES
39

 
40

, InChI, CML
41

 etc.) 

In the first of the examples in Figure 3, OSCAR4 is used to detect named entities in an input string, 

returning a List of NamedEntity objects. In the second, it is used to both detect named entities 

and, where these named entities correspond to chemical names, to resolve these names to chemical 

structures – returning a List of ResolvedNamedEntity objects. The ResolvedNamedEntity class 

links a NamedEntity to a list of chemical structures in a number of formats – SMILES, InChI and 

CML – while the NamedEntity class stores such information as the surface (raw text) and type (e.g. 

compound or reaction) of the named entity and the indices that define its position within the source 

text. The outputs of these examples are illustrated in Figure 4. 

The examples above show how OSCAR4 can be used without the need for any understanding of the 

underlying technology or implementations. An overview of the workflow managed by the Oscar API 

object is shown in Figure 5. 
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Figure 5: Workflow of the OSCAR4 API object 

 

The input is first passed to the Tokeniser to produce a list of TokenSequence objects, each of 

which roughly corresponds to a paragraph of text and contains a list of Token objects. The Token 

represents a string of characters that mostly correspond to words but also to punctuation or other 

discrete units of text e.g. “C2H6O” or “42”. In NLP tools, tokenisation commonly occurs at whitespace 

or punctuation boundaries, however due to the form of some of the domain-specific entities found 

in chemical texts such as “C-H” a custom Tokeniser is used. The TokenSequences are then 

passed to a ChemicalEntityRecogniser – an interface for a class capable of identifying a list of 

NamedEntities, which are subsequently passed to the ChemNameDictRegistry to create a list 

of ResolvedNamedEntities if required. 

This workflow can be customised by the user, who can use the set() methods of the Oscar class to 

replace the components of the default configuration with suitable customised or custom-built 

alternatives. Specifically, the user can select which implementation of 

ChemicalEntityRecogniser to use or can specify which set of ontology terms are to be 

recognised and which model the default ChemicalEntityRecogniser should use, and which 

dictionary registry, i.e. set of chemical name dictionaries, to use for name to structure resolution. In 

addition to this, the public APIs of the individual components can be used to assume a greater 

degree of control over the execution of the workflow. 
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OSCAR4 provides three implementations of the ChemicalEntityRecogniser. The first, the 

RegexRecogniser, finds terms that match a given regular expression and is intended to find serial 

numbers corresponding to compounds e.g. “NSC-2648”. The others, the PatternRecogniser and 

the MEMMRecogniser, use more complex strategies to identify chemical named entities and feature 

subcomponents that can be customised by the user to produce the desired behaviour. 

 

Figure 6: PatternRecogniser architecture 

 

The architecture of the PatternRecogniser is shown in Figure 6. A list of “chemical” words is 

drawn from an internal dictionary composed mostly of words derived from the ChEBI database and 

from a corpus of manually-annotated documents, while a list of “non-chemical” words is determined 

by removing those words that occur in the chemical word list from a standard English dictionary. 

These lists are used to build an n-gram model which is used by a naïve Bayesian classifier to 

determine whether novel tokens are “chemical” or “non-chemical”. Multi-token named entities, e.g. 

“ethyl acetate”, that occur within the input text are then identified by regex-style matching of 

chemical tokens to a set of pre-specified pattern definitions such as “*yl *ate”. 
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Figure 7: MEMMRecogniser architecture 

 

The architecture of the MEMMRecogniser is shown in Figure 7, in which chemical named entities 

are identified using a Maximum Entropy Markov Model (MEMM). The feature set that is generated 

for each token includes features that describe the token in question, such as the n-grams that 

describe it and the probability that it is chemical as predicted by the n-gram model as previously, as 

well as contextual features that describe its neighbouring tokens. Using these features, the MEMM 

model assigns a chemical token as being either the first token in a named entity or a subsequent 

token in a named entity. Given these assignments, multi-token named entities can be constructed. 

Novel MEMM models can be built from a corpus of hand-annotated documents by the user, and 

OSCAR4 is supplied with two pre-generated models. One of these models was built from a set of 

papers from RSC journals
42

, while the other was built from a set of abstracts retrieved from 

PubMed
43

. 

 

Architecture and tests 

 

The OSCAR4 library has been separated into a number of modules with each performing a defined 

role in the operation of the OSCAR code, such as the tokenisation of text or the provision of chemical 
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name dictionaries. This allows client programmers to use as much or as little of OSCAR in their 

applications as required, without the need to unnecessarily pull in a large, comprehensive, single 

JAR. The process of creating the sub-projects had the additional advantage of highlighting the ways 

in which the separate components interact. During this process, the readability of the OSCAR code 

was improved by imposing a number of the idioms of ‘clean code’, and the reliability of the code was 

improved by the creation of appropriate unit and regression tests. At the time of writing, OSCAR4 

has nearly 500 tests. As a result, the OSCAR4 code is far more robust than OSCAR3, so a developer 

can work both with and on the core OSCAR code with a far greater degree of confidence. 

The mutable singletons that were commonplace in OSCAR3 have been largely removed. Instead, 

when setting up custom workflows, a user has the choice of either calling the 

getDefaultInstance() method or the default constructor as appropriate – each of which 

returns a preconfigured instance of the class – or using the custom constructor which uses 

dependency injection to supply the OSCAR components upon which the class depends. For example, 

the OntologyTerms class represents a set of ontology terms and their corresponding ontology IDs. 

The following two methods of obtaining an OntologyTerms object are available: 

 

OntologyTerms.getDefaultInstance(); 

new OntologyTerms(ListMultimap <String, String> terms); 

 

The first method returns the default OSCAR4 OntologyTerms object, which contains an 

amalgamation of the terms from the ChEBI, FIX and REX ontologies while the second supplies a 

multimap of ontology terms to IDs. The use of this design pattern throughout the codebase permits, 

but by no means requires, a user to assume a high degree of control over the functioning of OSCAR. 

The use of the properties file and object to control elements of the program execution has been 

removed. Instead, the required information is either specified as part of a constructor’s signature or 

using a set() method on the object in question. This improves the thread-safety of OSCAR, 

particularly in a multiuser environment, and contributes to its usability since a user can now trivially 

see what features may be customised from the outline of the class as opposed to needing to know 

which and how properties are used by which components. 

 

Input and Output Formats 

 

As previously discussed, OSCAR3 required that input documents be converted into SciXML before 

processing can occur, using the document formatting as a base against which annotations for 

identified named entities can be referenced – whether as inline or standoff annotations. OSCAR4 

removes this requirement by operating on plain text and producing NamedEntity and 

DataAnnotation objects to represent recognised sections of text and does not currently produce 

serialised output, though some support for the serialisation of annotations into XML documents is 
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planned for future releases. It should be realised, however, that there is no single, fool-proof 

approach to this problem. Different XML schema may use different methods to indicate where in the 

document section breaks and even text content occur, while it cannot be guaranteed that well-

formed inline annotations can be generated for a given input document. Client programmers are 

therefore recommended to consume NamedEntity objects directly rather than rely upon serialised 

output, though it is realised that users are likely to want to be able to create serialised, marked-up 

copies of their documents as well. 

 

Non-core functionality 

 

As much non-critical code as possible has been removed from the OSCAR4 codebase to reflect the 

philosophy that OSCAR4 should act as a library. While some minor supporting code remains, such as 

that required for generation of key resource files, the majority has been removed entirely as it is 

envisaged that much of the former functionality could be better implemented by developers with 

specific use cases. 

A number of useful non-core functions are provided in dependent libraries developed at the 

Unilever Centre in Cambridge. Specifically, subsidiary modules exist to provide the capacity to run 

OSCAR4 from the command-line, as part of UIMA or Taverna
44

 workflows and from the Bioclipse
45

 

scripting interface, as shown in Figure 8. 
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Figure 8: OSCAR4 run within Bioclipse’s scripting interface (centre pane) to identify named entities in 

a block of text and save the connection tables to file (extractedMols.sdf) for viewing (right 

pane).  

Performance 

 

A number of modifications were introduced to the OSCAR code with the aim of reducing the time 

required to process documents. Performance hotspots were identified using the YourKit Java profiler 

and where possible eliminated. Some such improvements focused on the time taken to initialise the 

various OSCAR components, such as supplying a pre-calculated, serialised copy of the n-gram models 

used for named entity recognition rather than regenerating them each time OSCAR is loaded. Others 

improved the speed at which OSCAR can process a document by optimising extremely tight loops in 

the code, such as eliminating unnecessary string declaration while calculating n-gram features and 

avoiding recompilation of regular expressions. Further improvements were made ad hoc, as the 

OSCAR4 developers encountered obvious bottlenecks while working on the code. 

In order to quantify the improvement in speed of operation, the time taken by both OSCAR4 version 

4.0.1 and OSCAR3 alpha 5 to perform two tasks was measured. The first task measured the time 

taken to initialise the software to the point that it was ready to begin the task of finding named 

entities in text; the second task aimed to measure the speed at which the software could process 

bulk text and consisted of processing the full text of the 68 patents published by the European 

Patent Office in the week of 2009-05-06 – a total of 11468 paragraphs of text. All the tasks were run 

on a desktop computer equipped with an Intel Pentium 4 (3.00GHz) CPU and 1GB of RAM, 

purchased c. 2005, running openSUSE 11.1 and using the Java 1.6.0_22 32-bit virtual machine with a 

maximum heap size of 512MB. The results are summarised in Table 1 and Table 2. 

 

Software 

version 

OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5 

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser 

Mean time 

(s) 

14.4 17.3 19.7 24.6 

Standard 

deviation 

(ms) 

40.8 40.0 72.6 88.6 

Table 1: Results of the initialisation task 

 

Software 

version 

OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5 

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser 

Mean time 

(s) 

446 541 150 276 
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Standard 

deviation 

(s) 

1.85 1.14 0.556 1.53 

Table 2: Results of the bulk processing task 

 

From these data, it can be seen that OSCAR4 performs significantly faster than OSCAR3. Initialisation 

times for the MEMMRecogniser and PatternRecogniser have been reduced by 17% and 20% 

respectively, while bulk processing times have been reduced by 18% and 46% respectively. The 

OSCAR4 MEMMRecogniser and PatternRecogniser processed approximately 26 and 76 

paragraphs per second respectively, demonstrating that bulk processing of text is achievable on an 

acceptable timescale on desktop computers. 

Deployment 

 

OSCAR4 has generated significant interest in the community, and has been the subject of two 

meetings at the Unilever Centre for Molecular Science Informatics in Cambridge. The talks from the 

second of these are available to view online
46

. To our knowledge, the software has been adopted by 

the National Centre for Text Mining (NaCTeM), the European Bioinformatics Institute (EBI) and the 

European Patent Office (EPO) as well as various pharmaceutical companies.  

 

We are aware of successful and straightforward integrations into the Bioclipse and Taverna 

frameworks, and believe that this is similarly straightforward for other Java environments. We were 

also pleased to see that at the recent MIOSS meeting at the EBI, OSCAR and OPSIN had been 

integrated into the .NET environment. For example, OPSIN was demonstrated as running within the 

JVM in Microsoft Excel, which is acceptable to commercial organisations as the JVM is of proven 

security.  

Conclusions 

 

This is a useful opportunity to reflect on the high cost of producing robust, re-usable software. 

OSCAR3, and OPSIN, were produced as a continuing activity by a mixture of summer students, PhDs 

and PDRAs and, until ca. 2009, evolved rather than having a top-down software design. When the 

project became valuable to the world, it was a clear indication that re-factoring was going to be 

essential, and it is important to realise the necessary but high cost of doing this. In times of lean 

funding, it will become increasingly difficult to obtain this type of support, and therefore it is always 

tempting to transfer academic code to commercial entities which can raise revenue.  

The downside of this is that we know of very few commercial codes, and certainly none in chemical 

text analysis, that provide public metrics let alone expose the architecture on which the program is 

based. Text-mining as an academic subject requires metrics and increasingly requires Openness of 
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the components of the system, as we have done in OSCAR and OPSIN. We are investigating 

continuing business models where we can continue to re-factor and improve the product while not 

closing the code and therefore reducing scientific credibility and innovation.  

 

Further Reading 

 

The OSCAR4 libraries are available from https://maven.ch.cam.ac.uk 

The OSCAR4 Javadoc is available at http://apidoc.ch.cam.ac.uk/oscar4-4.0.1 

The source code, mailing list, tutorials and support are available at 

https://bitbucket.org/wwmm/oscar4/wiki/Home 

The source code used to measure OSCAR performance is available at 

https://bitbucket.org/dmj30/oscar-performance 
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