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Summary

Internal gravity waves play a fundamental role in the dynamics of stably stratified regions

of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from

generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave

breaking and the mixing subsequently produced. Identifying regions where internal gravity waves

contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate

and weather predictions. Field studies report significantly enhanced measurements of turbulence

near ‘rough’ ocean topography compared with those recorded in the ocean interior or near more

gradually varying topography (e.g. Toole et al. 1997, J. Geophys. Res. 102). Such observations

suggest that interaction of waves with rough topography may act to skew wave energy spectra to

high wavenumbers and hence promote wave breaking and fluid mixing. This thesis examines the

high wavenumber scatter and spatial partitioning of wave energy at ‘rough’ topography containing

features that are of similar scales to those characterising incident waves.

The research presented here includes laboratory experiments using synthetic schlieren and PIV

to visualise two-dimensional wavefields produced by small amplitude oscillations of cylinders within

linear salt-water stratifications. Interactions of wavefields with planar slopes and smoothly varying

sinusoidal topography are compared with those with square-wave, sawtooth and pseudo knife-edge

profiles, which have discontinuous slopes. Far-field structures of scattered wavefields are compared

with linear analytical models.

Scatter to high wavenumbers is found to be controlled predominantly by the relative slopes and

characterising length scales of the incident wavefield and topography, as well as the shape and aspect

ratio of the topographic profile. Wave energy becomes highly focused and the spectra skewed to

higher wavenumbers by ‘critical’ regions, where the topographic slope is comparable with the slope

of the incident wave energy vector, and at sharp corners, where topographic slope is not defined.

Contrary to linear geometric ray tracing predictions (Longuet-Higgins 1969, J. Fluid Mech. 37),

a significant back-scattered field can be achieved in near-critical conditions as well as a forward

scattered wavefield in supercritical conditions, where the slope of the boundary is steeper than

that of the incident wave. Results suggest that interaction with rough benthic topography could

efficiently convert wave energy to higher wavenumbers and promote fluid mixing in such ocean

regions.
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Chapter 1

Introduction

1.1 Overview

A fluid in which density varies in the direction parallel to gravity is said to be vertically stratified.

Density inhomogeneities that promote stratification occur through spatial variations in temperature

and composition of a fluid and hence regions of transient or sustained stratification are characteristic

of many environmental and industrial flows. In particular, stratifications are sustained throughout

constituent layers of both the atmosphere and ocean. Such layers have a fundamental influence on

weather systems and climate. It is therefore critical that the features and dynamics of stratifications

are understood if the evolution of global conditions on both daily and decadal timescales is to be

accurately predicted.

This thesis examines oscillatory disturbances known as internal gravity waves that can propa-

gate through stratified fluids. The study focuses specifically on the interaction of internal gravity

waves with topography in order to determine those interactions that promote mixing of a strati-

fied fluid. The characterisation of stratifications and conditions under which internal gravity waves

may propagate are described in section 1.2. Motivations for this study are discussed in section 1.3.

Overviews of the research methods employed and structure of this thesis are given in section 1.4.

1.2 Characterisation of stratifications

The form of the vertical density profile of a stratification determines the types of fluid motion

it supports. A stratification is defined as discrete in regions of a fluid consisting of two or more

horizontal layers of finite depth within which the density is homogeneous. Regions in which the

vertical density profile varies smoothly are described as having a continuous stratification.

1.2.1 Stratification stability

In the absence of horizontal density gradients, an initially static stratification remains in equilibrium

regardless of its discrete or continuous nature. A small perturbation introducing horizontal density
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ρ1

ρ2 ρ1 > ρ2 ρ1 < ρ2

(a) (b) (c)

Figure 1.1: Schematic describing forces acting on a displaced fluid parcel within discrete two-layer
stratifications. The density of the upper and lower layers are denoted by ρ1 and ρ2 respectively.
Arrows in (b) and (c) indicate directions of buoyancy force.

gradients induces fluid motion with a character that is controlled by both the vertical density profile

of the stratification as well as the nature of the initial perturbation. In particular, the direction

of the vertical density gradient has a dominant influence on the dynamic stability of a perturbed

stratification. Such stability can be understood in terms of simple physical arguments. In systems

where there are spatial variations in density, gravity induces buoyancy forces directing ‘heavy’

fluid downwards and comparatively light fluid upwards. Depending on the gradient of the initial

stratification, these buoyancy forces either act to enhance an initially small perturbation or they

can act, to some degree, to counteract it. Figure 1.1 (a) depicts a discrete two layer stratification

where the fluid densities of the upper and lower layers are denoted ρ1 and ρ2 respectively. Fluid

motion following vertical displacement of a fluid parcel from the lower layer into the upper layer is

qualitatively different for configurations having a positive, ρ1 > ρ2, or negative, ρ1 < ρ2, vertical

density gradient (see figure 1.1 (b) and (c) respectively).

A fluid parcel moved upward into fluid of greater density experiences a buoyancy force acting

in the same direction as the initial displacement (see figure 1.1 (b) where ρ1 > ρ2). Without a

restoring force, the parcel accelerates away from it’s equilibrium level and the perturbation of the

stratification is therefore enhanced. More generally, a perturbation of a density configuration having

a positive vertical density gradient triggers an instability between the regions of different density. In

the absence of a significant mean shear between the two layers, a Rayleigh-Taylor type instability

is triggered (see for example Chandrasekhar 1961; Drazin & Reid 2004). Horizontal gradients

produced by the perturbation induce baroclinic generation of vorticity. In turn, the torque imposed

on the fluid leads to small scale convective overturning with the sinking of heavy fluid in narrow

fingers and the reciprocal rise of light fluid in bubble-like structures. These localised overturning

events merge and grow into larger scale convective motions that turbulently mix the stratification,

eventually resulting in a homogeneous fluid with a lower potential energy. A stratification having a

positive vertical density gradient is therefore described as unstable since there are no forces produced

in response to perturbations that are capable of restoring the original density profile.
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Alternatively, a stratification can have a negative density gradient as depicted for the two-layer

discrete system in figure 1.1 (c) where ρ1 < ρ2. A fluid parcel moved upward from the lower layer

into the less dense fluid above experiences a buoyancy force acting in the opposite direction to that

of the displacement. As a result, such a fluid parcel is directed back towards the layer in which it

is neutrally buoyant. A stratification with a negative density gradient is therefore able to recover

from small perturbations through the generation of counteracting buoyancy forces. Hence this

density configuration is described as stable. The existance of a restoring force implies the ability of

stable stratifications to support oscillations and therefore waves, introducing a mechanism for the

transport of information and energy throughout the fluid.

1.2.2 Internal gravity waves within continuous stratifications

The induction of oscillatory motion in a stable stratification may be more clearly illustrated by

considering a system with a larger number of fluid layers. In the limit where the discrete layers

become infinitesimally thin, the stratification is representative of a continuous density profile. In

this generalisation each layer may be identified as a surface of constant density, or isopycnal. A

perturbation of the density profile through displacement of fluid parcels therefore corresponds to a

deformation of isopycnals. A fluid parcel displaced upward within a continuous stable stratification

in a similar manner to that shown in figure 1.1 is returned to the vertical level at which it is

neutrally buoyant by buoyancy forces induced by its initial displacement. This coincides with the

return of density surfaces to their horizontal form. However, in an inviscid fluid, the potential

energy imparted on the parcel by the original displacement is entirely converted to kinetic energy

as the parcel reaches its equilibrium level. Hence the parcel’s inertia carries it past this level and the

parcel overshoots into the heavier fluid below, also deforming the isopycnals in this direction. The

downward displacement of the fluid parcel into the denser fluid subsequently induces an upwards

directed buoyancy force. In response, the parcel decelerates and at some depth in the stratification

below its neutral buoyancy level changes its direction of motion and begins to rise. With no damping

force, the competition between inertia and buoyancy continues and the fluid parcel oscillates about

the region at which it is neutral buoyant, with the simultaneous oscillation of isopycnals about their

horizontal form.

The magnitude of the buoyancy force induced on the fluid parcel as it moves vertically through

the stratification is determined by the density difference between the parcel and the surrounding

fluid. The vertical distance over which the buoyancy force acts to counteract the kinetic energy of

the parcel therefore specifies the depth to which it sinks below or rises above the neutral buoyancy

level respectively and hence also the duration of an ensuing oscillation. In this way buoyancy forces

suppress vertical motion in a statically stable stratification and the extent to which they do this

is controlled by the vertical density gradient. Formulating this mathematically, the buoyancy force

per unit volume, FB, experienced by a fluid parcel of density ρ = ρ̂ that is displaced a small distance

3



1. Introduction 1.2. Characterisation of stratifications

vertically within a linear stable stratification with background density field ρ0 is

FB = [ρ̂− ρ0(ẑ + δ)]g, (1.1)

where g = (0,−ĝ) is the gravitational acceleration and δ = δ(t) denotes the vertical displacement

of the fluid parcel at time t from its vertical equilibrium position located at z = ẑ. Expanding as a

Taylor series and neglecting second and higher order terms in δ, yields the second order differential

equation for the vertical displacement

ρ̂
∂2δ

∂t2
=

(

ĝ
∂ρ0

∂z

)

δ, (1.2)

which has harmonic solutions for ∂ρ0/∂z < 0. An otherwise unconstrained frequency of oscillation,

the Brunt Väisälä , or buoyancy, frequency N , can therefore be defined for a particular stratification

as

N =

√

− ĝ
ρ̂

∂ρ0

∂z
. (1.3)

The Brunt Väisälä frequency corresponds to the temporal frequency of oscillation of a fluid parcel,

or an isopycnal, trying to recover a position of neutral buoyancy after being disturbed vertically.

Parcels of fluid within a stratification subject to a sustained disturbance with a forcing frequency

σ that is only a fraction of N are acted on by only a fraction of the restoring buoyancy force

experienced by a fluid parcel displaced vertically by a transient disturbance. The reduction in

buoyancy force is achieved by the fluid moving along lines at a specific angle, θ, to the vertical

corresponding to directions along which N cos θ is equal to the forcing frequency σ. Fluid parcels

disturbed in this manner are therefore constrained to oscillate along one of these directions as they

endeavour to achieve a level of neutral buoyancy. Within this constraint, the spatial distribution

of the fluid motion is further determined by the boundary conditions associated with the forcing

disturbance. These oscillations are known as internal gravity waves of frequency σ. Internal gravity

wave energy travels away from sites of disturbances and parallel to the fluid particle motion at the

angle θ designated by the relationship between σ and N . Physical descriptions of internal wave

generation may also be found in Phillips (1966), Roberts (1975), Lighthill (1978), Turner (1979),

Pedlosky (2003). This thesis is concerned with internal gravity waves propagating within continuous

stable stratifications. A short overview of conditions under which a stable stratification can develop

instabilities and support mixing are given below.

1.2.3 Instabilities of a stable stratification

The ability of buoyancy forces to maintain the vertical density profile of a stratification that is

subject to perturbations is dependent on the magnitude and character of the imposed disturbance.

Although a stratification with a negative vertical density gradient is convectively stable to small

perturbations of its equilibrium state and will not develop Rayleigh-Taylor instabilities directly,
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conditions exist under which such stratifications can be destabilised, resulting in overturning of

isopycnals and mixing within the fluid. Instabilities of stable stratifications arising as a result of

shear or wave breaking are introduced briefly here.

Shear instabilities

Instabilities and so turbulence and mixing can arise when stratifications are subject to shear -

i.e. there is some region in the fluid where the vertical gradient, du/dz, of the horizontal velocity

field, u, is nonzero. Such shear instabilities occur if the influence of the shear becomes significantly

larger than that of the buoyancy. The Richardson number, Ri, compares the relative influence of

these two effects according to

Ri =

(

N

du/dz

)2

. (1.4)

The effects of shear are only sufficiently dominant over those of buoyancy to allow the growth of a

small perturbation of the stratification into an instability for values of Ri < 1/4 (Howard 1961; Miles

1961). The exact nature of the instability generated under these conditions depends on the vertical

profiles of both the density and the horizontal velocity fields. For example, if the variations of the

velocity and density fields are characterised by similar vertical distances then, for sufficiently small

Richardson numbers, shear instabilities are commonly Kelvin-Helmholtz in form (Helmholtz 1868;

Kelvin 1871), whilst at larger Richardson numbers Holmboe instabilities may develop (Holmboe

1962; Browand & Wang 1972). See Chandrasekhar (1961) and Drazin & Reid (2004) for more

detailed descriptions of these instabilities and the associated mixing.

Wave breaking

Instabilities can also be generated through internal wave processes, with the nature of instabilities

depending on the wave properties as well as the background flow and stratification. The vertical

amplitude, Am, of a wave is defined here as the vertical displacement of the associated isopycnals

from their vertical equilibrium positions. It is illustrative to define a nondimensional parameter, Ã,

comparing the wave amplitude with horizontal length scales of the wave according to

Ã = kAm, (1.5)

where k is the horizontal wavenumber of the wave. Such a parameter can be used as an indicator

of the nonlinear character of the fluid response, e.g. the proportion of wave energy fed into higher

frequency harmonics of the primary wave motion.

Internal wave breaking events can occur whenever the waves become steep enough to overturn

isopycnals. A second parameter, a measure of the steepness of a wave, is given by

St = mAm (1.6)
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where m is the vertical amplitude of the wave (e.g. Thorpe 1994). In regions where St > 1,

i.e. fluid particles are displaced vertically a greater distance than the vertical wavelength so that

the vertical density gradient becomes locally positive with heavy fluid forced to overlie light fluid,

Rayleigh-Taylor instabilities are induced and the ensuing fluid motion generates mixed fluid. Fac-

tors promoting wave steepness are therefore factors promoting wave breaking and so mixing. In

particular, breaking events are only associated with those interactions resulting in high wavenumber

waves, which correspond to small length scales (Garrett & Gilbert 1988). Detailed reviews of wave

instabilities and breaking can be found in Staquet & Sommeria (2002), Miropol’sky (2001) and

Fritts & Alexander (2003).

Mixing events can themselves generate internal gravity waves that have spatial and temporal

forms determined by the instability. Regions of mixed fluid formed within an otherwise stably

stratified fluid are subject to buoyancy forces imposed by the surrounding fluid. Such fluid patches

are therefore suppressed vertically and slowly spread horizontally to form thin homogeneous density

layers at vertical levels where they are neutrally buoyant within the stratification. The mixing

induced by mechanisms such as shear instabilities and wave breaking thereby introduces relatively

fine scale structure to stratifications. The sharp gradients in the vertical density profiles caused by

intruding layers are smoothed on longer time scales by diffusion mechanisms. Fluid mixing and the

subsequent evolution of mixed fluid patches is discussed further in Barenblatt (1996).

1.3 Motivations

The previous section described propagation of internal gravity waves through stable stratifications.

Research of internal gravity waves has been largely motivated by their significance in mixing and

transport within the mainly stably stratified stratosphere, an atmospheric layer separated from the

Earth’s surface by the turbulent troposphere, and the ocean thermocline, located between surface

and ‘deep waters’. The density profile of the stratosphere is predominantly controlled by gradients

in temperature that position this layer at altitudes ∼ 10−50 km above sea level. The density profile

of the ocean thermocline, however, is specified by a combination of both temperature and salinity

gradients and, as a result, the thermocline has a vertical density profile with a depth and form that

is subject to considerable regional and seasonal variation. Whilst internal gravity waves greatly

influence both atmospheric and ocean dynamics, the emphasis of the present study is towards

oceanic applications. Further information on internal gravity waves in the specifically atmospheric

context can be found in, for example, Holton (1979), Gill (1982), Andrews et al. (1987) and Fritts

& Alexander (2003).

1.3.1 Internal gravity waves in the ocean

Oceanic internal gravity waves are principally generated by wind forcing at the ocean surface or

tidal forcing along irregular ocean floor. The latter of these contributions is the most significant
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Figure 1.2: Schematic describing the Meridional Overturning Circulation and processes causing
density changes of constituent water masses.

and is known as the ‘internal tide’ (Wunsch 1975). The tidal power input in global energy budgets

is estimated to be ∼ 3.5TW , of which ∼ 1TW has been associated with internal gravity wave

generation in the abyssal ocean (Munk & Wunsch 1998; Egbert & Ray 2000). Waves generated

through these various mechanisms transport energy from their source towards the ocean interior,

where the wavefield is generally modelled by the spectrum calculated by Garrett & Munk (1975).

Subsequent interactions of the waves with topography, with other waves, or with variations in

the background stratification and flow all act to alter wave properties such as wavenumbers and

energy densities, hence causing local skews in the wavenumber spectra. The waves undergo viscous

diffusion, resonance and breaking events, which in turn induce turbulence and mixing within the

ocean.

1.3.2 Ocean circulation and mixing

Estimates of mixing attributed to internal wave processes have been used to explain deficiencies in

energy calculations relating to the meridional overturning circulation or ‘MOC’ (e.g. Sandström

1908; Munk 1966; Baines & Turner 1969; Munk & Wunsch 1998). The MOC is a large scale global

system that transports thermal energy as well as salt and other substances between the equator and

poles (see schematic in figure 1.2). The cycle may be seen to begin at the equator where warm surface

waters are cooled and made more saline as a result of several mechanisms including evaporation,

wind cooling experienced by pole-ward surface currents such as the Gulf Stream (North Atlantic

Current), radiative cooling (if a water mass is warm, such as the Gulf Stream, radiative cooling

may dominate over radiative heating at higher latitudes), and through brine rejection during ice

formation. At high latitudes, the dense water formed sinks below polar ice and seas into deep ocean
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basins and is channelled by topography as bottom currents travelling away from the poles. Within

the ocean interior, the thermocline is dominantly stably stratified. This suggests that instead of the

ocean eventually being filled by the fluxes of dense water sinking to the ocean floor at high latitudes,

mechanisms of significant vertical transport and therefore mixing (since this is the only mechanism

by which there can be a net vertical transport in a stable stratification) must exist between the

buoyant surface layer and abyssal waters (e.g. Sandström 1908; Munk 1966; Baines & Turner 1969;

Munk & Wunsch 1998). A recent review of these ideas can be found in Wunsch & Ferrari (2004).

Accurate climate models therefore depend on detailed understanding and quantification of processes

contributing to such diapycnal mixing (i.e. exchange between isopcynals) in the deep ocean.

Measurements of turbulence, which convert large to small scales, are indicative of levels of mixing

within the ocean. Comparisons of diapycnal mixing rates based on turbulence data collected in field

studies above continental slopes or seamounts and ridges imply that mixing levels are elevated in

these regions and as much as O(104) times greater near ‘rough’ topography than those estimated

elsewhere (e.g. Cox & Sandstrom 1962; Munk 1966; Armi 1978; Eriksen 1982; Kunze & Toole 1997;

Lueck & Mudge 1997; Polzin et al. 1997; Toole et al. 1997; Ledwell et al. 1998; Egbert & Ray 2000;

Ledwell et al. 2000; Rudnick et al. 2003; Nash et al. 2004; Nash et al. 2007). Turbulence generated

by breaking internal gravity waves near such topography is considered to be the principle cause of

mixing there (e.g. Eriksen 1982; Gilbert & Garrett 1989; Müller & Lui 2000; St Laurent & Garrett

2002). It is therefore of interest to identify conditions that act to promote wave breaking and hence

the cascade from internal wave energy to turbulent mixing.

1.4 Research aims and methodology

This research focuses on the scattering behaviour of internal gravity waves that interact with ‘rough’

topography, i.e. boundary profiles exhibiting features characterised by length scales comparable with

incident wavelengths. A number of recent research articles investigate the generation of internal

gravity waves by the flow of a stratified fluid over rough topography (e.g. Balmforth et al. 2002;

Gyüre & Jánosi 2003; Legg 2003; St Laurent et al. 2003; Aguilar et al. 2006; Peacock et al. 2008).

The present study considers the scattering behaviours of the waves in stratifications where there is

no mean background flow. The research aims to determine how incident wave energy is partitioned

spatially after interaction with topography (i.e. scattered forwards, backwards, to higher harmonics

or trapped locally), where the wave energy is dissipated (i.e. locally or remotely from the topogra-

phy) and to what effect (e.g. isolation of topography by local changes in background stratification

caused by mixing there). The interactions of an incident wavefield with rough topography are

characterised here in terms of those promoting conditions for mixing of the stratified fluid. Whilst

the nature of the related instabilities are beyond the scope of this thesis, mixing in the immediate

vicinity of the topography, i.e. the ‘near-field’, is discussed. Features such as localised changes to

the background stratification and regions of large shear are also used to indicate regimes of de-

creased stability. The structure of the fluid motion in the near-field is used to give an insight into
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the physical processes controlling the wave scattering behaviour. This thesis describes the scattered

wavefield in regions remote from the topography, i.e. the ‘far-field’, in terms of the directions of

the scattered wave energy propagation and the relative energy fluxes and energy density spectra

of the wavefields in each of these directions. In particular, the present research highlights regimes

where the energy density spectra of wavefields interacting with topography are skewed to higher

wavenumbers, since these have been identified as conditions promoting mixing (Garrett & Gilbert

1988).

Ocean topography is composed of a broad range of length scales and slopes and exhibits features

such as rapid variations in gradient and, in particular, abrupt changes that are described here as

‘sharp corners’. The effects of each of these properties on the scattered wavefields is investigated

here using a series of laboratory experiments and the results compared with predictions from linear

theories. The study is concerned specifically with two-dimensional wavefields propagating through

continuous linear stratifications.

The influence of variations in the relative slope of the boundary and the direction of the inci-

dent wave energy flux is studied in chapter 4. Experiment results are presented of the reflection

behaviours of waves of a range of frequencies at smooth boundaries inclined at different angles.

These are compared with scattering of wavefields at topographies with sinusoidal profile in order to

examine the effect of an introduction of a smooth boundary variation on the scattered wavefields.

The effect of an increase in wavelength of the topography for a given wavefield is illustrated by the

use of two different sinusoidal topographies with different wavelengths.

Chapter 5 investigates the effect of surface curvature and sharp corners on wavefields generated

by vertically oscillating cylinders. The wavefields generated by five elliptical and three rectangular

cylinders with different aspect ratios are compared.

Near-field and far-field structures of experiment wavefields scattering at topographies with si-

nusoidal, sawtooth, square-wave and pseudo knife-edge profiles are presented and analysed in chap-

ters 6, 7 and 8 for sub, super and near-critical values of θ/α respectively. The influence of topo-

graphic shape and changes in parameters comparing slopes and length scales of the incident waves

and topography are investigated.

1.4.1 Outline of thesis

An introduction to the basic properties of internal gravity waves and a synthesis of relevant literature

is given in chapter 2. Chapter 3 describes and validates the experimental methods employed in this

research. Results from this study are presented and analysed in chapters 4 - 8. The main results from

this research together with areas for further research are summarised and discussed in chapter 9.
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Chapter 2

Background

2.1 Overview

The previous chapter outlined the motivations, aims and structure of the present study. This chap-

ter provides a context for the research and introduces key concepts and terminology. A synthesis

is presented here of the properties and reflection behaviour of internal gravity waves established

in other studies. Both kinematic and physical descriptions are given of wave motion remote from

boundaries (section 2.2). In particular, the generation of waves by an oscillating cylinder is dis-

cussed in section 2.3. Boundary and radiation conditions are detailed in section 2.4 and wave

interactions with smooth horizontal, vertical and sloping boundaries (sections 2.4.1 - 2.4.2) and

rough topographies (section 2.5) are described. This chapter concludes by clarifying the limits of

current understanding of internal gravity wave scatter at topography and the specific role of this

study.

2.2 Wave motion in an unbounded fluid

The equations governing propagation of internal gravity waves are derived and discussed here.

The present research is predominantly concerned with scattering behaviours of internal gravity

waves under conditions applicable to those in the ocean, though most aspects of oceanic internal

wave generation, propagation, wave-wave and boundary interactions, breaking and dissipation are

directly analogous with those occuring in the atmosphere. It is assumed here that, in general, deep

oceanic waters behave incompressibly and rotational effects are also neglected in order to exclude

contributions to the dynamics from inertial waves that arise from the Coriolis effect and assess

only those due to internal gravity waves. The equations governing the motion of an incompressible,

nonrotating fluid are given by the continuity equation

∇ · u = 0 (2.1)

10



2. Background 2.2. Wave motion in an unbounded fluid

and expressions for conservation of momentum and mass,

ρ
Du

Dt
= −∇P + ρg + µ∇2u (2.2)

and
Dρ

Dt
= −κ∇2ρ, (2.3)

where u is the velocity field, ρ the fluid density, P the pressure field, g is the gravitational ac-

celeration and µ and κ are constants denoting coefficients of dynamic viscous and molecular mass

diffusion respectively (e.g. Phillips 1966).

2.2.1 Linearisation and approximations

Several assumptions and approximations may be made in order to reduce these equations to a

set which may be solved more readily. The Schmidt number compares the relative magnitudes of

viscous and molecular diffusion and is defined as Sc = ν/κ, where the kinematic viscosity, ν, is the

quantity µ/ρ. In salt-water stratifications the Schmidt number is large (O(103)) and so the effect

of molecular diffusion of mass is generally assumed to be much less significant than diffusive effects

on the fluid motion caused by viscosity. This assumption becomes less valid in regions where ∇2ρ

is large however.

The fluid motion is assumed to be Boussinesq so that it comprises small perturbations of field

variables relative to a base state, which corresponds to that of an undisturbed continuous stable

stratification with density profile ρ0 = ρ0(z). Within this approximation, perturbations in the

density field have a negligible influence on inertia terms and only become significant as factors

of buoyancy terms, so that factors of ρ in inertia terms may be replaced by ρ0. The pressure

and density fields relating to ensuing fluid motion are therefore decomposed as P = p′ + p0 and

ρ = ρ′ + ρ0, where p0 is the ambient pressure and p′ and ρ′ are deviations from the base state such

that ∇p′ << ∇p0 and ρ′ << ρ0. Linearising about the base state reduces equations (2.1), (2.2) and

(2.3) to the set

∇ · u = 0, (2.4)

ρ̂
∂u

∂t
= −∇p′ + ρ′g + µ∇2u (2.5)

and
∂ρ′

∂t
+ u · ∇ρ0 = 0, (2.6)

respectively (e.g. Lamb 1932; Phillips 1966), where ρ̂ is a reference density as defined in 1.3. This

linear set of equations describes fluid motion arising from disturbances of a Boussinesq stratification

that are characterised by vertical scales much smaller than that over which the background strati-

fication varies. Notably, solutions to these equations are invertible in the vertical direction and can

be superposed.

An inviscid approximation, neglecting the term µ∇2u, is made on the basis that, in general for
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the fluid considered, this term makes a negligible contribution relative to the inertial terms, except

in small regions near boundaries.

Two-dimensional approximation

Solutions to equations (2.4) - (2.6) are symmetric in the coordinates perpendicular to the gravita-

tional field and so a two-dimensional approximation is also made, restricting consideration to fluid

motion in the vertical cartesian plane x = (x, z).

A slowly varying background density profile, ρ0, may be approximated locally, i.e. on the scale

of the fluid displacements, as a linear function of height. In an unbounded linear stratification,

the vertical gradient, ∂ρ0/∂z, is constant and the horizontal gradient, ∂ρ0/∂x, vanishes. Hence the

two-dimensional equations governing the evolution of perturbations to the density profile can be

expanded into their cartesian components as the set of equations

ρ̂
∂u

∂t
= −∂p

′

∂x
, (2.7)

ρ̂
∂w

∂t
= −∂p

′

∂z
− ρ′ĝ, (2.8)

∂ρ′

∂t
+ w

∂ρ0

∂z
= 0, (2.9)

∂u

∂x
+

∂w

∂z
= 0, (2.10)

where g = (0,−ĝ) and u = (u, w) is the horizontal and vertical decomposition of the velocity field.

After some manipulation, equations (2.7) - (2.10) are amalgamated into the partial differential

equation for the vertical velocity

(

∂2

∂t2
∇2 +N2 ∂

2

∂x2

)

w = 0, (2.11)

where ∇2 = ∂2/∂x2 + ∂2/∂z2 and the Brunt Väisälä frequency (see section 1.2.2)

N2 = − ĝ
ρ̂

∂ρ0

∂z
(2.12)

is constant for a linear stratification.

A two-dimensional stream function, ψ(x, z, t), is also defined such that

u = −∂ψ
∂z

and w =
∂ψ

∂x
. (2.13)
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2.2.2 Dispersion relation

For monochromatic disturbances of a stratification, i.e. those characterised by a single temporal

frequency σ, that cause small fluctuations of the density profile relative to the variation of the

background density profile, the field variables ρ′, ψ, u, w and p′ may all be assumed to evolve

according to a plane wave form, within which lines of constant phase are parallel. Internal gravity

waves of small amplitude are therefore expected to be described by field variables, denoted generally

by φ, having the form

φ ∼ ℜ[φ̂(x, z)e−iσt]. (2.14)

Substituting a plane wave (i.e. infinite extent) spatial dependence

φ̂(x, z) ∼ ei(kx+mz), (2.15)

where k = (k,m) is the two-dimensional wavenumber, with horizontal and vertical components k

and m, into (2.11) yields the dispersion relation

σ = ±N k
√

(k2 +m2)
= ±N cos θ. (2.16)

Here θ is the angle of the direction of fluid particle motions relative to the vertical, indicating that

the fluid motion is anisotropic. The relationship χ = kx+mz − σt is the phase of the wave, which

is definitively linear in x, z and t for a plane wave.

Phase and group velocities

The phase, cp, and group, cg, velocities of such fluid motions, describing the propagation of the

wave phase and energy respectively, are therefore calculated to be

cp =
Nk

(k2 +m2)
3

2

(k,m) and cg =
Nm

(k2 +m2)
3

2

(m,−k). (2.17)

Notably

cp · cg = 0, (2.18)

indicating that the phase propagates in a direction perpendicular to the energy propagation, and

vertical components of the phase and group velocities are related by

cpz = − cgz . (2.19)

Directions of particle motions coincide with that of the group velocity.

A reformulation of the phase and group velocities in terms of coordinates aligned across and
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along the wave beam, with unit vectors ek and eθ respectively, as

cp = ±N

|k| cos θ ek and cg = ∓N

|k| sin θ eθ, (2.20)

illustrates the dependence of the speed of energy propagation on the frequency and wavenumbers

associated with the fluid motion. For a given wavenumber, the group velocity increases with in-

creasing θ, i.e. decreasing frequency σ by the dispersion relation; a consequence of the inhibiting

effect of the stratification on vertical motions. For a given wave frequency, and therefore for a

fixed angle θ, the group velocity is inversely related to the magnitude of the wavenumber so that

energy associated with the largest length scales (i.e. small |k|) is transferred most rapidly through

the fluid. Derivations and discussion of the equations and approximations above can be found in

Lighthill (1978) and Turner (1979).

Frequency regimes

Inspection of (2.16) indicates that restrictions apply to internal gravity wave generation, since

the nature of the governing equation for field variables, (2.11), depends on the magnitude of the

frequency parameter σ/N . In particular, the dispersion relation (2.16) is invalidated by values of

the forcing frequency, σ, that exceed N . In this case, with σ/N > 1, (2.11) is elliptic and the

resulting fluid motion is not wave-like in character but instead decays exponentially in space. The

governing equation (2.11) becomes hyperbolic for parameter values 0 ≤ σ/N ≤ 1 and the dispersion

relation is valid in this regime. Fluid disturbances of frequency equal to the Brunt Väisälä frequency

correspond to fluid particle motion at an angle θ = 0◦ and a zero group velocity at first order. The

fluid parcels in this configuration therefore undergo simple harmonic oscillations and wave energy

is confined to the disturbance region. More generally, a disturbance characterised by frequency

σ/N in the hyperbolic range generates wave motion, with energy propagating at the angle θ to

the vertical determined from the nontrivial dispersion relation (2.16). Hence the waves generated

are both hyperbolic and dispersive in nature (see e.g. Whitham 1974 for typical properties of

such classifications of waves). Wave propagation resulting from a monochromatic forcing in two

dimensions is therefore only possible along characteristics or rays directed along four directions,

and in three dimensions may only occur along the surface of two cones originating at the source.

Wave groups

In general, a disturbance characterised by frequency σ does not generate individual wavenumber

components in isolation but rather generates groups (also referred to as ‘packets’) of waves that

travel along the directions specified by θ. Wave groups consist of a superposition of a range of

wavenumbers, where the exact composition and hence form of such a wave group is determined

by the nature and spatial structure of the disturbance region. The plane wave representation of

each of the wave group components is appropriate only in domains that vary slowly on the scale

14



2. Background 2.2. Wave motion in an unbounded fluid

x

z

ξ

−η

θ

θ

Lines of

Lines of
constant ξ

constant η

Figure 2.1: Characteristic coordinates for wave energy propagating along lines inclined at angles θ
to the vertical.

of the waves. In this case, the components of a wave group have a constant phase relationship.

The plane wave model of a wave group becomes inadequate in the vicinity of rapid variation of a

domain, which can be caused, for example, by nonlinear variation of the background stratification

or the presence of a rough boundary. The wave group can be deformed in such regions and energy

transferred between the component wavenumbers. Abrupt changes in the fluid domain, such as

discontinuities in the background density profile or at sharp corners of topography, are supported

by the hyperbolic nature of the wave solutions of (2.11), with such ‘events’ being propagated as

shocks throughout the fluid that also travel along the characteristic ray paths.

2.2.3 Characteristic variables

As a result of the hyperbolic nature of the waves, a convenient analytical description of a monochro-

matic wavefield can be given by consideration of the characteristic variables

ξ = z + cx, and η = z − cx, (2.21)

where c = cot θ (e.g. Baines 1971a; Mied & Dugan 1976; Liu 1998). These variables are constant

on lines corresponding to the directions of wave energy propagation, which are straight lines in a

slowly varying domain. Hence a rotation from a cartesian frame of reference to the characteristic

coordinates (ξ, η) allows the spatial dependence of field variables, φ̂(x, z), to be decomposed into a

sum of its components that are directed in each of the permitted directions of energy propagation,

i.e.

φ̂(x, z) → φ̂(ξ, η) = f(ξ) + g(η). (2.22)

A plane wave with φ̂ = f(ξ) = exp(ikξ), for example, therefore has a phase propagating along the ξ

coordinate and a group velocity directed downwards and aligned parallel to lines of constant ξ (see
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the coordinate system shown in figure 2.1). This formulation is revisited in section 2.4.

2.3 Internal wave generation by an oscillating cylinder

The previous section introduced characterising properties, such as the dispersion relation and phase

and group velocities predicted by linear theory, of small amplitude two-dimensional internal gravity

waves propagating in an inviscid linear Boussinesq stratification. Wave fields in the experimen-

tal component of the present study (see chapters 3-8) are generated by the vertical oscillation of

cylinders in linear stratifications. This section therefore outlines previous theoretical, experimental

and numerical research of internal gravity wave beam generation by oscillating cylinders. Physical

desciptions are given of the wave beams such as their inclinations, amplitudes and widths. The

limits of linear theory to accurately describe the wave motion and the influence of viscous diffusion

and boundary layers on the wavefields are also discussed.

2.3.1 Internal Gravity Wave Beams

The linear inviscid theory of Lamb (1932) (see section 2.2.1) was supported and analysed further

in experiments by Görtler (1943) and Mowbray & Rarity (1967). Linear theory predicts that a

two-dimensional point or finite circular wave source making small amplitude vertical oscillations

at a sustained temporal frequency, σ, within a Boussinesq linear stratification characterised by

the Brunt Väisälä frequency N , generates four wave beams. In experimental contexts, the two-

dimensional system is approximated by the oscillation of cylinders with circular cross-section such

that the axis of symmetry is aligned perpendicular to the wavefields produced. Mowbray & Rar-

ity’s experiments confirmed that each beam in the resulting wavefield, often referred to as a ‘St

Andrew’s Cross’, is inclined at an angle θ relative to the vertical that is specified by the dispersion

relation (2.16). The energy introduced into the system by small amplitude vertical oscillations of

the source is equally partitioned between the four beams and propagates along each beam at the

group velocity (2.17), where the wavenumber components of a generated wave group are deter-

mined by the dimensions of the source. The phase of a wave group propagates in the across-beam

direction at the phase velocity (2.17). Figure 2.2 illustrates this configuration for a circular source

with diameter Dc and vertical amplitude of forcing oscillation Ac. The coordinates (a, s) denote

along-beam and across-beam directions respectively, where the origin is taken as the source center.

The suffices + and −, respectively, denote positive and negative directions so that in the context of

a+−, for example, the suffices indicate that the across-beam coordinate is oriented with a positive

horizontal sense and a negative vertical sense.

The effects of viscosity on the wavefield were first modelled by Thomas & Stevenson (1972).

Their similarity solution used a boundary layer approximation that is valid in regions where gra-

dients of the wavefield in the along-beam direction are much smaller than those in the direction

of phase propagation. This assumption is invalidated in regions close to the oscillating source,
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Figure 2.2: Schematic of two-dimensional internal gravity wave beams produced by an oscillating
cylinder. Phase and group velocity directions are indicated for each beam. Grey shading indicates
regions where wave beams overlap. Bounding envelopes of amplitudes of the along-beam fluid
motion are sketched on the lower left-hand beam. The sketch depicts the transition from a bimodal
form at small along-beam distances to a unimodal structure further from the cylinder as viscosity
attenuates the wave energy.

where gradients in the fluid motion perpendicular to the surface of the source are significantly

enhanced as a result of the oscillating boundary layer there. Thomas & Stevenson’s solution also

assumed linear fluid motion and therefore requires that the forcing amplitude of the system is small,

i.e. Ac/Dc ≪ 1. The linear model derived becomes less applicable at forcing frequencies near to zero

or to the buoyancy frequency, N (Thomas & Stevenson 1972; Tabaei & Akylas 2003). Makarov et

al. (1990) also studied the changes caused by viscosity to properties of wave groups as they propa-

gate along beams. Inviscid limits of their solution do not agree with inviscid theory of Hurley (1972)

and Hurley (1997) at small along-beam distances, s. Hurley & Keady (1997) developed inviscid so-

lutions to include the influence of viscosity and, although their treatment of the region immediately

surrounding the source remained inviscid with no boundary layer accounted for on the basis that

the Reynolds number there is large, the resulting theory does compare well with viscous solutions of

Makarov et al. (1990) and also with that of Thomas & Stevenson (1972) in regions further from the

source. More detailed analysis of structures of internal wave beams has resulted from advancements

in experimental schlieren techniques (e.g. Peters 1985; Dalziel et al. 1998; Sutherland et al. 1998;

Sutherland et al. 1999; Dalziel et al. 2000). In general, experiments have both qualitatively and
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2. Background 2.3. Internal wave generation by an oscillating cylinder

quantitatively supported theoretical predictions. Quantitative discrepancies are attributed to the

neglect in theoretical models both of nonlinear terms and of the boundary layer about the source.

The following sections give descriptions, determined by the studies outlined above, of across-

beam structures of generated wave groups and their evolution as they propagate along beams.

2.3.2 Wave beam structure: wave amplitudes

Amplitudes of the wave motion are defined as the distance that fluid parcels are displaced in the

along-beam direction away from their positions of neutral buoyancy. A measure of these amplitudes

can be given experimentally as the change in the square of the local Brunt Väisälä frequency relative

to that of the background stratification, i.e. ∼ ∆N2/N2 (e.g. Sutherland et al. 1999). Lines of

constant phase are oriented parallel to the direction of the group velocity and propagate across-

beams at the phase velocity. Amplitudes of wave groups are bounded by an ‘envelope’ as the phase

propagates across the width of a beam. These amplitude envelopes are found in both theoretical

and experimental studies to be characterised by either a ‘bimodal’ structure, with two peaks of

the amplitude at a ≃ ±Rc, where Rc is the radius of the source, or a ‘unimodal’ structure, with

a single peak amplitude value at a ≃ 0 (Makarov et al. 1990; Hurley 1997; Hurley & Keady 1997;

Sutherland & Linden 2002). Linear theory predicts that the amplitude envelope of a wave group

generated by an oscillating cylinder in an inviscid fluid will have a bimodal form that is sustained

as it propagates away from its source (Hurley 1972; Hurley 1997). The influence of viscosity and

the magnitude of the forcing amplitude and frequency on this across-beam structure are discussed

here.

Influence of viscosity

In a viscous fluid, the form of the bounding envelope of a propagating wave group depends on the

ratio of the viscous length scale,

Lν =
(ĝν)

1

3

N
(2.23)

(Makarov et al. 1990), to source size, Dc, as well as the distance that the wave group has propa-

gated away from the source. The viscous length scale is derived from scaling analysis using a subset

of characterising length scales of the wave motion. These include Λ = ĝ/(2πN2), a length scale

associated with the background stratification, λ = 2πU/N , a wavelength characterising generated

internal gravity waves (Lighthill 1978), where U is the velocity of the cylinder, and the depths of the

stationary and periodic boundary layers for the velocity field δu = ν/U and δ = (2ν/σ)1/2 respec-

tively (Batchelor 1970). The viscous length scale (2.23) is therefore formulated by the combination

(Λλδu)1/3.

In regions near to the source the envelope of a wave group takes a bimodal form provided

that Lν/Dc ≪ 1, whilst at larger values of this parameter the envelope degenerates to a unimodal

form (Hurley & Keady 1997). Regardless of the initial form of its envelope, viscosity acts to
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2. Background 2.3. Internal wave generation by an oscillating cylinder

gradually reduce the amplitudes of the fluid motion associated with a wave group as it propagates

away from the source. Wave amplitudes are therefore greatest near to the source and decrease

with distance along wave beams. As well as causing this reduction in the energy density of the

wave group, viscosity also modifies the form of the envelope as the group propagates along the

beam (e.g. Sutherland et al. 1999). This is a result of the fact that viscous action is enhanced

in regions of the fluid where there is greater shear. Shearing motions are generated along lines

parallel to the fluid motion, which is aligned along the wave beam. The wave phase dictates the

gradients in these fluid motions in the across-beam direction. Shear motions are therefore the most

pronounced for high wavenumber components of a propagating wave group since these produce

larger gradients in the across-beam direction. Hence the amplitudes of fluid motions associated

with these higher wavenumber components are reduced by viscosity faster than those associated

with smaller wavenumbers and hence smaller across-beam gradients. The across-beam structure of

a wave group propagating in a viscous fluid is therefore controlled at large distances from the source

by its smaller wavenumber components, i.e. those associated with larger length scales. Where the

length scale ratio Lν/Dc is non negligible, viscosity is thereby able to erode the bimodal envelope of

the inviscid limit to a unimodal envelope with a smaller amplitude and a larger width over a finite

along-beam distance sν (Makarov et al. 1990; Hurley & Keady 1997; Sutherland et al. 1999). This

transition distance is calculated by Makarov et al. (1990) to be

sν =
NR3

c

ν
. (2.24)

However, much smaller values for sν are found in experiments by Sutherland et al. (1999) - they

suggest that (2.24) is not a correct measure of the transition distance. Schematics of the bimodal

and unimodal envelope structures are shown in figure 2.2. Viscosity continues to reduce the energy

density of unimodal wave groups subsequent to envelope transition as they propagate further along

wave beams, with the amplitudes of the fluid displacement caused by propagating wave groups

calculated to decrease inversely with radial distance, s, from the source (Thomas & Stevenson 1972;

Peters 1985).

Variation with forcing amplitude

Amplitudes of linear internal waves are expected to increase linearly with the source oscillation

amplitude Ac, for ε ∼ Ac/Rc ≪ 1 (Hurley 1997). This is confirmed in experiments with oscillating

cylinders by Sutherland et al. (1999) and in the three-dimensional case with oscillating spheres for

values as large as Ac/Rc < 0.27 (Flynn et al. 2003).

Nonlinear effects are also expected to become more significant as the ratio of source amplitude

to source size, Ac/Dc, is increased. One such effect is the generation of ‘higher harmonics’. In

the nonlinear formulation, the dispersion relation permits the generation of additional sets of wave

beams with frequencies nσ, where n is a positive integer, provided that nσ ≤ N . These additional
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2. Background 2.3. Internal wave generation by an oscillating cylinder

harmonics are associated with beams inclined at angles relative to the vertical θn, which also satisfy

the linear dispersion relation according to

θn = cos−1
(nσ

N

)

. (2.25)

As the ratio Ac/Dc is increased, a greater proportion of the wave energy is distributed to the

higher harmonics, and so this reduces the energy associated with the primary harmonic frequency

σ. Secondary harmonic beams were first observed in experiments by Mowbray & Rarity (1967)

and have been noted in subsequent studies such as Sutherland et al. (1999) and Sutherland &

Linden (2002). No studies are known that have successfully demonstrated the presence of tertiary

harmonic generation by an oscillating cylinder however, presumably as a result of the fact that

the amplitudes of these wave beams, ∼ (Ac/Dc)
3, are relatively weak and their visualisation is

therefore inhibited by the error associated with the experimental technique being used. Sutherland

& Linden (2002) suggest that the nonlinear generation of these secondary (or more) sets of wave

beams develop as a result of the interference between the internal wave beams generated by the

source oscillations and standing waves that are generated in the boundary layer along the surface

of the source (e.g. Batchelor 1967; Riley 2001). Boundary layers of width δ form about the surface

of a source oscillating with small amplitude in homogeneous viscous flow (Batchelor 1967), where

δ ≃
√

2ν

σ
, (2.26)

and with experimental values for the boundary layer thickness typically measuring a few millimetres.

The influence of this boundary layer on fluid motion is clearly enhanced for larger values of the

ratio of boundary layer thickness to source size, δ/Dc. Sutherland & Linden (2002) argue that the

interaction between the wave beams and the fluid motion generated in the boundary layer is the

mechanism for the generation of the higher harmonic beams, rather than as a result of nonlinear

interactions caused by the overlap of upper and lower beams of the primary harmonic set of beams,

since the secondary harmonic set is seen to originate at the boundary layer and is not present in

numerical studies in which the source boundary layer is absent. The second set of internal wave

beams becomes more pronounced as the aspect ratio of the source is increased (with major axis

aligned perpendicular to the direction of oscillation) (Sutherland & Linden 2002). Hence, this also

supports the theory that the secondary harmonic wave beams are generated in the boundary layer

since the larger curvature of more elliptical cylinders is known to enhance boundary layer effects

(Batchelor 1967). The influence of source curvature on generated wavefields is investigated further

in chapter 5.

Outside the boundary layer region, linear theory is assumed valid, and hence the generation

of higher harmonic beams may generally be considered negligible, provided source amplitudes are

small relative to source size, i.e. Ac/Dc ≪ 1. However, even for small values of this parameter,

the resulting fluid motion may contain regions where large amplitudes are realised and the linear

20



2. Background 2.3. Internal wave generation by an oscillating cylinder

assumptions thereby invalidated. For example, regions where two or more wave beams interact can

support constructive interference and significantly enhanced amplitudes (Sutherland et al. 1999;

Sutherland & Linden 2002). This is possible in the immediate vicinity of the source where the fluid

motion along wave beams has the largest amplitude and the beams also overlap (see figure 2.2).

The area of overlap increases as source frequency approaches zero, implying that the associated

nonlinear interactions could be enhanced at smaller source frequency. Such wave beam interactions

are believed to be the cause of oscillations of twice the source frequency, 2σ, that were observed

to propagate horizontally away from the source in experiments by Sutherland et al. (1999). These

disturbances oscillated vertically about the mean vertical position of the source and were enhanced

at larger source amplitudes, Ac.

Variation with forcing frequency

Amplitudes of the wave motion are also dependent on the forcing frequency. The group velocity

decreases, with increasing frequency, σ, so that the rate of energy transport decreases resulting in

larger energy densities at each position along the wave beam. Amplitudes are therefore expected to

increase as wave frequencies approach the buoyancy frequency. This general trend is confirmed by

experiments (Sutherland et al. 1999; Sutherland & Linden 2002). Experimental errors at frequencies

close to the buoyancy frequency and the increasing influence of nonlinear wave motion as forcing

frequencies approach zero lead to quantitative discrepancies between theory and experiments.

2.3.3 Wave beam structure: beam widths

The width of a wave beam at a particular along-beam distance s from the source is defined to be

the standard deviation of the bimodal or unimodal amplitude envelope of an internal wave group

there (Sutherland & Linden 2002). Linear inviscid theory of Hurley (1997) and Hurley & Keady

(1997) suggests that the widths of internal gravity wave beams are equal to the source diameter,

Dc, at their generation at s = 0. As wave groups propagate along beams away from the source,

their bimodal envelope narrows slightly for a brief distance before widening again to the width

of the source for the entire length of the beam. However, inspection of the velocity field along

the predicted bounding characteristics of the inviscid wave beam, coincident with tangents to the

source inclined at the angle θ to the vertical (red dashed lines in figure 2.2), reveals unphysical

singularities there (Hurley 1997). Experiments report similar patterns of width behaviour as those

deduced using linear theory. The infinite values of the velocity field predicted along the source

tangents indicate that, in a real fluid, boundary layers around the source and the action of viscosity

are very significant in smoothing the fluid motion in this region. Hence, inclusion of these influences

into theoretical models is necessary if accurate quantitative calculations of the beam properties are

to be made.

No analytical studies are known that satisfactorily allow for boundary layer formation about

the source. Experimentally observed widths of beams in regions close (i.e. at distances s < Dc)
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to the source are poorly modelled by inviscid theory. Viscous theory that neglects boundary layer

formation calculates beam widths to be close to that of the source diameter, as in the inviscid

limit, but with viscosity gradually widening wave groups as they propagate along wave beams and

the wavenumber spectra of the group becomes skewed to lower wavenumbers (Hurley & Keady

1997). Experiments agree qualitatively with these calculations but find beams are wider than

expected by the same order of magnitude as the predicted boundary layer depth. This discrepancy

is therefore attributed, in part, to boundary layers forming and ‘adding’ to the width of the source

(Batchelor 1967; Sutherland et al. 1999). Thomas & Stevenson (1972) calculate that viscous action

widens unimodal beams according to the cube root of the distance from the source, s1/3. Kistovich

& Chashechkin (1993, 1995) deduced the same behaviour by modelling the propagation of wave

groups with a Green’s function approach. Few experiments have verified this result since internal

wave beams are generally viewed over inadequate distances, though those of Peters (1985) were

supportive and analytical studies show similar behaviour at large s (Hurley & Keady 1997; Makarov

et al. 1990).

2.4 Wave interaction with boundaries

The previous section described the wavefields generated in an unbounded domain by an oscillating

cylinder. This thesis is concerned with the interaction of wavefields with boundaries. A description

of a system within which an incident wavefield, represented by the incident stream function ψI ,

interacts with a boundary, B, is given as the superposition of the streamfunctions

ψ = ψI + ψS , (2.27)

where ψ is the stream function describing the complete wavefield and ψS is the stream function

of the scattered wavefield. The exact partitioning of scattered wave energy associated with ψS

in physical and wavenumber space is determined by the shape of the boundary and the spatial

and temporal form of the incident wave, ψI . The various conditions imposed by the presence of a

boundary are discussed here.

At an impermeable rigid boundary the velocity field, u, must satisfy

u · n = 0, (2.28)

where n is the inward normal at the boundary. The vanishing of normal velocity components at the

boundary therefore implies that, at first order, the frequency of scattered waves must be equal to the

incident wave frequency. Hence, in the notation of section 2.2.3, a small amplitude monochromatic

incident wavefield of the form

ψI = ψ̂I exp(−iσt) (2.29)

generates a scattered wavefield with the similar form
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ψS = ψ̂S exp(−iσt), (2.30)

where ψ̂I and ψ̂S are purely spatially varying functions. The complete wavefield is therefore sepa-

rated into spatial and temporal variations as

ψ = (ψ̂I + ψ̂S) exp(−iσt). (2.31)

Together with the dispersion relation for small amplitude disturbances of a linear Boussinesq strat-

ification,

σ = ±N cos(θ) (2.32)

(Lord Rayleigh 1883), the boundary condition (2.28) imposes the constraint that wave energy

scattered at a boundary must propagate with the same slope as that of the incident energy flux,

though not necessarily with the same directional sense. In the characteristic coordinate description,

the scattered wavefield can therefore be decomposed into a sum of the contributions propagating

in each of the four possible directions. Notably, the angle of propagation of the the scattered wave

energy is independent of the slope of the boundary with which the incident wave energy interacts

and depends solely on the frequency of the incident wave.

Scattered waves are also required to satisfy the ‘radiation condition’, which stipulates that

scattered energy must propagate away from the boundary (Sommerfeld 1949). More rigorously,

this requires that a Fourier decomposition of the scattered wavefield can have no component with

group velocity vector directed into the boundary. A wave component with this orientation could

only exist if the system included sources of energy other than the incoming energy flux associated

with the incident wave. The subtlety of this condition needs to be understood in order to prevent its

misapplication. Baines (1971a) demonstrates the misuse of the radiation condition by its application

to a wave group instead of its application to each of its individual plane wave Fourier components.

Discussions on the enforcement of the radiation condition are also given by e.g. Gilbert & Garrett

(1989) and Voisin (1991).

It remains to determine the partitioning of the incident wave energy between the various direc-

tions permitted by the conditions outlined above and the spatial form (i.e. spectral scatter) of the

wavefields in each direction. This is controlled by the exact shape of the boundary. The following

sections describe scattering behaviours in terms of parameters comparing the relative slopes and

length scales of the incident wavefield and topography, as well as features of the topography such

as its aspect ratio and the presence of sharp corners.

2.4.1 Reflection at a horizontal or vertical boundary: linear inviscid theory

The simplest reflection configuration to consider is that of a small amplitude monochromatic wave

beam, characterised by a temporal frequency σ and a wavenumber kI that is aligned with the

characteristic coordinate ξ, reflecting inviscidly at an infinite smooth and impermeable horizontal
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boundary (Lamb 1932; Phillips 1966). Each wave group propagating along such a beam is a super-

position of different wavenumber components and hence such a group’s fate after interaction with a

boundary may be described, in the linear limit, as a direct aggregate of those of each of its wavenum-

ber components. Conservation of frequency, and hence the angle θ determined by (2.32), together

with the radiation condition constrains the reflected energy to propagate away from the boundary

in two possible directions, each making an angle θ to the vertical. By continuity, the wavenumber

aligned parallel to the boundary, k̂I , where in this case k̂I = kI cos θ, must also be conserved on

reflection so that k̂R = k̂I , where k̂R is the component of the reflected wavenumber aligned parallel

with the boundary. Hence at a horizontal boundary, the magnitude of the wavenumber of the re-

flected wave oriented in the direction of phase propagation is kR = kI . The wavenumber component

of the reflected wave directed normal to the boundary is therefore m̂R = −k̂R sin θ = −m̂I , where

m̂I is the component of the incident wavenumber normal to the boundary. At first order, wave

energy incident at a horizontal boundary is therefore predicted to reflect forwards, i.e. the reflected

wave energy propagates with the same sense parallel to the boundary as does the incident wave

energy. The reflected wave has the same frequency and wavenumber as the incident wave except

that the reflected energy and wave phase propagate with the opposite sense to that of the incident

wave with respect to the direction normal to the boundary. The wave phase of the reflected wave

therefore propagates in the direction −η. Since the group velocity is conserved and the character-

istic wavenumber is unchanged on reflection, energy densities are also maintained on reflection. If

the incident wave is assumed to have plane wave form with maximum amplitude ε ≪ 1 then the

spatial variation of the incident and reflected waves are

ψ̂I = ε exp (ikI ξ) and ψ̂R = ε exp (−ikI η) (2.33)

and so the complete wavefield can be written

ψ = ε [exp(ikI ξ) + exp(−ikI η)] exp(−iσt). (2.34)

Similar arguments can be applied to characterise wave reflection at a vertical boundary. Linear

inviscid theory predicts that the frequency and wavenumber (aligned with characteristic coordinates)

of a wave reflecting at a vertical boundary are preserved except for a change in orientation of the

wavenumber of the reflected wave, and hence also those of the phase and group velocities, relative

to the direction normal to the boundary. The reflected wave phase therefore propagates along

the direction η. The conservation of the properties discussed above is illustrated in figure 2.3 (a)

and (b) by ray tube schematics of reflections at horizontal and vertical boundaries, respectively.

The schematics use ‘ray tracing’, which is commonly used in linear geometrical optics to describe

the behaviour of wave characteristics in slowly varying domains (e.g. Lighthill 1978). In this

configuration, ray tracing correctly preserves both the wavenumber parallel to the boundary, i.e. for

each characteristic incident (red lines) at the boundary there is exactly one reflected (blue lines)
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Figure 2.3: Schematic of wave beams reflecting at (a) a horizontal boundary and (b) a vertical
boundary. Red and blue lines denote the lines of constant phase associated with incident and
reflected wave beams respectively. Arrows positioned on phase lines indicate the directions of
energy propagation.

characteristic there, as well as the angle θ that the wave characteristics can make with the vertical.

2.4.2 Reflection at an inclined boundary: linear inviscid theory

The linear inviscid reflection of internal gravity waves at a horizontal boundary was generalised

by Phillips (1966) to that at a boundary inclined at an angle α to the vertical, where α ∈ [0, 90)◦

(reformulations can be found in e.g. Wunsch 1969, Thorpe 1987 and Tabaei et al. 2005). Considera-

tion of wave propagation in such a configuration introduces the parameter θ/α, which compares the

relative slopes of the wave energy vector and the boundary. Reflection at an infinitely long smooth

sloping boundary is referred to here as subcritical, supercritical and near-critical for the parameter

ranges θ/α < 1, θ/α > 1 and θ/α ≈ 1 respectively.

The linear inviscid reflection behaviour at a sloping boundary is again prescribed by the radiation

condition, the conservation of frequency, and so slope θ of the wave energy vectors, and conservation

of the components of the wavenumber in the direction parallel to the sloping boundary. An incident

wave with wavenumber kI aligned with the characteristic coordinate ξ has components aligned

parallel and normal to the sloping boundary denoted by k̂I and m̂I respectively. Linear inviscid

theory predicts that the wave energy reflects in one direction to a wave that is characterised by a

single wavenumber, kR , parallel to the characteristic coordinate η, where both the direction and

wavenumber of the reflected wave are determined by the slope ratio θ/α (Phillips 1966). The
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complete wavefield can therefore be written

ψ = ε [exp(ikI ξ) + exp(ikR η)] exp(−iσt). (2.35)

The components of the reflected wavenumber aligned parallel and normal to the boundary are de-

noted by k̂R and m̂R respectively. The parallel component of the incident wavenumber is necessarily

conserved on reflection so that

|k̂R | = |k̂I | = |kI | sin(α+ θ). (2.36)

For incident wave-boundary configurations where both the horizontal or vertical components of the

incident group velocity vector are oriented in the opposite sense to those of the outward normal of

the boundary, the component of the reflected wavenumber normal to the boundary is

m̂R = −kI sin(α+ θ) cot(α− θ). (2.37)

The reflected wavenumber parallel to the coordinate η is therefore

kR = −kI
sin(α+ θ)

sin(α− θ)
. (2.38)

Otherwise, if either or both the horizontal or vertical components of the incident group velocity

vector are mutually oriented with the outward normal at the boundary then the component of the

reflected wave normal to the boundary is given by

m̂R = kI sin(α− θ) cot(α+ θ) (2.39)

and the reflected wavenumber is given as

kR = −kI
sin(α− θ)

sin(α+ θ)
. (2.40)

Hence, linear theory predicts that each wavenumber component of a wave group reflecting at a

smooth sloping boundary undergoes the same simple linear scaling. The wavenumber spectra of the

wave group therefore undergoes a scaling in Fourier space. Since the magnitude of the group velocity

is dependent on the wavenumber, an increase/ decrease of the wavenumber results in an increase/

decrease, respectively, in the energy density and hence the wave amplitude. This is discussed in

more detail in chapter 4. Singularities of kR exist for (2.38) and (2.40) when θ = α or (θ+α) → 180◦

respectively. The components of the reflected wavenumbers perpendicular to the boundaries given

by (2.37) and (2.39) are zero for (θ+α) → 180◦ and θ = α respectively. These unphysical solutions

occur when the incident wave energy approaches either perpendicular or parallel to the slope. The

reflection regimes as determined by linear theory for different values of the slope parameter θ/α
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and the break down of the linear theory are described here.

Subcritical reflection

Wave reflections occuring at a slope with θ/α < 1 are described here as subcritical. Ray tube

schematics of two subcritical reflections are shown in figure 2.4 (a) and (b). The configuration

(a) (b)
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θ

θ
θθ

α

α

Figure 2.4: Schematic of wave beams reflecting at subcritical boundaries of different orientations.
Arrows and colouring are defined as in figure 2.3.

shown in figure 2.4 (a) is of a ray tube incident on a boundary where the horizontal and vertical

components of the outward normal at the boundary are oriented with the opposite sense to those of

the direction of the incident wave energy propagation. The rays are squeezed, or ‘focused’, together

into a narrower ray tube that is reflected forwards. Throughout this thesis, the term ‘focusing’ is

defined as a process that collects energy from an incident wave over some length scale and emits

it over a smaller length scale. The focusing leads to an increase both in the wavenumber of the

reflected ray tube, as predicted by (2.38), and in energy density as a result of the associated decrease

in group velocity and the confinement of the energy flux within a narrower tube. Since a propagating

wave group is composed of a range of wavenumbers, the narrowing of the ray tubes associated with

each Fourier component of the group results in its spatial contraction in the direction of phase

propagation and an amplification of the along-beam fluid motion. The reflected wavenumber has

the same horizontal orientation but opposite vertical orientation as that of the incident wavenumber.

The configuration shown in figure 2.4 (b) is of a ray tube incident on a boundary where the

horizontal and vertical components of the outward normal at the boundary are oriented in the same

and opposite senses, respectively, to those of the direction of the incident wave energy propagation.

The rays are stretched apart, or ‘defocused’, and so define a broader ray tube that is reflected

forwards. The defocusing leads to a decrease both in the wavenumber of the reflected ray tube, as

predicted by (2.40), and hence also in energy density. The broadening of the ray tubes associated

with each Fourier component of a wave group results in its spatial expansion in the direction of

phase propagation and the enervation of the along-beam fluid motion. As in figure 2.4 (a), the
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Figure 2.5: Schematic of wave beams reflecting at supercritical boundaries of different orientations.
Arrows and colouring are defined as in figure 2.3.

reflected wavenumber in this configuration has the same horizontal orientation and the opposite

vertical orientation to that of the incident wavenumber.

Supercritical reflection

Wave reflections occuring at a slope with θ/α > 1 are described as supercritical. Ray tube schematics

of two supercritical reflections are shown in figure 2.5 (a) and (b). The configuration shown in

figure 2.5 (a) is of a ray tube incident on a boundary where the horizontal and vertical components

of the outward normal at the boundary are oriented with the opposite sense to those of the direction

of the incident wave energy propagation. As in the reflection behaviour depicted in figure 2.4 (a) for

the analogous subcritical configuration, the forwards reflected rays are focused. The wavenumber

and energy density associated with the narrower reflected ray tube are therefore increased. Wave

groups are compressed and so the amplitudes of the fluid motion are amplified. The reflected

wavenumber has the opposite horizontal orientation but the same vertical orientation as that of the

incident wavenumber.

The configuration shown in figure 2.5 (b) is that of a ray tube incident on a boundary where

the horizontal and vertical components of the outward normal at the boundary are oriented in

the opposite and same senses, respectively, to those of the direction of the incident wave energy

propagation. The rays are defocused and the wider ray tube reflected forwards. The wavenumber

and energy density are reduced and wave groups hence broadened by the reflection. As for the

reflection shown in figure 2.5 (a), the reflected wavenumber in this configuration has the opposite
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horizontal orientation and the same vertical orientation to that of the incident wavenumber.

Near-critical reflection

Wave reflections occuring in configurations with θ/α ≈ 1, so that either of the characteristic co-

ordinates ξ or η become aligned with the boundary, are described as ‘near-critical’. Under critical

conditions, inviscid linear theory (Phillips 1966) makes unphysical predictions that the reflected

wavenumber and energy density parallel to the boundary are infinitely large as the ray tube is

compressed to an infinitesimal width and the reflected group velocity, calculated from (2.17), tends

to zero (Wunsch 1969; Eriksen 1985). Observations and attempts made in analytical studies to

resolve the fluid motion of the near-critical regime are discussed in more detail in the next section.

2.4.3 Reflection at an inclined boundary: nonlinear and viscous effects

The predictions of linear inviscid theory outlined in sections 2.4.1 and 2.4.2 have been replicated

by other theoretical approaches, e.g. using linear geometrical ray tracing (Keller & Mow 1969)

or those using Green’s function approaches to model the evolution of wave groups, which have

finite extent in the direction of phase propagation, instead of tracing the individual plane wave

components (Kistovich & Chashechkin 1993). The general trends of sub and supercritical reflection,

such as the transfer between wavenumbers at the slope and the relative amplitudes of incident and

reflected waves, have been confirmed in laboratory experiments (e.g. Sandstrom 1966; Wunsch 1969;

Cacchione & Wunsch 1974; Thorpe & Haines 1987).

As critical conditions are approached, the linear analysis infers that the group velocity of wave

energy incident at a sloping boundary tends to zero and the energy therefore becomes confined

to the region of incidence. Experimental and numerical studies as well as field observations of

these configurations have reported complicated and energetic fluid behaviour close to the boundary

(e.g. Cacchione & Wunsch 1974; Eriksen 1982; Eriksen 1985; Thorpe & Haines 1987; Ivey & Nokes

1989; De Silva et al. 1997; Slinn & Riley 1998; Ivey et al. 2000; McPhee-Shaw & Kunze 2002;

Nash et al. 2004; Venayagamoorthy & Fringer 2007). In particular, the high energy densities and

shear in these regions promote nonlinear effects such as the generation of higher harmonics, which

propagate energy away from the boundary, and flow instabilities, which develop into turbulence and

cause mixing of fluid along the boundary. The primary reflected wave and higher harmonics are

described here as ‘far-field’ fluid responses, whilst fluid structures forming along the boundary and

the associated fluid mixing are described as ‘near-field’ responses. The partitioning of the incident

wave energy between the far-field and near-field responses is determined by subtleties in the values

of θ/α as well as the significance of viscous and buoyancy driven boundary layers.

The breakdown of linear inviscid theory in near-critical conditions together with the wave-

field observations have therefore prompted many analytical studies (e.g. Thorpe 1987; Kistovich

& Chashechkin 1993; Kistovich & Chashechkin 1995; Dauxois & Young 1999) investigating the

influence of nonlinear, time dependent, viscous and nonBoussinesq contributions to the dynamics.
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The unphysical singularities are found to prevail under inviscid linear nonBoussinesq (Kistovich &

Chashechkin 1993) as well as in inviscid nonlinear (Thorpe 1987; Tabaei et al. 2005) treatments

of the problem. However, the singularities have been successfully removed in analytical models

by the inclusion of viscous diffusion (Kistovich & Chashechkin 1995; Dauxois & Young 1999) and

also by consideration of the time dependence of the problem (Dauxois & Young 1999). The in-

clusion of viscosity introduces a mechanism for significant diffusion of wave energy. Kistovich &

Chashechkin (1995) deduced that whilst they propagate within the boundary layer along a slope,

wave groups experience exponential decay in amplitude, ∼ exp(−zα/δα), where zα is a coordinate

oriented perpendicular to the slope and δα is the depth of the boundary layer given as

δα =

√

2ν cos θ

N (cos2 α− cos2 θ)
. (2.41)

Elsewhere, the amplitude was found to decay according to s
−1/3
R , where sR is the distance of

propagation of the reflected wave energy away from the reflection region on the slope. Wave groups

propagating in near-critical conditions are therefore subject to strong attenuation, since the wave

group necessarily propagates within the boundary layer for a greater time in this geometry due

both to the direction and the vanishing magnitude of the group velocity. The nonlinear scatter of

incident wave energy amongst wave components of frequencies different to that of the incident wave

and to the generation of turbulent motion and mixing in the boundary layer are discussed in the

following sections.

Far-field dynamics: energy scatter to higher harmonics

Within the linear description of reflection at a sloping boundary, incident and reflected wavefields

simply superpose in regions where they overlap. Under a nonlinear description, however, the wave-

fields interact at higher orders, with respect to the forcing amplitude ε, and generate additional

wavefield components. The second and third order inviscid behaviours of wavefields were derived

by Thorpe (1987)1 from iterations of Phillips’ (1966) linear solution. The nonlinear treatment high-

lighted resonance regimes occuring between the incident and reflected wavefields. In particular,

the singularity of the linear solution at the critical value θ/α = 1 is not removed by the inviscid

nonlinear analysis. Higher harmonics are generated by interactions between the incident, primary

reflected and higher order reflected wavefields. The interaction of wave components defined by the

frequencies σ1 and σ2, with σ1 ≥ σ2, and corresponding wavenumber components parallel to the

slope k̂1 and k̂2, for example, can produce higher harmonics with the frequencies σ1 ± σ2 that have

the parallel wavenumber components k̂1 ± k̂2 respectively. In general, the wavenumber components

normal to the boundary are determined in the same manner from sums and differences of those of

the interacting waves. The exceptions are those harmonic components that are predicted specifically

1Note that a variety of definitions of sub and supercritical are used in different studies. Results of these studies
are presented here in terms of the definitions used in this thesis.
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to ensure that the boundary and radiation conditions are satisfied at each order. In accordance with

the dispersion relation, the higher harmonics are nonevanescent waves provided that their frequency

is less than N and they propagate at angles θn = cos−1 (nσ/N), where nσ is the frequency of the

harmonic expressed as an integer multiple n of the primary frequency σ. Thorpe’s analysis indicates

that an along slope Eulerian flow, corresponding to zero frequency, is generated at second order.

Resonances are indicated by singularities in the nonlinear solution and occur at second order for

reflections at shallow slopes, α > 81.6◦, provided that the secondary harmonics are nonevanescent,

i.e. 2σ < N , and also at third order at slopes with α > 78.2◦. The nonlinear behaviour of the

wavefield becomes pronounced in near-critical or near-resonant conditions.

The generation of secondary harmonics were also predicted by Dauxois & Young (1999) and

both secondary and tertiary harmonic generation were predicted by the nonlinear inviscid analysis of

Tabaei et al. (2005). The presence of secondary (Peacock & Tabaei 2005; Gostiaux et al. 2006) and

tertiary (Gostiaux et al. 2006) harmonic components have been confirmed in experimental studies

as well as by numerical simulations (Javam et al. 1999; Tabaei et al. 2005). The energy associated

with higher harmonic components of the scattered wavefield is in general a small proportion of

the incident wave energy (e.g. Gostiaux et al. 2006). In accordance with the predictions of Thorpe

(1987), the amplitudes of nonevanescent secondary harmonics were found to be most pronounced

in near-critical conditions and to become substantially weaker for supercritical configurations in

both numerical (Slinn & Riley 1998; Tabaei et al. 2005) and experimental (Peacock & Tabaei

2005; Gostiaux et al. 2006) studies. The directions in which energy associated with nonevanescent

higher harmonic components propagates are determined by the geometry of the configuration. In

particular, numerical simulations (Tabaei et al. 2005) and experiments (Peacock & Tabaei 2005;

Gostiaux et al. 2006) have demonstrated the scatter of higher harmonic energy in the opposite

vertical direction to that of the primary reflection for configurations that are supercritical with

respect to the primary reflection but subcritical with respect to the secondary harmonic.

The accurate measurement of wavenumbers of reflecting wavefields has been restricted by the

resolution of experimental and numerical techniques. However, the recent experimental study of

Gostiaux et al. (2006) has been successful in analysing the wavenumbers both of the primary re-

flections as well as secondary and tertiary excited harmonics. The study isolated each harmonic

component with application of a temporal filter to results of near-critical and supercritical reflec-

tions at a slope with α = 68◦. Analysis of the results revealed that in the marginally subcritical

(θ/α = 0.96) configuration, both secondary and tertiary harmonics were visable and were associated

with wavenumbers that were twice and three times that of the primary reflection respectively (see

e.g. Thorpe 1987 and Tabaei et al. 2005). In the marginally supercritical (θ/α = 1.08) configu-

ration, however, the wave energy was scattered dominantly between the primary reflection and a

tertiary harmonic, which was associated with a wavenumber equal to that associated with the pri-

mary reflection. The wavenumber selection for the tertiary harmonic was attributed to unexplained

subtleties of the nonlinear interaction. The study also demonstrated evidence of an evanescent

tertiary harmonic confined to a small region near the slope.
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Near-field dynamics: Boundary layer structure and fluid mixing

The nature of the fluid motion in regions in close proximity to a boundary is described here. Fluid

motion near a boundary is influenced by both buoyancy driven (e.g. Phillips 1970; Wunsch 1970;

Woods 1991) and viscous boundary layers (e.g. Batchelor 1967). For the fluids considered here,

buoyancy driven boundary layers are typically ∼ O(0.1) mm in depth and so, in general, their

influence can be neglected. The effects of buoyancy driven layers in the context of undisturbed

stratifications, however, are discussed further in section 3.7.

The effects of viscosity have been shown to be significant in near-critical configurations (Kistovich

& Chashechkin 1995; Dauxois & Young 1999), where its inclusion surmounts the unphysical singular

fluid behaviour predicted by linear inviscid theory. Shear motions and hence the viscous influence

are enhanced in these configurations by the large gradients that occur in the direction normal to

the boundary, resulting from the singular tendencies of the reflected wavenumber, together with the

large energy densities, caused by vanishing group velocities. The degree to which viscosity is able to

stabilise the singular critical fluid motion predicted by inviscid linear theory has been parameterised

by the Reynolds number defined by

Re =
ε2σ

ν
(2.42)

(Ivey & Nokes 1989), where ε is a characteristic amplitude of the incident wave motion, σ is the

frequency of the incident wavefield and ν is the kinematic viscosity. At small Reynolds number

(∼ O(1)), the fluid motion along the boundary layer is stabilised by the viscous dissipation and

the fluid responds to the strong shearing motions near critical conditions by the development of

regular structures along the boundary, with only local generation of mixed fluid. The development

of regular along-slope structures of vortices were reported in experiments with Re ∼ 2 (Cacchione

& Wunsch 1974). The vortex structure was most significant for near-critical and supercritical

conditions, having the largest diameters when critical. The presence of vortices was also noted

for some subcritical configurations with θ 6≈ α. Though they did not detail parameter values

at which the subcritical vortices were observed, it is conjectured here that these occured near

resonance singularities of the nonlinear solution of Thorpe (1987). The second order resonance

predicted for α > 81.2◦ would have coincided with their experiments with slope angle α = 93◦

for sufficiently low forcing frequencies. The boundary layer vortices observed in the near- and

supercritical configurations of Cacchione & Wunsch (1974) were typically characterised by sizes

smaller than the incident wavelength, with their size oscillating in phase with the wave propagation.

Boundary layer fluid was mixed in the vortex cores through convective instabilities and subsequently

propagated horizontally away from the boundary region into the stratification at the level where

it was neutrally buoyant. The study also reported ‘fronts’ (characterised by a region of relatively

large density gradients) generated by each wave that propagated up shallow slopes, with α = 75◦,

93◦, for near- and supercritical conditions as well as more pronounced upslope fronts exhibiting the

generation of a vortex at the leading end of the front in subcritical cases. The collapse of the fronts

induced local mixing along the boundary, with the mixed fluid intruding into the stratification
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as described above. Mixing associated with breaking waves became more vigorous in subcritical

conditions and for steeper slopes (α = 45◦, 60◦).

The fronts observed by Cacchione & Wunsch (1974) are reminiscent of the upslope Eulerian

flows predicted in the nonlinear inviscid analysis of Thorpe (1987) and similar structures have been

described in other studies as a ‘surge’, a ‘bore’, or an ‘internal bolus’. The generation and evolution

of internal boluses are considered in detail in Thorpe (1992) and the set of numerical studies by

Venayagamoorthy & Fringer (2005, 2006, 2007). Fronts like those described by Cacchione & Wunsch

(1974) were also observed in experiments with Re ∼ 20 for α = 70◦, θ/α = 0.98 (Thorpe & Haines

1987); at similar values of the Reynolds number for critical reflection at α = 60◦ (Ivey & Nokes 1989);

and with 23 ≤ Re ≤ 57, α = 55◦ for the marginally subcritical conditions θ/α = 0.89 (Dauxois et

al. 2004). Dauxois et al. (2004) also reported fronts in the supercritical regime, θ/α = 1.15, where

the fronts and associated mixing were more pronounced than in the subcritical case, developing

convective instabilities at the head of the fronts. This effect was attributed to the geometrical

confinement of the propagating energy between the slope and the incident wave. Whilst secondary

harmonic generation was not discussed in detail in these studies, for the sake of completeness the

possible angles, θ2, of propagation of these modes are given here. For the experiments of Thorpe &

Haines (1987), Ivey & Nokes (1989) and in the supercritical case of Dauxois et al. (2004) values for

angles of propagation of secondary harmonics can be calculated as θ2 ≈ 44◦, 0◦ and 26◦ respectively.

The discussion of the previous section suggests that these were most significant for the experiments

with larger Reynolds number (i.e. larger forcing amplitude) and in near-critical conditions, so that

perhaps the study of Ivey & Nokes (1989) was most influenced by this nonlinear effect. As an

additional note, Thorpe (1999) predicts that fronts are also generated in configurations that are

near-critical with respect to generated higher harmonic components of the wavefield.

The near-critical instability characterised by the structure of vortices along the boundary was

not observed in the higher Reynolds number experiments of Thorpe & Haines (1987), Ivey & Nokes

(1989) or Dauxois et al. (2004). Ivey & Nokes (1989) studied the transition between laminar and

turbulent boundary layer responses for different Reynolds numbers by varying the incident wave

amplitudes, and suggested that it occured at Re ∼ 15−20. In contrast to the structured boundary

layer observed by Cacchione & Wunsch (1974), Ivey & Nokes (1989) reported the development of

a turbulent boundary layer characterised by an average depth of 5 ε in critical experiments with

α = 60◦ and at Re ∼ 170. Transient events described as “backward-breaking rollers” were also

noted, which perhaps suggest the structure of the boundary layer at Reynolds numbers intermediate

between those associated with more regular boundary features for Re < 15 and the turbulent

behaviour at Re ∼ O(100). The transition from front formation along a sloping boundary to a

more turbulent boundary layer at larger Reynolds numbers was also seen in numerical simulations

of critical reflections at slopes with α > 85◦ by Slinn & Riley (1998). They observed a boundary

layer depth of magnitude ∼ λz/2, where λz is the vertical component of the incident wavelength. In

all experimental and numerical studies, features of both laminar and turbulent boundary layers were

consistently enhanced during fractions of the wave period that the incident wave phase propagated
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up the boundary.

The instabilities and degrees of fluid mixing generated by near-critical reflections have been the

subject of much debate. Some authors argue that the initial along-slope instability occuring for a

near-critical reflection is shear driven (e.g. Eriksen 1985; Slinn & Riley 1998), whilst others have

suggested a convective mechanism (e.g. Cacchione & Wunsch 1974; Thorpe & Haines 1987; Dauxois

& Young 1999; Dauxois et al. 2004; McPhee-Shaw & Kunze 2002), with vortices along the slope

overturning fluid layers (see sections 1.2 and 1.2.3). Dauxois & Young (1999) studied the temporal

evolution of the boundary layer structure and deduced that the convective instability is initiated

first. Their analysis predicts the initial development along the boundary of a structure of vortices,

with alternating sign, that narrow in the direction perpendicular to the boundary inversely with

time with the growth of oscillations in this direction. The growth is interrupted by the convective

instability. Dauxois & Young (1999) also note, however, that the apparent prevalence of convective

over shear mechanisms is subject to the definition of the Richardson number used. Ensuing turbu-

lence generates mixed fluid that can propagate horizontally away from the boundary, forming thin

intrusions into the surrounding stratification. Such intrusions have been observed in experiments

and numerical simulations (e.g. Cacchione & Wunsch 1974; Slinn & Riley 1999) and are studied

in greater detail by McPhee-Shaw & Kunze (2002). McPhee-Shaw & Kunze (2002) found that

intrusions are generated by mixing caused by convective overturning within the boundary layer at

lower Reynolds numbers and are characterised by vertical scales proportional to ∼ cos θ/ cosα. The

regularity of the intrusions is lost as critical conditions are approached and intrusions are not gen-

erated at larger Reynolds numbers as the mixing becomes more homogeneous along the boundary.

This section has outlined reflection behaviours of wavefields incident at sloping boundaries inclined

at a constant angle α to the vertical as a function of θ/α. The insufficiency of the parameter θ/α

in the catagorisation of reflection regimes has been demonstrated through the critical breakdown

of inviscid linear theory and the reported near-critical enhancement of the nonlinear generation

of higher harmonics as well as along boundary features that produce mixed fluid. Experimental

studies have concluded that sub and supercritical behaviours are generally accurately predicted by

linear theory provided that θ/α is sufficiently less than or greater than unity. The determination

of the bounding values of θ/α of the near-critical regime is more complex and has not been anal-

ysed rigorously in previous studies. The following section discusses scattering behaviours at rough

boundaries, for which θ/α is not a constant.

2.5 Scatter at rough boundaries

The previous sections, 2.4.1-2.4.3, described subcritical, supercritical and near-critical reflection

behaviours of waves at sloping boundaries that were inclined at a constant angle α, where the

boundaries were long with respect to the length scales associated with the wavefields. In the ver-

nacular of the field of geometrical optics, reflection behaviour in these configurations is often termed

34



2. Background 2.5. Scatter at rough boundaries

‘specular behaviour’ as a convenience for comparison with wavefields scattered from more compli-

cated boundaries (e.g. Mied & Dugan 1976). This description refers to the directions, wavenumbers

and amplitudes of a wavefield reflecting at a smooth slope for a given value of α and will be used

throughout this thesis.

The present section considers wave interactions with boundaries that have spatially dependent

height, AT (x), where x is the horizontal coordinate of the two-dimensional Cartesian plane (x, z),

and for which the angle made between the tangent to the boundary at a position x and the vertical,

α = α(x), is not constant. Consideration of such boundaries therefore introduces additional length

scales as well as nonzero higher order derivatives of the boundary slope and the possibility of

discontinuities of the boundary slope at features such as sharp corners. Unless otherwise stated,

stream functions of the incident wavefields, ψI , referred to in this section, as in section 2.4, are

assumed to have the form

ψI = ψ̂I exp(−iσt), (2.43)

where the frequency σ is constant, ψ̂I = ε exp(ikI ξ), and the maximum wave amplitude satisfies

ε ≪ 1. Wavefields interacting with rough boundaries are subject to the boundary and radiation

conditions applied in sections 2.4.1 and 2.4.2 so that on reflection

1. the temporal frequency, σ, is conserved in order to satisfy (2.28), so that scattered wave

components therefore evolve in time as exp (−iσt);

2. the parallel component of the incident wavenumber along the boundary is conserved;

3. the normal components of incident and reflected waves must sum to zero;

4. all components of scattered wave energy must propagate away from the boundary according

to the radiation condition.

At first order, scattered wavefields, ψS , are therefore represented by

ψS = ψ̂S exp(−iσt). (2.44)

Recall that, as a consequence of the dispersion relation, the phase of components of ψ̂S is hence

restricted to propagate in either of the four directions η, −η, ξ or −ξ.

Slowly varying boundaries

A boundary is described as ‘slowly varying’ provided that the radius of curvature of the boundary,

RT (x), is everywhere much greater than the length scales associated with the incident wavefield,

where RT (x) at a point along the boundary is defined as the distance from the centre of curvature

of that point. In such cases, plane wave assumptions and linear ray tracing analyses (e.g see

sections 2.4.1 and 2.4.2) may be assumed to be appropriate in regions of the boundary where the

angle parameter, θ/α, is not critical (e.g. Sandstrom 1966, 1972) since all components of the incident
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wave group experience almost identical reflection conditions. Within the ray tracing description,

the propagation paths of wave energy are identified with infinitesimally narrow rays that are aligned

with the group velocity vector of the incident wave. At first order, the rays are assumed to respond

at the boundary according to the specular reflection analogy corresponding to the local value of

θ/α at the point of incidence. As a result, scatter at locally critical regions of the boundary, where

the inviscid specular solution becomes singular, or at discontinuities, where the local slope is not

defined, are not resolved. Wave energy incident on a slowly varying boundary is therefore predicted

to be focused or defocused by varying degrees along the boundary (see figures 2.4 (a) and (b)).

These effects correspond to regions of high and low wavenumber scatter respectively. Since the rays

are assumed to obey specular behaviour, at each point along a slowly varying boundary wave energy

is reflected in only one direction parallel to η, where the direction along this coordinate is specified

by the relative orientations of the incident group velocity and the normal to the boundary at that

particular point.

The efficiency of high wavenumber scatter of wavefields interacting with slowly varying slopes

having concave and convex curvatures was studied both analytically, using ray tracing methods, and

numerically by Müller & Liu (2000a,b). The studies found that convex boundaries were marginally

more efficient at high wavenumber scatter than boundaries with constant slope, whilst the least

high wavenumber scatter was observed for concave boundaries. As for boundaries with constant

slope (sections 2.4.1-2.4.2), the scattering behaviours of wavefields at slowly varying boundaries in

near-critical regions, i.e. θ/α ≈ 1, of the boundary, the effect of nonlinear interactions between

wavefields that overlap near the boundary and the influence of viscosity are not well understood.

Rough boundary catagorisation

The main focus of this thesis is to determine the scattering behaviours of waves encountering rough

boundaries. A boundary is defined as rough if the length scales of variation of AT (x) are comparable

with the length scales associated with a given incident wavefield. In such cases, characteristics

associated with an incident wave group are subject to different reflection conditions across the

extent of the wave group. Wave groups can therefore be deformed significantly, rather than just

scaled as is the case of reflection at a smooth slope, and the associated wave energy can also be

scattered away from the boundary in a number of directions, rather than solely along the direction

specified by specular theory. The complexity of scatter at rough boundaries becomes apparent when

attempts are made to parameterise the problem. As a result, previous research has been restricted

to a few specific idealised, generally linear, inviscid analytic cases with little or no experimental or

numerical results to compare to predictions.

In addition to the angle ratio, θ/α, a rough boundary can be characterised by the parameter

ÂT k̂T , where ÂT is the maximum vertical amplitude of the boundary and λ̂T = 2π/k̂T is a charac-

teristic horizontal lengthscale of the boundary variation. This length scale ratio therefore provides a

description of the maximum aspect ratio of the boundary. For convenience, the scattering behaviour
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at rough boundaries is divided in this section into three main catagories (see Baines 1971a,b for

similar catagorisations) according to

1. boundaries that have continuous spatial derivatives and for which ÂT k̂T ≪ 1;

2. boundaries that have continuous spatial derivatives and for which ÂT k̂T ∼ O(1);

3. discontinuous boundaries that contain features such as sharp corners at which the angle α is

not defined.

2.5.1 Linearised boundary conditions

Boundaries for which ÂT k̂T ≪ 1 and that have continuous spatial derivatives are described here

as ‘linearised’ boundaries. This terminology is similar to that used in e.g. Baines (1971a,b) and

is adopted for reasons described later in this section. Wave interactions with linearised, or ‘small

aspect ratio’, boundaries are necessarily subcritical everywhere, with reflection behaviour in the

limit ÂT k̂T → 0 expected to tend to that occuring at a smooth horizontal boundary. The radia-

tion condition therefore constrains the phases of scattered wave components to propagate along the

characteristic directions −η or −ξ. Linearised boundaries have been studied analytically and nu-

merically by e.g. Longuet-Higgins (1969), Baines (1971a,b), Mied & Dugan (1976), Fels (1977,1978),

Baines (1978), Rubenstein (1988) and Thorpe (2001). Although there are a number of experimental

studies that research the generation of internal gravity wavefields by flow over rough topography,

there are no published experimental studies known to the present author that report the scatter

of a remotely generated wavefield that interacts with a rough boundary. The predictions for the

scatter made in the studies listed above are presented here.

The scattering behaviour of wavefields incident at infinitely long sinusoidal, sawtooth and square-

wave boundary roughness profiles, where the boundaries have no mean slope, was studied using

inviscid linear ‘geometrical’ ray tracing by Longuet-Higgins (1969). As described above, the ray

tracing approach predicts locally specular reflection behaviour of wave energy at each point along

the boundary. Of the boundary shapes considered by Longuet-Higgins, only the sinusoidal profile

can be described as a ‘linearised’ boundary for sufficiently small values of ÂT k̂T . Such a boundary

is described here by the height function

AT (x) = ÂT cos
(

k̂Tx
)

. (2.45)

Longuet-Higgins (1969) applied ray tracing generically, without the formal restriction of the bound-

ary length scales and therefore predicted that, in accordance with specular theory, all wave energy

incident at an exclusively subcritical sinusoidal boundary is forwards reflected so that the phase

of the scattered wavefield, ψS , propagates along the characteristic coordinate direction −η. Since

the angle α varies along the boundary and changes sign at the maximum and minimum elevations,

incident wave energy therefore becomes focused along sections of the boundary that have positive

37



2. Background 2.5. Scatter at rough boundaries

θ
θθ

θ
θ x

z

ξ

−η

k̂T cos θ

k̂T

kI

KFkB

Figure 2.6: Schematic of wave energy scatter at a sinusoidal boundary with ÂT k̂T ≪ 1.

slope and defocused in regions with negative slope (see figures 2.4 (a) and (b)). Hence the peri-

odicity of the focusing and defocusing induced by the regular boundary profile imposes the length

scales associated with the boundary variation onto the scattered wavefield.

A general solution for the inviscid scatter of wavefields incident at linearised boundaries was

calculated by Baines (1971a). Baines determined an expression for the radiation condition (see sec-

tion 2.4) within the characteristic coordinate system (ξ, η) associated with the incident wavefield.

In particular, Baines solved the radiation condition by expanding to first order in the parameter

ÂT k̂T ≪ 1 (hence the description of ‘linearised’ boundaries) for wavefields scattering at sinusoidal

topography described as in (2.45), with the additional condition that kI ÂT ≪ 1 and also allowing

for nonzero mean slope of the boundary. In contrast to the predictions of ray tracing, this solution

indicates that, while most of the incident wave energy flux is forward scattered in the specular di-

rection with phase propagating along −η, the scattered wavefield can also contain a ‘back-scattered’

flux component that propagates back along the direction of the incident wave energy flux, i.e. the

phase of the back-scattered component is aligned with the coordinate −ξ. The spatial component

of the stream function describing the scattered wavefield can therefore be expressed as functions of

ξ and η according to

ψ̂S = ψ̂B(ξ) + ψ̂F (η), (2.46)

where ψ̂B represents the back-scattered component and ψ̂F represents the forward scattered compo-

nent. The following discussion is restricted to configurations for which the boundary has zero mean

slope, as illustrated in figure 2.6. The propagation directions and wavenumbers of the scattered

waves are determined by the parameter kI c/k̂T , where c = cot θ (see also section 2.2.3), which

compares the projected wavenumbers of the incident wave (coloured red in figure 2.6) and bound-

ary variation. For simplicity, the projected boundary wavenumber k̂T /c is denoted kT and in this

notation the parameter kI c/k̂T is written kI /kT . The forward scattered energy flux predicted by

Baines (coloured blue) is characterised by the set of wavenumbers denoted here by KF , where each

wavenumber is aligned with −η. KF consists of up to three components. One of these is equal

to the incident wavenumber kI and a second is equal to the sum of the incident wavenumber and

a wavenumber associated with the boundary variation kI + kT (i.e. high wavenumber scatter). A
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third forward scattered component is also possible that has wavenumber equal to the difference

kI − kT provided that kI /kT > 1 (i.e. low wavenumber scatter). The latter component becomes

back-scattered (coloured cyan), however, for values of kI /kT < 1. There is no back-scattered flux

predicted for values kI /kT > 1. The possible components of ψ̂F therefore have forms

∼ exp [−iη (kI )] , ∼ exp [−iη (kI + kT )] , ∼ exp [−iη (kI − kT )] (2.47)

and the possible back-scattered component, ψ̂B, has form

∼ exp [−iξ (kT − kI )] . (2.48)

The energy fluxes associated with the sum components for kI /kT < 1 and kI /kT > 1, and difference

components for kI /kT > 1 are O(kI
2ÂT

2
). However, Baines (1971a) notes that the back-scattered

component could become significant beyond the limits of the linearised boundary condition since the

associated energy flux is calculated to be O(kI kT )ÂT
2
. The discrepancies between the calculations

of Longuet-Higgins (1969) and Baines (1971a) result from the failure of ray tracing to satisfy the

radiation condition at the boundaries considered.

A numerical study by Mied & Dugan (1976) extended the solution of Baines (1971a), de-

scribed above, to calculate contributions from scattered components with wavenumbers of the form

kI ± nkT , where n is a positive integer. The numerical solution is therefore nonlinear in ÂT k̂T

but was shown to compare well for values of ÂT k̂T < cot θ/6 with the first order approximation

calculated by Baines (1971a) for the linearised limit ÂT k̂T ≪ 1. In general, the numerical solu-

tion converged provided ÂT k̂T < cot θ/2, and hence was restricted to wave-boundary interactions

that were everywhere subcritical. In particular, the numerical results show strong agreement with

Baines’ solution for the back-scattered fluxes with kI /kT < 1 but also report a back-scattered

flux for kI /kT > 1. Such components were predicted, though not formally calculated, by Baines

(1971a) at second order and above, and correspondingly this contribution appears in the numeri-

cal flux calculations with values several orders of magnitude smaller than the first order predicted

back-scatter.

Properties of the scattered wave components were investigated further with analytical and nu-

merical approaches by Fels (1977) (see also Baines 1978 and Fels 1978). Fels calculates that scatter

to nonspecular components is enhanced significantly for incident waves with vertical wavelength

of magnitude ∼ ÂT . Baines (1978) considers interactions of first order (in the wave amplitude)

components of the wavefield at higher orders and predicts the generation at second order of a

“steady streaming” that propagates horizontally away from the boundary. Another extension of

Baines (1971a) is the work of Thorpe (2001) that expands the two-dimensional linear theory for

boundaries of the form given by (2.45) to three dimensions. The study also considered higher order

components and the possiblities for resonant interactions, which produce wave components of higher

order in the wave frequency. In order for there to be resonant interactions between the different
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wave components, the sum of the wavenumbers of the two interacting waves is required to satisfy the

dispersion relation for a wave with frequency 2σ, with 2σ ≤ N . Conditions for resonance between

the incident and specular components are as those described in section 2.4.3 for smooth sloping

boundaries. Besides this, no other resonant interactions were identifed involving the specular com-

ponent. Scatter at sinusoidal topography was also considered by Rubenstein (1988), though this

study will not be discussed here due to critical errors in calculations within the paper, highlighted

by Müller & Xu (1992) and Thorpe (2001), which affect those details most relevant to this study.

2.5.2 Boundary variations comparable with wave scales: large amplitudes

Boundaries with continuous spatial derivatives that contain regions not satisfying the linearised

boundary condition ÂT k̂T ≪ 1 are classified here as ‘steep’ boundaries. In addition to the scat-

tering behaviours exhibited by linearised boundaries, steep boundaries can support both critical

and supercritical wave-boundary interaction regions. As a consequence, these boundaries can per-

mit downward scattered wave components propagating with phase aligned with the characteristic

directions η and ξ. The introduction of supercritical interaction regions can also allow regions of

the boundary to be sheltered geometrically from the incident wave energy flux, described here as

‘shadow’ regions (see e.g. Baines 1971b and Sandstrom 1966, 1972).

Calculations from the geometrical ray tracing study of Longuet-Higgins (1969) apply also to

scatter at large amplitude sinusoidal boundaries. For a given sinusoidal boundary, the angle αs

denotes here the minimum angle made between a tangent to the boundary and the vertical, which

corresponds to the point of greatest slope of the boundary. Results of the ray tracing analysis for the

case of θ/αs < 1 were discussed in the previous section. In the case that θ/αs > 1, then critical and

supercritical interaction regions exist along the boundary. For a given incident ray, such interactions,

which can produce downward directed fluxes, can result in repeated reflections with the boundary

that may thereby produce back-reflected fluxes with phase propagating along −ξ. The proportion

of the incident flux that is back-reflected, by repeated reflection, or forwards reflected, either at

subcritical regions of the boundary or through repeated reflections, is highly dependent on the

slope of the incident wave and the aspect ratio of the topography. Longuet-Higgins calculates that

for increasing θ/αs, the forwards transmitted energy coefficient, CF , oscillates between 1 (i.e. the

incident wavefield is completely forward scattered) and sin−1(tanαs/ tan θ)/180 (i.e. the incident

wavefield is partially back-reflected with coefficient CB = 1−CF ). However as noted above, though

this provides a first geometrical based approximation for the scatter this analysis does not satisfy

the radiation condition at the boundary, hence excluding the prediction of back-scatter through

mechanisms other than repeated specular reflections, nor does it provide wavenumber analyses of

the scattered wavefields or describe behaviour at critical regions of the boundary.
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Scatter at a critical point of a convex boundary region

Scattering behaviours of wavefields incident at boundaries featuring a single critical point along a

convex region of the boundary were calculated by Baines (1971b), using similar methods to those

used in Baines (1971a). This scenario can be divided into two classes of configuration - those for

which the incident group velocity vector is directed parallel to the tangent to the boundary at the

critical point, and those for which the incident group velocity vector is perpendicular to the tangent

at the critical point. Baines (1971b) refers to these configurations as diffraction and split-reflection

respectively. In the case of diffraction, scattered waves are geometrically permitted to propagate

with phases aligned with −ξ (i.e. back-scattered components), with −η (i.e. forwards scattered

components), and with ξ (i.e. downward diffracted components). Since there is just one critical

point, the portion of the boundary lying below the critical point is a supercritical interaction region

and is shadowed from (i.e. not directly exposed to) the incident energy flux. Baines calculates that

amplitudes of forwards scattered wave components tend to the form 1/|ξ| as the waves propagate

away from the critical point. In accordance with specular behaviour, the wavefield becomes singular

along the tangent to the critical point, i.e. in those scattering directions corresponding to phases

aligned with ±ξ. The singularity arises as high wavenumber components of the scattered field,

with vanishingly small group velocities, are generated, so that energy remains in this region. The

singular velocity fields of the back-scattered and diffracted wave components are found to differ from

the incident wave velocity by the factor (kI /|ξ|)1/2. In particular, Baines notes the significance of

this result, which indicates that this scattering behaviour is the same regardless of the radius of

curvature of the boundary feature. For the specific case of a boundary that has symmetric form

about the normal through the critical point, and which asymptotes to planes in the far-field, the

diffracted wave is calculated to propagate a distance of about the incident wavelength away from

the critical point.

In the case of split-reflection, the scattered wavefield becomes singular along the tangent to

the boundary at the critical point, i.e. oriented with the directions of energy propagation of the

forwards scattered and split-reflected components. In contrast to the diffraction configuration, the

singular velocity fields in these directions are found to differ from the incident wave velocity by the

factor (RT /|η|)1/2, so that the singularity is enhanced at more abruptly varying boundary profiles.

Baines finds that for a boundary feature that has a form similar to that for the specific configuration

discussed for diffraction, a back-reflected component is not generated.

Scatter at a critical point of a concave boundary region

Scatter in the vicinity of a critical point positioned along a concave boundary region was considered

by Baines (1974), with minor ammendments in Gilbert & Garrett (1989). In regions near the

critical point the geometry only permits scattered components with phases aligned with −ξ, ±η.
Baines found that the critical singularity predicted for the convex boundary scatter was absent in

the concave case and Gilbert & Garrett (1989) suggest that this is possible through the cancellation
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in the region adjacent to the critical point of the equal and opposite phases of scattered components

propagating along ±η. However, a fully nonlinear numerical study by Legg & Adcroft (2003)

disputed this cancellation mechanism on the physical grounds that, in general, nonlinear components

of the wavefields prevent the symmetry required for this to be true. Legg & Adcroft considered the

scatter at planar slopes, concave and convex sections of boundaries, where the ratio of the horizontal

length scales of the wavefield and those of the topography was 2.5. The study investigates nonlinear

features of the scattered wavefields and in particular reports upslope travelling bores for all boundary

shapes, though with less prominence in concave configurations. These bores, present in subcritical,

supercritical and critical boundary regions, were compared with those reported in studies of larger

scale planar slopes, discussed in section 2.4.3. Legg & Adcroft deduce that bore generation occurs

for values of the Froude number, Fr , greater than unity and defined by

Fr =
ÛI

cp

(

sin(θ + α̂)

sin |θ − α̂|

)2

, (2.49)

where ÛI is the amplitude of the velocity field associated with the incident wave and cp is the phase

velocity of the incident wave.

2.5.3 Discontinuous boundaries: sharp corners

A region of a boundary that has a radius of curvature much smaller than the length scales associated

with the incident wave is defined here as a sharp corner. Corners pointing outwards (i.e. into

the fluid) or inwards (i.e. recessed into the boundary) are referred to here as convex and concave

respectively. The previous section considered diffraction and split-reflection and the associated

singularities occuring at critical regions of a steep boundary. In the region of a sharp corner,

the slope of a boundary varies rapidly or can even become discontinuous. Hence, wave groups

encountering such regions experience discontinuous reflection conditions across their span and this

can impose singular behaviour in the scattered wavefield, which is permitted by the hyperbolic

nature of the system. Configurations involving convex and concave sharp corners were considered

using inviscid linear analyses by Longuet-Higgins (1969), Wunsch (1969), Hurley (1970), Robinson

(1970), Hurley (1972), Fels (1977,1978) and Gilbert & Garrett (1989), and the limiting case of an

infinitesimally thin ‘knife-edge’ was studied by Sandstrom (1966, 1969), Larsen (1969) and Robinson

(1969).

Convex sharp corners

Scatter at a convex corner with finite radius of curvature was calculated by Sandstrom (1972) by

application of the radiation condition to the scattered field predicted by specular reflection theory.

Sandstrom deduced that specular theory was appropriate except in a region of high boundary

curvature where a back-scattered flux, with phase directed along −ξ, was generated. Amplitudes

associated with this flux were found to be most pronounced as the radius of curvature of the corner
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decreased. Configurations where the boundary slope was discontinuous at a point, i.e. the boundary

had an infinitesimally small radius of curvature there, were considered by Gilbert & Garrett (1989)

using an extension of an earlier analysis by Hurley (1970) that, in particular, identified singular

velocities along characteristics passing through a sharp corner. Gilbert & Garrett (1989) calculated

the intensity of the back-scattered flux and found it to be a maximum in configurations where

characteristics passing through the corner on either side each make the same angle with the boundary

on their respective sides of less than 10◦, with a gradual decrease in the back-scattered flux for larger

values of this angle. However, this maximum only amounts to ∼ 1.5% of the incident wave energy

flux when averaged over a period and when the beam width is equal to one wavelength. The study

conjectured that the predicted back-scattered flux generated in this sharp corner limit represents

an upper bound to that generated at corners that have finite radius of curvature, such as those

discussed in Sandstrom (1972). Gilbert & Garrett (1989) also suggest that the back-scatter at

continuous sharp corners originates across the whole region of high curvature of the boundary and

hence is likely to be less highly focussed than that emanating from a point of discontinuity.

Concave sharp corners

Linear geometrical ray tracing (e.g. Longuet-Higgins 1969) predicts that incident wave energy can

undergo multiple, or even infinite repeated reflections within a concave region of a boundary. In

configurations allowing the latter case, incident wave energy is reflected repeatedly towards the

corner, or ‘trapped’, hence resulting in repeated focusing of the wave energy. The wavenumbers and

so energy density therefore increase as the wave propagates towards the corner. In the inviscid limit,

the reflection behaviour becomes singular near the corner with wavenumbers and energy density

becoming infinitely large (e.g. Hurley 1970). In configurations for which specular theory predicts

that wave energy is not trapped within the corner but instead reflects out of the corner after a finite

number of reflections, a singularity was shown to exist along the characteristic that passes through

the corner point by inviscid linear theory (Wunsch 1969). Wunsch (1969) demonstrates the removal

of such singularities in particular configurations. However, this was not possible in configurations

where the boundary on either side of the corner had critical slope. A singularity through the

corner was also shown to exist in the linear inviscid analysis of Robinson (1970). Robinson (1970)

considered nonlinear contributions to the fluid motion and found that their inclusion removed the

singular behaviour, whilst specular predictions for the scatter remained valid away from the corner

characteristic.

Scatter at a knife-edge

A limiting case of scatter at both a sharp corner and at steep topography is that of the ‘knife-edge’,

which constitutes a infinitesimally thin vertical feature of finite height, along an otherwise horizontal

boundary. Scatter at knife-edges have been studied by the linear inviscid analyses of Larsen (1969),

Robinson (1969) and Sandstrom (1969). A knife-edge configuration, confined within a channel, was
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studied in experiments and analytically with characteristic ray tracing by Sandstrom (1966, 1969).

In this description, wave energy incident on the exposed side of the knife-edge reflects supercritically,

i.e. the scattered phase propagates along η. Such downward scattered energy subsequently under-

goes repeated reflections with the upper and lower boundaries of the channel. Incident wave energy

passing over the tip of the knife-edge also undergoes specular reflections at the horizontal bound-

aries of the channel. In particular, Sandstrom predicted the formation of ‘shadow’ zones within

the channel to the rear of the knife-edge, as a result of the geometrical ‘shading’ caused by the

knife-edge from the incident wave energy. However, Larsen (1969) argues that such shadow zones

are not possible since they could only occur through the deconstructive interference of two waves,

with one of these having a nonzero group velocity component directed into the boundary so that

the radiation condition is not satisfied. Larsen’s analysis of scatter at a knife-edge positioned within

a channel used a normal mode approach with a correct application of the radiation condition. The

analysis mapped particle motions throughout the channel. Particles moved rectilinearly in regions

where the wave energy was forward transmitted beyond the knife-edge. The motions became more

ellipsoidal in regions where wave characteristics overlapped, such as in reflections regions at the

channel boundaries ahead of and beyond the knife-edge, ahead of the knife-edge where the incident

and back-reflected wavefields overlapped and also in the region directly above the knife-edge itself.

Larsen attributed an inverse square root singularity in the velocity field at the top of the knife-edge

to be a result of the infinitesimal width of the knife-edge. The results of Larsen (1969) were sup-

ported by numerical simulations by Müller & Liu (2000a). Robinson (1969) also used normal modes

to model the knife-edge configuration, representing the knife-edge as an array of vortices within a

channel and with an exponential stratification. As in Larsen’s analysis, Robinson (1969) calculated

there to be infinite velocities along wave characteristics passing across the top of the knife-edge.

In particular, Robinson noted that the gradient of the density perturbation became comparable in

magnitude to that of the background density field in the region at the top of the knife-edge and

argued that the influence of both nonlinear dynamics and diffusion therefore become important

there.

2.6 Summary

This chapter has outlined basic linear theory and properties of internal gravity waves, in partic-

ular in the context of their generation by an oscillating cylinder. Previous work on reflections of

internal gravity waves at horizontal, vertical and inclined smooth slopes has been reviewed and the

classification of reflections into sub, super and near-critical regimes defined. Scatter at small ampli-

tude ‘linearised’ boundaries as well as at rough boundary features such as isolated critical points,

sharp corners and knife-edges has also been described. In general, former consideration of scatter at

rough boundaries has been restricted to linear inviscid analyses, with predictions remaining largely

unverified by experimental or numerical results. However, the insufficiency of linear and inviscid

treatments is clearly evident from the unphysical predictions of singular fluid motion that have
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been made for configurations containing a near-critical region, or in the vicinity of rapid variations

or discontinuities in the slope of the boundary. The role of nonlinear fluid motion and viscous or

molecular diffusion in modifying this behaviour is not well understood, due in particular to the

complexity in parameterising the stratification, wavefield and boundary.

This thesis aims to determine limits of linear inviscid theory in describing scatter at various

boundary profiles with experimental results as well as assessing the significance of nonlinear and

diffusive contributions to the scattering problem.
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Chapter 3

Experimental Methods

3.1 Overview

This chapter outlines experimental procedures employed in the present research. Internal gravity

waves were generated in the laboratory by small amplitude vertical oscillations of a cylinder in stable

linear saltwater stratifications. The waves were scattered off topographies with flat, sinusoidal,

sawtooth, square-wave and knife-edge profiles. Resulting wavefields and other related flow structures

were visualised using synthetic schlieren and PIV (Particle Image Velocimetry) techniques.

Section 3.2 describes methods for making stratifications and measuring the resultant density

profiles. Sections 3.3 and 3.4 give details of the synthetic schlieren technique used for visualisation

of experiments and procedures followed to optimise image quality and minimise error. A description

of the PIV technique used to view near-field structures of the wavefields (discussed in chapters 6

and 7) is given in section 3.5. Internal gravity wave generation is discussed in section 3.6 and

the dampening of unwanted wave reflections is described in section 3.7. Experiment data from

this study illustrating key features of wavefields is presented in section 3.7. The chapter concludes

with a description of topographic profiles that were used in experiments and the parameters these

introduce.

3.2 Stratification

3.2.1 Double-bucket method

Stable linear saltwater stratifications were formed in a tank with internal dimensions of length

2350 mm and height 570 mm. The front and rear tank walls were made of transparent acrylic

sheets of thickness 10 mm held within an aluminium frame. After filling, the tank interior had an

approximately constant width with height of value 150 mm.

Stratifications were created using the ‘double-bucket’ or ‘two-tank’ method (Fortuin 1960; see

also Oster 1965 and Hill 2002 for further detail on double-bucket methods). The basic technique

uses an apparatus consisting of two large connected compartments: the first containing a volume
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of saltwater, and the second containing a volume of fresh water. The saltwater was prepared with

a specific concentration of common salt (NaCl). Each of the compartments, or buckets, had a

capacity of 0.13 m3. Saltwater was pumped from the first bucket at a fixed flow rate and was

added slowly to the surface of the deepening stratification in a manner such that there was minimal

disturbance and mixing of the fluid below. This process was aided by directing the pumped fluid

onto a sponge ‘float’ with polystyrene walls that sat on the surface of the stratification as it rose.

The sponge diffused the momentum of the the saltwater as it seeped through. This ensured a

consistent filling process and caused less mixing so that fewer discrete layers were formed within

the stratification. As saltwater was pumped out of one side of the double-bucket, the pressure

difference between the two buckets drove water at a nearly constant flow rate across from the fresh

water side, hence maintaining hydrostatic equilibrium between them. Fluid in the saltwater bucket

was continually mixed by a motorised pump in order to maintain a homogeneous concentration as it

was diluted by the flux of fresh water in from the second bucket. Linear stratifications characterised

by particular Brunt Väisälä frequencies may thereby be achieved by careful specification of the

initial concentrations and volumes contained in both buckets. The solutions required were formed

by precise dilution of saltwater (brine) with a typical density of about 1.18 × 103 kg m−3 (at 20.0
◦C) corresponding to approximately 24 percent by weight salt solution. The saltwater was formed

under cooler conditions than those in the laboratory. On standing in the laboratory, the solubility

of gases dissolved in the saltwater was reduced by the warmer conditions and the gases therefore

came out of solution. There were also dissolved gases present in the tap water used, where the gas

concentration had a seasonal variation. To reduce bubble formation within the stratified tank, the

double-buckets were therefore left to stand for at least a day before stratifying to allow bubbles to

nucleate and rise. In experimental contexts the bubbles formed could distort views as they developed

on tank walls, as well as rising under buoyancy causing transient but significant disturbances to

the stratification in their wake. Care was taken to submerge the water and brine hose jets whilst

filling the buckets so that less air could be entrained into the solutions during this process. The

delay period before stratification also allowed the temperature of the bucket solutions to equilibrate

to that of the surrounding environment and so avoid double diffusive effects when the tank was

filled. Whilst empty, the tank was levelled using spirit levels to ensure the base was horizontal and

was cleaned and dried carefully for the next set of experiments. Any moisture left on the interior

walls and base was found to significantly increase the rate of bubble nucleation after stratifying.

Stratifications generally took between 1.5 − 2 hours to complete.

3.2.2 Stratification measurement

Measurements were made in order to confirm that initial density profiles, ρ0 = ρ0(z), were linear

with depth and thereby validate the method of stratification. The value of the reference density, ρ̂,
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was taken as the average of ρ0 over the total depth, and the Brunt Väisälä frequency N given by

N =

√

− ĝ
ρ̂

∂ρ0

∂z
, (3.1)

where ĝ = |g|, was determined from the profiles obtained. Profile measurements were repeated at

intervals over the course of experiments to determine how density profiles evolved in time.

Several methods were available for such measurements, the most direct being discrete sampling

of stratifications. This involved slowly lowering a long narrow needle attached to a syringe into a

stratification and taking small samples of the saltwater at different vertical levels. The density at

each level could be determined using either a digital handheld refractometer or a density meter. The

refractometer available (Atago Palette PR-101) was calibrated with distilled water and was then

able to determine densities of just a few drops of each sample placed on a small back-lit prism by

relating the sample’s refractive properties to its density. Densities were given by the refractometer

in the form of Brix percentages (± 5 × 10−2 Brix%) and could be converted to densities measured

in the units kgm−3 by standard conversion tables. Slightly larger samples, greater than 1 ml, were

required for measurement by a density meter. An ‘Anton-Paar DMA 500’ density meter was used

which determined densities of samples to an accuracy of ± 5 × 10−3 kgm−3. Samples were injected

into a small ‘U’ shaped tube within the density meter and, depending on the initial temperature

of the sample, cooled or warmed to a temperature of 20◦C ± 1 × 10−2 ◦
C, controlled by a built-in

‘Peltier’ thermostat. The tube was oscillated and the density of the sample inferred from a relation

between its mass and resonant frequency. Between each measurement residual traces of the previous

sample were removed by air which was forced through the U-tube by a peristaltic pump.

The discrete nature of the sampling described above prevented fine scale vertical structure

of density profiles being captured dependably. However, more continuous measurements of density

with depth were possible by traversing a conductivity probe at a constant speed from the free surface

of a stratification to the tank base. The probe produced a conductivity profile of the saltwater over

the depth of the tank. Electrical conductivity of a saltwater solution is related to the concentration

of salt-ions present, since these are the means by which charge is transferred throughout the fluid.

After calibration, conductivity data therefore provided a measure of the density of the solution.

Although density meter readings were taken at a temperature of 20 ◦C, a typical temperature

of saltwater in the tank was 21 ◦C ± 0.25 ◦C. A discussion of the relationship between density,

conductivity and temperature can be found in Leppinen (1997). For a fixed saltwater concentra-

tion, conductivity increases with temperature introducing a small scaling discrepancy between the

measured conductivity and the density that it represents at 20 ◦C compared with its density at the

temperature of the fluid in the tank. However, for the purposes of this study, the density values were

not of direct interest and it was sufficient that the measurements that were made of the vertical den-

sity gradients were precise and these inferred accurate values for the Brunt Väisälä frequency, N .

Since the choice of a reference density, ρ̂, was arbitrary, the scaling discrepancy was inconsequential
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with respect to the density gradient and the corresponding value of N .

The conductivity probe was 720 mm long and consisted of an inner (2 mm diameter) and an

outer (6.35 mm diameter) stainless steel tube. The tubes were insulated from one another and

acted as an anode and cathode when they were included within an electrical circuit and a potential

voltage difference setup between them. The circuit was bridged by an alternating current, so that

the direction of polarisation changed periodically, to prevent electrolysis of the solution. The end

of the probe was fitted with a short tapered tip of height 6 mm made of an insulating material

Delrin. A narrow hole of diameter 0.3 mm connected the fluid at the nose of this tip to the interior

of the hollow inner steel tube. The capacity of the probe tip was therefore calculated to be 0.4 mm3.

Fluid could be sucked through the tube from the tip by setting up a pressure difference across the

length of the tube, for example by using a large syringe to extract air from the probe. The probe

was cleaned before use by syphoning a quantity (∼ 10−3 m−3) of water through the probe to ensure

there was no crystallised salt retained within the tube. Water used in this process was first purified

by reverse osmosis so that it was more receptive to solutes. The surface of the probe tip absorbed a

small amount of fluid during its immersion, causing expansion of the tip material and a reduction

in the size of the inner hole. Provided it was kept immersed, however, the tip could be considered

nonporous and hence the hole size constant during subsequent traverses.

A linear traverse was fixed to the tank and aligned so that the conductivity probe was moved

vertically. The traverse was automated via a computer and set so that the probe made downward

transits of the undisturbed stratification at a constant speed. The speed at which the probe was

lowered into the stratification was constrained by the residence time of fluid in the tip, tr. The

residence time was calculated as the ratio of fluid volume contained in the probe tip to the rate at

which fluid is syphoned through the probe, Q. A volume of 12 mm3 was syphoned over a time 150 s

with the probe positioned at a depth of 250 mm below the surface of a stratification. Hence the

average rate at which fluid was passed through the probe during this period was Q = 80 mm3 s−1

and so the residence time in the probe tip was calculated to be tr = 5.2 ms. The probe speed was

therefore chosen to be 1 mms−1, which allowed fluid contained in the probe tip, corresponding to an

earlier conductivity reading, to syphon completely through before the conductivity of fluid from a

deeper level in the stratification was measured. During each pass, conductivity readings were taken

every 1 s, producing several hundred data points over the depth of the tank.

Density profiles of stratifications were determined from conductivity data after careful calibration

of the probe. Eight samples were prepared for the calibration over the range of the densities within

stratifications. The conductivity probe was used to measure the conductivity of the samples and

the conductivity readings were subsequently plotted against the corresponding densities of each

sample as measured with the density meter. A constant of proportionality relating conductivity to

density was calculated from the line of best fit (found using a least squares linear regression) to the

data and used to determine the density profiles required. A typical example of this calibration is

shown in figure 3.1. The line of best fit has a gradient of 0.29 and an extrapolated conductivity

value of 0.13 Co at the density value of 998 kgm−3 corresponding to pure water, where Co is
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Figure 3.1: Calibration of conductivity probe for density values.

a unit representing conductivity. The prediction of a nonzero conductivity at this density from

the linear extrapolation arises due to slight voltages being present across even the open circuit

and also as a result of the nonlinear relationship between conductivity and density at densities

close to 1000 kgm−3. Figure 3.2 displays measurements of typical density profiles obtained from

calibrated conductivity data. The red solid line shows the density variation with height measured

one hour after stratification. This particular stratification represents an upper bound for the range

of densities contained in stratifications used in this study. The black solid line, taken from a

stratification that was a week old, represents a lower bound. The majority of stratifications used

in this study had profiles close to this bound. The range of Brunt Väisälä frequencies used in

this study were N ∈ [0.68, 1.5] rad s−1. At mid depths, the stratifications were characterised by a

linear vertical density profile, with minor localised fluctuations. The interior stratifications generally

improved with time, becoming closer to linear profiles as the fine scale structure was eroded slowly

by molecular diffusion (∼ 1.5 × 10−3 mm2 s−1) and lateral spreading, and hence vertical narrowing,

of any localised mixed patches. A 12 hour period was allowed before experiments so that fine scale

structure of the vertical density profile was smoothed by diffusion. A Boussinesq parameter, βo,

could be defined within the interior regions by

βo =
Hβo

N0
2

ĝ
, (3.2)

where ĝ = |g|, Hβo
≈ 500 mm was taken to be a typical vertical length scale of a stratification,

and N0 was a reference Brunt Väisälä frequency taken to be 1.5 rad s−1 so that βo ≈ 0.11. For the
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Figure 3.2: Vertical density profiles of stratifications measured using a conductivity probe (red and
black solid lines). Both stratifications displayed yielded buoyancy frequencies of 1.5 rad s−1. Dashed
lines indicate upper and lower vertical limits of linear density profiles.

purposes of this study the Boussinesq parameter gave an indication of how symmetrical features of

the fluid dynamics were in the vertical direction for a particular stratification. Values of βo ≪ 1

indicate strong symmetry.

The linear profiles did not extend to the base of the tank as a result of mixing that, despite

precautions, inevitably occurred in that region during the filling process. With care, the layer

could be minimised to an initial depth of ∼ 20 mm. The layer gradually thickened with time

due to mixing and diffusion, and thereby narrowed the interior linear region of the stratification.

Section 3.8 discusses strategies to cope with the effects of this layer on reflecting wavefields. A

layer with lower vertical density gradients also formed at the surface of the stratification due to

evaporation and mixing from removal of the sponge float used whilst stratifying or from insertion

of the wave generator or topographic profiles (see sections 3.6 and 3.8). This layer was typically

initially 10 mm in depth. As for the layer at the tank base, the surface layer extended deeper with

time, affecting the choice of position of the wave generator and topographic profiles within the tank

(discussed in sections 3.6 and 3.8) since focusing and reflection of waves occurred at changes in the

vertical density profile.
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3.3 Visualisation

The type and quality of information that may be obtained about the response of a stratified fluid to

a disturbance is determined by the methods employed for the data extraction. Ideally, non-intrusive

techniques are required that yield detailed qualitative and quantitative data about changes to the

initial density profile over the entire spatial field of interest. Flow structures present in a fluid with

a spatially varying density profile may be revealed by exploiting the refractive properties of light.

A local change in the refractive index of a medium results in a deflection of a propagating light

ray away from its original path and towards the induced gradient in the refractive index field. The

dependency of the refractive index of light on the density of a transparent medium through which

it propagates can therefore give rise to optical distortions of images viewed through the medium.

In the terminology used in lens development, the inhomogeneities of the medium that result in such

distortions are called schlieren.

3.3.1 Visualisation techniques

The linkage between changes in refractive behaviour of light passing through a fluid and inhomo-

geneities in the fluid density field has spawned a number of well-established visualisation techniques

including shadowgraphy, schlieren, Moiré methods and interferometry. These all feature various

schemes to filter light transmitted through a strategically lit experiment and thereby generate im-

ages from which the light intensity field can be related to specific flow properties such as the density

field and its spatial derivatives. Shadowgraphy (e.g. Dvorak 18801) uses an approximately colli-

mated light to produce a shadow image or ‘shadowgraph’ of an experiment that yields information

about the second spatial derivatives of the density field. Classical schlieren (e.g. Foucault 1859 and

Toepler 18642) employs parabolic mirrors to collimate, then focus the light with the addition of a

carefully positioned knife-edge that acts to filter light rays passing through the experiment. Angles

of deflection of light rays by the experiment can be measured from the resulting schlieren images.

The Moiré method uses a pair of masks consisting of parallel slits aligned in front of and behind

the experiment to form patterns (Moiré fringes) of light. The patterns are indicative of the effective

phase changes occurring between the masks due to the fluid motion between them (e.g. Weller

& Shepard 1948). Schlieren and Moiré methods thereby yield first spatial derivatives of the den-

sity field. Interferometry, however, produces direct measures of the perturbed density field (Mach

& von Weltrusbsky 1878). Interferometry uses a semitransparent mirror to split a beam of light

between two directions of propagation. One of these beams passes through the experiment whilst

the other is directed around it. The two beams are reconciled by a particular four (e.g. Tanner

1956, 1957; Zienkiewicz 1959) or six (e.g. Laws et al. 1982) mirror arrangement. Two interference

1Although shadowgraphs are more commonly associated with Dvorak 1880, the basic principle was first used
by German optician Johann Wiesel to assess eye cataracts as early as 1649 and was later implemented in a more
recognisable form to visualise convection above candles and lamps (Hooke 1705).

2Optical, or ‘classical’, schlieren methods were first used in observations of candle flames by Hooke (1672), though
experiments by Foucault (1859) and Toepler (1864) are more well known.
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images are produced that indicate the phase difference between the beams caused by the passage of

only one of the beams through the experiment. The visualisation techniques briefly outlined above

are described in more detail in Merzkirch (1974), Rienitz (1975, 1997), Patorski (1993) and Settles

(2001).

The data supplied by each of these techniques has been useful in various experimental studies of

internal gravity waves. Visual demonstrations of internal gravity wave beams were first presented

by Görtler (1943) using a shadowgraph and subsequently by the use of classical schlieren in the

more well known experiments of Mowbray & Rarity (1967). Schlieren images produced by the

latter experiments (and also e.g. Stevenson 1969) gave a qualitative insight into the development of

the structure of wave beams with increasing distance from their source. Angles that beams made

with the vertical could also be measured from the images and so the dispersion relation (2.16) was

confirmed for the known forcing frequencies, σ, of oscillation of the internal gravity wave source.

More quantitative results including measurements of beam widths and of amplitudes of the fluid

displacement parallel to the wave beams were achieved by interferometry (Laws et al. 1982; Peters

1985; Merzkirch & Peters 1992) and the Moiré fringe method (Sakai 1990).

3.3.2 Synthetic schlieren

Although schlieren and Moiré methods are able to produce some useful quantitative data about fluid

motion, their experimental arrangement is difficult and restrictive. Synthetic schlieren (e.g. Dalziel

et al. 1998; Sutherland et al. 1999; Dalziel et al. 2000) is a digital technique combining elements

of both methods to give data at the precision required for this study. The experimental layout is

relatively simple compared with those used in the visualisations described above and it allows the

user extensive control over the choice of resolution and field of view that is not as easily achieved

by the alternative methods. Applications of synthetic schlieren have included the study of internal

gravity wave beams generated by cylinders (e.g. Sutherland et al. 1999, 2000; Sutherland & Linden

2002; Onu et al. 2003) or by stratified flow over topography (e.g. Aguilar & Sutherland 2006; Aguilar

et al. 2006; Sutherland & Aguilar 2006) as well as for visualising micro-scale fluid phenomena at

high resolutions (Yick et al. 2007).

A schematic of a typical synthetic schlieren experiment layout used in this study is given in

figure 3.3. A random pattern of transparent dots within an otherwise opaque black mask was fixed

to a diffuse light source placed behind the stratified tank. The mask spanned the field of view seen

by a digital video camera that was situated at a distance Lc in front of the tank. Light rays emitted

through the dots and propagating along paths that passed through the tank and camera lens were

incident on the image sensor of the camera comprising a rectangular array of ‘pixels’. Light rays

incident on a camera pixel generated a charge with magnitude proportional to the light intensity.

It is necessary to formulate the relationship between the light intensity field associated with

the images and the fluid properties in order to gain an insight into the fluid motion from images

obtained of experiments. Perturbations to the density profile, ρ′ (x), of a quiescent stratification,
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Figure 3.3: Synthetic schlieren experiment configuration.

ρ0 (z), result in changes, n′ (x), to the refractive index field associated with the undisturbed or base

state, n0 (z). After transformation of the base state by a representative reference refractive index,

n̂, the refractive index field relative to the transformed base state, n̂ + n0 (z), can be expressed as

n (x) = n̂ + n0 (z) + n′ (x). The relationship between perturbations of the density and refractive

index fields is given by the formulation

∇n =
dn

dρ
∇ρ = β

n̂

ρ̂
∇ρ, (3.3)

where ρ̂ is a reference density and the relevant value of β for saltwater is approximately 0.184 (Weast

1981).

Perturbations in the refractive index field resulting from changes in the fluid density profile

deflect the path of light rays passing through the experiment and distort the view of the dot

pattern compared with that seen by the camera when the stratification is undisturbed. Comparing

dot positions before and during a disturbance therefore gives a measure of the deflection of the light

rays caused by the disturbance. The deflection field can then be used to calculate perturbations

of the refractive index field from which the causal density perturbations are inferred by the linear

relationship given in (3.3). It therefore remains to relate a given deflection field to the corresponding

perturbed refractive index field.

A light ray must satisfy Fermat’s Principle of Least Action (1657), which requires that the path

followed by a light ray passing through two points is the path that minimises the transit time rather

than the path length. Hence the first variational derivative of the integral of the refractive index
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along the light ray vanishes. The path of a light ray originating at the dot mask, x = (ξ(y), y, ζ(y)),

is determined by the partial differential equations (Weyl 1954)

d2ξ

dy2
=

[

1 +

(

dξ

dy

)2

+

(

dζ

dy

)2
]

1

n

(

∂n

∂x
− dξ

dy

∂n

∂y

)

, (3.4)

d2ζ

dy2
=

[

1 +

(

dξ

dy

)2

+

(

dζ

dy

)2
]

1

n

(

∂n

∂z
− dζ

dy

∂n

∂y

)

. (3.5)

If the position of the light ray is assumed to have small spatial gradients in the direction perpendicu-

lar to the field of view as it progresses through the experiment, so that dξ/dy ≪ 1 and dζ/dy ≪ 1,

and the disturbance is assumed to be two-dimensional (i.e. ∂n/∂y = 0), then (3.4) and (3.5) may

be approximated by the uncoupled ordinary differential equations

d2ξ

dy2
=

1

n

∂n

∂x
, (3.6)

d2ζ

dy2
=

1

n

∂n

∂z
, (3.7)

which may be solved to give the components of the ray path

ξ(y) = ξi + y tanφξ +
y2

2n

∂n

∂x
, (3.8)

ζ(y) = ζi + y tanφζ +
y2

2n

∂n

∂z
. (3.9)

Deflections of light rays from their base state paths are seen by the camera as ‘apparent’ shifts in

the positions of dots within the mask behind the experiment. Snell’s law may be applied to account

for the deflections of light rays as they enter or leave the solid tank walls (Dalziel et al. 2007). The

apparent translations, ∆ξs and ∆ζs in the x and z directions respectively, are therefore related to

the causal changes in the refractive index field for the experiment geometry described in figure 3.3

according to

∆ξs = −W
2

(

W + 2
n̂

n̂a
Ld + 2

n̂

n̂t
T

)

1

n̂

(

∂n′

∂x

)

(3.10)

and

∆ζs = −W
2

(

W + 2
n̂

n̂a
Ld + 2

n̂

n̂t
T

)

1

n̂

(

∂n′

∂z

)

, (3.11)

where n̂a and n̂t are the refractive indices of air and the tank walls respectively. Horizontal and

vertical gradients in the perturbed density field, ∂ρ′/∂x and ∂ρ′/∂z, are then given by (3.3) as

∂ρ′

∂x
= − 2

W

[

W + 2
n̂

n̂a
Ld + 2

n̂

n̂t
T

]−1 ρ̂

β
∆ξs, (3.12)
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∂ρ′

∂z
= − 2

W

[

W + 2
n̂

n̂a
Ld + 2

n̂

n̂t
T

]−1 ρ̂

β
∆ζs. (3.13)

3.3.3 Pattern matching

The spatial gradients of the perturbed density field were calculated by applying (3.12) and (3.13) to

the displacement fields relating to a sequence of digitised images, collected during an experiment,

and using the ‘pattern matching’ algorithm of the image processing package DigiFlow (Dalziel 2007).

The pattern matching found the displacements of the dot pattern by dividing each image into a

grid of ‘tiles’ or ‘interrogation windows’ and performing correlations of the positions of the dots

between tiles in consecutive images. Accuracy and resolution of the calculated displacements could

be controlled to a degree by the choice of tile sizes. In general, smaller tiles yielded displacement

fields of higher resolution but also increased computation times. In all cases, the optimal settings

for high accuracy and resolution were used. More detail on the pattern matching algorithm can be

found in the DigiFlow user manual (Dalziel 2007).

Regions of an image that contain topography or other solid boundaries were excluded from

the pattern matching calculations of the density perturbations by masking. Masks that set image

values to zero at pixels representing a solid boundary were applied to each experiment movie prior

to pattern matching. The masked points were subsequently ignored during the pattern matching,

hence reducing artificially large gradients in these regions.

3.4 Image optimisation and accuracy

It was critical to ensure that data collected from experiments had suitable resolution and extent

in space and time as well as having an accuracy that allowed the information retrieved from the

data through processing to be reliable. Every effort was made in the present study to enhance the

precision of measurements made and also to reduce or, where possible, eliminate possible sources

of error. Experiment procedures associated with the visualisation and methods of evaluating and

minimising error are discussed here.

3.4.1 Camera

The field of view and the spatial resolution of the camera chosen for a particular experiment de-

pended on the information required from the experiment and also the limitations imposed by the

camera, lens and the dot pattern selected. The camera used was a DALSA (Stop Action PT-41-

04 M60-02E) camera, with a high resolution of 2352 × 1728 pixels. The pixelated digital images

produced were saved on a computer and processed using DigiFlow (Dalziel 2007). The camera was

mounted with a Canon lens having an adjustable zoom of maximum focal length of 210 mm. This

focal length allowed the camera to be positioned at a typical distance of Lc ∼ 3 metres in front of

the tank whilst also maintaining a sufficiently large field of view so that the larger scaled spatial
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data could be collected. A large value of Lc was preferred as this decreased parallax effects caused

by light rays passing into the camera lens at nonzero angles, θ, relative to the optical axis A − B

shown in figure 3.3. Ideally, all light rays passing into the lens would satisfy θ = 0, which can only

be achieved when the separation distance between the camera and experiment, Lc, is infinite or by

using a large parabolic mirror. However, provided θ is small then parallax effects may be ignored.

The largest field of view used in this study spanned a region of approximately 681 mm × 500 mm.

The corresponding values of θξ in the horizontal and θζ in the vertical directions were therefore

calculated as 6.48◦ and 4.76◦ respectively. The camera’s high pixel resolution allowed fluid features

with spatial magnitudes that were a fraction of a millimetre to be captured at the largest field of

view. Decreasing this field of view at a fixed value of Lc increased the spatial resolution of the

images and decreased the effects of parallax.

A spirit level was used to ensure the camera was upright. A mirror was placed against the side

of the tank and the camera positioned such that the image of the camera was in the centre of the

view. This ensured that the camera lens, and so therefore the field of view at a given distance

from the camera, was aligned parallel to the sides of the tank. After positioning and alignment, the

camera was focused on the dot mask attached to the light source behind the tank. The light source

contained four pairs of high frequency fluorescent tubes each with power 58 W and luminous flux

(i.e. the perceived power) 5200 lm. A DigiFlow macro was used to aid focusing of the camera. The

macro calculated the quantity

H = (Pi,j − Pi+1,j)
2

1

2
(3.14)

over all pixels where Pi,j is the pixel intensity for the i, jth pixel of the image sensor. Gradients

between intensities registered by adjacent pixels were a maximum when the image was in sharp

focus.

An image was considered to be good quality if, amongst other attributes but most importantly, the

subject was in sharp focus and the image data representative of the light intensity field was spread

over a broad range of values that was not clipped abruptly at the minimum or maximum values. A

careful balance was required between the different camera settings, such as the aperture size, the

gain value and the exposure time, in order to optimise the image quality.

Aperture dilations, controlling the size of the region through which light entered the lens, are

measured by the ‘f-number’ or ‘focal ratio’. For an aperture of diameter Da and focal length of the

camera Lf , the focal ratio, Nf , is given by

Nf =
Lf

Da
. (3.15)

A smaller aperture dilation (i.e. larger Nf ) acted as a filter by reducing the range of possible angles

that light rays entering the lens could make with the optical axis A−B. This filtering increased the

distance over which the camera could remain focused, known as the ‘depth of field’ of the camera.
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Synthetic schlieren visualisation required that the dot pattern and the experiment, separated by a

distance Ld, were in focus simultaneously. Hence the aperture was optimally as small as possible, i.e.

the focal ratio was as large as possible, so that the depth of field was maximised to include focused

images of both the dots and the experiment. A smaller depth of field was required for smaller values

of Ld. However, a reduction in Ld decreased the distance that light rays could diverge between the

dots and the experiment and so made the apparent shifts in the dot pattern less pronounced and

harder to detect.

The aperture dilation also determined the total quantity of light that entered the lens at any

time. Too much light incident on the image sensor resulted in an overexposed image and hence a

loss of resolution. Too little light caused an image to be underexposed and therefore have a smaller

signal to noise ratio resulting in noisier processed images. A further constraint on the aperture

size was the unavoidable bending of light (diffraction) at the edges of the aperture opening. This

could cause slight blurring at the edges of images and became most significant for small aperture

dilations. At larger dilations, almost the entire surface area of the lens was utilised and distortions

or aberrations of the image could result from any imperfections in the lens itself. The choice of

aperture size was therefore nontrivial but provided the image was neither over or underexposed, the

sharpest focus combined with the greatest depth of view was achieved by smaller aperture sizes.

For an adequately lit experiment, the exposure of the image was affected by the exposure time

and camera gain. Although the camera was capable of 61 frames per second (fps), images were

captured at a rate of 25 fps. The exposure time of the image sensor during each frame affected both

the sharpness and light intensity of the image produced. A typical time scale for changes to the

fluid structure was O(1) s since the upper frequency limit for non-evanescent internal gravity wave

generation is the Brunt Väisälä frequency which had maximum values ∼ 1.5 rad s−1 and hence a

period of wave motion of 4.2 s. This corresponded to a temporal resolution of 105 frames per period.

Images were exposed for the entire frame period of 1/25 s. This choice of exposure time resulted in

sharp images, without blurring due to fluid motion in that period, which had the greatest intensity

of light for the given frame rate.

The gain was a factor by which the output from the image sensor was amplified to increase the

brightness of images and so the range of intensity values. The increased intensity range improved the

contrast between different intensity values. However, such an intensity multiplication also amplified

the noise in the image, which was in part an artifact of resistance in the electrical circuitry of the

camera and so, at least for this albeit minor contribution, was unavoidable in this study. Hence the

gain could be increased to allow the aperture size needed for optimal image exposure to be reduced

(and hence maximise the depth of field) provided the additional error introduced by the larger gain

value was not significant.

A measure of the error and its dependence on the gain was found by taking a series of movies at

different values of the gain with tracing paper covering the camera lens to diffuse the light entering

the camera. The aperture was adjusted before recording at each gain setting so that each movie

was taken at approximately the same basic light intensity. The root mean square light intensity was
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Figure 3.4: Error dependence on gain. Multiples n of unit gain.

calculated for each frame in a sequence of 400 and the standard deviation, ε, and mean, ε̂, of the

RMS values determined for each sequence. Figure 3.4 compares ε/ε̂ at each gain setting. The error

increases from the minimum value at 1.40 × 10−5 as the gain value is increased. Least square fits

are also displayed for the data set with and without the anomalous point at 6 times the unit gain.

This anomalous point is believed to be the result of the light source being inadvertently obscured

at the time of experiment. The gradients of these fits are 9.32× 10−6 and 9.96× 10−6 respectively.

Despite the relatively small increase in error with an increase in the camera gain, unit gain was

used in all experiments.

3.4.2 Dot mask

Dot masks required for the pattern matching consisted of transparent circles (dots), of diameter

Dd, which were randomly positioned within an opaque black background. Figure 3.5 (a) shows a

schematic graph of the spatial distribution of the response of the camera optics and sensor to light

passing through a transparent dot within such a mask. The blue line depicts the ideal response of

the camera, having a value of 1 (i.e. full exposure) across the centreline of the dot and an intensity

of 0 (i.e. zero exposure) anywhere across the surrounding black background. In reality, optical and

electronic effects result in blurring of the dot so that the actual image sensor intensity profile is

59



3. Experimental Methods 3.4. Image optimisation and accuracy

(a) (b)

xx

11

00

DdDd

Across-dotAcross-dot

positionposition

In
te

n
si

ty
o
f

In
te

n
si

ty
o
f

Im
a
g
e

se
n
so

r
re

sp
o
n
se

Im
a
g
e

se
n
so

r
re

sp
o
n
se

Figure 3.5: Schematic graphs of image sensor pixel intensities for (a) transparent dots within a
black background and (b) black dots against a transparent background. Blue lines show ideal pixel
intensities across a dot; red lines are representative of actual dot intensities due to optical blurring
and electronic effects; green lines show dot intensities possible after manipulation of output from
the image sensor.

better described by the red curve. The intensity for this curve does not reach the maximum and

there is a nonzero intensity measured beyond the circumference of the dot. However, the camera

gain can easily be adjusted to rescale the intensity profile, as depicted by the green lines, and

so maximise the contrast between the dot and the black background. Intensities relating to the

alternative choice of black dots within an otherwise transparent mask are shown in figure 3.5 (b).

Again, the blue line depicts the ideal intensity profile of the response of the image sensor. This

has a value of 0 anywhere across the black dot and a value of 1 elsewhere. The actual intensity

profile after the influence of optical and electronic effects is described by the red curve, which again

fails to reach the maximum contrast between the dot and the background. In this case however,

unless the intensity value defined to be black by the camera can be shifted to a higher intensity

corresponding to the actual minimum (dashed red line in figure 3.5 (b)) seen by the camera, then

there is no way to improve the contrast between the dot and the background. Whilst most cameras

cannot compensate for this, the DALSA camera used in this study had this capability and so the

choice to use transparent dots within a black background was largely arbitrary. Some benefit was

gained by using transparent dots within a black background, however, since the fraction of the light

source covered by dots was about a quarter of that covered by the background (discussed below).

Hence for this polarisation of the dot mask, less light was available to produce unwanted reflections

from the tank walls, etc., within the experiment area and thereby introduce sources of error into
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the visualisation.

Dot patterns were generated with PostScript files and printed onto transparencies using a high

contrast printer. Transparencies were carefully attached together with clear tape with an overlap

of less than 1 mm to create a large enough mask to cover the field of view required for a particular

experiment. Dot masks were fixed to a large diffuse light source aligned parallel to the tank and

positioned a distance Ld = 250 mm behind it. Since the light source was finite in size, the emitted

light intensity inevitably decreased towards the edges of the source. The mask being used was

therefore mounted at the centre of the light source so that it was back-lit as uniformly as possible.

The resolution of images produced was influenced by both the size of the dots and also the

fraction of the total area of the patterned mask that they occupied. Diameters of dots, Dd, were

necessarily large enough that sufficient light could be emitted through the mask and also so that the

camera could be easily focused on the dots. Smaller dot sizes allow the motion of density surfaces

of the viewed stratification to be resolved to smaller scales. However, a reduction in dot size also

increased the sensitivity of the visualisation to changes in the environment external to the tank -

with even nearby hand-clapping causing intensity ‘pulses’ in the images for dot sizes less than 1 mm.

Measures used to minimise external influences on the experiment are discussed in section 3.4.3. A

wide range of dot sizes were tested and it was found that optimally each dot occupied one or two

pixels when viewed by the camera. The dot diameter used for the minimum field of view was

Dd = 0.45 mm and that for the maximum field of view was Dd = 0.53 mm.

A random pattern of dots was used so that dots could be identified in terms of their position

relative to neighbouring dots, making it clearer where each particular dot ‘moved’ as the density

field was perturbed. Dot ‘movement’ within a regular pattern was more difficult to track since

each dot in the pattern was not easily distinguished from the others. The visualisation technique

was therefore more concerned with the apparent movements of groups of dots, rather than those

of individual dots. The PostScript file used to generate the random dot patterns first produced

a regular array of dots and then perturbed the position of each of the individual dots by random

amounts in the horizontal and vertical directions, restricting its perturbation to within a radius of

0.6 mm from its position in the regular array.

The dots acted as data points and so the fraction of the random pattern occupied by dots was

chosen to be as large as possible provided that the dots could be easily distinguished apart. It was

more difficult to track ‘movement’ of the dot patterns at higher dot fractions since the number of

data points was effectively decreased by dot clustering. Masks used in this study were specified in

PostScript files to have a dot fraction, Fd, of 26 %. Figure 3.6 (a) shows a section of a dot mask as

generated by the PostScript file and (b) an equal sized section of a digitised image produced by the

camera of a typical dot mask and with typical camera positioning and settings. Despite their equal

size, the two regions do not exactly coincide since the dot mask is positioned a distance ∼ 350 mm

behind the plane at which the camera is primarily focused. As a result, figure 3.6 (b) appears with

a higher dot fraction and relatively smaller dots than those shown in (a).
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Figure 3.6: Synthetic schlieren dot mask sections measuring 50 × 50 mm (a) as generated by the
PostScript file and (b) as viewed by the camera. Section shown in (b) is taken from an image of a
typical field of view with dot diameters 0.53 mm.

Figure 3.7 shows pictures taken with a microscope1 of dot masks with Fd = 26 % and comprising

dots with diameters, as specified in the generating PostScript files, of (a) 0.53 mm, (b) 0.45 mm and

(c) 0.35 mm. The printer produced images by superposing many approximately circular dots of

toner. The resolution limits of this printing method are clearly evident in the magnified images

and the dots were typically printed with irregular perimeters and smaller diameters than specified.

However, the dots were still distinct and approximately circular even at diameters below those used

in this study (figure 3.7 (c)) and it is expected that the deformities of the dots produced during

printing were not significant factors in this study.

3.4.3 Error reduction

Synthetic schlieren is highly sensitive to changes of the density field and so thermal convection

within the environment outside the tank introduced a significant source of error to experiments.

Several measures were therefore taken to reduce inevitable temperature or pressure fluctuations near

to the camera. Heavy black curtains isolated the entire experiment area from computers, people

and doorways or windows. Experiments were also automated to run during the nighttime when

the surrounding environment was less active and the heating was turned off (starting after several

hours of inactivity in the laboratory). As an additional precaution, a tunnel of diameter 635 mm and

length 1100 mm was positioned between the experiment and camera with one end sealed off except

for a few millimetres around the circumference of the camera lens. This gap isolated the camera

from any movement of the tunnel. The tunnel isolated the lens from density changes occurring

in the immediate vicinity of the camera, which had the strongest influence on results due to their

1Microscope photographs were kindly taken by J-W. van de Meent
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Figure 3.7: Close-up pictures of dot masks with Fd = 26 % and dots having PostScript specified
diameters of (a) 0.53 mm, (b) 0.45 mm and (c) 0.35 mm.

proximity. In particular the lens was largely shielded from the body of the camera that acted as a

heat source.

Another source of error was that of light rays entering the camera lens that had followed paths

reflecting off surfaces within the tank and laboratory. Surfaces capable of producing reflections

detectable by the camera were blacked out with curtains or matt black paper, and the interior of

the camera isolation tunnel was sprayed black. Other sources of light besides the back-lit mask

were also removed where possible. This included switching off overhead lights and blacking out

parts of the light source not covered by the dot mask. Heat generated by the light source was

also directed away from the experiment by strategically positioned card, even to the extent of

constructing chimney like structures at the open ends of the light source. As a result of this care,

there was a significant improvement in the general quality of movies recorded from experiments.

This was qualitatively observed by the flow features becoming more distinct in images. Also, prior to

the adoption of the various practices described above, typically one in every three experiments had

to be repeated due to significant inconsistencies in the surrounding environment caused by doors

shutting, close proximity of people or air temperature fluctuations caused by open windows and

heating. However, following the adoption of these error reducing practices, it was rarely necessary

to repeat experiments because of poor or interrupted visualisation.

3.4.4 Reference image and world coordinates

Processing of images of a perturbed stratification using pattern matching (see section 3.3.3) required

a reference image of the undisturbed stratification in order to determine the apparent translations

of the dots as a result of disturbances of the stratification. Ideally, the translations calculated by
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the pattern matching represented changes in the refractive index field caused exclusively by pertur-

bations, ρ′, to the linear stratification, ρ0. It was therefore essential that the reference image was

recorded when the laboratory conditions, such as the temperature of the surrounding environment,

and the unperturbed component, ρ0, of the density profile of the stratification were as close to

those present during the course of the experiment. Any dynamic fluid structures present whilst

reference images were captured became unavoidably included in all subsequent processing. Refer-

ence images were therefore taken immediately before experiments. Localised density fluctuations

in the laboratory air were inevitable during the recording of reference images and added noise to

the gradient fields produced by the pattern matching. Various methods were tested for collecting

reference images that had minimal noise. A single recent reference image collected under controlled

conditions was preferred for use in the pattern matching over the use of an average of several such

images. Processed images tended to be blurred when an average of a set of reference images was

used for the pattern matching due to the high frequency nature of the noise present.

DigiFlow permitted the association of a coordinate system with recorded images so that pixel

positions of points on an image could be identified in terms of a ‘real world’ location. In order

to apply a coordinate system to a particular set of experiments, an additional image was recorded

of a grid marked at 10 mm intervals in the horizontal and vertical directions and attached flush

to the tank wall closest to the camera in the relevant field of view. The image of the grid was

then used to specify the real world position of five or more points on the image, preferably chosen

to fix the positions at the extrema of the field of view. A linear transformation was subsequently

performed by DigiFlow to infer the coordinate system over the entire image. Such a coordinate

system allowed meaningful length and angle measurements to be made from recorded images as

well as compensating for any slight inaccuracies in the camera alignment.

3.4.5 Error estimate

A sequence of schlieren images were recorded of the tank filled with water as a means of estimating

errors associated with the visualisations caused by fluctuations in daytime laboratory conditions.

The movie was taken with typical camera settings and positioning and with most of the error controls

detailed above employed. The movie was, however, taken during the daytime in a moderately

active laboratory environment. Measurements of root mean square (RMS) values of the perturbed

buoyancy field corresponding to changes in the laboratory conditions are presented in figure 3.8.

The values calculated are two orders of magnitude smaller than typical measurements obtained of

the dominant wavefields in experiments. These error estimates may be considered an upper bound

to those associated with actual experimental runs that were performed in more stable nighttime

conditions and under more rigorous controls.
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Figure 3.8: Root mean square values of the perturbed buoyancy field for a sequence of images
recorded of fluctuations in the laboratory environment in daytime conditions.

3.5 Particle Image Velocimetry (PIV)

As discussed in section 3.3.2, synthetic schlieren allowed direct calculation of gradient fields of

density perturbations to the stratification. It was possible to use these fields to calculate the

perturbed horizontal and vertical velocity fields according to

u′ =
1

N2

∫

(

N2
)

t
dx, w′ =

1

N2

∫

(

N2
)

t
dz (3.16)

(Sutherland et al. 1999). Calculation of the velocity fields using (3.16) was valid provided that the

background stratification was both incompressible and linear, and the wave motion controlled by

dominantly linear processes (see Wunsch 1985 for related discussions). These conditions were not

guaranteed in the vicinity of topography. Wave focusing by topography as well as the interactions

between incident and scattered wavefields could enhance energy densities and hence the amplitudes

associated with the waves. To a lesser extent, the necessary curvature of isopycnals in narrow layers

near boundaries and the development of mixed layers also prevented accurate application of (3.16).

Particle image velocimetry, or PIV, is an alternative technique that yields direct information

about the fluid displacement and velocity fields. PIV has been used in other experimental studies

of stratified fluids that focused on wave generation by towed or oscillating cylinders (e.g. Merzkirch

& Peters 1992; Zhang et al. 2007) or by a spatially periodic wave generator (Gostiaux et al. 2007).

PIV visualisations have also been used to examine the interactions of existing waves with various
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Figure 3.9: PIV experiment setup.

topographies (e.g. Gostiaux & Dauxois 2007). PIV was used in the present research for near-field

(i.e. regions close to topography) studies of the scattering behaviour at the topographic profiles A

(sinusoid), D (sawtooth), K (square-wave) and L (knife-edge) (see section 3.8).

For the most part, the PIV experiment setup was similar to that used for the synthetic schlieren

measurements that were described in section 3.3.2. The synthetic schlieren method required a

camera to be focused on a patterned mask that was fixed into position behind the tank. During

PIV measurements however, the camera was focused on a vertical light sheet aligned with the

field of view and positioned approximately midway between the front and back walls of the tank.

Small particles suspended within those stratifications studied using the PIV technique acted as

passive tracers of the fluid motion. Particles positioned within the region of the light sheet were

illuminated so that they appeared bright. This enabled their motion, corresponding to the motion

of the stratified fluid, to be recorded and followed so that particle displacements and hence fluid

velocities could be determined. These calculations were performed within DigiFlow, which used

similar algorithms to those employed in the synthetic schlieren pattern matching described briefly

in section 3.3.3. More detail can be found in the DigiFlow manual (Dalziel 2007). A general

reference for PIV techniques is Raffel et al. (1998). In contrast to the synthetic schlieren experiment

arrangement, the topographic profiles in PIV experiments were positioned at the base of the tank

prior to stratification (see sections 3.3.2 and 3.8). This permitted the stratification to be more easily

lit by a light sheet and seeded with particles for the visualisation. The experiment configuration

used for PIV measurements is shown in figure 3.9.

Sveen & Dalziel (2005) proposed a technique that allowed the simultaneous visualisation of

fluid motion by synthetic schlieren and PIV. This employed an LCD monitor (in place of a dot
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mask attached to a light source as described in section 3.4.2) positioned behind experiments that

periodically displayed a random dot pattern or blank screen. The fluid was seeded with particles

as in a standard PIV setup, and synthetic schlieren and PIV measurements were synchronised with

the alternating monitor display. However, resolutions of the synthetic schlieren images visualised

in this manner were constrained by the resolution and brightness of the monitor available. Since

the fluid motion in this research was not turbulent and the wave motion repeatable, it was found

unnecessary to have simultaneous information about the density and velocity perturbations and so

a simpler setup could be used.

3.5.1 Light sheet

Light sheets were formed by directing an initially horizontal collimated beam of light at a mirror

that was positioned above the free surface of the tank. The mirror measured 450 mm in the along-

tank direction and was inclined at 45 ◦ to the vertical so that light from the lamp reflected through

90◦ and was directed vertically downwards into the stratification. The light source used was a 300 W

arc lamp2. This produced a beam within which component light rays were approximately, but not

exactly, parallel. The initially collimated beam therefore slowly spread out as it travelled away from

the lamp. Positioning the lamp ∼ 2.8 m from the mirror allowed the beam to diverge sufficiently in

the lateral direction so that it spanned the required field of view within the tank.

Light reflecting from the mirror could only enter the tank through a gap separating two 2 mm

thick aluminium plates of length 500 mm and width 200 mm. These were attached to the top of

the tank such that the 450 mm long slit formed between the plates was aligned in the along-tank

direction. The width of the slit, and hence the width of the light sheet, could easily be adjusted by

spacing the plates closer together or further apart. Several factors controlled the choice of width of

the light sheet. To a good approximation the fluid motion could be assumed to be two-dimensional,

except perhaps near the tank walls. It could therefore be expected that velocity data obtained

from following particle motion within a light sheet with a finite width was consistent with velocity

data for a plane section of the fluid obtained through the use of an infinitesimally thin light sheet

- provided that the light sheets were positioned sufficiently far from the tank boundaries. For a

given suspension of tracer particles, a wider light sheet increased the spatial resolution of the data

since a larger number of tracer particles (data points) were illuminated. However, the contrast

in the intensity field of an image obtained using a wider light sheet was reduced. The motion of

individual particles became less distinct where the particles were located at different depths within

the light sheet but occupied approximately, but not identically, the same position in the field of

view. This effect was more significant for wider light sheets where more particles were visible across

the thicker region. Also, although the entire width of the light sheet was contained within the focal

depth of the camera, there were nevertheless slight variations in the sharpness of the focusing of the

camera lens at depths of the light sheet away from the focal plane on which the camera lens was

2300W Xenon Perkin Elmer Cermax Lamp, type B Parabolic (PE300BF).
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primarily focused. Consequently, images of particles suspended within the light sheet but not in

the primary focal plane of the camera appeared slightly blurred. This reduced the contrast between

a region occupied by a particle and that occupied by fluid surrounding the particle. A narrower

light sheet therefore promoted a higher resolution of image intensities. The width of the slit used in

experiments was 4 mm. This width was found to produce images with an optimal balance between

spatial and intensity resolutions as compared with those produced in trials of experiments using

light sheets with widths ranging between 2 mm and 10 mm.

The arc lamp contained a Dichroic reflector that acted to minimise the radiation of Infrared

(heat) components of light in the light beam. Despite this, the light source and the beam that

it produced inevitably radiated heat to air surrounding the lamp. This heating and the resulting

convective motions affected PIV measurements in the same way that motion caused by temperature

inhomogeneities in the laboratory air, through various causes, were detected in synthetic schlieren

visualisations (see section 3.4.3). In order to shield the surrounding air from the heat produced, a

2.4 m tunnel was constructed between the arc lamp and the mirror above the tank. The tunnel was

made from 4 mm thick black corrugated plastic card and had a rectangular interior cross section

with width 550 mm and height 200 mm. The tunnel served the additional purpose of preventing

light from the lamp straying in directions other than directly towards the mirror and so creating

unwanted reflections around the laboratory and tank that would contaminate the visualisations.

Also to this end, gaps at the ends of the tunnel shielding the lamp and light beam were covered

using black card or cloth.

The positioning of the lamp several metres from the tank resulted in attenuation of the light

sheet both through heating of the air in the tunnel and by the divergence of light rays over that

distance. The light sheet also transferred a small amount of heat to the saltwater of stratifications

and had its greatest heating effect on the saltwater where the sheet was the most intense near

the slits at the top of the tank. Density profiles of stratifications had their smallest values in this

region. Divergence of the light sheet resulted in further attenuation of the intensity of the sheet

as it travelled downwards away from the slit. The heat transferred by the light sheet therefore

decreased with depth into stratifications and was minimal in the region near the bottom of the

tank. Since the heating gradient acted in the same direction as the vertical density gradient of

the stratification, double diffusive effects were insignificant and the density profile and fluid motion

were only influenced through a slight local steepening of the density gradient confined near the top

of the tank. In order to reduce heating effects further, a 2 mm thick sheet of transparent perspex

was placed between the aluminium sheets used to make the slit and the top of the tank so that the

saltwater was insulated from heat radiated by the metal. The aluminium plates were kept silver

in colour on the side facing the mirror so that light reflecting from the mirror onto the metal was

reflected back to the mirror to some degree rather than heating the plates, which in turn would

transfer the heat to the stratification. The sides of the aluminium plates facing away from the mirror

and the interior 2 mm edges of the slit were sprayed black in order to reduce light reflections and

light refracted by the slit edges propagating inside the tank. A further reduction in the heating of
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the plates was achieved by blacking out the area of the mirror not reflecting light directly downwards

through the slits. This also served to ensure that the light sheet diverged less in the across-tank

direction as it travelled deeper into the stratification as well as preventing multiple light sheets

being produced by light passing through the slits obliquely from other regions of the mirror.

Light reflections off the interior tank walls were a source of error in the experiment visualisations.

Reflections from the rear tank wall were removed by a 4 mm thick PVC board, measuring 1.9 m

wide and 0.57 m high and covered in matt black covering film, being placed within the tank prior

to stratifying. The blacked board was wedged firmly into position at each end by small blocks of

sponge. The board effectively reduced the width of the tank by 4 mm and the length of the cylinder

used to generate internal gravity waves was reduced by 4 mm to compensate. Additionally, the

measures taken in synthetic schlieren experiments (see section 3.3.2) to remove other sources of

superfluous light reflections and the noise introduced by the presence of computers, people or open

windows and doors, etc., were repeated here. The majority of PIV experiments were run during

the night and the laboratory was unoccupied, except for the necessary reseeding of stratifications

with particles between experiments.

3.5.2 Particles

PIV measurements rely on particles moving passively with the fluid in which they are suspended.

The particles used must therefore be chemically inert in the fluid and preferably have negligible

settling velocities. PIV visualisations of stratified fluids require that a range of densities of particles

are used. This ensures that an even suspension of particles is achieved over the entire field of

view, rather than the particles just being concentrated in a narrow band about a particular vertical

level. Stratifications used in this study had vertical profiles with density values in the range ∼
1.02 − 1.15 × 103 kg m−3. However, small enough particles exhibiting this exact range of densities

are not readily available commercially. Particles with densities that were close to those of the fluid

could therefore be assumed to act as approximately passive tracers of the fluid motion provided

that their sedimentation or rise velocities had sufficiently smaller magnitudes than the velocities

characterising the bulk fluid motion. For a given density of particle, an even distribution of particles

over the whole field of view could be achieved by ensuring there was a range of particles sizes

present, hence ensuring the particles sedimented at different rates and so covered the field of view,

or alternatively by reseeding the fluid intermittently with similar sized particles.

Particles played a similar role in PIV to that of the dots in the synthetic schlieren method (see

section 3.4.2). Many of the optimisations of the dot masks used in synthetic schlieren experiments,

applied in order to achieve high spatial and intensity resolutions in the data recorded, therefore had

direct analogies with the optimisations of particle suspensions used in PIV. In particular, the size

of particles and the fraction of the field of view occupied by the suspension were important factors

in controlling resolutions of the experiment data. Particles ideally measured one or two pixels in

diameter on images recorded of the experiments. Like the dots, particles represented data points and
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so, for an approximately evenly distributed particle suspension, an increase in the particle fraction

increased the number of data points, provided significant visual clustering did not occur. Unlike the

dots however, the particles were actually suspended in the fluid and at very high particle fractions

physical clustering of the particles could occur and result in the suspension having a non-negligible

influence of the fluid motion.

In order to achieve high resolutions of the intensity field of images, the particles needed to appear

as bright as possible against the surrounding fluid. The contrast could be controlled to some degree

by adjusting the intensity and width of the light sheet as discussed above. For a light sheet with

a particular intensity field and width, the contrast and so resolution of image intensities could be

reduced if the particle fraction became too high causing adjacent particles to become less distinct

from one another.

Particle description

The particles used for the PIV were artificial pearlescence3 made of mica coated with a surface

of silver-white iron oxide and having a range of particle sizes 10 − 60µm, though the samples

inevitably also contained particles of smaller sizes referred to here as ‘dust’. In contrast, natural

pearlescence consists of minute flat ellipsoidal fish scales. The surface of the scales is reflective and

so a suspension of pearlescence shimmers when positioned in a light sheet. Pearlescence is ordinarily

used in experiments as a fluid tracer since the scales have the useful tendency to align themselves

with the shear fields within the fluid (Savaş 1985). The patterns of shear in a fluid may therefore be

deduced from the light intensity field of an image taken of a suspension due to the preferential tilt

of the scales. Owing to the complex dependencies of the shear fields, the use of pearlescence in this

manner does not however allow the more useful quantitative information about fluid properties such

as velocity or density gradient fields to be inferred from the illuminated fluid patterns. Pearlescence

is rarely used in quantitative studies but has been successfully used to study turbulence, where

data is generally only obtained through analysis of the statistical properties of the visualised fluid

motion (e.g. Davidson et al. 2006; Staplehurst et al. 2008).

Artificial pearlescence is largely qualitatively the same as the natural version but may be ob-

tained in a wide variety of colours and scale sizes. This control over the brightness and size of the

scales made the artificial pearlescence a good choice for use as passive tracers in the PIV experi-

ments. Natural pearlescence also has the disadvantageous property of degenerating in water after

periods of a few hours. Artificial pearlescence is also significantly denser than natural pearlescence.

The fluid motion in experiments was approximately two-dimensional, with the fluid shear di-

rected along wave beams and parallel to the fluid particle displacements. The pearlescence aligning

itself with these shear motions therefore tilted so that the flat surface of each scale was perpen-

dicular to the field of view of the camera. It might be expected therefore that the scales were not

visible from the perspective of the camera since they could not reflect light perpendicular to the

3Iriodin R© 103 Rutile silver sterling. Item no. 1.04246, www.Merck.de.
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field of view whilst they were orientated in this manner. However, scales tended to intermittently

‘flip’ through 180 ◦. These ‘flipping’ events were witnessed in visualisations as flashes. The scales

statistically spent a very small fraction of the time flipping than remaining aligned with the flow.

The flipping allowed partial glimpses of the individual scales that were sufficient to indicate their

positions due to their highly reflective nature. This property of the pearlescence was also a major

disadvantage as compared with the use of the spherical particles ordinarily used for PIV studies.

The flipping events of the larger pearlescent scales were a source of error in the intensity fields

of images and resulted in significant localised overestimates of the fluid displacements and hence

velocities. These larger flashes were therefore ‘masked’ from movies by using a filter on each frame.

The filter set intensities to zero in regions that exceeded a specified size where pixel intensities

exceeded a specified threshold value. The area and threshold values were determined through a

trial and error process from studying the unmasked raw movies. The contribution from the masked

points was then ignored in the subsequent PIV processing using DigiFlow.

The small sizes of the artificial pearlescence available allowed the high spatial resolutions required

from the data obtained from experiments to be achieved. It was found through test experiments

that a subset of the range of particle sizes 10−60µm was suitable for the passive particle suspension

required. The pearlescence was more dense than the saltwater and so the different component sizes

of the particles sedimented at different rates when placed into stratifications. Unfortunately, the

composite nature of the artificial pearlescence prevented the assignment of a specific density range

for the particles. Consequently, the behaviour of the particles in solution had to be characterised

through trial and error. The largest of the range of particles sedimented too rapidly, taking minutes

to fall completely through the designated field of view. Sedimented particles collected at the base

of the tank and reflected light from the light sheet, creating a glare in that region. The smallest

particles, however, remained in suspension for several days. These finer dust-like particles were

too small to act as well-defined tracer particles in the visualisations and instead served to reduce

the contrast in images between the other larger particles and the surrounding fluid. The dust also

‘clouded’ the light sheet in the region where it was inserted into the stratification and so reduced

the light intensity reaching lower regions of the tank. The subrange of particles selected for use in

experiments were those that were large enough to be distinct in images viewed through the camera

but small enough that their sedimentation velocities permitted them to remain in suspension in

stratifications for at least an hour after being introduced near the top of the tank. The method

used to separate this optimal subrange of sizes from a mixed sample of the pearlescence and their

seeding within stratifications is described below.

Suspension seeding

A concentrated homogeneous solution of pearlescence was made by mixing ∼ 6 heaped spatula

measures of the pearlescence powder with 1 litre of water in a large beaker. The particles were

allowed to settle for approximately 30 minutes before the water and remaining suspension were
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Figure 3.10: Close-up picture of artificial pearlescence. Particles shown in (b) are enlarged by a
factor of 5 from the dashed square in (a).

carefully drained away and discarded. This process removed a large proportion of the unwanted

finer particles. A homogeneous solution was again made as above from the thick mixture of sedi-

mented particles collected from the base of the beaker and left undisturbed for a further 30 minutes.

Those particles still in suspension after this time were slowly poured into a second beaker. The

slushy mixture deposited at the base of the beaker contained the larger particles, which had the

larger sedimentation velocities, and was discarded. The retained suspension was left to stand undis-

turbed for a further 15 minutes before the sedimented particles were again removed as above. The

final suspension was allowed to stand for several hours before any particles remaining in solution

were poured away and the mushy deposit that was retained was used for seeding stratifications.

Figure 3.10 shows a photograph taken with a microscope of a sample of the artificial pearlescence

that was considered suitable for use4. The particles in this sample were typically characterised by

lengths ∼ 10 − 30µm. A 10 ml syringe was filled with the thick particle mixture and a long needle

was used to slowly inject the pearlescence solution into stratifications just below the free surface.

Care was taken to inject the particles evenly across the whole field of view and, as much as possible,

only into the region of the fluid lit by the light sheet so that the contrast of viewed images was

optimised (preventing reflections from particles outside the light sheet).

The particle suspension generally took about 40 minutes to settle into a useful form over the

whole area of the field of view. Particles settled at slower rates in a stratified fluid, as compared

with settling velocities in a homogeneous fluid, due to the entrainment of lighter fluid in their wake,

4Microscope photographs were kindly taken by J-W. van de Meent
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Figure 3.11: Image of particle suspension used in PIV as viewed by camera.

which increased their buoyancy and retarded their motion (see e.g. Srdić-Mitrović et al. 1999; Yick

et al. 2007). The suspension was reseeded and allowed to settle again when required, typically after

every 2 − 4 experiments (i.e. ∼ 50 − 150 minutes). A typical suspension is shown in figure 3.11.

3.5.3 Camera

The same camera was used for the PIV experiments as that used for the synthetic schlieren. A

large aperture lens with a short focal length of 50 mm was used however since the PIV was applied

to much smaller fields of view with areas typically ∼ 220× 220 mm2. A 5 mm spacer was also fitted

between the camera lens and image sensor for even smaller fields of view. The small focal length of

the camera lens allowed only the particles in the light sheet to be in focus, whilst the large aperture

(with focal ratio Nf = 0.95) allowed more light to enter the lens. The camera was positioned at

distances ≈ 200 − 300 mm away from the tank at the level of the topography, with the vertical

centre of the field of view aligned at the crests of the topographic profile in use. This minimised

parallax (though parallax was not significant for thin light sheets) at these points of particular

interest. Results of the PIV study are given in chapters 6 and 7.

3.6 Internal gravity wave generation

The mechanism by which monochromatic internal gravity wave beams were generated determined

the spatial and temporal structure of the resulting wave beams. It was desirable to be able to specify

the temporal frequency, σ, associated with wave beams (and thereby their angle of propagation, θ) as

well as the position within the stratification at which they were generated. The combination of these

two details allowed a degree of control over the location of the region where beams interacted with
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topography. In order to determine the influence on the wavefield of interactions with topography,

wave beams were also required to have a well defined across-beam structure that had small along-

beam gradients and that could be sustained over many periods of the phase propagation.

A common approach to the generation of internal gravity waves in experiments has been to

make sinusoidal vertical oscillations of cylinders within linear stratifications (originally presented

by Görtler 1943 and in the classical experiments by Mowbray & Rarity 1967). Such a method has

the advantage of producing beams with structures that have been well documented in experimental

studies (e.g. Thomas & Stevenson 1972; Laws et al. 1982; Peters 1985; Merzkirch & Peters 1992;

Gavrilov & Ermanyuk 1997; Sutherland et al. 1999; Dalziel 2000; Dalziel et al. 2000; Sutherland

& Linden 2002; Zhang et al. 2007) and are accurately modelled analytically to first order in both

the inviscid approximation (e.g. Lamb 1932; Hurley 1972, 1997) and with consideration of viscous

effects (e.g. Thomas & Stevenson 1972; Makarov et al. 1990; Hurley & Keady 1997; Hurley & Hood

2001). At first order, four beams are produced by a cylinder oscillating with a small amplitude, Ac,

and at a fixed frequency σ, where the energy propagates along the beams directed at an angle θ

relative to the vertical. The angle of inclination, θ, is determined by the dispersion relation (Lord

Rayleigh 1883)

θ = cos−1
( σ

N

)

. (3.17)

As discussed in chapter 2, each of the beams has a width approximately equal to the cylinder

diameter, Dc, near to the forcing region and gradually widen with distance due to the influence

of viscous diffusion. However their across-beam spatial structure is not characterised by any one

dominant wavenumber. At fixed along-beam positions, profiles mapped out by the maxima and

minima of the amplitude of the wave phase for each across-beam position over the course of one

period of the motion are approximately symmetrical across the beam centreline. Slight symmetry

deviations to this phase ‘envelope’ are attributed to viscous and nonlinear interactions in the region

where beams overlap near the cylinder. The envelope has a bimodal form close to the cylinder

that is gradually eroded to a unimodal form further from the cylinder by viscosity, which has a

more rapid influence on the smaller length scaled structure of the motion (see section 2.3). The

interpretation of power spectra for spatial properties of beams produced by oscillating cylinders is

therefore nontrivial. However, beams generated by an oscillating cylinder may be sustained over

long periods of time from a predetermined region in the fluid, in contrast to wave beams created

by objects towed through the stratification (e.g. Merzkirch & Peters 1992; Bonneton et al. 1993;

Dupont & Voisin 1996; Dupont et al. 2001; Gyüre & Jánosi 2003; Scase & Dalziel 2006), by flow over

stationary objects (e.g. Baines & Hoinka 1985; Sutherland & Linden 1998; Sutherland 2002; Aguilar

& Sutherland 2006; Sutherland & Aguilar 2006; Aguilar et al. 2006) or by parametric excitation

where the stratified tank itself is oscillated in a chosen direction producing wave beams that focus

into attractors determined by the geometry of the tank (e.g. Maas & Lam 1995; Maas et al. 1997;

Benielli & Sommeria 1996, 1998; Maas 2005; Hazewinkel et al. 2008; Lam & Maas 2008). Also, for

small amplitude oscillations of a cylinder, the wave motion may be assumed to be associated with
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dominantly linear processes - a property difficult to achieve with paddle generation mechanisms for

example (McEwan 1973; Cacchione & Wunsch 1974; Teoh et al. 1997; De Silva et al. 1997; Ivey et

al. 2000; Gostiaux et al. 2006).

A camshaft generation mechanism has recently been proposed (Gostiaux et al. 2007) that is

capable of producing a single broad monochromatic beam of a specified temporal frequency and

a spatially periodic across-beam structure with a width of several wavelengths. Such a structure

is preferable over those of beams generated by an oscillating cylinder since analysis yields spatial

spectra that may be more reliably interpreted as a result of more tangible peaks at the dominant

wavenumbers. Notably though, even an across-beam structure which is very strongly spatially

periodic near to the generation site will be modified with along-beam distance by viscous action,

with the far-field structure resembling that of a beam generated at a point source. However, the

across-beam spatial periodicity is likely to be preserved over along-beam distances ∼ 10 times the

characteristic length scale of the across-beam structure (c.f. transition distance for beams generated

by oscillating cylinders, section 2.3). The camshaft mechanism was not implemented since it was

designed at a late stage in the present study.

Internal gravity wave beams were generated in the present study by sinusoidal vertical oscilla-

tions of a cylinder (‘cylinder’ and ‘source’ are henceforth used synonymously). It was also found

to be advantageous that, unlike the camshaft mechanism of Gostiaux et al. (2006), an oscillating

cylinder simultaneously generated more than one beam with similar spatial and temporal struc-

tures during each experiment. The scattering behaviour of one of these beams directed at rough

topography could therefore be compared directly with the behaviour of a simultaneously generated

second beam that did not interact with topography. Descriptions of visualisation and processing

methods employed in order to overcome difficulties associated with the beam structure are described

in chapters 4-8.

3.6.1 Wave generation by an oscillating cylinder

Unless otherwise stated, internal gravity waves were generated in experiments by a PVC cylinder

that measured 148 mm in length and that had a circular cross-section of diameter Dc = 35.6mm

(see figure 3.12). The cylinder was attached at the midpoint of its length to a rigid metal rod with a

diameter of 6 mm and a length of 40 mm. The rod was connected to a rigid pivoting arm oscillated

at the far end by a motor-driven rotating circular disc, with a centre of revolution that could be off-

set to adjust the amplitude of the motion. The rod passed through a hole of diameter 8 mm within

a PVC block of thickness 10 mm that was fixed to the top of the tank and was aligned vertically

using a plumb line. The block acted as a guide to keep the rod vertical whilst it was in motion.

After stratification, the cylinder was lowered slowly and smoothly into the tank such that the axis

of symmetry of the cylinder was aligned across the width of the tank (i.e. perpendicular to the field

of view) with the flat cylinder ends parallel to the tank walls. The cylinder was positioned close to

half way along the tank so that it was the furthest from both of the end walls of the tank, from
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Figure 3.12: Internal gravity wave generation mechanism: the cylinder was oscillated vertically by
a cam mechanism remotely controlled to oscillate at specific frequencies.

which reflected waves could propagate back towards the cylinder region and influence wavefields

generated by it. The stratification was allowed to settle for several hours before experiments to

allow the density profile to recover from the disturbance caused by the cylinder insertion.

Oscillation frequency

During experiments, the cylinder was set to oscillate at a chosen frequency and for a selected du-

ration of time via a computer controlling the motor. An optical switch connected to the oscillating

mechanism triggered a red LED at the beginning of each period of oscillation (corresponding phys-

ically to the point where the cylinder was at the midpoint of its vertical oscillation). The LED was

triggered (without considering electrical response times or the effectively instantaneous warming-up

of the LED to full intensity) for a percentage

sin−1
(

a
d

)

π
× 100 (3.18)

of the oscillation period, where a was the diameter of the slot in the rotating circle and d was the

diameter of the circle mapped out by the sensor position on the rotating circle. For a = 2 mm and

d = 55 mm this had a value of 1.158%. For a maximum wave generating frequency of oscillation

bounded by the Brunt Väisälä frequencyN ∼ 1.5 rad s−1, the period was a minimum value of 4π/3 s.

The LED was triggered for a minimum time in this case of 0.0485 s. More generally the LED trigger
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time was given by
2 sin−1

(

a
d

)

σ
s. (3.19)

The LED could be used to indicate the position in the phase at a particular stage in a movie

recorded from an experiment and hence allowed ensembles of movies, for example, to be accurately

phase-averaged where necessary. However, the accuracy of the use of the LED was bounded by the

frame rate of the camera and the frequency of the cylinder oscillation, as well as being affected by

the warm-up time taken by the LED and electrical delays.

The period of wave motion could also be determined to resolutions greater than the camera frame

rate through processing movies of established wavefields using the ‘Qualitative’ pattern matching

algorithm of DigiFlow. By choosing a reference image from a sequence of images of the established

wave field, the processed fields could be tracked to identify experiment times when the wavefield

became completely in or out of phase with the reference image. The period for a particular exper-

iment was therefore calculated by averaging these times over several complete oscillations of the

phase. The forcing frequency was therefore inferred by σ = 2π/T rad s−1.

Oscillation amplitude

The oscillation amplitude of the cylinder, Ac, was defined as the maximum vertical distance that

the cylinder moved away from the midpoint of its oscillation. This introduced the parameter Ac/Dc

relating the amplitude of the cylinder oscillation to the cylinder diameter. The cylinder was required

to approximately mimic a point source in order that the generated wavefields correlated well with

the predictions of linear theory (e.g. Hurley & Keady 1997). A small amplitude of oscillation,

i.e. Ac/Dc ≪ 1, was therefore chosen so that the cylinder remained at approximately the same

position in the stratification. However the amplitude was also required to be sufficiently large that

displacements of the density surfaces caused by the generated wavefields could be visualised by

the camera distinctly from density fluctuations in the surrounding environment. The amplitude

was therefore chosen to be such that Ac < 0.1Dc, with the lower bound determined for a typical

experiment layout from a series of tests comparing the quality of the observed wavefields. The

amplitude was measured by recording a sequence of images over many oscillations and producing

a time series over the course of the sequence of a vertical section passing through the centre of

the cylinder and the surrounding region. The vertical position of the cylinder could be determined

directly from the time series as the position at each time that the pixel intensity crossed a specified

threshold. The cylinder was oscillated sinusoidally with a vertical amplitude of Ac = 2.36 mm,

corresponding to Ac/Dc = 0.066, as shown in figure 3.13. The slight irregularity of the curve is

believed to be introduced during the interpretation of the time series, since the irregularity remained

despite an average over many oscillation periods. The motion of the cylinder was recorded against

a dot mask background. At each time step of the oscillation period recorded, the cylinder occupied

a different region of the dot mask. Consequently, the viewed contrast between light intensity

measurements for pixels located at the cylinder edge relative to those located within the region of
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Figure 3.13: Vertical displacement of cylinder oscillating with temporal period T about a mean
position. The displacement was averaged over nine oscillations, with the standard deviation of the
displacement of each individual oscillation from this average lying in the range 0.12−0.21 mm. The
pixel diameter was approximately 0.27 mm. The maximum displacement amplitude was 2.36 mm.

the dot mask viewed adjacent to the cylinder also varied during a period. In particular, the location

of the vertical position of the cylinder edge became less well defined when the edge was located

against a dark region of the dot mask, i.e. when the light intensity contrast across the edge was

reduced. However, the value of the threshold light intensity used to identify the vertical position of

the cylinder edge in the time series recorded was specified to be constant for all time steps.

3.7 Features of the wavefields

The main features of the wavefields generated by an oscillating cylinder in experiments are described

qualitatively here, with these preliminary experimental results either presented for the first time here

or to a greater resolution and degree of accuracy than in previous studies. Quantitative descriptions

are given in chapter 5.

Transient ‘start-up’ motion

A study was made of both the transient ‘start-up’ and the established wavefields generated by an

oscillating circular cylinder prior (physically) to the interaction of the wavefields with boundaries.
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The established wavefields are compared in chapter 5 with those produced by elliptical and rectan-

gular cylinders in order to determine the influence of aspect ratio and sharp corners of the cylinder

cross-sections on the spatial structure of the generated wave beams.

The cylinder was started from rest and set to oscillate vertically at a frequency σ/N = 0.54

for ∼ 16T , where the period T = 2π/σ s. The cylinder initially generated a transient ‘start-up’

wavefield while it accelerated to the specified oscillation frequency. During this adjustment interval,

a spectrum of waves was generated with transient frequencies σtr in the range 0 < σtr ≤ N , both

above and below the value of σ. This wavefield was seen as a fan of characteristics around

the cylinder along which energy propagated away from the cylinder (see figure 3.14 with σ < N

and more distinctly in figure 3.15 where σ > N). The range of values observed was a result of

the continuous range of frequencies induced as the cylinder accelerated from rest and the angular

dependence of the wave frequency given by the dispersion relation

σtr = N cos θtr, (3.20)

where θtr denotes the angle of energy propagation corresponding to σtr. The initial transients

propagated away from the cylinder at the respective group velocity. Recall that the group velocity

(2.20) increases with decreasing frequency σ, i.e. with increasing values of θ, so that transients

inclined closer to horizontal propagated across the field of view most rapidly. As time progresses,

the fluid response shown in the sequence in figure 3.15 is seen to become characterised by increasingly

smaller length scales. This is a result of the inverse relationship between the group velocity and

magnitude of the wavenumber for each wave component generated by the impulsive start-up of

the cylinder oscillation. Smaller wavenumber components, i.e. those characterised by larger length

scales, are seen to propagate rapidly across the field of view within a few periods of the cylinder

motion, whilst groups of larger wavenumber components, with smaller length scales, take a time

greater than 9T to propagate across the field of view. Dark curving fronts can also be seen in

figure 3.15 to propagate away from either side of the cylinder with increasing time. Approximating

the surface of the cylinder as an array of point sources, the fronts can be understood to be regions

of destructive interference between waves generated at each of the point sources.

After ∼ 8T , the wavefield shown in figure 3.14 narrowed into four wave beams (similar beams

are not seen in figure 3.15 since established cylinder oscillation does not generate propagating modes

for frequency values σ > N). These were approximately bounded by the tangents to the cylinder

that made angles θ = cos−1(σ/N) = 57.4◦ with the vertical. Figure 3.16 shows the evolution of

the wavefield during the first eight periods of oscillation after the cylinder was started from rest at

t = 0 s relative to the evolution of the wave field during the eighth period of oscillation. Values shown

represent normalised differences in amplitude between a time ti ∈ [(i − 1)T, iT ) of the ith period

of oscillation and a corresponding time t8 ∈ [7T, 8T ) in the eighth period of motion (i.e. ti = t8

modulo T ). The rapid decrease at the start of the eighth (i.e. the reference) period indicates that

the wavefield for this field of view still contains transient components during the seventh period. An

79



3. Experimental Methods 3.7. Features of the wavefields

x/Rc

z/Rc

0.00.00.0

−12.3

−12.3

−12.3

12.3

12.3

12.3

14.314.314.3−14.3 −14.3−14.3

0.0

0.0

0.0

1T 2T 3T

4T 5T 6T

7T 8T 9T

−0.082 0.0820.0

∆N2/N2

Figure 3.14: Sequence of transient start-up wavefield at times t = 1T, 2T, ..., 9T s. The cylinder
oscillation was initiated at t = 0T s with T = 8.64 s and σ/N = 0.54.
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Figure 3.15: Sequence of transient start-up wavefield at times t = 1T, 2T, ..., 9T s. The cylinder
oscillation was initiated at t = 0T s with T = 2.86 s and σ/N = 1.63.
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Figure 3.16: Development of wavefield after cylinder oscillation initiated at t = 0 relative to the
wavefield at times t ∈ [7T, 8T ).

extrapolation of the fit shown to the data suggests that the wavefield converges on an ‘established’

periodic form at t ∼ 10− 11T . Wave beams contained in similar sized fields of view as that shown

are therefore referred to here as ‘established’ for times t ≥ 10T after the cylinder oscillation was

initiated.

Established motion: 0 ≤ σ/N ≤ 1

For forcing frequencies in the range 1/2 ≤ σ/N ≤ 1, the dispersion relation only permitted wave gen-

eration at temporal frequencies of σ corresponding to energy propagation at angles θ = cos−1(σ/N).

Secondary harmonics with frequency 2σ could be generated for 0 ≤ σ/N < 1/2. More generally,

the condition for the nth harmonic, with frequency σn = nσ and angle of energy propagation

θn = cos−1(σn/N), to exist was that 0 ≤ σ/N ≤ 1/n for n ∈ Z≥0. Characterising amplitudes of

fluid displacements associated with the nth harmonic, εn, are related by εn ∼ O(εn), where ε ≪ 1

is a characteristic amplitude associated with the primary harmonic.

Angles, θ, of inclination of wave beams were measured along the centrelines of beams from RMS

(the average taken over several periods of the cylinder oscillation) images of the perturbed buoyancy

fields. Root mean square fields calculated over integer multiples of the period T associated with

the forcing frequency are henceforth denoted RMST . Measurements of angles were made directly

from digital images within DigiFlow using coordinate systems defined as described in section 3.4.4.
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Figure 3.17: Graph to compare the forcing frequency with the cosine of the measured angle of
internal wave beams.

(Colour schemes were manipulated for this purpose in order to enhance the visibility of the struc-

ture of the wave beams.) The value of θ was taken as the average of at least five measurements.

Figure 3.17 compares the cosine of measurements of wave beam angles at 14 different forcing fre-

quencies in the range σ/N ∈ [0.46, 0.86] with the ratio σ/N . The data points closely follow the

dispersion relation satisfying cos θ = σ/N as illustrated by the dashed line. Figure 3.18 shows

RMST images of wave beams generated at forcing frequencies σ/N equal to (a) 0.54, (b) 0.31 and

(c) 0.27. These correspond to primary harmonic beams at angles θ = θ1 of (a) 57.4◦, (b) 71.8◦

and (c) 74.4◦; secondary harmonics at angles θ2 of (b) 51.3◦ and (c) 57.5◦ and tertiary harmonics at

angles θ3 of (b) 20.4◦ and (c) 36.2◦. The primary harmonics are clearly visible in all images, with

bimodal structures and higher energy densities at small along-beam distances from the cylinder

centre gradually transitioning to a unimodal structure associated with lower energy densities at fur-

ther distances. Beam widths were approximately equal to the cylinder diameter at their origin and

broadened with along-beam distance. Energy densities were higher in beams associated with higher

frequencies, for which the forcing mechanism put energy into the system at a greater rate. The

energy densities were also smaller at these higher frequencies, corresponding with smaller angles,

because energy propagation was more efficient in directions closer to horizontal, i.e. when the wave

beams were directed along isopycnals rather than across them. Secondary harmonics, associated

with significantly lower energy densities than the respective primary harmonics, and their bimodal
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Figure 3.18: RMST values of ∆N2/N2 at σ corresponding to (a) θ1 = 56.8◦, (b) θ1 = 72.8◦ and
(c) θ1 = 74.7◦. The beams shown are in positions corresponding with those of the upper and lower
right-hand wave beams in figure 3.14.

structure are also evident in figure 3.18 (b) and (c). The presence of the predicted tertiary harmon-

ics for (b) and (c) is not evident in the RMST images, although could be faintly observed in movies

of the wavefield corresponding to (c). Figure 3.19 (a) and (b) shows RMST images of the second

and tertiary harmonics from harmonic filtering of the experiment represented in figure 3.18 (c).

The poorer image quality is a consequence of the fact that amplitudes of these higher harmonics

approach the order of that of background wavefields and also due to the relatively larger influence of

noise. It is believed that these are the first experimental pictures of the tertiary harmonic generated

by an oscillating cylinder.

Established motion: σ/N > 1

The dispersion relation is invalidated at forcing frequencies σ/N > 1 and the wavefield becomes

evanescent so that energy from the disturbance is predicted to decay exponentially with distance

from the source region with no propagating modes being produced. Figure 3.20 shows RMST images

of wavefields generated at forcing frequencies σ/N equal to 1.45 and 1.63 respectively. Only small

disturbances were evident and were confined to the regions close to the cylinder. Short beam-like

structures inclined at small angles to the vertical and associated with low energy densities became
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Figure 3.19: RMST values of ∆N2/N2 after harmonic filtering for secondary and tertiary harmonics
relating to figure 3.18 (c). Scales for ∆N2/N2 are as in figure 3.18 except with colour scale values
corresponding to the ranges (a) [−1.0×10−4, 1.0×10−3] and (b) [3.7×10−4, 1.2×10−3] respectively.

weaker as σ/N was increased from 1.45 to 1.63. Horizontal intrusions of mixed fluid protruding

into the stratification after formation at the levels of the upper and lower extrema of the cylinder

became more pronounced with the increase in frequency however.

Decay of wavefield

Figure 3.21 shows a sequence of images at intervals of 1T of the decay of wave beams and the

transient wavefield produced when the cylinder oscillation was abruptly stopped after 16 oscillations

at σ/N = 0.54. As in the transient start-up interval, the deceleration of the cylinder from the

oscillation frequency σ to rest generated a spectrum of wave frequencies satisfying the dispersion

relation and bounded above by the forcing frequency. This wavefield propagated away from the

cylinder, leaving the field of view by ∼ 8T after the cylinder oscillation was halted. The persistence

of wave modes associated with larger length scales is evident at these later times, since a weak wave

beam reflection from the tank bottom and walls and the free surface can be seen crossing the field

of view from the bottom left-hand corner (most clear in the images corresponding to 6T -8T ).
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Figure 3.20: RMST values of ∆N2/N2 for σ/N values (a) 1.45 and (b) 1.63. The vertical line visible
above the cylinder is due to the presence of the cylinder rod.

Influence of a stationary cylinder on background stratification

The presence of an obstacle such as a cylinder within a stratification imposes certain boundary

conditions on the fluid even when stationary. The boundary condition at an impermeable surface

prevents a mass flux directed into it, requiring that the gradient in density of the fluid perpendicular

to a boundary has to vanish there. This can only be satisfied when isopycnals contact boundaries at

right angles. Hence, at boundaries that are neither horizontal or vertical, the otherwise horizontal

isopycnals of an undisturbed stable linear stratification are forced to curve in order to meet this

condition. Such curvature creates a horizontal gradient in the density field near the boundary

that gives rise to baroclinic generation of vorticity there. Figure 3.22 (a) shows an exaggerated

schematic of the curvature of isopycnals meeting a flat sloping boundary and, (b), those around

a circular cylinder. At a sloping boundary with negative gradient (i.e. the angle, 0 < α < 90 ◦,

made between the boundary and the vertical is anticlockwise from vertical), as shown in (a), the

horizontal density gradient induced is positive so that vorticity is generated there with a positive

sign and hence a clockwise rotational sense. This in turn sets up flow near to the boundary that

is directed along the boundary with a positive vertical component in a region characterised by the

length scale

δN =

(

N2 cos2 α

4κν

)

1

4

(3.21)

(Phillips 1970; Wunsch 1970). Similar arguments can be used to deduce the direction of the induced

boundary surface flow over the whole surface of a cylinder (e.g. Baydulov & Chashechkin 1996)

as shown in figure 3.22 (b), with stagnation points where the slope of the surface is vertical or

horizontal. In linear stratifications the horizontal density gradient (and so amount of vorticity

86



3. Experimental Methods 3.7. Features of the wavefields

x/Rc

z/Rc

0.00.00.0

−12.3

−12.3

−12.3

12.3

12.3

12.3

14.314.314.3−14.3 −14.3−14.3

0.0

0.0

0.0

0T 1T 2T

3T 4T 5T

6T 7T 8T

−0.082 0.0820.0

∆N2/N2

Figure 3.21: Transient decay of established wave beams after cylinder oscillation halted at t =
−T/4 s. T = 8.64 s.
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Figure 3.22: Schematic of the influence of boundaries on stratifications.

produced by this mechanism as a result) varies with the slope angle. The Phillips-Wunsch theory

predicts an increase in the along-slope velocities for decreasing slope angles in the range 0 < α < 90◦,

with the average velocity directed along the boundary in the buoyancy-driven layer given as

u = − κ

δN
tanα. (3.22)

Experimental results comparing diffusion-driven flow along an inclined wall compare well with

(3.22) except for small angles of inclination in the approximate range 0 < α < 2.8◦ where the slope

velocities decreased rapidly with decreasing slope angles from a maximum value at ∼ 2.8◦ (Peacock

2004).

In this study, whilst the cylinder was stationary, the along surface flows enhanced diffusive

mixing in a boundary region adjacent to the cylinder that had a thickness comparable with δN .

Fluid drained into the stratification from this boundary region at the level where it was neutrally

buoyant and spread laterally at that level. The boundary layer associated with this process hence

gradually eroded the stratification in the vicinity of the cylinder over time scales comparable with

the diffusion time scale.

Influence of an oscillating cylinder on background stratification

The effect on the background density profile induced by the presence of a cylinder in a stratification

can be expected to increase significantly when it is forced to oscillate, though the mechanism for

changes in the background N should still be controlled by diffusion when Ac/Dc ≪ 1. Experiments
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Figure 3.23: RMST images showing development of horizontal intrusions near the cylinder after
cylinder oscillation at frequency σ = 0.79, i.e. σ/N = 0.59, for durations of (a) t̂+ 0, (b) t̂+ 40 and
(c) t̂+ 80 minutes, with t̂ = 4 minutes.
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Figure 3.24: Zoom of section near cylinder in figure 3.23 (c). Scaling as in figure 3.23.

were performed with the cylinder oscillating continuously at a fixed frequency of σ/N = 0.59 for

120 minutes in order to assess the influence of this mixing on generated wavefields. Figure 3.23

shows RMST images of the cylinder (located in the top left-hand corners of the images) and one

wave beam taken from three periods of oscillation beginning at times of (a) t̂ + 0, (b) t̂ + 40

and (c) t̂ + 80 minutes after the oscillation was initiated, where t̂ = 4 minutes. The wavefield

remained qualitatively the same for each of these times except for the development of horizontal

disturbances at the level of the source. The disturbances appeared to originate at the top and

bottom of the cylinder and became more pronounced and increased in length as time progressed,

extending beyond the field of view by t = t̂+40 minutes. The intrusions were caused by mixed fluid
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Figure 3.25: Zoom of section near cylinder in figure 3.24. Scaling as in figure 3.23.

generated in the region near the cylinder and expelled into the stratification at levels where the fluid

was neutrally buoyant. The vertical density gradient decreased relative to the originally constant

gradient within the layers and increased at the upper and lower vertical bounds of the layers.

Figure 3.24 shows a larger version of the intrusions corresponding to figure 3.23 (c). Gradients in

the perturbed buoyancy field were peaked in three horizontal bands originating at the base of the

cylinder and three horizontal bands originating at the top of the cylinder. The outer two bands

of each set exhibited sharp vertical gradients indicating the vertical bounds of the intruding fluid.

The inner band of each set corresponds with the intruding fluid. Horizontal bands of mixed fluid

generated near an oscillating cylinder were also commented on briefly in Mowbray & Rarity (1967)

and Sutherland & Linden (2002). In the present study, oscillations were supported in the region

adjacent to the cylinder and are most clearly visualised along the intrusion extending from the base

of the cylinder in figure 3.24. Vertical bands can be seen at positions near x/Rc ∈ [4, 9] and z/Rc ∼ 1

(an enlargement of this region is shown in figure 3.25). These represent waves propagating in the

horizontal direction with horizontal length scale 5.1 mm (measurements averaged over 18 peaks in

the RMST field, corresponding to 9 wavelengths). The frequency of these oscillations was measured

from time series images of a vertical section corresponding to the position x/Rc = 7 in figure 3.24

and averaged over 15 oscillations. The frequency was measured as 0.79 rad s−1 which was equal to

the cylinder frequency σ. The presence of wave-like fluctuations about the horizontal level of the

mean position of the source that oscillated at twice the forcing frequency with 2σ/N < 1 were noted

in experiments by Sutherland et al. (1999). However, 2σ/N = 1.18 here and so an oscillation at 2σ

corresponds to an evanescent mode. Propagating modes at this frequency are not expected to be

generated unless they are supported by a local change in the stratification.

The influence of these features on the wavefields of interest in this study were negligible since

they were confined to the vertical level of the source and only protruded significant horizontal

distances into the stratification after sustained forcing and on time scales much larger than those

for a series of experiments.
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3.7.1 Removal of unwanted waves

The oscillating cylinder produced a characteristic ‘St Andrew’s Cross’ formation of four wave beams,

where two of these were generally surplus to the requirements of experiments. Each of the four

beams propagated away from the cylinder and reflected from the tank walls, bottom boundary

and the free surface of the stratification. Viscosity acted to attenuate wave energy with distance

from the generation site and had the fastest dissipative effect on the energy associated with the

smaller across-beam scales, which had the greatest gradients in that direction. Structures of beam

reflections returning to the region near the cylinder were therefore more dominantly characterised by

larger scales and hence smaller wavenumbers. However their interaction with the oscillating cylinder

or topography could regenerate larger wavenumbers. Wave energy contacting sloping boundaries

(such as topography inserted into the tank) could be focused. This resulted in an increase in energy

density and the associated energy redistributed to higher wavenumbers. It was therefore necessary

to dampen the unwanted reflections at the tank boundaries and free surface as much as possible in

order to remove their contaminating influence on the viewed wavefields.

Wave trap

In order to trap superfluous wave beams that had group velocities directed upwards away from the

cylinder, a narrow sloping barrier was carefully inserted into the stratification at the free surface

at least 2 hours before experiments were carried out. The angle made between the barrier and the

vertical, αw, was required to be greater than that made between the beam centreline and the vertical,

θ. Since θ is conserved at first order during reflection, such an arrangement focused the beam into

the wedge formed between the free surface and the barrier (see for example Hurley 1970) where the

wave energy was dissipated by viscosity. Figure 3.26 shows a schematic of a wave beam interacting

with the wave trap. Figure 3.27 shows a similar interaction occurring in experiments. To minimise

mixing of the stratification caused by the inclusion of the wave trap, the trap was inclined at the

chosen angle αw prior to its insertion and the angle maintained whilst it was pushed smoothly into

the tank. Wave energy incident on the submerged end of the wave trap was observed to generate up

to four narrow beams that propagated away from the end of the wave trap in directions making an

angle θ with the vertical, determined by the incident wave frequency (see figure 3.27). In general,

the generation of these additional beams limited the configurations in which the trap could be

usefully employed.

Wave damping by sponges

Three layers, S1, S2 and S3, of coarse plastic sponge (reticulated foam) with a typical pore size of

a few millimetres were combined to dampen wave beam reflections at the ends of the tank. At each

tank end, sponges of thickness 0.5 mm, 15 mm, and 20 mm respectively, height ∼ 600 mm and width

150 mm were layered in order of increasing thickness and sewn together at the sponge ends (see

figure 3.28). Each sandwich of sponges was placed at a tank end prior to stratification, with the
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Figure 3.26: Wavetrap schematic.
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Figure 3.27: Experiment picture of focusing of wave beams wave trap. Wave trap is highlighted
with dashed white line.

thickest sponge, S3, flat against the end wall. The thinner sponge layers, S1 and S2, were allowed

to bow out away from the end wall at about the mid-depth of the tank so that there were gaps

between the layers. Propagation of wave energy through the layers of sponge was inhibited by the

layer thickness, resulting in varying degrees of transmission through and reflection from each of

the layers. Transmitted wave energy was subsequently reflected and diffracted by the plastic joins

of the coarse internal structure of the sponge. These processes aided the conversion of incident

energy to smaller spatial scales which was then dissipated more rapidly by viscosity as well as

partitioning the incident energy density between different directions of subsequent propagation.

Most wave beams contacted the sponges at mid-depths of the tank, where the sponge layers were
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most spread out. This resulted in a large proportion of the incident wave energy being transmitted

through the thinnest layer, S1, with small amounts of dissipation and reflection. Wave energy was

transmitted through the next thickest layer, S2, to a lesser degree but with the transmitted flux

subject to greater dissipation. Partial reflections from S2 were further damped by their reverse

transit through S1. Flux reaching the final and thickest layer, S3, was again partially transmitted

and reflected. Reflected wave energy at S3 was subject to further transmission or reflection at S2 and

S3 so that wave energy propagating back into the main body of the stratification was significantly

reduced.

θ

θ

S1 S2 S3

Tank

Sponges

Incident
wave energy
flux

flux

20 mm

2
0

m
m

Partially-
reflected
wave energy

Figure 3.28: Schematic of wave beam reflection and transmission behaviour at layers of sponge.
Red lines denote lines of constant phase associated with the incident wave beam. Blue dashed lines
denote lines of constant phase associated with partial reflection at the sponge layers. Only primary
reflections are shown for each of the layers. Arrows denote the direction of energy propagation. A
20 mm square section of the sponge material is also shown and a typical pore (∼ 3 mm) is highlighted
in white.

Alternative wave damping methods using netting and aluminium ‘honey comb’ to dissipate

wave energy were used in experimental studies by Kwon et al. (2003) and Scase (2003) respectively.

Several different materials and porosities of each were tested in this study and the sponge formation

described above was the most successful.

Figure 3.29 shows the interaction of a wave beam propagating from the bottom left-hand corner

of the picture with the sponge formation (highlighted in white at the top of the picture). A

reflection with significantly reduced amplitudes can be seen propagating down from the sponge

towards the right-hand side of the field of view. Figure 3.30 compares the superposition of across-

beam amplitudes of cross-sections of wave beams over the course of one period of the motion.

The cyan set of curves are those relating to cross-sections taken of a beam with centre point at a
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Figure 3.29: Wave damping by sponge layers (highlighted by white dashed lines).
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Figure 3.30: Amplitude reduction in wave beam reflections from sponges compared with those from
a solid horizontal boundary. The curves are magnitudes of the perturbed buoyancy field throughout
a period of the motion. Curves represent cross-sections taken from the incident beam (cyan); a beam
after reflection from a solid horizontal boundary (dark blue) and a beam after interaction with the
sponge formation (red). Amplitudes are normalised by the maximum amplitude of the incident
beam.

horizontal distance of ∼ 10Rc from the centre of the cylinder prior (physically) to its interaction

with the sponges. The dark blue set of curves are cross-sections of a beam with centre point at a

horizontal distance 28Rc from the cylinder centre after reflection from a solid boundary. The red

set of curves are cross-sections of a beam with centre point at a horizontal distance 28Rc from the
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cylinder centre after reflection from the sponges. The reflections of the wave beams at the solid

boundary and sponges occurred at similar distances from the centre of the cylinder.

A rest period of 50 minutes was allowed between experimental runs to ensure that all the wave

energy, and in particular the enduring portion associated with smaller wavenumbers, was dissipated

and the stratification had returned to its undisturbed state before subsequent runs.

3.8 Topography

Experiments were performed to investigate the interaction of wave beams with smooth horizontal

and sloping boundaries, and with topographies which had sinusoidal, sawtooth, square-wave and

approximately knife-edge profiles. Detailed descriptions of the specifications and positioning and

insertion of the boundaries are given below together with a discussion of their influence on the

density profile of the stratification over relevant time scales.

3.8.1 Smooth horizontal boundary

This study aims to determine the influence of rough boundaries on internal gravity wave propagation.

It is therefore desirable to be able to compare the structure and evolution of a wave beam interacting

with a boundary that has a specified profile with those of an unbounded wave beam. The finite

extent and geometry of the tank used limited the distance over which a wave beam could be observed

before it contacted and reflected from the tank base and sides or the free surface. The simplest

reflective behaviour to study was that of a wave impinging on a smooth horizontal boundary.

Comparisons were therefore made instead between the wavefields associated with scatter at rough

topography and those associated with a wave beam reflecting at a smooth horizontal boundary. The

mechanism used for the generation of internal wave beams (see section 3.6) aided this comparison

since four beams of identical structure, allowing for phase shifts between upward and downward

propagating beams and symmetry, are simultaneously produced by a cylinder oscillating in a linear,

Boussinesq stratification. Provided that two of these beams were damped sufficiently that their

influence on the observed wavefield was negligible (see section 3.7.1), the interaction of one of the

two remaining beams with rough topography could be compared with the simultaneous reflection

of the other beam at a smooth horizontal boundary.

An obvious choice for a solid reflecting boundary would be the base of the tank, however this

was not ideal due to the form of the stratification there. Density profiles of stratifications used

in experiments were discussed in section 3.2.2. A layer with a nonlinear density profile and a

typical depth of ∼ 30 mm inevitably formed at the base of the tank due to mixing during the filling

process. As a result, the Brunt Väisälä frequency varied in this region and wave beams interacting

with this layer and the base of the tank were observed to curve. Partial reflections could occur at

any abrupt changes in N and some wave energy could even become trapped within the layer itself.

In order to produce cleaner reflections, representative of those in a perfectly linear density profile,
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the significance of the bottom boundary layer was reduced by the placement of a raised platform

at the base of the tank prior to stratifying. The platform, or shelf, was made from a sheet of dark

grey PVC (much denser than the saltwater) which measured 143 mm wide, 800 mm long and had

a depth of 4 mm. The sheet was raised from the base of the tank by two strips made of the same

material which ran along the underside of the shelf with a height of 45mm. The total height of the

shelf above the base of the tank was 49 mm which ensured that the shelf stood above the typical

depth of the layer at the base of the tank. The dark colour of the PVC helped to reduce unwanted

light reflections off the surface of the shelf which could have contaminated the synthetic schlieren

processing. The PVC had negligible water absorption and so could be considered impermeable.

Although a finite boundary layer of mixed fluid developed on the surface of the shelf due to its

finite length, this was significantly shallower than the layer on the base of the tank. The finite

length of the shelf also induced fluxes along its surface since horizontal density gradients in the

fluid near the shelf ends generated baroclinic vorticity. These fluxes acted to reduce the depth of

the boundary layer on the shelf as they provided a means of transporting and draining any mixed

fluid forming along the boundary away into the stratification. The horizontal shelf was used in all

experiments unless otherwise stated.

3.8.2 Smooth sloping boundaries

Experiments were performed to observe reflections of waves at smooth sloping boundaries that had

surfaces making an angle α with the vertical. The data obtained is used to verify the behaviour

predicted by linear inviscid theory (Phillips 1966) in chapter 4. (Data from these experiments also

serve to validate the techniques used and described in this chapter.)

The sloping boundary was made from dark grey PVC of thickness 4 mm and was 148 mm wide

and 800 mm long. A cushioning material was fixed with black tape along those edges of the slope

which were in contact with the sides of the tank when it was in position within the stratification.

The cushioned edges ensured that the slope spanned the entire width of the tank and completely

sealed the part of the stratification on the front side of the slope from the part behind it.

The position at which the slope was inserted along the tank was selected based on the particular

angle, α, of slope inclination, the position and frequency of the oscillating cylinder as well as

consideration of the region of the stratification corresponding to the camera field of view. The

geometries of wavefields were anticipated and the slope strategically placed to optimise the spatial

extent of the reflected wavefields within the field of view and so that unwanted reflections and their

interaction with the fields of interest were minimised.

The sloping boundary was inserted into the tank after stratification. A mount was constructed

to support and maintain the inclination of the slope and so minimise mixing associated with its

insertion into the tank. The mount consisted of a heavy steel base placed on top of the tank that had

a flat upper section that could be inclined to a desired angle with an accuracy of ±0.5 ◦. Two rigid

stainless steel runners of width 30 mm and length 550 mm were fixed onto the base of the mount a

96



3. Experimental Methods 3.8. Topography

distance 155 mm apart. The slope was placed onto the mount between the runners and these acted

as a guide for the slope as it was slowly and smoothly pushed against the mount and into the tank.

This was a difficult procedure to implement since the slope was necessarily only marginally narrower

than the width of the tank to prevent seepage between the regions of the stratification separated by

the slope. Several practise runs were performed in order to develop a suitable technique for pushing

in the slope before this was actually done for experiments from which data was used in this study.

Insertion of a sloping boundary into the stratification did not significantly affect the linear

stratification except for the diffusion driven flow in a boundary layer next to the slope (see section

3.7 and figure 3.22 (a)).

3.8.3 Rough topographic profiles

The main focus of the experimental study was to characterise the interactions of wave beams with

rough topographies that had periodic sinusoidal, sawtooth, square-wave and approximately knife-

edge profiles. Each topographic profile had a width of 143 mm and the profiles did not vary in the

across-tank direction. Profiles were completely specified by their shape, a horizontal wavelength,

λ̂T , a vertical length scale of variation, ÂT , and the total length of the topography LT . An angle α

is defined for each profile as

α = tan−1

(

λ̂T

4 ÂT

)

. (3.23)

This angle corresponds to that made between the sloping sections of the sawtooth profiles and the

vertical. In the case of other profile shapes, α indicates the relevant value of α for a sawtooth profile

having the same values of λ̂T and ÂT . Figure 3.31 shows the different profile shapes and defines the

relevant length scales. Table 3.1 lists values of these length scales (to an accuracy of ± 0.05 mm)

for the topographic profiles used and assigns a label to each different profile for ease of referencing.

Topographic profiles A and B had sinusoidal shape; C, D, E, F , G, H and I had sawtooth shape;

J and K had square-wave shape and L was a pseudo knife-edge profile with vertical approximate

‘knife-edges’ of finite width 2 mm.

Sinusoidal profiles A and B were made from sections of transparent PVC corrugated roofing

material of thickness 1 mm and securely mounted with silicon based glue onto rigid dark grey PVC

sheets of thickness 10 mm. The roofing material was sprayed matt black to reduce light reflections

off its surface.

Sawtooth profiles C and D were made from sections of black plastic right-angled sections of

thickness 2 mm that were cut into components measuring 143 mm and mounted adjacent to one

another onto a base in the same way as profiles A and B. The radius of curvature at the corners of

the angled-sections was therefore 2 mm.

The sawtooth profiles E - I and square-wave profiles J and K were cut in one complete piece

directly from blocks of dark grey PVC using a milling machine. The milling machine cut lengths to

an accuracy of ± 0.05 mm. Corners were sliced from the material so that their radius of curvature
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2ÂT

2ÂT
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Figure 3.31: Topography side profiles and dimensions.

was minimal. A base of thickness 10 mm was also included into the form of the profile during the

cutting process.

The ‘knife-edge’ profile L was made from a base of dark grey PVC of thickness 10 mm. The

knife-edges were 2 mm wide prongs of acrylic. These were glued with silicon based glue into grooves

of depth 2 mm cut across the width of the base at regular intervals. The transparent prongs were

sprayed black to reduce light reflections. The radius of curvature of the knife-edges at the corners

was ∼ 2.5 mm.

Positioning and insertion of rough topography

To a good approximation, the stratifications could be considered Boussinesq (see section 3.2). As

a result, the positioning of the topographic profiles at the top of the stratification or at the bot-

tom could be arbitrarily chosen without influence on the behaviour of the wavefields. The rough

topographies were positioned at the top of stratifications during synthetic schlieren experiments.

This allowed the profiles to be lowered to a level where the stratification was linear as well as per-

mitting the reuse of a stratification if possible for experiments with other profiles. The topographies

were positioned at the base of the tank for the PIV experiments discussed in section 3.5.

The flat base of each rough topographic profile was drilled at mid-width in two positions approx-

imately 50 mm from either end. Two rigid stainless steel threaded rods of diameter 6 mm and length

40 mm were screwed into the holes on the base of the profiles. The rods were threaded through

and bolted to two stainless steel plates that were clamped firmly onto the top of the tank when
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Profile Index Shape α 2ÂT λ̂T k̂T = 2π/λ̂T ÂT k̂T LT

Ti [degrees ◦] [mm] [mm] [mm−1] [mm]

A Sinusoidal 62.0 19.5 73.5 0.085 0.829 441.0

B Sinusoidal 63.4 8.0 32.0 0.196 0.784 416.0

C Sawtooth 40.0 19.0 31.9 0.197 1.872 416.0

D Sawtooth 45.0 35.9 71.8 0.088 1.580 502.9

E Sawtooth 45.0 18.0 35.9 0.175 1.575 431.1

F Sawtooth 54.0 13.0 35.8 0.176 1.144 432.0

G Sawtooth 63.5 18.0 72.2 0.087 0.783 432.0

H Sawtooth 63.5 10.0 40.1 0.157 0.785 440.0

I Sawtooth 69.5 10.0 53.5 0.117 0.585 432.0

J Square-wave 45.0 20.0 36.0 0.175 1.750 414.0

K Square-wave 61.0 18.0 72.0 0.087 0.783 432.0

L Knife-edge 46.6 18.0 38.0 0.165 1.485 418.0

Table 3.1: Specifications of topographies used in experiments. Lengths are given to an accuracy of
±0.05 mm.

the profile being studied was in position. The depth to which each profile was lowered within the

stratification and also its horizontal levelling could therefore be controlled by adjusting the position

of the bolts on the rods. Levelling was mainly assured before insertion into the tank by ensuring the

bolts were the same distance along each of the rods. After insertion, the levelling was checked with

a spirit level and any micro adjustments of the bolt positions could easily be done in a non-intrusive

manner. The depth of each profile in the tank was chosen so that the vertical distance between the

shelf and the topography was maximised for the density profile of the particular stratification. This

required that stratifications were measured before topographies were inserted in order to determine

the vertical level at which the stratification deviated from a linear density profile due to mixing

and evaporation near the free surface. The profiles were then lowered so that the flat part of the

base of the topography was just below this level (which made allowances for slight mixing induced

whilst the profile was inserted into the tank). The profiles were slowly lowered into the stratification

at the correct position along the tank to avoid unnecessary disturbance to the stratification from

adjustments after insertion. As the profile was lowered through the free surface, care was taken

to tilt the topography across the tank slightly so that the free surface contacted the underside of
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the topography in a line which could be carefully moved across the topography as it was lowered

further. This ensured that no pockets of air were trapped on the underside of the topography which

both obscured the visualisation as well as making the fluid behave compressibly in that region.

Profiles were positioned centrally between the two side walls of the tank. Their location along

the length of the tank required that they were as far away as possible from the end walls as well as

being constrained by the relative position of the cylinder. Topographies needed to be far enough

away from the cylinder that any component of the scattered wavefield with group velocity vector

directed back towards the cylinder should be sufficiently damped by viscosity before reaching there

and so have minimal second order influence on the wavefield propagating away from the cylinder.

Also, geometrical considerations due to the finite nature of each profile required that for a given

frequency of cylinder oscillation, beams generated were incident on the topography at a position at

least a beam width from its ends. Total lengths of the profiles were between 414.0 mm and 502.9 mm.

Beam widths were approximately 35.6 mm near to the cylinder and widened slightly with distance

as a result of viscosity (see chapter 2). For the range of beam angles, θ, viable in experiments,

the largest horizontal component of beam widths occurred for large angles (corresponding to low

frequency cylinder oscillation). For a maximum value of θ of about 75 ◦, the horizontal component

of the beam width was calculated as ∼ 35.6/(cos(90 − 75)) ≈ 38 mm so that even the shortest

topographic profile was ∼ 10 times greater than the width of an impinging wave beam. The profiles

were positioned within the tank such that incident wave beams did not contact the boundary close

to its ends (at least a beam width away for quantitative results). In general the cylinder and

topographic profiles were located fairly close to one another near the centre of the tank.

Once the relevant topography was in place, the phase-triggered LED attached to the cylinder

oscillating mechanism was taped to the tank wall in front of a section of the topography in the field

of view. Care was taken to keep the LED at least 10 mm from the edge of the topography so that

light from the LED did not interfere with the synthetic schlieren visualisation. Figure 3.32 shows

the relative positions of experiment equipment from the perspective of the camera.

Influence of topographic profiles on stratifications

The positioning of topographic profiles at the top of the tank minimised disturbances to density

profiles of stratifications. Fluid displaced by the topography insertion was averaged over the length

of the tank. The profiles intercepted isopcynals however and in a static stratification diffusion-driven

mixing was induced at the sloping sides and sharp corners of topography as discussed in section 3.7.

Experiments were performed with the cylinder oscillating continuously at a fixed frequency of

σ/N = 0.59 for 120 minutes in order to assess the influence of the presence of a topographic profile

with a sustained wavefield on the density profile of the stratification. Figure 3.33 shows RMST

images of a wave beam propagating from the bottom left-hand corner of the picture and interacting

with topography, with a forward scattered wavefield evident propagating to the right-hand side of

the field of view (a back-scattered wavefield is also evident). The RMST images were calculated
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(a)

(b)
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Figure 3.33: RMST images showing development of horizontal intrusions near sawtooth topography
after cylinder oscillation at frequency σ = 0.79, i.e. σ/N = 0.59, for durations of (a) t̂+0, (b) t̂+40
and (c) t̂+ 80 minutes, where t̂ = 4 minutes.

from three periods of oscillation beginning at times of (a) t̂+ 0, (b) t̂+ 40 and (c) t̂+ 80 minutes,

with t̂ = 4 minutes, after the oscillation was initiated. The wavefield remained qualitatively the

same over the sequence of images except for the development of horizontal bands indicating mixed

fluid. The bands were positioned about the vertical level of the topographic corners where the

fluid mixed along the slopes and at the corner drained into the stratification and spread laterally.

An oscillatory feature similar to that observed in figure 3.24 was also seen near the corners of

the topography. These features are discussed further in chapters 5-8. A slight smoothing of the

forward scattered wavefield structure was evident at the later times (figure 3.24 (b) and (c)) as

presumably some of the incident wave energy reflected from the mixed layers as well as at the

slopes of topography. However, the integrity of the stratification was maintained over the time

scales of experiments. Stratifications were discarded whenever the vertical density gradient ∂ρ0/∂z

deviated significantly from a constant value or whenever the height of the section characterised by
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the constant gradient became shorter than ∼ 400 mm.

3.9 Summary

Methods used to collect data from experiments of internal gravity wave scatter at various topo-

graphic profiles have been outlined in this chapter. Some key features of the wavefield have been

introduced and illustrated with experimental data. Results collected from the experimental study

are analysed and discussed in chapters 4-8.
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Chapter 4

Smooth topography

4.1 Overview

The previous chapters have established a context for the present research and have described exper-

imental methods employed. This chapter presents results from this study that focus on reflections

of wave beams from smooth boundaries that have continuous gradients. These include reflections at

horizontal or sloping planar boundaries, at a smooth curved boundary and at sinusoidally varying

topographic profiles. The wavefields are compared with linear theories based on geometrical ray

tracing and methods of characteristics. Reflection behaviour is investigated in terms of parame-

ters describing the relative slopes and length scales of the waves and topography. Results from

this chapter are compared and contrasted with those relating to reflections at rough boundaries in

chapters 6-8.

4.2 Reflection at a smooth horizontal boundary

Literature on internal gravity wave reflection at planar boundaries was discussed in sections 2.4.1-

2.4.2. Experimental results for reflection at a horizontal boundary are presented here. Along-

beam structures and amplitudes of incident and reflecting wave beams are compared with those

of ‘freely’ propagating wave beams and reflecting wavefields as predicted by linear theory. The

experimental setup employed in the present study (see chapter 3) allowed results to be collected of

higher resolution and over a broader range of parameters than those described in previous studies.

This permitted more detailed analyses (presented in this section) such as the generation of power

spectra for the wavefields.

4.2.1 Qualitative results

Experiments were performed to view the reflected wavefields produced by wave beams reflecting at

a horizontal boundary for incident wave frequencies in the range σ/N ∈ [0.33, 0.71], corresponding

to the range of propagation angles θ ∈ [44.5, 70.5]◦. The synthetic schlieren processing used to
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Figure 4.1: Images of the instantaneous perturbed buoyancy field for reflections at a smooth horizon-
tal boundary with beams angles θ equal to (a) 44.8 ◦ and (b) 54.4 ◦ respectively, and corresponding
RMST images shown in (c) and (d).
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Figure 4.2: Coordinate systems used for incident and reflected wave beams.

visualise experiments readily yields the perturbed buoyancy field

∆N2 = − ĝ
ρ̂

∂ρ′

∂z
, (4.1)

where ρ′ indicates the perturbed density field. Root mean square averages of this field over several

periods give a qualitative insight into the variation of the structure of wave beams (see chapter 3).

Such an average is denoted here by RMST for convenience. Figure 4.1 shows both instantaneous

(a and b) and RMST (c and d) ∆N2/N2 images of wave beams reflecting at a horizontal boundary

for values of θ (a, c) 44.8 ◦ and (b, d) 54.4 ◦. Each figure shows an incident wave beam propagating

from the top left-hand corner and reflecting at a horizontal boundary postioned at the bottom
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4. Smooth topography 4.2. Reflection at a smooth horizontal boundary

of the image. Reflected wave beams subsequently propagate towards the top right-hand corners,

making the same angles to the vertical as those made by the respective incident beams, indicating

conservation of frequency at first order as predicted by linear theory (Lamb 1932, Phillips 1966).

Coordinate systems for the beams shown in figure 4.1 are defined in figure 4.2. Along-beam

coordinates aligned with directions of energy propagation are denoted by sI and sR for the incident

and forward reflected beams respectively. Across-beam coordinates are aligned with directions

of phase propagation and are denoted aI and aR for the incident and forward reflected beams

respectively. In the characteristic coordinate system of section 2.2.3, aI ≡ ξ and aR ≡ −η. The

origin of the coordinate system for the incident beam was taken as the center of the cylinder, given

in cartesian coordinates by (xc, zc). The origin of the coordinate system for the forwards reflecting

wave beam was taken as the intersection of the centerline (i.e. specified by the centerpoint of the

cylinder and the angle θ) of the incident beam with the vertical level of the boundary. In reality,

from the perspective of the camera, the incident wave energy reflected from a vertical level slightly

above the boundary due to minor parallax effects associated with the extremities of larger fields

of view. An additional physical offset also occured since wave energy also reflected from a narrow

boundary layer that formed along the boundary (see section 3.8). However, these effects resulted in

a negligible misalignment of the line aR = 0 from the centerline of the reflected beam and so were

ignored. The coordinates for the incident beam can therefore be written

aI = x cos θ + z sin θ, sI = x sin θ − z cos θ (4.2)

and those for the forward reflected beam

aR = x cos θ − z sin θ, sR = x sin θ + z cos θ, (4.3)

where the respective origins are those defined above. Note that the along and across-beam coordi-

nates of the reflected beam have opposite vertical orientations to those of the incident beam.

At small distances along the incident beams shown in figure 4.1, maxima of the density per-

turbations lie along two tangents to the cylinder parallel to the beams. These maxima gradually

converge with distance as viscosity acts to reduce gradients across each beam, acting preferentially

on the higher wavenumber components. This is the well known bimodal to unimodal transition.

The incident beams exhibit symmetry about their centerlines and their widths are approximately

constant in the views shown.

The horizontal extent of the reflecting region, where the incident and reflected beams overlap and

the wavefields superpose at the horizontal boundary, can be estimated from geometrical arguments

using ray tracing to be

LR =
B̂

cos θ
, (4.4)

where B̂ is the approximate incident beam width in the region near the boundary. As discussed

in section 2.3.3, B̂ is dependent on the along-beam distance, sI , and the viscous dissipation. The
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height of the reflecting region above the horizontal boundary is similarly estimated to be

HR =
B̂

2 sin θ
. (4.5)

Outside this region, the reflected beams shown have a unimodal structure, exhibiting maxima along

their centerlines and have across-beam symmetry about the maxima. Values of the perturbed buoy-

ancy field diminish and the beams gradually become narrower in width with along-beam distance

sR. The values associated with the reflected beams at small values of sR, i.e. just outside the reflec-

tion region, are significantly smaller than those associated with large sI , i.e. just prior (physically)

to reflection. This perhaps indicates some enhanced dissipation in the reflection regions. Possible

mechanisms for this enhancement could be interaction with the viscous boundary layer or nonlinear

interactions where superposed amplitudes of the incident and reflected wavefields become large.

Slight deviations of N in the region near the boundary from the constant interior stratification

value (see section 3.8.1) could also contribute to this effect.

Time series images were formed from movies of the perturbed buoyancy fields along cross-sections

of the beam of width 10Rc. The cross-sections were taken at two along-beam positions for each

beam and the time series produced typically represented 6 or more periods, T , of the first order

wave motion. As an example, the cross-section indicated in figure 4.2 by the red dashed line is 6Rc

wide and is located at a distance along the reflected beam of sR = 6Rc. Figure 4.3 shows time series

images taken from cross-sections positioned at (a) sI = 7Rc, (b) sI = 12Rc, (c) sR = 7Rc and (d)

sR = 12Rc for σ/N = 0.58, corresponding to the RMST image shown in figure 4.1 (b). Frequency

conservation is clearly evident in the time series of figure 4.3 as well as the shift from the distinct

bimodal across-beam structure with amplitude peaks at aI/Rc = ±1 in (a), and to a lesser extent

in (b), to a unimodal structure with peak along the centerline aR/Rc = 0 in (c) and (d).

4.2.2 Quantitative results: amplitudes

The amplitudes and structures of the incident and reflected beams corresponding to the experiment

relating to figure 4.3 are compared here with the linear theory of Hurley & Keady (1997) for a

freely propagating beam in a viscous fluid and with the linear inviscid theory of Phillips (1966) for

reflection at a smooth boundary.

The theory of Hurley & Keady (1997) yields solutions for the stream functions for wave beams

generated by a cylinder of radius Rc oscillating with vertical amplitude Ac such that Ac/Rc << 1

and at the temporal frequency σ in a viscous fluid. The stream function ψ(x, z, t) = ψ̂(x, z)e−iσt

satisfies

σ2∇2ψ̂ − iσν∇4ψ̂ −N2∂
2ψ̂

∂x2
= 0, (4.6)

where ν is the kinematic viscosity. This is a form of (2.11) with the additional viscous contribu-

tion −iσν∇4ψ̂. Solutions for the stream function are found by rotating to the coordinate system
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Figure 4.3: Time series images for cross-sections of established wave beams at positions (a) sI = 7
and (b) 12Rc and (c) sR = 7 and (d) 12Rc for σ/N = 0.58 and T = 7.4 s.

described above for the incident beam. The assumptions are made that

∂φ

∂sI
<<

∂φ

∂aI
(4.7)

throughout the fluid, where φ represents a field variable, and that the depth of the boundary layer

surrounding the cylinder is much smaller than Rc so that

λ =
ν

2Rc
2σ tan θ

(4.8)

is a small quantity (Thomas & Stevenson 1972). The relevant linear viscous solution of the stream

function for the incident wave beam is

ψ =
iAcσRc

2
ei(θ−σt)

∫ ∞

0

J1(K)

K
exp

(

−K3λ
sI

Rc
− iK

aI

Rc

)

dK, sI > 0 (4.9)

where the function J1 is the first order Bessel function of the first kind (Hurley & Keady 1997).

The factor multiplying the integral in (4.9) encompasses the temporal variation of the wavefield

and the form of generated wave groups as imposed by the shape and dimensions of the cylinder

(c.f. chapter 5 where cylinders with elliptical cross-sections are also considered). The influence of

viscosity is enforced by the first term of the exponent within the integral and indicates that as they
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4. Smooth topography 4.2. Reflection at a smooth horizontal boundary

propagate away from the cylinder, wave components are attenuated at a rate ∼ k3, where k is the

wavenumber, so that high wavenumber, i.e. small length scale, components are attenuated most

rapidly. This solution can be used to derive a linear analytical approximation for the square of the

perturbed buoyancy field ∆N2 by solving

∆N2 = −
[

iN2

σ

∂2ψ̂

∂x∂z

]

e−iσt (4.10)

to give

∆N2 =
AcRcN

2

2
ei(θ−σt)

∫ ∞

0

(

−1

2
(λ2k4R4

c + 1)k2 sin 2θ + iλk4R2
c cos 2θ

)

J1(Rck)

k
exp(−R2

ck
3λsI − ikaI)dk,

(4.11)

where k = K/Rc (Sutherland et al. 1999). Wave beams with group velocities directed with the same

horizontal sense but opposite vertical sense exhibit a negative symmetry so that the solution for

∆N2 for a beam oriented with the forward reflected beam is simply the negative of (4.11). Solutions

of (4.11) were obtained in this study using numerical integration in Matlab.

Figure 4.4 shows instantaneous across-beam values of the perturbed buoyancy field at along-

beam positions (a) sI = 7Rc and (b) sR = 12Rc for time series sections shown in figure 4.3 (a)

and (d) respectively and at the four times t/T = 0, 1/4, 1/2 and 3/4. The bold red line illustrates

extrema for the time series. The distinct bimodal amplitude envelope of the cross-section of the

incident beam is evident in figure 4.4 (a). The envelope is almost symmetric about aI/Rc = 0,

with peaks of ∼ 0.079 at aI/Rc = ±1 and tending to zero at aI/Rc ≈ ±3. In contrast, amplitudes

along the cross-section of the reflected beam shown in figure 4.4 (b) follow a symmetric unimodal

envelope structure, with a peak value of ∼ 0.033 at aR/Rc = 0.

Linear inviscid theory predicts that energy density is conserved on reflection at a horizontal

boundary (Phillips 1966). At first order, it can therefore be expected that any decay in energy flux,

and hence amplitude, in the along-beam direction is due to the diffusive action of viscosity alone.

Figure 4.4 (c) and (d) compares across-beam amplitude predictions of the linear viscous theory

of (4.11) with the corresponding amplitudes measured in the experiments shown in figure 4.4 (a)

and (b) respectively. The along-beam distance, s, used in the calculation of (4.11) for the cross-

section of the reflected beam (figure 4.3 (d)), is s = ŝI + sR, where ŝI is the total distance along

the centerline of the incident beam between the center of the cylinder and the intersection of

the line with the horizontal boundary. The change in direction of propagation of the phase for the

reflected beam was also accounted for in the calculation. The theoretical predictions compare closely

with those measured along the cross-section of the incident beam corresponding to figure 4.4 (c).

The linear theory also correctly models the unimodal across-beam structure of the cross-section

of the reflected beam corresponding to figure 4.4 (d) but significantly overpredicts the magnitude
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Figure 4.4: Instantaneous across-beam values of the perturbed buoyancy field along cross-sections of
(a) incident and (b) reflected beams associated with figure 4.1 (b) and comparisons of the measured
cross-sections with linear theory in (c) and (d) respectively.

of the perturbed buoyancy field with peak values ∼ 0.048 compared with measured peaks of ∼
0.033. This discrepancy suggests that a proportion of the incident energy flux is lost from the

reflected wavefield, either through enhanced viscous dissipation or nonlinear mechanisms where

the incident and reflected wavebeams overlap near the boundary. The more complex structure

of the overlap regions results in larger spatial gradients that promote viscous attenuation, whilst

larger amplitudes caused by superposition of the incident and reflected wavefields in this region

may enhance other nonlinear behaviour. However, since σ/N = 0.58 > 1/2, higher propagating

harmonics of the primary wavefield cannot be generated. Instead energy can be dissipated in this

regime by disturbances that decay exponentially in space away from their generation region.
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Figure 4.5: Across-beam RMST amplitudes at different values of sI and sR for σ/N = 0.58. Grey
dashed lines indicate locations of tangents to cylinder in along-beam directions. The dashed black
line indicates the cross-section measured closest to the horizontal boundary, positioned at sI/Rc =
17.

Figure 4.5 shows RMST amplitudes of the perturbed buoyancy field taken along cross-sections of

the incident and reflected beams of the experiment shown in figure 4.1. Note that due to the presence

of the boundary, it was not possible to obtain measurements along cross-sections of the desired width

on either beam for sections located within a distance of s ∼ 4Rc from the boundary. The figure

clearly shows the erosion of the bimodal across-beam structure that is evident at small distances sI

from the cylinder, to a unimodal structure at large sI . RMST amplitudes along the cross-sections of

the reflected beam also have a unimodal structure that decreases in amplitude as sR increases. The

transition between a bimodal and unimodal form of the incident wave beam envelope is estimated

to occur between sI = 15 and 17Rc. However, viscous theory (see section 2.3.2) calculates the

transition distance, sν , to be sν ≈ 462Rc (Makarov et al. 1990). Sutherland et al. (1999) found

similar discrepancies with a predicted transition distance of 279Rc compared with an observed

value of ∼ 8Rc and hence questioned the validity of (2.24). In particular, the viscous theory omits

the inclusion of a viscous boundary layer on the surface of the oscillating cylinder.

Quantitative results: spectral techniques

In order to determine the partitioning of wave energy between different wavenumber components

and its redistribution on reflection, various spectral methods were investigated for their suitability

in the present study for analysis of time series of quantities along cross-sections of wave beams. A

data set f(a), where here a denotes a spatial quantity, can be represented in terms of the relative

contributions from its constituent components that are associated with different wavenumbers.

The most common representation of this is the power spectrum, P (k), which can be found from
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transforms using e.g. Fourier, maximum entropy or wavelet methods that use basis functions to

map the spatial data into wavenumber space. The choice of analysis tool depends on the nature of

the particular data set. Data sets used is the present study are discrete in their spatial sampling

and finite in extent. Unless otherwise stated, cross-sections of wavefields measured 10Rc in length,

corresponding to a resolution of Nf ∼ 200 pixels in a field of view of dimensions ∼ 681 mm×500 mm.

As the present interest was in analysing the scattering behaviours of the wavefields at ‘rough’

boundaries, the spectral method employed was required to correctly capture rapidly varying in

space and typically localised features of the data sets. A brief overview of the methods listed above

is given here and the reader is directed to Press et al. (1992) for more detail on each method and

associated power spectra calculation. Whilst other techniques for spectra calculation exist, such as

the method of matching pursuits (e.g. Addison 2002), these are not discussed here further.

The Fourier transform, FT , or in the case of discretely sampled data, the discrete Fourier

transform, DFT , is perhaps the most commonly used spectral technique. Fourier methods determine

a unique and invertible representation of a data vector in wavenumber space using sine and cosine

basis functions. The Fourier transform, F (f), is given by

F (f) =

∫ ∞

−∞
f(a)eika da (4.12)

and its discrete anology by

F (fn) =

Nf−1
∑

n=0

fn(a)einka, (4.13)

(e.g. Press et al. 1992; Sneddon 1995; Bracewell 2000). Efficiency of numerical computations of the

DFTare often improved by employment of fast Fourier transforms, FFT , which significantly reduce

the number of operations from O(N2
f ) to O(Nf log2Nf ) (Cooley & Tukey 1965). The sinusoidal

basis functions of DFT have infinite spatial extent and hence allow the accurate representation of

periodic data sets. The application of the DFT to a finite data set, however, effectively employs

the assumption that the data is a truncated sample with length equal to one period of an infinite

data set. This can therefore introduce false wavenumber components into the calculated spectra.

In the same manner, the DFT is also unable to correctly resolve localised features in the data. An

adaptation of the DFT that aims to resolve these features is the ‘windowed Fourier transform’ (Press

et al. 1992). This splits the data into equal sections, or ‘windows’, and calculates the DFT for the

data from a composite of DFT ’s performed in each of these windows. Again, due to the periodicity

of the basis functions, this method is highly sensitive to the choice of window size and positioning

within the data.

In contrast, the maximum entropy method fits a chosen number of rational basis functions to

the data set, assuming exponential decay of the data set outside the region of definition. The

combination of these functions used to represent the data is selected using methods from Bayesian

statistics. Effectively, for a particular selected level of detail or ‘trueness’ (specified by the number
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of rational functions used in the calculation) to be maintained, the simplest representation of the

data is chosen by maximising the ‘Shannon entropy’ (e.g. Cornwell & Evans 1985). This statistical

measure is greatest for the most simplified version of the data. Hence the maximum entropy method

involves some smoothing of the data, which may or may not be benefitial in the given application,

and is therefore not exactly invertible. The use of rational functions, which support poles, allows

the identification of both local physical and spectral features of the data provided that the number

of rational functions is correctly specified for the particular data set.

Wavelet methods use basis functions known as ‘wavelets’ or ‘mother functions’ to perform rota-

tions between physical and wavenumber space (e.g. Addison 2002). The wavelet transform, WT , or

discrete wavelet transform, DWT , for a given data set uses a family of wavelets that are completely

defined by scalings of the ‘mother function’ form chosen (e.g. Daubechies 1988). An infinite number

of possibilities exist for the choice of the mother function and the most appropriate shape can be

selected for the particular type of data being analysed. Unlike the Fourier basis functions, wavelets

have finite spatial extent, i.e. ‘compact support’. These wavelets are translated along the data

vector and scaled locally to fit the data structure there - hence allowing detailed representation of

isolated features of the data. This localised analysis of the data also allows the locations within the

data vector of its different spectral components to be identified, which is not possible with either

Fourier or maximum entropy methods. Wavelet transforms are invertible and are most commonly

used in data compression. Detailed reviews of wavelet methods and their applications can be found

in Kaiser (1994), Kumar & Foufoula-Georgiou (1997), Mertins (1999), Walker (1999) and Mix &

Olejniczak (2003).

Each of the spectral methods introduced above benefit from the selection of data that has

magnitudes that tend to zero at its end points, hence reducing inaccuracies (‘spectral leakage’)

introduced to the spectra caused by the assumption in the FFT of periodicity of the finite data set,

etc. It is possible to multiply the data by a ‘window function’, which would enforce a tapering of

the measured fluid motion towards the ends of cross-sections. However, this precaution is instead

satisfied by the choice of broad cross-sections of length 10Rc (described above) that are carefully

positioned within the field of view, since the across-beam structures of incident and reflected wave

beams are generally of width ∼ 6Rc, with negligible fluid motion outside this region. This condition

is further enforced by the use of ‘zero padding’ at the ends of the data (e.g. Press et al. 1992;

Mertins 1999; Addison 2002). Zero padding involves artifically widening the data vector with zero

values. In the present study, data vectors were widened by a factor of 10 to a width of 100Rc, where

the original data was centered within the padded vector. Various degrees of zero padding were

tested (in a similar manner as described below) and no significant improvement was observed for

data extensions beyond the cross-section width of ∼ 100Rc, though processing time was increased as

data vectors were lengthened. In order to reduce the effects of transient noise in the data, which had

high temporal frequency, spectra calculated from instantaneous measurements along a cross-section

were also averaged over several complete periods of the first order wave motion.

Tests were made to assess the performance of the various spectral methods, with zero padding
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Figure 4.6: Tests of spectral methods for a specified data set. Here (a) plots a prescribed data set
and its individual wavenumber components and (b) plots power spectra calculated with Fourier and
maximum entropy methods. k̃ is a nondimensional wavenumber representing the number of waves
in an across-beam section of length Rc.

employed in all calculations in the manner described above. Figure 4.6 (a) shows an artificially

prescribed data set (thick black line) together with its individual locally sinusoidal components,

which have the wavenumbers indicated. The data was constructed with features typical of data

collected in this study, with similar spatial resolution and an abruptly varying profile composed of

several dominant components as well as a component representing relatively small amplitude, high

frequency noise. Figure 4.6 (b) compares the various power spectra calculated from the artifical

data using FFT and MEM (with different numbers of rational functions as indicated) techniques.

The grey dashed lines indicate the actual positions of the known peak wavenumbers at k̃ = 0.15,

0.34, 0.75 and 1.25, where, unless otherwise stated, units of wavenumbers presented with the tilde,

,̃ notation are henceforth understood to correspond to the number of waves per cross-section of

length Rc. The FFT method performs the best, correctly predicting peaks at, or closest to, the

actual wavenumbers. The peak at k̃ = 0.2 is amalgamated with that at k̃ = 0.34, though its

presence is evident in the asymmetry of the peak. There also appears to be a weak signal of a false

wavenumber component predicted near k̃ = 1.1. Of the various MEM spectra, the most accurate

at locating positions of peaks appears to be the spectra calculated using Nf/5 rational functions.

However, this fails to display a convincing signal at k̃ = 0.2 or 1.25, and consistently produces

peaks that are less pronounced, and hence less distinct for analysis purposes, than those generated

by the FFT method. The other MEM spectra exhibit peak splitting or wavenumber omissions -

illustrating the sensitivity of this method to the choice of the number of rational functions used.

Several tests with other data sets yielded similar behaviour to that shown in figure 4.6. A wavelet

transform using the Daubechies-20 wavelet mother function (see Press et al. 1992; Addison 2002)

was also compared to the FFT and MEM techniques, producing similar spectra to the FFT . The
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Figure 4.7: Two-dimensional power spectra for the sequence of images associated with the exper-
iment of figure 4.1 (b) and (d). Power, P , is normalised by total power, P̂ . k̃x and k̃z denote
nondimensional wavenumbers representing the number of waves in horizontal and vertical sections,
respectively, of length Rc. The dashed white line indicates the orientation of the correspond-
ing nondimensional across-beam wavenumber k̃, i.e. the wavenumber aligned with those directions
making an angle θ = 54.4 ◦ with the horizontal. Marks along the dashed line indicate magnitudes
in the across-beam direction of k̃ ∈ [0, 3] incremented by 0.5.

wavelet transform also produced additional spatial information about the location of the different

wavenumber components within the data. However, since FFT are more commonly used in internal

gravity wave studies, and hence some validation of the wavelet transform is desirable before its use

here, and as the processing time of the DWTwas greater than that of the FFT , unless otherwise

stated, the FFT was used for spectral analysis throughout this research. Study of the data using

wavelet transforms will be the subject of future work.

Quantitative results: spectral analysis at a fixed frequency

Figure 4.7 shows the two-dimensional power spectra averaged over 2T of the motion for σ/N = 0.58.

Wavenumbers represent the number of waves per unit distance equal to Rc. The dashed line, given

by k̃z = tan θ k̃x, indicates the across-beam orientation of the wavenumber of the first order wave

motion, k̃. The distribution of power along the dashed line indicates that the fluid motion is

dominantly associated with across-beam phase propagation. Normalised power values are greatest

for k̃ ∈ [0.50, 1.0], with the maximum value, P/P̂ = 0.21, located near k̃ ≈ 0.60. Interpretation

of the two-dimensional power spectra such as that shown in figure 4.7 is restricted. In particular,

the evolution of across-beam wavenumber spectra as waves propagate away from the source can not

be deduced from the two-dimensional power spectra and so one-dimensional spectra taken along

cross-sections of wave beams are used instead throughout this thesis.

Figure 4.8 (a) shows power spectra of time series taken at across-beam sections located at
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Figure 4.8: Power spectra of across-beam sections associated with figure 4.5. Power, P , is normalised
by total power, P̂ , associated with the section at sI = 4Rc. The dashed black line indicates the cross-
section in (a) measured closest to the horizontal boundary, positioned at sI/Rc = 17. Predictions
of linear theory (dashed lines, HK = Hurley & Keady 1997) are compared in (b) with power spectra
calculated from experiment cross-sections (solid lines) located at sI/Rc = 7, 11 and 15.

distances sI = 4 − 17Rc along the incident beam associated with figure 4.5 and sR = 4 − 14Rc

along the beam reflecting from the horizontal boundary (corresponding to a total distance of s =

ŝI + sR ≈ 27− 37Rc from the cylinder centre). Since potential energy is proportional to the square

of the displacement, the potential energy density is proportional to P 2. Omitted power spectra at

distances from the cylinder between 17 and ∼ 27Rc are those for which complete cross-sections were

not possible near the reflection region. Spectra for the incident cross-sections show two distinct

peaks. The largest peaks are found for spectra corresponding to the cross-section positioned closest

to the cylinder at sI = 4Rc, with the largest of these located at a wavenumber of k̃ ≈ 0.36 and a

second peak located at a wavenumber of k̃ ≈ 0.78. As the along-beam distance of the cross-sections

is increased, the power associated with these peaks decreases and is accompanied by a slight skew

of the peak to smaller wavenumbers. The general reduction in power with increasing distance from

the cylinder is predominantly a result of viscous attenuation of the wave motion, whilst the skew to

lower wavenumbers can be understood as the preferential action of viscosity on larger wavenumber

components, which are associated with larger across-beam gradients and hence larger degrees of

shear as discussed in section 2.3.2. Power associated with the higher wavenumber component is

reduced to a negligible value prior to reflection. As a result, spectra associated with the reflected

beam show peaks only near a wavenumber of k̃ = 0.31. This peak is consistent with the lower

wavenumber peak of the incident spectra and hence suggests that, in agreement with linear theory

(Lamb 1932; Phillips 1966), wavenumbers associated with the incident wavefield are conserved on

reflection at the horizontal boundary. The peak magnitude of the spectra for the cross-section at
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Figure 4.9: Wavenumber calculations from across-beam sections associated with figure 4.5. Here
(a) shows variation of maximum normalised power, Pmax/P̂ , of spectra with s and corresponding
exponential fits and (b) shows variation of wavenumbers of spectra peaks with s and corresponding
linear fits. Triangular symbols in both panels indicate predictions of linear theory, with colours
corresponding to those of predicted spectra plotted in figure 4.8 (b).

sR = 4Rc along the reflected beam is approximately half that of the spectra for the cross-section at

sI = 17Rc along the incident beam. This reduction occurs over a distance of s ≈ 10Rc and is likely

to be caused by both viscous attenuation as well as some enhanced dissipation in the region near

the boundary where incident and reflected wavefields overlap.

Figure 4.8 (b) plots spectra for cross-sections positioned at sI/Rc = 7, 11 and 15 calculated

from experimental data (solid lines), also shown in figure 4.8 (a), together with spectra calculated

from viscous linear theory (Hurley & Keady 1997) at these positions (dashed lines). Magnitudes

of spectra predicted by linear theory are consistently larger than those measured in experiments.

This discrepancy increases with along-beam distance. A slight offset in the positions of the peak

wavenumbers also occurs between the theory and experiments, with peak experimental wavenumbers

slightly smaller than those predicted.

Figure 4.9 (a) compares power magnitudes of the experiment and theoretical spectral peaks

shown in figures 4.8 (a) and (b) for increasing along-beam distances. Black ‘cross’ and ‘plus’ symbols

represent magnitudes of the experimental peaks associated with the incident spectra near k̃ ≈ 0.35

and 0.78 respectively. Black ‘dot’ symbols represent those associated with the reflected spectra

near k̃ ≈ 0.35. Coloured triangles indicate the corresponding positions of peaks for the incident

spectra predicted by linear theory. The dashed blue line is a fit to the experiment data with form

Pmax/P̂ ≈ 0.05 + 0.39 exp [−0.08 s], indicating an exponential decay in the power associated with

the peak near k̃ ≈ 0.35 with increasing s. The red dashed line is a fit to the experimental data
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for the magnitude of the peak near k̃ ≈ 0.78 that has the form Pmax/P̂ ≈ 0.12 exp [−0.29(s+ 0.9)],

with the decay of this peak exhibiting a strong exponential tendancy. Whilst the linear theory

overpredicts the magnitude of the peaks, the predicted decay, ∼ exp(−νk3s/Rc), follows a very

similar trend to that of the experimental data for the high wavenumber peak, though it shows a

weaker correlation with that for the lower wavenumber peak.

Figure 4.9 (b) plots the variation with along-beam distance, s, of wavenumbers at each of the

peaks of the spectra associated with the incident and reflected beam. Plotted symbols correspond to

those described for figure 4.9 (a). Whilst a linear representation is not suggested for the wavenumber

decay, gradients of linear fits to these wavenumbers are used here (since resolution constraints restrict

more detailed analyses) to indicate the rate of decrease of the peak wavenumbers with along-beam

distance. As expected, the highest wavenumber component associated with the incident wave beam

(red line) experiences a more rapid decrease, with a gradient of −5.98 × 10−3, whilst the lower

wavenumber peak for the incident wave beam (black line) has a gradient of −2.95 × 10−3. At

the spatial resolution used, no decrease was discernable in the peak wavenumber associated with

the reflected beam (blue line). Whilst some inaccuracy of the calculated wavenumber positions

of spectral peaks are possible through the use of FFT as discussed above, it is unlikely that the

observed trends for a shift in wavenumber peak to lower values with along-beam distance are a

consequence of the spectral method. The trend for the decrease in the low wavenumber peak of

the incident beam, for example, can be observed over 14 sequential cross-sections separated by

s/Rc = 1. As for the peak magnitudes, predictions of linear theory for wavenumber positions of

peaks exceed those measured from experimental data but exhibit similar rates of reduction as the

along-beam distance increases.

Power spectra variation with frequency

Time series along cross-sections of a beam incident on a horizontal boundary and those of its

reflection were analysed in the preceding subsection for a single forcing frequency σ. In order to

determine whether the behaviour reported is representative of other values of the parameter σ/N ,

a comparison was made of spectra calculated from cross-sections of incident beams for ten values

of σ/N ∈ [0.33, 0.71]. Figure 4.10 shows power spectra calculated for each frequency from cross-

sections positioned at distances sI/Rc equal to (a) 7, (b) 11 and (c) 15 along the incident beam

together with the corresponding RMST amplitudes along the given cross-sections in (d), (e) and (f)

respectively. Peaks of the spectra associated with the cross-section closest to the cylinder, shown

in figure 4.10 (a), are located for each frequency at wavenumbers of ∼ 0.34 and ∼ 0.77, with the

exception of σ/N = 0.33 and 0.37, for which the spectra are skewed slightly as a result of significant

overlaps (also evident in (d)) between the beams propagating upwards and downwards away from

the cylinder. As the frequency increases from σ/N = 0.33 to 0.50, the power associated with each

peak also increases, with the frequencies σ/N = 0.50 and 0.54 having similar power magnitudes.

Since the group velocity decreases with an increase in frequency according to (2.17), with θ =
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Figure 4.10: Power spectra variation with forcing frequency at along-beam distances sI/Rc equal
to (a) 7, (b) 11 and (c) 15. Corresponding RMST amplitudes along these sections are shown in (e),
(f) and (g) respectively. Peaks of spectra for black dashed line are located at (a) k̃ = 0.34, 0.77;
(b) k̃ = 0.33, 0.74; and (c) k̃ = 0.32, 0.72. Power, P , is normalised by the total power, P̂ , in the
spectra corresponding to σ/N = 0.58 at sI/Rc = 4.

cos−1(σ/N), energy densities and hence amplitudes therefore increase with σ/N . This trend can

also be seen in figure 4.10 (d) for σ/N ∈ [0.33, 0.54]. Amplitude variation with frequency was also

studied experimentally by Sutherland et al. (1999) for four frequency values in the narrower range

σ/N ∈ [0.26, 0.55]. The study compared instantaneous across-beam amplitudes for these frequencies

at just one along-beam distance sI/Rc = 9 and, in agreement with the results of the present study

for this frequency range, found a slight increase in amplitude with increases in frequency.

The largest power and amplitude maxima are those of frequencies σ/N ∈ [0.58, 0.71]. Whilst

power peaks for these frequencies are similar in magnitude, surprisingly these show a slight decrease

in magnitude between σ/N = 0.58 and 0.71. RMST amplitude values are also largest for σ/N = 0.58.

This behaviour is inconsistent with the argument used to explain the trend shown in the power

magnitudes of the set σ/N ∈ [0.33, 0.50] - especially since the group velocity varies more rapidly

with increasing frequency. Note that the generation of secondary harmonic waves is only possible

for σ/N < 1/2.

The trends in power spectra and RMST amplitudes described above for the cross-section closest

to the source, are repeated in figure 4.10 (b)-(c) and (e)-(f) respectively, with magnitudes decreasing
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Figure 4.11: Power spectra variation with forcing frequency for three frequencies σ/N = 0.71, 0.58
and 0.33 at along-beam distances sI/Rc equal to (a) 7, (b) 11 and (c) 15. Solid lines indicate spectra
calculated from experiment data (c.f. figure 4.10) whilst dashed lines indicate predictions of linear
theory (Hurley & Keady 1997). Corresponding RMST amplitudes for both experiment data and
theoretical predictions along these sections are shown in (e), (f) and (g) respectively. Power, P , is
normalised by the total power, P̂ , in the spectra calculated from experiment data corresponding to
σ/N = 0.58 at sI/Rc = 4.

with along-beam distance as expected due to viscous attenuation. Peaks for the spectra for sI/Rc =

11 and 15 are found at wavenumbers of (b) k̃ = 0.33, 0.74; and (c) k̃ = 0.32, 0.72 respectively. This

agrees with the behaviour shown in figure 4.9, where the wavenumber peak of spectra is skewed to

lower values with greater distance from the cylinder as a result of preferential viscous attenuation

of the higher wavenumber components.

Unfortunately, since the value sI = ŝI ≈ zc cos(σ/N) at which each of the incident beams

reflected at the boundary varied with frequency, it was not possible to make consistent comparisons

between spectra calculated for the reflected beams. However, individual analysis of spectra for

the incident and reflected beams for each frequency revealed power spectra consistent with those

presented in figure 4.8 (a), subject to variation with frequency of the power magnitude associated

with each peak in a similar manner to that observed for the incident spectra shown in figure 4.10 (a)-

(c).

Figure 4.11 compares spectra and RMST amplitudes measured from experiment data (solid
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Figure 4.12: Variation of power spectra maxima, Pmax/P̂ , with σ/N for different along-beam
distances. Symbols indicate values of Pmax/P̂ predicted by linear theory (Hurley & Keady 1997).
Grey dashed vertical lines highlight the frequency values σ/N = 1/2 and 1/3, below which the
generation of second and third temporal harmonics, respectively, is possible.

lines) along cross-sections at sI/Rc = 7, 11 and 15 for the three frequencies σ/N = 0.71, 0.58 and

0.33 (also shown in figure 4.10) with the predictions made by viscous linear theory (dashed lines)

of Hurley & Keady (1997). Linear theory follows similar trends to those of the experimental data

but consistently overestimates magnitudes of each of the spectra and plots of across-beam RMST

amplitudes, with the discrepancy increasing with frequency.

Figure 4.12 compares the variation with σ/N of magnitudes of peaks of spectra calculated from

experiment data at along-beam distances of sI/Rc = 7 to 15. Cross, triangle and dot symbols plot

predictions of viscous linear theory (Hurley & Keady 1997) at along-beam distances sI/Rc = 7,

11 and 15, respectively, at the three frequencies σ/N = 0.71, 0.58 and 0.33. A similar trend is

seen at all along-beam distances, with the peak power increasing to a maximum at σ/N = 0.58,

and then decreasing more gradually for further increases in the forcing frequency. The maximum

power magnitudes predicted by theory again overestimate those measured by experiments but show

a similar rate of increase for the lower frequencies. Theory predictions at σ = 0.71 do not however

exhibit the slump evident in power values calculated from experiment data for the larger frequencies.

The slump may be caused by enhanced attenuation near to the source where beams increasingly

overlap at the higher frequencies.

4.2.3 Scatter to higher harmonics

Linear theory predicts the conservation of frequency during reflection of a wavefield at a horizontal

boundary (Lamb 1932; Phillips 1966). Hence for an incident wavefield satisfying the amplitude

constraint Ac/Dc ≪ 1, all incident wave energy associated with a primary frequency σ is predicted
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to reflect to a wavefield with the same frequency. Linear theory becomes less applicable in systems

where the condition Ac/Dc ≪ 1 is weaker, or in regions of the system for which the parameter is

not representative of local amplitudes of the wavefield, such as in regions of superposition (where

wavefields overlap in the reflection region adjacent to a boundary). In such cases, wave behaviour

may deviate from the predictions of linear theory by the generation of higher harmonic components.

As discussed in sections 2.3.2 and 3.7, the dispersion relation (2.16) permits the generation of

harmonic wave components with frequency σn = nσ provided that the primary frequency satisfies

0 ≤ σ/N ≤ 1/n, for n ∈ Z≥0.

Figure 4.13 shows results from harmonic filtering of the ∆N2/N2 field of an experiment of

reflection at a horizontal boundary with forcing frequency σ/N = 0.46 < N/2 and Ac/Dc = 0.066.

Each image shows incident wave energy propagating from the top left-hand corner towards the

horizontal boundary at the bottom of the image. Figure 4.13 (a), (c) and (e) show the amplitude

and phase fields as well as their products from filtering for the primary frequency. Figure 4.13 (a) is

essentially the RMST image for the primary harmonic and can be interpreted in a similar manner to

those shown in figure 4.1. The phase component shown in figure 4.13 (c) represents the structural

form of the primary wavefield. In particular, the phase is constant in the along-beam direction

and the beam is seen to widen with distance from the cylinder, corresponding to the transition

between a bimodal and unimodal structure of the across-beam form. In addition to the primary

wave beam and its reflection, the phase image reveals motion corresponding to reflected waves

propagating within the tank of much lower amplitude than those associated with the main beam.

However, the amplitudes associated with this motion are several orders of magnitude smaller than

those associated with the primary wave beam and, as a result, these motions are not evident in the

composite image shown in figure 4.13 (e).

Figure 4.13 (b), (d) and (f) show the amplitude and phase fields and their product from filtering

for the secondary harmonic frequency σ2/N = 0.92. Unfortunately, due to the finite temporal

resolution of experimental movies, it was not possible to completely remove evidence of the primary

harmonic during filtering for the secondary harmonic. The wave period was not an integer number

of frames and only a relatively small number of wave periods were sampled. As a result, a slight

amplitude peak can be seen along the location of the primary beam in figure 4.13, and similarly

signatures of the primary harmonic can be seen in the corresponding regions of figures 4.13 (d) and

(f). The generation of a secondary harmonic beam by the cylinder with amplitudes that are an

order of magnitude less than that of the primary harmonic is clearly evident in figure 4.13 (b). This

beam reflects at the bottom boundary and decays rapidly in amplitude as it propagates away from

the boundary. Subsequent repeated reflections of this harmonic between the upper surface of the

stratification and the bottom of the tank can be seen in the phase image shown in figure 4.13 (d).

A second weaker beam also appears to be generated along the region of the boundary at which

the primary harmonic reflects (figure 4.13). Inspection of figure 4.13 (d) and (f) indicates that the

second beam is generated during the primary reflection, rather than being a reflection associated

with the secondary harmonic generated by the cylinder. The generation of higher harmonics during
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Figure 4.13: Temporal filtering for primary and secondary harmonics of reflection at a horizontal
boundary with primary frequency σ/N = 0.46. Here (a) and (b) show amplitude components for
the primary (i = 1) and secondary (i = 2) harmonics respectively with maxima M1 = 5.6 × 10−2

and M2 = 3.8×10−3; (c) and (d) show phase components corresponding to (a) and (b) respectively;
(e) and (f) are products of the amplitude and phase components for (a) and (b) respectively.

the reflection process shows the weakening of linear theory even at the moderately small value of

the parameter Ac/Dc = 6.6 × 10−2, presumably due to the local enhancement of wave amplitudes

where the primary incident and reflected wavefields overlap in the reflection region.
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This section has presented and discussed experimental results of wave reflection at a horizontal

boundary. More detailed analyses have been presented than in other studies, such as for amplitude

trends with variation of σ/N and s/Rc, as well as new data, including power spectra and harmonic

filtering. Whilst the qualitative predictions of linear theory, such as the first order conservation

of frequency and the incident wavenumber, have been supported by these results, a quantitative

analysis has revealed that the incident energy undergoes enhanced dissipation during the reflection

process and that for incident frequencies such that σ < N/2, forwards propagating secondary

harmonic wavefields can also be generated. The following section considers reflection behaviour at

sloping boundaries.

4.3 Reflection at a smooth sloping boundary

Consideration of wave interactions with boundaries that are inclined by an angle α relative to the

vertical introduces the parameter θ/α, which compares the relative slopes of the wave energy vector

and boundary. Reflection at a smooth sloping boundary inclined by the angle α is referred to

here as subcritical, supercritical and near-critical for the ranges θ/α < 1, θ/α > 1 and θ/α ≈ 1

respectively (see section 2.4.2). Experiments were performed with slope angles α = 32.4◦, 37.0◦,

37.3◦ and 50.1◦. Values of θ/α for which the experiment setup could be manipulated so that just

one wave beam, generated by the oscillating cylinder, was incident along the slope were restricted

by the geometry of the tank (see chapter 3). Results for reflection at subcritical, supercritical and

near-critical parameter values possible within these constraints are presented here.

4.3.1 Qualitative results: subcritical and supercritical

Instantaneous and RMST images of the perturbed buoyancy field are shown in figure 4.14 (a)

and (c) for wave beams reflecting at a subcritical slope with σ/N = 0.71 and θ/α = 0.89, and in

figure 4.14 (b) and (d) for wave beams reflecting at a supercritical slope with σ/N = 0.34 and θ/α =

2.17. In all images, incident beams propagate downwards from the top left-hand corner. In both

subcritical and supercritical cases, the reflected beam propagates along a direction that makes the

same angle with the vertical as the incident beam, hence demonstrating the conservation of frequency

at first order (Phillips 1966). However, as predicted by ray tracing for this particular geometrical

arrangement of the incident group velocity and boundary (see e.g. figures 2.4 (a) and 2.5 (a)),

the reflected beams propagate in different vertical directions, with the subcritical reflection having

an upwards oriented group velocity and that of the supercritical reflection directed downwards.

The subcritical and supercritical reflected beams are narrower than the incident beams and are

characterised by smaller across-beam length scales, which are most clearly seen in figure 4.14 (a)

and (b). Geometric ray tracing predicts that widths of reflected beam vanish in the critical case

as |θ/α − 1| → 0. Since the supercritical value of |θ/α − 1| = 1.17 is greater than that for the

subcritical case, for which |θ/α − 1| = 0.11, the width of the reflected beam is not constricted as
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Figure 4.14: Images of the instantaneous perturbed buoyancy field for sub and supercritical reflec-
tions with slope ratios θ/α equal to (a) 0.89 and (b) 2.17 respectively, with corresponding RMST

images shown in (c) and (d). Regions on right-hand side of slopes are shaded grey.
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Figure 4.15: Coordinate systems used at boundaries inclined at an angle α to the vertical.

much in the supercritical reflection. Similarly, across-beam scales, evident in figure 4.14 (b), are

reduced by a lesser degree in the supercritical case. Wave amplitudes are enhanced in each reflection

as a result of the beam constriction and lower group velocities associated with the higher reflected

wavenumbers. The across-beam structures of the reflected beams are evident in figure 4.14 (c) and

(d), exhibiting maxima aligned with the centerlines of the beams. These observations agree with

ray tracing predictions outlined in section 2.4.2. For both subcritical and supercritical reflections,
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amplitudes of the fluid motion are particularly enhanced in the region where the incident and

reflected beams overlap along the boundaries.

4.3.2 Quantitative results: supercritical

Quantitative measurements associated with only supercritical reflections are presented here. Un-

fortunately, experiments in the present study of subcritical reflections that had parameter values

θ/α < 0.7 were contaminated by the presence of other reflecting wave beams, which could not be

avoided with the experimental arrangement used. At larger values of θ/α, these overlapping wave

beams could be avoided, but the quantitative analysis of the subcritical reflections was hindered

by the close proximity of the reflected beam to the slope - preventing cross-sections of sufficient

length to be made of the reflecting beams so as to allow accurate amplitude or spectral analysis

(see e.g. figure 4.14 (c)). These subcritical results are therefore omitted here. The experimental

arrangement did, however, permit reliable quantitative measurements of supercritical reflections for

which θ/α > 1.5.

The coordinate system illustrated in figure 4.15 was employed for analysis of supercritically

reflecting wave beams. Across-beam coordinates aI and aR for the incident and reflected beams are

aligned with the direction of phase propagation. Note that, in contrast to the coordinate system

described in figure 4.15 for reflections at a horizontal boundary, the along-beam coordinates sI and

sR of the incident and reflected beams respectively are directed along beams and are both taken to

originate at the point of interception of the incident beam with the boundary. Whilst this orientates

sI in the opposite direction to the incident group velocity, this coordinate system is adopted in order

to allow more convenient comparisons with wave reflection behaviours described in later sections,

for which this convention is more natural. Coordinates parallel, xα, and perpendicular, zα, to the

boundary are also defined for convenience.

Figure 4.16 (a) shows amplitudes of the perturbed buoyancy field calculated from measurements

made along cross-sections of the incident and reflected wave beam for a supercritical reflection with

σ/N = 0.64 and θ/α = 1.55. Smaller values of sI correspond to locations along the incident beam

that are further from the oscillating cylinder and closer to boundary. Hence, measured RMST

amplitudes of ∆N2/N2 for the incident wavefield are greatest along the cross-section at sI/Rc = 11

with a maximum value of 2.3 × 10−2 and smallest at sI/Rc = 4 (dashed black line), just prior to

reflection, having a maximum value of 1.9 × 10−2, due to viscous attenuation. The incident beam

amplitudes have a unimodal across-beam structure, symmetric about aI/Rc = 0 and tending to

zero at aI/Rc ≈ ±3. The reflected amplitudes are significantly larger than those of the incident

beam with largest values closest to the boundary along the cross-section at sR/Rc = 6 (bold black

line), which has a maximum of 5.7× 10−2, and reducing to the maximum value of 3.0× 10−2 along

the cross-section at sR/Rc = 14. The reflected wave beam has a narrower unimodal across-beam

structure than that of the incident beam, with values tending to zero at aR/Rc ≈ ±2. Nonnegligible

values occuring at the extremities of cross-sections are caused by some overlapping with adjacent
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Figure 4.16: (a) Across-beam RMST amplitudes for cross-sections positioned at different sI and sR

along incident and reflected beams in a supercritical configuration; and (b) corresponding energy
flux, F, spectra, normalised by total flux, F̂ , in cross-section sR/Rc = 6. Grey dashed lines indicate
locations of tangents to cylinder in along-beam directions. The dashed bold red line corresponds to
measurements along the section located at sI/Rc = 11. The cyan line in (b) represents predictions of
inviscid linear theory for reflected spectra. Green solid and dashed lines indicate viscous adaptations
of inviscid linear theory.

wave beams.

Figure 4.16 (b) shows energy flux spectra calculated from measurements made along the cross-

sections displayed in figure 4.16 (a). The energy flux is related to the energy density, E, by

F = E cg, (4.14)

where |cg| ∼ 1/k by (2.20). Flux spectra are thereby deduced according to (4.14) from spectra

for the energy density, E (representing twice the potential energy), which are calculated from the

square of the FFT of cross-section data. Spectra for the incident beam exhibit peaks located at

a wavenumber k̃I = 0.26, with peak magnitudes at sI/Rc = 4 (dashed black line) and 11 of 0.12

and 0.20 respectively. Peaks of spectra calculated from measurements of the reflected beam are

broader and located at higher wavenumbers than those of the incident spectra, with the largest

peak magnitude of 0.18 at k̃R = 0.67 (solid black line) and smallest of magnitude 4.3 × 10−2 at

k̃R = 0.43. The apparent flattening and skew of the peaks corresponding to sR/Rc ≈ 12 − 14,

relative to the reflected spectra at smaller sR/Rc, is thought to be due to the overlapping of cross-

sections identified in the amplitude profiles in figure 4.16 (a). As in power spectra values shown

in figure 4.9 relating to reflections at a horizontal boundary, the reflected spectra in figure 4.16

also exhibit a general reduction in peak wavenumber with increasing sR caused by the more rapid

viscous decay of energy associated with higher wavenumber components.
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The cyan line shows the predictions of inviscid linear theory (Phillips 1966) for the reflected

energy flux spectra based on values of the spectra calculated for the incident beam cross-section

located at sI/Rc = 4 (dashed black line). The average energy flux per unit area of the reflected

wavefield, FR, can be expressed as a ratio of the incident flux, FI , by

∣

∣

∣

∣

FR

FI

∣

∣

∣

∣

=

(

sin(α+ θ)

sin(α− θ)

)

, (4.15)

(Phillips 1966).

The predicted spectrum has a peak located at a wavenumber of k̃thy = 0.81 with a peak mag-

nitude of 0.38. Both the wavenumber and magnitude of this peak are significantly greater than

those of the reflected spectra located closest to the boundary at sR/Rc = 6. The ratio of the mea-

sured peak wavenumber to that predicted by theory can therefore be calculated as k̃R/k̃thy ≈ 0.83,

with the corresponding peak magnitude ratio of ∼ 0.47. In part, this discrepancy occurs due to

the choice of incident spectra used in the calculation as well as the fact that the smallest distance

sR at which spectra can be compared with the theory is 6Rc from the boundary. Hence, a total

along-beam distance discrepancy of (sI + sR)/Rc = 10 exists between the cross-sections of the in-

cident and reflected wave beams used to compare with the theory, over the course of which wave

energy is attenuated by viscosity. Some enhanced level of dissipation may also occur in the region

next to the boundary through other nonlinear interactions caused by enhanced amplitudes due to

property changes on reflection and also where the incident and reflected beams overlap and wave

amplitudes superpose. Notably, whilst propagating higher harmonics cannot be generated at this

value of σ/N = 0.64, the presence of exponentially decaying modes (in space) that can contribute

locally to the dissipation is possible.

Linear viscous dissipation

The linear theory of Phillips (1966) described above is adapted here to include the effects of linear

viscous dissipation on a packet of energy E0 associated with a wavenumber k that propagates at

the group velocity cg. The loss of energy from the packet with time t can be described by

dE

dt
= −νk2E, (4.16)

which yields the energy of the packet after a time t to be

E(k, t) = E0(k) exp
[

νk2t(k)
]

, (4.17)

where t(k) = s/cg. Substituting the wavenumber dependence of the group velocity, cg (c.f. (2.17)

and (2.20)), (4.17) can be rewritten as a function of the distance, s, travelled by the packet according

to

E(k, s) = E0(k) exp

[

νk3s

σ tan θ

]

. (4.18)
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The associated flux can be calculated using (4.14). Adaptations of the inviscid linear theory (cyan

line) by (4.18) are indicated by the green solid and dashed lines plotted in figure 4.16 (b). Wave

groups experience viscous attenuation as they propagate an along-beam distance of 10Rc between

the two experiment cross-sections located at sI = 11Rc and sR = 6Rc. The green solid line

plotted is the spectra calculated with linear dissipation applied firstly to the spectra associated

with the cross-section positioned on the incident beam at sI/Rc = 11 for a distance sI/Rc ≈ 4, in

order to account for viscous dissipation of wave groups between the cross-section position and the

boundary. Linear dissipation was subsequently applied to the inviscid linear theory prediction for

the reflection of this attenuated spectra over the along-beam distance sR/Rc = 6 as wave groups

propagated away from the boundary. The predicted peak has a maximum magnitude of 0.10.

Whilst some enhancement in dissipation might be expected in the region near the boundary where

the incident and reflected wavefields overlap, the inclusion of linear dissipation predicts a maximum

energy flux that is lower than that measured from the experimental data. Some small reduction in

the total energy dissipated from both the incident and reflected wave beams during the reflection

process may occur as a result of the incident wave beam effectively reflecting at locations slightly

away from the boundary due to the presence of boundary layers there. This is unlikely to account

for a large proportion of the discrepancy shown however. Rather than a smaller degree of viscous

attenuation of the wave energy occuring, it is more likely that an inclusion of additional wave energy

within the measured reflected spectra is experienced. As is shown in figure 4.13 (c) for example, an

unavoidable background wavefield, ordinarily associated with very weak amplitudes relative to the

primary wavefield, propagates throughout the entire tank. This energy becomes more significant

near the sloping boundary where it is focused, so that it is able to form a nonnegligible contribution

to the measured spectra.

The total along-beam distance required by the linear dissipation in order to match the peak

energy fluxes of the inviscid linear theory to those calculated from the experiment cross-section at

sR = 6Rc was estimated as a means of indicating the discrepancy between the attenuated linear

predictions and the experimental data. The matched spectra (green dashed line) is plotted in

figure 4.16 (b). The line was calculated by decreasing the along-beam distance sR over which

the dissipation was applied to the spectra represented by the solid green line, from 6Rc to 3Rc.

A slight shift in the wavenumber peak position to higher values also occurs between the spectra

calculated from experimental data at sR/Rc = 6 and the dashed green line. This is also consistent

with the expectation, described above, that wave motion within nearby regions of the stratification

contribute to the measured spectra. The background wave motions, having been present in the

tank for a longer duration than the primary wavefield and therefore having experienced a greater

degree of viscous attenuation, preferentially on higher wavenumbers, consist dominantly of lower

wavenumber components.
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Figure 4.17: Comparison of measured peak wavenumbers with inviscid linear theory for supercritical
slopes with α = 32.4◦ (red symbols), 37.0◦ (blue symbols) and 37.3◦ (green symbols). Grey dashed
line is a linear fit with gradient = 4.86 × 10−1 and y-intercept = 3.25 × 10−2.

Variation of spectra with θ/α

Comparisons of peak wavenumbers of spectra calculated from experiment data and those predicted

by inviscid linear theory (Phillips 1966) were also made for 11 supercritical reflections that had values

of θ/α ∈ [1.55, 2.25]. Results are plotted in figure 4.17. At near-critical values of θ/α ≈ 1, linear

theory is expected to become less applicable since the widths of reflected wave beams are predicted to

vanish in this limit, with wavenumbers and wave amplitudes becoming infinite as a result of the beam

constriction. The smallest value of 0.827 for the ratio of measured to predicted peak wavenumbers,

kR /kthy, occurs for θ/α = 1.55. With the exception of the experiment with θ/α = 2.18, there

is indeed a general tendancy for kR /kthy to increase, reaching values of greater than 0.98 for

θ/α ≥ 1.87. Whilst the convergence of reflection behaviour towards that predicted by linear theory

is not expected to be linear, a linear fit to the data, with gradient = 4.86 ×10−1 and passing through

the point θ/α = 1.58 at the peak ratio of kR /kthy = 0.8, is included in figure 4.17 for illustration.

Many factors influence the measured behaviours. In each case, calculations were made using incident

and reflected spectra located at the smallest possible along-beam distances sI/Rc and sR/Rc. This

introduced some unavoidable discrepancy between the calculations of kR /kthy for each experiment

due to the attenuating influence of viscosity with along-beam distance. Measured wavenumbers

are also expected to be consistently lower than those predicted because of the preferential action

of viscosity on higher wavenumber components, acting to skew the measured peak wavenumbers

to lower values. In addition, as indicated in figure 4.17, the experiments measured ranged over

several regimes of the parameter σ/N , with the generation of second and third temporal harmonics

possible in a number of the experiments, which hence allowed scatter of the incident wave energy

in different physical directions. Despite these factors, the strong trend towards increasingly linear
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Figure 4.18: RMST image of perturbed buoyancy field for near critical reflections with slope ratios
θ/α (a) 0.95, (b) 1.02 and (c) 1.08. Here α = 50.1◦.

behaviour as the parameter θ/α is increased from the critical value of 1 is clearly evident in the plot

shown. The results also suggest that the choice of delimiting values of θ/α for the ‘near-critical’

and ‘supercritical’ regimes is nontrivial.

4.3.3 Qualitative results: near-critical

Results from experiments of near-critical reflections are presented here. Figure 4.18 shows RMST

images of wave beams undergoing near-critical reflection at values of θ/α = (a) 0.95, (b) 1.02

and (c) 1.08, corresponding to values of σ/N = 0.67, 0.62 and 0.58 respectively. Figure 4.18 (a)

shows a marginally subcritical reflection. Amplitudes of motion are greatly enhanced in the region

where the incident wave contacts the boundary, and rapidly decrease in the direction along the

boundary. A narrow upslope subcritical reflection propagating close to the boundary is clearly

evident. Contrary to the predictions of inviscid linear theory however, significant perturbations of

the buoyancy field are also present in the direction downslope from the reflection region. As discussed

in section 2.4.2, inviscid linear theory predicts infinite reflected wavenumbers in the critical limit,

and hence vanishing group velocities and locally infinite energy densities. Typical measured values

of the perturbed buoyancy frequency near the boundary are ∆N2/N2 ∼ 0.25, an order of magnitude

larger than typical peak values of ∆N2/N2 of the incident wavefield near the boundary, so that

the wave motion no longer represents a small perturbation to the background flow in this region

and a nonlinear fluid response is expected. Significant perturbations to the perturbed buoyancy

frequency field that decay rapidly in the direction along the slope also occur in the approximately

critical and marginally supercritical reflections shown in figure 4.18 (b) and (c) respectively. As in

the marginally subcritical reflection, reflected wave energy can be seen to propagate a short distance

from the reflection region in upslope and downslope directions in both cases, with the downslope

propagation most dominant in the marginally supercritical reflection of figure 4.18 (c).
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Figure 4.19: Contours of instantaneous perturbed buoyancy field for near-critical reflection with
θ/α = 1.02. Colour scaled with magnitudes four times that of figure 4.18.

For the three values of θ/α discussed in this section, regular boundary motion is observed,

with small regular vortical structures aligned in layers along the slope in the reflection region.

Typical dimensions of individual vortices are several millimetres compared with a dominant incident

wavelength, estimated from spectra, of λI ∼ 60 mm. The viscous boundary layer thickness, for a

homogeneous fluid, is calculated from (2.26) to be ∼ 1 − 2mm (Batchelor 1967). Due to the large

amplitudes of the fluid motion in this region, the boundary structure was most clearly seen as

it evolved during movies rather than in instantaneous images of the wavefield. However, some

suggestion of the structure can be seen in the contour plot of the RMST field associated with θ/α =

1.02 shown in figure 4.19. These structures are reminiscent of those described in the experiments

of Cacchione & Wunsch (1974), discussed in section 2.4.3. Ivey & Nokes (1989) later parameterised

the reflection regimes in terms of the Reynolds number, defined in (2.42), and predicted a laminar

to turbulent boundary layer transition for Re ∼ 15− 20. The experiments of Cacchione & Wunsch

(1974) corresponded to Re ∼ 2, whilst the present study had similar values of Re of 3.7, 3.5

and 3.2 for the experiments relating to figure 4.18 (a), (b) and (c) respectively. Such structures

have not been reported in other studies, which were characterised by larger Reynolds numbers.

Over the duration of experiments of ∼ 40T s, where T represents the period of the primary wave

motion, horizontal intrusions of mixed fluid, such as those reported in Cacchine & Wunch (1974)

associated with turbulent mixing along the boundary, were not observed to propagate away from

the boundary. However, such observations are expected to require a longer duration of experiments

than those performed in the present study.
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4.4 Reflection at a smooth curved boundary

The previous sections described reflection at smooth flat or sloping boundaries characterised by

the constant angle, α, made between the boundary surface and the vertical. This section briefly

describes qualitative observations of scattering behaviours introduced when the boundary slope,

and hence the angle α, is a smoothly varying function of position, α(x).

Experiments were performed of the scatter at an isolated cylindrical boundary, with axis of sym-

metry aligned perpendicular to the field of view and constant radius of curvature RT = 101.6 mm,

so that RT /Dc = 2.85 (c.f. the numerical study by Legg & Adcroft 2003 and discussion in sec-

tion 2.5.2). Figure 4.20 shows RMST images of the scatter on different regions of the boundary

surface for incident beam angles θ equal to (a) 56.6 ◦, (b) 62.7 ◦ and (c) 67.6 ◦. It is believed that

these are the first laboratory experiments examining scatter of a wavefield at a curved boundary

feature presented in the literature. Wave beams are incident from the bottom left-hand corners

of the field of view, with the bimodal structure of the wave beams clearly visable close to this

region. The phase velocity of the incident beam propagates along the direction aligned with −η
(see also section 2.2.3). The incident wavefield shown in figure 4.20 (a) reflects dominantly along

two directions, with corresponding phase velocities aligned with ±ξ. This configuration is classified

here as a ‘split-reflection’ configuration similar to that described in the inviscid theory of Baines

(1971b) (see section 2.5.2). Baines predicts the split-reflection scenario for wave energy incident on

a convex boundary feature that is symmetrical in form about a critical point such that the incident

wave energy propagates perpendicular to the boundary tangent at that point. In the characteris-

tic coordinate system associated with the present experiments, Baines (1971b) finds that reflected

wave energy propagates in two directions along the tangent to the boundary at the critical point,

i.e. corresponding to phase propagations along ±ξ. Singular wave motion is expected in both di-

rections of energy scatter. The enhancement of wave amplitudes associated with phase propagation

along ±ξ can be seen clearly in figure 4.20 (a) as the incident wave energy becomes focused into two

narrow beams. The incident flux is dominantly scattered in the downwards direction, whilst ampli-

tudes of the upwards propagation decay rapidly away from the boundary. Movies of the experiment

reveal a weak phase propagation along η superimposed on the incident phase propagation along −η.
This coincides with a group velocity directed back along the incident beam - i.e. a back-scattered

component. Though Baines (1971b) does not predict back-scatter for an idealised boundary fea-

ture that is symmetric about the critical point, back-scatter is predicted by Sandstrom (1972) for

a more general convex boundary feature with a high radius of curvature. Sandstrom predicted a

back-scattered component at critical reflection points, which became more prominent as the radius

of curvature of the boundary decreased. Whilst the radius of curvature of the boundary studied

in the present study is relatively large compared with those considered by Sandstrom (1972), the

observed presence of a weak back-scattered component for RT /Dc = 2.85 is consistent with the

limiting behaviour of that predicted by Sandstrom.

Figure 4.20 (b) shows reflection configurations consistent with both the ‘split-reflection’ and
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Figure 4.20: RMST images of perturbed buoyancy field for scatter at a curved boundary. The
boundary and regions enclosed therein are shaded grey.

‘diffraction’ described in Baines (1971b) across the region of boundary directly exposed to the

incident wave beam. Diffraction is defined by Baines (1971b) in a similar way to split-reflection,

except that the incident wave energy propagates parallel to the tangent at a critical point along

the boundary. In a diffraction configuration, Baines predicts singular behaviour along directions

corresponding to phase propagation along ±η, with the scattered energy in these directions decaying

rapidly with distance from the boundary, and also a diffracted wave with phase propagating along

ξ. As in figure 4.20 (a), the wave energy is seen to reflect dominantly in the direction corresponding

to phase propagation along ξ. Other scattered beams are also present with phase directions along

±ξ. Wave energy is focused in all directions of scatter but decays rapidly with distance from
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the boundary for the latter two components. The phase propagating along −ξ is thought to be

that associated with split-reflection, whilst the phase propagating along ξ is that associated with

diffraction. In addition to these components, and in accordance with the predictions of Baines for

the diffraction configuration, a more significant back-scattered component is observed in movies of

the experiment, compared with that present in the experiment associated with figure 4.20 (a). The

back-scatter is visable in the change of RMST structure of the incident beam in figure 4.20 (b)

in the region near to the curved boundary, particularly in the lower section of the incident beam.

Over extended runs of the experiments at the frequency associated with figure 4.20 (b), mixed fluid

generated in the reflection region was seen to protrude outwards as a thin horizontal layer into the

surrounding stratification at the level of the bottom of the curved boundary (c.f. section 3.6.1).

The experiment shown in figure 4.20 (c) represents a dominantly diffraction configuration. The

downwards scattered beam in this reflection regime is relatively weak in comparison to those seen in

figure 4.20 (a) and (b). The diffracted wave, with phase propagating along −η, appears to be more

significant than components scattered with phase propagations along ±ξ. In part this is a result

of the coincidence of the diffracted wave with the direction of propagation of incident wave energy

that is unobstructed by the boundary. A significant feature of this scattering configuration is the

dominant back-scattered component, which can be clearly seen in the RMST images to propagate

along the direction of the incident beam a distance greater than ∼ 8Rc from the curved boundary.

4.5 Reflection at a smoothly varying rough topographic profile

The previous sections discussed detailed experimental results of reflection of wave energy incident at

smooth horizontal or inclined slopes and scatter at an isolated boundary feature that had a constant

radius of curvature. The present section discusses results from experiments performed of scatter at

two sinusoidal boundary profiles, TA and TB, characterised by horizontal wavenumbers k̂T equal to

0.085 and 0.196 mm−1 respectively (see table 3.1). Experiments of internal wave scatter at sinusoidal

topography are not previously reported in the literature. A parameter describing the aspect ratio of

the topographic profile is defined as in section 2.5.1 as the product ÂT k̂T , where ÂT is the vertical

amplitude of the sinusoid with respect to the mean level. This has values of ÂT k̂T = 0.829 and 0.784

for profiles TA and TB respectively. Another parameter comparing length scales associated with

the incident wave relative to those of the topography is defined here as kc/k̂T , where kc = 2π/Rc =

0.353 mm−1. This parameter has values 4.15 and 1.80 for TA and TB respectively. The scatter

is compared with ray tracing predictions (e.g. Longuet-Higgins 1969) and inviscid linear theory

derived from characteristic methods (e.g. Baines 1971a) in sections 4.5.1 and 4.5.2 respectively.

Further discussions of the scattered wavefields are given in chapters 6-8.

Figure 4.21 shows an RMST image of the perturbed buoyancy field associated with a typical

experiment. The oscillating cylinder is located at the middle of the left-hand side of the field of

view, with two of the generated wave beams emanating from this region. Wave energy propagating

along the upwards directed wave beam is denoted BI and interacts with sinusoid TA at the top
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Figure 4.21: Example of positioning of cross-sections taken for incident (BI , B
∗
I ) and reflected

(BF , B∗
F ) beams at (top of picture) sinusoid, TA, and (bottom of picture) horizontal boundary,

respectively.

of the field of view, with the resulting forwards scattered wave beam denoted BF . The beam

directed downwards from the cylinder, denoted B∗
I , reflects at a horizontal boundary located at

the bottom of the field of view. The reflection of this beam is denoted B∗
F . Coordinate systems

are defined for beams BI and BF with across- and along-beam coordinates (aI , sI) and (aR, sR).

The origin of both of these beams is defined as the cartesian point xint = (xint, zint), where xint is

the x−coordinate of the intersection of the centerline of BI with the mid height of the topographic

profile zint. Similarly, coordinate systems are defined for B∗
I and B∗

F as (a∗I , s
∗
I) and (a∗R, s

∗
R). The

origin for these beams is defined as the cartesian point xint
∗ = (xint

∗, zint
∗), where xint

∗ = xint and

zint
∗ is the corresponding z−coordinate for a point on the centerline of B∗

F . In some cases, zint
∗

lay on the centerline of B∗
I so that values of s∗R were taken as the length along the centerline of B∗

I

from xint
∗ to the intersection with the horizontal boundary and from there along the centerline of

B∗
F .

4.5.1 Ray tracing analysis

Ray tracing predicts purely subcritical boundary interactions, and hence no back-scatter, for values

of θ such that the condition

ÂT k̂T < c, (4.19)

where c = cot θ (c.f. section 2.2.3), holds everywhere along the boundary. The maximum angle for

which this is true is denoted θ = αs corresponding to a minimum forcing frequency denoted by

σs/N , which has values of σs/N = 0.64 and 0.62 for TA and TB respectively. A subcritical ray

tracing regime is therefore defined here for values of the parameter θ/αs < 1. Subcritical, critical
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Figure 4.22: Geometrical ray tracing predictions for upper and lower bounds of reflection coefficients
in forward and backward propagation directions (Longuet-Higgins 1969).

and supercritical interactions are possible in different regions along a boundary for values θ/αs ≥ 1.

In such cases, ray tracing predicts downwards reflections of supercritical incident rays, resulting in

multiple reflections before rays escape the topographic profile and propagate into the far-field in

either the forwards or backwards directions. The total proportion of incident rays reflected in the

forwards or backwards directions after interaction with a topographic profile can be described by

the coefficents 0 ≤ CF ≤ 1 and CB = 1 − CF respectively. As θ/αs is increased, values of these

coefficents calculated using a ray tracing analysis oscillate between the upper and lower bounds

shown in figure 4.22 (Longuet-Higgins 1969). The oscillatory nature of the solution arises since the

direction in which an incident wave ray is predicted to scatter is determined by whether the number

of repeated reflections that an incident wave ray makes with the boundary is odd or even, with

this property clearly oscillating as a function of the boundary angle, αs. In particular, CF = 1,

i.e. CB = 0, for the subcritical range θ/αs < 1, with the red dashed line indicating the ‘critical’

value of θ/αs = 1. In contradiction to these predictions, direct observations in the present study

of movies of subcritical wave beams reflecting at sinusoidal topography reveal a back-scatter phase

propagation in the opposite direction to that of the incident wave beam. Figure 4.23 (a) and (b)

shows RMST images of the perturbed buoyancy field for (a) a section of a wave beam, with the wave

beam denoted here by B∗
I , reflecting specularly at a smooth horizontal boundary positioned beyond

the section shown at a distance s/Rc ≈ 16 from the cylinder centre; and (b) the corresponding

section of a wave beam, with the wave beam denoted here by BI , that has subcritical interaction

with sinusoid TA at a distance of s/Rc ≈ 16 along the beam. At small along-beam distances, maxima

of the density perturbations associated with figure 4.23 (a) lie along two tangents to the cylinder

parallel to the beam. These maxima gradually converge with distance as viscosity acts to reduce

the gradients across the beam. This is the bimodal to unimodal transition discussed in more detail

in section 4.2.1. The beam exhibits symmetry about its centerline and its width is approximately
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Figure 4.23: Comparison of RMST beam structures (a) B∗
I and (b) BI , for topographic profile TA

and σ/N = 0.67, θ/αs = 0.95. Similarly, (c) and (d) compare RMST beam structures B∗
I and BI

respectively, for parameter values σ/N = 0.54, θ/αs = 1.14.

constant within the section shown. In contrast to the specular case, the beam RMST section shown

in figure 4.23 (b) becomes asymmetric close to the topography and is characterised by smaller

across-beam scales, indicating the imposition of higher wavenumber components on the wavefield

by a back-scattered flux in this region. The structure becomes less distinctive and gradually adjusts

to approximately bimodal nearer to the cylinder. As the backward flux propagates away from the

topography it is attenuated by viscosity as well as encountering an incident flux with greater strength

close to the cylinder. It is possible to filter the experiment data using Hilbert transforms in order

to separate those fluid motions associated with wave groups propagating towards the boundary and

those propagating in the opposite direction back towards the cylinder. This method and the filtered

wavefields it produces are described in chapter 6.
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Ray tracing comparisons with scatter observed at TA

RMST images of beam reflections for more general values of the parameter θ/αs are shown for

profiles TA in figure 4.24 (a) and (c) together with the corresponding overlays of incident rays

and their primary reflections as predicted by ray tracing in figure 4.24 (b) and (d). Ray tracing

predictions, including primary and subsequent reflections of incident rays with the boundary, for

the corresponding parameter values are shown in figure 4.25. In each case, wave energy is incident

from the top left-hand corner and interacts with the topographic profiles positioned at the bottom

of the field of view. Beams formed from the superposition of incident and back-scattered wavefields

are denoted BI and forwards scattered wave beams are denoted BF . Colour schemes for the incident

and reflected rays are described in the figure captions.

Figure 4.24 (a) shows the RMST image of the perturbed buoyancy field for interaction of an

incident beam at sinusoid TA, with σ/N = 0.58 and θ/αs = 1.08. Forwards scattered wave energy

is focused into narrow beam-like structures, collectively referred to as BF , that are characterised

individually by smaller across-beam length scales than those associated with the incident wave beam,

though the overall width of BF is comparable to that of the incident beam BI . Amplitudes of the

forwards scattered wavefield decay rapidly with distance from the topography. The asymmetric

structure of BI , in comparison with the beam structure shown in figure 4.23 (a) for example,

suggests the generation of a back-scattered flux. This is confirmed by observation of two directions

of phase propagation across BI in movies of the experiment. The experiment observations are

compared here with ray tracing predictions. The locations of the peaks in BF coincide with the

focusing of rays predicted by ray tracing for the primary reflection shown in figure 4.24 (c) and for

the complete wavefield shown in figure 4.25 (a). With regards to the back-reflected wavefield, a

significant number of the incident rays are indeed predicted to back-reflect after multiple reflections

with the topography, as shown in figure 4.25 (a). The back-reflected rays are focused into a periodic

series of narrow ray tubes, with ray tracing estimating a value of CB ≈ 0.49 for θ/αs = 1.08,

suggesting nearly half of the incident wave energy will be back-reflected in the inviscid limit. Whilst

ray tracing is able to suggest increases or decreases in wavenumbers and energy density through

the focusing and defocusing of rays, it does not provide explicit information on amplitudes of the

wave motion. Phase changes introduced through multiple reflections of rays are not clear from the

analysis. In addition, as discussed in chapter 2, ray tracing does not resolve behaviour at critical

points of the topography or the effects of viscosity.

Figure 4.24 (c) shows the RMST image of the perturbed buoyancy field for interaction of an

incident beam, BI , at sinusoid TA, with σ/N = 0.33 and θ/αs = 1.41. The forwards scattered

wavefield has a similar structure to that observed in figure 4.24 (a), though it exhibits smaller

across-beam length scales and significantly weaker amplitudes. As in figure 4.24 (a), a back-scattered

component of the incident flux is also evident from inspection of BI . Ray tracing predicts that BF

is composed of rays reflecting directly in the forwards direction as well as rays reflecting there after

multiple interactions with the topography (figures 4.24 (d) and 4.25 (b)). This allows an additional
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(a) (b)

(c) (d)

Figure 4.24: RMST images for topographic profile TA with (a) σ/N = 0.58, θ/αs = 1.08 and (c)
σ/N = 0.33, θ/αs = 1.41. These are compared with linear geometrical ray tracing predictions in
(b) and (d) respectively. Blue lines denote wave rays within the incident ray tube; red lines denote
forwards reflected rays; and cyan lines denote downwards reflected rays.
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Figure 4.25: Ray tracing predictions for TA. Here (a) σ/N = 0.58, θ/αs = 1.08 and (b) σ/N = 0.33,
θ/αs = 1.41. Blue lines denote incident rays (constituents of BI); red denote forwards reflected
rays from primary reflection (∈ BF ); green denote forwards reflected rays after multiple reflections
(∈ BF ); magenta denote back-reflected rays after multiple reflections (∈ BI). Cyan, dark green,
dark red, grey and yellow denote topography-topography reflections.
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mechanism for the introduction of phase shifts as well as other length scales into the wavefield. In

the case of back-reflection, although more of the boundary is classified as supercritical than in the

experiment associated with figure 4.24 (a), ray tracing values for CF and CB are oscillatory and so

the proportion of back-reflected wave energy is not necessarily increased with increases in θ/α. In

this case, however, ray tracing predicts a value of CB ≈ 0.84, again with back-reflected rays grouped

into narrow ray tubes. The effect of the value of CB is seen in the comparatively weak forwards

scattered wavefield of the RMST image. The finer length scales introduced into BF also enhance

dissipation of the wave energy.

Ray tracing comparisons with scatter observed at TB

Figure 4.26 (a) shows the RMST image of the perturbed buoyancy field for interaction of an incident

beam, BI , at sinusoid TB, with σ/N = 0.63 and θ/αs = 0.98. The forwards scattered wavefield is

structured into narrow beams that have smaller across-beam scales than those observed for scatter

at TA due to the smaller wavenumber k̂T imposed by the topographic profile TB. Foward scattered

wave energy is hence not focused to the degree observed in figure 4.24 (a) for example, since it

is partitioned between a greater number of beams. In addition, wave energy scattered from TB

might be anticipated to dissipate more rapidly due to the action of viscosity than in the case of

TA, since the smaller across-beam scales imposed by the topography introduce larger across-beam

gradients. As the beams propagate away from the topography, the beams becomes less distinct

from one another and converge into a larger beam structure, in a similar manner to the bimodal to

unimodal structure transition seen for wave beams propagating away from an isolated source (see

section 2.3). Under the predictions of ray tracing, this is a purely subcritical interaction and all

incident rays are expected to be forward scattered (see figures 4.26 (c) and 4.27 (a)) so that CB = 0.

However, a back-scattered component is again observed in the present study (c.f. figure 4.23) in

movies of the experiment and can be distinctly seen in figure 4.26 (a) to disturb the RMST structure

of the incident wave beam, with the disturbance decaying with distance from the topography.

Figure 4.26 (c) shows the RMST image of the perturbed buoyancy field for interaction of an

incident beam, BI , at sinusoid TB, with σ/N = 0.41 and θ/αs = 1.27. The forwards scattered

field is again similar in structure to that of figure 4.26 (a), though having smaller across-beam

scales and amplitudes. A back-scattered wavefield can also be observed in figure 4.26 (c). Ray

tracing predicts that only a small proportion of rays are directly reflected forwards and that a

significant proportion of the forwards scatter is composed of rays that have undergone multiple

reflections (figures 4.26 (d) and 4.27 (b)). In the back-reflected direction, ray tracing predicts a

relatively small value of CB ≈ 0.09. It is difficult to estimate from these graphs the proportion of

back-scattered and forwards scattered wave energy.
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(a) (b)

(c) (d)

Figure 4.26: RMST images for topographic profile TB with (a) σ/N = 0.63, θ/αs = 0.98 and (c)
σ/N = 0.41, θ/αs = 1.27. These are compared with linear geometrical ray tracing predictions in
(b) and (d) respectively. Line colouring as is figure 4.24.
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Figure 4.27: Ray tracing predictions for TA. Here (a) σ/N = 0.63, θ/αs = 0.98 and (b) σ/N = 0.41,
θ/αs = 1.27. Line colouring as in figure 4.25.

Applicability of ray tracing

Correct application of linear geometrical ray tracing is restricted to the propagation of rays within

slowly varying media as discussed in section 2.5. The sinusoidal topographies discussed here, and
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the other rough boundaries discussed later in this thesis, are not slowly varying on the scale of

the incident waves, with parameters comparing length scales associated with the topography and

those of the incident wavefield, kc/k̂T and ÂTkc, having values ∼ 0(1). Despite its invalidity in this

context, ray tracing provides a description of the wavefields generated if each incident ray were to

reflect specularly at the boundary according to the local gradient at its point of incidence. Such

predictions are used here to illustrate the degree to which reflection behaviours deviate from the

specular description as wave groups encounter varying reflection conditions across their breadth.

Similarly, applications of ray tracing in chapters 6-8 are intended as purely qualitative comparisons,

used to suggest some of the underlying physics, and are not to be understood as mathematically

legitimate.

In general, the ray tracing presented in the present section predicts some aspects of the qualita-

tive behaviour of the scatter discussed but quantitative comparisons of the ray tracing are limited.

A significant contradiction of the ray tracing analysis is obvious however, in the observation of a

back-scattered flux in subcritical conditions, also observed in results presented in section 4.4. There

are also other notable features of the scatter. In all RMST images shown, regions where the inci-

dent and forwards reflected beams overlap exhibit complicated structure, with both regions of large

and vanishing RMST amplitudes caused by superposition. In particular, shadow zones, defined in

section 2.5.2 as regions of the boundary not directly exposed to the rays, in the scattered wavefields

predicted by ray tracing are not observed in experiments (e.g. compare the large RMST amplitudes

present in the lee of crests in figure 4.25 (c) with figure 4.24 (b)). Thin horizontal intrusions of

mixed fluid are also generated at crests of the topography (see e.g. figure 4.25 (a)). The near-field

structures of wavefields are discussed in more detail in chapter 6.

4.5.2 Energy density spectra

The measurement of spectra of wavefields scattered at sinusoidal topography and their comparison

with inviscid linear theory of Baines (1971a) is discussed here. In the example shown in figure 4.21,

measurements of the wavefields were made at the cross-sections located along the lines superimposed

on the image. Dashed lines indicate cross-sections of wave beams interacting with rough topography

and solid lines indicate cross-sections of wave beams interacting with the horizontal boundary. The

numbering shown represents the along-beam location of the centerpoint of the cross-section so that

the dashed red line numbered ‘12’ on BI , for example, represents a cross-section with centerpoint

at aI = 0 and sI = 12Rc relative to xint. The solid red line on B∗
I is the corresponding cross-section

of the beam directed downwards from the cylinder.

Consider an experiment where the rough topographic profile is replaced with a smooth horizon-

tal boundary. For each wave group generated by the cylinder with group velocity directed along

BI , a wave group with identical spectral form is simultaneously generated with group velocity di-

rected along B∗
I . Any particular wavenumber component generated on BI at a given time, t = t0,

propagates in the along-beam direction at the same speed as its counterpart on B∗
I , as specified by
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the group velocity dependence on wavenumber (2.20), and hence the particular wavenumber com-

ponents reach the locations of sI = 12Rc and s∗I = 12Rc, respectively, at the same time, t = t1, say.

Wavenumber magnitude, and hence group velocity, is preserved on reflection at a smooth horizon-

tal boundary (Lamb 1932, Phillips 1966) so that, subsequent to the given wavenumber components

reflecting at their respective boundaries, they also both reach sections located at sR = 12Rc and

s∗R = 12Rc at the same time t = t2 (red sections on figure 4.21). It follows that, in this configuration,

the form of wave groups on BI and B∗
I should be the same at along-beam locations s = sI = s∗I , and

similarly wave groups on BF and B∗
F should have the same form at s = sR = s∗R. In the experiments

performed in this study, measurements along cross-sections of B∗
I and B∗

F were therefore used as

‘control’ measurements, for comparison with measurements at the corresponding cross-sections of

BI and BF .

Spectral analysis of scatter at TA

Figure 4.28 (a), (c), (e) and (g) shows energy density spectra, E(k), calculated for TA along cross-

sections at various distances along BF and B∗
F with σ/N = 0.71, 0.63, 0.54, and 0.50 and θ/αs =

0.89, 1.01, 1.14 and 1.19 respectively. Energy density values are normalised by the total energy, Ê,

associated with the closest cross-section to the cylinder measured on B∗
I for each frequency (specific

locations for these can be deduced from figure 6.21). Spectra relating to BF are coloured in blue

shades, whilst the corresponding ‘control’ spectra measured from cross-sections of beams reflecting

at the horizontal boundary are coloured in red shades.

Spectral differences, with E∆F = (EF −E∗
F ) are shown in (b), (d), (f) and (h), where EF

and E∗
F indicate spectra for BF and B∗

F respectively. Regions of spectral difference graphs shaded

light grey indicate estimated error margins for the experimental data. A measure of the error

associated with noise and artefacts from data processing is calculated here by comparing energy

density spectra obtained from measurements made along cross-sections of two separate wave beams

simultaneously generated by an oscillating cylinder in the case where no rough topographic profile

was put in the path of either beam. The two wave beams are represented here by the labels B1

and B2, with corresponding along-beam distances (originating at the cylinder center) denoted s1

and s2 and energy densities E1 and E2 respectively. For a given along-beam distance s = s1 = s2,

the discrepancy between the energy density spectra of B1 and B2 is calculated as |E∆| = |E1 −E2|.
Figure 4.29 shows values of |E∆|/Ê, where Ê is the total energy associated with the closest cross-

section to the cylinder measured on B1, located at s1 = 9Rc, with σ/N = 0.54 and for a range

of values of s typical of those used for back-scatter calculations presented in this research. The

dominant discrepancy between the spectra of the two beams is localised in the region of peaks of the

power spectra presented in figures 4.8 and 4.10 for individual wave beams, being the most significant

for the cross-sections located closest to the cylinder, with spectral difference peak magnitudes of

∼ 5.8 × 10−3 at k̃ ∼ 0.3. The magnitude of the error is therefore less than 1% of Ê and decreases

significantly for cross-sections associated with lower energy densities. The error margins shaded on
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Figure 4.28: Forward-scattered energy density spectra for TA are plotted in (a, c, e, g). Corre-
sponding spectral differences are plotted in (b, d, f, h). Frequencies decrease down the page.
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Ê

[

×10−3
]

s1,2

10
12
14

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.29: Error estimation for energy density spectra. Spectral differences, |E∆| = |E1 − E2|,
between energy density spectra calculated at different along-beam distances for two simultaneously
generated wave beams, B1 and B2 respectively, at σ/N = 0.54, where |E∆| is normalised by the
total energy, Ê, associated with the closest cross-section to the cylinder.

spectral difference graphs are therefore very conservative estimates. In addition, the form of the

actual error tends to be localised about spectral peaks of the data. Spectral difference graphs are

presented in this research as a means of more clearly showing spectral locations of the individual

predicted wavenumber components than is possible in full spectra, as well as those of measured

components with spectral differences of magnitude ∼ O(10−2) and greater. Interpretations of

spectral differences with magnitudes of ∼ O(10−3) are dependent on factors such as the associated

energy densities of the relevant cross-sections. Spectral difference graphs are not intended as a

rigorous method of analysis here but do provide some qualitative insights into the scatter that are

less clear on graphs of full spectra.

Bold black lines superimposed on the spectra of figure 4.28 indicate the predictions of linear

theory for the forwards scattered spectra (Baines 1971a), which assumes small topographic aspect

ratios ÂT k̂T ≪ 1 (see section 2.5.1). Dark grey, red and green lines (only plotted on graphs of

spectral differences) indicate the individual contributions from forwards scattered ‘primary’, ‘sum’

and ‘difference’ wavenumber components respectively. Predictions for the forwards scatter are cal-

culated from spectra associated with the cross-section located on B∗
F at the largest distance s∗R

measured for each particular frequency. For an incident plane wave associated with a streamfunc-

tion ψI and wavenumber kI , Baines (1971a) calculates the relative amplitudes and wavenumbers

associated with the streamfunctions for the primary, ψR, sum, ψ+, and difference, ψ−, scattered

wave components (see section 2.5.1). For a given wavenumber component k, with phase propagating
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along ξ and amplitude ε, which can be expressed in terms of a streamfunction ψ with form

ψ = ε exp [i(kξ − σt)], (4.20)

Baines gives the magnitude of the associated average energy flux per unit area, F, as

|F| = ε2kρ0

[

σ
(

N2 − σ2
)]

1

2 . (4.21)

Energy density ratios of primary, sum and difference forwards scattered components relative to

those of the incident wavefield are therefore calculated as
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0, kT > kI ,

(4.24)

respectively.

Measured spectra associated with the incident wavefields at TA plotted in figure 4.28 (a), exhibit

dominant peaks at k̃I ≈ 0.3 with magnitudes of E/Ê ∼ O(10−2). Forwards reflected spectra exhibit

two dominant peaks, with maxima located at wavenumbers of k̃ ≈ 0.6 and at k̃ ≈ 0.3, both with

magnitudes of ∼ O(10−2). The composite predicted spectra, indicated by the bold black line,

exhibits three dominant peaks. The largest of these, dominantly representing ‘sum’ components

of the scatter, approximately coincides with the largest peak of the measured spectra (blue lines),

with slightly lower magnitudes in the measured spectra. This discrepancy is most likely dominantly

caused by enhanced viscous attenuation during the scatter as a result of the greater proportion of

energy associated with high wavenumber components. The second peak of the predicted spectra is

associated with the ‘primary’ scattered component, with the third generated by a combination of

‘primary’ and ‘difference’ scattered components, located at k̃ ≈ 0.4 and k̃ ≈ 0.1 respectively, both

with magnitudes of ∼ O(10−3). The second peak of the measured forward spectra has a similar

magnitude to the two predicted components and is positioned midway between them. It is possible

that the FFT used to calculate the spectra has merged two separate peaks.

Spectral differences for the forwards scatter (see figure 4.28 (b)) exhibit both positive (peaks)

and negative (troughs) values. Generally, peaks of the spectral differences represent scatter of

the incident wave energy to wavenumbers in this region. Troughs suggest that energy from that

region of the spectrum has been redistributed during the scatter, either being transferred to other
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wavenumber (or higher harmonic frequency) components, or being dissipated through viscous or

other mechanisms. Measured spectral differences shown in figure 4.28 (b) have peak differences of

magnitude O(10−2) located at k̃ ≈ 0.6, coinciding with the high wavenumber peak of the predicted

sum component. The measured spectral differences sharply decrease to negative values at k̃ ≈ 0.45,

with spectral troughs of magnitude O(10−2) located at k̃ ≈ 0.3. In part, the negative values may

represent back-reflected wave energy. Additional losses near this region of the spectrum, relative

to those predicted by the linearised boundary theory (bold black line), which is centered about the

location of peaks of the incident spectra, also occur through enhanced dissipation of the incident

beam during the reflection process. Larger spatial gradients in the overlap region of the incident

and scattered beams near the topography combined with large amplitudes of the wave motion as

the scattered energy is focused there enhances the action of viscosity. In addition, dissipation is

promoted by the production of higher wavenumber components during the scatter, keeping the wave

energy closer to the boundary for longer as group velocities therefore decrease. The spatial scatter

of wave energy to propagating higher harmonics is not possible at σ/N = 0.71 > 0.5.

Variation in the scattering behaviour resulting from a decrease in the incident wave frequency,

corresponding to an increase in kT , is described here. As the frequency is decreased, locations of

predicted sum components shift to higher wavenumbers, whilst peaks for the primary and differ-

ence components shift to lower wavenumbers. Measured peaks in the sum region of the spectrum

are positioned within the predicted peaks of the sum components but decrease in magnitude from

O(10−2) to O(10−3) over the frequencies shown in figure 4.28, with predicted magnitudes remaining

at O(10−2). For all frequencies the measured spectra have negligible magnitudes for wavenumbers

greater than k̃ ∼ 0.8, well below the maximum wavenumber for synthetic schlieren measurements.

This seems to suggest that discrepancies between predictions and experiments for the sum com-

ponent are indeed caused primarily by enhanced viscous action or through instability mechanisms

as greater proportions of the incident energy are scattered to higher wavenumbers, with a critical

wavenumber existing beyond which wave energy in this region of the spectrum is rapidly dissi-

pated. In dimensional terms, this wavenumber corresponds to k ≈ 0.28 mm−1. A wavenumber

corresponding to the viscous length scale, defined by (2.23), can be calculated as k ≈ 0.43 mm−1.

The second peak of the measured spectra in figure 4.28 (a), (c), (e) and (g), located at lower

wavenumbers, similarly decreases in magnitude with decreasing frequency and the peak location

shifts from k̃ ≈ 0.3 to k̃ ≈ 0.2. The form of spectral difference graphs is similar for all frequencies

shown, with peak differences associated with sum components qualitatively following the trends

described above, though magnitudes of spectral differences in this region are within the indicated

error margin at lower frequencies. Magnitudes and locations of troughs of spectral differences re-

main approximately the same as the frequency decreases, though the discrepancy with predicted

spectral differences increases possibly indicating enhanced dissipation. Multiple reflections of wave

energy with the boundary are possible for θ/αs > 1 (as in experiments relating to figure 4.28 (c),

(e) and (g)), which increases the propagation distances of wave energy. The enhanced focusing and

longer durations near the boundary results in increased dissipation.
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In summary, spectra of forwards scattered wavefields at TA show some tendancy for scatter to

the lower wavenumbers associated with predictions for primary and difference components. Spectra

exhibit high wavenumber scatter corresponding to predicted sum components, though the measured

scatter is limited at high wavenumbers by dissipation processes. In general, a larger total scatter

to higher wavenumbers is observed for higher incident wave frequencies, i.e. at lower values of kT .

Losses from the measured spectra, relative to the specular control cases, occurring in the region of

peaks of the incident spectra, suggest dissipative interactions between the scattered and incident

wavefields.

Figure 4.30 (a), (c), (e) and (g) show spectra associated with superposition of the incident and

back-scattered fields calculated for TA along cross-sections at various along-beam distance of BI

and B∗
I for σ/N = 0.71, 0.63, 0.54, and 0.50 respectively. Corresponding spectral differences, with

E∆I = (EI −E∗
I ), are shown in (b), (d), (f) and (h), with theoretical predictions displayed as in

figure 4.28. Predictions for the backward scatter are calculated using linearised boundary theory

from spectra associated with the cross-section located on B∗
I at the largest distance s∗I measured

for each particular frequency (black lines in plots of full spectra, green lines in spectral difference

plots). The spectra shown in figure 4.30 (a) for measured incident and scattered wavefields, as well

as the predicted spectra are not easily distinguished from one another, showing little perceptible

variation with decreasing frequency. All spectra exhibit two dominant peaks located at k̃ ≈ 0.3 and

k̃ ≈ 0.75, with magnitudes of O(10−1) and O(10−2) respectively. Clearer distinctions between the

spectra can be made from the corresponding spectral differences of figure 4.30 (b). For the relevant

parameter value of θ/αs = 0.89, the reflection is catagorised as everywhere subcritical and ray

tracing hence predicts that CB = 0. In contrast, the linearised boundary theory of Baines (1971a)

predicts a back-scattered flux at wavenumbers close to zero, with a peak magnitude of O(10−4)

(green line). The presence of this component in the experimental data can not be ascertained here

however, due to its small magnitude. However, a peak representing high wavenumber scatter, not

predicted by either theoretical approach, is present in the spectral differences, located at k̃ ≈ 0.7,

with a magnitude of O(10−3). Whilst the magnitude of this peak is within the error margin

indicated, back-scatter characterised by small across-beam length scales can be clearly observed in

movies and RMST images of the related experiments (c.f. figure 4.23 (b) and (d), for example).

This high wavenumber scatter is not caused by scatter to higher harmonic components as σ/N =

0.71 > 0.5. The spectral differences also contain a distinct trough, again not anticipated by the

inviscid linearised boundary theory, located at k̃ ≈ 0.4 with peak difference magnitude O(10−2).

In this case, ‘losses’ from the incident beam spectrum relative to the specular control case suggest

that greater across-beam gradients introduced with the observed presence of back-scattered wave

energy propagating along the incident beam direction cause enhanced viscous action. The trough

of the back-scattered difference spectra lies at slightly higher wavenumbers than that seen in the

forwards spectral differences since the incident beams are composed of a larger proportion of high

wavenumber components and these are preferentially attenuated by viscosity.

As the frequency of the incident wavefields decrease, ray tracing predicts back-reflection coef-
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Figure 4.30: Back-scattered energy density spectra for TA are plotted in (a, c, e, g). Corresponding
spectral differences are plotted in (b, d, f, h). Frequencies decrease down the page.
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4. Smooth topography 4.5. Reflection at a smoothly varying rough topographic profile

ficients, dominantly associated with high wavenumber scatter, of CB = 0.11, 0.68 and 0.50 corre-

sponding to the spectra shown in figure 4.30 (d), (f) and (h) respectively. Baines (1971a) predicts

an increasingly prominent back-scattered flux, with magnitudes increasing to O(10−2) and peak

located at k̃ ≈ 0.1 for the smallest frequency shown. Spectral difference graphs of the measured

wavefields are not consistent in this region, in part due to artefacts of the FFT method used to

create the spectra, though a well formed peak difference of magnitude O(10−2) at k̃ ≈ 0.4 is present

in the spectral differences of figure 4.30 (h). The weak signal of the second peak difference seen

in figure 4.30 (b), located at higher wavenumbers, diminishes at lower frequencies. Whilst magni-

tudes of this peak are not reliable, the second peak difference may indicate the spectral location of

high wavenumber back-reflection predicted by ray tracing, though notably, the peak is present even

when CB = 0. Similarly, the spectral difference trough at k̃ ≈ 0.4 is also present in lower frequency

spectra.

In summary, low wavenumber back-scatter that may be associated with predicted difference

components is observed at the lowest frequency. A region of weak high wavenumber scatter, noted

in RMST images of the relevant experiments, may also be present in spectra, though magnitudes of

these signals are not reliable. This high wavenumber scatter may be associated in part with back-

reflected wave energy, which is not possible in the linearised boundary theory of Baines (1971a)

though it is predicted by ray tracing for boundaries that are somewhere supercritical. However,

the high wavenumber scatter also contradicts ray tracing predictions as it is also generated in those

experiments with purely subcritical wave-boundary interactions. The high wavenumber back-scatter

is therefore likely to arise from nonlinear mechanisms caused by high amplitude wave motion arising

from energy focusing and superposition of the wavefields near the boundary.

Spectral analysis of scatter at TB

Figure 4.31 (a), (c), (e) and (g) show spectra relating to forwards scattered wavefields for TB,

calculated along cross-sections positioned at various distances along BF and B∗
F for σ/N = 0.71,

0.63, 0.54, and 0.50 and θ/αs = 0.86, 0.98, 1.10 and 1.16 respectively. Corresponding spectral

differences, with E∆F = (EF − E∗
F ), are shown in (b), (d), (f) and (h). Measured spectra for the

incident and scattered wavefields shown in figure 4.31 (a) exhibit a single dominant peak located

at k̃ ≈ 0.3 with magnitude O(10−2). However, inviscid linearised boundary theory predicts two

peaks located at k̃ ≈ 0.3 (the primary component) and k̃ ≈ 0.8 (dominantly the sum component)

with magnitudes O(10−2). The measured lower wavenumber peak has magnitudes slightly larger

than those of the predicted spectra in this region. This may indicate the inclusion of background

wave energy, ordinarily associated with much smaller wave amplitudes and larger length scales than

the incident wave energy, in the measured spectra, which is focused at the topography and hence

becomes more significant. As in previous discussion, some features of the predicted and measured

spectra are more readily interpreted from the corresponding spectral differences in figure 4.31 (b).

Theory for a linearised boundary predicts a single peak in the difference spectra of the scattered

151



4. Smooth topography 4.5. Reflection at a smoothly varying rough topographic profile

k [mm−1] k [mm−1]

replacemen

0.0 1.0 1.5
k̃

log10

(

E

Ê
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Ê
0.0

0.02

0.04

kT

0.0 0.1 0.2 0.3 0.4 0.5

sR

08
10
12
14

(g) (h)

Figure 4.31: Forward-scattered energy density spectra for TB are plotted in (a, c, e, g). Corre-
sponding spectral differences are plotted in (b, d, f, h). Frequencies decrease down the page.
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4. Smooth topography 4.5. Reflection at a smoothly varying rough topographic profile

wavefield in the region of the sum component located at k̃ ≈ 0.9, with magnitude O(10−2), together

with a trough of similar magnitude located in the region of the peak in the incident spectra at

k̃ ≈ 0.3. As frequency decreases, the contribution from the primary component shifts to lower

wavenumbers and reduces in magnitude slightly, whilst the contribution from the sum component

shifts to higher wavenumbers. Measured spectra in figure 4.31 (b) have a trough centered at k̃ ≈ 0.3

of magnitude O(10−2). No significant low wavenumber scatter corresponding to the predicted

primary component and, as identified in the full spectra, no high wavenumber scatter corresponding

to the predicted sum component are observed however. Scattering behaviours at lower frequencies

are similar and so, in contrast to the scattering behaviour reported at TA, no high wavenumber

forward scatter is observed in spectra relating to TB. Notably, however, smaller length scales,

introduced at the boundary and rapidly decaying away from there, are evident in movies and

RMST images of scatter at TB. It may be concluded therefore that their absence in spectra is

dominantly a consequence of rapid viscous dissipation on the smaller length scales imposed on the

wavefield by TB.

Figure 4.32 (a), (c), (e) and (g) show spectra for the superposition of the incident and backwards

scattered fields at TB calculated along cross-sections at various along-beam distances of BI and

B∗
I for σ/N = 0.71, 0.63, 0.54, and 0.50 respectively. Corresponding spectral differences, with

E∆I = (EI − E∗
I ), are shown in (b), (d), (f) and (h). As for figures 4.30 and 4.31, the distinction

between spectra is best seen in the spectral differences of figure 4.32. At the highest two frequencies,

ray tracing predicts a back-reflection coefficient of CB = 0. Application of the theory of Baines

(1971a) to these frequencies, however, predicts back-scattered components represented by peak

differences of O(10−2) centered at k̃ ≈ 0.2 and k̃ ≈ 0.35 respectively. Measured spectra are not

consistent in the region of these peaks. However, a peak difference, unpredicted by either theoretical

approach and suggesting high wavenumber scatter is measured at k̃ ≈ 0.7, most prominent for the

experiment of figure 4.32 (d) with a peak difference magnitude in this case of O(10−2). As in

back-scatter spectra for TA, the high wavenumber scatter is therefore thought to be generated by

nonlinear mechanisms. A trough of magnitude O(10−2) at k̃ ≈ 0.35 is also observed, caused by

dissipation arising from interaction of back-scattered components with the incident wavefield.

As the frequency of the incident wavefield decreases, ray tracing predicts back-reflection co-

efficients of CB = 0.58 and 0.71 corresponding to the spectra shown in figure 4.32 (f) and (h)

respectively. The predicted back-scattered component of Baines (1971a) becomes more pronounced

and shifts to higher wavenumbers with decreasing frequency and a second predicted peak difference

of O(10−3) emerges at low wavenumbers. The corresponding measured spectra are again not con-

sistent at low wavenumbers. The trough observed at high frequencies persists at lower frequencies.

This section has examined spectra associated with forward and back-scatter at two sinusoidal

topographic profiles. The spectra have been compared with ray tracing and theory for a linearised

boundary (Baines 1971a). Whilst both theoretical approaches correctly predict some aspects of the

spectra, the scatter at rough topography is clearly a more complex process and spectra dominantly

exhibit the effects of viscous dissipation and other nonlinear mechanisms, especially for topography
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Ê
0.0

0.02

0.04

0.06

kT

0.0 0.1 0.2 0.3 0.4 0.5

sI

10
12
14
16

(e) (f)

0.0 0.5 1.5
k̃

log10

(

E

Ê
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Figure 4.32: Back-scattered energy density spectra for TB are plotted in (a, c, e, g). Corresponding
spectral differences are plotted in (b, d, f, h). Frequencies decrease down the page.
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4. Smooth topography 4.6. Summary

with higher wavenumber variation. In particular, neither approach resolves behaviour in near-

critical regions of the boundary. High wavenumber forwards scatter is observed at TA and there is

evidence for the presence of high wavenumber back-scatter at both TA and TB, though it is clear that

high wavenumber components are rapidly dissipated as they propagate away from the topography.

4.6 Summary

This chapter has presented and discussed experimental results of reflection and scatter at flat sloping

boundaries as well as topography with smoothly varying profiles. Where possible, the results have

been compared with existing linear theory. In particular, ray tracing predictions capture most

aspects of scattering behaviour at non-critical, slowly varying boundaries but fail to predict back-

scatter or diffraction or split-reflection near critical regions. Quantitative applications of this first

order approximation are also greatly restricted. However, other theoretical approaches based on

linearised boundary theory, which are more quantitative and make predictions of back-scatter, are

restricted to linearised and hence necessarily subcritical boundaries.

Viscous dissipation, both in the reflection region and as the scattered energy propagates into the

far-field, has been shown to greatly influence the far-field wavefields. In particular, the preferential

action of viscosity on wave motion characterised by small length scales cannot be ignored in studies

aiming to quantify the proportion of wave energy scattered to higher wavenumber components.

A number of parameters, comparing relative length scales and slopes associated with the inci-

dent wavefield and topography, have been shown to influence scattering behaviours. The following

chapter considers the effect of curvature and sharp corners by studying the generation of internal

gravity waves from elliptical and square cylinders.
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Chapter 5

Wave generation by different cylinder

shapes

5.1 Overview

The reflection of wave beams at flat, sloping and smoothly varying rough topography was consid-

ered in chapter 4. Such topographic profiles are highly idealised and in particular do not contain

features such as sharp corners, defined here as regions where the topographic slope becomes discon-

tinuous. The influences of topographic curvature and the presence of sharp corners are investigated

in the present chapter. Experimental results are presented of internal wave generation by elliptical

and rectangular cylinders that have a range of aspect ratios. The generated beam structures are

compared with the theory of Hurley & Keady (1997). Results from this chapter are used in order

to understand the scattering behaviour at rough topographic profiles featuring sharp corners in

chapters 6-8.

5.2 Wave generation by elliptical cylinders

Literature relating to the generation of internal gravity wavefields by the vertical oscillation of cylin-

ders with circular and elliptical cross-sections was discussed in section 2.3. Preliminary experiments

from the present study relating to wavefields generated by a circular cylinder were presented in

sections 3.6 and 4.2. Many of these results have not been published in previous studies of this

nature, or have been described over a much narrower range of parameters than is given here. This

section compares experimental results of the established wavefields generated by circular and el-

liptical cylinders prior (physically) to the wavefields interacting with boundaries of the laboratory

tank. Cylinders were oscillated at frequencies within the range σ/N = [0.36, 0.77], corresponding

to primary wavefield responses with energy propagating at angles θ ∈ [39.6, 68.9]◦ to the vertical.

Results relating to the wavefields generated by square and rectangular cylinders are discussed in

section 5.3.
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5. Wave generation by different cylinder shapes 5.2. Wave generation by elliptical cylinders

Profile Index 2a 2b Aspect Ratio

Ci [mm] [mm] a/b

A 16.6 50.0 0.30

2ae

2be

B 21.5 43.0 0.50

C 35.6 35.6 1.00

D 43.0 21.5 2.00

E 50.0 16.6 3.00

2ar

2br

F 38.5 59.0 0.65

G 38.5 38.5 1.00

H 59.0 38.5 1.53

Table 5.1: Specifications of cylinders used in experiments. Length scales a and b denote ae or ar

and be or br for elliptical and rectangular cylinders respectively.

Lengths of the horizontal and vertical axes of elliptical cylinders are denoted 2ae and 2be respec-

tively, with cylinder aspect ratios defined by the ratio ae/be. The top section of table 5.1 shows the

dimensions of circular and elliptical cylinders used in experiments, which had aspect ratios of 0.3,

0.5, 1.0, 2.0 and 3.0. All cylinders were made of the same materials, and positioned and operated

as described in section 3.6.1. An exception to this was that the vertical metal rods connected to

the elliptical cylinders (see figure 3.12) measured 4 mm in diameter, i.e. 2 mm narrower than the

rod connected to the circular cylinder. This reduced the effects on the wavefield due to the rod,

which were anticipated to become more significant for ellipses with smaller aspect ratios. Note that

the rigidity of the rod was not compromised by this reduction in diameter. A similarly narrow

rod was not attached to the circular cylinder since its construction predated that of the elliptical

cylinders and such a small rod diameter was not considered necessary for a cylinder with a diameter

of 35.6 mm and unit aspect ratio.

Across-beam geometry

The perpendicular distance between two parallel tangents to an elliptical cylinder that make an

angle θ = cos−1(σ/N) to the vertical is denoted here as 2ce, where

c2e = a2
e cos2 θ + b2e sin2 θ (5.1)

(e.g. Sutherland & Linden 2002). These distances are indicated in figure 5.1 (a). Red and blue lines

indicate tangents to the cylinder inclined at the angle θ. In particular, ce varies with frequency as
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Figure 5.1: Geometrical schematic of an elliptical cylinder and definition of ce are shown in (a).
Variation of ce with θ for elliptical cylinders, Ci, i = A−E, is plotted in (b).

plotted in figure 5.1 (b) for cylinders CA − CE . An analogous length scale, cc, is also defined for a

given ellipse that corresponds to the radius of the circle that has the same cross-sectional area, so

that

cc = (aebe)
1

2 , (5.2)

where cc has values of 14.2, 15.2, 17.8, 15.2 and 14.2 mm for cylinders CA to CE respectively.

A coordinate system is defined for each cylinder with across-beam (i.e. aligned with the phase

propagation) and along-beam (i.e. aligned with the energy propagation) coordinates denoted as in

previous chapters by (a, s) respectively, which originate at cylinder centers.

The variation with aspect ratio of the amplitude and spectral structure of wave beams are

considered in the following subsections, together with the generation of higher harmonic components

and other features of the wavefields in regions near the cylinders. Specifically, results are discussed

for wave beams with energy propagation from cylinders oriented downwards and to the right, with

results for beams with other propagation directions inferred by symmetry.

5.2.1 Across-beam amplitudes

Across-beam structures of the wavefields generated by the different cylinders can be analysed in a

similar manner to that described in section 4.2 for a circular cylinder. Figure 5.2 presents across-

beam amplitudes of perturbed buoyancy fields (without filtering for temporal harmonics) for each

cylinder along cross-sections of length 10ce at different along-beam distances, s/ce, and at the four

forcing frequencies σ/N = 0.36, 0.50, 0.59 and 0.73. Each individual panel represents results relating

to one cylinder at a fixed forcing frequency σ/N . Frequencies increase across the page, from left

to right, whilst aspect ratios of cylinders increase down the page, from top to bottom. Since the
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Figure 5.2: Across-beam RMST amplitudes at different values of s for σ/N = 0.36, 0.50, 0.59 and
0.73 (corresponding to columns from left to right) are plotted for ellipse aspect ratios 0.3, 0.5, 1.0,
2.0 and 3.0 (corresponding to rows from top to bottom). Perturbed buoyancy values are multiplied
by the factor 1/Âe = (Rc/cc)

2.
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cross-sectional areas of the cylinders of different aspect ratios vary (though those of CA and CE

are equal, as are those of CB and CD), the amplitudes are normalised by the ratio (Rc/cc)
2. This

represents the ratio of the cross-sectional area of the circular cylinder, CC , relative to that of each

elliptical cylinder. Dashed vertical grey lines indicate the positions of tangents to the cylinders in

each case.

The across-beam amplitudes of a circular cylinder and their variation with frequency and along-

beam distance were described and analysed in detail in section 4.2. A brief summary of these results

is given here as a comparison with those for elliptical cylinders. At small along-beam distances,

s, envelopes of across-beam amplitudes measured from wavefields generated by a circular cylinder

have a bimodal structure, with two maxima located along the tangents to the cylinder that are

aligned parallel to the direction of energy propagation. As s increases, viscosity preferentially

erodes wave energy associated with smaller length scales of the motion, corresponding to larger

across-beam gradients. As a result, the across-beam structure of the wave beam gradually develops

a unimodal structure at larger s, characterised by a single maximum positioned at the center

of the wave beam. The bimodal to unimodal transition distance was estimated in section 4.2

to be s ≈ 15 − 17Rc. Amplitudes of the fluid motion increase as the frequency of the cylinder

oscillation increases, peaking, for the frequencies measured in the present study, at σ/N = 0.58,

and subsequently decreasing with further increases in frequency. These trends are again evident in

figure 5.2 (i)-(l).

Envelopes of across-beam amplitudes along cross-sections for the elliptical cylinders also exhibit

bimodal structures at small values of s/ce, with peaks located near the cylinder tangents at a = ±ce
in each case. Bimodal structures gradually transition to unimodal at similar values of s/ce to those

observed for the circular cylinder. It was noted in section 4.2 that a slight asymmetry exists between

the magnitudes of the two peaks of the bimodal structure in the circular case, with the higher value

of the two peaks lying on the lower side of the wave beam. This is attributed to enhanced viscous

attenuation of the upper side of the wave beam where the beam overlaps with the wave beam

propagating in the upwards direction from the cylinder. Asymmetries in the bimodal envelopes

associated with the elliptical cylinders are also evident. At aspect ratios ae/be ≤ 1, the larger of

the peaks lie on the lower sides of the measured beams, whilst the opposite is true at larger aspect

ratios. This is consistent with the explanation given above for the circular cylinder case based

on enhanced attenuation of wave energy where beams overlap. In general, at lower aspect ratios,

greater overlaps are experienced between the measured beam and the beam propagating upwards

and to the right away from the cylinder. In addition, wave amplitudes measured along the tangent

at a = +ce are smaller than those measured at a given along-beam distance s on the tangent a = −ce
since wave energy propagating along the former travels, and hence is subject to viscous attenuation

over, a greater distance from the cylinder edge than the latter. At larger aspect ratios however, the

measured beam overlaps more significantly with the beam propagating downwards and to the left of

the cylinder, so that the lower portion of the measured beam experiences the greater attenuation.

In these cases, along-beam distances measured from the edge of cylinder to a given s are greater
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along a = −ce than a = +ce.

Non negligible amplitudes, typically an order of magnitude smaller than the maximum amplitude

shown for a particular frequency and aspect ratio, can be seen at small s/ce and for positive values

of a/ce ∈ [∼ 2, 5]. This region lies on the upper section of the wave beam in each case and hence the

non negligible amplitudes are unlikely to relate to higher propagating harmonics of the wavefield,

which would correspond to smaller angles θ and hence the signatures of which would be expected to

lie in the region of negative a/ce. Instead, these amplitudes are related to horizontally propagating

features that are discussed in more detail in section 5.2.4.

Variation with aspect ratio and frequency

Variation of across-beam amplitudes with aspect ratio and frequency is discussed here. The trend

observed for the circular cylinder of increasing amplitudes with increasing frequency is also seen for

the elliptical cylinders, with maxima for aspect ratios less then one occuring at the highest frequency

shown, σ/N = 0.73, whilst the higher aspect ratios have maxima at σ/N = 0.59. At the lowest

frequency σ/N = 0.36 (i.e. figure 5.2 (a, e, i, m, q)), an increase in amplitude of the envelopes

occurs with increasing aspect ratio. At this frequency, the increase in aspect ratio corresponds to

a narrowing of the across-beam structure from ce/Rc = 1.32 to ce/Rc = 0.66. Dashed grey vertical

lines on figure 5.1 (b) indicate the values of ce and θ for experiments presented in figure 5.2. Hence

at lower aspect ratios, the wave energy is spread over a broader beam so that the energy density and

therefore amplitudes of the wave motion are reduced, whilst at larger aspect ratios, wave energy is

squeezed into a narrower beam resulting in larger amplitudes. The bimodal structure of the wave

beam is less obvious in e.g. figure 5.2 (q), where the two peaks are close enough and have high

enough amplitudes to merge. As for the circular cylinder, the trend of increasing amplitudes with

aspect ratio is observed at higher frequencies.

Comparison with linear theory

The linear viscous solution for the stream function of a beam propagating away from an elliptical

cylinder with group velocity directed downwards and to the right is

ψ =
iAcσce

2

(

a2
e

c2e

[

be
ae

sin θ − i cos θ

])

e−iσt

∫ ∞

0

J1(K)

K
exp

(

−K3λ
sI

ce
− iK

aI

ce

)

dK, sI > 0

(5.3)

(Hurley & Keady 1997; Sutherland & Linden 2002), where the function J1 is the first order Bessel

function of the first kind and

λ =
ν

2ce2σ tan θ
(5.4)

is a small quantity. Solutions for (5.3) are found in the present study in a similar manner to those

for (4.9) and (4.10) (Sutherland et al. 1999; Sutherland & Linden 2002).

Figure 5.3 compares across-beam RMST amplitudes measured from the experiments (solid lines,

161



5. Wave generation by different cylinder shapes 5.2. Wave generation by elliptical cylinders

also displayed in figure 5.2) with the corresponding predictions (dashed lines) calculated using

(5.3). Results are displayed for the three forcing frequencies σ/N = 0.36, 0.59 and 0.73 (increasing

across the page) and for the five cylinder aspect ratios (increasing down the page). Results at

three along-beam distances s/ce = 7 (red lines), 11 (blue lines) and 15 (cyan lines) are plotted

in each case. The viscous linear theory (Hurley & Keady 1997, denoted ‘HK’) best compares

to the experiment measurements at ae/be = 1, i.e. for the circular cylinder, with tendencies to

slightly underpredict amplitudes at smaller cylinder aspect ratios. The theory tends to overpredict

amplitudes at ae/be > 1, with the largest discrepancies observed at the largest measured aspect

ratio of ae/be = 3.0. Notably, the asymmetry in a/ce associated with the peaks predicted by the

theory has opposite sign to that measured in experiments (particularly evident in figure 5.3 (m)-

(o)). The maxima for experimental measurements lies at positive a/ce. The discrepancy with theory

either suggests enhanced dissipation for negative a/ce, i.e. lower side of wave beams, relative to that

for positive a/ce, and/ or that amplitudes are enhanced in regions of the wavefield with positive

a/ce. In support of the latter explanation, additional features of the wavefield that propagate

horizontally away from the cylinder (discussed in section 5.2.4) may contribute to the measurements

of amplitudes for positive a/ce. Power spectra corresponding to the results shown in figures 5.2 and

5.3 are discussed below.

5.2.2 Across-beam spectra

Figure 5.4 plots power spectra, normalised by the total power, P̂ , associated with the cross-section

for CC at s/ce = 4 and σ/N = 0.59, corresponding to amplitude plots in figure 5.2. In each case the

nondimensional wavenumber k̃ represents the number of waves in an across-beam section of length

ce. For each cylinder and forcing frequency, the maximum power is located at wavenumbers close to

k̃ = 0.36 and a second peak with maximum value located at k̃ = 0.78, which are the locations of the

maximum power of the two main spectral peaks measured for the circular cylinder (see section 4.2,

in particular figure 4.8). In dimensional terms, these peaks correspond to the highest wavenumbers

for the largest aspect ratio, i.e. CE , and smallest frequency, i.e. spectra plotted in figure 5.4 (q). In

this case, the ratio ce/Rc = 0.66 and so the wavenumber of the dominant peak is k ≈ 0.19 mm−1,

compared with k ≈ 0.13 mm−1 for the circular cylinder, CC . In general, the largest power coupled

with the largest (dimensional) wavenumbers are therefore generated by the cylinder with the highest

aspect ratio. The smallest dimensional peak wavenumber, k ≈ 0.096 mm−1, occurs for the cylinder

with the smallest aspect ratio, CA, and at the smallest frequency. Maximum power values associated

with cylinder CE , having aspect ratio ae/be = 3.0, are an order of magnitude greater than those

associated with CA, with aspect ratio ae/be = 0.3.

Figure 5.5 (a) plots the variation with the logarithm base two of cylinder aspect ratio of the

maximum power value for power spectra of cross-sections at s/ce = 7 for seven forcing frequencies

σ/N ∈ [0.36, 0.73]. At all frequencies, the maximum power value increases with aspect ratio. Fig-

ure 5.5 (b) plots variation with frequency of the maximum power for each cylinder aspect ratio.

162



5. Wave generation by different cylinder shapes 5.2. Wave generation by elliptical cylinders

0.0

0.04

∆N2
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Figure 5.3: Across-beam RMST amplitudes at different values of s for σ/N = 0.36, 0.59 and 0.73
(corresponding to columns from left to right) are plotted for ellipse aspect ratios 0.3, 0.5, 1.0, 2.0
and 3.0 (corresponding to rows from top to bottom). Perturbed buoyancy values are multiplied by
the factor 1/Âe = (Rc/cc)
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Figure 5.4: Across-beam power spectra corresponding to figure 5.2. Perturbed buoyancy values are
multiplied by the factor 1/Âe = (Rc/cc)

2. Power is normalised by the total power, P̂ , associated
with the cross-section for CC at s/ce = 4 and σ/N = 0.59. Wavenumbers k̃ represent the number
of waves per across-beam section of length ce.
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Figure 5.5: Variation of maximum power, Pmax, with (a) aspect ratios ae/be of the elliptical cylinders
at seven forcing frequencies, σ/N , for cross-sections at along-beam distance s = 7ce and (b) forcing
frequency for each cylinder aspect ratio for s = 7ce.

Dashed grey lines indicate the values σ/N = 1/3 and 1/2, below which the generation of propagating

higher harmonics is possible. At aspect ratios less than one, the maximum power increases approx-

imately linearly with frequency. At larger cylinder aspect ratios the maximum power increases

with frequency up to a maximum at σ/N ≈ 0.59, then decreasing at larger forcing frequencies.

This slump in maximum power value at high forcing frequencies, noted for the circular cylinder in

section 4.2, becomes more pronounced at higher cylinder aspect ratios.

Figure 5.6 compares predictions of viscous linear theory (Hurley & Keady 1997, dashed lines)

with experiment measurements (solid lines) of power spectra corresponding to the amplitude plots

shown in figure 5.3. Power spectra are displayed on logarithmic scales, rather than linear, to aid

visual comparison of the experimental measurements and theoretical predictions. An estimation of

the background noise in these experiments is therefore given in figure 5.7, which shows an example of

typical spectra calculated from two images of the undisturbed stratification in the circular cylinder

case, CC . The spectra is indicative of the level and composition of the background noise, with peaks

over a wide spectral range of maximum magnitudes ∼ O(10−4). Similar power magnitudes are shown

in the spectra of figure 5.4 and 5.6 for wavenumbers larger than k̃ ≈ 1.0. In general, locations

of the dominant power peaks shown in figure 5.6 for the wavefield predictions of linear theory

correspond well with those calculated from experiment measurements, though, as in section 4.2,

the theory tends to predict peak locations to lie at slightly higher wavenumbers than measured.

The underprediction and overprediction of power values at low and high apsect ratios respectively,

corresponding to the overprediction and underprediction of maximum RMST amplitudes of the

perturbed buoyancy field described above for figure 5.3, are also evident in the spectra. Whilst the

theory of Hurley & Keady (1997) includes the effects of viscous attenuation along the direction of

energy propagation, the influence of viscous boundary layers that form around the cylinders are
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Figure 5.6: Comparisons of power spectra from experiments and predictions of viscous linear theory
corresponding to the amplitude plots of figure 5.3 for the three forcing frequencies (increasing across
page) σ/N = 0.36, 0.59 and 0.73 and five elliptical cylinders CA −CE (aspect ratios increase down
page). P̂ is the total power associated with the cross-section at s/ce = 4 and σ/N = 0.59 for CC .
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Figure 5.7: Spectra calculated from measurements of undisturbed stratification in circular cylinder
case, CC , relating to figures 5.4 and 5.6.

not accounted for. Such layers tend to simulate conditions such that the cylinder appears slightly

wider, hence imposing larger length scales, corresponding to smaller wavenumbers, on the generated

wavefields. This may account for the slight shifts observed between the predicted and measured

spectra. In a stratified fluid, the discrepancy in effective source dimensions resulting from the

formation of boundary layers around the source is expected to be at least the depth predicted for

the boundary layer in a homogeneous fluid ∼ (ν/σ)1/2 (Batchelor 1967).

5.2.3 Higher harmonics

The partitioning of wave energy between primary, secondary and tertiary harmonic components for

different cylinder aspect ratios is discussed here. Figure 5.8 shows results from harmonic filtering

of the ∆N2/N2 field for experiments with cylinders CB and CD and forcing frequency σ/N =

0.32 < N/3. The cross-sectional areas of CB and CD, which have aspect ratios ae/be = 0.5 and 2.0

respectively, are equal. Each image shows incident wave energy propagating away from cylinders

located in the top left-hand corner towards the horizontal boundary at the base of the wave tank,

i.e. along the bottom of the image. Figure 5.8 (a)-(c) show amplitudes and (d)-(f) show phase

fields after filtering for the primary, secondary and tertiary harmonics respectively for cylinder

CB. Figure 5.8 (g)-(i) show amplitudes and (j)-(l) show phase fields after filtering for the primary,

secondary and tertiary harmonics respectively for CD. Black lines, overlaid on phase images, are

inclined at the angles θ1 = 71.6◦, θ2 = 50.9◦ and θ3 = 18.7◦ to the vertical corresponding to

angles of energy propagation predicted by the dispersion relation for the primary, secondary and

tertiary harmonics at frequencies σ1/N = 0.32, σ2/N = 0.64 and σ3/N = 0.96 respectively. Note

that maximum amplitude magnitudes of the filtered primary harmonics are one and two orders of

magnitude greater than that for the secondary and tertiary harmonics respectively. Amplitude and

phase images from harmonic filtering of the wavefield generated by the circular cylinder CC were

also analysed in section 4.2.
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Figure 5.8: Amplitude and phase images of temporal harmonics generated by elliptical cylinders
at forcing frequency σ/N = 0.32. RMST images of primary, secondary and tertiary harmonics are
shown in (a-c) and (g-i) for CB and CD respectively. Corresponding phase images are shown in (d-f)
and (j-l). Dashed lines are shown at angles 71.6◦, 50.9◦ and 18.7◦ to the vertical, corresponding
to predicted values of θi for primary (i = 1), secondary (i = 2) and tertiary (i = 3) harmonics
respectively. Amplitude maxima Mi have values 7.8 × 10−2, 7.8 × 10−3 and 7.8 × 10−4 for i = 1, 2
and 3.

Figure 5.8 (a) shows amplitudes associated with the primary harmonic for CB. Close to the

cylinder, a distinct bimodal across-beam structure is visable that gradually converges with along-

beam distance and diminishes in amplitude as the wave energy is attenuated by viscous action.

The bimodal structure is very clear in the corresponding phase image (figure 5.8 (d)). Amplitudes

associated with the secondary harmonic, shown in figure 5.8 (b), are an order of magnitude smaller
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than those for the primary harmonic. A bimodal across-beam structure of the secondary harmonic

can also be seen in both the amplitude and phase images. As discussed in section 4.2, the finite

time step necessary in the collection of experimental data caused slight signatures of other har-

monic components to remain in images even after the wavefield was filtered for a specific harmonic

component. As a result, evidence of the primary component can be seen in the amplitude and

phase images for the secondary and tertiary filtered images for both CB and CD. The filtered

images for the tertiary components also exhibit signatures for the secondary components. A very

weak suggestion of the tertiary harmonic component in evident in figures 5.8 (c) and (f), being

of comparable amplitude to the weak background wavefield within the tank. For each harmonic,

amplitudes associated with CD, figures 5.8 (g)-(i), are significantly larger than those for CB, which

has a smaller aspect ratio. The primary beam associated with CD is slightly narrower than that

for CB (see figure 5.1 comparing values of ce for the different cylinders at each angle of energy

propagation). Bimodal across-beam structures and their transition to a unimodal form are clearly

visable for cylinder CD at the primary and secondary levels, whilst the structure of the tertiary

harmonic is less clear due to the small amplitudes associated with this component. For all phase

images displayed in figure 5.8, angles of propagation for each harmonic component are consistent

with the angles predicted by the dispersion relation, as indicated by the black lines.

For completeness, the wavefield for CC at forcing frequency σ/N = 0.32 was also filtered for the

subharmonic frequencies σ/2N and 3σ/2N . However, no perceptible signal was observed for these

frequencies of wave motion.

5.2.4 Influence on background stratification

The structure of wavefields and their influence on the background stratification in the immediate

vicinity of a circular cylinder was discussed in section 3.6.1 for a forcing frequency of σ/N = 0.59

at times after cylinder motion was initiated t̂ equal to 4, 40 and 120 minutes. The evolution of

horizontally propagating disturbances extending from the vertical level of the top and bottom of

the cylinder, i.e. at z = ±Rc mm, were described. The disturbances developed as mixed fluid

generated near the cylinder spread horizontally into the adjacent stratification, characterised in

RMST images of the perturbed buoyancy field as regions bounded above and below by enhanced

vertical density gradients. Oscillations at the cylinder frequency, σ, of these thin layers were also

described.

Figure 5.9 (a)-(e) shows RMST images of the perturbed buoyancy field of regions adjacent

to elliptical cylinders CA − CE , respectively, taken from three periods of oscillation at cylinder

frequency σ/N = 0.59 beginning at time t̂ = 4 minutes. RMST amplitudes are scaled by the

factor Âe = (Rc/cc)
2. Cylinder centres are positioned at the middle left-hand side of images,

so that sections of upward and downward propagating beams are visable in the images. In each

case, intrusions, similar to those described in section 3.6.1, were observed at the vertical levels of

the top and bottom of the cylinders, i.e. z = ±be mm, though these protruded a shorter distance
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Figure 5.9: RMST images of ∆N2/N2 fields in regions adjacent to cylinders CA − CE (centre-
left of field of view) are shown in (a)-(e) respectively. Amplitudes are multiplied by the factor
Âe = (Rc/cc)

2.

into the stratification than those shown in figures 3.24 and 3.25, for example, due to the shorter

experimental run times employed for the elliptical cylinders. The disturbances were the least distinct

in experiments (see figure 5.9 (c)) relating to the circular cylinder, CC , and appeared to become
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Figure 5.10: Zoom of section near cylinder in figure 5.9 (e). Scaling as in figure 5.9.

more pronounced with either decreasing or increasing aspect ratios. In particular, amplitudes of

disturbances shown in figure 5.9 (e) for the cylinder CE , with aspect ratio ae/be = 3.0, are the most

significant. Mixing of the stratified fluid is enhanced in regions of the cylinder surfaces that have

high curvature. For cylinders CA and CB these regions coincide with the vertical extremities of

the cylinders, z = ±be mm, whereas the regions of high curvature are positioned at the level of the

cylinder centres for CD and CE . Indeed, additional intrusions are visable in figure 5.9 (d) and (e)

at z = 0 mm.

As for the experiments with the circular cylinders that had longer run times (see section 3.6.1),

evidence of oscillatory motion along mixed fluid layers can also be seen in varying degrees in movies

of the experiments corresponding to figure 5.9. The clearest of these is for CE in the region defined

by x ∈ [50, 150] mm and z ∈ [−25, 25] mm. A zoom of this section is shown in the RMST image

of figure 5.10. A periodic horizontal pattern can be seen at x ∈ [80, 110] mm and z ≈ 5 mm. This

is a less developed version of that shown in figure 3.25 for the longer run time of t̂ = 120 minutes.

The mixed fluid did not intrude sufficiently far into stratifications over the much shorter duration

of the experiments for the elliptical cylinders to allow more detailed analysis of the intrusions and

the oscillations they support.

5.3 Wave generation by rectangular cylinders

With the exception of a study by Dalziel (2000), which exemplified the use of synthetic schlieren

for studying the wavefield generated by a square cylinder, there are no experimental, numerical

or theoretical results presented in the literature of internal wave generation by either square or

rectangular cylinders. This section describes experimental results from the present study of wave-

fields generated by square and rectangular cylinders and compares them with those for elliptical

cylinders and the predictions of viscous linear theory (Hurley & Keady 1997). In particular, square

and rectangular cylinders have sharp corners and the effect of these on the wavefield is investigated

here.

The width and height of a rectangular cylinder are denoted 2ar and 2br respectively, with cylinder

aspect ratios defined by the ratio ar/br. The bottom section of table 5.1 shows the dimensions of

square and rectangular cylinders used in experiments, CF − CH , which had aspect ratios of 0.65,
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1.0, and 1.53. Square and rectangular cylinders were constructed and operated as described in

section 3.6.1.

Across-beam geometry

The perpendicular distance between two parallel lines that make an angle θ = cos−1(σ/N) to the

vertical and that pass through opposite corners of a rectangular cylinder of width 2ar and height

2br is denoted here as 2cr where

cr =
1

2
(ar cos θ + br sin θ) . (5.5)

As for the elliptical cyliders, an analogous length scale, cc, is also defined for a given rectangle that

corresponds to the radius of the circle that has the same cross-sectional area, so that

cc = 2

(

arbr
π

)
1

2

, (5.6)

where cc has values of 26.9, 21.7 and 26.9 mm for cylinders CF − CH respectively. The coordinate

system employed in section 5.2 is applied here also.

A second across-beam distance, c̃e, is also defined here as the analogy with ce for the elliptical

cylinder, with horizontal and vertical axes lengths ãe and b̃e, that has the same aspect ratio and

cross-sectional area as the rectangular cylinder. The horizontal and vertical axes half-lengths of the

ellipse can be calculated to be

ãe =
2ar√
π

and b̃e =
2br√
π

(5.7)

and the across-beam half-length as

c̃e
2 = ãe

2 cos2 θ + b̃e
2
sin2 θ. (5.8)

These distances are indicated on figure 5.11.

As in section 5.2, this section considers the variation with aspect ratio of the amplitude and

spectral structure of wave beams as well as the generation of higher harmonic components and other

features of the wavefields in regions near the cylinders.

5.3.1 Across-beam amplitudes

Figure 5.12 shows across-beam amplitudes of ∆N2/N2 for each rectangular cylinder along cross-

sections of length 10c̃e at different along-beam distances, s/c̃e, and at the four forcing frequencies

σ/N = 0.36, 0.50, 0.59 and 0.73. Each panel presents results relating to one cylinder at a fixed

forcing frequency, with frequencies associated with each panel increasing across the page. Panels

(a)-(d) show envelopes for the circular cylinder CC . Envelopes for the rectangular cylinders CF , CG

and CH , which have aspect ratios 0.65, 1.0 and 1.53 respectively, are shown in panels (e)-(h), (i)-(l)
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ar cos θ

2c̃e br sin θ

2cr

θ

br

ar

b̃e

ãe

co1 co2

co3

Figure 5.11: Ray geometry for rectangular cylinders.

and (m)-(p). Amplitudes are normalised by the ratio (Rc/cc)
2. Dashed vertical lines indicate the

positions of lines inclined at angles θ to the vertical, i.e. parallel to the group velocity vector of the

primary wave component, that pass through the cylinder corners. For convenience, these lines are

referred to here as ‘corner asymptotes’ (indicated by solid red, green and blue lines originating at

corners co1, co2 and co3 denoted in figure 5.11).

In contrast to the bimodal and unimodal across-beam amplitude structures described in sec-

tions 3.6.1 and 5.2 and shown in figure 5.12 (a)-(d) for circular and elliptical cylinders, envelopes

of across-beam amplitudes for rectangular cylinders exhibit peaks having locations coincident with

the across-beam positions of the cylinder corners. At small s/c̃e, the across-beam structures are

therefore characterised by a generally asymmetric form that has three peaks. At larger s/c̃e, distinct

peaks positioned along adjacent corner asymptotes are observed to gradually merge with increas-

ing values of s into single peaks positioned between the two corner asymptotes. This transition

occurs more rapidly with increasing s for corners in closer proximity (e.g. see figure 5.12 (l)). The

transition occurs through the same mechanism as described for the bimodal-unimodal transition

associated with the circular cylinder. Viscosity preferentially acts to reduce wavefield motions asso-

ciated with rapid variations, i.e. high wavenumbers, in the across-beam direction. The across-beam

structure therefore gradually becomes dominantly characterised by larger across-beam length scales

as s increases.

The symmetries of circular and elliptical cylinders and the location of peaks of amplitude en-

velopes along tangents to the cylinders results in an equal partitioning of wave energy near s = 0

between the two peaks. Length scales imposed on the wave motion are therefore dominantly con-

trolled by ce. However, in the case of rectangular cylinders, the across-beam positions of the corner

asymptotes are in general asymmetric about a = 0, varying with both cylinder aspect ratio and

the frequency of the wave motion. Additional length scales may therefore be imposed on the wave
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ÂrN2

0.04

s/c̃ec̃e

Rc
= 1.08 10

14
18
22

s/c̃ec̃e

Rc
= 1.08 07

11
15

s/c̃ec̃e

Rc
= 1.08 07

11
15

s/c̃ec̃e

Rc
= 1.08 05

09
13

(i) (j) (k) (l)

0.0

0.02
∆N2
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Figure 5.12: Across-beam RMST amplitudes at different values of s for σ/N = 0.36, 0.50, 0.59 and
0.73 (corresponding to columns from left to right) are plotted for a circular cylinder (top row) and
rectangle aspect ratios 0.65, 1.0 and 1.53 (corresponding to rows from second from top to bottom).
Perturbed buoyancy values are multiplied by the factor 1/Âr = (Rc/cc)

2. Dashed lines indicate
across-beam positions of corners of rectangular cylinders.

motion, including cr, ar cos θ and br sin θ.

Figure 5.13 compares RMST across-beam amplitudes of ∆N2/N2 from experimental measure-

ments for the rectangular cylinders with those predicted by linear viscous theory for elliptical

cylinders (Hurley & Keady 1997, referred to as ‘HK’) that have the same cross-sectional areas and

aspect-ratios as the rectangular cylinders. Each panel plots results for one cylinder at a fixed fre-

quency, σ/N , and at three along-beam distances, s/c̃e = 7 (red lines), 11 (blue lines) and 15 (green

174



5. Wave generation by different cylinder shapes 5.3. Wave generation by rectangular cylinders

0.0

∆N2
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ÂrN2

0.04 c̃e

Rc
= 1.17 c̃e

Rc
= 1.31 c̃e

Rc
= 1.41

-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5
a/c̃e a/c̃e a/c̃e
(g) (h) (i)

Figure 5.13: Across-beam RMST amplitudes at different values of s for σ/N = 0.36, 0.59 and
0.73 (corresponding to columns from left to right) are plotted for a circular cylinder (top row) and
rectangle aspect ratios 0.65, 1.0 and 1.53 (corresponding to rows from second from top to bottom).
Perturbed buoyancy values are multiplied by the factor 1/Âr = (Rc/cc)

2. Dashed grey vertical lines
indicate across-beam positions of corners of rectangular cylinders.

lines). Results are shown for cylinders CF − CH , with aspect ratios increasing down the page, and

the three forcing frequencies σ/N = 0.36, 0.59 and 0.73, increasing across the page. Solid coloured

lines indicate measurements from experiments and dashed coloured lines indicate predictions of

viscous linear theory for the elliptical cylinder analogy. In each case the across-beam form of the

amplitude envelopes generated by the rectangular cylinders differs from that for the corresponding

elliptical cylinder analogy, with peaks positioned approximately along the corner asymptotes at

small s/c̃e rather than at a/c̃e ≈ ±1 as predicted for the ellipses. The asymmetric distribution of
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wave energy between the peaks associated with the envelopes of the rectangular cylinders results in

larger maximum amplitudes when compared with those predicted for the elliptical cylinder. This

implies greater shearing motion in the along-beam direction and hence suggests enhanced viscous

attenuation in such regions for the rectangular cases.

The discontinuities introduced at the corners of a rectangular cylinder make linear analytical

approaches of the kind used in the analysis of elliptical cylinders (Hurley & Keady 1997) unfeasible.

A first order analytical model of the wavefield generated by a rectangular cylinder is perhaps sug-

gested by the results of the present study. This would include the modelling of the cylinder as an

array of four sources of vanishingly small dimensions located at the corner positions of the rectangle.

The linear theory for wave generation by a cylinder requires that the dimensions of the source are

much larger than the amplitude of oscillation however, which is violated in such an analysis. The

effects of diffusion are also expected to become non negligible in the region of sharp corners of the

source.

5.3.2 Across-beam spectra

Power spectra corresponding to RMST perturbed buoyancy field measurements presented in fig-

ure 5.12 are shown in figure 5.14. Spectra for CC at frequencies σ/N = 0.36, 0.50, 0.59 and 0.73

are shown in figure 5.14 (a)-(d) respectively. Spectra for cylinders CF − CH are plotted in (e)-(h),

(i)-(l) and (m)-(p). Note that values on vertical scales of plots for CC are almost twice those shown

for the rectangular cylinders. In particular, spectra of the square cylinder, which has the same

aspect ratio as CC , display the largest maxima of the rectangular cylinders and the peaks are only

around half as large in magnitude as those for the circular cylinder. The contrast of these values

with the maxima for the circular cylinder indicates significantly enhanced levels of dissipation of

wave energy in the rectangular cylinder cases. This could occur through the generation of high

wavenumber components at the cylinder corners that are dissipated rapidly by viscosity near the

cylinder. As noted above, viscous attenuation is also promoted as length scales related to the across-

beam distances between the cylinder corners, which are smaller than those imposed by the circular

cylinder and so generate higher wavenumbers, are also introduced to the wavefield. In addition, the

proximity of adjacent corners determines the energy density of, and hence the shear related to, the

wavefield propagating from that region. The spectra for CG exhibit peaks located at wavenumbers

near k̃ ≈ 0.3 and 0.7 with the partitioning of wave energy between these peaks varying with fre-

quency. The largest magnitude for the high wavenumber peak occurs at σ/N = 0.50, whilst that

for the lower wavenumber peak occurs at σ/N = 0.73. Qualitatively, this variation correlates well

with the change in the across-beam distances between cylinder corners, and hence the wavenumbers

and energy densities imposed on the wavefield, with frequency.

Spectra for cylinders CF and CH exhibit smaller maxima than those for the square cylinder.

The peak locations and magnitudes are again a complicated function of frequency as the length

scales imposed by the cylinders vary with the angle of the group velocity vector, θ.
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Figure 5.14: Across-beam power spectra corresponding to figure 5.12. Perturbed buoyancy values
are multiplied by the factor 1/Âr = (Rc/cc)

2. Power is normalised by the total power, P̂ , associated
with the cross-section for CC at s/ce = 4 and σ/N = 0.59. Wavenumbers k̃ represent the number
of waves per across-beam section of length ce and c̃e for the circular and rectangular cylinders
respectively.

Figure 5.15 compares spectra calculated from experiments with CF − CH (solid coloured lines,

aspect ratios increasing down page) with those predicted by viscous linear theory (Hurley & Keady

1997) for elliptical cylinder analogies (dashed coloured lines) at three forcing frequencies (increasing

across the page) and three along-beam distances, corresponding to the amplitude plots presented in

figure 5.13. Peaks of spectra located near k̃ ≈ 0.3, calculated from the experimental data correspond

well to locations of peaks predicted for the analogous elliptical cylinders, with magnitudes of the
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Figure 5.15: Comparisons of power spectra from experiments with rectangular cylinders CF − CH

(aspect ratios increase down the page) and predictions of viscous linear theory (Hurley & Keady
1997) for analogous elliptical cylinders corresponding to the amplitude plots of figure 5.13. Forcing
frequencies σ/N = 0.36, 0.59 and 0.73 increase across the page. P̂ is the total power associated
with the cross-section at s/ce = 4 and σ/N = 0.59 for CC .

peaks for both the experiments and predictions closest for CG. The spectra illustrate the complex

dependance of the wavenumber composition of the generated wavefields on frequency, aspect ratio

and cylinder shape.

5.3.3 Higher harmonics

The partitioning of wave energy between first, second and third temporal harmonic components is

compared here for circular, CC , and square, CG, cylinders at forcing frequency σ/N = 0.32 < N/3.
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Figure 5.16: Amplitude and phase images of temporal harmonics generated by circular and square
cylinders. RMST images of primary, secondary and tertiary harmonics are shown in (a-c) and (g-i)
for CC and CG respectively. Corresponding phase images are shown in (d-f) and (j-l). Dashed lines
are shown at angles 71.6◦, 50.9◦ and 18.7◦ to the vertical, corresponding to predicted values of θi

for primary (i = 1), secondary (i = 2) and tertiary (i = 3) harmonics respectively. Amplitudes
relating to square cylinder are scaled by the factor 1/Âr = (Rc/cc)

2. Amplitude maxima Mi have
values 5.6 × 10−2, 5.6 × 10−3 and 5.6 × 10−4 for i = 1, 2 and 3.

In a similar manner to figure 5.8, figure 5.16 shows amplitude images (a-c), (g-i) and phase images

(d-f), (j-l) after harmonic filtering of (Rc/cc)
2∆N2/N2 for cylinders CC and CG respectively. The

first, second and third columns of images in figure 5.16 correspond to filtering for primary, secondary

and tertiary harmonics respectively. Black dashed lines superimposed on phase images are inclined

at angles θ1 = 71.6◦, θ2 = 50.9◦ and θ3 = 18.7◦ relative to the vertical, which are the angles predicted
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by the dispersion relation for the orientation of the group velocity vector for wave motions with

temporal frequencies σ1/N = 0.32, σ2/N = 0.64 and σ3/N = 0.96.

Primary (figure 5.16 (a), (d)), secondary (figure 5.16 (b), (e)) and weak tertiary harmonics

(figure 5.16 (c), (f)) were observed for the circular cylinder, with wave beams inclined at the

predicted value of θi, i = 1, 2, 3, in each case. The bimodal to unimodal transitition of the across-

beam RMST amplitude structure for the circular cylinder can be seen for the primary harmonic in

figure 5.16 (a). The distinct bimodal structure of the second harmonic is evident in figure 5.16 (b),

though some asymmetry occurs as a result of the smaller amplitudes of the wave motion associated

with this harmonic (an order of magnitude less than those of the primary component), hence making

interactions with other components of the wavefield more distinct in images. Except in regions close

to the cylinders, amplitudes associated with the tertiary harmonic, shown in figure 5.16 (c), are

comparable with those of the background wavefield and hence the structural form of this component

is best seen in the corresponding phase image.

Evidence of each harmonic was also observed for the square cylinder. The across-beam structure

of the primary harmonic, figure 5.16 (g), exhibits two distinct peaks. The most prominent of these

lies on the lower side of the wave beam and occurs as wave motion generated at the two adjacent

corners of the cylinder there, in the notation of figure 5.11: co1 and co2, merges near the cylinder. A

comparably weaker peak is also generated at co3. Amplitudes along the dominant peak are greater

than those observed for the circular cylinder at small along-beam distances, s, but decay more

rapidly with increasing s due to the higher wavenumbers and larger shearing motions associated

with the square cylinder at this forcing frequency and hence enhanced viscous attenuation. Similar

behaviour is observed for the second and third harmonics.

Figure 5.17 compares amplitude and phase images from harmonic filtering for primary, secondary

and tertiary harmonics at σ/N = 0.32 for rectangular cylinders CF and CH , which have aspect ratios

ar/br = 0.65 and 1.53 respectively but equal cross-sectional areas. The ordering (i.e. across and

down the page) of images in figure 5.17 is the same as those in figures 5.8 and 5.16. As in the

elliptical cylinder case at this frequency, the amplitudes of each of the harmonics is more significant

for the cylinders with highest aspect ratio, with the greatest contrast occuring between the secondary

harmonics. The tertiary harmonics for both cylinders are very weak, being most prominent at small

s. Their presence is more distinct in the phase images however.

5.3.4 Influence on background stratification

Intrusions of mixed fluid extending horizontally from the vertical extremities, z = ±be mm, and

regions of high curvature of oscillating elliptical cylinders were described in section 5.2.4. Similar

features were also observed in regions near square and rectangular cylinders. Figure 5.18 shows

RMST images of the perturbed buoyancy fields for (a) CC , (b) CF , (c) CG and (d) CH at forcing

frequency σ/N = 0.54, where the RMST values are calculated from averages over one period of

the wave motion commencing at time t̂ = 4 minutes after the cylinder oscillation was initiated.
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Figure 5.17: Amplitude and phase images of temporal harmonics generated by rectangular cylinders.
RMST images of primary, secondary and tertiary harmonics are shown in (a-c) and (g-i) for CF and
CH respectively. Corresponding phase images are shown in (d-f) and (j-l). Dashed lines are shown
at angles 71.6◦, 50.9◦ and 18.7◦ to the vertical, corresponding to predicted values of θi for primary
(i = 1), secondary (i = 2) and tertiary (i = 3) harmonics respectively. Amplitude maxima Mi have
values 9.5 × 10−2, 9.5 × 10−3 and 9.5 × 10−4 for i = 1, 2 and 3.

Amplitudes of ∆N2/N2 fields are multiplied by the factor Âr = (Rc/cc)
2. Intrusions generated by

each of the rectangular cylinders, CF − CH , are more distinct than that generated by the circular

cylinder, CC . In each case, the disturbances extend from the vertical levels of the top and bottom of

the cylinders, i.e. z = ±br mm, which coincides with the vertical positions of the cylinder corners.

The intrusions appear to become more prominent with increasing aspect ratio and, as in the elliptical

cases, oscillatory motions are again observed in movies of the experiments to propagate along the
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Figure 5.18: RMST images of regions adjacent to cylinders (centre-left of field of view) (a) CC and
(b) to (d) CF to CH respectively. Amplitudes are multiplied by the factor Âr = (Rc/cc)
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Figure 5.19: Zoom of section near cylinder in figure 5.18 (e). Scaling as in figure 5.18.

thin layers of mixed fluid. Figure 5.19 shows a zoomed section of figure 5.18 (d) for the cylinder
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CH of the region x ∈ [50, 150] mm and z ∈ [−50, 0] mm. Evidence of the horizontal oscillation

is perhaps best seen by the periodic undulation of the horizontal band at x ∈ [55, 70] mm and

z ≈ −22 mm. As in experiments with the elliptical cylinders, experiment run times were not long

enough to generate sufficently developed intrusions and hence to allow more detailed analyses of

these features here.

5.4 Summary

A study was made of the established wavefields generated by a vertically oscillating circular cylinder

prior (physically) to their interaction with boundaries. These were compared with those produced

by vertically oscillating elliptical and square cylinders with a view to determining the influence of

aspect ratio and sharp corners of the cylinders on the spatial structure of the generated wave beams.

The RMST across-beam structure of wave beams generated by elliptical cylinders is characterised

at small along-beam distances, s, by two peaks positioned along tangents to the cylinder. Both

aspect ratio and frequency control the separation of these peaks and hence the length scales imposed

on the wavefield and the associated energy densities. The aspect ratio is defined here as the ratio of

horizontal to vertical length scales of the oscillating cylinders. In particular, the maximum power

at a given frequency increases with aspect ratio, with primary, secondary and tertiary harmonics of

the wavefield more prominent for high aspect ratios. As in the circular cylinder case, viscosity acts

to modify the form of the across-beam envelope as wave energy propagates along the beam. High

wavenumber components generated at regions of high surface curvature of the elliptical cylinders

result in enhanced viscous dissipation of the wave energy as compared with the circular case. Energy

is also dissipated near the vertical extremities of the cylinders as well as regions of high surface

curvature by the generation of mixed fluid that is expelled into the stratification, forming thin

horizontally propagating intrusions along which oscillations can be supported.

In contrast to the elliptical case, across-beam envelopes associated with rectangular cylinders,

which feature sharp corners, are generally characterised at small s by three peaks, which originate

at the corners of the cylinder. The positions of these peaks vary with frequency and aspect ratio,

and the envelopes are generally highly asymmetric as a result, with regions of high energy density

where corner asymptotes lie close together. Smaller length scales, which are related to the across-

beam displacement of the cylinder corners, are imposed on the wavefields than those in circular or

elliptical analogies, as well as a significant proportion of energy focused, generating high wavenumber

components, at the sharp corners themselves. The energy associated with these high wavenumber

components is rapidly attenuated by viscosity and consequently across-beam amplitudes associated

with the rectangular cylinders are significantly lower than those for a circular cylinder. As for the

elliptical cylinders, harmonics of the wavefield are more prominent at higher aspect ratios and mixed

fluid intrusions are also observed, originating at the top and bottom of the cylinders.

In summary, the wavefields generated by oscillating sources are controlled by a number of length

scales. The circular radius analogy, cc, for a particular cylinder is indicative of the area and hence the
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total energy introduced to the system for a given forcing frequency and amplitude. The projected

beam width, denoted in this chapter by ce and c̃e, for a wavefield dictates the energy density

associated with a generated wave beam. This also therefore influences the shear and rate of viscous

dissipation of the wave energy propagating along the beam. Horizontal and vertical length scales

of the cylinders determine the spectral partitioning of the wave energy.

The interaction of wave energy with regions of high topographic curvature and with sharp

corners in the near-field of topographies, and the influence of these regions on the far-field structure

of scattered wavefields is investigated in chapters 6-8.
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Chapter 6

Subcritical rough topography

6.1 Overview

Scatter at boundaries for which the angle α made between the boundary surface and the vertical is

constant or varies smoothly in space was described in chapter 4. In particular, the imposition of a

wavenumber on a wavefield was investigated using laboratory experiments of scatter at sinusoidally

varying topographic profiles. Scattering behaviours at ‘rough’ periodic topographic profiles are

considered again in the present chapter. Specifically, scattering behaviour is investigated at piece-

wise linear topographic profiles such as the sawtooth, square-wave and, as a limiting case of the

square-wave, the pseudo knife-edge. These all exhibit discontinuities in slope, and hence α, at sharp

corners. The simplest piece-wise linear topographic profile that contains the smallest number of

sharp corners per topographic wavelength is the sawtooth profile (see section 3.8). Such profiles are

characterised here by a horizontal wavenumber k̂T 6= 0 and vertical amplitude from the mean level

ÂT 6= 0. A unique angle, α, of inclination to the vertical of the sloping surfaces of a given sawtooth

is therefore defined as

α = tan−1

(

π

2ÂT k̂T

)

. (6.1)

As discussed in chapter 4, regimes of scatter can be defined as subcritical, θ/α < 1, near-critical,

θ/α ≈ 1, or supercritical, θ/α > 1. Linear geometrical ray tracing treatments predict specular

behaviour of incident rays based on local values of θ/α. With the exception of topographic corners,

for which the slope of the topography is not defined, and the critical case, i.e. θ = α, inviscid linear

geometric ray tracing predicts either purely subcritical or purely supercritical scattering regimes at

the sawtooth (Longuet-Higgins 1969). This contrasts with ray tracing predictions for the sinusoid

(section 4.5.2), that define scatter to be either purely subcritical in cases where θ < α everywhere,

or to be a mixed regime for which the topography simultaneously contains subcritical, critical and

supercritical regions somewhere along the boundary.

In the present study, experiments were performed to investigate scatter at seven sawtooth profiles

TC − TI (see table 3.1) with α ∈ [40.0, 69.5] ◦ corresponding to aspect ratios ÂT k̂T ∈ [0.585, 1.872].

185



6. Subcritical rough topography 6.2. Sawtooth topography

The range of values of the angle parameter θ/α that could be investigated for a particular topo-

graphic profile were inevitably limited by the geometrical constraints of the experimental setup.

Consequently, results are presented from subsets of the sawtooth profiles for subcritical values in

the present chapter and for supercritical and near-critical values in chapters 7 and 8 respectively.

Each chapter describes the far-field structure of scattered wavefields, which vary slowly in the di-

rection of energy propagation, as well as near-field wave behaviour, i.e. in the immediate vicinity

of the boundary. Results are reported for laboratory experiments and compared with predictions

made by linear geometrical ray tracing and a linearised boundary model based on the method of

characteristics (Baines 1971a). In particular, the effect of variation of θ/α, α, kT and topographic

shape on spectral scatter of incident wave energy in the forwards and backwards directions is stud-

ied, as well as the transfer of energy to higher temporal harmonics and in the mixing of stratified

fluid near the topography. With the exception of the inviscid linear geometric ray tracing study

of Longuet-Higgins (1969), which calculated general formulae for reflection coefficents at sawtooth

and square-wave topographies, no other theoretical, numerical or experimental studies of internal

gravity wave scatter at discontinuous periodic profiles are known to the present author so that all

results presented here are new.

6.2 Sawtooth topography

This section discusses results relating to subcritical scatter at sawtooth topographies TG, TH and TI .

Comparisons with wavefield behaviour near sinusoid TA and square-wave TK are made in section 6.3.

6.2.1 Subcritical ray tracing

With the exception of the ray tracing approach applied by Longuet-Higgins (1969), scatter at pe-

riodic piece-wise linear topographic profiles has not been modelled theoretically. In the case of

subcritical scatter at a sawtooth, with θ/α < 1, ray tracing predicts an entirely forwards scattered

wavefield so that the forward and backward scattering coefficients are CF = 1 and CB = 0, respec-

tively. Rays incident on sections of the boundary that are inclined in the same direction relative

to the vertical as that of the incident wave energy vector are defocused on reflection, whilst those

contacting slopes with the opposite sign of inclination are focused. In particular, ray tracing does

not predict a back-scattered wavefield for the subcritical regime.

Another possibility for modelling subcritical scatter is the Fourier superposition of Baines’

(1971a) linearised boundary solution for a sinusoidal boundary, summarised in sections 2.5.1 and 4.5.2.

The Fourier series representing the height, AT (x), of a boundary that has a sawtooth profile spec-

ified by an amplitude, ÂT , and horizontal wavenumber, k̂T , as defined above, can be calculated to

be

AT (x) = ÂT − 8ÂT

π2

∞
∑

m=1

1

(2m− 1)2
cos

(

(2m− 1)k̂Tx

2π

)

. (6.2)
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Baines’ solution requires that the aspect ratio, i.e. the product of the amplitude and horizontal

wavenumber, of each component be much less than unity. This translates here to the condition

4ÂT k̂T

π3(2m− 1)
≪ 1, (6.3)

which can be simplified to a condition for m ∈ Z≥1 as

m≫
(

1

2
+

2

π2
ÂT k̂T

)

. (6.4)

Even for ÂT k̂T ≪ 1, this condition is violated by the larger amplitude components, i.e. those

corresponding to values of m ∼ O(1), of the Fourier series. Hence this approach is not used here.

Subcritical experiment results of the present study are instead compared with ray tracing predictions

and Baines’ (1971a) linearised boundary solution for a sinusoidal topographic profile. Results from

experiments of scatter at sawtooth topographies are presented here.

6.2.2 Basic sawtooth (TG)

Sawtooth profile TG is characterised by the horizontal topographic wavenumber k̂T = 0.087 mm−1

and an aspect ratio of ÂT k̂T = 0.783. Length scales of the incident wavefield are compared with

those of TG with the parameters kc/k̂T = 4.06 and ÂTkc = 3.18, where kc is defined as in section 4.5.

Qualitative description of scatter

As in earlier chapters, RMST images are presented here to illustrate the spatial structure and

amplitudes of scattering wavefields. In addition, Hilbert transforms are used to isolate internal

wave components according to their direction of phase propagation as described in a recent paper

by Mercier et al. (2008). The method successively applies Fourier transforms in time and space to

time evolving two-dimensional experimental data, ultimately allowing individual wave components

to be identified in complex space by the direction associated with their wavenumber vector. An

outline of the Hilbert transform method and its implementation in this study is given here.

Isolating wave components using Hilbert transforms

The Fourier decomposition in time of a real-valued data set, φ(x, z, t), contains both negative and

positive frequency components, with the frequency distribution symmetric about zero frequency due

to Hermitian symmetry. As a consequence of this symmetry, the data can be trivially reformulated

as the complex-valued field φ̃(x, z, t), consisting of only the positive frequency components, where

ℜ[φ̃ (x, z, t)] = φ (x, z, t) , (6.5)
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provided that suitable magnitude adjustments are made to compensate for the halving of the total

energy incurred through filtering out the negative frequency components. By representing the

wavefield in this manner, interpretation of the phase of the fluid motion is simplified. The two-

dimensional spatial Fourier transform of the complex field, φ̃, yields a wavenumber domain for which

each quadrant representing a particular orientation of the wavenumber vector, with horizontal and

vertical components kx and kz respectively, also represents that orientation of phase propagation.

A similar method to that of Mercier et al. (2008), following the principles outlined above, is

applied in the context of the present study using data processing package Digiflow (Dalziel 2007) to

filter scattering wavefields for wave components with phase velocities oriented with those defined in

section 2.3 by cp++
, cp+−

, cp
−+

or cp
−−

. For convenience, these phase directions will be referred to in

terms of the corresponding directions of energy propagation cg+−

, cg++
, cg

−−

, and cg
−+

respectively.

Incident and forward scattered wave components therefore have group velocity vectors directed as

cg+−

and cg++
, respectively, and hence may be isolated individually using the transforms described.

The two main stages of application of the Hilbert transform method, i.e. (i) the Hilbert trans-

form, crucially generating a complex-valued formulation, φ̃, of the wavefield φ, and (ii) filtering φ̃ in

the two-dimensional wavenumber domain for wave components with specific phase orientation, are

demonstrated here for scatter at sawtooth TG, θ/α = 0.88. The associated wavefield, φ, (e.g. the

perturbed buoyancy field) is firstly subject to temporal filtering for the primary harmonic wave-

field, with the filtering transform being applied in this study over three periods of the primary wave

motion. The harmonic analysis is completed by an inverse transform, reconstructing the filtered

wavefield as the complex field φ̃ in the physical domain. Figure 6.1 shows the RMST image of the

perturbed buoyancy field for subcritical scatter at TG with θ/α = 0.88 after filtering for the primary

harmonic wavefield.

The second stage of the Hilbert transform method involves application of a two-dimensional fast

Fourier transform (FFT ) to the frequency filtered data φ̃. Figure 6.2 (a) shows a schematic of the

corresponding two-dimensional wavenumber domain and the group velocity directions associated

with each quadrant. The fourth quadrant, for example, represents wave motion with positive hori-

zontal, kx, and negative vertical, kz, wavenumbers, i.e. those with phase velocity denoted as cp+−

and hence with group velocity cg++
, which is oriented with the forward scattered wavefield. Similar

deductions can be made for the other quadrants. Filtering the data for forwards scattered wave

components, for example, is therefore reduced in the wavenumber domain to a simple multiplication

by a binary mask that filters the wave motion associated with the first, second and third quadrants,

whilst preserving that of the fourth. Figure 6.2 (b) and (c) show the magnitude M/M̂ of the

two-dimensional FFT of the frequency-filtered data relating to figure 6.1 before and after filtering

for the forward scattered wave motion, where M̂ is the maximum value of M over the domain.

The wavenumber filtered physical data is then reconstructed by an inverse two-dimensional FFT .

Figure 6.3 shows the RMST image of the perturbed buoyancy field after both stages of the Hilbert

transform method are performed, i.e. harmonic analysis for the primary wave motion and filtering

for the forwards scattered wavefield in the two-dimensional wavenumber domain. The image there-
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0 5.4×10−2 ∆N2/N2

Figure 6.1: RMST image of perturbed buoyancy field for subcritical scatter at sawtooth TG and
θ/α = 0.88 after filtering at the primary frequency, σ.
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0.0
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Figure 6.2: Two-dimensional wavenumber domain represented as (a) a schematic indicating the
orientation of group velocity vectors for fluid motion associated with each quadrant (nomenclature
as defined in figure 2.2); magnitudes, M/M̂ , of the two-dimensional FFT of data relating to figure 6.1
(b) before and (c) after filtering for wavenumber components associated with cg++

(i.e. forwards

scatter), where M̂ denotes the maximum value of the transform in (b).

Figure 6.3: RMST image of perturbed buoyancy field for subcritical scatter at sawtooth TG and
θ/α = 0.88 after filtering at the primary frequency, σ, and for wavenumbers associated with forwards
scatter. Scale for ∆N2/N2 as in figure 6.1.
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fore displays only the forwards scattered wavefield of the primary wave motion.

Figure 6.4 (a-c) shows RMST images of subcritical scatter at profile TG. In each image, an

incident wave beam can be seen to propagate from the top left-hand corner towards the sawtooth

topography positioned at the bottom of the field of view. Composite beams formed by the superpo-

sition of incident and back-scattered wavefields are denoted BI and forwards scattered wave beams

are denoted BF . As described in section 4.2.3, in an unbounded stratification, the incident beam has

a bimodal structure close to the wave source that gradually erodes by viscous action to a unimodal

structure as wave energy propagates away. At a horizontal boundary (see e.g. figure 4.1 (c-d)),

the reflected wavefield propagates in the forwards direction away from the boundary, i.e. towards

the right, with little change to its unimodal beam structure except for a reduction in amplitude,

dominantly caused by viscous attenuation of the wave energy.

Figure 6.4 (a-c) shows scatter of an incident wave beam at TG for subcritical values of θ/α

equal to (a) 0.77, (b) 0.88 and (c) 0.97, corresponding to incident wave frequencies such that

σ/N = 0.66, 0.56 and 0.48 respectively. Whilst results are presented for only three frequencies,

experiments at intermediate values were also performed and analysed in a similar manner to that

presented here. Unless otherwise stated, trends described in this chapter for the wavefields hold for

the experiments presented as well as for those experiments performed at intermediate frequencies.

In each RMST image of figure 6.4, forwards scattered wave energy is focused into narrow beam-

like structures emanating from topographic slopes with positive gradient, collectively referred to as

BF , that are characterised individually by smaller across-beam length scales than those associated

with the incident wave beam, and is defocused in the regions seen as gaps between the focused

beams. The forwards scattered beams are narrower and closer together for larger values of θ/α,

in accordance with the predictions of ray tracing in which ray tubes become more constricted as

θ/α → 1. Amplitudes of the forwards scattered wavefields are largest in the near-field, at the

sloping sections of the topography, with maximum values there increasing with θ/α as the wavefield

becomes more focused. Amplitudes decay, however, with increasing distance from the topography

as viscosity attenuates the wave energy. Viscous action on the wave energy is enhanced in conditions

of increased shear and acts most rapidly on the smaller length scales of the motion. The greater

focusing of the wavefield as θ/α approaches critical results in wave energy becoming associated with

smaller length scales, i.e. higher wavenumbers, and larger shearing motions. Consequently, decay

of amplitudes can be seen in figure 6.4 to occur more rapidly with distance from the topography

as θ/α increases, so that the forward scattered wavefield associated with the smallest value of θ/α

(shown in figure 6.4 (a)) is the most prominent in the far-field. Some weakening of the amplitudes

of the wavefields can be attributed to the lower frequencies (and hence larger group velocities)

corresponding to the larger values of θ/α. Also note that secondary harmonic generation is possible

(which requires σ/N < 1/2) for the experiment corresponding to figure 6.4 (c). The generation of

higher harmonic wave components is discussed further in section 6.4.
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Forward scatter at profile TG can be viewed more directly in figure 6.4 (d-f), where the wave-

fields, with incident wave frequencies corresponding to those in figure 6.4 (a-c), have been filtered

using Hilbert transforms as described above. The frequency and wavenumber filtered images of fig-

ure 6.4 (d-f), where the images are snapshots of the wavefields based on the harmonically analysed

data with the phase chosen in each case to be such that the oscillating cylinder is located at the

midpoint of its oscillation, confirm the trends discussed above for the forward scatter at TG. An

additional feature visable in the filtered images is the slight reduction of θ in the immediate vicinity

of the topography, perhaps suggesting weakening of the buoyancy frequency, N , in this region.

Ray tracing predicts complete forwards scatter, i.e. CF = 1 and CB = 0, for wave energy

interacting subcritically with sawtooth topography. However, the asymmetric structure of BI in

each of the RMST images of figure 6.4, as compared with the beam structure shown in figure 4.23 (a)

of the incident beam for a reflection at a horizontal boundary for example, suggests the generation

of a back-scattered flux (i.e. with group velocity directed as cg
−+

) in each case. This is confirmed by

the observation of two directions of phase propagation across BI in movies of the experiments. As

in figure 6.4 (d-f), for the forward scattered wavefields, Hilbert transforms are used in figure 6.4 (g-i)

to filter for the corresponding back-scattered wave energy. The general spatial form of the back-

scattered wavefields is similar to that for the forwards scatter but with the group velocity directed

away from the topography and to the left. However, in contrast to the forwards scatter, amplitudes

associated with back-scattered wave energy are typically an order of magnitude weaker than those

of the forwards scatter and increase as the value of θ/α approaches critical. Maximum amplitudes

of back-scattered fields are near the corners of the topography and the wavefields attenuate as

they propagate away. The action of viscosity on components of BI is likely to be enhanced by

the presence of the incident wavefield propagating along cg+−

, which increases gradients in the

across-beam direction and shear. Incident beams interacting with rough topography viewed in

images filtered using Hilbert transforms for cg+−

are essentially identical to those in experiments of

reflection at a flat bottom, indicating that there is no significant influence of back-scatter on wave

generation at the oscillating cylinder.

Variation with θ/α

The variation of subcritical scattering behaviour for increasing values of θ/α is discussed here.

Linear geometrical ray tracing predicts complete forward scatter at the sloping sections of subcritical

sawtooth topography (i.e. CF = 1, CB = 0) but does not resolve behaviour at the topographic

corners. Figure 6.5 shows a schematic of subcritical ray geometry at sawtooth topography. Wave

rays are incident from the top left-hand side of the diagram and make an angle θ with the vertical.

Rays incident on the sections of topography with negative gradient (i.e. lying between the red and

green lines denoted) are defocused as they reflect in the forwards direction, whilst those incident

between the green and blue lines are focused. Simple geometrical calculations can be made to

determine the proportions of focused and defocused wave energy, denoted here by Cf and Cdf ,
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Figure 6.4: RMST images of perturbed buoyancy fields for subcritical scatter at sawtooth TG, with α = 63.5◦, at forcing frequencies
such that θ/α is equal to (a) 0.77, (b) 0.88 and (c) 0.97. Images of corresponding forward and back-scattered wavefields after filtering
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Figure 6.5: Ray geometry for subcritical sawtooth.

0.0 0.2 0.4 0.6 0.8 1.0
θ/α

0.0

0.2

0.4

0.6

0.8

1.0

C
f
,
C

df

Cf

TC

TD, TE

TE

TG, TH

TI

Cdf

Figure 6.6: Variation with θ/α of coefficents for focusing, Cf , and defocusing, Cdf , of wave energy
incident at sawtooth topographies.

respectively. The total across-beam distance per topographic wavelength over which wave energy

is focused, using specular theory, is denoted Lf , whilst the corresponding distance over which wave

energy is defocused is denoted Ldf . These lengths are indicated in figure 6.5. The coefficients for

the focused and defocused wave energy can therefore be calculated from geometrical arguments,

assuming specular reflection of incident rays at the slopes of the boundary, to be

Cf =
1

2

(

1 +
tan θ

tanα

)

and Cdf =
1

2

(

1 − tan θ

tanα

)

. (6.6)
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Figure 6.6 plots the variation of these coeffcients with θ/α for sawtooth topographies TC −TI . The

proportion of energy predicted by ray tracing arguments to be focused (defocused) after subcritical

interaction with a sawtooth profile increases (decreases) with θ/α, with a greater degree of focusing

occuring for a given value of θ/α at those profiles defined by smaller α, i.e. steeper slopes.

Spectral analysis of scatter at TG

Energy spectra are calculated for the wavefields scattered at TG in the same manner and using

the same terminology as in section 4.5.2, where spectra were calculated for scatter at sinusoids

TA and TB. Figure 6.7 (a), (b) and (c) shows energy density spectra, E(k), calculated for TG

along cross-sections at various distances along BF (lines coloured in blue scales) and B∗
F (lines

coloured in red scales) for experiments corresponding to those shown in figure 6.4 (a)-(c) respectively.

Corresponding spectral differences, with E∆F = (EF − E∗
F ), are shown in (d)-(f). As for the spectra

shown in section 4.5.2, bold black lines superimposed on the spectra indicate the predictions of

inviscid linearised boundary theory for the forwards scattered spectra at the analogous sinusoid to

TG (Baines 1971a), which assumes ÂT k̂T ≪ 1 and that ÂTkc ≪ 1. Dark grey, red and green lines

(only plotted on graphs of spectral differences) indicate the individual contributions from forwards

scattered ‘primary’, ‘sum’ and ‘difference’ wavenumber components respectively (calculated as in

section 4.5.2), which are characterised by the wavenumbers kI , kI + kT and |kI − kT |, with kT =

k̂T / cot θ. Dashed vertical lines indicate locations of k̂T and kT (with one labelled on each graph).

Regions shaded grey indicate error estimates calculated as in section 4.5.2. Note that the actual

form of the error tends to be localised to spectral peaks and the actual magnitude of the error tends

to reduce significantly as energy densities associated with measured cross-sections decrease. It is

expected that maximum magnitudes of the error associated with energy density values typical in

regions of forwards scatter measurements are an order of magnitude smaller than that indicated

by the shaded regions, i.e. ∼ O(10−4). Measured spectra associated with the incident wavefields

at TG (coloured in red shades) plotted in figure 6.7 (a), exhibit dominant peaks at k̃I ≈ 0.3 with

magnitudes of E/Ê ∼ O(10−2). Measured forwards scattered spectra exhibit two dominant peaks,

with maxima located at k̃ ≈ 0.25 and at k̃ ≈ 0.6, both with magnitudes ∼ O(10−3). The lower

wavenumber peak is located in the region of the predicted primary component, whilst the higher

wavenumber scatter seems to be associated with the sum component. As noted in section 4.5.2,

some features of the scattered spectra can be more readily interpreted from the corresponding

spectral differences, shown in figure 6.7 (b). Peaks of the spectral difference graphs generally

represent scatter of incident wave energy to wavenumbers in the peak region. Troughs are located

in regions of the spectra where energy has been redistributed to other wavenumber or frequency

components, or dissipated by viscous action or mixing. The linearised boundary theory for a

sinusoidal boundary with the same specifications as TG predicts two peaks in the difference spectra

for the scattered wavefield that correspond to difference and sum components and are located at

k̃ ≈ 0.1 and k̃ ≈ 0.6 respectively, with magnitudes of O(10−3) and O(10−2), and a trough at
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k̃ ≈ 0.3 of magnitude O(10−2). As θ/α increases towards critical value, the peak difference of

the predicted sum component shifts to higher wavenumbers, with little change in magnitude, and

the predicted difference component shifts to even lower wavenumbers and reduces in magnitude

by several orders. Measured spectra in figure 6.7 (b) exhibit peak differences centered at k̃ ≈ 0.6

with largest magnitude ∼ O(10−3), coinciding with the peak predicted for the sum component, and

troughs located in the same region and with approximately the same magnitude as the trough of the

predicted spectra. The measured peak lies well within the indicated error region. However, as noted

above, it is anticipated that the actual error associated with energy density magnitudes typical of

those in regions of forwards scatter is an order of magnitude smaller than that indicated. Measured

spectra magnitudes are not significant in the very low wavenumber region of the predicted difference

component. Similar scattering behaviour is observed in the measured spectra as θ/α increases.

However, magnitudes of the measured energy density in the region of the predicted sum component

decrease with increasing θ/α as viscous attenuation acts more rapidly on the higher wavenumbers

generated as the scatter becomes near-critical (see also behaviour noted for figure 6.4 (d)-(f)). As

noted in section 4.5.2, at all values of θ/α, magnitudes of the measured spectra tend to zero at

a wavenumber of k̃ ∼ 0.8, indicating that energy scattered to wavenumbers greater than this is

rapidly dissipated in the near-field of the topography by viscous action or instability mechanisms.

Note that the spatial scatter of wave energy to propagating higher harmonics is only possible for

the experiment corresponding to figure 6.7 (c).

Figure 6.8 (a), (b) and (c) shows spectra associated with back-scattered fields calculated for

TG along cross-sections at various along-beam distance of BI (i.e. beam composed of incident and

back-scattered fields at rough topography) and B∗
I (analogous incident beam at flat boundary) for

experiments corresponding to those shown in figure 6.4 (a)-(c) respectively. Corresponding spectral

differences, with E∆I = (EI −E∗
I ), are shown in (b), (d), (f), with theoretical predictions for the

analogous sinusoid as in figure 6.7. The spectra show in figure 6.8 (a) for the measured incident

and scattered wavefields are not easily distinguished from one another but clearer distinctions, such

as the locations of predicted components, can be made in the corresponding spectral differences in

figure 6.8 (b). Note that, as in difference spectra for the forward scatter, areas shaded grey indicate

the estimated maximum magnitude of the error, with the form of the actual error tending to be

localised about peaks in the measured spectra. The inviscid linearised boundary theory of Baines

(1971a) predicts a back-scattered flux at wavenumbers close to zero, with peak magnitude ∼ O(10−2)

(green line). A signature of this component is not observed in the measured spectra. A suggestion

of a second possible peak, which is not predicted by the linearised boundary theory, can be seen in

the spectral difference graphs at k̃ ≈ 0.65, with a maximum magnitude of O(10−3), i.e. within the

error estimate. However, note that smaller across-beam length scales are observed in RMST images

of figure 6.4 for BI , indicating that high wavenumber back-scatter is indeed present. The spectral

differences for the back-scatter also contain two distinct troughs centered at k̃ ≈ 0.35 and k̃ ≈ 0.8,

coinciding with the spectral regions of the two peaks of the incident spectra, with magnitudes

O(10−2) and O(10−3) respectively. As discussed in section 4.5.2 for the sinusoid, these ‘losses’ from
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Figure 6.7: Forward-scattered energy density spectra for sawtooth TG are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.77, (c,d) 0.88 and (e,f) 0.97.
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the incident beam spectrum relative to the specular control case indicate enhanced viscous action

caused by an increase in across-beam gradients in the presence of a back-scattered flux. As the

value of θ/α is increased for the experiments shown in figure 6.8 (c,d) and (e,f), Baines (1971a)

predicts a more pronounced back-scattered flux, with a shift to slightly higher wavenumbers. There

is no significant evidence of this component in the measured difference spectra at the larger values

of θ/α. The second, though equivocal, higher wavenumber peak difference seen in figure 6.8 (b), is

also present at larger θ/α, as are the two troughs.

In general, the subcritical forwards scattering behaviour at sawtooth TG is modelled well by

the inviscid linearised boundary theory of Baines (1971a) for a sinusoidal boundary, despite the

relatively large values of the parameters ÂT k̂T and ÂTkc. The forwards scattered spectra exhibit

evidence of high wavenumber scatter that seems to be associated with predicted sum components.

However, viscosity reduces amplitudes of the measured spectra for all wavenumbers and the more

acute action of dissipation processes on higher wavenumber components truncates the scatter to the

far-field at a finite wavenumber. As a result, whilst inviscid theory predicts the generation of the

highest wavenumber components during scatter at near-critical values of θ/α, in reality wave energy

of these components does not propagate into the far-field. In addition to the preferential action of

viscosity on the higher wavenumbers, the associated energy is kept near the boundary for longer

due to the smaller group velocities, hence enhancing the dissipation. Consequently, the largest

proportion of high wavenumber scatter propagating away from the near-field of the topography is

measured for the smallest value of θ/α. No significant low wavenumber scatter was measured for

any value of θ/α. The back-scattered spectra for TG also show little evidence of low wavenumber

back-scatter propagating away from the near-field but possibly indicate a region of high wavenumber

scatter that is not predicted by either geometrical ray tracing, for which CB = 0, or the linearised

boundary theory. If indeed genuine, such scatter is therefore likely to be generated by nonlinear

mechanisms, which are promoted by focusing of the wave energy, particularly at the corners of the

topography, and superposition of the wavefields in the near-field. Some features of the near-field

behaviour are described in the following section.

Influence on background stratification

The influence of topographic corners on the background stratification was discussed briefly in sec-

tion 3.8. Fluid mixed near the slopes and corners of a sawtooth profile appeared to drain into

the stratification at the vertical level of the topographic corners and spread out horizontally into

the surrounding fluid (see figure 3.33). These horizontal layers are identified in RMST images of

the wavefield as regions bounded vertically by horizontal bands of enhanced perturbations to the

background stratification. Observation of time evolving movies of the perturbed buoyancy fields

reveals oscillations along the thin layers of mixed fluid. Similar features were also described near

elliptical and rectangular cylinders in sections 5.2.4 and 5.3.4. In particular, mixed fluid is generated

in these cases near the vertical extremities of the elliptical cylinders and the corners of the square
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Figure 6.8: Back-scattered energy density spectra for sawtooth TG are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 0.77, (c,d) 0.88 and (e,f) 0.97.

198



6. Subcritical rough topography 6.2. Sawtooth topography

and rectangular cylinders. The production of mixed fluid was found to be more pronounced for

cylinders that had larger aspect ratios.

Figure 6.9 (a-c) shows RMST images of near-field scatter at sawtooth TG for subcritical values

of θ/α equal to (a) 0.76, (b) 0.86 and (c) 0.96 with σ/N equal to 0.67, 0.58 and 0.49 respectively.

As in figure 3.33, horizontal bands are again visable in each case, occuring most significantly at

the corner positioned at the centre of the views, where amplitudes of the incident and scattering

wavefields are greatest. The mixed fluid behaviour near the corner becomes more pronounced for

values of θ/α closer to critical, when the scattered wave energy is the most focused. Figure 6.10

shows a close-up RMST image of the wavefield corresponding to that shown in figure 6.9 (c) for

the near-critical value θ/α = 0.96. As reported in section 3.8, disturbances that propagate away

from the topographic corners along the mixed fluid layers are visable in movies of the perturbed

buoyancy fields. In addition to the horizontal intrusions extending outwards from the corners of

the topography, periodic arrays of vortex-like structures are seen along the sloping sections of the

sawtooth. These features are several millimeters in diameter and are similar to those described for

near-critical reflection at a smooth sloping boundary in section 4.3.3. The structures were compared

in section 4.3.3 with vortices, which mixed boundary layer fluid, that were observed in near-critical

reflection at smooth slopes in experiments by Cacchione & Wunsch (1974) (see also section 2.4.2).

The lack of reports of such structures in other studies was attributed by Ivey & Nokes (1989) to

the relatively small Reynolds number value, Re ∼ 2, of the experiments of Cacchione & Wunsch

(1974). Ivey & Nokes (1989) suggested that at Reynolds numbers of this magnitude the boundary

layer exhibited regular structures but transitioned to the turbulent boundary layer behaviour more

often observed in other studies at Re ∼ 15 − 20. Experiments of the present study had Reynolds

numbers comparable with those of the experiments of Cacchione & Wunsch (1974), with typical

values of Re ∼ 3 − 4. In the experiments of Cacchione & Wunsch (1974), the vortices observed

along the boundary were most significant for near-critical values of θ/α, but were also prominent

in supercritical conditions. The vortices were not consistently observed for subcritical cases in their

smooth slope experiments however, though the boundary structures seen in the present study at

sawtooth topography are visable in all images of figure 6.9. For completeness, RMST images from

the present study of marginally supercritical scatter at TG are included here in figure 6.9 with θ/α

equal to (d) 1.05, (e) 1.09 and (f) 1.13 and σ/N equal to 0.40, 0.35 and 0.31 respectively. Note also

that secondary harmonic generation is possible for each of the experiments shown in figures 6.9 (c-f),

and tertiary harmonics for that shown in figure 6.9 (f). The development of the features discussed

here are looked at further in chapter 8 for near-critical scatter at sinusoidal, sawtooth, square-wave

and knife-edge topographies.

6.2.3 High wavenumber sawtooth (TH)

This section discusses the effect on scattered wavefields of variation of the horizontal topographic

wavenumber, k̂T , for a fixed aspect ratio, ÂT k̂T , and hence topographic slope angle, α. Sawtooth
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(a)

(b)

(c)

(d)

(e)

(f)

0 8.5
×10−2 ∆N2/N2

Figure 6.9: Close-up RMST images of perturbed buoyancy field near corners of topography for
profile TG with subcritical θ/α equal to (a) 0.76, (b) 0.86 and (c) 0.96, and supercritical θ/α equal
to (d) 1.05, (e) 1.09 and (f) 1.13. Fields of view measure 188 × 59 mm.
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Figure 6.10: Close-up of figure 6.9 (c) for profile TG and θ/α = 0.96. Colour scale as in figure 6.9
except with maximum value 0.12. Field of view measures 68 × 29 mm.

topography TH is defined by the horizontal wavenumber k̂T = 0.157 mm−1, almost double that of

sawtooth TG discussed above, and an aspect ratio ÂT k̂T = 0.785, approximately equal to that of

TG. The length scale ratios for TH have values kc/k̂T = 2.25 and ÂTkc = 1.77.

Qualitative description of scatter

Figure 6.11 (a-c) shows RMST images for wavefields with θ/α equal to (a) 0.77, (b) 0.88 and (c)

0.97 and σ/N equal to 0.66, 0.56 and 0.48 respectively, as well as corresponding forward, (d-f), and

backward, (g-i), scattered wavefields after filtering using Hilbert transforms. The same conventions

used in figure 6.4 are applied here. In general, the nature of the wavefields shown in the RMST

images of figure 6.11 (a-c) are qualitatively the same as the corresponding ones for the scatter at TG

except that the forward scattered wavefields of TH , which has the larger topographic wavenumber

k̂T , are characterised by smaller across-beam length scales. Consequently, the partitioning of wave

energy between a greater number of beam-like structures and the enhancement of viscous action

on the smaller length scales results in a general reduction of the energy density of the forward

scattered wavefields at TH relative to those at TG. The Hilbert transform filtered forwards and

back-scattered wavefields of figure 6.11 (d-f) and (g-i) also show the same trends as discussed for

TG. A more quantitative comparison of the scattering behaviours at the two sawtooth profiles can

be made by inspection of the energy density spectra.

Spectral analysis of scatter at TH

Figure 6.12 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TH , calculated

along cross-sections positioned at various distances along BF and B∗
F for values of θ/α and σ/N

corresponding to those of figure 6.11 (a)-(c), respectively. The corresponding spectral differences

are shown in figure 6.12 (b), (d) and (f). Measured spectra for the incident and scattered wavefields

shown in figure 6.12 (a) show a dominant peak located at k̃ ≈ 0.3 with magnitude ∼ O(10−2). The

peak locations in the scattered spectra coincide with those of the spectra predicted by linearised

boundary theory for the primary components. However, magnitudes of the measured primary low-
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Figure 6.11: RMST images of perturbed buoyancy fields for subcritical scatter at sawtooth TH , with α = 63.5◦, at forcing frequencies
such that θ/α is equal to (a) 0.77, (b) 0.88 and (c) 0.97. Images of corresponding forward and back-scattered wavefields after filtering
using the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in grey. Fields of
view measure 449 × 193 mm. Colour scale as in figure 6.4.
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wavenumber spectral peak are greater than those predicted by the theory. This underprediction

may in part be because the theory is calculated for scatter at a sinusoidal boundary rather than

a sawtooth. In addition, background wave energy, composed of superfluous waves that reflect

around the tank and are normally associated with larger length scales and weaker wave amplitudes

relative to those of the incident wavefield, may also be included in the measured spectra. The

background wavefield is focused by the slopes of the sawtooth and hence becomes more significant

in the measured spectra. In contrast, no significant signal is seen in the measured spectra in the

region of the predicted sum component. However, the presence of small across-beam length scales

is clear in the forwards scattered wavefields in RMST images of figure 6.11. This discrepancy is

most likely caused by the rapid viscous attenuation of the wave energy associated with the higher

wavenumber components there. The net scattering behaviour and the spectral locations of predicted

components is more clearly interpreted in the corresponding spectral differences of figure 6.12 (b).

Linearised boundary theory predicts a peak in the difference spectra in the region of the sum

component at k̃ ≈ 0.85, of magnitude O(10−2), and a trough centered at k̃ ≈ 0.3, i.e. in the

region of the peak in the measured incident spectra, of magnitude O(10−2). As θ/α increases, the

contribution of the predicted primary component of the spectra shifts to lower wavenumbers and

reduces slightly in magnitude, whilst the contribution from the predicted sum component shifts

to higher wavenumbers. Measured spectra show no significant have peak differences located in

the high wavenumber sum component region of the spectrum but do exhibit troughs of maximum

magnitudes O(10−2). Similar behaviour is seen as θ/α increases.

Figure 6.13 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered wavefields at TH calculated along cross-sections at various along-beam distances of BI

and B∗
I for values of θ/α and σ/N corresponding to those in the spectra of figure 6.12 (a), (c) and

(e) respectively. Corresponding spectral differences are shown in (b), (d) and (f). Features of the

spectra, such as spectral locations of predicted components, are best seen in the spectral differences

of figure 6.13. The measured back-scattered difference spectra of TH have similar form to those of

TG. Whilst linearised boundary theory predicts a more prominent and relatively higher wavenumber

back-scattered difference component for TH as compared with that for TG, no significant evidence

of this is observed in the spectra.

Sawtooth topographies TG and TH have approximately equal aspect ratios of ÂT k̂T = 0.783

and 0.785, respectively, but the horizontal wavelength and amplitude of TH are almost half that of

TG. For both profiles, the measured forward scatter qualitatively follow the predictions of inviscid

linearised boundary theory for a sinusoidal boundary (Baines 1971a), despite not satisfying the

linearity condition of the theory that ÂT k̂T ≪ 1. Most notably, there is evidence in the measured

spectra of high wavenumber scatter to the predicted sum components, which are characterised by

wavenumbers kI + kT , where kT = k̂T / cot θ. However, the influence of viscosity, and in particular

its tendancy to attenuate higher wavenumber components most rapidly, significantly modifies the

spectra. Wave energy that is forward scattered to the high wavenumbers associated with the sum

component predicted for TH is dissipated in the near-field so that little is measured in the far-
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Figure 6.12: Forward-scattered energy density spectra for sawtooth TH are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.77, (c,d) 0.88 and (e,f) 0.97.

204



6. Subcritical rough topography 6.2. Sawtooth topography

field. However, the corresponding forward scatter at TG to slightly lower wavenumbers than those

predicted for the scatter at TH is not attenuated as rapidly and hence energy associated with the

high wavenumber scatter of the sum component in this case propagates further away from the near-

field. In effect, despite the larger length scales associated with TG as compared with those of TH ,

and its larger value of kc/k̂T (i.e. length scales associated with TH , rather than those of TG, are

more comparable with those of the incident wavefield), scatter at this profile produces the greatest

proportion of high wavenumber scatter into the far-field. There is no significant distinction between

the measured back-scatter behaviour at TG and TH , with both showing evidence of high wavenumber

back-scatter that is not predicted by either ray tracing or the linearised boundary theory, suggesting

a nonlinear generation mechanism. For both profiles, far-field amplitudes of the forward scattered

wavefields decrease as θ/α increases, whilst those of the back-scattered wavefields appear to increase.

Near-field amplitudes become more focused in each case, particularly at topographic corners, as θ/α

increases.

6.2.4 Varying the slope (TI)

This section discusses the effect on scattered wavefields of variation in the topographic wavenumber,

k̂T , and hence topographic aspect ratio, ÂT k̂T , and slope angle, α, for a fixed topographic amplitude,

ÂT .

Qualitative description of scatter

Sawtooth topography TI is defined by the horizontal wavenumber k̂T = 0.117 mm−1 and an aspect

ratio of ÂT k̂T = 0.585, so that the slopes of TI are less steep than those of TH . Length scale

ratios for TI have values kc/k̂T = 3.02 and ÂTkc = 1.77, the latter equal to that of sawtooth TH .

Figure 6.14 (a-c) shows RMST images for wavefields with θ/α equal to (a) 0.80, (b) 0.87 and (c) 0.95,

and with σ/N equal to 0.56, 0.49 and 0.41 respectively, as well as corresponding forward, (d-f), and

backward, (g-i), scattered wavefields after filtering using Hilbert transforms. The same conventions

used in figures 6.4 and 6.11 are applied here. The structure of the wavefields shown in RMST and

forward and back-scatter filtered images of figure 6.14 (a-c), (d-f) and (g-i), respectively, is generally

qualitatively the same as corresponding images for scatter at TH . Sawtooth TI is characterised by

a smaller topographic wavenumber than TH and hence larger across-beam length scales are visable

in the scattered wavefields for TI than TH . As a consequence of these larger length scales, viscous

attenuation of wave energy scattering from TI is less rapid, as is observed in the larger RMST

amplitudes of the forward scattered wavefield as compared with those at TH .

Spectral analysis of scatter at TI

Figure 6.15 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TI , calculated

along cross-sections positioned at various distances along BF and B∗
F for values of θ/α and σ/N

corresponding to those of figure 6.14 (a)-(c) respectively. The corresponding spectral differences
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Figure 6.13: Back-scattered energy density spectra for sawtooth TH are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 0.77, (c,d) 0.88 and (e,f) 0.97.
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Figure 6.14: RMST images of ∆N2/N2 fields for subcritical scatter at sawtooth TI , with α = 69.5◦, at forcing frequencies such that
θ/α is equal to (a) 0.80, (b) 0.87 and (c) 0.95. Images of corresponding forward and back-scattered wavefields after filtering using
the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in grey. Fields of view
measure 449 × 193 mm and 449 × 148 mm. Colour scale as in figure 6.4.
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Ê
0.0

0.01

0.02

0.03

kT

0.0 0.1 0.2 0.3 0.4 0.5

sR

10
12

(c) (d)

0.0 0.5 1.0 1.5
k̃

log10

(

E

Ê
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Figure 6.15: Forward-scattered energy density spectra for sawtooth TI are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.80, (c,d) 0.87 and (e,f) 0.95.

208



6. Subcritical rough topography 6.2. Sawtooth topography

TI

k [mm−1] k [mm−1]

0.0 1.0 1.5
k̃

log10

(

E

Ê
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Figure 6.16: Back-scattered energy density spectra for sawtooth TI are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 0.80, (c,d) 0.87 and (e,f) 0.95.
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6. Subcritical rough topography 6.3. Topographic shape

are shown in figure 6.15 (b), (d) and (f). Predicted (Baines 1971a) and measured spectra for the

forwards scatter at TI are qualitatively very similar to those for the corresponding scatter at TH .

The predicted behaviour is most closely followed by scattered wavefields associated with TI . In part

this may be due to the smaller value of ÂT k̂T , which is closer to satisfying the linearity condition

of the theory and hence may suggest a reduction in nonlinear behaviour as compared with that

for scatter at TH . In addition, ray theory predictions suggest incident wave energy is focused less

at the shallower slopes of TI , which is also characterised by a smaller topographic wavenumber.

Hence wavenumbers, energy densities and shear in the scattered wavefields of TI are smaller in the

near-field than for those of TH , so that near-field viscous dissipation on the wave energy propagating

away from TI is also smaller. Scatter at TI therefore produces a greater amount of high wavenumber

scatter in the far-field than TH , which has the larger aspect ratio and topographic wavenumber.

Figure 6.16 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered wavefields at TI calculated along cross-sections at various along-beam distances of BI and

B∗
I for values of θ/α and σ/N corresponding to those in the spectra of figure 6.15 (a), (c) and

(e) respectively. Corresponding spectral differences are shown in (b), (d) and (f). There are no

significant distinctions between measured back-scatter spectra of TI and the corresponding spectra

of TH .

6.3 Topographic shape

This section discusses the effect on scattered wavefields of variation of the topographic shape.

Forward and back-scattered wavefields at sawtooth profile TG are compared with those at sinusoid

TA, for which k̂T = 0.085 mm−1, ÂT k̂T = 0.829, kc/kT = 4.15 and ÂTkc = 3.44, and square-wave

TK , for which k̂T = 0.087 mm−1, ÂT k̂T = 0.783, kc/k̂T = 4.06 and ÂTkc = 3.18, as well as the

associated scatter to higher temporal harmonics.

6.3.1 Scatter from a sinusoid (TA)

Scatter at sinusoidal profiles was discussed in sections 2.5 and 4.5 in the context of smoothly varying

topographies. The discussion of scatter at the sinusoid given in the present chapter is included as a

comparison to scatter at rough topography. In contrast to sawtooth profiles, which are piece-wise

linear, the sinusoid is a smoothly varying profile that does not exhibit sharp corners. An angle α can

be defined for a given sinusoid as in (6.1) (see also section 2.5), i.e. that of the analogous sawtooth,

which has the same values of k̂T and ÂT . The angle made between the tangent to a sinusoid and

the vertical varies continuously along its surface and purely subcritical behaviour, as defined by

geometrical ray tracing, is only achieved for values of θ such that cot θ > ÂT k̂T . Consequently,

whilst scatter of a given wavefield at a sawtooth can be defined as purely subcritical away from

corners for θ/α < 1, a mixed scattering regime is typical for the corresponding sinusoidal profile,

with regions of sub, super and near-critical scatter simultaneously predicted along its surface. A
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6. Subcritical rough topography 6.3. Topographic shape

maximum value of α below which values of θ are everywhere subcritical along the boundary is

therefore defined for a given sinusoid as αs = cot−1(ÂT k̂T ) (see also section 4.5.1). Geometrical

ray tracing predicts complete forward scatter of incident wave energy at a sinusoid for purely

subcritical regimes (e.g. Longuet-Higgins 1969), i.e. θ/αs < 1, whilst linearised boundary theory

(Baines 1971a), which assumes a small boundary aspect ratio such that ÂT k̂T ≪ 1, predicts an

additional back-scattered component at second order provided that the incident wavenumber, kI ,

satisfies kI < k̂T / cot θ.

At sinusoidal boundaries that are not purely subcritical, linear geometrical ray tracing predicts

both forwards and back-reflected wave energy through direct and multiple specular interactions

of rays with the boundary. Ray tracing does not resolve behaviour at critical points along the

boundary. Forwards and back-reflected coefficients (Longuet-Higgins 1969), oscillate in magnitude

for increasing θ/α, in contrast to scatter at sawtooth topographies for which CF = 1 and CB = 0

in subcritical interactions and CF = 0 and CB = 0 in supercritical interactions. Shadow zones are

also predicted for the sinusoid.

Qualitative description of scatter

Sinusoid TA is closely analogous to sawtooth profile TG. Figure 6.17 (a-c) shows RMST images

for wavefields scattering at sinusoid TA with θ/α equal to (a) 0.78, (b) 0.88 and (c) 0.97 for σ/N

equal to 0.66, 0.58 and 0.50 respectively, as well as corresponding forward, (d-f), and backward, (g-i),

scattered wavefields after filtering using Hilbert transforms. The same conventions used in figure 6.4

are applied here. The structure of wavefields shown in RMST and forward and back-scattered

filtered images of figure 6.17 (a-c), (d-f) and (g-i), respectively, is generally qualitatively the same

as in corresponding images for scatter at TG. Forward scattered wavefields in RMST images of TA

appear to be associated with slightly larger amplitudes than those for TG. According to ray tracing

predictions for the sinusoid, incident wave energy can be both focused and defocused (to varying

degrees) at different points along the boundary, whilst wave energy incident at the sawtooth is

focused everywhere along sections of the boundary that have positive slope (see focusing coefficients

in figure 6.6). It might therefore be expected that energy densities of forwards scattered fields

associated with TG would be greater than those for TA, particulary for θ/α near-critical. However,

viscous attenuation of the more focused scattered wave energy at TG, which is characterised by

higher wavenumber components and larger shear, is greater than the attenuation of that of TA,

so that the scattered wavefields observed at TG are weaker in the far-field. A localised source of

high wavenumber scatter is also introduced by the sharp corner of sawtooth TG. The forwards

and back-scattered wavefields at TA follow the same trends with increases in θ/α as are observed

for sawtooth TG. The near-field structures of TA also exhibit mixing features similar, though less

pronounced, to those discussed for TG in section 6.2.2. This could be compared to the behaviour

seen for elliptical and rectangular cylinders in sections 5.2.4 and 5.3.4, for which the mixing feature

was seen to be most pronounced for the rectangular cylinders, which had sharp corners.
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Figure 6.17: RMST images of perturbed buoyancy fields for subcritical scatter at sinusoid TA, with α = 62.0◦, at forcing frequencies
such that θ/α is equal to (a) 0.78, (b) 0.88 and (c) 0.97. Images of corresponding forward and back-scattered wavefields after filtering
using the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in grey. Fields of
view measure 449 × 182 mm. Colour scale as in figure 6.4.
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Figure 6.18: RMST velocity images of primary harmonics generated by subcritical scatter at sinusoid
TA with θ/α equal to (a) 0.68, (c) 0.87 and (e) 0.98 with σ/N equal to 0.74, 0.59 and 0.49 respectively
(topography shaded in grey). Corresponding phase images are shown in (b), (d) and (f) (topography
shaded in black).

Figure 6.18 presents results from PIV experiments in the near-field of the sinusoid profile TA.

Figure 6.18 (a), (c) and (e) show RMST velocity, denoted |u|, values after filtering for the primary

harmonic at θ/α equal to 0.68, 0.87 and 0.98 respectively. Velocities are normalised by the quantity

N/kc. Corresponding phase images are shown in figure 6.18 (b), (d) and (f). In general, fluid speeds

decrease as θ/α increases to near-critical. The speeds appear to be most pronounced in the region

of critical points along the boundary and along characteristics emanating from these points. An

increase in θ/α coincides with a decrease in the forcing frequency, σ/N . Note that whilst this implies

an increase in the group velocities of the wavefield (i.e. the rate of energy propagation), a reduction

is seen in the associated fluid speeds at the larger values of θ/α. Typical particle displacements can

be calculated as ∼ 1 mm, with maxima of ∼ 2 mm.
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Figure 6.19: Ray tracing predictions for TA. Here (a) σ/N = 0.66, θ/α = 0.78, (b) σ/N = 0.58,
θ/α = 0.88 and (c) σ/N = 0.50, θ/α = 0.97. Blue lines denote incident rays (constituents of BI);
red denote forwards reflected rays from primary reflection (∈ BF ); green denote forwards reflected
rays after multiple reflections (∈ BF ); magenta denote back-reflected rays after multiple reflections
(∈ BI). Cyan, dark green, dark red, grey and yellow denote topography-topography reflections.

Ray tracing analysis of scatter at TA

Ray tracing predictions, including primary and subsequent reflections of rays (blue) incident at

sinusoid TA, for parameter values corresponding to those in figure 6.17 (a)-(c) are shown in fig-

ure 6.19 (a)-(c) respectively. In each case, wave energy is incident from the top left-hand corner and

interacts with the topography positioned at the bottom of the fields of view. Colour schemes for the

incident and reflected rays are described in the figure captions. Similar figures were also presented

in section 4.5.1 for sinusoids TA and TB. The forwards scattered wavefield predictions shown in the

ray tracing diagrams of figure 6.19 compare qualitatively well with the corresponding RMST images

of figure 6.17. The scatter is defined as purely subcritical for the parameter values of figure 6.19 (a)

and ray tracing therefore predicts complete forward scatter for this configuration, i.e. CB = 0. How-

ever, the corresponding filtered image for the back-scatter shown in figure 6.17 (g) contradicts this.

Note that a back-scattered component is predicted at second order by the linearised boundary the-

ory of Baines (1971a). The ray tracing back-reflection coefficients corresponding to figure 6.19 (b)
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and (c) are calculated as CB = 0.36 and 0.32 respectively, i.e. a larger degree of back-reflection

is predicted for the smaller value of θ/α for these two experiments. Back-reflection coefficients,

CB, are calculated using a macro written to trace paths of 1000 rays incident over a region of the

boundary measuring ∼ 5λT . Coefficents calculated using the macro were invariant with further

increases in incident ray densities. Back-reflection is shown by the magenta lines on ray tracing

diagrams. By comparison, ray tracing predicts CB = 0 at sawtooth TG for all experiments at the

parameter values associated with figure 6.17. As discussed in section 4.5.1, the applicability of ray

tracing beyond qualitative structural predictions and estimates of proportions of back-reflection is

limited and, as shown for the experiment corresponding to figure 6.19 (a), incorrect. Ray tracing is

unaware of time and hence whether a wave is propagating in the correct direction. In particular, for

subcritical scatter as defined for TG, points of critical scatter at the sinusoid and scatter at corners

of the sawtooth are not modelled by the ray tracing theory. Moreover, the effects of viscosity are

not accounted for. More quantitative comparisons between scatter at TA and TG are made here.

Spectral analysis of scatter at TA

Figure 6.20 (a), (c) and (e) show spectra relating to forwards scattered wavefields for sinusoid TA,

calculated along cross-sections positioned at various distances along BF and B∗
F for values of θ/α

and σ/N corresponding to those of figure 6.17 (a)-(c) respectively. The corresponding spectral

differences are shown in figure 6.20 (b), (d) and (f). Spectra of TA were presented and discussed

in detail in section 4.5.2. Spectra included here are for experiments with similar parameter values

to those for sawtooth TG. The trends observed in the spectra for sinusoid TA compare well with

those shown for TG in figure 6.7. The spectra for TA follow the predictions of linearised boundary

theory (Baines 1971a) more closely than those of the sawtooth, which is to be expected as the

theory is calculated for a sinusoidal boundary. Chapter 5 compared wavefields generated by smooth

elliptical cylinders and by rectangular cylinders, which featured corners. Figure 5.14 showed spectra

associated with these wavefields and, in particular, compared those generated by circular and square

cylinders. The influence of corners on the wavefields is apparent in these cases, with spectra of

the two cylinders differing in form. Peaks of spectra for the square cylinder are around half the

magnitude of those for the circular cylinder. This behaviour is attributed to significant generation

of high wavenumber components, which are acted on rapidly by viscosity, at the corners of the

square cylinder. In addition, the small group velocities of these components causes the associated

wave energy to accumulate near the corners, promoting dissipation through nonlinear mechanisms.

Spectra from wavefields scattered at the sawtooth exhibit discrepancies in magnitude with those

at the sinusoid that are comparable with the discrepancies noted between spectra for square and

circular cylinders in the generation case. It is therefore noteworthy that the spectra for scatter at

the sinusoid and analogous sawtooth are so similar in form, whilst those for wavefields generated

at the square and circular cylinders were more distinct.

Figure 6.21 (a), (c) and (e) show spectra for the superposition of the incident and backwards
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Ê

)

s∗R
10
12

sR

10
12

kT

0.0 0.1 0.2 0.3 0.4 0.50

−2

−4

−6
0.0 0.5 1.0 1.5

k̃

−0.03

−0.02

−0.01

E∆F

Ê
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Figure 6.20: Forward-scattered energy density spectra for sinusoid TA are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.78, (c,d) 0.88 and (e,f) 0.97.
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scattered wavefields at TA calculated along cross-sections at various along-beam distances of BI

and B∗
I for values of θ/α and σ/N corresponding to those in the spectra of figure 6.20 (a), (c)

and (e) respectively. Corresponding spectral differences are shown in (b), (d) and (f). There is

significantly stronger evidence in the difference spectra of figure 6.21 (d) and (f) than in those of

sawtooth TG for back-scatter to the predicted low wavenumber difference component. Measured

difference spectra for the back-scatter at TA exhibit a peak difference in the region of the predicted

back-scattered component that increases in magnitude and breadth with θ/α to a maximum value

for the experiments shown of O(10−2). This difference peak is not seen in corresponding spectra for

TG. Back-scattered difference spectra for TA also feature the equivocal region of high wavenumber

scatter, as noted for spectra of TG, which is not predicted by the linearised boundary theory.

The predicted back-reflection coefficient has value CB = 0 for the experiment corresponding to

figure 6.21 (a,b), so that high wavenumber scatter contradicts ray theory in this case. However,

at the other values of θ/α for which CB 6= 0, high wavenumber scatter may in part represent the

back-reflection predicted by ray theory.

Forward scatter at sinusoid TA compares qualitatively well with that at sawtooth TG. Both

are generally consistent in form with the predictions of inviscid linearised boundary theory (Baines

1971a), with some suggestion of the generation of high wavenumber components in the spectral

region of the predicted sum component. Dissipation of wave energy is enhanced in the case of

the sawtooth, however, as the corners and linear slopes promote high wavenumber scatter and

large energy densities. Near-field features such as mixing near the boundary are therefore most

pronounced at the sawtooth, whilst high wavenumber scatter propagating away from this region is

greatest for the sinusoid. Back-scattered wavefields for both topographies exhibit high wavenumber

scatter, again largest in the far-field for the sinusoid, which is not predicted by the linearised

boundary theory. The predicted low wavenumber difference component is only generated for the

sinusoid however.

6.3.2 Scatter from a square-wave (TK)

A square-wave topographic profile comprises of horizontal and vertical sections joined by 90◦ corners.

Subcritical and supercritical regimes cannot be defined directly for the square-wave. Instead, a

pseudo slope angle α is defined here for square-wave profiles as in (6.1) ( see also section 3.8) and

analogous periodic profiles that are not square-wave in shape are taken to be those sharing the

same values of ÂT and k̂T . In the context of square-wave profiles, sub, super and near-critical

regimes therefore refer here to those of the analogous sawtooth profile. The square-wave profile has

four corners per topographic wavelength, twice the number of the sawtooth. Linear geometrical

ray tracing predicts specular reflection behaviour of rays incident at the horizontal and vertical

sections of the square-wave but does not resolve behaviour at the corners (e.g. Longuet-Higgins

1969). Specular reflection at infinite horizontal and vertical boundaries was discussed in detail in

sections 2.4.1 and 4.2. The magnitude of the incident wavenumber is preserved at these boundaries,
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Figure 6.21: Back-scattered energy density spectra for sinusoid TA are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 0.78, (c,d) 0.88 and (e,f) 0.97.
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with complete forward scatter, i.e. CF = 1 and CB = 0. The square-wave does not contain sloping

surfaces like those of the sawtooth at which incident wave energy can be focused or defocused.

However, the wavenumber spectra of a wavefield incident at a square-wave profile does not remain

unchanged since topographic variation across the breadth of an incident wave group causes changes

in phase between component rays of the group. Rays may reflect directly forwards or undergo

multiple interactions with the topography before either reflecting away from the boundary in the

forwards or backwards directions. As for ray tracing predictions for the sinusoid, coefficients for

the forward and back-reflection are calculated to oscillate in magnitude for varying θ/α (Longuet-

Higgins 1969). Ray tracing also predicts shadow zones, defined in section 2.5, for square-wave

profiles.

Qualitative description of scatter

Square-wave TK is closely analogous to sawtooth profile TG and sinusoid TA. Figure 6.22 (a-c) shows

RMST images for wavefields scattering at square-wave TK with values of θ/α equal to (a) 0.79, (b)

0.89 and (c) 0.99 for σ/N equal to 0.67, 0.58 and 0.49 respectively, as well as corresponding forward,

(d-f), and backward, (g-i), scattered wavefields after filtering using Hilbert transforms. The same

conventions used in figure 6.4 are applied here. The structure of forwards scattered wavefields shown

in RMST and forward scatter filtered images of figure 6.22 (a-c) and (d-f), respectively, differs from

those of the corresponding wavefields for sawtooth TG in a number of ways. Forward scattered beam

structures are broader and associated with lower energy densities than for those seen at TG. In part,

this is a consequence of the large proportion of horizontal surfaces comprising TK , which do not

focus wave energy directly as is the case at the slopes of TG. The trend observed for sawtooth TG

of decreasing far-field wave amplitudes with increasing θ/α is also seen for TK however, suggesting

near-field dissipation is increased in this limit. The back-scattered fields shown in figure 6.22 (g-i)

are more pronounced in all cases for the square-wave than those for sawtooth TG. The variation of

the back-scattered wavefield with increasing θ/α is not clear from these images though, in contrast

to the behaviour at TG and TA, the weakest back-scattered field appears to be generated at the

largest value of θ/α.

Figure 6.23 presents results from PIV experiments in the near-field of the square-wave profile

TK . Figure 6.23 (a), (c), (e) and (g) show normalised RMST velocity values after filtering for the

primary harmonic at θ/α equal to 0.63, 0.70, 0.89 and 1.00 respectively. Corresponding phase

images are shown in figure 6.23 (b), (d), (f) and (h). As in the experiments for sinusoid TA, the

fluid speeds tend to decrease as θ/α increases towards critical value. The speeds are the most

pronounced in the region of corners of the topography and along characteristics emanating from

these points. In critical conditions, the largest fluid speeds are confined to regions at the vertical

level of the crests of the topography. As θ/α increases, spatial gradients in the wavefields can be

seen to reduce significantly in phase images.
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Figure 6.22: RMST images of perturbed buoyancy fields for subcritical scatter at square-wave TK , with α = 61.0◦, at forcing frequencies
such that θ/α is equal to (a) 0.79, (b) 0.89 and (c) 0.99. Images of corresponding forward and back-scattered wavefields after filtering
using the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in grey. Fields of
view measure 449 × 177 mm. Colour scale as in figure 6.4.
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Figure 6.23: RMST velocity images of primary harmonics generated by subcritical scatter at square-
wave TK with θ/α equal to (a) 0.63, (c) 0.70, (e) 0.89 and (g) 1.00 with σ/N equal to 0.79, 0.74,
0.59 and 0.49 respectively (topography shaded in grey). Corresponding phase images are shown in
(b), (d), (f) and (h) (topography shaded in black).
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Figure 6.24: Ray tracing predictions for TK . Here (a) σ/N = 0.67, θ/α = 0.79, (b) σ/N = 0.58,
θ/α = 0.89 and (c) σ/N = 0.49, θ/α = 0.99. Line colouring as in figure 6.19.

Ray tracing analysis of scatter at TK

Figure 6.24 (a)-(c) shows ray tracing predictions, including primary and subsequent reflections

of rays (blue) incident at square-wave TK , for parameter values corresponding to those in fig-

ure 6.22 (a)-(c), respectively. Conventions of the ray tracing diagrams are the same as those used

in figure 6.19. Structures of the forwards scattered wavefield predictions shown in the ray tracing

diagrams of figure 6.24 compare qualitatively well with the corresponding RMST images of fig-

ure 6.22. However, ray tracing predictions for the proportions of forwards scatter corresponding to

figure 6.24 (a)-(c) are CF = 0.56, 0.69, and 0.88 respectively.

Figure 6.25 plots the variation with θ/α of CF at TK (cyan line), together with those for square-

wave TJ (red line), knife-edge TL (discussed in section 3.8, blue line) and the lower bound for sinusoid

TA (dashed green line). The coefficients are calculated using the method described by Longuet-

Higgins (1969). In contrast to the behaviour seen in figure 6.22, ray tracing therefore predicts

the greatest forward scatter at the largest value of θ/α. However, the experiment observations are

consistent with the trends seen for the forwards scatter at sawtooth TG and sinusoid TA. As discussed

for these cases, the spatial focusing of wave energy and redistribution to higher wavenumbers as
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Figure 6.25: Ray tracing predictions for forward scatter coefficents at square-wave profiles TJ and
TK and pseudo knife-edge TL, derived from method of Longuet-Higgins (1969). Dashed green line
indicates the predicted lower bound for CF at sinusoid TA and horizontal dashed grey lines indicate
lower bounds for CF at TJ , TK and TL. Vertical dashed grey line indicates critical value for θ/α.
Curve for TJ is truncated for clarity. Dashed cyan, red and blue lines are explained in chapter 7.

θ/α approaches critical promotes viscous and nonlinear behaviour so that near-field dissipation is

enhanced and hence less wave energy propagates into the far-field. In addition, the length of near-

field ray paths for the sinusoid and square-wave can be increased, relative to those reflecting at the

sawtooth, by multiple interactions with the topography. In configurations for which this occurs,

wave energy is retained in the near-field region, which is characterised by large gradients and high

amplitudes, for a longer duration, i.e. conditions promoting nonlinear interactions, as well as being

subject to an increased period of viscous attenuation before it propagates to the far-field.

Back-scatter coefficients calculated by ray tracing for figure 6.24 (a)-(c) are CB = 0.44, 0.31 and

0.12, respectively, with the weakest predicted for the near-critical value of θ/α. This is qualitatively

consistent with the images of figure 6.22 (g)-(i). Note that the corresponding ray tracing predic-

tions for the sawtooth of CB = 0.0 in all cases, and for the sinusoid of CB = 0.0, 0.36 and 0.32,

differ significantly from those for the square-wave. Observed back-scatter for both the sawtooth

and sinusoid is most pronounced in the near-critical case, whereas back-scatter for the square-wave

is weakest for this value of θ/α. Whilst it has been shown for the square-wave and sinusoid (sec-

tions 6.3.2 and 6.3.1) that back-reflection (i.e. through multiple specular reflections of wave rays

with the topography) is not the only mechanism for back-scattered wave energy, it seems that there

is at least consistency between maxima/ minima predicted by the ray tracing coefficients for the

back-scatter and those of the observations. As for the sawtooth, the ray tracing fails to resolve

scatter at corners of the topography.
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6. Subcritical rough topography 6.3. Topographic shape

Spectral analysis of scatter at TK

Figure 6.26 (a), (c) and (e) show spectra relating to forwards scattered wavefields for square-wave

TK , calculated along cross-sections positioned at various distances along BF and B∗
F for values of

θ/α and σ/N corresponding to those of figure 6.22 (a)-(c) respectively. The corresponding spec-

tral differences are shown in figure 6.26 (b), (d) and (f). The trends observed in the spectra for

square-wave TK compare well with those for sawtooth TG and sinusoid TA in figures 6.7 and 6.20. In

particular, the spectra for TK follow the predictions of inviscid linearised boundary theory (Baines

1971a) as convincingly as in the case of the sinusoid, i.e. more so than for the sawtooth. This sug-

gests that dissipation of wave energy promoted by focusing along the linear slopes of the sawtooth,

affecting most of the incident wave energy, is more significant than the enhancement in dissipation

caused by focusing at the localised topographic corners, affecting only a small fraction of the inci-

dent wave energy, since the square-wave has twice as many corners per topographic wavelength than

the sawtooth yet seems to exhibit less attenuation in spectra relative to the theoretical predictions

for a sinusoidal boundary.

Figure 6.27 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered wavefields at TK calculated along cross-sections at various along-beam distances of BI

and B∗
I for values of θ/α and σ/N corresponding to those in the spectra of figure 6.26 (a), (c) and

(e) respectively. Corresponding spectral differences are shown in (b), (d) and (f). The difference

spectra for the square-wave do not exhibit significant difference peaks in the spectral region of the

difference component predicted by linearised boundary theory. Some evidence of higher wavenumber

back-scatter is also observed in difference spectra for the square-wave.

6.3.3 Corners, slopes and curves

In summary, forward scatter at square-wave TK compares qualitatively well with that at sawtooth

TG and sinusoid TA. Scatter at each topography is generally consistent in form with the predictions

of linearised boundary theory and high wavenumber scatter that appears to be in the spectral region

of the predicted sum component is observed in each case. Forward scatter at TA and TK show less

discrepancy with the theoretical predictions than that of sawtooth TG, so that high wavenumber

scatter measured in the far-field is most prominent for the sinusoid and square-wave profiles. For

TA, TK and TG, back-scattered wavefields exhibit high wavenumber scatter, which is again most

significant for the sinusoid and square-wave. In the case of the sawtooth experiments and for one

value of θ/α for the sinusoid, the back-scatter was not predicted by linear ray tracing. Additional

low wavenumber scatter, predicted by linearised boundary theory, is measured for the sinusoid.

Near-field mixing features are the most prominent for the sawtooth profile.
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Figure 6.26: Forward-scattered energy density spectra for square-wave TK are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.79, (c,d) 0.89 and (e,f) 0.99.
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Ê

)

s∗I
10
12
14

sI

10
12
14

kT

0.0 0.1 0.2 0.3 0.4 0.50

−2

−4

−6
0.0 0.5 1.0 1.5

k̃

−0.06

−0.04

−0.02

E∆I

Ê
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Figure 6.27: Back-scattered energy density spectra for square-wave TK are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 0.79, (c,d) 0.89 and (e,f) 0.99.
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6. Subcritical rough topography 6.4. Scatter to higher harmonics

6.4 Scatter to higher harmonics

Linear theory requires that the frequency of an internal gravity wavefield incident at a boundary

is conserved on reflection (Lamb 1932; Phillips 1966). However, linear theory is less applicable

in systems where amplitudes of the wavefield become comparable with characteristic length scales

of the wavefield and in these cases higher temporal harmonics may be generated. The dispersion

relation permits the generation of higher harmonic components that have frequencies σn = nσ

provided that the primary frequency satisfies 0 ≤ σ/N ≤ 1/n for n ∈ Z≥0. Scatter to secondary and

tertiary harmonics of twice and three times that of the incident wave frequency, σ/N , respectively,

were discussed in section 2.4.3 and described for experiment results of scatter at a flat boundary

in section 4.2.3. Higher harmonic generation by cylinders of different shapes and dimensions was

also presented in sections 3.7, 5.2.3 and 5.3.3. Secondary harmonic generation is described here for

subcritical scatter at sinusoidal profile TA, sawtooth TG and square-wave TK .

Figure 6.28 shows results from harmonic filtering of ∆N2/N2 fields from experiments of marginally

subcritical scatter at (a-d) sinusoid TA, (e-h) sawtooth TG and (i-l) square-wave TK for θ/α equal

to 0.97, 0.97 and 0.99 and incident frequencies, σ/N , equal to 0.50, 0.48 and 0.50 respectively,

i.e. 1/3 < σ/N ≤ 1/2 in each case. Each image shows the incident wave energy propagating from

the top left-hand corner towards the topographic profile positioned at the bottom of the image.

Figure 6.28 (a), (e) and (i) show the amplitude fields (essentially the RMST field) from filtering

for the primary frequency and figure 6.28 (c), (g) and (k) are the corresponding phase fields. The

forwards and back-scattered wavefield structures shown in figures 6.17, 6.4 and 6.22 for the primary

harmonic are clearly evident in the amplitude and phase images of the primary harmonic filtering

shown in figure 6.28 (a,c), (e,g) and (i,k), respectively.

Figure 6.28 (b), (f) and (j) show the amplitude fields from filtering for the secondary harmonic

frequency, 2σ/N , and figure 6.28 (d), (h) and (l) are the corresponding phase fields. As described in

section 4.2.3, a weak signature of the wavefield associated with the primary frequency remains in the

images produced after filtering the wavefields for the secondary harmonic. This is an unavoidable

consequence of the finite temporal resolution and lack of phase locking of the experimental movies.

Since the primary harmonics are, albeit marginally, subcritical in each case, so are the secondary

harmonics with values of θ2/α for TA, TG and TK equal to 0.13, 0.26 and 0.13 respectively, where θ2

are the angles made between the group velocity vectors of the secondary harmonics and the vertical.

Secondary harmonic generation is evident in the region where incident wave energy interacts with

each of the topographic profile shapes, with maximum amplitudes approximately second order in

the incident wave amplitude. Only secondary harmonic wave motion in the forwards direction is

visable in phase images. These harmonics decay rapidly with distance away from the topography.

The frequencies of each of the secondary harmonic components shown in figure 6.28 are close

to N , resulting in small group velocities of these components and hence the confinement of the

associated wave energy near to the boundary since the waves cannot propagate far before they

have decayed. Also, the small values of θ2/α, most clearly visable in the phase images, suggest
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Figure 6.28: Amplitude and phase images of temporal harmonics generated by marginal subcritical
scatter at sinusoidal, sawtooth and square-wave profiles TA, TG and TK with σ/N = 0.50, 0.48 and
0.50, θ/α = 0.97, 0.97 and 0.99. RMST images of primary and secondary harmonics are shown in
(a-b), (e-f) and (i-j) respectively. Corresponding phase images are shown in (c-d), (g-h) and (k-l).
Amplitude maxima Mi have values of 5.4 × 10−2, 5.4 × 10−3 and 5.4 × 10−4 for i = 1, 2 and 3.
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6. Subcritical rough topography 6.5. Summary

relatively small degrees of focusing of the secondary harmonic wave energy at the sloping regions

of the boundaries, yielding weak amplitudes of the secondary harmonic wavefields there. The

most pronounced secondary harmonic wavefield appears to be generated at the sinusoid, TA, see

figure 6.28 (b) and (d), with the wavefield generated across the entire region ‘lit’ by the incident

wave beam. Secondary harmonics generated by scatter at the sawtooth, TG, and square-wave,

TK , profiles are most prominent near the corners of these topographies, with the weakest wavefield

generated at the square-wave. Wavefield amplitudes in the near-field of sawtooth TG are expected to

be greater (hence enhancing nonlinear behaviour) than those at the square-wave since wave energy

is focused at the sloping sections of the sawtooth.

The generation of higher harmonics by elliptical and rectangular cylinders was analysed in, e.g. ,

section 5.3.3. There it was shown that amplitudes of the secondary harmonic wave motion generated

were most pronounced near corners of the cylinders, but that the focusing of wave energy and high

wavenumber skew of the spectra at the corners resulted in enhanced viscous attenuation of the wave

energy as it propagated away from the source. This behaviour seems similar to that observed in

the scattering experiments, with secondary harmonic wave energy most focused near topographic

corners and rapidly decaying away from these regions.

Since the forcing frequencies, σ/N , in each of the experiments relating to figure 6.28 had values

such that σ/N > 1/3, propagating tertiary harmonics of the wavefields were not predicted and

no signatures were visable in images produced from filtering experiment data at this frequency.

However, exponentially decaying (in space) disturbances could still be generated at third order.

6.5 Summary

This chapter has discussed subcritical scatter at various sawtooth topographies and compared this

behaviour with scatter at analogous sinusoidal and square-wave profiles. The inviscid theoretical

approaches of linear geometrical ray tracing (e.g. Longuet-Higgins 1969) and linearised boundary

theory (Baines 1971a) have also been evaluated. In general, forwards and back-reflection coefficients

calculated by ray tracing compare well qualitatively with behaviour observed in experiments. How-

ever, ray tracing fails to model scatter at corners or the critical value θ/α = 1 and does not yield

quantitative predictions for the spectral scatter. In addition, some experimental results directly

contradict the predictions of ray tracing with e.g. the presence of back-scatter at sawtooth profiles

and purely subcritical scatter at a sinusoid. The linearised boundary theory of Baines (1971a) for

a sinusoidal boundary, however, corresponds well with scatter at the sinusoid and sawtooth and

square-wave profiles discussed, despite the violation of the conditions ÂT k̂T ≪ 1 and ÂTkc ≪ 1.

Wavenumber spectra exhibit regions of high wavenumber scatter associated with the predicted sum

component characterised by the wavenumber kI + kT . High wavenumber scatter not predicted

by the theory is also seen in the back-scattered spectra. The influence of viscosity significantly

modifies scattered spectra, in particular reducing energy associated with high wavenumber scatter

propagating into the far-field. Consequently, the least amount of high wavenumber scatter is mea-
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sured in the far-field of the sawtooth, compared with those of the sinusoid and square-wave, since

efficient focusing of wave energy along the linear slopes of the sawtooth and the introduction of

high wavenumber components at the sharp corners enhances viscous attenuation of the scattered

wave energy. Near-field features of the scatter, such as the generation of mixed fluid at topographic

corners, are therefore more pronounced at the sawtooth, with high energy densities there promot-

ing nonlinear behaviour. Experimental results of supercritical scatter at various rough topographic

profiles are described in the following chapter.
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Chapter 7

Supercritical rough topography

7.1 Overview

The previous chapter discussed subcritical scatter at rough sawtooth topographies and compared

the observed behaviour with that at a sinusoid and a square-wave. The present chapter considers

supercritical scatter, i.e. θ/α > 1, at sawtooth as well as square-wave and knife-edge topographic

profiles.

Inviscid linear geometrical ray tracing predicts that wave energy incident at the sloping sections

of supercritical sawtooth topography is repeatedly focused into the topographic troughs so that the

predicted forward, CF , and back-scatter, CB, are both zero. Ray tracing does not, however, resolve

behaviour at topographic corners and does not satisfy the radiation condition at rough boundaries.

As in chapter 6, far-field and near-field scattering behaviour is discussed for variations in θ/α, k̂T

(section 7.2) and topographic shape (section 7.3) as well as scatter to higher harmonics (section 7.4).

Experimental results of this chapter are compared soley with the predictions of ray tracing, since

the supercritical configuration has not been modelled by any other theoretical means. In addition,

no other experimental or numerical studies of supercritical scatter at periodic rough topography are

known to the present author.

7.2 Sawtooth topography

This section presents results relating to supercritical scatter at sawtooth topographies TD and TE .

Comparisons are made in section 7.4 with wavefield behaviour near square-wave TJ and pseudo

knife-edge TL.

7.2.1 Basic sawtooth (TD)

Supercritical scatter in experiments with sawtooth TD and its variation with θ/α is discussed here.

Sawtooth profile TD is characterised by the horizontal topographic wavenumber k̂T = 0.088 mm−1
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and an aspect ratio of ÂT k̂T = 1.58. Length scales of the incident wavefield are compared with

those of TD with the parameters kc/k̂T = 4.01 and ÂTkc = 6.34.

Qualitative description of scatter

Figure 7.1 (a-c) shows RMST images for wavefields with θ/α equal to (a) 1.23, (b) 1.36 and (c)

1.55 and σ/N equal to 0.57, 0.48 and 0.35 respectively, as well as corresponding forward, (d-f), and

backward, (g-i), scattered wavefields after filtering using Hilbert transforms. The same conventions

used in figure 6.4 are applied here. Contrary to ray tracing predictions of CF = 0, the presence

of a forward scattered wavefield is clearly visable in RMST and filtered images for the forward

scatter. The forward scattered fields have a similar structural form to those observed for subcritical

interactions, with scattered wave energy focused into narrow beam-like structures, which propagate

away from the corners of the topography. In the fields of view shown, amplitudes associated with

the forward scattered wavefields are typically two orders of magnitude smaller than those associated

with the incident wavefield and are largest for values of θ/α nearest critical in both the near-field

and far-field. Amplitudes of the forwards scatter are generally an order of magnitude smaller

than those typical of the subcritical case for topography TG, which has a topographic wavenumber

approximately equal to that of TD. Primary downward scatter is also visable within the troughs

of topography TD (see figure 7.3). Notably, non zero amplitudes are present in the lee of the each

crest, contradicting the prediction of ‘shadow zones’ by ray tracing (illustrated in figure 7.2). The

mixing feature described in section 6.2.1 near the corners of sawtooth TG is present in supercritical

conditions with TD and is most prominent near-critical (e.g. see figure 7.1 (a)). In addition to

the supercritical forward scatter, back-scattered wavefields, similar to those observed for subcritical

scatter at TG in figure 6.4 (g)-(i), are also evident in the RMST and filtered images for the back-

scatter, despite ray tracing predictions of CB = 0. The back-scatter appears to emanate from the

corners of the sawtooth. Amplitudes of the back-scattered wavefields are of similar magnitudes

to those for the forwards scatter and, as for the forward scatter and in the subcritical case, these

amplitudes are most significant for values of θ/α closer to critical. It is anticipated that there is some

relationship between the back-scatter of the subcritical case and the scatter, in both directions, of

the supercritical case. The decrease in amplitudes of the forwards and back-scattered wavefields at

larger θ/α may in part be due to the reduction in σ/N of the wavefields in these cases, which causes

an increase in the group velocities and hence a decrease in energy densities. Figure 7.4 presents

results from PIV experiments in the near-field of the sawtooth profile TD. Figure 7.4 (a), (c) and

(e) show normalised RMST velocity values after filtering for the primary harmonic at θ/α equal to

1.01, 1.08 and 1.49 respectively. Corresponding phase images are shown in figure 7.4 (b), (d) and

(f). In general, fluid speeds tend to decrease as θ/α increases away from the critical value. As in

the subcritical experiments at square-wave TK , the speeds are the most pronounced in the region

of corners of the topography and along characteristics emanating from these points. Maximum

particle displacements of almost 4 mm occur for the near-critical value of θ/α in the region of the
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Figure 7.1: RMST images of perturbed buoyancy fields for supercritical scatter at sawtooth TD, with α = 45.0◦, at forcing frequencies
such that θ/α is equal to (a) 1.23, (b) 1.36 and (c) 1.55. Images of corresponding forward and back-scattered wavefields after filtering
using the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in grey. Fields of
view measure 449 × 203 mm and 449 × 133 mm, with unit aspect ratio. Colour scale as in figure 6.4.
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7. Supercritical rough topography 7.2. Sawtooth topography

Shadow zone

Figure 7.2: Ray schematic of shadow zone for supercritical scatter at sawtooth TD.

topographic corner at the centre of the field of view.

Spectral analysis of scatter at TD

Figure 7.5 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TD, calculated

along cross-sections along BF and B∗
F for values of θ/α and σ/N corresponding to those of fig-

ure 7.1 (a)-(c) respectively. The corresponding spectral differences are shown in figure 7.1 (b), (d)

and (f). As in chapters 4 and 6, grey shaded regions of spectral difference graphs in this chapter

indicate experiment and data processing error estimates based on figure 4.29. Whilst these regions

indicate the estimated maximum magnitude of the error, the actual spectral form of the error is

expected to be localised around peaks of the measured spectra. Magnitudes of the error calculated

in figure 4.29 also decrease as energy density measurements associated with beam cross-sections

decrease at along-beam locations further from the cylinder. It is therefore estimated that actual

error values corresponding to cross-sections of BF and B∗
F , i.e. forwards scatter, may in practice be

an order of magnitude smaller than that indicated. In contrast to the subcritical configurations dis-

cussed in section 6.2.1, there is an absence of theoretical models for supercritical scatter except for

those of ray tracing, which predicts that there is no forward or back-scatter to the far-field. Hence,

spectra in the present section only display results from experiments. Measured spectra associated

with the incident wavefields at TD plotted (red shades) in figure 7.5 (a), exhibit dominant peaks

at k̃ ≈ 0.3 with magnitudes of ∼ O(10−2). Measured forwards spectra (coloured in blue shades)

exhibit two dominant peaks of magnitudes ∼ O(10−4), with maxima located at k̃ ≈ 0.2, possibly

suggesting a ‘primary’ forwards scattered component, and at k̃ ≈ 0.55. Whilst forwards scatter is

observed in RMST images of figure 7.1, these peak magnitudes lie within the estimated error value

and therefore cannot be intepreted as an accurate quantitative measurement. However, the spec-

tra may still have some qualitative value in indicating approximate spectra locations of scattered

components. If true, the peak of the forward scattered spectra located at higher wavenumbers is

positioned near k̃ ≈ 0.3+kT , which could indicate the presence of a ‘sum’ component. Correspond-

ing difference spectra of figure 7.5 (b) exhibit a trough with magnitude ∼ O(10−2) in the region
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Figure 7.3: Close-up of scatter at profile TD for θ/α = 1.23. Colour scale as in figure 6.9 except
with maximum value 11.72 × 10−2. Field of view measures 68 × 29 mm.
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Figure 7.4: RMST velocity images of primary harmonics generated by supercritical scatter at saw-
tooth TD with θ/α equal to (a) 1.01, (c) 1.08 and (e) 1.49 with σ/N equal to 0.70, 0.66 and 0.39
respectively (topography shaded in grey). Corresponding phase images are shown in (b), (d) and
(f) (topography shaded in black).
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of the spectral peak of the incident wavefield. There does not appear to be a significant scatter to

lower wavenumbers in this supercritical configuration.

Figure 7.6 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered fields at TD calculated along cross-sections of BI and B∗
I for values of θ/α and σ/N

corresponding to those in the spectra of figure 7.5 (a), (c) and (e) respectively. Corresponding

spectral differences are shown in (b), (d) and (f), with regions shaded grey indicating error estimates

based on figure 4.29. Distinctions between spectra are most easily seen in the spectral differences

of figure 7.6. A high wavenumber difference peak is present in the spectral difference graph of

figure 7.6 (b) at k̃ ≈ 0.7 with a peak difference magnitude comparable with that of the estimated

error. No significant evidence of this peak difference is seen as θ/α increases. As for the forward

scatter, back-scatter is not predicted by ray tracing. However, back-scatter associated with small

across-beam length scales is observed in RMST images of figure 7.1 for each value of θ/α and

the presence of peaks at high wavenumbers are therefore anticipated in the corresponding spectra.

No significant back-scatter to lower wavenumbers is observed for this supercritical configuration.

As in the subcritical spectra, the spectral differences also exhibit troughs located in the regions

of the spectral peaks of the incident wavefield. These suggest that the spatial coincidence of the

back-scattered and incident wavefields, which increases across-beam gradients, particularly since

the phase velocities are opposing, results in enhanced viscous attenuation of the wave energy in the

incident beam.

In contrast to ray tracing predictions, forwards and backwards supercritical scatter is observed

at sawtooth TD, with evidence of high wavenumber scatter in both directions. Energy densities

associated with the scattered components appear to decrease as values of θ/α increase from critical.

7.2.2 High wavenumber sawtooth (TE)

This section discusses the effect on scattered wavefields of variation of the topographic wavenumber,

k̂T , for a fixed aspect ratio, ÂT k̂T , and hence topographic slope angle, α. Scattering behaviour

at sawtooth TE is compared here with that at TD. Sawtooth profile TE is characterised by the

horizontal topographic wavenumber k̂T = 0.175 mm−1, almost twice that for TD, and an aspect

ratio of ÂT k̂T = 1.58, approximately equal to that for TD. Length scale ratios of TE have values

kc/k̂T = 2.02 and ÂTkc = 3.18.

Qualitative description of scatter

Figure 7.7 (a-c) shows RMST images for wavefields with θ/α equal to (a) 1.20, (b) 1.38 and (c)

1.56 and σ/N equal to 0.59, 0.47 and 0.34 respectively, as well as corresponding forward, (d-f), and

backward, (g-i), scattered wavefields after filtering using Hilbert transforms. The same conventions

used in figure 6.4 are applied here. The nature of the wavefields shown in the RMST images of

figure 7.7 (a-c) are generally qualitatively the same as the corresponding ones for the scatter at TD

except that the forward scattered wavefields of TE , which has the larger topographic wavenumber,

236



7. Supercritical rough topography 7.2. Sawtooth topography

TD

k [mm−1] k [mm−1]

0.0 0.5 1.0 1.5
k̃

log10

(

E

Ê
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Figure 7.5: Forward-scattered energy density spectra for sawtooth TD are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 1.23, (c,d) 1.36 and (e,f) 1.55.
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Ê

)

s∗I
10

sI

10

kT

0.0 0.1 0.2 0.3 0.4 0.50

−2

−4

−6
0.0 1.0 1.5

k̃

−0.06

−0.04

−0.02

E∆I

Ê
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Ê
0.0

0.02

0.04

0.06

k̂T

0.0 0.1 0.2 0.3 0.4 0.5

sI

14

(e) (f)

Figure 7.6: Back-scattered energy density spectra for sawtooth TD are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 1.23, (c,d) 1.36 and (e,f) 1.55.
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k̂T , are characterised by smaller across-beam length scales and also slightly larger amplitudes.

Similar observations were made for the comparison of subcritical scatter at sawtooths TG and TH ,

which had aspect ratios of ÂT k̂T = 0.783 and 0.785 respectively. Quantitative comparisons of the

scattering behaviours at TD and TE can be made by inspection of the energy density spectra.

Spectral analysis of scatter at TE

Figure 7.8 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TE, calculated

along cross-sections of BF and B∗
F for values of θ/α and σ/N corresponding to those of figure 7.7 (a)-

(c) respectively. The corresponding spectral differences are shown in figure 7.7 (b), (d) and (f).

Measured spectra for the incident and scattered wavefields shown in figure 7.8 (a) show a dominant

peak in the scattered spectra in the region of k̃ ≈ 0.3 (incident) and k̃ ≈ 0.25 (scattered), with

peak magnitudes ∼ O(10−2) and ∼ O(10−3), respectively. The magnitude of the peak for the

primary scattered component at TE is an order of magnitude greater than that observed for scatter

at TD. This contrast in primary scatter is consistent with the behaviour shown in section 6.2.1

for subcritical interactions with sawtooths TH and TG, which were also related by length scale

doubling with preserved aspect ratio. Some of the contrast in scatter between the large and small

scale topographies might be caused by the relatively greater significance of any imperfections in the

stratification within troughs of the topography, though inspection of RMST and Hilbert transform

filtered images of the scatter suggests this influence remains small in both cases over the time scales of

experiments used in this study. Whilst no significant high wavenumber forwards scatter is observed

in the measured spectra for TE, its presence is clear in the corresponding RMST images. The lack

of signal is accounted for with the preferential action of viscosity at the higher wavenumbers.

Figure 7.9 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered fields at TE calculated along cross-sections of BI and B∗
I for values of θ/α and σ/N

corresponding to those in the spectra of figure 7.8 (a), (c) and (e) respectively. Corresponding

spectral differences are shown in (b), (d) and (f). Distinctions between spectra are most easily seen

in the spectral differences of figure 7.9. The measured back-scattered difference spectra of TE have

similar form to those of TD, with the high wavenumber signal expected from observation of small

across-beam length scales in RMST images again too small to have prominence in the measured

spectra.

In summary, comparisons have been made between supercritical scatter at sawtooths TD and TE .

The profiles have approximately equal aspect ratios of ÂT k̂T = 1.58 but the horizontal wavelength

and amplitude of TE are almost half that of TD. Contrary to ray tracing predictions, forward

and back-scattered wavefields are observed at both profiles and in both cases the scatter is most

prominent at values of θ/α nearer critical. The presence of primary (i.e. located at wavenumbers

in the region of the peak of the incident spectra at k̃ ≈ 0.3) and sum (i.e. high wavenumber scatter

located near k̃ ≈ 0.3+kT ) components, similar to those observed in subcritical scatter are suggested

in the forward scattered spectra. High wavenumber scatter is expected to be located at higher
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Figure 7.7: RMST images of perturbed buoyancy fields for supercritical scatter at sawtooth TE , with α = 45.0◦, at forcing frequencies
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Figure 7.8: Forward-scattered energy density spectra for sawtooth TE are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 1.20, (c,d) 1.38 and (e,f) 1.56.
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Figure 7.9: Back-scattered energy density spectra for sawtooth TE are plotted in (a, c, e). Corre-
sponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with θ/α
equal to (a,b) 1.20, (c,d) 1.38 and (e,f) 1.56.
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wavenumbers for TE , which has the greater topographic wavenumber, but since the smaller length

scales promote viscous attenuation, the observed high wavenumber scatter is most prominent for TD.

This result is similar to that found for comparisons of subcritical scatter at TH and TG. Properties

of the high wavenumber back-scatter observed at TE compare well with that at TD. Energy densities

observed for the back-scatter appear to be comparable in magnitude in supercritical and subcritical

configurations, both being most significant near-critical. Sawtooths TG and TD are characterised

by approximately the same topographic wavenumbers, k̂T = 0.087 and 0.088, respectively, but have

different aspect ratios of ÂT k̂T = 0.783 and 1.58, i.e. the aspect ratio of TD is approximately twice

that of TG. Near-field RMST images for supercritical scatter at each of the topographies can be seen

in figures 6.9 and 7.3, with values of θ/α = 1.13 and 1.23 respectively. As might be anticipated,

the near-field features are most prominent at TD, which has the greatest aspect ratio and hence

steepest slopes.

7.3 Topographic shape

This section discusses the effect on scattered wavefields of variation of the topographic shape.

Forward and back-scattered wavefields at sawtooth profile TE are compared with those at square-

wave TJ , for which k̂T = 0.175 mm−1, ÂT k̂T = 1.75, kc/k̂T = 2.02 and ÂTkc = 3.53, and pseudo

knife-edge TL, for which k̂T = 0.165 mm−1, ÂT k̂T = 1.49, kc/k̂T = 2.14 and ÂTkc = 3.18 as well as

the associated scatter to higher temporal harmonics. Geometrical constraints of the experimental

set up prevented comparison of the supercritical results with scatter at either sinusoid. Higher

harmonic generation for supercritical scatter is also considered for TA, TG and TK .

7.3.1 Scatter from a square-wave (TJ)

Qualitative description of scatter

Square-wave TJ is closely analogous to sawtooth profile TE . An angle α is defined for TJ to be the

angle made between the slopes and vertical of a sawtooth characterised by the same values of ÂT

and k̂T . Whilst regimes are defined here for scatter at the square-wave in terms of values of θ/α,

the component vertical faces of the square-wave are always supercritical and the horizontal faces are

always subcritical. Figure 7.10 (a-c) shows RMST images for wavefields with θ/α equal to (a) 1.20,

(b) 1.38 and (c) 1.56 and σ/N equal to 0.59, 0.47 and 0.34 respectively, as well as corresponding

forward, (d-f), and backward, (g-i), scattered wavefields after filtering using Hilbert transforms.

The same conventions used in figure 6.4 are applied here. The structure of forwards scattered

wavefields at TJ shown in RMST and forwards scatter filtered images of figure 7.10 (a-c) and (d-f),

respectively, differs from those for scatter at sawtooth TE in a number of ways. The amplitudes

of forwards scattered wavefields are larger at the square-wave topography and scattered beam-like

structures are broader. The behaviour of wavefields during specular reflection at sloping boundaries

suggest that, in the supercritical case, the slopes of the sawtooth focus the energy into troughs of the
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topography. Whilst the presence of scattered wavefields indicates that other scattering mechanisms

are also occuring, such as scatter at the topographic corners and nonlinear processes, the downward

focusing of wave energy at the sawtooth certainly appears to reduce the fluxes of wave energy to

the far-field as compared with behaviour at the square-wave. As in the case of sawtooth TE , energy

densities of the forward scatter at square-wave TJ are greatest for values of θ/α nearest critical.

The back-scattered wavefields shown in figure 7.10 (g-i) are associated with lower amplitudes than

those for TE and, in contrast to the trend shown by the sawtooth, are most pronounced for the

intermediate value of θ/α. Near-field features such as those shown in figure 6.9 can also be seen in

movies of supercritical scatter at TJ , though are less visable in figure 7.10.

Ray tracing analysis of scatter at TJ

Ray tracing predictions, including primary and subsequent reflections of rays (blue) incident at

square-wave TJ , for parameter values corresponding to those in figure 7.10 (a)-(c) are shown in

figure 7.11 (a)-(c) respectively. Conventions of the ray tracing diagrams are the same as those used

in figure 6.19. Ray tracing predictions for the forwards scatter corresponding to figure 7.11 (a)-(c)

are CF = 0.53, 0.90 and 0.91 respectively (as derived using the method described by Longuet-

Higgins (1969) - see figure 6.25). In contrast to the behaviour seen in figure 7.10, ray tracing

therefore predicts the greatest proportion of forward scatter at the largest value of θ/α. However,

the observed trend is consistent with that seen for the forwards scatter at sawtooth TE , which was

most prominent near the critical value of θ/α.

Back-scatter coefficients calculated by ray tracing for figure 7.11 (a)-(c) are CB = 0.47, 0.10 and

0.09, respectively, with the weakest predicted for the largest value of θ/α. This is not consistent

with the images of figure 7.10, with the back-scattered wavefield at the smallest value of θ/α being

weaker than that for the intermediate value of θ/α. Note that propagating secondary temporal

harmonics are possible in the latter two experiments. Amplitudes of the back-scattered wavefields

at TJ are typically an order of magnitude less than those for TE .

Spectral analysis of scatter at TJ

Figure 7.12 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TJ , calcu-

lated along cross-sections along BF and B∗
F for values of θ/α and σ/N corresponding to those of

figure 7.10 (a)-(c) respectively. The corresponding spectral differences are shown in figure 7.10 (b),

(d) and (f). The scatter shown in figure 7.12 (a), for the smallest value of θ/α, is mainly to the

primary component, with no measured high wavenumber scatter. Troughs in the difference spectra

for the square-wave are less pronounced than those for the sawtooth and are in fact virtually absent

in figure 7.12 (b) and (d). This is a consequence of the weaker back-scatter observed for TJ , which

does not enhance viscous attenuation of the incident wave beam to the same degree as is seen for

the sawtooth. As was discussed earlier, viscous action is promoted in the incident beam as the

spatially coincident back-scattered field introduces greater across-beam gradients and shear. As
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Figure 7.10: RMST images of perturbed buoyancy fields for supercritical scatter at square-wave TJ , with α = 45.0◦, at forcing
frequencies such that θ/α is equal to (a) 1.20, (b) 1.38 and (c) 1.56. Images of corresponding forward and back-scattered wavefields
after filtering using the Hilbert transform are shown in (d)-(f) and (g)-(i) respectively, with upper edge of topography highlighted in
grey. Fields of view measure 449 × 190 mm and 449 × 121 mm, with unit aspect ratio. Colour scale as in figure 6.4.
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Figure 7.11: Ray tracing predictions for TJ . Here (a) σ/N = 0.59, θ/α = 1.20, (b) σ/N = 0.47,
θ/α = 1.38 and (c) σ/N = 0.34, θ/α = 1.56. Line colouring as in figure 6.19.

θ/α increases, the primary scatter is seen to decrease in the forwards spectra for TJ .

Figure 7.13 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered fields at TJ calculated along cross-sections of BI and B∗
I for values of θ/α and σ/N

corresponding to those in the spectra of figure 7.12 (a), (c) and (e) respectively. Corresponding

spectral differences are shown in (b), (d) and (f). Distinctions between spectra are most easily seen

in the spectral differences of figure 7.13. The measured back-scatter at TJ shows little variance with

θ/α. As for scatter at sawtooth TE , despite observations in corresponding RMST images of small

across-beam lengths scales indicating high wavenumber back-scatter, energy densities associated

with these components are too small to feature significantly in the measured spectra.

In general, energy densities associated with forward scattered wavefields generated at square-

wave TJ are greater than those at sawtooth TE . The variation of the scattered wavefields with θ/α

does not correlate with ray tracing predictions of coefficents for the square-wave forward scatter.

Instead, the wavefields follow the observed trend for forward scatter at the sawtooth, with energy

densities appearing to increase towards critical values of θ/α. Spectra suggest that scatter at both

the square-wave and sawtooth topographies generates a primary component. In addition, high

wavenumber forward scatter is also observed in RMST images of the forward scatter. In contrast to
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Ê

)

s∗R
08
10
12
14

sR

08
10
12
14

kT

0.0 0.1 0.2 0.3 0.4 0.50

−2

−4

−6
0.0 0.5 1.0 1.5

k̃

−0.04

−0.02

E∆F

Ê
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Figure 7.12: Forward-scattered energy density spectra for square-wave TJ are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 1.20, (c,d) 1.38 and (e,f) 1.56.
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Figure 7.13: Back-scattered energy density spectra for square-wave TJ are plotted in (a, c, e).
Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page with
θ/α equal to (a,b) 1.20, (c,d) 1.38 and (e,f) 1.56.
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Figure 7.14: Ray geometries for critical configurations at knife-edge with critical configurations (a)
as defined for analogous sawtooth and (b) where reflection of incident rays is purely supercritical
(green lines in the latter indicate region where incident ray reflection is possible).

the behaviour for the forward scatter, energy densities associated with back-scatter at the square-

wave are weaker than those for the sawtooth and do not follow ray tracing predictions or the trend

seen for the sawtooth of decreasing magnitudes at larger values of θ/α. Near-field amplitudes and

mixing features are more pronounced at the sawtooth.

7.3.2 Scatter at a knife-edge (TL)

The geometry of knife-edge profiles is described in section 3.8. As for the sinusoid and square-wave,

an angle α is defined for the knife-edge that describes the slopes of the sawtooth characterised by

the same values of ÂT and k̂T . As for the sawtooth, a critical value of the slope parameter is

therefore defined as θ/α = 1. However, a second critical angle, for which geometrical ray tracing

predicts CF = 1, can also be defined for the knife-edge. This occurs when θ = tan−1(π/ÂT k̂T ),

i.e. the configuration where all incident rays reflect initially at vertical sections of the knife-edge

(i.e. supercritical reflection), subsequently reflecting specularly three times before scattering for-

wards. These two critical configurations are illustrated in figure 7.14 (a) and (b) respectively.
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7. Supercritical rough topography 7.3. Topographic shape

Qualitative description of scatter

Knife-edge TL is closely analogous to sawtooth profile TE and square-wave TJ . Figure 7.15 (a-

c) shows RMST images for wavefields with θ/α equal to (a) 1.22, (b) 1.40 and (c) 1.56 and σ/N

equal to 0.55, 0.42 and 0.30 respectively, as well as corresponding forward, (d-f), and backward, (g-i),

scattered wavefields after filtering using Hilbert transforms. The same conventions used in figure 6.4

are applied here. The forwards scattering behaviour seen in RMST and filtered images for knife-edge

TL shown in figure 7.15 (a-c) and (d-f), respectively, have strong similarities with those for sawtooth

TE , with the largest amplitude forward scatter at the value of θ/α nearest critical. The tips of the

knife-edge appear to transfer energy associated with the background wavefield to high wavenumbers

more efficiently than the corners of the sawtooth however, so that more prominent scatter is observed

to propagate from the knife-edges adjacent to the main region of the topography lit by the incident

wave beam than from the sawtooth crests in corresponding positions. The influence of this adjacent

scatter can be seen in RMST images such as figure 7.15 (a), where it interferes constructively and

destructively with the forwards scatter to produce a visually ‘crisscross’ wavefield. The effect is

most visually dramatic at this value of θ/α, as compared with figures 7.15 (b) and (c), due to the

weaker far-field forwards scatter in this case. The more pronounced gradients introduced into the

near-field of the knife-edge in this way are anticipated to enhance viscous attenuation of wave energy

there. Back-scattered wavefields at the knife-edge are also similar to those at the sawtooth, with

the near-critical scatter again most pronounced. In the knife-edge case however, the near-critical

back-scatter (see figure 7.15 (a) and (g)) is far more significant than that at the sawtooth or square-

wave and indeed that of the corresponding forward scatter at the knife-edge. As for the sawtooth,

near-field mixing features are observed near the tips of the knife-edge.

Figure 7.16 presents results from PIV experiments in the near-field of the knife-edge profile TL.

Figure 7.16 (a), (c), (e) and (g) show normalised RMST velocity values after filtering for the primary

harmonic at θ/α equal to 1.01, 1.22, 1.36 and 1.54 respectively. Corresponding phase images are

shown in figure 7.16 (b), (d), (f) and (h). As for the experiments at sawtooth profile TD, fluid

speeds tend to decrease as θ/α increases away from critical and the speeds are most pronounced

in the region of corners (i.e. the tips of the pseudo knife-edges) of the topography and along the

characteristics emanating from these points. It appears that fluid speeds are largest along the

direction of characteristics directed in the back-scatter direction. At the largest value of θ/α, there

is very little discernable forwards scatter in the RMST velocity or phase images.

Ray tracing analysis of scatter at TL

Ray tracing predictions, including primary and subsequent reflections of rays (blue) incident at

pseudo knife-edge TL, for parameter values corresponding to those in figure 7.15 (a)-(c) are shown

in figure 7.17 (a)-(c) respectively. Conventions of the ray tracing diagrams are the same as those

used in figure 6.19. Ray tracing predictions for the forwards scatter corresponding to figure 7.17 (a)-

(c) are CF = 0.55, 0.85 and 0.25 respectively (see figure 6.25). These predictions are not validated
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Figure 7.16: RMST velocity images of primary harmonics generated by supercritical scatter at knife-
edge TL with θ/α equal to (a) 1.01, (c) 1.22, (e) 1.36 and (g) 1.54 with σ/N equal to 0.68, 0.54,
0.45 and 0.32 respectively (topography shaded in grey). Corresponding phase images are shown in
(b), (d), (f) and (h) (topography shaded in black).
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Figure 7.17: Ray tracing predictions for TJ . Here (a) σ/N = 0.58, θ/α = 1.22, (b) σ/N = 0.45,
θ/α = 1.45 and (c) σ/N = 0.34, θ/α = 1.56. Line colouring as in figure 6.19.

by RMST images of figure 7.15, with forward scatter, at least in the near-field, at the smallest value

of θ/α more pronounced than at the intermediate value. In addition, the ray tracing predictions

differ from those at corresponding parameter values for the sawtooth, for which CF = 0, and the

square-wave, for which CF = 0.53, 0.90 and 0.91.

Back-scatter coefficients calculated by ray tracing for figure 7.17 (a)-(c) are CB = 0.45, 0.15 and

0.75, respectively. As for the forward scatter, the experiment results contradict these predictions.

Note that generation of propagating secondary harmonic wavefields is possible at the parameter

values of the latter two experiments.

Spectral analysis of scatter at TL

Figure 7.18 (a), (c) and (e) show spectra relating to forwards scattered wavefields for TL, calcu-

lated along cross-sections along BF and B∗
F for values of θ/α and σ/N corresponding to those of

figure 7.15 (a)-(c) respectively. The corresponding spectral differences are shown in figure 7.15 (b),

(d) and (f). Spectra for the forwards scatter at TL compares well with that at sawtooth TE . How-

ever, energy densities of scatter at the knife-edge to the primary component for the near-critical

value of θ/α are an order of magnitude smaller than those for the sawtooth.
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Figure 7.18: Forward-scattered energy density spectra for pseudo knife-edge TL are plotted in (a, c,
e). Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page
with θ/α equal to (a,b) 1.22, (c,d) 1.40 and (e,f) 1.56.
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Ê
0.0

0.02

0.04

0.06

k̂T

0.0 0.1 0.2 0.3 0.4 0.5

sI

12

(e) (f)

Figure 7.19: Back-scattered energy density spectra for pseudo knife-edge TL are plotted in (a, c,
e). Corresponding spectral differences are plotted in (b, d, f). Frequencies decrease down the page
with θ/α equal to (a,b) 1.22, (c,d) 1.40 and (e,f) 1.56.
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Figure 7.19 (a), (c) and (e) show spectra for the superposition of the incident and backwards

scattered fields at TL calculated along cross-sections of BI and B∗
I for values of θ/α and σ/N

corresponding to those in the spectra of figure 7.18 (a), (c) and (e) respectively. Corresponding

spectral differences are shown in (b), (d) and (f). Distinctions between spectra are most easily seen

in the spectral differences of figure 7.19. The spectra measured at TL compare well with those for

sawtooth TE , except at the value of θ/α closest to critical, where the back-scattered spectra for

the pseudo knife-edge TL exhibits a prominent region of high wavenumber scatter at k̃ ≈ 0.65 with

maximum peak magnitude ∼ O(10−2).

7.3.3 Corners, slopes and edges

In general, forward scattered wavefields generated at pseudo knife-edge TL compare well with those

at sawtooth TE . As for the square-wave TJ , the variation of the scattered wavefields with θ/α does

not correlate with ray tracing predictions of coefficents for the knife-edge forward scatter. Instead,

the wavefields follow the observed trends for forward scatter at the sawtooth and square-wave, with

energy densities increasing towards critical values of θ/α. Energy densities of the primary component

generated at the knife-edge are an order of magnitude smaller than those at the sawtooth. In

addition, high wavenumber forward scatter, like that generated at the sawtooth, was also observed

at TL. Back-scatter at the knife-edge increases towards critical θ/α and does not follow ray tracing

predictions. In particular, back-scatter at the knife-edge is dramatically enhanced for near-critical

θ/α. Near-field amplitudes and mixing features are more pronounced at the knife-edge than the

sawtooth or square-wave.

7.4 Scatter to higher harmonics

Scatter to higher harmonics at subcritical sinusoidal, sawtooth and square-wave topographies was

discussed in section 6.3. Higher harmonic generation during supercritical scatter is described here

for sawtooth profiles TE and TG, square-wave TJ and TK and psuedo knife-edge profile TL.

Figure 7.20 shows results from harmonic filtering of ∆N2/N2 fields from experiments of super-

critical scatter at (a-d) sawtooth TE , (e-h) square-wave TJ and (i-l) knife-edge TL for θ/α equal to

1.51, 1.51 and 1.46, respectively, and at the incident frequency σ/N = 0.38, i.e. 1/3 ≤ σ/N ≤ 1/2,

in each case. As in figure 6.28, each image shows the incident wave energy propagating from the

top left-hand corner towards the topographic profile positioned at the bottom of the image. Fig-

ure 7.20 (a), (e) and (i) show the amplitude fields from filtering for the primary frequency and

figure 7.20 (c), (g) and (k) are the corresponding phase fields. The forwards and back-scattered

wavefield structures discussed above for figures 7.7, 7.10 and 7.15, which dominantly show the pri-

mary harmonic, are evident in the amplitude and phase images of the primary harmonic filtering

shown in figure 7.20 (a,c), (e,g) and (i,k), respectively.

Figure 7.20 (b), (f) and (j) show the amplitude fields from filtering for the secondary harmonic
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7. Supercritical rough topography 7.4. Scatter to higher harmonics

frequency, 2σ/N , and figure 7.20 (d), (h) and (l) are the corresponding phase fields. As noted in

section 6.3, due to experimental constraints, a weak signature of the wavefield associated with the

primary frequency is present in the images produced after filtering the wavefields for the secondary

harmonic. A secondary harmonic beam generated at the source, together with its reflection at

the topography, is also evident in each image. However, this additional ‘incident’ beam reflects

sufficiently far to the left of the images to avoid ambiguity as to the source of the generation of

the secondary harmonic wavefields, which are visable at the topographic profiles in the region lit

by the primary incident beam in each case. Maximum amplitudes of the components generated

by scattering of the primary incident beam are approximately second order in the incident wave

amplitude. Whilst the primary harmonics are supercritical, the secondary harmonics are subcritical

with values of θ2/α equal to 0.90, 0.90 and 0.87 for TE , TJ and TL respectively. These harmonics

decay rapidly with distance away from the topography, though less so than for the secondary

harmonics shown in figure 6.28. This is in part due to the greater group velocity of the secondary

components shown in figure 7.20, which permits the transport of wave energy more rapidly away

from the topography. The larger value of θ2/α for the secondary harmonic components shown in

figure 7.20 (b) and (d), compared with those in figure 6.28, suggests a greater degree of focusing

of the wave energy at the sloping sections of TE and hence more pronounced wave amplitudes as a

result. As for the subcritical cases of figure 6.28, the secondary harmonic components of figure 7.20

appear to be most pronounced in the vicinities of the corners of the sawtooth, square-wave and

knife-edge topographies, with the sawtooth exhibiting the strongest wavefield here. Whilst the

scatter at this order is dominantly in the forwards direction for each topography, inspection of the

phase images in figure 7.20 (d), (h) and (l) suggest back-scattered secondary harmonic wave energy

is also generated. Since the forcing frequency satisfies σ/N > 1/3, no tertiary harmonic components

are predicted and their generation was not observed here.

Figure 7.21 shows results from harmonic filtering of ∆N2/N2 fields from experiments of su-

percritical scatter at (a-d) sinusoid TA, (e-h) sawtooth TG and (i-l) square-wave TK for θ/α equal

to 1.14, 1.10 and 1.16 and incident frequencies σ/N equal to 0.33, 0.35 and 0.33, respectively,

i.e. σ/N ≤ 1/2, in each case. As in figure 6.28, each image shows the incident wave energy prop-

agating from the top left-hand corner towards the topographic profile positioned at the bottom of

the image. Figure 7.21 (a), (e) and (i) show the amplitude fields from filtering for the primary

frequency and figure 7.21 (c), (g) and (k) are the corresponding phase fields. Similar forwards and

back-scattered wavefield structures to those discussed for sinusoid TA in section 4.5.1 and above

for sawtooth and square-wave topographies are evident in the amplitude and phase images of the

primary harmonic filtering shown in figure 7.21 (a,c), (e,g) and (i,k).

Figure 7.21 (b), (f) and (j) show the amplitude fields from filtering for the secondary harmonic

frequency, 2σ/N , and figure 7.21 (d), (h) and (l) are the corresponding phase fields. Again, as

noted above, a weak signature of the wavefield associated with the primary frequency is present

in the images produced after filtering the wavefields for the secondary harmonic as well as a sec-

ondary harmonic beam generated at the source, together with its reflection at the topography.
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Figure 7.20: Amplitude and phase images of temporal harmonics generated by supercritical scatter
at sawtooth, square-wave and knife-edge profiles TE , TJ and TL with σ/N = 0.38 and θ/α =
1.51, 1.51 and 1.46. RMST images of primary and secondary harmonics are shown in (a-b), (e-f)
and (i-j) respectively. Corresponding phase images are shown in (c-d), (g-h) and (k-l). Amplitude
maxima Mi have values of 5.4 × 10−2, 5.4 × 10−3 and 5.4 × 10−4 for i = 1, 2 and 3.

Maximum amplitudes of the components generated by scattering of the primary incident beam are

approximately second order in magnitude, with the largest amplitudes generated at the sawtooth

profile (c.f. figure 6.28, where the most prominent secondary harmonic wavefield was generated at
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Figure 7.21: Amplitude and phase images of temporal harmonics generated by supercritical scatter
at sinusoidal, sawtooth and square-wave profiles TA, TG and TK with σ/N = 0.33, 0.35 and 0.33,
θ/α = 1.14, 1.10 and 1.16. RMST images of primary and secondary harmonics are shown in (a-
b), (e-f) and (i-j) respectively. Corresponding phase images are shown in (c-d), (g-h) and (k-l).
Amplitude maxima Mi have values of 5.4 × 10−2, 5.4 × 10−3 and 5.4 × 10−4 for i = 1, 2 and 3.
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the sinusoid TA). As for the experiments relating to figure 7.20, the secondary harmonics for the

experiments shown in figure 7.21 are subcritical with values of θ2/α equal to 0.79, 0.72 and 0.80

for TA, TG and TK respectively. These harmonics decay less rapidly as the wave energy propagates

away from the topography than those for the secondary harmonics shown in figures 6.28 and 7.20.

Wave frequencies associated with figure 6.28 were close to N and hence, in these experiments, the

resulting small group velocities confined secondary harmonic wave energy near the boundary. In

contrast, the smaller frequencies and hence larger group velocities of the secondary harmonics in

figure 7.21 allowed the wave energy to ‘escape’ from the region near the topography and so a fur-

ther reaching secondary harmonic wavefield is therefore seen in this case. Also, secondary harmonic

wave energy with values of θ2/α as in experiments shown in figure 7.21 is less focused than the wave

energy associated with the scatter in figure 7.20 (b) and (d), for example, for which values of θ2/α

are closer to critical. Hence viscous attenuation of the wave energy is less pronounced at the smaller

values of θ2/α. In addition, the secondary harmonics shown for the scatter in figure 7.21 experi-

ence a weaker interaction with the corresponding forwards scattered primary component, due to

the supercritical nature of the scatter at first order, relative to that encountered by the secondary

harmonics generated during the subcritical scatter shown in figure 6.28, for which the forwards

scattered wavefield at first order is more pronounced. As for the subcritical cases of figure 6.28

and supercritical cases of figure 7.20, magnitudes of secondary harmonic wavefield perturbations

are greatest near corners of the sawtooth and square-wave topographies shown in figure 7.21, with

the sawtooth exhibiting the strongest wavefield. Again, scatter at this order is dominantly in the

forwards direction for each topography but inspection of the phase images of figure 7.21 (d), (h)

and (l) also indicates the presence of back-scattered secondary harmonic wave energy. The scatter

in this direction is also weakly visable in the corresponding amplitude images in figure 7.21 (b), (f)

and (j).

Tertiary harmonic component generation is also possible for the experiments shown with profiles

TA and TK in figure 7.21. However, as a consequence of the weak third order magnitude of the

perturbations associated with the tertiary harmonic wavefields, which rapidly became comparable

with levels of experiment background noise as this wave energy propagated away from the topogra-

phy, images produced after filtering at the frequency 3σ/N did not yield any clear signature for the

tertiary harmonics. This was also due in part to the limitations imposed by the finite temporal res-

olution of the experimental movies that caused signals from the primary and secondary harmonics

to leak into the filtered tertiary data.

7.5 Summary

This chapter has presented results from supercritical scatter at various sawtooth topographies and

compared these with scattering behaviour at analogous square-wave and pseudo knife-edge pro-

files. Only theoretical predictions of inviscid linear geometrical ray tracing have been available for

comparison to the experimental results, which predicted no forwards or back-scatter at the saw-
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tooth topographies. Contrary to these ray tracing predictions, both forward and back-scattered

supercritical wavefields were observed at the sawtooths, including scatter to higher wavenumbers.

Forward and back-scattered wavefields were most prominent as θ/α became closer to critical value.

In general, scatter at the knife-edge profile compared well with that of the sawtooth, whilst scatter

at the square-wave was more pronounced and followed different trends with increasing θ/α. The

similarities between behaviour at the sawtooth and knife-edge might be expected. Since the fluid is

not inviscid, the tips of the knife-edges of TL may effectively influence the wave motion as one topo-

graphic discontinuity, rather than as the two corners featured on the crests of the square-wave. In

this sense the knife-edge therefore behaves like the sawtooth, which also has one corner on each crest.

However, unlike the knife-edge, the slopes of the sawtooth focus wave energy down into the troughs

of the topography and hence weaken the scattered wavefields. Near-field features of the scatter,

such as the generation of mixed fluid at topographic corners, were most prominent for the sawtooth

and knife-edge. In particular, the intense high wavenumber scatter and enhanced energy densities

at the tips of the knife-edge, as compared with behaviour near the corners of the sawtooth, and

therefore promoted viscous attenuation of the wave energy as it propagated away. Hence, despite

the reductions in scattered wave energy propagating away from the topography caused by down

focusing into troughs of the sawtooth, far-field energy densities of the sawtooth and knife-edge are

comparable as a result of the enhanced viscous action in the region of the knife-edge. Observed

scatter at the square-wave and knife-edge also exhibit discrepancies with ray tracing predictions. To

some degree, the failure of the inviscid ray tracing to correctly model the scatter may be attributed

to the presence of thin boundary layers along the surface of the topography, which would act to

effectively change the dimensions of the profiles. As an illustration of how the coefficients might

be effected by this, figure 6.25 compares ray tracing predictions for square-wave profiles TK and TJ

and pseudo knife-edge TL with predictions for these profiles with an additional 1 mm along each

of their surfaces (dashed cyan, red and blue lines respectively). In addition, the ignorance of time

of the ray tracing method results in violations of the radiation condition. Experimental results of

near-critical scatter at various rough topographic profiles are described in the following chapter.
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Chapter 8

Near-critical rough topography

8.1 Overview

Chapters 6 and 7 discussed subcritical (θ/α < 1) and supercritical (θ/α > 1) scatter at sinusoidal,

sawtooth, square-wave and knife-edge topographies. Effects on forwards and back-scattered wave-

fields from varying θ/α and the topographic wavenumber, amplitude and aspect ratio of sawtooth

topographies were described, as well as the influence of topographic shape.

As the angle of incident wave energy propagation becomes closer to the angle of inclination of

topographic slopes, i.e. θ/α approaches the critical value of unity, inviscid linear ray tracing predicts

an increasing degree of focusing (see figure 6.6) of the wave energy that is incident on the slopes

of the sawtooth that are oriented with positive gradient (i.e. for wave energy incident between the

green and blue lines depicted on figure 6.5). Also, a smaller fraction is incident on the defocusing

slopes. The constriction of wave energy in this manner causes reductions in the associated length

scales of the wave motion in the direction perpendicular to that of the energy propagation and

hence results in scatter to increasingly higher wavenumbers as θ/α → 1. However, geometrical ray

tracing breaks down in this limit and there is an absence of theoretical predictions for the critical

case. As for the subcritical and supercritical cases presented in chapters 6 and 7, experimental and

numerical results of near-critical scatter at rough topographic profiles are also unprecedented. This

chapter discusses experiment results of scatter in near-critical, i.e. as θ/α→ 1, configurations.

8.2 Sawtooth topography

Results of near-critical scatter at sawtooth topographies are presented here.

8.2.1 Varying the wavenumber

This section discusses the effect on scattered wavefields of variation of the horizontal topographic

wavenumber, k̂T , for a fixed aspect ratio, ÂT k̂T , and hence topographic slope angle α.
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Comparison of near-critical scatter at sawtooths TD and TE

Sawtooth profiles TD and TE have approximately equal aspect ratios with values ÂT k̂T = 1.580

and 1.575, respectively, but are characterised by different horizontal topographic wavenumbers of

k̂T = 0.088 mm−1 and 0.175 mm−1. Length scales of the incident wavefield are compared with those

of TD and TE with the parameters kc/k̂T = 4.01 and 2.02, and ÂTkc = 6.34 and 3.18. Hence length

scales associated with TD are approximately twice those of TE . Chapter 7 compared supercritical

scatter at TD and TE . In contrast to inviscid ray tracing predictions, high wavenumber scatter was

measured in the supercritical conditions at each topography in both the forward and back-scatter

directions. The scatter is most prominent for the experiments with values of θ/α closest to critical.

Despite the higher topographic wavenumber associated with TE , the greatest proportion of high

wavenumber scatter was measured in the far-field of TD. This behaviour is attributed here to the

more rapid attenuation of scattered wave energy in the near-field of TE, which imposes smaller

length scales on the scattered wavefield than TD. Figure 8.1 shows far-field RMST images of scatter

at sawtooth profiles (a) TD and (c) TE for near-critical (marginally supercritical) values of θ/α equal

to 1.08 and 1.05 respectively. Corresponding zooms of the wavefields are shown in figure 8.1 (b)

and (d). Forwards and back-scattered wavefields are also evident at both topographies in these

near-critical configurations. Figure 8.1 (a) and (c) can be compared with those at larger values of

θ/α shown in figures 7.1 and 7.7. The near-critical scatter is similar in character to that observed at

larger θ/α but is associated with larger amplitudes in the far-field. As in the specular case, this can

be understood by geometrical ray tracing arguments for which reflecting rays are constricted more,

and hence wave energy focused more, as the inclination of group velocity vectors approach that of

the topographic slopes. Near-field energy densities are also more pronounced for the near-critical

cases (figure 8.1 (b) and (d)), with the largest amplitudes occuring near the sawtooth corners and

most dominantly for TD since more incident wave energy can be focused into each scattered ‘beam’

along the slopes of TD, which have greater surface areas than those of TE . Speeds associated with

the near-critical fluid motion for experiments at sawtooth TD are shown in figure 7.4 (a) and (c).

These are greatest at the smallest value of θ/α near the sawtooth corners and along the slopes

and characteristics emanating from the corners. As a consequence of the greater energy densities

and fluid speeds, the mixing feature described in earlier sections (e.g. figure 7.3) is promoted in the

near-critical configuration, and is particularly significant near the corners of TD (see figure 8.1 (b)).

Comparison of near-critical scatter at sawtooths TG and TH

Sawtooth profiles TG and TH have approximately equal aspect ratios with values ÂT k̂T = 0.783

and 0.785, respectively, but are characterised by different horizontal topographic wavenumbers of

k̂T = 0.087 mm−1 and 0.157 mm−1. Length scales of the incident wavefield are compared with those

of TG and TH with the parameters kc/k̂T = 4.06 and 2.25, and ÂTkc = 3.18 and 1.77. Hence

length scales associated with TG are approximately twice those of TH . Slopes of these sawtooth

profiles are shallower than those of sawtooths TD and TE , discussed above. Section 6.2.1 compared
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TD

(a) (b)

TE

(c) (d)

Figure 8.1: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TD and TE

with θ/α equal to (a-b) 1.08 and (c-d) 1.05 respectively. Fields of view shown in (a) and (c) measure
449 mm across and have unit aspect ratio. Colours are scaled as in figure 6.4. Corresponding zooms
by factor 24/7 and colours scaled with maxima 10% greater than the larger fields of view are shown
in (b) and (d).

subcritical scatter at TG and TH . In accordance with theoretical predictions based on inviscid

linearised boundary theory, high wavenumber scatter was measured in subcritical conditions at

each topography in both the forward and back-scatter directions. Far-field forward scatter is most

prominent for experiments with the smallest values of θ/α, i.e. furthest from the critical value,

whilst far-field back-scatter is most prominent for experiments with θ/α closest to critical. As

noted for scatter at sawtooths TD and TE , the greatest proportion of high wavenumber scatter is

measured in the far-field of the sawtooth characterised by the larger length scales, in this case TG.

Figure 8.2 shows far-field RMST images of scatter at sawtooth profiles (a) TG and (c) TH for the

near-critical (marginally supercritical) value of θ/α = 1.02. Corresponding zooms of the wavefields

are shown in figure 8.2 (b) and (d). Forwards and back-scattered wavefields are also evident for

near-critical conditions at both TG and TH . Figure 8.2 (a) and (c) compares qualitatively well with

scatter at smaller values of θ/α shown in figures 6.4 and 6.11. Amplitudes of forward scattered

wavefields are weakest in the near-critical case for both topographies, whilst those of back-scattered

wavefields are enhanced near-critical. As for sawtooths TD and TE , near-field energy densities are

most pronounced for near-critical configurations (figure 8.2 (b) and (d) and figure 6.9), at sawtooth

corners and for the sawtooth with the largest length scales, in this case TG.

In summary, both forward and back-scattered wavefields are generated in near-critical scattering

conditions at the sawtooth profiles considered. Far-field amplitudes of the forward scatter decrease

as θ/α increases from subcritical values towards critical, and decrease further as θ/α increases into
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TG

(a) (b)

TH

(c) (d)

Figure 8.2: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TG and
TH with θ/α equal to 1.02 in each case. Fields of view shown in (a) and (c) measure 449 mm across
and have unit aspect ratio. Colours are scaled as in figure 6.4. Corresponding zooms by factor 24/7
and colours scaled with maxima 10% greater than the larger fields of view are shown in (b) and (d).

supercritical values. By contrast, the far-field structure of back-scattered wave energy and near-field

amplitudes become more prominent as θ/α→ 1 from either sub or supercritical values. Comparisons

between pairs of topographies that have the same aspect ratios but different wavenumbers suggest

that near-critical far-field behaviour and high wavenumber scatter as well as near-field nonlinear

features are most pronounced for those topographies of the present study characterised by larger

length scales, i.e. TD and TG.

8.2.2 Varying the slope

This section discusses the effect on scattered wavefields of variation in the topographic wavenumber,

k̂T , and hence the topography aspect ratio, ÂT k̂T , and slope angle, α, for a fixed topographic

amplitude, ÂT .

Comparison of near-critical scatter at sawtooths TC , TE and TG

Sawtooth profiles TC , TE and TG have approximately equal amplitudes with values ÂT = 9.5, 9.0 and

9.0 mm, respectively, but are characterised by different horizontal topographic wavenumbers of k̂T =

0.197, 0.175 and 0.087 mm−1 and hence aspect ratios ÂT k̂T = 1.872, 1.575 and 0.783. Length scales

of the incident wavefield are compared with those of TC , TE and TG with the parameters kc/k̂T =

1.79, 2.02 and 4.06, and ÂTkc = 3.35, 3.18 and 3.18 respectively. As was observed in the results

presented above, inspection of sequences of experiments for scatter with subcritical and supercritical

values of θ/α at profiles TC , TE and TG indicates that far-field energy densities associated with the

forward scattered wave energy decrease with increasing θ/α, whilst those associated with the back-

scatter become less prominent as θ/α is decreased or increased from the critical value.
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TC

(a) (b)

TE

(c) (d)

TG

(e) (f)

Figure 8.3: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TC , TE and
TG with θ/α equal to (a-b) 1.06, (c-d) 1.05 and (e-f) 1.02 respectively. Fields of view shown in (a),
(c) and (e) measure 449 mm across and have unit aspect ratio. Colours are scaled as in figure 6.4.
Corresponding zooms by factor 24/7 and colours scaled with maxima 10% greater than the larger
fields of view are shown in (b), (d) and (f).

Figure 8.3 shows RMST images of scatter at sawtooth profiles (a) TC , (c) TE and (e) TG for

near-critical (marginally supercritical) values of θ/α equal to 1.06, 1.05 and 1.02 respectively. Cor-

responding zooms of the wavefields are shown in figure 8.3 (b), (d) and (f). There is little distinction

between back-scattered wavefields, and amplitudes of the near-field wave motion are also similar for

all profiles. Most notably for these profiles, far-field forward scattered energy densities are greatest

for TC , i.e. the profile with the largest horizontal wavenumber. In part, this may be a result of

the greater value of σ/N used for this experiment, which implies lower group velocities and hence

higher energy densities. It is also possible that since the corners of TC are so close together, with

this profile having the largest horizontal wavenumber and hence the largest number of topographic

corners per incident wave group, the influence of the mixed fluid expelled into the stratification

at the corners is more significant. It could be expected that a proportion of incident wave energy

reflects from the discontinuity introduced into the otherwise continuous background stratification

by the mixed fluid intruding from the corners (see also section 3.8.3) and hence promotes scatter
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TH

(a) (b)

TI

(c) (d)

Figure 8.4: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TH and TI

with θ/α equal to (a-b) 1.02 and (c-d) 0.99 respectively. Fields of view shown in (a) and (c) measure
449 mm across and have unit aspect ratio. Colours are scaled as in figure 6.4. Corresponding zooms
by factor 24/7 and colours scaled with maxima 10% greater than the larger fields of view are shown
in (b) and (d).

to the primary component rather than higher wavenumbers, which would be expected to attenuate

more rapidly by viscous action than corresponding scatter at TE and TG. In general, however,

the mixed fluid generated during experiments of the duration used in this study did not have a

significant influence on scattered wavefields (see figure 3.33).

Comparison of near-critical scatter at sawtooths TH and TI

Sawtooth profiles TH and TI have equal amplitudes of value ÂT = 10.0 mm but are characterised

by different horizontal topographic wavenumbers of k̂T = 0.157 and 0.117 mm−1 and hence aspect

ratios ÂT k̂T = 0.785 and 0.585. Length scales of the incident wavefield are compared with those of

TH and TI with the parameters kc/k̂T = 2.25 and 3.02, and ÂTkc = 1.77 respectively. Figure 8.4

shows RMST images of scatter at sawtooth profiles (a) TH and (c) TI for near-critical values of

θ/α equal to 1.02 (i.e. marginally supercritical) and 0.99 (i.e. marginally subcritical) respectively.

Corresponding zooms of the wavefields are shown in figure 8.4 (b) and (d). Section 6.2.1 compares

subcritical scatter at TH and TI . The trends described there include the near-critical case so that

the proportion of high wavenumber scatter propagating to the far-field is greatest for TI , despite

this profile having the smaller horizontal wavenumber, since viscosity preferentially attenuates small

length scales of the fluid motion. As for scatter at TC , TE and TG described above, little distinction

can be made between the near-critical back-scattered wavefields at TH and TI .

This section has discussed effects of variation in the topographic wavenumber, k̂T , for a fixed

topographic amplitude, ÂT . As values of kc/k̂T approach unity and below, wavefield behaviour,

such as those causing fluid mixing, occuring near topographic corners becomes more significant.

Local ‘steps’ introduced into the background stratification in the region of corners, which decrease

in strength with distance from corners, can reflect incident wave energy (as shown for a marginally
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Sawtooth profile

Figure 8.5: Schematic of rays (red and blue lines - incident from top left) reflecting specularly at
a discontinuity in the background stratification (green dashed line) near a corner of a sawtooth
topographic profile.

subcritical ray (blue) assumed to reflect specularly in the schematic of figure 8.5) and possibly trap,

and thereby focus, wave energy reflecting away from the topographic slopes near the corner (red

ray). As the number of corners per incident wave group increases with topographic wavenumber, a

greater proportion of incident wave energy reflects at the changes in background stratification in the

manner described rather than at the slopes of the topography. In addition, the high wavenumber

scatter that is generated at profiles characterised by the larger horizontal wavenumbers is acted on

more rapidly by viscosity than corresponding scatter at profiles with smaller wavenumbers. Hence,

for fixed topographic amplitudes, high wavenumber scatter measured in the far-field is greatest for

the profiles used in this study that are characterised by the largest horizontal length scales.

8.2.3 Varying the aspect ratio

This section discusses the effect on scattered wavefields of variation of topography aspect ratio,

ÂT k̂T , and hence slope angle α, for a fixed horizontal topographic wavenumber, k̂T .

Comparison of near-critical scatter at sawtooths TD and TG

Sawtooth profiles TD and TG have approximately equal topographic wavenumbers of values ÂT equal

to 0.088 and 0.087 mm−1 but are characterised by different aspect ratios of values ÂT k̂T = 1.580

and 0.783 and hence slope angles α = 45.0◦ and 63.5◦. Length scales of the incident wavefield are

compared with those of TD and TG with the parameters kc/k̂T = 4.01 and 4.06, and ÂTkc = 6.34

and 3.18 respectively. Figure 8.6 shows RMST images of scatter at sawtooth profiles (a) TD and

(c) TG for near-critical (marginally supercritical) values of θ/α equal to 1.08 and 1.02 respectively.

Corresponding zooms of the wavefields are shown in figure 8.6 (b) and (d). The near-critical wave

energy forward scattered at TD, i.e. the profile with the greater amplitude, is dominantly focused

into one beam like structure, whereas the forward scatter at TG is partitioned between a greater
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TD

(a) (b)

TG

(c) (d)

Figure 8.6: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TD and TG

with θ/α equal to (a-b) 1.08 and (c-d) 1.02 respectively. Fields of view shown in (a) and (c) measure
449 mm across and have unit aspect ratio. Colours are scaled as in figure 6.4. Corresponding zooms
by factor 24/7 and colours scaled with maxima 10% greater than the larger fields of view are shown
in (b) and (d).

number of such beams. The greater degree of focusing at the larger value of ÂT k̂T results in greater

near-field amplitudes, particularly near the topographic corners of TD. Consequently, the mixing

feature described in earlier sections is more prominent than for TG. There is little distinction

between back-scattered wavefields generated at the two profiles.

Comparison of near-critical scatter at sawtooths TE and TF

Sawtooth profiles TE and TF have approximately equal topographic wavenumbers of values k̂T

equal to 0.175 and 0.176 mm−1, respectively, but are characterised by different aspect ratios of

values ÂT k̂T = 1.575 and 1.144 and hence slope angles α = 45.0◦ and 54.0◦. Length scales of the

incident wavefield are compared with those of TE and TF with the parameters kc/k̂T = 2.02 and

2.01, and ÂTkc = 3.18 and 2.29, respectively. Figure 8.7 shows RMST images of scatter at sawtooth

profiles (a) TE and (c) TF for near-critical (marginally supercritical) values of θ/α equal to 1.05 and

1.02 respectively. Corresponding zooms of the wavefields are shown in figure 8.7 (b) and (d). The

smaller value of kc/k̂T associated with TE and TF , as compared with that for TD and TG, implies

that a wave group scattering at TE or TF encounters a greater number of topographic corners. As

discussed above, this might imply a greater proportion of scatter to the primary component in these

cases, instead of to higher wavenumbers, as wave energy reflects at mixed fluid patches generated

near the corners. As for comparisons of profiles TD and TG, greater focusing of the forwards scattered

wave energy is observed for the topographic profile with the largest amplitude and hence aspect
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TE

(a) (b)

TF

(c) (d)

Figure 8.7: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth profiles TE and TF

with θ/α equal to (a-b) 1.05 and (c-d) 1.02 respectively. Fields of view shown in (a) and (c) measure
449 mm across and have unit aspect ratio. Colours are scaled as in figure 6.4. Corresponding zooms
by factor 24/7 and colours scaled with maxima 10% greater than the larger fields of view are shown
in (b) and (d).

ratio, i.e. TE rather than TF . However, there is little distinction between near-field features and

back-scatter at these profiles.

The variation of amplitude, and hence aspect ratio, of topographies for a fixed topographic

wavenumber essentially controls the distribution of the scattered wave energy in physical space.

Larger topographic amplitudes result in wave energy being focused into a smaller region (i.e. narrower

BF ). This increases near-field amplitudes and hence promotes nonlinear behaviour and instability

near the topographic corners. The larger shear associated with larger wave amplitudes implies

that viscous attenuation is enhanced and so high wavenumber scatter measured in the far-field is

reduced.

8.3 Topographic shape

This section discusses the effect on scattered wavefields in the limit θ/α → 1 of variation of the

topographic shape.

8.3.1 Curves versus corners

Sinusoid TA and square-wave TK are approximately analogous to sawtooth profile TG. In depth

descriptions of scatter at these profiles for marginally subcritical values of θ/α were given in sec-

tion 6.3. It was deduced that, contrary to inviscid linear geometrical ray tracing predictions, trends
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TA
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TG

(c) (d)
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(e) (f)

Figure 8.8: RMST images of ∆N2/N2 fields for near-critical scatter at sinsoid TA, sawtooth TG and
square-wave TK with θ/α equal to (a-b) 1.01, (c-d) 1.02 and (e-f) 0.99 respectively. Fields of view
shown in (a), (c), (e) and (g) measure 449 mm across and have unit aspect ratio. Colours are scaled
as in figure 6.4. Corresponding zooms by factor 24/7 and colours scaled with maxima 10% greater
than the larger fields of view are shown in (b), (d) and (f).

for scatter at the sinusoid and square-wave are strongly analogous to those for the sawtooth and

scatter at each profile correlates well with predictions made by inviscid linearised boundary theory

for the sinusoid. However, the influence of viscosity, which varies according to the profile shape,

modifies energy density spectra for the scattered wavefields, causing the greatest discrepancies with

theory as θ/α approaches critical. As a consequence of the large degree of focusing at the sawtooth

slopes and corners, viscous action is most pronounced on wave motion associated with TG so that

far-field measurements of proportions of high wavenumber scatter are the least significant for this

profile whereas near-field features, such as the generation of mixed fluid, are the most prominent.

Figure 8.8 shows RMST images of scatter at (a) sinusoid TA, (c) sawtooth TG and (e) square-wave

TK for near-critical values of θ/α equal to 1.01 (i.e. marginally supercritical), 1.02 (i.e. marginally

supercritical) and 0.99 (i.e. marginally subcritical) respectively. Corresponding zooms of the wave-

fields are shown in figure 8.8 (b), (d) and (f). Wavefield behaviour for the near-critical experiments

shown here is consistent with the trends reported for subcritical θ/α in section 6.3. For each to-

pographic shape, proportions of high wavenumber forwards scatter measured in the far-field are
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comparable with those of the back-scatter in near-critical conditions. The most pronounced wave-

field in the far-field is measured for the square-wave since the focusing of wave energy along the

slopes (absent for TK) of the sinusoid and sawtooth enhances viscous attenuation of the scattered

wavefields generated at these profiles. Near-field behaviour for TG, most significant in near-critical

conditions, was presented in section 6.3. The mixing feature is most pronounced for the sawtooth,

near topographic corners, and is least evident in the square-wave case. Scatter to higher temporal

harmonics at TA , TG and TK for marginally subcritical values of θ/α was discussed in section 6.3.

8.3.2 Corners versus knife-edges

Square-wave TJ and knife-edge TL are approximately analogous to sawtooth profile TE . In depth

descriptions of scatter at these profiles for supercritical values of θ/α were given in section 7.3.

Measured scatter does not correlate well with ray tracing predictions for any of the profiles in

supercritical conditions. In particular, forwards and back-scattered wavefields are observed at the

sawtooth. Scatter at the knife-edge compares qualitatively well with that at the sawtooth, with

forwards and back-scatter most significant near-critical. Forward scatter at the square-wave follows

a similar trend to that of the sawtooth and knife-edge, but there is some contrast between the back-

scattered fields. In addition, back-scatter at the knife-edge becomes greatly enhanced near-critical

values of θ/α. Near-field mixing features are also enhanced in this limit, being the most prominent

near knife-edges and sawtooth corners.

Figure 8.9 shows RMST images of scatter at (a) sawtooth TE , (c) square-wave TJ and (e)

pseudo knife-edge TL for near-critical (marginally supercritical) values of θ/α equal to 1.05, 1.05

and 1.02 respectively. Corresponding zooms of the wavefields are shown in figure 8.9 (b), (d) and

(f). Wavefield behaviour for the near-critical experiments is consistent with the trends reported

in section 7.3 for supercritical θ/α. The most dramatic features to note are that of the strong

back-scatter and also the near-field mixing near the knife-edge (figure 8.9 (e) and (f)), which are

not observed to this degree at the other profiles. Another point to note is the close proximity of

adjacent corners of the square-wave profile as compared with the spacings of corners on the other

profiles. Any mixing occuring at the square-wave corners, though observed to be less than at the

other profiles, may therefore have a more significant influence on the far-field scatter. In a similar

manner to that illustrated by the schematic of figure 8.5, wave energy can reflect directly at any

steps in the background stratification introduced at the topographic corners. Hence this might

cause enhanced proportions of scatter to the primary wavenumber component at the square-wave

topography and, correspondingly, reductions in high wavenumber scatter there.
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Figure 8.9: RMST images of ∆N2/N2 fields for near-critical scatter at sawtooth TE , square-wave
TJ and knife-edge TL with θ/α equal to (a-b) 1.05, (c-d) 1.05 and (e-f) 1.02 respectively. Fields of
view shown in (a), (c), (e) and (g) measure 449 mm across and have unit aspect ratio. Colours are
scaled as in figure 6.4. Corresponding zooms by factor 24/7 and colours scaled with maxima 10%
greater than the larger fields of view are shown in (b), (d) and (f).

8.4 Summary

This chapter has presented unprecedented experimental results of scatter at rough periodic topo-

graphic profiles in near-critical configurations. These results represent the limiting case, i.e. θ/α→
1, of the subcritical, θ/α < 1, and supercritical, θ/α > 1, behaviour described in chapters 6 and

7. The most significant observation as θ/α approaches critical is the enhancement in near-field

dissipation and back-scatter, particularly at the knife-edge profile. This behaviour corresponds to

a decrease in far-field scatter. As in the subcritical and supercritical configurations, the significant

influence of viscosity on the evolution of the scattered wavefields has been highlighted. In particular,

the form of scattered wavefields in the near and far-fields is subtly controlled by the combination

of parameters comparing length scales of the topography and incident wavefield together with the

relative degrees of viscous attenuation these parameters induce. In addition, the complexity of the

scatter is increased by the presence of topographic corners and mixing in the near-field, as well as

scatter to higher temporal harmonic components.
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Chapter 9

Conclusions

This thesis has studied scattering behaviours of internal gravity waves using experimental ap-

proaches. Where possible, comparisons have been made between results from this study and the

predictions of existing linear theory.

The experimental component of this research employed synthetic schlieren and PIV techniques.

In order to accurately capture the phenomena being investigated, the visualisation methods were

required to provide data with high spatial resolutions. To this end, careful customisations and

optimisations of the techniques were made. In particular, these included damping of superfluous

wavefields at the tank boundaries, precise alignment and rigorous tests to ensure an optimal camera

setup and the minimisation of sources of light, heat and vibration in the surrounding environment.

The use of artificial pearlescence in PIV experiments was tested with the aim of improving the

spatial resolutions achievable for velocity measurements in this study and also as a technique for

obtaining high resolution data with PIV in more general stratified contexts. Experiments were

performed to observe two-dimensional wavefields generated by oscillating cylinders of various ellip-

tical and rectangular cross-sections as well as reflection of internal wave beams at horizontal and

sloping boundaries, a slowly varying curved boundary and a total of twelve sinusoidal, sawtooth,

square-wave and pseudo knife-edge periodic rough topographic profiles. Very few of the phenomena

reported here have been investigated in previous experimental studies and hence most of the results

of the present research are the first of their kind.

9.1 Summary of results

9.1.1 Wave generation by oscillating cylinders

Results of wave generation by elliptical (including circular) and rectangular (including square)

cylinders were presented in chapters 3 and 5. The form of wavefields generated in this manner

are controlled by the parameters σ/N and Ac/Dc as well as the shape and aspect ratio of the

cylinders. The frequency ratio σ/N controls the slope and magnitude of group velocity vectors and

defines regimes for which propagating higher temporal harmonics may be generated. The amplitude
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parameter Ac/Dc determines amplitudes, and hence stability, of the generated wave motion and

the proportion of wave energy scattered to higher harmonics. Incident wavefields of this study are

very small amplitude and are essentially linear, but still show some evidence of nonlinear effects.

Previous studies have described wavefield generation by circular and square cylinders but the results

presented here are of higher resolution than these studies and have been presented for a wider range

of parameter values. Generation by elliptical and rectangular cylinders has not been documented in

previous experimental studies. Results have been compared here with the linear theory of Hurley

& Keady (1997).

Energy densities associated with the generated primary, secondary and tertiary harmonic wave-

fields increase with aspect ratios of the cylinders and, specifically, are focused along characteristics

passing through corners or that are tangent to regions of high curvature along the surface of the

cylinders. Length scales imposed on the wavefields are therefore determined by the across-beam lo-

cations of these characteristics, which, for a given cylinder, varies with σ/N . The regions of focused

wave energy correspond with the generation of high wavenumber components, particularly at the

corners of square and rectangular cylinders. The synthetic schlieren technique used in the experi-

ments yields measurements of perturbations to gradients of the density field and so the method is

sensitive to high wavenumber components. The preferential action of viscosity on high wavenumber

components of the wave motion significantly modifies the wavefields as energy propagates to the far-

field. Consequently, maxima of measured far-field energy density spectra are greatest in wavefields

associated with elliptical cylinders. Conversely, near-field features such as mixed fluid generation

observed near corners, regions of high curvature and vertical extremities of the cylinders are most

prominent for the rectangular cylinders.

9.1.2 Reflection at horizontal and sloping boundaries

Results of reflection of internal gravity wave beams at horizontal boundaries and those inclined

with an angle α relative to the vertical were described in chapter 4. Such configurations have

been reported previously. However, as for the experiments of wavefield generation by cylinders, the

present study provided results of higher resolution and over a wider range of parameter values. The

results have also been analysed here in a more rigorous quantitative manner, including comparisons

made with linear theory of Phillips (1966) together with simple adaptations to approximate the

effects of viscous attenuation.

The slope parameter θ/α introduces sub-, near- and supercritical regimes defined for values

θ/α < 1, θ/α ≈ 1 and θ/α > 1 respectively. In general, sub- and supercritical experiments agree

qualitatively with inviscid geometrical ray tracing predictions, though discrepancies owing to viscous

attenuation of the wavefields are observed. As θ/α → 1, ray tracing predicts greater focusing of

incident wave energy and scatter to higher wavenumbers but the technique breaks down in the

critical limit. This is illustrated by the observation of disturbances in near-critical experiments that

propagate in both upslope and downslope directions. In addition, boundary layer structures, which
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may mix fluid locally in more sustained wavefields, are seen to develop in near-critical configurations.

The latter observations are consistent with those for experiments of Cacchione & Wunsch (1974) at

similar values of Re .

9.1.3 Scatter at slowly varying topography

Chapter 4 also described original experiments of scatter at a section of cylindrical boundary, which

was characterised by a constant radius of curvature, RT , such that RT /Dc = 2.85. In contrast to ray

tracing predictions, the experiments illustrated configurations with split-reflection and diffraction,

which are predicted at critical points of the boundary by Baines (1971b), and back-scatter, predicted

by Sandstrom (1972). Generation of mixed fluid was also observed in the near-field over longer

experimental runs.

9.1.4 Scatter at rough topographic profiles

Scatter at rough periodic topographic profiles was described in chapters 6-8. Behaviour at sinusoidal,

sawtooth, square-wave and pseudo knife-edge profiles has been discussed and compared with inviscid

linear predictions of geometrical ray tracing and an inviscid linearised boundary theory of Baines

(1971a), requiring ÂT k̂T ≪ 1, for a sinusoidal boundary.

Contrary to ray tracing predictions but consistent with the work of Baines, both forward and

back-scattered wave energy is observed in purely subcritical scatter at sinusoidal boundaries with

ÂT k̂T ∼ 1. Energy density spectra suggest scatter to primary, i.e. characterised by the incident

wavenumber kI , sum, i.e. (kI + kT ), and difference, i.e. |kI − kT |, components as predicted by

Baines (1971a). Unpredicted higher wavenumber scatter is also seen in the back-scattered spectra.

Viscous attenuation, particularly of higher wavenumber scatter, causes additional discrepancies

between measured and predicted far-field energy density magnitudes. As a consequence of the more

rapid diffusion of smaller length scales of the wave motion, despite the prediction of scatter to

higher wavenumbers at the sinusoid characterised by smaller length scales, a larger proportion of

high wavenumber scatter is observed in the far-field of the larger scaled sinusoidal profile.

The spectral behaviour observed for experiments with the sinusoid is very similar to that mea-

sured in subcritical scatter at an analogous sawtooth profile. As in experiments investigating wave

generation by rectangular cylinders, a significant proportion of incident wave energy is scattered to

high wavenumber components at sawtooth corners, which propagate away from the boundary along

all characteristics passing through the corner (see Baines 1971b and Sandstrom 1972 predictions

for split-reflection, diffraction and back-scatter at isolated boundary features). The relatively small

group velocities associated with these components allows energy to accumulate near the corners of

the topography and nonlinear scatter to higher harmonics as well as the generation of mixed fluid

are seen in these regions as a result. In addition to this enhanced dissipation in the near-field, the

high wavenumber components are attenuated rapidly (with wave energy dissipating as ∼ νk3N per

unit length) as they propagate away from the boundary, so that subcritical far-field energy densities
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associated with the sawtooth are significantly less than those measured for the sinusoid.

Despite ray tracing calculations of forward and back-scatter coefficients for sawtooth profiles

predicting wave trapping with CF = CB = 0 in supercritical conditions, scatter in both of these di-

rections is observed in experiments. Forwards spectra indicate the presence of primary wavenumber

components. The presence of high wavenumber components, which introduce small across-beam

length scales into the forwards and back-scattered wavefields, are also observed in RMST images

of the experiments. However, energy densities associated with high wavenumber scatter are often

too small to produce significant signatures in spectra for the forwards and back-scatter, in part

as a consequence of the rapid viscous attenuation of these components. Contrary to ray tracing

predictions, magnitudes of forwards scatter to high wavenumbers observed in the far-field decrease

as θ/α increases, whereas those for the back-scatter increase as θ/α approaches critical from ei-

ther sub or supercritical values. Correspondingly, near-field mixing features are also enhanced as

θ/α→ 1. Ray tracing fails to predict the observed behaviour because of its localised treatment, in

both space and time, of individual rays. Ray tracing assumes that each ray contacting a boundary

responds independently of adjacent rays, reflecting specularly according to the local slope of the

boundary. This independence discards the phase information between rays and, critically, the time

information, rending the approach blind to causality, i.e. rays reflecting at rough boundaries can

violate the radiation condition. In reality, adjacent rays within a wave group are coupled by factors

such as finite Reynolds numbers, nonlinear wave interaction and, by the inclusion of time, causality.

One influence of these factors is the introduction of back-scattered components.

In general, though there are exceptions, scatter at square-wave and pseudo knife-edge profiles

also compare well with that for the sinuoid and sawtooth but do not agree with ray tracing pre-

dictions. Focusing of wave energy at the tips of the knife-edge is more intense than that observed

at the sawtooth, yielding larger near-field energy densities and dissipation. Another interesting

distinction for the behaviour of scatter at the knife-edge is the pronounced back-scattered wavefield

generated as θ/α→ 1, which is significantly more prominent than that for the analogous sawtooth

or square-wave profile. The knife-edge profile can be viewed in a number of different ways. One of

these is as a square-wave profile in the limit where the width of the crests of the square-wave tend

to zero, hence bringing the two corners close together. In this limit, the high wavenumber scatter

introduced by the knife-edge can be understood to be the equivalent of the high wavenumber scatter

contributions from two corners. Consequently, a greater proportion of wave energy accumulates in

the region of the knife-edge than at each corner of a square-wave, leading to enhanced nonlinear

and dissipative behaviour there. Alternatively, the knife-edge can be viewed as a limiting case of

a periodic profile with trapesoidal shaped troughs. In this scenario, the knife-edge represents the

limiting case of a single corner atop two sloping boundaries as the slopes tend to vertical. The

sawtooth is another limiting case of this profile. The former description seems the most consistent

with the behaviour observed.

Scatter at the sawtooth profiles has been investigated for the variation of several parameters.

These include the topography aspect ratio ÂT k̂T as well as ratios of length scales characterising
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the incident wavefield and the topography: ÂTkc and kc/k̂T . For a fixed aspect ratio, but variation

of topographic length scales, it was found that observed high wavenumber scatter in the far-field

was greatest for the profile characterised by the larger length scales. This is a result of enhanced

viscous attenuation of wave energy scattered to smaller scales at the smaller scale profile. An

increase in aspect ratio for a fixed topographic wavenumber yielded more focused wavefields in the

near-field. This enhanced both near-field dissipation and mixing at the topographic corners, as

well as viscous attenuation of wave energy as it propagated to the far-field due to greater shear

associated with larger wave amplitudes. Hence observed high wavenumber forward scatter was

the least in the far-field of profiles characterised by larger amplitudes. An increase in aspect ratio

for a fixed topographic amplitude resulted in different behaviour depending on the value of k̂T .

For large k̂T (i.e. small kc/k̂T ∼ 1), corners of the topography were close enough for a significant

proportion of the incident wave energy to reflect at the local step in the background stratification

introduced by the mixed fluid generated at the corners. Consequently, far-field forward scatter for

such profiles exhibited a greater proportion of the primary component and hence a smaller degree

of high wavenumber scatter. For larger topographic wavenumbers, enhanced viscous dissipation

of wave energy scattered from the profiles imposing larger wavenumbers on the wavefield reduced

the proportion of high wavenumber scatter measured in the far-field relative to that for a profile

characterised by a smaller wavenumber. However, with each parameter variation, little change was

observed between back-scattered wavefields.

In summary, linear geometrical ray tracing predictions have not provided reliable descriptions

of the wavefields studied here at any value of θ/α. However, the inviscid linearised boundary theory

of Baines (1971a) for a sinusoidal boundary compares qualitatively well with subcritical wavefields

generated at sinusoid, sawtooth, square-wave and knife-edge profiles, despite the relaxation of the

conditions ÂT k̂T ≪ 1 and ÂTkc ≪ 1. The presence of topographic corners have been shown to

have a significant effect on the form of scattered wavefields. Wave energy scattered at a corner is

focused along characteristics passing through the corner. The associated high wavenumber scatter

is subject to rapid viscous attenuation and hence fluxes to the far-field are reduced. Accumulation

of energy near topographic corners due to the small group velocities of scattered high wavenumber

components results in large energy densities that promote nonlinear behaviour and mixing there.

These effects appear to be enhanced at ‘sharper’ corners, with near-field dissipation consistently

observed to be greater for the knife-edge profile than for the sawtooths. As the separation between

topographic corners is reduced (i.e. kc/k̂T → 0), the near-field mixing features cause a significant

proportion of incident wave energy to reflect directly at local changes induced in the stratification

at the vertical level of the corners, hence modifying far-field scatter.

9.2 Future work

The work presented in this thesis has highlighted the complex nature of scatter at both smooth

and rough topographies. Consequently, there is great scope for development of this research, as
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discussed here.

9.2.1 Extensions of experimental work

Investigations of wave phenomena always benefit from improvements in both spatial and temporal

resolutions of the data collected in experiments. In particular, in the present context, enhanced

spatial data could be used to better resolve scattering behaviour and mixing at topographic corners

and of fluid motion in boundary layers along topography, whilst more temporal information would

allow a more detailed study of scatter to higher temporal harmonics as well as permit filtering of the

primary harmonic wavefield to remove high frequency background noise. Greater spatial resolution

could be achieved if a dot mask with smaller dots was generated and additional measures taken to

control the environment surrounding experiments in order to accomodate the resulting increase in

sensitivity of the synthetic schlieren technique. The PIV method described could also be refined

and optimised further. Temporal resolutions are easily improved by image capture at larger frame

rates. The frame rate used in this study was restricted by capacities available to store and analyse

the amount of data generated. Phase locking the camera with the oscillating cylinder would also

produce cleaner harmonic analyses of the wavefields.

The experiments possible in the present study were also constrained by the geometry of the

tank. A wider range of parameter values could be investigated with the use of a taller and longer

tank. In addition, an alternative method of wave generation for the purposes of analysing wave

reflection and scatter might be the use of a camshaft mechanism such as that described by Gostiaux

et al. (2007), which generates plane waves that have more distinct spectra than those of wave beams

generated by oscillating cylinders (see discussion in section 3.6). However, wave beams are prevalent

in the environment and hence their use was preferred here. The experiments themselves could be

extended to determine scattering behaviours at other topographic profiles, having different shapes

and dimensions to those used in the present study. In particular, the influence of corners could

be studied in more detail by the use of topographic profiles consisting of isolated, rather than

periodic, smooth bumps, sawtooths, square-waves and knife-edges of various dimensions. Other

possibilities include scatter at rough profiles inclined with a net slope or scatter with a nonBoussinesq

or nonlinear background stratification or with a mean flow. Viscosity has been shown here to be a

dominant mechanism of wave dissipation and hence investigation of larger Reynolds numbers could

be conducted. Experiments could also be made of scatter of large amplitude wavefields in order

to study nonlinear wavefields, wave breaking and the generation and long term evolution of mixed

fluid. Specifically, it would be interesting to establish how fast a topographic trough must drain

of mixed fluid generated there before it were to effectively become isolated from the surrounding

stratification. In addition, even if the stratification within a trough were modified so that σ/N > 1

there, then how would the interaction of exponentially decaying modes with topography affect the

scatter if ÂTkc < O(1) (i.e. evanescent wave energy interacting with relatively shallow topography)?

In reality, benthic topography is three-dimensional, and ideally, all the concepts described above
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would be extended to three-dimensions. Experimentally, this would require significant development

of visualisation techniques. Initially, a good starting point for such a study would be to consider

scatter at an isolated axisymmetric hill. Studies could also look at scatter at isolated hills of various

shapes, such as cubes, pyramids and irregular hills, or scatter at arrays of hills.

Analysis of the data collected in the present study could be extended to include evaluations of

mixing in the near-field of topographies by calculations of diffusivities. Energy flux calculations

could also be made in order to quantify scatter of wave energy to the far-field in each of the various

directions. A greater use could be made of Hilbert transforms, and similar techniques, to decouple

wave modes propagating in different directions.

9.2.2 Extensions of theoretical work

Existing theories describing scatter of internal gravity waves primarily include inviscid linear geo-

metrical ray tracing and the inviscid linearised boundary theory of Baines (1971a). Limitations in

the applicability of each these have been discussed in earlier chapters. In particular, the significance

of viscosity in modifying wavefields has been emphasised and so viscous adaptations of the theory

are desirable. Other important advances would include the extension of Baines’ work to parameter

values of ÂT k̂T ∼ O(1) and kc/k̂T ∼ O(1) and also a theoretical model for scatter at a periodic

profile featuring sharp corners, such as a sawtooth. Preliminary work (not presented in this thesis),

which adds causality to geometrical ray tracing arguments, suggests that if ray tracing predicts a

discontinuity in wavenumber and/ or amplitude in the reflection of a monochromatic incident wave

then scattered components propagating in non specular directions are generated in order to avoid

a violation of the radiation condition.

9.2.3 Numerical work

A complementary numerical study was also conducted alongside the present research. Whilst the

numerical simulations are not discussed in detail in this thesis, they are the subject of ongoing work

and a brief overview of this aspect of the research and example results are given here.

The numerical component of the study involved the development of a code that used a stream

function-vorticity formulation of the two-dimensional nonlinear Boussinesq equations of motion

within a finite volume scheme. Internal waves were forced through the introduction of a patch

of vorticity within the domain. Scattering behaviours of the waves have been observed at step

and sawtooth topographies and artificial seeding of vorticity near topographic corners (to remove

the velocity singularity and satisfy the Kutta condition) has been applied in order to evaluate the

influence of flow separation on scattered wavefields. A significant challenge in the development

of the numerical method was in the choice of boundary conditions that allowed wave energy to

propagate ‘transparently’ through the regions of the domain boundary that were not specified as

topography and the suppression of aliasing problems near topographic corners. This has been done

successfully with the use of a combination of damping profiles for both the vorticity and perturbed
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density fields across the numerical domain, effectively creating a numerical ‘sponge’ to dissipate the

wave energy without significant reflections. Examples of some of the simulations possible with this

numerical model are given here.

Transient ‘start-up’ motion

Figure 9.1 shows perturbed buoyancy frequencies for transient ‘start-up’ wavefields generated by

the numerical internal gravity wave source located at the centre of the field of view and oscillat-

ing with frequency σ/N = 0.54 for times t = 1T, ..., 9T after the oscillation was initiated. The

wavefields compare well with those generated in experiments by an oscillating circular cylinder (see

figure 3.14), except that the structure of the numerical wave beams are unimodal everywhere, rather

than bimodal as observed near oscillating cylinders in experiments. This is due to the continuous

form of the numerical vorticity source profile, which does not introduce discontinuities into the

wavefield at its edges.

Scatter at step topography

Figure 9.2 (a) shows an RMST image of the perturbed buoyancy field from numerical simulation of

the scatter of an established wave beam of frequency σ/N = 0.54, generated near the centre of the

left-hand side of the domain, incident at a single step topographic profile, located in the bottom

right-hand corner of the domain. The Kutta condition is not applied at the corners in this example.

A second wave beam is generated at the wave source that propagates upwards and to the right.

The successful removal of this superfluous beam as well as others generated at the source by the

diffusive boundary conditions can be observed near the top and left boundaries. A large proportion

of the wave energy incident at the topography reflects specularly at the vertical section of the step.

Wave energy reflected downwards is rapidly dissipated by the ‘sponge’ boundary conditions imposed

at the lower boundary of the domain (thus avoiding any upward reflection from this boundary).

High wavenumber scatter is observed in the region of the step corner, resulting in lowered group

velocities and the associated accumulation of energy there. As observed in experiments at piece-

wise linear rough topographic profiles, scattered wave energy propagates away from the corner along

characteristics in three directions, with wave amplitudes rapidly attenuated in these directions by

diffusive terms imposed across the domain.

Figure 9.2 (b) shows an RMST image of the perturbed buoyancy field for the scatter of a similar

wavefield at a four step ‘staircase’ topographic profile, again located in the bottom right-hand

corner of the domain. Incident wave energy in this case becomes back-reflected through multiple

reflections with the horizontal and vertical sections of the steps, as well as being back-scattered at

the topographic corners in the manner observed at the isolated step in figure 9.2 (a). Consequently,

a strong back-scattered wavefield is seen for the staircase profile, superposed with the incident

wavefield. The largest energy densities are again observed at the corners of the steps.
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Figure 9.1: Sequence of transient start-up wavefield at times t = 1T, 2T, ..., 9T s. The cylinder
oscillation was initiated at t = 0T s with T = 11.64 s and σ/N = 0.54. Simulations run at domain
resolution of 1024×1024. Smaller regions with resolutions 915×787 are shown for direct comparison
with figure 3.14.
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(a) (b)

Figure 9.2: RMST images of ∆N2/N2 from numerical simulations of scatter with σ/N = 0.54 at
(a) an isolated step and (b) a four step staircase topographic profile. Colour scale as in figure 6.4,
with amplitude maxima 2 × 10−2 and topography shaded in black. Simulations run at resolutions
of 512 × 512, with whole domain shown.

Extensions of numerical work

A continuing problem in numerical investigations of stratified fluids is in the determination of

satisfactory open boundary conditions. These are particularly important in studies of scattering

behaviours of internal gravity waves. Whilst a specific combination of diffusive profiles has been

used in the simulations shown above, a more general boundary condition is desirable. The boundary

conditions used here also had a significant impact on the available resolution since the ‘sponge’ was

necessarily multiple times the wavelength in thickness. Numerical models could also be developed

to accomodate other topographic shapes. The numerical model described here has been adapted

for scatter at square-wave topographic profiles and also, after rotating the domain through an angle

of 45◦, sawtooth profiles.

9.3 Geophysical and environmental implications

Application of results discussed in this thesis to environmental contexts, such as in quantifying ocean

mixing resulting from internal gravity wave scatter at benthic topography (see section 1.3), requires

a detailed knowledge of the topography in question. Ocean bathymetry is typically composed of

a broad range of scales and slopes with features such as sharp corners. In practice, a detailed

description of the bathymetry is generally not available, and neither feasible to collect nor employ

in numerical simulations. Ideally, both due to the resolution limitations of bathymetry maps and

283



9. Conclusions 9.3. Geophysical and environmental implications

for efficiency in calculations, bathymetry would be divided into larger regions that are defined

by particular characterising properties, such as large abyssal plains with gentle undulations, deep

canyons, large scale ridges, continental shelves, jagged topography, etc. Statistical methods could

then be used to approximate the associated mixing in each of these regions based on knowledge of

scattering properties of internal gravity waves at the typical profiles. The level of detail required

remains an open question. When does a staircase look like a smooth slope? A rough bottom

like a smooth one, etc. It is pertinent to ask, therefore, what generalisations can be made about

scattering behaviours and the associated dissipation of wave energy for the topographies discussed

in the present study? This is addressed here.

Results presented in this thesis have highlighted the complex nature of scatter at rough topo-

graphic profiles. Wave energy can be scattered spatially in forwards and backwards directions, as

well as to higher temporal harmonic components. Wave energy can be dissipated in the near-field,

generating mixed fluid there; through viscous attenuation of the wavefields as they propagate away

from the boundary; or by instability and breaking (see section 1.2.3) of the scattered wavefields

remote from the boundary, i.e. in the far-field. The evolution of mixed fluid generated either in

the near-field or the far-field, by wave breaking, was discussed in section 1.2.3. How and where the

energy is dissipated is subtley controlled by the shape and length scales of the topographic profile.

Some generalisations are possible however.

Scatter at topographic profiles characterised by small horizontal length scales, i.e. kc/k̂T < O(1),

is largely similar to specular reflection observed at a horizontal boundary. In such cases, crests of

the topography are sufficiently close to one another for almost all, if not all, incident wave energy

to reflect directly off local steps in the background stratification caused by mixed fluid generated in

the crest region, isolating the detailed topographic features. Consequently, scatter at profiles of this

type is dominantly conservative of wavenumbers associated with the incident wavefield. Apart from

a small proportion of dissipation associated with near-field mixing, the incident wave energy, subject

to viscous attenuation, is scattered to the far-field and is unlikely to develop instabilities and break

unless it is destabilised by e.g. focusing at a local change in the buoyancy frequency, N , there. A

mean slope of the topography can change this picture however. In the limit of a rough vertical wall,

there would be no filling of the topography, but there would still be mixed layers propagating away,

decaying as they do so. The layers themselves could produce scattering as discussed in section 1.2.3.

The present study concentrates on profiles characterised by kc/k̂T ∼ O(1). Near-field dissipation

of wave energy and generation of mixed fluid there are the most pronounced for near-critical values

of θ/α, at knife-edge and sawtooth profiles, and for larger values of ÂT k̂T and ÂTkc. As in the

case of profiles characterised by small horizontal length scales, the generation and accumulation of

mixed fluid in the near-field of the topography modifies the scatter by, to some extent, isolating

topographic features from the incident wavefield. In this case, however, the effects of changes in

the local stratification are likely to be more variable in time, with the behaviour dependent on

the relative rates of generation of mixed fluid near the topography and its spreading, or ‘draining’,

laterally into the surrounding stratification (see section 1.2.3). Scattering behaviour may assume
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cycles where mixed fluid is generated at the topography and gradually accumulates, with the step in

stratification isolating a large portion of the boundary from the incident wavefield. Hence near-field

mixing generated during wave scatter decreases whilst the accumulated fluid drains. This coincides

with a greater proportion of scattered energy being reflected, almost specularly, to the far-field, so

that wave energy dissipation at this stage predominantly occurs remotely from the boundary. At

some point, the local form of the stratification is restored sufficiently by fluid draining for the net

rate of near-field mixed fluid generation to increase once more and the accumulation period of the

cycle is resumed. Such temporal variations clearly add greater complexity to the scattering problem

as a whole.

Measurements of forward scattered wave energy and high wavenumber scatter in the far-field

are largest for smaller values of θ/α (i.e. subcritical regime) as well as for larger values of ÂT k̂T

and ÂTkc, with little distinction between scatter at different topographic shapes. It might therefore

be expected that scatter in these configurations would be associated with the greatest amount of

far-field mixing. Viscous attenuation of the wave energy has been shown to have some stabilis-

ing influence on the scattered wavefield evolution by its preferential erosion of high wavenumber

components. Figure 9.3 plots the variation in total enstrophy measured in forward scattered beam

cross-sections with increasing distance from sawtooth, sinusoid and square-wave profiles. Measure-

ments are given for two subcritical configurations, with θ/α ≈ 0.78 and 0.88, and one marginally

subcritical configuration with θ/α ≈ 0.98. Note that total enstrophies are normalised by the total

in the cross-section measured closest to the topography in each case. Hence the plot is illustra-

tive of the relative rates of attenuation of the forward scattered field at each topography rather

than comparisons of actual values. Whilst some variation between plots for the different profiles

is evident at the smallest two values of θ/α (dotted and dashed lines), enstrophy totals exhibit

similar rates of dissipation, assumed to be primarily through viscous diffusion of wave energy, with

sR/Rc for each of the topographic profiles. Totals approximately halve over along-beam distances of

sR ∼ 4Rc. Evolutions of wavefields scattered at each profile are more distinct from one another at

the near-critical value of θ/α. At the along-beam distances measured, the most rapid decay occurs

for the forward scatter at the sinusoid, whilst the slowest is of that for the square-wave, indicating

the greater proportion of wave energy associated with high wavenumbers, and hence the enhance-

ment of viscous dissipation, in the sinusoid case. An accurate description of topographic shape in

the prediction of wave scatter and associated fluid mixing therefore becomes more important as

θ/α→ 1.

Back-scattered wave energy is enhanced in near-critical conditions and, in particular, at the

knife-edge profile studied. An increase in back-scatter generally coincides with a reduction in for-

wards scatter. As a consequence of this partitioning of the wave energy, forwards scattered wavefields

become associated with smaller amplitudes and lower shear, which is likely to increase the stability

of these components and allow wave energy to propagate further from the boundary in this direc-

tion. The back-scattered wavefields typically exhibit high wavenumber scatter, implying lower wave

stability. However, the direction of propagation of back-scattered wave energy, aligned opposite to
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Figure 9.3: Variation with distance from topography of total wave enstrophy, EnF , measured
along cross-sections of subcritical forwards scattered wavefields at sawtooth (TG), sinusoid (TA)
and square-wave (TK) profiles. Enstrophy is normalised by the total, Ên, in the cross-section
measured closest to the topography in each case. Values of θ/α for configurations with TG, TA and
TK are 0.77, 0.78 and 0.79 (dotted lines); 0.88, 0.88 and 0.89 (dashed lines) and 0.97, 0.97 and 0.99
(solid lines) respectively.

that of the incident wavefield, induces greater viscous attenuation of the back-scatter due to the

greater across-beam gradients and shear introduced by the superposing phases.

Scatter to higher temporal harmonics represents a further partitioning of the incident wave

energy in space and hence causes a reduction in scatter to the, usually most dominant, primary

harmonic forward scattered component. In the region of their generation, amplitudes associated

with propagating secondary harmonics, i.e. σ/N < 1/2, are typically second order in the incident

wave amplitude and hence, due to viscous attenuation, are only significant in the near-field. In

general, energy associated with higher harmonics is therefore dissipated locally.

9.4 Final remarks

Accounting for and quantifying factors that contribute to oceanic mixing remains one of the most

important issues in climate modelling and prediction. In particular, the ubiquity of internal gravity

waves in the ocean and the strong coupling between mixing and regions of high wavenumber scatter,

such as near rough benthic topography, highlights their significance to large scale numerical models,

which currently do not account adequately for these effects. Ideally, parameterisations of near-field

and far-field mixing caused by the interaction of wavefields with different types of topography
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would be included in these models. Results presented in this thesis have highlighted the complex

dependence of the scatter and diffusion of wave energy on the shape and dimensions of topography.

Parameters shown to be of importance in conditioning scattered wavefields include characterisation

of the incident wavefield: Ac/Dc and σ/N ; comparisons of the slope and length scales of the

incident wavefield with those of the topography: θ/α, ÂTkc and kc/k̂T , and characterisation of the

topographic profile using ÂT k̂T as well as the general shape of the profile and, in particular, the

number and nature of corners. Further detailed analysis of internal gravity wave scatter is required

before the physical mechanisms controlling the scatter are understood and quantifications of the

associated mixing can be made and used to improve current predictive ocean models.
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