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Abstract

Deployable structures made from ultra-thin composite materials can be folded elasti-

cally and are able to self-deploy by releasing the stored strain energy. Their lightness,

low cost due to smaller number of components, and friction insensitive behaviour

are key attractions for space applications.

This dissertation presents a design methodology for lightweight composite booms

with multiple tape-spring hinges. The whole process of folding and deployment of the

tape-spring hinges under both quasi-static and dynamic loading has been captured

in detail through finite element simulations, starting from a micro-mechanical model

of the laminate based on the measured geometry and elastic properties of the woven

tows. A stress-resultant based six-dimensional failure criterion has been developed

for checking if the structure would be damaged.

A detailed study of the quasi-static folding and deployment of a tape-spring

hinge made from a two-ply plain-weave laminate of carbon-fibre reinforced plastic

has been carried out. A particular version of this hinge was constructed and its

moment-rotation profile during quasi-static deployment was measured. Folding and

deployment simulations of the tape-spring hinge were carried out with the commer-

cial finite element package Abaqus/Explicit, starting from the as-built, unstrained

structure. The folding simulation includes the effects of pinching the hinge in the

middle to reduce the peak moment required to fold it. The deployment simulation

fully captures both the steady-state moment part of the deployment and the final

snap back to the deployed configuration. An alternative simulation without pinch-

ing the hinge provides an estimate of the maximum moment that could be carried

by the hinge during operation. This moment is about double the snap-back moment

for the particular hinge design that was considered.

The dynamic deployment of a tape-spring hinge boom has been studied both

experimentally and by means of detailed finite-element simulations. It has been

shown that the deployment of the boom can be divided into three phases: deploy-

ment; latching, which may involves buckling of the tape springs and large rotations

of the boom; and vibration of the boom in the latched configuration. The second

phase is the most critical as the boom can fold backwards and hence interfere with

other spacecraft components.

A geometric optimisation study was carried out by parameterising the slot ge-

ometry in terms of slot length, width and end circle diameter. The stress-resultant
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based failure criterion was then used to analyse the safety of the structure. The

optimisation study was focused on finding a hinge design that can be folded 180◦

with the shortest possible slot length. Simulations have shown that the strains can

be significantly reduced by allowing the end cross-sections to deform freely. Based

on the simulations a failure-critical design and a failure-safe design were selected

and experimentally verified. The failure-safe optimised design is six times stiffer in

torsion, twice stiffer axially and stores two and a half times more strain energy than

the previously considered design.

Finally, an example of designing a 1 m long self-deployable boom that could

be folded around a spacecraft has been presented. The safety of this two-hinge

boom has been evaluated during both stowage and dynamic deployment. A safe

design that latches without any overshoot was selected and validated by a dynamic

deployment experiment.

Keywords: thin woven CFRP, micro-mechanical modelling, composite failure,

tape springs, self-deployable structures, deployment dynamics, design optimisation.
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Chapter 1

Introduction

1.1 Overview

The design of large space structures, such as solar sails, solar concentrators and

reflector antennas, is limited by the pay load and stowage capacity of launch vehicles.

However, most space structures have much larger dimensions than the launchers

and the concept of deployable structures allows a large structure to pack into a

compact configuration for stowage and transportation and then expand back to the

operational configuration. Commonly used deployable schemes include inflatables,

mechanically jointed and motorised structures, stored energy deployable structures

and structures made of shape-memory alloys.

Deployable structures made from ultra-thin composite materials can be folded

elastically and are able to self-deploy by releasing the stored strain energy. They

are becoming more widespread because of their lower mass to deployed stiffness

ratio, good packaging properties, lower cost due to a smaller number of component

parts and ease of manufacture (Warren, 2002). Examples of structures of this kind

that have been already flown include the Boeing springback reflectors on the Mobile

SAtellite System (MSAT)1 (Anonymous, 1994; Seizt, 1994) and on the Tracking

and Data Relay Satellite (TDRS) H, I, J2. Also the three Northrop Grumman Astro

Aerospace Flattenable Foldable Tubes (FFT) forming the Mars Advanced Radar

for Subsurface and Ionosphere Sounding (MARSIS) antenna on the Mars Express

spacecraft (Adams and Mobrem, 2009).

1http://www.boeing.com/defense-space/space/bss/factsheets/601/msat/msat.html
2http://www.boeing.com/defense-space/space/bss/factsheets/601/tdrs hij/tdrs hij.html
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1. Introduction

1.2 Recent Developments

Structures based on this approach have already been used in a few missions and a

range of novel structural architectures that exploit this approach in future missions

has been proposed.

MARSIS was the first antenna of its kind, designed to look below the surface of

Mars at the different layers of material, and most notably to look for water. The

antenna consisted of two 20 m dipoles and a 7 m monopole. All three booms were

slotted at certain intervals to stow them in a 1.7 m × 0.3 m × 0.2 m cradle as shown

in Figure 1.1b.

(a) In orbit (b) Stowed

Figure 1.1: MARSIS booms (courtesy: Astro Aerospace).

Novel reflector antenna concepts based on the same general approach have been

proposed, including the “hollow solid” reflector structure (Soykasap et al., 2004),

the Fold Integrated Thin-film Stiffener (FITS) solar array, which undergoes three

different folding stages to achieve a highly compacted configuration (Jorgensen

et al., 2005), and the Folding Large Antenna Tape Spring (FLATS) radar con-

cept (Soykasap et al., 2008).

The “hollow solid” deployable reflector concept for low-cost L-band Synthetic

Aperture Radar (SAR) uses thin curved carbon fibre reinforced polymer (CFRP)

sheets connected by flexible hinges to form a parabolic reflector surface with high

accuracy, Figure 1.2.

The FLATS concept by Soykasap et al. (2008), targets a low-mass 50 m2 de-

ployable antenna that measures the biomass content of forests from a low-Earth

orbit. It consists of two Kevlar sheets connected by a compliant Kevlar core that

allows the whole structure to be folded elastically and to self-deploy into the original
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(a)

(b)

Figure 1.2: Hollow solid reflector (Soykasap et al., 2004) (a) deployed and (b) folded.

configuration, Figure 1.3.

(a) Deployed configuration (b) Folding

Figure 1.3: Folding Large Antenna Tape Spring (Soykasap et al., 2008).

Further examples of technology developments for future missions are RUAG’s

self-motorised deployment mechanism (Boesch et al., 2008), DLR’s lightweight de-

ployable booms (Block et al., 2011; Sickinger et al., 2004) and Phased-Array-Fed

Reflector for the Innovative Space-Based Radar Antenna Technology (ISAT) pro-

gram (Lane et al., 2011). Figure 1.4 shows four lightweight composite booms that

deploy a 20 m by 20 m solar sail array.

The deployment schemes that have been considered so far envisage the release

of all constraints on the structure, to allow the structure to dynamically deploy and
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(a) Snapshots during deployment (b) Booms deploy a solar sail

Figure 1.4: Lightweight deployable booms (courtesy: DLR).

self-latch. However this behaviour needs to be fully understood and optimised as

severe dynamic effects at the end of deployment could damage the structure and

yet a slow, highly damped deployment may end without ever achieving the fully

deployed configuration. Achieving a balance between these effects is challenging,

as demonstrated by the large amount of testing and simulation that was required

to achieve the successful deployment of the MARSIS booms (Adams and Mobrem,

2009).

1.3 Scope and Aims

The broad aim of this research is to develop simulation techniques to predict both

quasi-static and dynamic behaviour of stowed energy deployable structures made

of fibre composites. These design tools will lead to a better understanding of their

complex behaviour and hence will allow the design of more efficient structures.

A simple boom construction based on a thin-walled tube made of two plies of

plain-weave carbon fibre in an epoxy matrix is considered here. Certain regions

of the tube are weakened by cutting away some of the composite material to form

tape-spring hinges at which can be folded without causing any damage, Figure 1.5.

A variant of this hinge design, with three slots, was analysed with the implicit

finite element code ABAQUS/Standard by Yee and Pellegrino (2005a) and Soykasap

(2009). Also each folding section of the MARSIS booms (Mobrem and Adams, 2009)

is in fact a tape-spring hinge with two slots.
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Figure 1.5: Photos of a tape-spring hinge deployed, partially folded and fully folded.

Thin laminates made of woven tows of carbon fibre are not accurately modelled

by Classical Lamination Theory (CLT) (Soykasap, 2006; Yee and Pellegrino, 2005b).

A more accurate model is a linear-elastic thin Kirchhoff plate whose properties

are defined by a homogenisation technique based on the geometric properties of

the laminate measured from micrographs, with the tow properties calculated from

appropriate rules of mixtures.

A repeating unit cell modelled with periodic boundary condition is used to ob-

tained the properties of the laminate in the form of an ABD stiffness matrix that is

experimentally validated. This ABD stiffness matrix is used to define the stiffness

properties of the tape-spring hinge finite element model.

Both quasi-static folding and deployment, as well as the dynamic deployment

behaviour of a tape-spring hinge is studied first by simulations carried out with

the commercial finite element package Abaqus/Explicit (Abaqus, 2010). The safety

margin of the structure both during folding and dynamic deployment is evaluated

with a six dimensional stress-resultant based failure criterion.

A parametric study of a general hinge geometry defined by three parameters is

carried out, to obtain improved designs. These improved designs are then used to

arrive at a specific design for a 1 m long tubular boom that can be wrapped around

a spacecraft and is able to self-deploy without any damage.

The final design of this boom is then verified by experiments.

The design tools developed in this research can be used to design deployable

booms with multiple hinges and optimised boom geometry, to meet any specific

mission requirements. However a specific boom diameter and two-ply laminate are

selected for demonstration.
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1.4 Chapter Organisation

This thesis comprises 11 chapters. After the present introductory chapter, Chap-

ter 2 begins with a brief review of the development of stored energy deployable

structures. The first part of the chapter describes tape-spring hinge designs used in

the space industry followed by larger deployable structures based on similar struc-

tural concepts. The second part of the chapter revises the available techniques to

model woven carbon fibre composites and different failure criteria.

Chapter 3 describes the manufacturing process used to construct composite

booms and other test specimens. The construction of a tube made of two-ply carbon

fibre laminate is explained first. The alterations to this procedure in constructing a

flat or curved specimen is explained next and finally the fabrication procedure for a

tape-spring hinge is described.

Chapter 4 studies the constituent properties of the laminates. The fibre and ma-

trix properties are obtained from corresponding manufactures and a weight based

approach is used to calculate the fibre volume fraction. The geometric properties

of a tow are obtained from micrographs of the tow cross-section. Finally, the lami-

nate properties are measured with a series of stiffness and strength characterisation

experiments.

Chapter 5 considers a repetitive unit cell and carried out an analysis of a micro-

mechanical model to determine the homogenised stiffness properties of the unit

cell. The geometric and stiffness properties of the tows obtained in Chapter 4

are used to construct a finite element model of the unit cell, subject to periodic

boundary conditions. Using virtual work the material stiffness is expanded in the

form of an ABD stiffness matrix. Suitable definition for the tow cross-section shape

and waviness are obtained through a series of sensitivity studies. Two extreme

ply arrangements are also considered. The possibility of using a micro-mechanical

failure criterion is then investigated.

Chapter 6 presents a stress-resultant based, six dimensional failure criterion for

symmetric two-ply plain weave carbon fibre composites. Five uni-axial strength

tests are used to construct the failure locus and five additional combined tests are

performed to verify the accuracy of the criterion. The chapter concludes with a

discussion on the limitations and assumptions used in constructing the criterion.

Chapter 7 describes the simulation techniques developed for both quasi-static

and dynamic deployment predictions. A brief introduction to the available features,
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simulation parameters and necessary checks is presented first. The sensitivity of the

simulation to various parameters is investigated for both quasi-static and dynamic

simulations.

Chapter 8 analyses both quasi-static and dynamic deployment behaviour of the

hinge simulated in Chapter 7. The hinge behaviour is characterised by the moment-

rotation response during quasi-static folding and deployment, and by the angle-time

variation during dynamic deployment. The sensitivity of the results to different

boundary conditions is investigated using infinite elements.

Chapter 9 explains the design optimisation procedure followed to obtain im-

proved hinge designs. A general hinge geometry is defined with three parameters

and several selected design are analysed with the design tools presented in Chap-

ter 7. Use of these hinge designs in a 1 m long foldable boom with two hinges is

then investigated.

Chapter 10 performs an experimental validation of the final design of the boom.

The safety of both failure critical and failure safe designs of the boom is investigated

and the predicted failure locations are verified. Both quasi-static and dynamic de-

ployment behaviour of a selected hinge design are compared to experimental results.

Finally the dynamic deployment behaviour of a two-hinge boom is verified.

Chapter 11 presents a summary of the design tools developed during this re-

search, followed by a set of conclusions. Finally, some suggested future research

directions are presented.
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Chapter 2

Literature Review

This chapter presents an overview of the literature on stored energy deployable

structures and the analysis of woven composites. The chapter begins with an in-

troduction to various stored energy deployable structures and explains previously

developed hinge designs that use tape-springs. Next a review of larger structures

that extend the tape-spring concept to store the elastic strain energy by deforming

the entire structure is presented. The second part of the chapter describes various

models used for stiffness characterisation of woven composites and concludes with

commonly used criteria for failure analysis.

2.1 Stored Energy Deployable Structures

Stored energy deployable structures have been among the leading candidates for

space structures from the dawn of space exploration. These structures are designed

to fold elastically and self-deploy by releasing the energy stored within the structure.

Their capability of self-deploying to the original configuration without permanent

deformation is a key attraction.

2.1.1 Tape Spring Hinges

The simplest stored-energy deployable structure is the tape spring, of which an

example is the steel tape measure (also known as carpenter tape). They are in-

creasingly being used as a replacement of more traditional hinge mechanisms due

to their high repeatability and pointing accuracy. Unlike traditional hinge mecha-

nisms, tape-springs do not include moving parts that can become jammed due to
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2. Literature Review

long-term stowage or adverse environmental conditions.

There has been an extensive amount of research into the behaviour of metal tape

springs (Seffen and Pellegrino, 1999; Szyszkowski et al., 1997; Watt, 2003). However

the present trend is to use fibre reinforced polymers due to their lighter weight and

the possibility of altering their properties by using different fibre arrangements and

composition.

Seffen and Pellegrino (1999) show that the behaviour of a tape-spring can be

characterised by the moment rotation relationship, see Figure 2.1, where the origin

of the M(θ) curve is denoted as O. The behaviour is highly dependent on the sign

of the moment, Figure 2.2. When a positive moment is applied, i.e. a moment that

induces tensile stresses along the edges of the tape spring, first the tape-spring shows

a linear behaviour from O to A, as the tape bends into a smooth curve. At A the

tape suddenly snaps and becomes approximately straight in two pieces separated

by a localised bend. From B to C the arc length of the localised bend increases

with constant moment. During the unfolding process the tape-spring follows the

path from C to D and suddenly snaps to E. However with a negative moment,

i.e. a moment that induces compressive stresses along the edges of the tape spring,

the linear behaviour ends much sooner and a sudden bifurcation occurs at F which

corresponds to a flexural torsional deformation. In this case unfolding follows almost

the same path.

Mansfield (1973) through an analytical study has shown that tape-spring like

structures are subjected to snap-through flexural buckling or buckling into a tor-

sional mode, depending on the magnitude of the transverse curvatures of the struc-

ture.

The behaviour of composite tape-springs is similar to that described above. Yee

and Pellegrino (2005a) show that the relationship between the transverse radius of

the tape-spring cross-section, R, and the longitudinal radius of curvature of cur-

vature of the elastic fold, r is equal to the square root of the ratios between D11

and D22 for a tape-spring made with a balanced and symmetric laminate. For an

isotropic tape spring, r = R (Calladine, 1988).

The use of tape-springs in hinges for deployable structures dates back to the

1960’s. Vyvyan (1968) showed that the bending stiffness in the deployed configu-

ration and the moment required to buckle a hinge are both improved by arranging

the tape-springs in an offset configuration as shown in Figure 2.3. In the deployed

configuration short tape-springs exhibit significant stiffness and buckling resistance

9
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Figure 2.1: Typical moment-rotation relationship of a tape-spring (Seffen and Pel-
legrino, 1999)

R

(a) Opposite-sense

R

(b) Equal-sense

Figure 2.2: Sense of bending of tape-springs.

10



2. Literature Review

because they are subjected mainly to axial tension and compression. Once the

tape-springs are buckled, this resistance becomes significantly lower because they

are loaded in bending. Also, the offset tape-spring arrangement provides a higher

torsional resistance.

Figure 2.3: Hinge layout described by Vyvyan (1968) in deployed and folded con-
figurations.

Chiappetta et al. (1993) proposed a more compact geometry, but with an in-

creased deployment moment by arranging the tape-springs in a symmetric configu-

ration as shown in Figure 2.4a. Two tape-springs come into contact with each other

on folding and hence store a higher amount of strain energy. They also describe

the possibility of using CFRP laminates instead of the more standard spring steel

or beryllium copper. Figure 2.4b shows their proposal for using these tape-spring

hinges in an array antenna.

A self-motorised deployment mechanism introduced by Boesch et al. (2008) in-

corporates four pairs of CFRP tape-springs in a row, each with the concave side

facing inwards, Figure 2.5. Thus the tapes in each pair are bent one in the equal

sense, i.e. with the longitudinal curvature in the same sense as the transverse cur-

vature of the tape, and one in the opposite sense; this configuration loads to a high

latching moment and hence to a highly repeatable deployed configuration. How-

ever, depending on the amount of strain energy stored in the folded hinge and the

maximum moment that it can carry without beginning to fold, the hinge may fail

to properly latch the first time that it reaches the fully deployed configuration and,
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(a) Hinge layout (b) Deployed and stowed configuration of the boom

Figure 2.4: Tape-spring hinge and its application by Chiappetta et al. (1993).

due to an excessive amount of kinetic energy, it may continue through the deployed

configuration and start folding in the opposite sense the tape-spring that was origi-

nally bent in the equal sense. This process involves buckling of this tape-spring and

may cause permanent damage.

Figure 2.5: Self-motorised deployment mechanism by Boesch et al. (2008)

Various other designs that use tape-springs were proposed by Fang and Lou

(1999); Keller et al. (2004); Seffen (2001); Silver and Warren (2010); Warren et al.
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(2005); Watt (2003), etc.

2.1.2 Monolithic Structures

Recent developments for future space missions have extended the tape-spring con-

cept to larger structures where the entire structure is made of combinations of large

tape-spring like portions. Here not only the folding lines but the entire structure is

subjected to elastic deformation.

In fact, this concept goes back to the 1960’s when the Storable Tubular Ex-

tendible Member (STEM) was invented in Canada (Rimrott and Fritsche, 2000),

Figure 2.6(a). The STEM is an extension of the principle used in the coilable, self-

straightening steel tape measure; it consists of a thin-walled cylindrical shell with

circular cross-section. It is flattened and rolled up onto a drum within a cassette for

stowage. It is deployed by rotating the drum in the opposite direction. A STEM

is quite stiff axially and in bending, but because of the open tubular section it has

low torsional stiffness. The bi-STEM is a STEM where two identical cylindrical

shells are placed one inside the other, Figure 2.6(b). A bi-STEM has higher bending

stiffness and better mechanical damping behaviour. The interlocking STEM is a

version of the bi-STEM, Figure 2.6(c) with a higher torsional stiffness.

(a)

(b)

(c)

Figure 2.6: Storable Tubular Extendible Members. (a) STEM (b) bi-STEM (c) in-
terlocking bi-STEM

Rubin (1969) uses a similar concept to construct an extendable boom made

of joining two omega-shaped thin metal shells at the edges. The cross-section of

this boom can be flattened and then rolled into a coiled configuration. DLR’s

ultralight CFRP deployable boom uses the same concept but with a composite
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material. This boom consists of two edge-bonded omega-shaped carbon fibre open

shells with 0.1 mm wall thickness, each with a weight of 62 g/m. Block et al. (2011)

show that the boom deployment needs to be controlled as excessive strain energy

leads to a chaotic deployment. They have used two different controlled deployment

schemes. The first, method uses an inflatable polymer hose inside the boom and the

other uses electromechanical uncoiling device.

Figure 2.7: Ultralight deployable CFRP boom (courtesy: DLR).

The FLATS proposed by Soykasap et al. (2008) consists of two 2.82 m by 8.64 m

large panels. Each panel is built as a large tape spring made of two three-ply Kevlar

sheets maintained at a distance of 40 mm gap by 7 longitudinal spacers. FLATS

undergoes two folding stages, first the curved panels are flattened and then z-folded.

During folding strain energy is stored in the Kevlar sheets. The longitudinal spacers

have two main functions, first to maintain an accurate separation between the panels

and second to limit the bending radius. Soykasap et al. (2008) show that four-ply

Kevlar sheets would not recover their original shape after folding into a 30 mm

bending radius.

The novel deployable reflector concept developed by Soykasap et al. (2004) is

based on forming a collapsible hollow solid using four thin-walled CFRP sheets.

The structure presented in this study packages to 1/16th of its deployed volume and

it is two-and-half times lighter than a traditional reflector structure made out of

lightweight, curved panels with self-locking hinges.

The half-scale model in Figure 2.8 is made of T300/LMT45 laminate (0/45/0)

with uniform thickness of 0.3 mm. The four sheets were connected by 3M 79 woven-

glass tape and 3M Scotch-Weld DP490 epoxy resin. This structure undergoes two

different folding stages. First it is flattened by folding the side walls and then into
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an accordion, Figure 2.8. The minimum bending radius was set at 24 mm providing

a margin of 2.3 on material failure.

Figure 2.8: Folding sequence of the reflector (Soykasap et al., 2004).

Marks (2002) presents a foldable boom where tape-springs are formed by cutting

two parallel longitudinal slots in a thin-walled tube as shown in Figure 2.9. As the

tape-springs form part of the boom, the whole structure is simple to manufacture

and its continuity leads to good stiffness and thermal properties. This design can be

flattened elastically to minimise the stowed volume; in the proposed concept, flexible

stiffeners can be added to provide additional torsional stiffness. Warren (2002)

described a similar approach but with different slot geometries and arrangements to

construct collapsible trusses.

The FFT developed by Astro Aerospace which constructed the MARSIS antenna

is an application of the design presented by Marks (2002). The MARSIS antenna is

made of thin walled S-Glass and Kevlar composite. The antenna is manufactured

into three parts as two 20 m long dipoles and a 7 m long monopole, consisting of

composite tubes with diameters of 38 mm and 20 mm respectively (Marks et al.,

2002). These tubes are slotted at certain intervals (1.53 m for the dipoles and

1.3 m for the monopole) to facilitate folding into a cradle, Figure 2.10. In addition

to folding, these tubes are compressed to partially flatten them down to half of

their diameter (19 mm for the dipoles and 10 mm for the monopole), to achieve a

more compact configuration together with higher elastic energy within the system.
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Figure 2.9: Fattenable foldable boom hinge (Marks, 2002).

However the dipole hinges have a very low deployment moment, 0.2 Nm, and hence

any significant friction or air drag that would occur on Earth would prevent its

deployment. This, together with its large dimensions, make it impractical to deploy

it in any ground test facilities. Thus this structure was qualified for launching relying

solely on simulations and component testing.

(a) Hinge (b) Stowed configuration

(c) Complete boom

Figure 2.10: Flattenable foldable tube (courtesy: Astro Aerospace).

Mobrem and Adams (2009) stated that the structural behaviour of these joints
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is complex and needs to be properly understood. It is important to optimise the

total stowed energy within the system to control the dynamics of deployment while

ensuring that the structure will self-deploy.

Silver et al. (2004) carried out controlled displacement snap-through studies of

tape-springs which constitute the Integral Folding Hinge (IFH), with the aim of

deriving design guidelines for axial loading. Further investigation of the bending-

induced buckling response of an individual IFH was presented later (Silver et al.,

2005). Figure 2.11 shows a support structure constructed from IFH.

Figure 2.11: Support structure concept based on Integral Folding Hinge (Silver et al.,
2005) (a) stowed and (b) deployed.

Yee (2006) studied the dynamic deployment behaviour and repeatability of a

CFRP boom made by cutting three parallel slots in a thin-walled tube, Figure 2.12.

He conducted a series of experiments on approximately 1 m long boom with a single

point off-load system and showed that the dynamic deployment behaviour of the

boom can be divided into three phases, namely, deployment, large displacement

vibration (low frequency) and final vibration (high frequency), Figure 2.13. He

found that the hinge is unable to resist the angular momentum of the boom at the

point of latching, hence the boom overshoots the fully deployed configuration.

Soykasap (2009) used a simplified approach to characterise the angle-time vari-

ation of Yee’s experiments. He followed a semi-analytical approach to predict the

dynamic deployment behaviour of the boom. The moment rotation profile of a boom

hinge was obtained from nonlinear finite element analysis and dynamic deployment

simulation of the boom were then carried out analytically.
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Figure 2.12: Three-slot CFRP tube hinge (Yee, 2006).
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Figure 2.13: Angle-time response of three-slot boom (Yee, 2006).
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2.2 Woven Composite Materials

Fibre composites have gained increasing popularity over metal alloys due to their

high strength to weight ratio and the wider range of design possibilities offered by

tailorable material properties. Textile composites provide better performance in

intra- and inter-laminar strength and damage tolerance over composites made from

unidirectional lamina. They can be classified as woven fabrics, braided fabrics and

knitted fabrics according to the arrangement and presentation of their reinforcing

elements, (Cox and Flanagan, 1997).

The two basic constituents of textile composites are the tows, i.e. continuous

strands of fibres and the matrix which keeps them together. There are two sets of

interlacing tows acting as reinforcement. When the two sets of tows are interlaced

at right angles, the longitudinal tows, in the machine direction, are known as warp,

and the perpendicular tows as fill or weft. Figure 2.14 shows a schematic of the

components of a woven fabric.

Figure 2.14: Schematic of a woven fabric composite.

The weave style controls the draping, surface smoothness and stability of the

fabric. Figure 2.15 shows examples of orthogonal woven fabrics.

19



2. Literature Review

(a) Plain weave (b) Crows-foot satin weave

(c) Five-harness satin weave (d) Eight-Harness satin weave

(e) 2×2 twill weave (f) 2×2 basket weave

Figure 2.15: Examples of biaxial woven fabrics (Cox and Flanagan, 1997).
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2.2.1 Modelling Woven Composites

The mechanical behaviour of composite materials consisting of many unidirectional

plies forming a laminate is well described in standard textbooks (Daniel and Ishai,

2006; Gibson, 2007; Jones, 1999; Tsai and Hahn, 1980). In general, the lamina

properties are estimated using rule of mixtures and the laminate properties are

calculated with the CLT.

However, in the case of textile composites it is difficult to use simple analyti-

cal models due to their complex architecture. Soykasap (2006) explained that even

though the in-plane properties of woven composite materials can be estimated accu-

rately using CLT, the corresponding bending properties lack any accuracy for one-

or two-ply woven laminates. He showed that such estimates can result in errors of

up to 200% in the maximum bending strains or stresses, and up to 400% in the

bending stiffness.

Researchers have used finite element analysis to understand the behaviour of

textile composites by modelling a representative unit cell (RUC). Depending on the

scale of interest, the RUC can comprise parts of tow geometries that are repeated in

building the entire textile geometry or at a smaller scale the repeated fibre pattern

filled with matrix.

Early work on modelling woven fabrics has been carried out by Ishikawa and

Chou (1982). They extended CLT to a woven fabric composite that has been ide-

alised as pieces of cross-ply laminates consisting of groups of plates arranged in series

or parallel, depending on the cross-ply laminate design. A constant stress or strain

state was assumed respectively for the series and parallel cases. The model ignored

the through thickness shear deformation, fibre continuity and the non-uniform stress

and strain distributions in the interconnection regions. They showed that the par-

allel and the series models give upper and lower bound estimates of the in-plane ex-

tensional modulus, respectively. This is known as the mosaic model, Figure 2.16(a).

Extending their work to consider fibre undulation Ishikawa and Chou (1983a)

introduced a 1D crimp model called the fibre undulation model, Figure 2.16(b).

This model considered the fibre continuity and undulation in the loading direction,

however the interlaced regions between the tows were not considered in either of

these models. Ishikawa and Chou (1983b) proposed a bridging model in order to

obtain a better representation of the load distribution and the load transfer between

tows, Figure 2.16(c).
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Figure 2.16: Models developed by Ishikawa and Chou (1983b): (a) mosaic model
(b) fibre undulation model (c) bridging model.
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Cox et al. (1994); McGlockton et al. (2003); Xu et al. (1995) have developed a

so called binary model to compute the elastic constants of any textile composite.

Fibre tows are modelled simply and reasonably as embedded 1D line elements. This

method has been shown to provide accurate prediction of stiffness properties. Fur-

thermore, it is robust and readily adaptable to provide insight into the effects of

altering parameters such as tow waviness, tow misalignment, varying weave archi-

tectures, etc. However, this technique does not yield a detailed map of the stress

field in a RUC or allow for cross-sectional variation of the tow geometry, as the fibre

tow is simulated as a 1D line element with representative material properties.

Whitcomb et al. (2000) proposed systematic procedures for deriving boundary

conditions for periodic sub-structures. By symmetry, they formulated and set up the

boundary conditions of a partial unit cell that represent a portion of the RUC. Their

analysis performed by identifying an identical coordinate system for all partial unit

cells. Use of partial unit cells significantly reduces the computational effort. Tang

and Whitcomb (2003) improved the derivation procedure to eliminate the need for

a common point between the partial unit cells.

Naik and Ganesh (1992) presented two fabric composite models for the on-axes

elastic analysis of two-dimensional orthogonal plain weave fabric lamina. These are

two dimensional models taking into account the actual strand cross-section geometry,

a possible gap between two adjacent strands, and the undulation and continuity of

the strands along both warp and fill directions. They state that shape functions

considered to define the geometry of the woven fabric lamina compare well with the

photomicrographs of actual woven fabric lamina cross-sections. Naik and Ganesh

(1995) extended this work to the prediction of thermoelastic properties.

Karkkainen et al. (2006) presented a direct micro-mechanical based finite element

model for the analysis of a single-ply plain weave laminate, Figure 2.17a. This

model considers bending effects which had been ignored in the conventional models

by assuming a uniform stress state in the unit cell. The RUC is modelled as a

linear-elastic thin Kirchhoff plate whose properties are defined by a homogenisation

technique and periodic boundary conditions are assumed at the boundaries. The

constitutive relationship for the homogenised plate is written in the form
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(2.1)

where N andM denote force- and moment-resultants and ε and κ denote mid-plane

strain and curvatures. γ denotes the engineering shear strain. The 6×6 constitutive

matrix is denoted by ABD and its 3× 3 submatrices are denoted by A, B and D.

Kueh and Pellegrino (2007) developed a similar model for a single-ply triaxial

woven composite but using beam elements to predict mechanical properties, Fig-

ure 2.17b. Through a series of experiments they showed that this simple model is

capable of accurately predicting tensile, compressive, shear and bending stiffness.

Datashvili et al. (2011) later replaced rigid connections between tow crossover points

with elastic beam elements to capture thermal properties.

Jiang et al. (2007) proposed a domain superposition technique for the simulation

of woven fabric composites. Instead of modelling the tows and the likely degenerated

resin pockets regions among tows explicitly, this technique separately models the tow

domain and the global domain which are both non-degenerated, and can thus be

easily discretised using the traditional solid elements. During the solution process,

the two domains are superimposed by coupling them together to produce the exact

results. They state that the numerical simulation results of this technique correlate

very well with the results of conventional finite element analysis.

Extensive research has been done on various aspects of composite in recent years.

Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric com-

posite by Karahan et al. (2010) and work on in-plane permeability of triaxially

braided reinforcements by Endruweit and Long (2011) to mention a few.

2.2.2 Common Failure Criteria

Failure criteria discussed in this section targets failure prediction of a lamina. How-

ever failure of a laminate can be predicted by applying these at lamina level. For
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(a) Solid element model for single-ply plain-weave laminate
by Karkkainen et al. (2006)

(b) Beam element model for single-ply tri-axial weave laminate
by Kueh and Pellegrino (2007)

Figure 2.17: Representative unit cells for plain-weave and tri-axial weave laminates.
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example first-ply failure considers failure of a single lamina as failure of the laminate.

Current designs of textile composites are often based on well know phenomeno-

logical failure criteria, which are originally developed for unidirectional composites.

The maximum stress, maximum strain and interactive failure criteria proposed by

Tsai-Wu and Hashin are commonly used in industry for predicting failure of com-

posites (Daniel and Ishai, 2006).

The maximum stress criterion predicts failure of a single lamina when any prin-

cipal material axis stress component exceeds the corresponding strength. Therefore,

the following set of inequalities must be satisfied:

−σu
1c < σ1 < σu

1t (2.2a)

−σu
2c < σ2 < σu

2t (2.2b)

|τ6| < τus (2.2c)

where σ and τ are the direct and in-plane shear stresses; the subscripts 1, and

2 denote longitudinal and transverse directions and 6 denotes in-plane shear; the

subscripts t, c and s denote denotes tension, compression and shear, respectively

and the superscript u denotes the ultimate strength.

Similarly, the maximum strain criterion for a lamina predicts failure when any

principal material axis strain component exceeds the corresponding ultimate strain.

Therefore, the following set of inequalities must be satisfied:

−ǫu
1c < ǫ1 < ǫu

1t (2.3a)

−ǫu
2c < ǫ2 < ǫu

2t (2.3b)

|ǫ6| < ǫus (2.3c)

where ǫ denotes strain.

Tsai and Wu (1971) proposed a tensor polynomial theory by assuming the ex-

istence of a failure surface in the stress space. In contracted notation it takes the

form
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fiσi + fijσiσj = 1 (2.4)

where fi and fij are the second- and fourth-order strength tensors, and i, j = 1,2

..6. For a two dimensional stress state this can be reduced to

f1σ1 + f2σ2 + f11σ
2

1
+ f22σ

2

2
+ f66τ

2

6
+ 2f12σ1σ2 = 1 (2.5)

They have shown that the strength coefficients fi can be obtained by applying

elementary loadings to a lamina and hence

f1 =
1

σu
1t

− 1

σu
1c

(2.6a)

f2 =
1

σu
2t

− 1

σu
2c

(2.6b)

f11 =
1

σu
1tσ

u
1c

(2.6c)

f22 =
1

σu
2tσ

u
2c

(2.6d)

f66 =
1

(τu
6
)2

(2.6e)

f12 = −1

2

√

f11f22 (2.6f)

Hashin and Rotem (1973) noted that failure of a lamina under a general in-plane

loading can be characterised by two failure limits, one for fibre failure and the other

for inter-fibre failure as follows:

|σ1|
σu
1

= 1 (2.7a)

( |σ2|
σu
2

)2

+

( |τ6|
τu
6

)2

= 1 (2.7b)

The failure mechanics of textile composites is more complex since failure depends

on weave style and detailed properties in addition to fibre and matrix properties.

In fact, World Wide Failure Exercise carried by UK Institute of Mechanical En-
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gineers and Engineering and Physical Sciences Research Council has shown how

difficult it is to predict failure of unidirectional laminates under in-plane loading

conditions (Hinton et al., 2004).

Most current failure criteria for woven composites are based on variations of the

criteria presented above, applied at a laminate or micro-mechanical level. Although

micro-mechanical models have been successfully employed in predicting thermoe-

lastic properties (Chou, 1992; Kueh and Pellegrino, 2007) their use for strength

prediction under multi-axial loading is still under development. Extensive research

has been carried on prediction of strength under certain loading conditions by ana-

lyzing a RUC (Cox et al., 1994; Quek et al., 2004; Whitcomb and Srirengan, 1996).

Karkkainen and Sankar (2007) have presented a failure envelope for textile compos-

ites in the form of a quadratic polynomial. This is done by extending the Tsai-Wu

failure criterion to force and moment resultants. They have estimated failure pa-

rameters with aid of finite element calculations carried on a representative unit cell.

A more detailed discussion of this procedure is presented in Chapter 6.
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Chapter 3

Fabrication Procedures

This chapter presents the fabrication procedures followed to construct both tape-

spring hinges and coupons for stiffness and strength characterisation. The chapter

explains the process of manufacturing a composite specimen, including the machin-

ing of a tubular specimen.

The composite booms and other specimens considered in this research are made

of two-ply plain weave carbon fibre laminates. To develop a better understanding

of these materials and to better control the quality of the tested specimens, all

specimens were constructed starting from a dry fabric that was impregnated with

resin. The autoclave curing process was used to construct high quality specimens.

3.1 Construction of Tubes and Other Specimens

The carbon fibre fabric used was Hexcel high strength plain weave fabric, G0801-

7-1020, consisting of 7.4 tows/cm 1K T300 fibres in warp and weft directions. The

resin used was HexPly 913 epoxy resin, provided on a release paper. The material

properties are provided in Chapter 4.

3.1.1 Resin Impregnation

One needs to be careful when working with dry fabric as it can be easily distorted.

First the fabric was laid on a cutting table and the tows were checked to ensure

that they were properly aligned. Next the edges of the required piece of fabric were

marked with masking tape slightly larger than the required dimensions and cut along

the centre lines of the masking tape. Then the fabric was smoothly laid on top of
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a semi solid film of 913 resin, provided on a release paper. The film was released

from the paper by ironing over the surface. The iron was heated to a temperature

around 100 ◦C and smoothly moved over the release paper about five times. Next

the resin impregnated fabric with release paper was cut to the exact dimensions

and refrigerated. Once the resin had solidified the release paper could be smoothly

peeled off. The resin film provided on the release paper has an areal weight of

30 g/m2. If more resin is required then the same procedure can be repeated. The

number of resin film layers used depends on the required fibre volume fraction.

3.1.2 Lay-Up

A 38 mm diameter stainless steel tube was used as a male mould for constructing

the composite tubes. The tube surface was polished with numbers 180, 400 and 600

sandpapers and a fine steel wool to obtain a defect free surface. The surface was

then cleaned with acetone and air dried for about fifteen minutes.

One of the main difficulties in constructing composite tubes, compared to flat or

curved specimens is the separation of the cured specimen from the mandrel. Two

different techniques were used to facilitate the release of the cured tube from the

mandrel. The first method is to wrap the steel tube with a sheet of Poly Tetra

Fluoro Ethylene (PTFE); Tygaflor release fabric was used for this purpose. The

other method is to spray PTFE based dry film mould release onto the steel tube;

Sprayon MR311 was used. Use of PTFE sheet forms an edge on the interior surface

of the cured tube and hence the spraying technique was preferred.

At room temperature resin becomes sticky and it is quite difficult to handle.

First, the resin impregnated fabric was laid on top of a Wrightlon 5200B P-3 perfo-

rated release film and carefully rolled onto the sprayed male mandrel. Extreme care

was required during this process to avoid wrinkling. When a better outer surface

finish was required, the release film was peeled off and the CFRP layer was cov-

ered with PTFE sheet. Next, the lay-up was inserted into a 50 mm diameter 2:1

heat shrinkable tube and heated using a heat gun set to 300 ◦C. This process helps

to keep the fabric in place and avoids any trapped air bubbles. Then the entire

component was covered with another release film and then with a breather blanket

to facilitate the flow of air around the tube and so to make it permeable to create

uniform vacuum. Two thermocouples were attached to the steel mandrel in order

to monitor its temperature during the curing process.
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In the case of flat specimens, the PTFE release fabric was laid on top of a

stainless steel plate. Then the resin impregnated fabric was carefully laid on PTFE

sheet and covered with perforated release film followed by a breather blanket.

3.1.3 Vacuum Stage

Two different arrangements were tested for applying vacuum to the tubes. The first

was to place the whole lay-up on top of a flat steel plate, to cover it with a Wrightlon

7400 vacuum bag, and to seal it with tape sealant applied all around, Figure 3.1a.

With this procedure the external pressure on the tube is not uniform and hence two

thicker regions are formed in the cured tube with a region of uniform thickness in

between, Figure 3.1b.

The second method was introduced to overcome the distortions mentioned above.

This time the vacuum bag was placed around the tube and sealed to itself with tape,

Figure 3.1c. This allows the vacuum bag to fully cover the tube and hence avoids

any distortions, Figure 3.1d.

In both techniques two vacuum ports are placed at either end of the tube by

cutting two holes in the vacuum bag. A vacuum gauge was connected to one port

and air was pulled out with a vacuum pump connected to the other port. Then the

package was tested for capability of holding a vacuum for one minute. The complete

sequence from laying up to vacuum bagging is shown in Figure 3.2.

In the case of flat specimens, the lay-up was covered with a Wrightlon 7400

vacuum bag and sealed to the stainless steel plate with tape sealant applied all

around.

3.1.4 Autoclave Curing

The vacuum ports were first connected to the autoclave and tested for one minute for

leakage. Then two thermocouples were attached to the autoclave and a temperature

controlled curing process was carried out. The laminate curing process is determined

by the curing cycle of the resin used. The following cycle was applied while the

laminate remains under vacuum throughout the entire process.

• Cure temperature: 125 ◦C

• Cure time: 60 minutes
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Laminate

Vacuum bag

Vacuum port

Vacuum

(a) Vacuum method 1

Material ejecting out

(b) Outcome of method 1

Laminate

Vacuum bag

Vacuum port

(c) Vacuum method 2 (d) Outcome of method 2

Figure 3.1: Different vacuum bagging techniques.
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Steel tube

PTFE spray

CFRP lay-up

Release film

Heat shrink sleave

Breather blanket

Vacuum bag

Sealant tape

Vacuum port

Figure 3.2: Complete lay-up sequence.

• Heat up rate: 3 ◦C per minute

• Cure pressure: 600 kPa

• Cool down rate: 3 ◦C per minute

After cooling down, all wrapping materials were removed and the composite tube

was pulled out from the mandrel by twisting the tube. In the case of long tubes

a higher torque was required to separate the laminate from the mandrel. Thermal

cycling was occasionally used to weaken the bond between the laminate and the

mandrel. Once the tube had been taken out the two ends were smoothed with

number 400 sand paper.

3.2 Hinge Fabrication

CFRP components cannot be cut or ground with standard milling machines as slow

rpm rotary tools tend to introduce micro cracks. Therefore, a Dremel 400 XPR high

speed rotary tool set to 25,000 rpm was used for machining.

The cutting pattern was first marked on the composite tube with a white fine

point oil based paint marker and clamped on a holding stand. The rotary tool was

mounted on a three way finely adjustable table to follow the cutting pattern marked

on the tube. Figure 3.3 shows the complete setup.
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Straight portions of the slot were cut with a diamond cutting tool and the curved

parts were ground with silicon oxide or carbide grinders. It is difficult to cut smooth

curved edges because the manual motion of the cutting table is not precise. Therefore

the edges were carefully smoothed with number 400 sand paper followed by number

600 sand paper.

Dremel tool

CFRP tube

Adjustable table

Figure 3.3: Fabrication setup.
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Chapter 4

Material Characterisation

This chapter presents the material properties of both constituents and laminates.

The fibre and resin properties are obtained from the manufacturers. The fibre

volume fraction of the laminates is calculated by measuring the weights of the dry

fabric and of the cured composite. The geometric properties of the cured tows are

obtained from measurements of micrographs of the tow cross-sections.

The second part of the chapter describes various tests used for characterisation

of the stiffness and strength properties of two-ply plain weave laminates. Standard

tensile and four-point bending tests are performed on both two-ply 0/90 and ±45

laminates for stiffness characterisation. Tensile, compression, shear, bending and

twisting tests are performed to obtain five uniaxial strength parameters from which

a failure criterion will be defined in Chapter 6. Five additional combined loading

tests are carried out for verification of the failure criterion. These combined loading

conditions are obtained by performing standard tensile and bending tests on off-axis

specimens and/or initially curved specimens.

All loading conditions are defined with respect to the tow directions. Thus in

each test the applied loading is transformed to the tow directions. It is also assumed

that flattening a curved specimen introduces a uniform initial moment that remains

constant during any subsequent test.

Here x and y denote orthogonal tow directions and x′ and y′ denote orthogonal

loading directions, Figure 4.1. However, x′ and y′ are denoted as x and y when two

sets of axes coincide.
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x
y

x′

y′
φ

Figure 4.1: Definition of material and loading directions.

4.1 Constituent Properties

4.1.1 Fibre and Resin Properties

The composite material considered in this research are made of two-ply plain weave

T300-1k carbon fibre fabric and HexPly 913 resin. The fibre and resin properties,

obtained from the manufacturers are given in Table 4.1.

Properties T300 fibre HexPly 913 resin
Longitudinal stiffness, E1 (N/mm2) 233,000 3,390
Transverse stiffness, E2 (N/mm2) 23,100 3,390
Shear stiffness, G12 (N/mm2) 8,963 1,210
Poisson′s ratio, ν12 0.2 0.41
Density, ρ (kg/m3) 1,760 1,230
Areal weight of fabric/film, W (g/m2) 98 30

Table 4.1: Fibre and resin properties (Hexcel; Torayca)

4.1.2 Calculating Fibre Volume Fraction

The fibre volume fraction, Vf , and the matrix volume fraction, Vm, are defined as

ratios with respect to the total volume of the composite, excluding voids. Vf can be

defined as follows

Vf =
ρmWf

ρmWf + ρfWm
(4.1)
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where ρf = density of fibres, ρm = density of matrix, Wf = areal weight of fibres

and Wm = areal weight of matrix. The matrix volume fraction can be calculated

from

Vm = 1− Vf (4.2)

Five 100 mm × 100 mm pieces of a two-ply plain weave laminate were weighed

and a value for the average areal weight, Wc, was obtained, see Table 4.2.

Specimen:No. weight/area (g/m2)
1 280.39
2 280.62
3 279.60
4 276.70
5 285.35

Average 280.53

Table 4.2: Areal weight of cured samples

Hence the areal weight of the matrix is

Wm =Wcomp −Wf = 280.53− 98.0× 2 = 84.53 g/m2

Three resin film layers with two fabric layers were used in making these two-ply

specimens. Therefore the above value of Wm is consistent with the properties given

by the manufacturer, Table 4.1. Thus from Equation 4.1

Vf =
1230× 196

1230× 196×+1760× 84.53
= 0.62

Then from Equation 4.2

Vm = 1− 0.62 = 0.38

4.1.3 Tow Geometry

Micrographs were used to measure the geometric properties of the tows, following

the process in Yee (2006). A 20 mm × 10 mm composite specimen was held upright

and submerged in a mixture of Epofix Resin and Epofix 81 Hardener with a ratio

of 15 to 2. Subsequently, it was cured in a fume cupboard. The rate of curing was
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proportional to the amount of hardener used in the mixture. A slower curing rate

is preferred as it allows more time to release any trapped air bubbles.

The cured specimen was then ground to eliminate any additional epoxy resin on

the surface. By gradually wearing off the surface, the composite specimen becomes

fully exposed. The grinding process was then followed by a polishing process that

aims to remove scars and scratches due to grinding. Before proceeding to polishing,

the specimen was cleaned thoroughly under running water to avoid contamination

from particles originating from the grinding process. After cleaning the specimen, it

was first polished on a revolving plate using a piece of paper containing water based

monocrystalline of particle size 6 micron. Then, it was cleaned again under running

water before going through the same polishing procedures but with water-based

monocrystalline of particle size 1 micron.

Once, the specimen surface had only minimal scars and scratches it was ready

for observation under the Nikon Eclipse LV100 optical microscope with ×20 mag-

nification. An overlay of optical images taken in segments along the specimen is

shown in Figure 4.2.

1 mm

Figure 4.2: Micrograph of T300-1k/913 two-ply plain weave laminate

To determine the cross-sectional properties of a tow, a micrograph was loaded

in the Autocad (2002) software and scaled with respect to the scale bar printed in

the image by the microscope. The software allows to measure the dimensions and

also to determine the area within an enclosed region defined by a closed line drawn

along the edges of a tow. This analysis was carried out on ten tow sections obtained

with four different composite specimen. The average properties that were obtained

are given in Table 4.3.

Weave length, ∆L 2.664 mm
Maximum tow thickness, a 0.059 mm
Tow cross-sectional area 0.0522 mm2

Table 4.3: Average geometric properties of a T300-1k/HexPly913 tow
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4.2 Stiffness and Strength Characterisation Ex-

periments

Interweaving and interlacing of the tows plays a major role in determining the

mechanical response of textile composite materials. Extensive work has been done

for developing standard test methods for textile composites (Masters and Portanova,

1996). ASTM D6856-2003 (2008) provides general guidelines for testing textile

composites and necessary alterations that should be made before using standards

developed for unidirectional laminates.

The stiffness and strength properties of the two-ply T300-1k/Hexcel 913 plain

weave laminate were characterised by tensile, compressive, bending and combined

failure tests described below.

All tests were done on an Instron 5569 materials testing machine with 50 kN and

1 kN load cells. All measurements of strain and deflection were made with Epsilon

LE01 and LE05 laser extensometers.

4.2.1 Tensile Test

The tensile tests were conducted according to the ASTM D3039/D3039M-2008

(2008) test procedure with guidance from ASTM D6856-2003 (2008). Six 227 mm

long and 25 mm wide specimens were constructed. 50 mm long and 25 mm wide

aluminium-alloy tabs with 5◦ bevel angle were bonded to each specimen with high

strength adhesive Devcon Plastic Welder. This leaves an exposed length of 127 mm.

Retro-reflective strips were attached in the central region about 50 mm and 15 mm

apart to measure the longitudinal and transverse strains, respectively.

Each specimen was connected to the tensile testing machine with wedge clamping

jaws. The specimens were pulled at a rate of 2 mm/min while measuring the load

with a 50 kN load cell. Few additional specimens were subjected to four cycles of

80% of the failure load to confirm that there is no hysteretic response.

4.2.2 Compression Test

Standard compression test procedures have been developed for thick composites, but

these standards are not applicable here because thin specimens under compression

fail by buckling. Thus, following Fleck and Sridhar (2005), the compression tests
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were performed on short sandwich columns. In fact, Yee (2006) and Kueh (2007)

used the same approach to estimate the compressive strength of plain weave and

triaxial weave composites, respectively. It is important to select a suitable set of

specimen dimensions when using short sandwich columns to achieve the required

failure by fibre microbuckling (Fleck and Sridhar, 2005). Each specimen was made

by bonding two 60 mm long and 40 mm wide composite face sheets to 12.5 mm thick

Divinicell H200 PVC foam core with Devcon Plastic Welder. Then two aluminium-

alloy end caps were bonded to the sandwich specimen to provide a uniform load

distribution across the width of the specimen, Figure 4.3a.

During the compression test, additional lateral supports were provided by ap-

plying four PVC foam blocks clamped with 1 mm thick aluminium-alloy plates to

prevent the face sheets from debonding from the foam core, Figure 4.3b. Two retro

reflective strips were attached about 30 mm apart in the 10 mm wide central region

for laser extensometer measurements, on both sides of the specimen. The specimens

were loaded at a rate of 0.06 mm/min while using the 50 kN load cell.

4.2.3 Shear Test

The ASTM D3518/D3518M-1994 (2007) [±45]ns tensile test method was used for

measuring the in-plane shear strength. This method has been developed for measur-

ing the shear strength of a lamina and is not used for laminates since the specimen

is subjected to bi-axial tensile loads, in addition to shear. Thus a correction has to

be made for estimating the pure shear strength, as will be explained in Section 6.3.1.

Ten two-ply ±45 specimens with similar dimensions to the tensile specimens of

Section 4.2.1 were made. However, 50 mm long emery cloth tabs were used instead of

aluminium-alloy tabs. Two retro-reflective strips were attached 50 mm and 15 mm

apart, respectively for the longitudinal and transverse strain measurements. Each

specimen was pulled at a rate of 2 mm/min until failure.

4.2.4 Bending Test

Four-point bending tests and platen folding tests were conducted to measure the

bending stiffness and strength, respectively.
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Face sheets

PVC foam core

Aluminium-alloy end cap

Retro-reflective tape

(a) Compression specimen

Specimen

PVC foam

Aluminium-alloy plate

Clamp

10 mm gap

(b) Lateral support system

Figure 4.3: Compressive failure test.
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4.2.4.1 Stiffness

A four-point bending configuration was chosen, instead of three-point bending, as it

produces a region subject to a uniform bending moment and so it is more reliable.

The test setup, based on ASTM D790M-1986 (1986), is shown in Figure 4.4. The

span between the outer supports was 60 mm and the distance between the (inner)

two points at which the loading was applied was set at 20 mm. The deflections im-

posed during this test were very small, the maximum value of relative displacement,

δ, being in the region of 0.5 mm, corresponding to a deflection-to-span ratio of 40;

the maximum value of the applied load was in the region of 2 N. Friction effects

associated with longitudinal deflections at the supports were eliminated by taking

the average response for both loading and unloading. 100 mm long and 50 mm wide

specimens with both two-ply 0/90 and ±45 arrangement were tested to measure

bending stiffness along the fibres and at 45◦ to the fibres. Each specimen was tested

twice by turning it upside down after the first test.

Retro reflective tapes

Specimen

(a) Starting configuration (b) Loaded configuration

Figure 4.4: Four-point bending test setup.

4.2.4.2 Failure

Standard three-point or four-point flexural strength tests are not applicable for thin

laminates, because the elastic deformation range is too large. Hence the platen

folding test (Sanford et al., 2010), which aims to determine the smallest radius and

the corresponding load to which a laminate can be folded before failure, was used.

100 mm long and 50 mm wide specimens were attached to two flat aluminium-alloy

plates connected to the testing machine, Figure 4.5. Each specimen was compressed

at a rate of 2 mm/min while recording the applied force with a 1 kN load cell. A
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Sony Handycam HDR-XR500V digital video camera was used to record the test at

a rate of 30 frames per second. The picture just before failure is used to measure

the failure radius. However, this setup does not measure the transverse moment.

Therefore the ABD stiffness matrix presented in Chapter 5 is used to estimate the

transverse moment at failure.

Specimen

Figure 4.5: Platen folding test setup.

4.2.5 Twisting Test

It is not practical to apply large torsional rotation in a pure twisting test as the end

conditions have to follow the non-linear geometric deformations required to eliminate

the presence of other loading conditions. Instead, the platen folding test described in

Section 4.2.4 was carried out on five two-ply ±45 laminates. Due to the off-axis fibre

orientation of this type of specimen, this configuration applies a twisting moment

in the tow directions, as well as biaxial bending moments. The calculation of the

applied moments in the tow directions is presented in Section 4.3.5.

4.2.6 Biaxial Tests

The uniaxial test procedures described in Sections 4.2.1-4.2.5 can be applied to

initially curved and/or off-axis specimen to obtain combined loading responses.

Initially curved specimens were first flattened and then tested in the tensile or

bending configurations described above. This type of test allows to apply a certain

load type, which depend on the selected test configuration, on a specimen subjected

to a constant moment. Similar to the twisting and shear tests described earlier,

off-axis fibre orientation can be used to introduce a combined axial loads and shear
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or twisting loads. Specimens with different initial radii were used to vary applied

constant moments.

4.2.6.1 In-Plane Loading

Off-axis tensile tests are commonly used as biaxial loading tests to verify material

properties determined with standard uniaxial tests (Adams et al., 2003). Five [30/-

60]2 specimen were tested. The specimen dimensions and test procedure were similar

to the shear tests described in Section 4.2.3. This configuration allows to investigate

failure under combined biaxial and shear loads.

4.2.6.2 Axial-Bending Coupling

This type of coupling was achieved by performing tensile tests on initially curved

two-ply 0/90 specimen, Figure 4.6a. The specimens were cured using 38 mm, 50 mm

and 75 mm diameter cylindrical molds. Then each specimen was subjected to four-

point bending to measure the moment required to flatten it, Figure 4.6b. It was

assumed that a curved specimen behaves in a way similar to a flat specimen on the

micro scale and that the moment required to flatten an initially curved specimen

remains constant throughout the test. Each specimen was 125 mm long and 25 mm

wide, with 25 mm long emery cloth tabs glued to each end. This provides a 75 mm

test length. Retro-reflective strips were attached at 25 mm and 15 mm apart for

longitudinal and transverse strain measurements, respectively. Shorter specimens

were used due to difficulty in constructing long curved specimen. However, in each

specimen the test length consisted of around 29 repeating unit cells, the length of a

unit cell is 2.66 mm. ASTM D6856-2003 (2008) recommends the gauge area to be

larger than at least two unit cells. Also retro-reflective strips were placed sufficiently

away from the supports to minimise edge effects.

Three sets of curved specimens with initial longitudinal radius, rx with 19.1 mm,

25.4 mm and 38.1 mm were tested to measure the interaction between Nx and Mx.

Other sets of specimens with initial transverse radius, ry equal to 25.4 mm and

38.1 mm were tested to measure the interaction between Nx and My.

4.2.6.3 Shear-Twist Coupling

Longitudinally curved two-ply ±45 specimens were subjected to the same type of

shear tests described in Section 4.2.3. This configuration applies all six loading
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(a) Curved specimen (b) Measuring bending moment

Figure 4.6: Axial-bending interaction tests.

conditions on a specimen. The applied twisting moment can be varied by testing

specimens with different initial curvatures.

4.2.6.4 Biaxial Bending

The bending failure test described in Section 4.2.4.2 can be applied to an initially

transversely curved specimen to obtain a biaxial bending response.

Hence, an initially curved specimen was first flattened and then subjected to

longitudinal bending up to failure. The applied transverse moment was varied by

varying the initial curvature. It can be assumed that the applied bending mo-

ment has the value required to flatten the curved specimen and remains constant

throughout the test. Biaxial bending tests were not performed during this research

but instead the results obtained by Yee (2006) on a similar laminate were used.

4.2.6.5 Combined Bending-Twisting Loading

Introducing off-axis fibre orientation in the biaxial bending test described in Sec-

tion 4.2.6.4 introduces both biaxial bending and twisting loads on the specimen.

Different initially transversely curved off-axis specimens were used to vary the biax-

ial and twisting load combinations.

Two set of two-ply ±45 specimens with initial transverse radius of 25.4 mm and

38.1 mm were subjected to bending failure tests to investigate the coupling effects

between bending and twisting.
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4.3 Experimental Results

This section analyses the results obtained from the experiments described in Sec-

tion 4.2. Note that due to symmetry of the laminate x and y can be interchanged.

For each experiment the sample average, x̄, sample standard deviation, sn−1 and

sample coefficient of variation, CV are presented. These three quantities are de-

fined as

x̄ =

(

n
∑

i=1

xi

)

n
(4.3)

sn−1 =

√

(
∑n

i=1
x2i − nx̄2)

(n− 1)
(4.4)

CV =
100× sn−1

x̄
% (4.5)

where xi = measured or derived property and n = number of specimens.

4.3.1 Tensile Properties

Figure 4.7 shows a typical Nx vs. ε response obtained from the tensile tests and

Table 4.4 summarises the initial stiffness and failure values that were obtained. Note

that all these specimen were subjected to failure at multiple locations (failure code

LMV in ASTM D3039/D3039M-2008 (2008)). Ideally, each specimen should fail in

the middle region, but it is difficult to capture where the failure was initiated. A

video taken with a Sony Handycam HDR-XR500V at 30 frames per second showed

that failure occurs within a single frame which corresponds to 0.03 s. However,

if failure was initiated near the ends then the obtained failure strength can be

considered as a lower bound of the actual strength.

4.3.2 Compressive Properties

To measure the compressive failure strength it is required that the tested specimen

should have failed by face sheet microbuckling, Figure 4.8. However it is almost

impossible to achieve microbuckling of both sheets at the same time. Hence only

the extensometer reading for the failed side was considered and the failure stress-
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Figure 4.7: Typical tensile response.

Specimen Stiffness (N/mm) Poisson’s ratio εx (%) Nx (N/mm)
TD90-1 13,110 0.10 0.96 133.60
TD90-2 12,250 0.05 1.05 135.80
TD90-3 13,220 0.12 1.06 143.20
TD90-4 12,070 0.14 1.04 141.00
TD90-5 13,150 0.13 1.01 138.50
TD90-6 13,130 0.12 0.99 144.70

x̄ 12,822 0.11 1.02 139.47
sn−1 517 0.03 0.04 4.30
CV 4.03 29.3 3.80 3.08

Table 4.4: Tensile properties.
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resultant was calculated by assuming that both sheets had been equally loaded.

This value was modified to account for the load taken by the foam core.

Nxc =
P − σcoreAcore

2b
(4.6)

σcore was estimated from stress-strain response of PVC foam given by Fleck and

Sridhar (2005).

Figure 4.8: Face sheet microbukling.

Figure 4.9 shows compressive response for two sides of a single specimen. This

is the closest agreement that was obtained among the two sides of any specimen,

however the failure strengths obtained for other specimens were in the same range,

Table 4.5.

4.3.3 Shear Properties

Table 4.6 shows the axial stiffness, Poisson’s ratio and tensile strength of two-ply

±45 laminate specimens.

Standard expressions to calculate the shear-resultant and shear strain are

Nxy =
Nx′

2
(4.7a)

γxy = εx′ − εy′ (4.7b)
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Figure 4.9: Compressive response measured from two sides of a single specimen.

Specimen label |εx| (%) |Nx| (N/mm)
CD90-1 0.69 63.23
CD90-2 0.70 77.89
CD90-3 0.61 67.50
CD90-4 0.64 60.56
CD90-5 0.59 57.36
CD90-6 0.66 64.96
CD90-7 0.49 59.50
CD90-8 0.56 59.49
CD90-9 0.56 60.39
CD90-10 0.61 63.66
x̄ 0.61 63.42
sn−1 0.06 5.75
CV 10.59 6.10

Table 4.5: Compressive failure values
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Specimen Axial stiffness (N/mm) Poisson’s ratio Nx′

TD45-1 2465 0.80 39.56
TD45-2 2708 0.78 39.54
TD45-3 2380 0.98 41.70
TD45-4 2061 0.85 38.54
TD45-5 2416 0.75 42.40
TD45-6 2556 0.88 40.26
TD45-7 2809 0.79 49.00
TD45-8 2653 0.79 38.34
TD45-9 2489 0.84 38.84
TD45-10 - - 38.58

x̄ 2504 0.84 40.68
sn−1 218 0.07 3.23
CV 8.71 8.37 7.94

Table 4.6: Axial stiffness, Poisson’s ratio and tensile strength of two-ply ±45 lami-
nate.

Figure 4.10 shows a typical shear response, obtained by applying the transformation

in Equation 4.7 to the measurements obtained from an actual test.
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Figure 4.10: Typical shear response of a specimen.

It should be noted that in reality these specimens were subjected to Nx and

Ny loads in addition to Nxy. In general these biaxial loads can be neglected for

±45 specimen made out of unidirectional fibres (Adams et al., 2003), however this

assumption is not valid in estimating the laminate shear strength. Section 6.3.1

describes the correction procedure followed to estimate the pure shear strength.
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4.3.4 Bending Properties

4.3.4.1 Stiffness

The four-point bending experiment explained in Section 4.2.4 measures the total

force, P , required to bend the specimen and the relative displacement between the

cross-head and the specimen, δ. Figure 4.11(a) shows a free-body diagram for this

setup. Note that the mid-span, BC, is only subjected to a uniform moment and due

to symmetry it can analysed as the cantilever shown in Figure 4.11(b). Hence the

applied moment is given by

M = Ps (4.8)

From the moment-curvature relationship

κ =
M

EI
=
Ps

EI
(4.9)

where EI is the bending stiffness of the plate. The tip deflection of the cantilever

is then

δ =
Ps3

2EI
(4.10)

From Equations 4.9 and 4.10

κ =
2δ

s2
(4.11)

F/2 F/2

F/2 F/2

2s 2s 2s

O CB

A D

O C

δ

s

(a) (b)

Figure 4.11: Free body diagram of four-point bending configuration.

An average of the loading and unloading curves was taken to remove the effects

of support friction. Figure 4.12 shows typical moment-curvature response of two-ply
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0/90 laminates and Table 4.7 presents experimental results. The same procedure

was followed to obtain the bending stiffness of two-ply ±45 laminates, Table 4.8.
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Figure 4.12: Moment-curvature response for two-ply 0/90 laminate.

Specimen Stiffness (Nmm)
BD90-B1 45.81
BD90-B2 37.30
BD90-B3 40.88
BD90-B4 38.21
BD90-B5 30.58
BD90-B6 32.54

x̄ 37.55
sn−1 5.54
CV 14.8

Table 4.7: Bending stiffness values for two-ply 0/90 laminate.

4.3.4.2 Strength

As mentioned before the platen folding test setup does not measure the transverse

moment, which was estimated by converting the measured curvatures using the

relationship given by ABD stiffness matrix presented in Chapter 5. It should be

highlighted that two plies with the same tow orientation can be arranged in several
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Specimen Stiffness (Nmm)
BD45-1-top 21.27
BD45-2-top 21.37
BD45-3-top 21.17
BD45-4-top 21.18
BD45-5-top 21.67

x̄ 21.33
sn−1 0.21
CV 0.96

Table 4.8: Bending stiffness values for two-ply ±45 laminate.

different ways. Thus two extreme cases, fibres in-phase and out-of-phase (Soykasap,

2006) were considered.

The failure radius was calculated by measuring the distance between the two

aluminium-alloy platens from the picture taken just before failure.

Sanford et al. (2010) state that the curve formed by an initially flat coupon folded

between two parallel platens is similar to an ellipse. The actual curve depends on

the load distribution where the coupon transitions from being pressed flat against

the platens to being free of the platens, as well as the constancy of the coupon

bending stiffness. If a pure moment with no transverse force exists at this point

the curve becomes circular. Sanford et al. (2010) have shown that in presence of a

transverse force the curve can be described by an elastica. However for simplicity,

here it is assumed that the specimen bends as a semicircle, Figure 4.13, and hence

the applied moment resultant can be calculated as

Mx =
PRu

b
(4.12)

where P = applied load, Ru = failure radius and b = specimen width.

Table 4.9 presents the failure moments and curvatures obtained from platen

folding tests performed on two-ply 0/90 laminates.

4.3.5 Twisting Strength

Table 4.10 shows the measured failure curvatures and moments in the loading di-

rections. Note that κy′ = κx′y′ = 0, but My′ 6= 0. The ABD stiffness matrix given

in Equation 5.17 is used to calculate the moment in the transverse direction. It can
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P

P

2RuRu

Figure 4.13: Bending failure sketch.

Specimen κx (1/mm) Mx (Nmm/mm)
BDF90-1 0.182 3.004
BDF90-2 0.175 2.718
BDF90-3 0.167 3.108
BDF90-4 0.170 3.312
BDF90-5 0.156 2.990
BDF90-6 0.170 3.055
BDF90-7 0.168 3.103
x̄ 0.170 3.041
sn−1 0.008 0.178
CV 4.67 5.86

Table 4.9: Bending failure values for two-ply 0/90 laminate.
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be shown that

Mx′ = D±45

11
κx′ (4.13a)

My′ = D±45

12
κx′ (4.13b)

Mx′y′ = 0 (4.13c)

However it should be noted that the ABD matrix was developed to capture

the initial stiffness of the laminate. Comparing Mx′ from Equation 4.13(a) with the

measured value from Table 4.10 it can be seen that there is a 40% stiffness reduction.

Assuming that the transverse stiffness is subjected to a similar reduction, we obtain

My′ = 0.6×D±45

12
κx′ (4.14)

Once Mx′ and My′ are known they can be transformed to the tow directions with

the standard transformation

Mx =
Mx′ +My′

2
(4.15a)

My =Mx (4.15b)

Mxy =
My′ −Mx′

2
(4.15c)

These equations confirm that the specimens were subjected to Mx and My loads

in addition toMxy, and hence this is not a pure twisting experiment. The procedure

followed to obtained the pure twisting strength is explained in Section 6.3.2.

4.3.6 Combined Loading Results

This section presents the results obtained from the combined loading tests.

4.3.6.1 Off-Axis Tensile Strength

Table 4.11 shows the axial strength of a two-ply 30/-60 laminate. Using standard

transformations it can be shown that the force resultants along the tow directions
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Specimen κx′ (1/mm) Mx′ (Nmm/mm)
BDF45-1 0.235 3.063
BDF45-2 0.219 3.208
BDF45-3 0.232 3.155
BDF45-4 0.234 2.962
BDF45-5 0.236 3.473
x̄ 0.231 3.172
sn−1 0.007 0.192
CV 3.02 6.07

Table 4.10: Bending failure values for two-ply ±45 laminate.

are given by

Nx = cos2 φ Nx′ (4.16a)

Ny = sin2 φ Nx′ (4.16b)

Nxy = sinφ cosφ Nx′ (4.16c)

Specimen Nx′ (N/mm)
TD30-1 45.69
TD30-2 45.44
TD30-3 45.53
TD30-4 48.01
TD30-5 50.62
x̄ 47.06
sn−1 2.26
CV 4.80

Table 4.11: Tensile failure values for [30/-60]2 laminate.

4.3.6.2 Axial-Bending Interaction

Table 4.12 presents the failure strengths obtained for longitudinally curved speci-

mens. In all cases failure occurred in the middle region of these specimens.

Table 4.13 shows the failure values of Nx with the applied My values, obtained

from tensile tests carried out on transversely curved specimens. Note that the
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Specimen rx (mm) Nx (N/mm) Mx (Nmm/mm)
TBD90-D1.5-1 19.1 68.96 1.986
TBD90-D1.5-2 19.1 72.37 1.986
TBD90-D1.5-3 19.1 81.52 1.986
TBD90-D1.5-4 19.1 110.10 1.854
TBD90-D1.5-5 19.1 93.75 1.722
TBD90-D2-1 25.4 73.80 1.357
TBD90-D2-2 25.4 81.17 1.265
TBD90-D2-3 25.4 119.00 1.447
TBD90-D2-4 25.4 86.12 1.327
TBD90-D2-5 25.4 87.56 1.560
TBD90-D2-6 25.4 99.25 1.600
TBD90-D2-7 25.4 104.70 1.610
TBD90-D3-1 38.1 108.20 0.989
TBD90-D3-2 38.1 104.70 0.775
TBD90-D3-3 38.1 103.90 0.743

Table 4.12: Tensile failure values for longitudinally curved two-ply 0/90 laminate.

transverse moment was not measured in this case but taken as the average obtained

from curved specimens with the same initial curvature in Table 4.12.

Specimen ry (mm) Nx (N/mm) My (Nmm/mm)
TBD90-D2Y-1 25.4 145.20 1.349
TBD90-D3Y-1 38.1 136.80 0.836
TBD90-D3Y-2 38.1 136.10 0.836

Table 4.13: Tensile failure values for transversely curved two-ply 0/90 laminate.

4.3.6.3 Shear-Twist Interaction

Table 4.14 shows the failure force resultants in the loading direction. The specimens

considered here had an initial radius of 38.1 mm.

4.3.7 Bending-Twisting Interaction

Table 4.15 shows the failure moments obtained by testing transversely curved two-

ply ±45 specimens. The moment resultants in the tow directions were calculated by

following the same procedure described in Section 4.3.5, however note that in the

present case κy′ 6= 0. Hence Equation 4.14 should be replaced by
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Specimen Nx′ (N/mm) Mx′ (Nmm/mm)
STD45-1 42.42 0.043
STD45-2 39.30 0.039
STD45-3 42.04 0.042
STD45-4 38.36 0.040

x̄ 40.53 0.041
sn−1 2.01 0.002
CV 4.95 4.45

Table 4.14: Tensile failure values for longitudinally curved two-ply ±45 laminate.

My′ = 0.6× (D45

12
κx′ +D45

22
κy′) (4.17)

where κy′ =
1

ry′

Specimen ry′ (mm) κx′(1/mm) Mx′ (Nmm/mm)
BTD45-D2Y-1 25.4 0.262 3.552
BTD45-D2Y-2 25.4 0.283 3.870
BTD45-D3Y-1 38.1 0.254 3.092
BTD45-D3Y-2 38.1 0.276 3.035
BTD45-D3Y-3 38.1 0.252 2.838
BTD45-D3Y-4 38.1 0.226 2.677
BTD45-D3Y-5 38.1 0.224 2.804

Table 4.15: Bending failure values for transversely curved two-ply ±45 laminate.
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Chapter 5

Micro-Mechanical Modelling

Thin laminates made from fabric layers are not modelled accurately by classical

laminate theory (Soykasap, 2006). Hence, the two-ply laminate studied in this

dissertation is modelled as a linear-elastic thin Kirchhoff plate whose properties are

defined by a homogenisation technique. The first part of the chapter explains our

method for estimating the tow properties and for constructing the homogenised

plate model. Then our stiffness predictions are compared with the experimental

results obtained from Chapter 4. Finally an attempt is made to use homogenisation

in reverse to predict material failure.

5.1 Estimating Tow Properties

In order to construct the micro-mechanical model, one first needs to estimate the

tow properties. Each tow is modelled as a three-dimensional continuum having

transversely isotropic properties.

5.1.1 Engineering Constants

The five independent engineering constants are determined as follows (Daniel and

Ishai, 2006). The longitudinal extensional modulus and the Poisson’s ratios are

obtained from the rules of mixtures

E1 = E1fVf + Em(1− Vf) (5.1)
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ν12 = ν13 = ν12fVf + νm(1− Vf) (5.2)

The transverse extensional modulus can be estimated with the Halpin-Tsai semi-

empirical relation

E2 = E3 = Em
1 + χηVf
1− ηVf

(5.3)

where

η =
E2f −Em

E2f − χEm
(5.4)

and the parameter χ is a measure of reinforcement of the composite that depends

on the fibre geometry, packing geometry, and loading conditions. This has been set

to 2.0 (Daniel and Ishai, 2006).

The shear modulus G12 = G13 is found from the Halpin-Tsai semi-empirical relation

(Daniel and Ishai, 2006)

G12 = G13 = Gm
(G12f +Gm) + Vf(G12f −Gm)

(G12f +Gm)− Vf(G12f −Gm)
(5.5)

The in-plane shear modulus, G23, is obtained by solving the following quadratic

equation (Quek et al., 2003):

(

G23

Gm

)2

A +

(

G23

Gm

)

B + C = 0 (5.6)

where

A = 3Vf(1− Vf)
2

(

G12f

Gm
− 1

)(

G12f

Gm
+ ζf

)

+

[(

G12f

Gm

)

ζm + ζmζf −
((

G12f

Gm

)

ζm − ζf

)

(vf )
3

]

(5.7)

×
[

ζmVf

(

G12f

Gm

− 1

)

−
((

G12f

Gm

)

ζm + 1

)]
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B = −6Vf(1− Vf)
2

(

G12f

Gm
− 1

)(

G12f

Gm
+ ζf

)

+

[(

G12f

Gm

)

ζm +

(

G12f

Gm
− 1

)

Vf + 1

]

(5.8)

×
[

(ζm − 1)

(

G12f

Gm

+ ζf

)

− 2(Vf)
3

((

G12f

Gm

)

ζm − ζf

)]

+ (ζm + 1)Vf

(

G12f

Gm

− 1

)[

G12f

Gm

+ ζf +

((

G12f

Gm

)

ζm − ζf

)

(Vf)
3

]

C = 3Vf(1− Vf)
2

(

G12f

Gm
− 1

)(

G12f

Gm
+ ζf

)

+

[(

G12f

Gm

)

ζm +

(

G12f

Gm
− 1

)

Vf + 1

]

(5.9)

×
[

G12f

Gm

+ ζf +

((

G12f

Gm

)

ζm − ζf

)

(Vf)
3

]

and

ζm = 3− 4νm (5.10)

ζf = 3− 4ν12f (5.11)

The transverse Poisson’s ratio ν23 can be calculated from

G23 =
E2

2(1 + ν23)
(5.12)

Table 5.1 presents the tow properties obtained using these equations with V ′

f = 0.68.

The measured Vf from experiments was 0.62 but in calculating the tow properties

this value was increased to 0.68 to compensate for the additional resin that is added

at the tow interfaces, when setting up the micro-mechanical model. This will be

explained in more detail in Section 5.2.
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Material Properties Value
Longitudinal stiffness, E1 (N/mm2) 159,520
Transverse stiffness, E2 = E3 (N/mm2) 11,660
Shear stiffness, G12 = G13 (N/mm2) 3,813
In-plane shear stiffness, G23 (N/mm2) 3,961
Poisson′s ratio, ν12 = ν13 0.267
Poisson′s ratio, ν23 0.472

Table 5.1: Properties of cured T300-1k/913 tow

5.1.2 Geometry

The most important geometric parameters that are required for accurate modelling

of the woven laminate are the tow cross-sectional shape and area, the tow waviness

and the ply arrangement. As described in Section 4.1.3 this particular laminate has

a weave length ∆L = 2.664 mm, a tow cross-sectional area of 0.0522 mm2, and a

maximum tow thickness a = 0.059 mm.

5.1.2.1 Tow Cross-Section and Waviness

In the simplest micro-mechanics model the tows were initially modelled as wavy

beams having an equivalent rectangular cross-sectional area (Mallikarachchi and

Pellegrino, 2008) but in this model the beams are constrained only along their cen-

tre lines and so the distributed nature of the constraint provided across the tow

width is neglected. Hence this model did not capture Poisson’s effects accurately,

in particular it provided rather poor predictions of A12 and gave D12 = 0 (see

Section 5.3).

The next step was to use a solid model with the same equivalent rectangular

cross-section but with a piecewise linear centre lines, Figure 5.1a. This provides a

good connection between warp and weft tows in the overlapped regions. However,

the tow undulation regions are not in contact and also the transitions between the

two types of regions are not smooth.

To get uniform contact between the tows and to provide a smooth transition

both tow cross-section and waviness were then defined with three different orders of

sine waves. The surfaces of each tow were thus defined by

z = a

(

± 2 ± d

√

∣

∣

∣

∣

sin

(

2πx

∆L

)∣

∣

∣

∣

± d

√

∣

∣

∣

∣

sin

(

2πy

∆L

)∣

∣

∣

∣

)

(5.13)
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where the sign of the first term is + for the upper ply and − for the lower ply; the

signs of the second and third terms are respectively (+,+) for the top surface of

the ply, (+,−) or (−,+) for the interface between the two tows, and (−,−) for the

lower surface of the ply. Note that the x, y, z coordinate system is such that the tow

centre lines lie in planes parallel to xz and yz. The exponent d is set to 1, 2 and 4

to obtain sin,
√
sin and 4

√
sin variation. Figures 5.1b and 5.1c show cross-sections

and 3D views of the two different models based on sine wave variation. Note that

Whitcomb and Srirengan (1996) also used a sine wave to define the waviness and

tow cross-section in their model.

This representation of the tow surfaces ensures a perfect geometric match be-

tween tows in the same ply, however tows in different plies touch only at four points

and hence there is a gap that has been filled with 6-node triangular prisms modelling

additional neat resin. The fibre volume fraction of the tows was changed accordingly

to maintain the overall fibre volume fraction at Vf = 0.62. Therefore Vf was set to

0.68 in estimating the tow properties for the model sine wave with d = 4.

5.1.2.2 Ply Arrangement

When considering a two-ply woven laminate there are infinitely many possible ar-

rangements of the plies, obtained by translating one ply with respect to the other

ply. Soykasap (2006) considered two extreme configurations known as fibres in-phase

and fibres out-of-phase. Hence all five tow arrangements presented in Section 5.1.2.1

were considered for both of these extreme cases. Figure 5.2 shows two different ar-

rangements.

5.2 Homogenised Plate Model

Figure 5.3 shows a finite element model where the tow geometries were defined by

the fourth root of a sine wave and the two plies are in phase. The model consists of

1520 and 3200, 6-node triangular prisms elements, respectively for each tow and for

the additional resin. The boundary nodes were attached by means of rigid vertical

beams to dummy nodes lying in the mid-plane. Each dummy node was related to the

corresponding dummy node opposite by means of a constraint equation that enforces

periodic boundary conditions. These equations prescribe the relative displacements

and rotations of the dummy nodes in terms of the mid-plane strains and out-of-plane
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(a) Rectangular

(b) Sine wave (d = 1)

(c) Fourth root of a sine wave (d = 3)

Figure 5.1: Unit cell geometry with different cross-sectional profiles and waviness.

X

Y

Z

(a) Fibres in-phase

X

Y

Z

(b) Fibres out-of-phase

Figure 5.2: Two extreme ply arrangements.
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curvatures of the homogenised Kirchhoff plate.

εx =
∂u

∂x
(5.14a)

εy =
∂v

∂y
(5.14b)

γxy =
∂u

∂y
+
∂v

∂x
(5.14c)

κx = −∂
2w

∂x2
(5.14d)

κy = −∂
2w

∂y2
(5.14e)

κxy = −2
∂2w

∂x∂y
(5.14f)

It should be noted that the engineering shear strain and twice the surface twist have

been used in the definition of these deformation variables.

∆L ∆L

Rigid beams

Dummy node

2-plies

Additional resin

x, uy, v
z, w

Figure 5.3: Finite element model for unit cell of two-ply laminate (with 3× magni-
fication in z-direction).
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5. Micro-Mechanical Modelling

The following constraint equations were enforced

∆ux = εx ∆L (5.15a)

∆vx =
1

2
γxy ∆L (5.15b)

∆uy =
1

2
γxy ∆L (5.15c)

∆vy = εy ∆L (5.15d)

∆wx = −1

2
κxy y ∆L (5.15e)

∆wy = −1

2
κxy x ∆L (5.15f)

∆θxx = −1

2
κxy ∆L (5.15g)

∆θxy = κx ∆L (5.15h)

∆θyx = −κy ∆L (5.15i)

∆θyy =
1

2
κxy ∆L (5.15j)

∆θzx = 0 (5.15k)

∆θzy = 0 (5.15l)

where subscripts denote the deformation directions and superscripts denote the di-

rection of a pair of boundary nodes, with equal x or y coordinates.

The constitutive relationship for the homogenised plate, in the coordinate direc-

tions defined in Figure 5.3, is written in the form of an ABD stiffness matrix.

The entries of the ABD matrix for the two-ply laminate were computed using

Virtual Work (Karkkainen et al., 2006; Kueh and Pellegrino, 2007), after carrying

out six separate Abaqus/Standard analyses, each corresponding to a unit amplitude

of the six deformation variables εx, . . . , κxy. The following ABD matrix was thus

obtained
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ABD0/90 =



























13009 1085 0 | 0 0 0

1085 13009 0 | 0 0 0

0 0 667 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 41.3 1.5 0

0 0 0 | 1.5 41.3 0

0 0 0 | 0 0 2.3



























(5.16)

where the units are N and mm.

The constitutive matrix ABD±45 for a two-ply ±45 laminate is obtained by a

45◦ rotation of the ABD matrix in Equation 5.16, which gives

ABD±45 =



























7714 6380 0 | 0 0 0

6380 7714 0 | 0 0 0

0 0 5962 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 23.6 19.1 0

0 0 0 | 19.1 23.6 0

0 0 0 | 0 0 19.9



























(5.17)

5.3 Experimental Validation of Material Stiffness

The constitutive matrices obtained from the homogenised plate models in Section 5.2

were verified against the tensile and bending experimental results obtained in Sec-

tions 4.3.1, 4.3.3 and 4.3.4.

The use of narrow specimens in the tension tests ensures that the transverse and

shear stress resultants are negligibly small, i.e. Ny′ ≈ Nx′y′ ≈ 0 in the middle of

the specimen. Hence, denoting by aij the entries of the in-plane compliance matrix

obtained by inverting the upper-left 3 × 3 submatrix of the corresponding ABD

matrix

εx′ = a11Nx′ (5.18)

and therefore 1/a11 can be compared to the measured ratio Nx′/εx′.

In the four-point bending tests wider specimens were used and hence the trans-

verse and twisting curvatures were negligibly small, i.e. κy′ ≈ κx′y′ ≈ 0, and so the
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measured ratioMx′/κx′ can be directly compared to D11 of the corresponding ABD

matrix.

A comparison of the experimental results to the predictions based on the models

described in Section 5.1.2.1 is presented in Tables 5.2 and 5.3 for two-ply 0/90 and

±45 laminates, respectively.

Tow model
1

a11
ν12 D11

in-phase out-of-
phase

in-phase out-of-
phase

in-phase out-of-
phase

Beam 8,192 11,992 0.32 0 45.4 34.4
Solid (rectangular) 8,259 11,141 0.21 0.02 43.0 32.8
Solid (sin) 11,629 12,108 0.08 0.04 45.0 41.5

Solid (
√
sin) 12,905 - 0.08 - 47.0 -

Solid ( 4
√
sin) 12,919 13,643 0.08 0.04 41.3 36.8

Experiments 12,833 0.11 37.84

Table 5.2: Material Properties for two-ply plain weave T300-1k/913, 0/90 laminate.

Tow model
1

a11
ν12 D11

in-phase out-of-
phase

in-phase out-of-
phase

in-phase out-of-
phase

Beam 440 446 0.96 0.96 23.3 23.5
Solid (rectangular) 1,342 1,342 0.87 0.88 24.4 23.0
Solid (sin) 2,088 2,088 0.84 0.84 25.7 25.9

Solid (
√
sin) 2,390 - 0.83 - 27.2 -

Solid ( 4
√
sin) 2,437 2,438 0.83 0.83 23.6 22.4

Experiments 2504 0.84 21.67

Table 5.3: Material Properties for two-ply plain weave T300-1k/913, ±45 laminate.

Note that there is a significant variation in the bending stiffness of the ho-

mogenised plate between the in-phase and out-of-phase 0/90 laminate. This varia-

tion was also evident in the experiments as the bending stiffness varied from 31 Nmm

to 45 Nmm (see Table 4.7). However in the case of ±45 laminates the difference is

rather small. Based on comparison of all three stiffness properties for both 0/90 and

±45 laminates, the solid model with fourth root of sine wave and fibres in-phase

was selected. The tubular booms that will be discussed in the following chapters
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of this dissertation use a ±45 laminate, hence the ABD stiffness matrix defined in

Equation 5.17 will be used as the material stiffness from here onwards.

5.4 Failure Analysis

Once a homogenised material model is used to compute the structural behaviour of

a deployable boom the output is defined in the form of stress-resultants and mid-

plane strains and curvatures and then the question that arises is whether the material

of the boom is able to carry the stress resultants, or undergo these deformations,

without damage. Therefore, the possibility of using the homogenisation analysis in

reverse to determine the safety of the structure is investigated here.

Verification of failure analysis was carried out by applying a known failure load

to the micro-mechanical model presented in Section 5.2. A failure analysis was

performed in the micro-mechanical model with a selected failure criterion to check

whether it actually predicts failure. For simplicity tension, compression, shear and

bending failure tests were considered.

This was studied by applying 80% and 100% of the failure strains or curvatures

obtained from uniaxial strength tests described in Chapter 4, to the equations defin-

ing the periodic boundary conditions, Equation 5.15. The 100% loading was used

to check if the micro-mechanical model predicts that the failure occurs before this

limit and the 80% loading to confirm it is not overconservative.

5.4.1 Strain Based Criterion

Following Yang et al. (2005), the maximum fibre strain was obtained by computing

the average fibre strain in a moving window with a width equal to half a tow width

and then selecting the maximum average value from the micro-mechanical model.

Similarly, the maximum resin strain was obtained by computing 1) the maximum

half-tow averaged normal strain in the direction perpendicular to the fibres in the

same moving window and 2) the maximum average principal strain in the resin

filling the space between the two-plies, and then choosing the maximum of the two.

To establish if the structure is able to withstand this deformation, the maximum

normal strain in the fibre direction was compared with the failure strain of T300

fibres (1.5%, Torayca), and the maximum resin strain was compared with the failure

strain of HexPly 913 epoxy resin in pure tension. This was calulated to be 1.93% by
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dividing the tensile strength (Hexcel) by the tensile modulus and assuming linear-

elastic behaviour up to failure.

5.4.2 Stress Based Criteria

Both the maximum stress and Tsai-Wu failure criteria were considered. In order to

apply a stress based criterion, the tow strengths need to be known. It is assumed

that the failure of each tow is similar to that of a unidirectional laminate. Pinho et al.

(2006) present strength properties of a T300/913 unidirectional laminate, Table 5.4.

Material Properties Value
Longitudinal tensile strength, σu

1t (N/mm2) 2005
Longitudinal compressive strength, σu

1c (N/mm2) 1355
Transverse tensile strength, σu

2t (N/mm2) 68
Transverse compressive strength, σu

2c (N/mm2) 198
Shear strength, τus (N/mm2) 150

Table 5.4: Strength properties of T300/913 uni-directional laminate (Pinho et al.,
2006).

Failure calculations were performed at each element in the micro-mechanical

model with either failure criterion. The laminate failure can be defined as either

failure of a single element, which defines failure initiation, or a certain percentage

of elements failing for ultimate failure.

5.4.3 Validation

Two sets of analyses are carried out, with the actual failure strains and curvatures

obtained from the experiments and 80% of these values.

It was found that the maximum strain failure criterion does not indicate failure

at 100% loading for tensile and compressive loading. Table 5.5 shows the maximum

fibre and resin strains corresponding to 100% loading. Note that the ultimate fibre

and resin strains are 1.5% and 1.93%, respectively, see Section 5.4.1.

On the other hand the stress based failure criterion was over-conservative. The

analysis shows that the laminate cannot take even 80% of loading for tensile, shear

and bending. Table 5.6 shows the percentage of elements are deemed to have failed

by the two criteria, for a load of 80% of the actual failure strains and curvatures.
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Figures 5.4a shows contours of the fibre strains and Figures 5.4b and 5.4c show

the failed elements for an imposed curvature of 80% the actual failure curvature,

using the maximum stress and the Tsai-Wu criterion, respectively.

Loading Max. fibre strain (%) Max. resin strain (%)
Tension 0.78 1.55
Compression -0.54 -1.40
Shear 0.25 4.00
Bending 0.95 2.11

Table 5.5: Maximum fibre strain (averaged over half a tow width) and resin strains
corresponding to measured failure loads.

Loading Max. Stress Tsai-Wu
Tension 50 50
Compression 0 0
Shear 95 95
Bending 20 30

Table 5.6: Percentage of elements that have failed under 80% of the failure loading.

5.4.4 Conclusions

Even though the micro-mechanical model is fairly accurate in capturing the material

stiffness, its failure predictions are quite poor. The exact tow geometry may not

matter in predicting the stiffness but it is clearly important in failure analysis as

stress concentrations will depend on geometry.
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Fibre strain (%)

-1.5

 0.0

 1.5

 0.6

-0.6

(a) Fibre strain distribution

Failed elements

(b) Maximum stress

(c) Tsai-Wu

Figure 5.4: Failure analysis of laminate subjected to 80% bending load.
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Chapter 6

Failure Criterion

This chapter presents a six-dimensional failure criterion defined in terms of stress-

resultants. A quadratic failure locus presented in the literature is examined first.

First this locus was constructed using the uniaxial strength experiments performed

in Chapter 4 and then the combined loading test results were used to verify the

accuracy of the locus. It is shown that this quadratic locus works well for in-plane

loading conditions but not for bending or if this is an interaction between in-plane

and bending loads. The second part of the chapter describes an alternative failure

locus defined in terms of three inequalities that define failure due to in-plane, bending

and interaction between in-plane and bending loads.

6.1 Quadratic Failure Locus

Karkkainen and Sankar (2007) have presented a failure envelope for textile compos-

ites in the form of a quadratic polynomial. This locus was defined by extending

the Tsai-Wu failure criterion to force and moment resultants. The values of the

failure parameters were estimated with the aid of finite element calculations carried

out on a representative unit cell. It should be noted that Manne and Tsai (1998)

have used a similar strain based criterion in their work on the design optimisation

of composite plates. The applicability of Karkkaninen and Sankar’s failure criterion

for our two-ply plain weave laminate is investigated here.

The quadratic polynomial in six-dimensional space can be expressed as

f̂iσ̂i + f̂ij σ̂iσ̂j = 1 (6.1)
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where σ̂i = Nx, Ny, Nxy for i = 1, 2, 3 and Mx, My, Mxy for i = 4, 5, 6. f̂i and

f̂ij represent 27 failure coefficients such that Equation 6.1 defines failure when its

magnitude exceeds 1. f̂i and the diagonal terms f̂ii, define the effects corresponding

to individual uniaxial loads. The non-diagonal terms f̂ij when i 6= j, define coupling

between different loading conditions.

Due to the symmetry of the laminate these (the strength parameters do not

change if x and y are exchanged) 27 failure coefficients can be reduced to 16. Also,

because the sign of the shear, bending and twisting loads should not affect the

failure locus, f̂3 = f̂4 = f̂5 = f̂6 = 0, i.e. pure bending strength should not depend

on whether the applied moment is positive or negative. Similarly, all f̂ij terms for

i = 3,...,6 or j = 3,...,6 when i 6= j are equal to zero, i.e. the failure moment of an

axially loaded plate should be the same regardless of bending direction. However, it

should be noted that in Karkkanien and Sanker’s work the non-diagonal terms were

not set to zero.

Hence, the quadratic polynomial can be expressed in terms of only 6 coefficients

f̂1, f̂11, f̂12, f̂33, f̂44 and f̂66. These coefficients can be calculated if there is a

sufficient number of known failure points by following a similar approach to Tsai

and Wu (1971).

f̂1 =
1

F1t
− 1

F1c
(6.2a)

f̂11 =
1

F1tF1c
(6.2b)

f̂33 =
1

F 2
3

(6.2c)

f̂44 =
1

F 2
4

(6.2d)

f̂66 =
1

F 2
6

(6.2e)

Considering the similarity of this failure criterion to Tsai-Wu failure criterion for

in-plane loading, f̂12 can be approximated as

f̂12 = − f̂11
2

(6.3)

Therefore the quadratic polynomial can be obtained from the tension, compres-
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sion, shear, bending and twisting failure strength experiments presented in Chap-

ter 4. The five combined loading experiments that were performed can be used to

verify the accuracy of the quadratic polynomial given in Equation 6.1.

6.2 Application of Quadratic Criterion

The five uniaxial strengths required to construct the quadratic failure envelope can

be estimated from the first five results determined in Section 4.3. Here the failure

strengths are taken as the averages obtained from each set of experiments. Because

in the shear and twisting tests, the laminate was subjected to additional biaxial

loads, the pure strengths are estimated by extrapolation as will be described in

Section 6.3. Table 6.1 shows the failure strengths.

Strength Value
F1t = F2t, N/mm 139.47
F1c = F2c, N/mm 63.42
F3, N/mm 17.73
F4 = F5, Nmm/mm 3.04
F6, Nmm/mm 0.92

Table 6.1: Uniaxial failure strengths.

Once the uniaxial failure parameters are obtained, the six failure coefficients can

be calculated using Equations 6.2 and 6.3. Thus the six-dimensional ellipsoid given

in Equation 6.1 can be defined.

At the next stage, the five sets of experimental results for combined loading were

used to test the accuracy of this six-dimensional ellipsoid. This check was done by

considering three sections of the ellipsoid for, in-plane loading, bending and axial-

bending interaction. It was observed that the failure criterion satisfies the additional

results for the in-plane loading conditions but not the other two.

Plotting the axial-bending interaction results obtained in Section 4.3.6.2 shows

that the interaction between Nx andMx is not quadratic, Figure 6.1, indeed all of the

experimentally determined failure points fall inside the locus. Note that red, light

blue and purple stars indicate specimens with initial curvatures 19.1 mm, 25.4 mm

and 38.1 mm, respectively. It can be concluded that the quadratic failure locus

defined by Equation 6.1 is not valid for this laminate.
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Figure 6.1: Axial-bending interaction.

6.3 Alternative Failure Locus

Section 6.2 has shown that the failure locus defined by a single polynomial does

not work well for a two-ply plain-weave laminate. Therefore an attempt is made

to construct an alternative failure envelope on the basis of the experimental ob-

servations. The loading space is divided into three parts, which take into account

in-plane loading, bending loading and the interaction between in-plane and bending

loads separately.

6.3.1 In-Plane Failure

In the case of in-plane loading all moment resultants are zero and hence in-plane

failure can be defined by an equation of the type of Equation 6.4.

f̂1(Nx +Ny) + f̂11(N
2

x +N2

y ) + f̂12NxNy + f̂33N
2

xy = 1 (6.4)

The shear strength results presented in Section 4.3.3 were determined in the

presence of axial loads Nx and Ny. Note that these shear tests were in fact tensile

tests performed on 45◦ off-axis specimens. Thus, from Equation 4.16 it can be shown

that loads in the tow directions Nx = Ny = Nxy = Nx′/2. Substituting Nx, Ny and

Nxy with Nx′/2 in Equation 6.4 and by solving for F3
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F3 =
1

√

f̂33

=
N2

x′

√

4− (4f̂1Nx′ + (2f̂11 + f̂12)N
2

x′)
(6.5)

Hence F3 can be calculated from average Nx′ given in Table 4.6.

Figures 6.2a and 6.3a show the cross-sections of the failure locus for Ny = 0 and

Nxy= 0, respectively, along with the failure points used to construct the locus.

The off-axis tensile test results presented in Section 4.3.6.1 are used for validation.

Figure 6.2b and 6.3b show the cross-sections of the locus when Ny = 11.77 N/mm

and Nxy = 20.38 N/mm, respectively. Note that these figures present all of the

failure points obtained from the off-axis experiments but the cross-sections of the

locus were chosen for the average values of Ny and Nxy. In both cases, the failure

points lie outside the locus which provides confidence in using Equation 6.4.

6.3.2 Bending Failure

Yee (2006) showed that for thin plain weave laminate the failure curvature along a

tow direction is independent of the curvature applied in the orthogonal direction.

Figure 6.4 shows the biaxial bending moment locus constructed from Yee’s failure

curvature locus using the ABD stiffness matrix given in Equation 5.16 for our mate-

rial, allowing for a 40% stiffness reduction at failure. Note that the failure moment

envelope is almost square, like Yee’s failure curvature locus. This implies that Mx

is independent of My.

The twisting failure tests carried out in Section 4.3.5 were subjected to biaxial

bending in addition to twist. Hence the pure twisting strength was calculated as

follows.

From Table 4.10 and Equation 4.15 the average moments for flat ±45 laminates

are Mx = My = 2.87 Nmm/mm and Mxy = 0.30 Nmm/mm. Note that in-plane

loads are all zero, Nx = Ny = Nxy = 0. Since we already decided that Mx and My

are independent from each other and assuming quadratic interaction between Mx

and Mxy

f̂44M
2

x + f̂66M
2

xy = 1

F6 =
Mxy

√

1− f̂44M2
x

(6.6)
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(b) Ny = 11.77 N/mm

Figure 6.2: Axial-shear interaction.
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(a) Nxy = 0
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(b) Nxy = 20.38 N/mm

Figure 6.3: Biaxial failure.
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Figure 6.4: Biaxial bending failure locus (constructed from Yee (2006)).

Equation 6.6 defines two cylinders with axes along theMx andMy axes, hence all

failure points should lie outside of the volume defined by the intersection of these two

elliptic cylinders. Figure 6.5 shows a cross-section of the failure locus determined

by projecting this values on to the My = 0 plane. Note that blue and green solid

stars represent flat 0/90 and ±45 laminates, respectively. Light blue and purple

hollow stars represent ±45 specimens with initial transverse radius of 25.4 mm and

38.1 mm, respectively. Due to the symmetry of the laminate, the My vs. Mxy locus

will look the same.

In conclusion, the failure limits for bending loads can be defined by the following

inequalities

f̂44M
2

x + f̂66M
2

xy < 1 (6.7a)

f̂44M
2

y + f̂66M
2

xy < 1 (6.7b)

6.3.3 In-Plane-Bending Failure

In the case of the tensile tests performed on transversely curved specimens, the

failure load was rather close to that for pure tensile strength, Table 4.13. This
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Figure 6.5: Bending-twisting interaction.

shows that axial failure does not depend on a moment applied in the transverse

direction. Similarly, Table 4.14 shows that the presence of a twisting moment does

not affect the shear strength. Thus it can be concluded that the only interaction to

be considered is between in-plane and bending loads applied in the same direction.

From Figure 6.1 it can be concluded that Nx and Mx interact linearly. Due to

material symmetry, the interaction between Ny andMy will be of the same type and

hence interactive failure can be expressed by the following inequalities

Nx

Fx

+

√

f̂44 × |Mx| < 1 (6.8a)

Ny

Fy
+

√

f̂44 × |My| < 1 (6.8b)

where the axial failure strengths Fx and Fy are given by

Fx =
−(f̂1 + f̂12Ny)±

√

(f̂1 + f̂12Ny)2 − 4f̂11(f̂1Ny + f̂11N2
y + f̂33N2

xy − 1)

2f̂11
(6.9a)

Fy =
−(f̂1 + f̂12Nx)±

√

(f̂1 + f̂12Nx)2 − 4f̂11(f̂1Nx + f̂11N2
x + f̂33N2

xy − 1)

2f̂11
(6.9b)
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Note that Equation 6.9a is obtained by setting Nx = Fx and replacing < with =

in Equation 6.4, and then solving the quadratic equation for Fx. Similarly, Equa-

tion 6.9b is obtained by setting Ny = Fy, etc. and then solving for Fy.

6.3.4 Summary

As described in Section 6.3.3 there is no interaction between axial-twisting, shear-

bending and shear-twisting loadings. Also Section 6.3.2 shows that the strength Mx

is independent ofMy. Hence the quadratic polynomial assumed in Section 6.2 is not

sufficient for failure predictions and it has been shown that a more accurate failure

locus is defined from three set of inequalities. In fact this is common in plastic

failure of cylindrical shells made of isotropic materials (Calladine, 1972; Hodge Jr.,

1954; Sawczuk and Hodge Jr., 1960).

Hence in summary it can be stated that limits on the failure envelope of a two-

ply plain weave laminate subjected to force and moment resultants can be defined

by

f̂1(Nx +Ny) + f̂11(N
2

x +N2

y ) + f̂12NxNy + f̂33N
2

xy < 1 (6.10a)

f̂44 ×max(M2

x ,M
2

y ) + f̂66M
2

xy < 1 (6.10b)

max(
Nx

Fx
,
Ny

Fy
) +

max(|Mx|, |My|)
F4

< 1 (6.10c)

Since it is impossible to visualise a six-dimensional object let us consider a series

of three dimensional projections to better understand these three limits.

The in-plane failure envelope is defined by Equation 6.10a, which is an ellipsoid,

Figure 6.6. In fact, this is the Tsai-Wu failure criterion given in terms of stress-

resultants.

The failure envelope for bending loads is defined by Equation 6.10b. This en-

velope is defined by the intersection of two cylinders with axes along Mx and My,

Figure 6.7. Note that when Mxy = 0 this locus reduces to a square due to the

fact that the failure strengths in orthogonal directions (defined with the material

directions of the laminate) are independent from each other.

Equation 6.10c defines the interactions between in-plane and bending loads. Fig-
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f̂1(Nx +Ny) + f̂11(N
2

x +N2

y ) + f̂12NxNy + f̂33N
2

xy=1

Nxy=0

Figure 6.6: In-plane failure envelope.

f̂44M
2

x + f̂66M
2

xy=1 f̂44M
2

y + f̂66M
2

xy=1

|Mx|=|My|

Figure 6.7: Bending failure envelope.
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ure 6.8a shows interaction between Nx and Ny with varying Mx. Note that the

relationship between axial and bending loads in the same directions is linear but

the biaxial in-plane force envelope is an ellipse. Thus the envelope is defined by two

cones with a common elliptic base. The interaction between Nx, Ny andMy has the

same shape.

In the case of the interaction between biaxial moments and an in-plane axial load,

the failure envelope is given by two prisms defined by linear interactions between

an axial force and the moment applied in the same direction but limited by the

ultimate bending strength in the orthogonal direction, Figures 6.8b and 6.8c. Note

that these two prisms are rotated by 90◦ about the force axis.

There is no interaction between shear and bending loads; hence the failure locus

of Nxy, Mx and My is a cuboid limited by the shear and bending failure strengths,

Figure 6.9a. Similarly, the axial strengths are decoupled from the twisting strength

and hence the Nx, Ny, Mxy interaction is an elliptic cylinder, Figure 6.9b.

Lastly, the failure interaction between Nxy, Mx and Mxy is defined by an elliptic

cylinder cut at Nxy = |F3|, Figure 6.9c. Similarly, the interaction of Nx, Nxy and

Mxy is an elliptic cylinder cut atMxy = |F6|, Figure 6.9d, but this time the axis does

not go through the origin due to the difference in tensile and compressive strengths.

Figure 6.9e shows the Nx, Nxy and Mx envelope.

6.4 Discussion

Three main assumptions were made in developing this failure locus.

• the strength of an initially curved specimen is quite similar to that of a flat

specimen, on the micro-level

• the moment required to flatten a curved specimen remains constant up to the

point of axial failure

• the ABD stiffness matrix can be used to estimate the transverse moments at

failure

The first two assumptions may not be exactly true for specimens with initial

curvatures that are themselves close to bending failure. However the tests considered

here had comparatively low curvatures, i.e. failure curvature of the laminate is about
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max(Nx/Fx, Ny/Fy)+|Mx|/F4=0

f̂1(Nx +Ny) + f̂11(N
2

x +N2

y ) + f̂12NxNy=1

(a) Nx, Ny and Mx

Nx/F1t + |Mx|/F4=1

|My|/F4=1

|My|/F4=1

Nx/(−F1c) + |Mx|/F4=1

(b) Nx, Mx and My

|Mx|/F4=1

Ny/(−F1c) + |My|/F4=1

|Mx|/F4=1Ny/F1t + |Mx|/F4=1

(c) Ny, Mx and My

Figure 6.8: Failure interactions between axial forces and bending moments.
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|My|/F4=1

|Nxy|/F3=1

|Mx|/F4=1

(a) Nxy, Mx and My

f̂1(Nx +Ny) + f̂11(N
2
x +N2

y ) + f̂12NxNy=1

|Mxy|/F6=1

(b) Nx, Ny and Mxy

Figure 6.9: Effects of shear force and twisting moment on failure.
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(e) Nx, Nxy and Mx

Figure 6.9: Effects of shear force and twisting moment on failure (contd).
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0.17 mm−1 and the maximum initial curvature reached was 0.052 mm−1. Also it

is difficult to perform tensile experiments on specimens having an initial curvature

near the bending failure limit.

The experimental setup does not measure the transverse moment of a specimen

subjected to longitudinal bending. However both longitudinal and transverse cur-

vatures can be measured. Hence, the transverse moment can be estimated using

the ABD stiffness matrix. However the ABD matrix has only been developed for

the initial geometry of the laminate. A comparison was made of the measured lon-

gitudinal moment with moment estimated using the ABD stiffness matrix and the

same stiffness reduction was then used in estimating the transverse moment. This

stiffness reduction can be explained by the laminate thickness being reduced, due

to the stretching of the tows making them flatten.

In the case of shear and twisting strengths, our experiments did not attempt to

achieve conditions of pure shear or twisting. Therefore we have used the proposed

failure locus in estimating pure shear and twisting strengths, and additional tests

were performed to confirm the accuracy of this approach. The two or three rail

shear fixtures cannot be used with this two-ply laminate since it fails by buckling

rather than by in-plane shear. One option would be to use thin sandwich specimens

similar to those used for the compression tests (Kueh, 2007).

Biaxial bending failure tests were not performed here but instead we made use

of the experimental failure curvature locus presented by Yee (2006). Yee used the

same carbon fibre fabric impregnated with LTM45 matrix, which provides a similar

laminate. This locus was only used to confirm that there is no interaction between

longitudinal and transverse bending moments in the case of biaxial bending failure.

This result could be due to the fact the ratio D12/D11 is quite small and hence has

little influence between the two material directions. In the case of axial loading, even

though the ratio A12/A11 is small the neutral planes are subjected to stretching and

hence in-plane longitudinal and transverse loading affects each other.

Figure 6.1 has shown that the failure relationship between axial and bending

loads applied in the same direction can approximated to be linear. Therefore Equa-

tion 6.8 was developed by defining a linear relation in the ratio between applied load

and strength for both force and moment. Since, the axial strength depends on the

other two in-plane loads, Equation 6.9 transforms these in-plane failure surfaces,

but it should be acknowledged that the experiments were performed with only Ny

= Nxy = 0.
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Lastly, failure by delamination was not considered in this research. It is possible

that the two-ply laminate may be subjected to delamination. However this was

not visible in any of the tests considered for laminate strength measurements or

tape-spring hinges.
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Chapter 7

Structural Modelling Techniques

This chapter presents the simulation techniques used to compute the structural re-

sponse of a composite boom with tape-spring hinges. The first part of the chapter

gives an introduction to Abaqus/Explicit simulation techniques; various simulation

parameters and the checks that are needed to achive an accurate simulation are ex-

plained. Techniques for quasi-static folding/deployment simulation of a tape-spring

hinge and for selecting suitable simulation parameters through sensitivity studies

are explained next. These simulation techniques are then extended to dynamic de-

ployment and the safety of the structure is determined though a failure analysis

performed by applying the failure criterion developed in Chapter 6.

7.1 Abaqus/Explicit Simulation Techniques

Folding and deployment simulations of ultra-thin structures involve significant geo-

metric changes that are associated with instabilities, dynamic snaps and extensive

contact/sliding between different parts of the structure. In previous studies (Seffen

and Pellegrino, 1999; Yee and Pellegrino, 2005a) issues of numerical stability and

convergence associated with singularity in the stiffness matrix were the main limit

on the range of structural configurations that could be studied and the amount of

folding that could be imposed on a given structure. To remove these limitations,

an alternative approach that avoids the stiffness matrix has been adopted, which

advances the kinematic state of each degree of freedom by direct integration of

its equations of motion. This solution is obtained with the Abaqus/Explicit finite

element package (Abaqus, 2010).
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Three independent techniques were considered to control the analysis: integra-

tion time increment, loading rate and numerical damping. Their effects and the

limitations that have to be met when one attempts to optimise the related simula-

tion parameters in folding/deployment studies are explained next.

First, the integration time increment should be as large as possible, to reduce the

number of increments to complete the simulation. However, explicit time integration

is stable only if the Courant condition is satisfied: (Belytschko et al., 2000; Geradin

and Rixen, 1994) essentially, the time increment cannot be larger than the time for a

wave to travel between adjacent nodes in the finite element mesh. Abaqus/Explicit

includes damping effects and estimates the stable time increment limit at each time

increment from the approximate relationship Belytschko et al. (2000, chap. 6)

∆t = α
(

√

1 + ξ2 − ξ
) lmin

cd
(7.1)

where α, ξ and lmin denote time scaling factor, fraction of critical damping in highest

frequency mode and the shortest length finite element, respectively. Dilatational

wave speed is

cd ≈
√

E

ρ
(7.2)

Second, any loads should be applied as smoothly as possible and also the loading

rate should be as high as possible, to minimise the number of integration increments

required to complete the analysis, provided that the response of the structure re-

mains quasi-static. The smoothness of the load application is achieved with the

Abaqus/Explicit command *Amplitude, Definition = Smooth Step. This prescribes

a fifth order polynomial time variation with first and second time derivatives equal

to zero at the beginning and end of the time interval. Regarding the overall load-

ing rate, the key question is how short the simulation time can be made without

exciting a significant dynamic response. The first mode that would get excited is

the fundamental natural mode of the whole structure and, although its frequency

and mode shape will change during folding/deployment, it is useful to obtain an

approximate estimate at the beginning of the simulation. This can easily be done

by an eigenvalue analysis of the structure in its initial configuration.

Third, numerical damping is introduced in the model to dissipate energy build-up

at high frequencies, to avoid the sudden collapse of elements due to large out-balance

91



7. Structural Modelling Techniques

forces that may develop at a few nodes, and to generally keep down the amount

of kinetic energy in the structure. The amount of numerical damping should be as

small as possible, to avoid affecting the results of the simulation. This is particularly

critical for ultra-thin structures whose low bending stiffness could easily be swamped

by damping effects, and also avoid decreasing the stable time increment (note that

in Equation 7.1 ∆t decreases when ξ is increased).

Abaqus/Explicit allows inclusion of damping in several different ways, of which

two —bulk viscosity and viscous pressure— are utilised; these two particular types

of damping are explained next.

The first type of damping, bulk viscosity introduces an in-plane strain-rate de-

pendent pressure

pb = ξρcdlǫ̇v (7.3)

and an in-plane curvature-rate dependent moment

m = ξ
h2

12
ρcdlκ̇ (7.4)

both distributed over all shell elements.

The second type of damping, viscous pressure, introduces a velocity-dependent

normal pressure over all shell elements

p = − cvv · n (7.5)

This normal pressure is very effective in quickly damping out dynamic effects and

thus reach quasi-static equilibrium in a minimal number of increments. However,

it is important to use an appropriate value of cv; if it is too high the response of

the structure will be overdamped and hence the simulation results may be incorrect.

Note that, unlike bulk viscosity, viscous pressure does not change the integration

time increment.

There is an alternative technique, mass scaling, that is often used to speed up

explicit analyses. This technique consists in artificially increasing the density of the

material to βρ, in order to increase the time increment from Equation 7.1 to
√
β∆t.

This technique would be useful in simulations involving rate-dependent materials,

where the load-rate speed-up technique adopted in the present study could not be

used, but offers no advantages in the quasi-static work performed here. However,
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Abaqus provides a variable mass scaling technique where the user is allowed to define

a specific time increment and then Abaqus automatically scale the mass of required

elements to satisfiy Equation 7.1.

The key test for the robustness of a particular analysis is to consider the history

of the various energy terms and in particular the energy balance history. The energy

balance, Eb, is defined as the difference between the energy stored in the structure

and/or dissipated during the loading process, Ei + Ev + Ek, and the work of all

external forces, Ew. In symbols:

Eb = Ei + Ev + Ek − Ew (7.6)

where the internal energy Ei is equal to the sum of strain energy and artificial energy

(due to hourglassing), Ev is the viscous dissipation, Ek is the kinetic energy. In the

present simulations the artificial energy was kept negligibly small by using fully

integrated elements and by avoiding any localised actions on the shells.

There are two main checks on the energies. First, at any particular time the

kinetic energy has to be a small fraction (< 1%) of the internal energy for the results

at that time to be considered a valid quasi-static solution. In the case of multi-

stable structures if the kinetic energy has reached high levels during an earlier part

of the simulation, the possibility that the structure may have reached an alternative

equilibrium configuration should be considered. Second, the energy balance should

remain equal to the amount of external energy (e.g., thermal) introduced in the

system.

In particular, Belytschko et al. (2000) discuss cases where an “arrested insta-

bility” in a structure, due to geometric and/or material softening, may result in

the integrator losing stability, despite the use of Equation 7.1 to compute the time

increment. These authors have reported that all such instabilities can be detected

by checking the energy balance, as discussed above.

7.2 Tape-Spring Hinge Finite Element Model

Figure 7.1 shows the finite element model of a tape-spring hinge used to simulate

a quasi-static folding and deployment sequence. To simulate the deployment be-

haviour one needs to compute first the folded configuration of the hinge and this

requires that two cross-sections of the tape-spring hinge be rotated in opposite di-
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rections until the fully-folded configuration is reached.

The tape-spring hinge model consists of 2546 nodes and 2412 shell elements (S4)

with a minimum element length of around 3 mm.

The elastic properties of the shell elements were defined in a cylindrical coordi-

nate system (with directions x′, y′, z respectively longitudinal, circumferential and

radial) by assigning the ABD±45 matrix of Equation 5.17 with the *Shell General

Section parameter.

In order to simulate the equal end moment conditions of a pure bending test,

two reference nodes A and B were attached to a dummy node, C, using the Abaqus

command *Equation and these reference nodes were rigidly attached to the nearest

eight nodes of the holders. The sensitivity studies in Section 7.3.1 were done with

the reference nodes attached to a single node.

The boundary conditions, see Figure 7.1, are defined as follows: all degrees of

freedom at node A are restrained, except the rotation about the global X-axis. Node

B is only allowed to translate along the global Z-axis and rotate about the X-axis.

To keep the end moments equal, the rotational degrees of freedom of nodes A and

B are restrained by prescribing the condition

θAX − θBX = θCX (7.7)

where θX denotes a rotation about the global X-axis.

To simulate the folding process the folding angle θCX was incremented from 0◦ to

170◦ (or in some cases only 160◦) over a suitably chosen time interval; details are

provided in Section 7.3.

The tape-spring hinge has to be pinched before one starts to rotate the ends.

This process is simulated by defining two rigid plates connected by a single beam

element which undergoes thermal contraction. The plates are restrained to the Y -Z

plane, to maintain symmetry. The connections between the beam element and the

rigid plates are modeled as fixed using CONN3D2 elements and Weld connector

sections.

The definition of several contact surfaces is also required, as different parts of

the tape-spring hinge come into contact with each other and also the rigid plates

come into contact with the tape-spring hinge. The General Contact feature is as-

signed to the entire model by specifying Contact Inclusions, All Exterior. With this

option Abaqus/Explicit automatically defines potential contact surfaces around the
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Figure 7.1: Finite element model of tape-spring hinge.

whole hinge surface. However, the beam element connecting the two plates used

for pinching is allowed to go through the hinge by using the Contact Exclusions

parameter.

7.3 Quasi-Static Folding and Deployment

The fundamental natural period of vibration of the tape-spring hinge in the deployed

configuration was computed by doing a frequency analysis in Abaqus/Standard.

The estimated period was 5 ms, hence the definition of the overall loading rate was

initially set such that folding/deployment would occur over a time period of ten times

the fundamental period, or 0.05 s. The entire simulation was run with the double

precision solver and the energy components were recorded at every millisecond. The

ratio between kinetic energy and internal energy was then monitored and the loading

rate was decreased until Ek/Ei < 1%.

An example of a successful simulation is presented next, to provide a basis for

discussion and as a starting point for various sensitivity studies.

The initial, unstressed configuration of the tape-spring hinge is shown in Fig-

ure 7.2a. At the beginning of the folding simulation the thermally controlled beam

element connecting the two rigid plates was shortened by decreasing its temperature,
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which simulated the pinching of the tape-spring hinge and led to the configuration in

Figure 7.2b. The next part of the folding simulation consisted in imposing a rotation

θCX = 170◦ over 0.8 s (this simulation time was obtained by gradually increasing the

initial value of 0.05 s estimated above). After 0.25 s, corresponding to θCX ≈ 16◦, see

Figure 7.2c, contact between the rigid plates and the tape-spring hinge was disabled

in order to avoid any spurious constraints on the folded shape. The rotation was

then continued and the final outcome is shown in Figure 7.2d. Viscous pressure

loading, discussed in Section 7.1, was used to maintain the energy ratio below 1%.

(a) Undeformed configuration (b) Pinching

(c) Release of contact between hinge and rigid
plates

(d) Final folded configuration

Figure 7.2: Stages of folding simulation.

Figure 7.3 shows the variation of the energy terms during this simulation. Note

that during the pinching phase there is an input of thermal energy that is not ac-

counted for in Equation 7.6 and this shows as an increase in energy balance. For

the rest of the simulation the energy balance remained approximately constant.

Throughout the simulation the kinetic energy remained much smaller than the in-

ternal energy, which indicates that the intended quasi-static behaviour of the tape-

spring hinge has been achieved.

7.3.1 Setting the Simulation Parameters

This section presents various sensitivity studies to determine a set of simulation

parameters that provide accurate results and maximal speed up of the simulation.

These studies were mainly focused on the deployment part of the simulation because
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Figure 7.3: Energy histories for folding simulation with α = 0.8, ξ = 0,
cv = 2× 10−4ρcd; the maximum folding angle is θCX=170◦.

this is the behaviour that is of greatest interest for actual applications. However, it

was important to first obtain an accurate representation of the folded configuration

and hence two different folding simulations were carried out.

The first folding simulation used no bulk viscosity (ξ = 0) but only viscous

pressure on the outer surface of the tape-spring hinge during the rotational phase;

the expression for the pressure is given by Equation 7.5 with cv = 2×10−4ρcd. The

time increment factor in Equation 7.1 was set to α = 0.8. The results have already

been presented in Figure 7.3. Note that the viscous dissipation is zero because

the energy absorbed by the viscous pressure is included in the external work. The

energy balance remained constant during the rotation phase which indicates that the

simulation was free of instabilities and hence the results are accurate. The kinetic

energy was negligibly small at the end of the simulation, indicating that the folded

configuration is in quasi-static equilibrium.

The second folding simulation used bulk viscosity (ξ = 0.10, but cv = 0) to

provide numerical damping. The energy histories are presented in Figure 7.4; note

the high level of viscous dissipation, representing 70% of the internal energy at the

end of the folding phase. Between 1.0 s and 1.1 s viscous pressure was applied (with

cv = 2×10−2ρcd) to decrease the kinetic energy. Reducing the time increment by

setting α to less than 1.0 made little difference to these results.
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Figure 7.4: Energy histories for folding simulation with α = 0.8, ξ = 0.10, cv = 0
up to 1.0 s and then cv = ×10−2ρcd.

The final configurations predicted by these two folding simulations are approxi-

mately equal, but the first simulation was chosen as a starting point for the deploy-

ment studies because it has lower kinetic energy and a smoother moment-rotation

relationship.

A folded configuration with θCX = 160◦ (to avoid the effects of the contact between

the ends of the tape-spring hinge) and α = 0.5, ξ = 0, cv = 2×10−4ρcd was chosen

as the starting point for several deployment simulations with different values of the

three control parameters.

The sensitivity to α was examined by setting α = (0.25, 0.80) with ξ = 0 and

cv = 0. Figure 7.5 shows that in this case decreasing ∆t decreases the change in

energy balance.

The sensitivity to ξ was examined by setting ξ = (0, 0.01, 0.10). Figure 7.5

shows that increasing ξ leads to a decrease of the change in energy balance. Although

increasing ξ leads to a small reduction in ∆t, and hence to an increase in the number

of simulation increments, it is much more effective in decreasing the energy balance

than lowering α.

Despite this encouraging result, one should be cautious before relying on bulk

viscosity to reduce the energy balance. The problem is that increasing ξ may prevent

full deployment. Figure 7.6 shows the history of the viscous dissipation energy for
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Figure 7.5: Energy balance histories for different values of α, ξ, cv.

the three cases that have been considered. It is interesting to note that the viscous

dissipation during deployment is 13% and 17% of the internal energy in the fully

folded configuration, respectively for ξ = 0.01 and ξ = 0.10.
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Figure 7.6: Variation of viscous dissipation for α = 0.80, cv = 0.
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A feature common to the above simulations, in which bulk viscosity was intro-

duced without viscous pressure, is that there was significant vibration, leading to

a noisy moment-rotation deployment profile. This issue was addressed by exam-

ining the sensitivity to cv. Four different values of cv were considered, from 0 to

2 × 10−4ρcd, while maintaining α = 0.8 and ξ = 0 and the results are shown in

Figure 7.5 and Figure 7.7. Figure 7.5 shows that the higher values of cv are effective

in decreasing the change in energy balance. Figure 7.7 shows that the particular

value cv = 2×10−5ρcd suppresses most tape-spring hinge vibration from θCX = 160◦ to

about 50◦. However, increasing cv by another order of magnitude radically changes

the behaviour of the structure.
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Figure 7.7: Sensitivity of moment-rotation response to cv, for α=0.8 and ξ=0. The
line style matches Figure 7.5.

In conclusion, the viscous pressure coefficient cv is the most effective tool for

keeping the change in energy balance small, but it is important to examine the

effects of cv on the structural response in order to avoid overdamping. Based on the

study presented in this section, it was decided that the parameters α = 0.8, ξ = 0,

cv = 2×10−5ρcd are best for deployment simulations of this particular hinge.

Once optimal deployment simulation parameters had been obtained, the overall

simulation time was increased from 1 s to 3 s and Figure 7.8 shows the energy history

for this final simulation. Note that this particular simulation started from a folded
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configuration with θCX = 170◦. These results are of very good quality, as the energy

balance remains constant throughout the simulation, and show a sudden reduction

in internal energy at 3.77 s, accompanied by a small spike in kinetic energy. These

features correspond to the dynamic snap back of the hinge into its fully deployed

configuration. This jump releases practically all the internal energy in the hinge.
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Figure 7.8: Energy histories for 3 s deployment with α=0.8, ξ=0, cv=2×10−5ρcd.

7.4 Dynamic Deployment

Understanding the dynamic deployment behaviour for a self-deployable structure

is important. Unlike quasi-static deployment, dynamic deployment will be largely

affected by structural components attached to the considered hinge. As an example,

the same tape-spring hinge has been connected to an aluminium-alloy tube to form

a 1 m long boom with a fixed end connection, Figure 7.9. Due to the use of two

different materials and the mass of the connections, their mass distribution over the

structure has the values provided in Table 7.1.

The finite element model is similar to that presented in Section 7.3 apart from

the equal moment constraints (Mallikarachchi and Pellegrino, 2009a). In order to

start the deployment the initial folded configuration has to be determined first, how-

ever, because the detailed sequence that leads to this configuration is less important

than the final folded configuration itself, provided that the kinetic energy in the
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Figure 7.9: Finite element model of considered boom for dynamic simulations.

Region Mass distribution
0 < z < 322.5 mm 318 g/m2

z = 322.5 mm 25.79 g
322.5 < z < 1000 mm 2400 g/m2

Table 7.1: Mass distribution of finite element model for dynamic simulation.
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folded configuration is sufficiently small and the energy balance term remains con-

stant during folding, to ensure that the final result is correct. Figure 7.10a shows

energy variation corresponding to a 45◦ folded configuration obtained with the same

simulation parameters obtained for the quasi-static folding simulation. However,

this is a much larger structure and it has been folded as fast as possible to minimise

the computational effort. A 100 times larger viscous pressure, varying over 0.2 s was

applied to quickly achieve the fully-folded, static configuration (balancing step in

Figure 7.10a). Note the that kinetic energy is quite high during folding but negligible

at the end of the simulation and energy balance term is constant throughout.

Deployment is triggered by releasing all constraints used for folding. Unlike

the folding simulation, where the simulation time had no physical meaning but

was simply chosen such that the kinetic energy would never be too high, in the

deployment analysis the simulation time is the actual time over which the motion

occurs. Also mass scaling cannot be used here because now the inertia forces are

significant.

One need to be careful in using viscous pressure as it tends to damp out the

dynamic response. Following a similar parametric study it was found that use of ξ

= 0.1 and/or application of cv = 2×10−5ρcd to the hinge region only was successful

in eliminating artificial high frequency oscillations in the hinge. Figure 7.10b shows

the energy variation for dynamic deployment of this hinge, determined by applying

only ξ = 0.1. Note that the energy balance term remains constant, which guarantees

that the simulation is free of instabilities.

7.5 Failure Analysis

A failure analysis was performed by applying the failure criterion presented in Sec-

tion 6.3.4 to the stress-resultants obtained from the finite element simulations. Three

failure indices, FI-1, FI-2 and FI-3, were defined by evaluating the left hand sides of

Equations 6.10a, 6.10b and 6.10c, respectively, and their values were calculated at

every integration point and averaged over each element, at every step of the simula-

tion. These three indices are useful to understand the dominant loading condition at

each point and, to satisfy the failure criterion, all three values should be less than 1.

Since all simulations used the initial ABD matrix, which is overestimated by

approximately 40% of failure strength, see Section 4.3.5, the bending and twist-
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Figure 7.10: Energy variation for dynamic deployment simulation with initial folding
angle of 45◦.
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ing moments near failure will also be overestimated by 40%. To correct for this

in an approximate way both bending and twisting strengths are multiplied by a

factor of 1.67 when analyzing the stress resultants from the simulations. Hence,

the increased bending and twisting strengths are F ′′

4
= F ′′

5
= 5.07 Nmm/mm and

F ′′

6
= 1.53 Nmm/mm.

The tensile and compressive responses are almost linear up to failure and hence

no modifications of the corresponding strengths are made.

A complete failure analysis of a particular boom design consists of two parts.

Firstly, the boom should be safely foldable to the required folding angle and, sec-

ondly, it needs to withstand the dynamic loads during deployment. Therefore, the

failure analysis during deployment has to calculate the failure indices throughout

the entire deployment simulation and then consider their maximum values.

The critical configuration of the particular tape-spring hinge design discussed so

far is the fully folded configuration. Figure 7.11 shows contours of the three failure

indices in the fully folded configuration of the particular tape-spring hinge. Note

that all three indices are below 1 and hence the hinge can be safely folded to 180◦.

Also note that, because FI-3 is the largest of the three, this particular hinge design

is more sensitive to interaction between in-plane and bending loads.

FI-1 FI-2 FI-3

Failure Index, FI

 0.40
 0.60
 0.80
 1.00

Max: 0.18
Max: 0.38 Max: 0.69

Figure 7.11: Failure indices at fully folded configuration.
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Chapter 8

Simulation Results

This chapter presents a detailed study of the tape-spring hinge design considered

in Chapter 7. The quasi-static folding and deployment behaviour is characterised

in terms of the moment-rotation response of the tape-spring hinge. The dynamic

deployment behaviour is characterised in terms of the angle-time response of the

tape-spring hinge and it is shown that changes in the boundary conditions or even

slight changes in the initial conditions lead to a different angle-time response for the

considered hinge design.

8.1 Quasi-Static Simulation

The moment-rotation response of the tape-spring hinge described earlier can be

studied through quasi-static simulations. Here the rotation angle is defined as the

angle formed by the two centre lines of the tube regions on either side of the hinge.

The folding simulations techniques described in Section 7.3 had assumed that

folding would begin by pinching the hinge; this was done because in practice the

tape-spring hinge may break if it is folded without pinching first. However, to

obtain a better understanding of the complete behaviour of the hinge, a complete

simulation of the process of folding and deployment is carried out, but this time

without initiating the folding process by pinching. The total simulation time was

6 s: 3 s to fold and 3 s to deploy. The simulation parameters were α = 0.8, ξ = 0

and cv = 2× 10−5ρcd.

The energy histories have been plotted in Figure 8.1. The energy balance re-

mained approximately constant throughout the simulation and hence the results
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are accurate. Note that the internal energy profile is mostly symmetric but shows a

spike during folding, at 0.32 s, that is not matched by a corresponding spike during

deployment. In fact, during the initial stages of folding the strain energy increases

at a considerably faster rate than it decreases during the corresponding stages of

deployment. An important result is that the internal energy becomes approximately

zero at the end of the deployment simulation, indicating that the unstressed, fully

deployed configuration has been achieved. Note the kinetic energy spike at 0.32 s

and the smaller spike at 5.76 s; they correspond to the hinge snapping during fold-

ing and snapping back, respectively. The viscous dissipation was, of course, zero

throughout the entire simulation.
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Figure 8.1: Energy histories for simulation of folding to θCX = 170◦ without pinching
and deployment.

Next, turning to the moment-rotation profile, shown in Figure 8.2, the most

striking features are that the moment rises to a high peak of 4278 Nmm, snaps to

about 67 Nmm and remains almost constant from an angle of approximately 20◦ all

the way to the fully folded configuration. Note that there is a slight hump between

40◦ and 60◦, associated with the snap back of the elastic fold at the centre of the

outer tape-spring and an increase beyond 170◦ when a contact pressure develops

between the two ends of the hinge. During deployment, the moment-rotation profile

follows the folding profile down to 1.8◦, then continues to rise gradually, with a final

snap back to 2482 Nmm at 0.8◦. It then joins the linear part of the folding response

as the angle is further decreased.

107



8. Simulation Results

This difference between the loading and unloading paths is characteristic of struc-

tures with an unstable post-buckling equilibrium path (Brush and Almroth, 1975;

van der Heijden, 2009). It was already known that a single tape spring behaves

in this way (Seffen and Pellegrino, 1999; Warren et al., 2005), but having estab-

lished that the post-buckling behaviour of tape-spring hinges is also unstable is an

interesting result with important implications.
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Figure 8.2: Moment-rotation profile for folding and deployment simulation (without
pinching) up to θCX=170◦.

In practice this type of structure cannot be safely folded without pinching. A

failure analysis shows that the hinge will fail during the folding peak as the failure

indices FI-2 and FI-3 exceed 1, Figure 8.3a. This explains that when folding without

pinching, the material near the circular part of the slots is subject to high bending

moments.

The failure analysis also confirms that a safely folded hinge does not fail during

the deployment snap, Figure 8.3b.

8.2 Dynamic Deployment Simulation

A plot of the angle-time response is useful to understand the dynamic deployment

behaviour of a tape-spring hinge. This provides an understanding of the motion of

the boom as well as whether it can safely latch.

A simulation carried out of the dynamic deployment of a 45◦ folded boom showed
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Max: 2.18

Max. Failure Index

 0.40
 0.60
 0.80
 1.00

(a) During folding

Max: 0.44

(b) During deployment

Figure 8.3: Failure analysis near folding and deployment load peaks.
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that the deployment behaviour consists of three phases, Figure 8.4, as already ob-

served experimentally by Yee (2006) (see Figure 2.13).
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Figure 8.4: Angle-time response for boom initially folded 45◦.

8.2.1 Sensitivity to Boundary Conditions

As the next step, the sensitivity of the angle-time response of a tape-spring hinge to

the boundary conditions applied in the analysis was investigated. The main focus of

the sensitivity study was to use the infinite elements available in Abaqus/Explicit to

model a soft boundary condition. Abaqus provides first- and second-order infinite

elements that are based on the work of Lysmer and Kuhlemeyer (1969) for dynamic

response. The elements are used in conjunction with standard finite elements, which

model the area around the region of interest, with the infinite elements modeling

the far-field region. During a dynamic analysis infinite element acts as a dashpot

which provides a distributed damping on the boundary (Abaqus, 2010).

The infinite elements considered here cannot be directly connected to the shell

elements used to model the structure. Hence, the fixed end of the boom was con-

nected to a single layer of elastic solid elements through the “shell to solid” coupling

feature. Then the elastic solid elements were attached to the infinite elements. Four

different boundary conditions were studied, Figure 8.5, and all these simulations

were carried out with ξ = 0.10, cv = 0 and α = 0.80.
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Figure 8.5: Different boundary conditions with infinite elements.

It should be noted that the use of infinite elements allows a rigid body rotation

of the entire structure. Hence the angle-time response was obtained with respect to

the root of the boom. Note that there is a significant change in angle-time response,

Figure 8.6, depending on which type of support is used in the analysis.

8.2.2 Effect of Changes in Initial Conditions

Figure 8.7a compares the angle-time variation for two deployment simulations started

after a single folding simulation of a 90◦ fold. In the first case the folding restraints

were released during the balancing step and in the second case they were relaxed at

the end of balancing step. This introduces a slight change in the kinetic energy at

the beginning of the deployment phase, which was 0.08 mJ and 0.02 mJ for condition

I and II, respectively. This small change in initial conditions leads to a rather large

change in the overshoot angle during the phase of buckling of the tape-springs. In

fact, the reason for this difference is due to a change in position of the localised fold

in the tape-spring hinge, Figure 8.7b.
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Figure 8.6: Angle-time response for boundary conditions shown in Figure 8.5.

112



8. Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−40

−20

0

20

40

60

80

100

Time (s)

A
n
g
le
 (
d
e
g
.)

 

 

Initial condition I

Initial condition II

(a) Angle-time variation

Initial condition I Initial condition II

(b) Deformed configuration at maximum overshoot

Figure 8.7: Deployment dynamic simulations with slightly different releasing condi-
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Chapter 9

Design of Tape-Spring Hinges and

Tubular Booms

This chapter describes the procedure to design multiple-hinge booms. The first part

of the chapter focuses on the geometric optimisation of a single tape-spring hinge

that can be folded to 180◦ with minimum material removal. The second part of

the chapter describes the design of a 1 m long two-hinge boom that can be folded

around a spacecraft and will self-deploy without any overshoot.

9.1 Optimisation of Hinge Geometry

Chapter 8 showed that in the hinge design considered so far, and shown in Figure 8.7,

the fold region in each tape spring could be freely moved along the length of the tape-

spring, suggesting that the length of the tape springs could possibly be shortened.

Since there would be definite advantages in a more compact hinge design where a

smaller amount of material is removed and so the slots are shorter and/or narrower,

the basic configuration shown in Figure 9.1 is chosen and the effect of varying three

parameters; the slot length, L, the slot width, SW , and the diameter of the end

circles, D, is explored. These three parameters define the dimensions of a solid

that extrudes the slot from a cylindrical tube (preliminary versions of this work

were presented in Mallikarachchi and Pellegrino (2009b) and Mallikarachchi and

Pellegrino (2010)).

Initial values for the three parameters, L= 60 mm, SW = 10 mm andD = 15 mm,

were chosen based on the Astro Aerospace FFT, which however is made from dif-
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ferent materials. The target here is to obtain a tape-spring hinge that can be safely

folded 180◦, and which requires only a minimum amount of material to be removed

from the initial tube.

D SW

L

Figure 9.1: General hinge geometry chosen for optimisation study.

9.1.1 Sensitivity to Mesh Refinement

When looking at the strain distributions obtained from a simulation it is important

to check that the finite element mesh is sufficiently fine. Therefore this particular

hinge was modeled with four different meshes, described below.

• Mesh I : approximate element length of 3 mm, Figure 9.2a (2464 nodes and

2380 elements).

• Mesh II : approximate element length of 2 mm, Figure 9.2b (4898 nodes and

4780 elements).

• Mesh III : approximate element length of 2 mm with smaller elements near

the end circles of the slots, Figure 9.2c (5456 nodes and 5304 elements).

• Mesh IV : approximate element length of 1 mm, Figure 9.2d (19758 nodes and

18036 elements).

Table 9.1 shows the maximum mid-surface strains εx, εy and εxy and the max-

imum curvatures κx, κy and κxy in the fully folded configuration, for each mesh.

Here the subscripts x and y refer to the fibre directions defined in Figure 7.1. The

analysis time listed in the last column of the table is for a 2.4 GHz Intel Core2

Quad CPU Q6600 processor machine. It should be noted that in the simulations

the command *Fixed Mass Scaling, dt=1e-06, type=below min (Abaqus, 2010) was

used to artificially scale up the mass of small elements, to increase the critical time

increment to 1 µs, Equation 7.1. Mesh type III is chosen for further studies, because

it provides sufficient accuracy at a low computational cost.
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(a) Mesh I (b) Mesh II

(c) Mesh III (d) Mesh IV

Figure 9.2: Mesh refinement study (SW = 10 mm, D = 15 mm and L = 60 mm).

Mesh
εx εy εxy κx κy κxy Analysis Time
(%) (%) (%) (1/mm) (1/mm) (1/mm) (h:min)

I 1.33 1.25 -1.78 0.159 0.154 -0.110 2:56
II 0.44 0.48 0.50 0.163 0.163 -0.109 5:36
III 0.51 0.45 0.51 0.186 0.186 -0.116 6:08
IV 0.47 0.48 0.59 0.189 0.185 -0.114 19:40

Table 9.1: Maximum mid-surface strains and curvatures for different mesh sizes.
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9.1.2 End Conditions

The ability of these more compact tape-spring hinges to survive the deformation

imposed by the folding process highly depends on the ovalisation of the end cross-

sections. Figure 9.3 shows significant differences in the mid-plane strain contours of

a hinge folded to 180◦, depending on the end conditions provided in the analysis.

Note that the mid-plain strains cannot exceed 1.5% for T300 fibres. Thus the focus

here is to use a hinge design where the end sections are allowed to deform.

εx (%)

-3.00
-0.40
-0.30
-0.20
-0.10
-0.05
 0.00
 0.05
 0.10
 0.20
 0.30
 0.40
 3.00

Min: −0.95% Max: 2.73%

(a) Restrained cross-sections

Min: −0.35%
Max: 0.44%

(b) Free to deform

Figure 9.3: Distribution of εx in the fully folded configuration with different bound-
ary conditions (SW = 10 mm, D = 15 mm and L = 60 mm).

9.1.3 Sensitivity to Slot Length

The sensitivity to L is first examined near L = 60 mm by exploring the range 45 mm

to 90 mm at 5 mm intervals while maintaining SW = 10 mm and D = 15 mm.

Figures 9.4a-9.4d show the failure indices contours for a few selected cases. Only

FI-3 is shown for clarity. Note that the most critical region is always near the slot

edges. Table 9.2 presents the maximum values of all three failure indices obtained

for each case. Note that in all cases FI-1 remains less than 50%. Thus the failure is

bending and in-plane-bending dominated.

9.1.4 Sensitivity to Slot Width and End Circle Diameter

The next attempt was to investigate the sensitivity to SW and D to obtain a safe

geometry. Based on the results of Section 9.1.3 L = 60 mm and L = 90 mm were

selected for further investigation.
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FI-3

 0.40
 0.60
 0.80
 1.00

Max: 1.41

(a) L=45 mm

Max: 1.43

(b) L=60 mm

Max: 0.95

(c) L=80 mm

Max: 0.84

(d) L=90 mm

Figure 9.4: Distribution of FI-3 in fully folded configuration with varying L
(SW = 10 mm and D = 15 mm).

Design
FI-1 FI-2 FI-3

L (mm) SW (mm) D (mm)
45 10 15 0.48 2.19 1.41
50 10 15 0.19 2.06 1.38
55 10 15 0.17 1.60 1.25
60 10 15 0.19 1.81 1.43
65 10 15 0.20 1.20 1.16
75 10 15 0.28 0.98 1.00
80 10 15 0.31 0.82 0.95
85 10 15 0.32 0.65 0.84
90 10 15 0.32 0.59 0.84

Table 9.2: Failure Indices for different designs with varying L.
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9.1.4.1 Sensitivity of designs with L = 60 mm

First D was set to 15 mm and SW was varied from 8 mm to 12 mm in steps of

2 mm. Table 9.3 presents the corresponding failure indices. Note that in all three

cases FI-2 and FI-3 exceed the failure limits.

SW (mm) FI-1 FI-2 FI-3
8 0.15 1.45 1.19
10 0.19 1.81 1.43
12 0.17 1.38 1.17

Table 9.3: Failure indices for varying SW (D = 15 mm and L = 60 mm).

The sensitivity to D was studied by varying D from 13 mm to 17 mm while

keeping SW fixed to 10 mm, Table 9.4. Similar to previous cases, both FI-2 and

FI-3 still exceed the failure limits. It is thus concluded that varying SW or D does

not improve the design with L = 60 mm and so a different value of L needs to be

considered.

D (mm) FI-1 FI-2 FI-3
13 0.22 1.50 1.23
15 0.19 1.81 1.43
17 0.17 1.38 1.15

Table 9.4: Failure indices for varying D (SW = 10 mm and L = 60 mm).

9.1.4.2 Sensitivity of designs with L = 90 mm

Section 9.1.3 has shown that the design with L = 90 mm, SW = 10 mm and

D = 15 mm can be folded safely. To obtain a design with a better safety margin, the

sensitivity to SW andD was investigated by varying SW from 8 mm to 12 mm while

maintaining the ratio SW/D at either 1/2, 2/3 or 1. Table 9.5 presents the three

failure indices obtained for each design. There is no significant improvement and so

it is concluded that the design with SW = D = 12 mm provides the lowest margin.

However in practice it is difficult to manufacture a perfect transition between the

straight and circular parts of the slots. Thus considering the minimum slot size

design with SW = 8 mm and D = 15 mm is selected.
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Design
FI-1 FI-2 FI-3

L (mm) SW (mm) D (mm) ≈ SW/D
90 8 15 1/2 0.23 0.60 0.85
90 10 10 1 0.47 0.50 0.84
90 10 15 2/3 0.32 0.59 0.84
90 12 12 1 0.22 0.42 0.72
90 12 18 2/3 0.23 0.64 0.87
90 12 24 1/2 0.12 0.65 0.83

Table 9.5: Failure indices for varying SW and D (L = 90 mm).

9.1.5 Further Analysis of Optimised Design

Figure 9.5 shows the moment-rotation behaviour of this particular tape-spring hinge

design. This relationship was obtained by rotating the hinge from the fully folded

configuration to its initial, unstressed configuration while applying pure bending

constraints. In order to obtain a less noisy response, the viscous pressure load over

the external surface of the whole tube hinge was increased by a factor of 5, by setting

cv = 10×10−5ρcd, after carrying out a sensitivity study similar to that presented in

Section 7.3.1. Note that now vibration is seen only near the highest peak which is

actually a dynamic event.

The hinge changes its configuration from symmetric to asymmetric at an angle of

157◦. This sudden change occurs with a local peak moment of 190 Nmm at an angle

155◦. Then it follows a fairly smooth curve, varying from 150 Nmm to 112 Nmm.

From 70◦ the top tape-spring starts becoming straight and this leads to a rise in the

moment. A secondary peak of 463 Nmm at 27◦ corresponds to latching of the top

tape-spring. Finally the complete hinge latches at an angle of 19◦ with a peak of

672 Nmm and then achieves its unstressed configuration.

The tape-spring hinge considered in Chapter 8 had slot parameters SW = D

= 30 mm and L = 140 mm. The main concerns with that design were its low

torsional stiffness and the fact that the the folds could move along the individual

tape springs and so the hinge folded asymmetrically.

The new design has much wider and shorter tape-springs which increases the

torsional stiffness by six times, the axial stiffness by a factor of two and the bending

stiffness by one third, Table 9.6. Note that all these values are given for a 220 mm

long tape-spring hinge. In the fully folded configuration, the new tape-spring hinge

stores almost two and a half times more strain energy than the old hinge which
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Figure 9.5: Deployment moment-rotation relation for improved design.

would be an advantage for deploying large structures. Also the new design has

a much higher peak moment during deployment and it can be expected that the

locking moment, i.e. the moment that needs to be applied to start folding the hinge,

will also be much higher.

Design L (mm) Tape-
spring
width
(mm)

Axial
stiffness
(N/mm)

Bending
stiffness
(Nmm/◦)

Torsional
stiffness
(Nmm/◦)

Stored
energy
(mJ)

Peak
moment
(Nmm)

Previous 140 25.5 562 3305 97 306 320
Improved 90 56 1081 4330 576 742 672

Table 9.6: Comparison of previous and optimised tape-spring designs.

Note that the peak moment of 320 Nmm for the old design is much lower than

the value obtained in Section 8.1 because here the end cross-sections were not con-

strained. Figure 9.6 compares the moment-rotation relationships of the old and new

designs, both obtained with cv = 10 × 10−5 ρcd. The old design has a steady state

moment of around 65 Nmm with a single peak of 320 Nmm at an angle of 9◦. As

described earlier the new hinge has a steady state moment of around 130 Nmm with
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two peaks of 463 Nmm and 672 Nmm at angles of 27◦ and 19◦, corresponding to

the latching of each tape-spring. Note that near the origin the two designs appear

to have the same slope, which would indicate that they have the same bending stiff-

ness. However the stiffness values presented in Table 9.6 were obtained with slightly

different boundary conditions, more representative of the connections in an actual

application.
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Figure 9.6: Comparison of moment-rotation variation for previous and optimised
tape-spring designs.

9.2 Design of Tubular Booms

A deployment scheme that requires a 1 m long monolithic boom with two tape-spring

hinges, to be folded around a small spacecraft, as shown Figure 9.7, is considered.

The boom is rigidly connected to the spacecraft and expected to self-deploy upon

release. It is also required to fully latch straight away, without overshooting, as soon

as it becomes fully deployed to avoid any interference with the spacecraft itself or

other equipment attached to it. The spacecraft was assumed to have a prismatic

shape with cross-sectional dimensions of 400 mm by 360 mm and the centres of the

two hinges were placed at distances of 200 mm and 600 mm from the root end of

the boom. The distance between the root and the first hinge was chosen such as to

allow the boom cross-section to deform near the hinge.
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Spacecraft

Deployable boom

Figure 9.7: Deployable boom mounted on small spacecraft.

It would not be practical to analyse in full the folding and deployment behaviour

of many booms with different hinge designs. Instead, three hinge designs were se-

lected from Section 9.1 as indicated in Table 9.7. It should be noted that in the hinge

designs considered in Section 9.1 the hinge cross-sections were left unconstrained and

so were allowed to ovalise. The attachment of the boom to the spacecraft will present

this deformation to some extent.

In the next sections we will present our detailed analyses of a boom based on

the first hinge design, in Sections 9.2.1-9.2.2, and then compare key results for all

three designs in Section 9.2.3 to finally choose a design to be taken forward.

Design
Slot parameters

L (mm) SW (mm) D (mm)
I 90 10 15
II 85 10 15
III 90 8 15

Table 9.7: Slot parameters for three hinge designs considered for boom design.

9.2.1 Dynamic Deployment Behaviour

Figure 9.8 shows snapshots from the dynamic deployment of the boom with hinges

based on design I. Note that the hinge closer to the free end latches first while the

rest of the boom remains almost stationary; then the root hinge starts deploying.
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Figure 9.9 shows the angle-time responses for the two hinges. Also note that both

hinge angles are defined with respect to the axis of the boom at the root and hence

the two angles approximately coincide after the second hinge has deployed.

Figure 9.8: Snapshots during deployment (design I).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−60

−30

0

30

60

90

120

150

180

Time (s)

A
n
g
le
 (
d
e
g
.)

 

 

Second hinge

Root hinge

root hinge angle

second hinge 

angle

Figure 9.9: Angle-time response (design I).

In this particular hinge design the root hinge is unable to resist the angular

momentum of the boom at the point of latching, hence the boom overshoots the

fully deployed configuration. This behaviour should be avoided because the boom

could become damaged, or could interfere with the spacecraft.
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9.2.2 Failure Analysis

Figure 9.10 shows contours of the three failure indices for design I in the fully folded

configuration of the boom. The top set of pictures represents the root hinge and

the bottom set represents the second hinge. Note that the root hinge is subjected

to higher loads than the other hinge. This is not surprising, because the fixed

connection at the root of the boom restricts deformation of the boom cross-section

whereas the second hinge is less constrained. Also note that the largest failure index

is FI-3, which indicates that this boom design is governed by the interaction between

axial and bending loads.

Max: 0.52
Max: 0.66 Max: 0.94

FI-1 FI-2 FI-3

Failure Index, FI

 0.40
 0.60
 0.80
 1.00

Max: 0.69
Max: 0.44Max: 0.43

Figure 9.10: Failure indices for root hinge (top) and second hinge (bottom) in fully
folded configuration, for hinge design I.

The failure analysis during deployment has to calculate the failure indices through-

out the entire deployment simulation and then consider their maximum values.

Hence, the stress-resultants were recorded at intervals of 0.005 s for the entire de-

ployment simulation and the three failure indices were calculated. The present hinge

design reaches its most critical conditions during the snapping of the second hinge,

with FI-3 going from 1.13 to 1.15 during this snap, see Figure 9.11. Once the second

hinge has latched FI-3 begins to decrease, see the image on the right in Figure 9.11.
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Max: 0.71
Max: 1.15

Max: 1.13

Failure Index, FI

 0.40
 0.60
 0.80
 1.00

Figure 9.11: Maximum failure index at three stages of deployment, for boom based
on hinge design I.

9.2.3 Selection of Tape-Spring Hinge Design

Table 9.8 lists the maximum failure indices, obtained for each of the three designs,

both in the fully folded configuration and during deployment; the critical failure

index is always FI-3, hence the dominant loading condition is the interaction between

axial and bending loads. Note that the values during deployment are largest for all

three designs, the corresponding locations of these maximum failure index are shown

in Figure 9.12.

Design Fully folded During deployment
I 0.94 1.15
II 0.81 1.05
III 0.92 0.95

Table 9.8: Values of maximum failure index (FI-3) for three hinge designs.

Figure 9.13 compares the hinge angle-time responses of the three boom designs.

Note that design I overshoots the fully deployed configuration, whereas both design

II and design III latch straight away. Considering the results of the failure analysis

and also the hinge angle-time response, design III was selected as the final design of

the boom.
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Max: 1.15
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Figure 9.12: Location of maximum failure indices during deployment corresponding
to Table 9.8, plotted on undeformed configuration.
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Figure 9.13: Comparison of hinge angle-time responses of the second hinge.
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Chapter 10

Experimental Validation

This chapter presents a series of experimental validations of the simulation tech-

niques developed in this research. A verification to failure analysis was performed

by constructing a failure critical design and a failure safe design of a tape-spring

hinge. Both were folded to the designed angle and the presence of any damage was

investigated. The moment-rotation response obtained in Section 8.1 is compared

against quasi-static deployment experimental results. The dynamic deployment be-

haviour of a single tape-spring hinge design is examined by experiments carried out

with a gravity compensation system. Furthermore, the sensitivity to boundary con-

ditions was examined by considering two different clamping conditions of the root

of the boom. Finally the dynamic deployment behaviour of the two-hinge boom

design selected in Section 9.2 is verified with a similar deployment experiment.

10.1 Validation of Failure Analysis

The failure criterion presented in Chapter 6 has been developed using the experi-

mental results obtained from coupon tests. The accuracy of using this locus at the

structural level is examined here.

Two hinge designs were selected from Chapter 9, one design is failure critical

and the other is failure safe when folded to 180◦. The failure critical design has slot

dimensions of L = 60 mm, SW = 10 mm and D = 15 mm whereas the failure safe

design has L = 90 mm, SW = 8 mm and D = 15 mm.

Figure 10.1a shows the maximum failure indices of the hinge in the fully folded

configuration, but plotted on the undeformed configuration, for the failure critical

128



10. Experimental Validation

design. Note that the maximum failure index exceeds 1 in the regions highlighted in

red. The same regions were seen to have become damaged during the experiment,

Figure 10.1b.

Failure Index, FI

 0.40
 0.60
 0.80
 1.00

(a) Maximum failure indices plotted on undeformed configuration

Failed locations

(b) Experiment

Figure 10.1: Failure analysis of failure critical design (L = 60 mm, SW = 10 mm
and D = 15 mm).

Next the failure safe design is examined. Figure 10.2a shows the maximum failure

indices contours corresponding to the fully folded configuration for this case. Note

that the failure indices do not exceed 1, and hence the hinge can be safely folded

to 180◦, according to our simulation models. As predicted physical model could

be safely folded. Figures 10.2b and 10.2c compare the fully folded configurations

obtained from simulation and experiment, respectively.

In conclusion, the failure locus used in this research, which was constructed using

uniaxial strengths obtained from coupon testing and then verified for combined

loading conditions applied on different set of coupons, has now been further verified

at the structural level. This result provides confidence in the failure predictability

of the simulation techniques developed in this research.
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Failure Index, FI

 0.40
 0.60
 0.80
 1.00

Max: 0.85

(a) Maximum failure indices plotted on undeformed configuration

(b) Fully folded configura-
tion (simulation)

(c) Fully folded configura-
tion (experiment)

Figure 10.2: Failure analysis and comparison of fully folded configuration of failure
safe design (L = 90 mm, SW = 8 mm and D = 15 mm).
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10.2 Quasi-Static Deployment

A verification of the moment-rotation response of the initial hinge design presented

in Section 8.1 was carried out by means of a quasi-static deployment experiment.

This tape-spring hinge has slot parameters of L = 140 mm and SW = D = 30 mm

which gives a design with two 140 mm long, 25 mm wide tape-springs.

10.2.1 Test Procedure

Folding of this tape-spring hinge is best initiated by pinching it in the middle, to

avoid high bending moments that may damage the hinge. Once the height of the

central region has been approximately halved the ends of the tape-spring hinge can

be rotated in opposite directions.

Deployment tests were carried out by attaching a pair of tube holders to the

apparatus previously used by Seffen and Pellegrino (1999) to study the behaviour

of tape springs. This apparatus consists of two small gear boxes with a reduction

ratio of 80, one attached to a rigid base and the other mounted on a linear bearing,

supporting hollow strain-gauged shafts. The base rotation of the shafts is measured

with a resolution of 0.045◦ and to an accuracy of ±0.4◦ (due to backlash). The ends

of the tape-spring hinge are attached to the shafts, which behave as load cells with

a linear response up to 1.10 Nm and an accuracy of ±2 Nmm.

Before starting the test, the strain gauge readings were set to zero in the deployed,

i.e. unstressed configuration shown in Figure 10.3. Then, the tape-spring hinge was

pinched in the middle and folded by rotating the ends by equal amounts. During

the test the ends were rotated back in small steps while keeping the end moments

roughly equal. This was done by rotating the moving gear box by the desired amount

and then rotating the fixed gear box to equalise the end moments.

At the end of the test the moment-rotation profile was obtained by plotting

the folding angle, ψ, defined as the difference between the end rotations and the

corresponding moment at each step (Mallikarachchi and Pellegrino, 2011b).

10.2.2 Comparison

Figure 10.4 shows a comparison between the deformed configurations of the tape-

spring hinge that were observed during deployment in the test rig, with snapshots

from the finite element simulation. This qualitative comparison shows very good
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Fixed gear box

Potentiometer knobs

Strain gauges

Tube holders

Moving gear box

Figure 10.3: Quasi-static deployment test rig.

agreement in both the position of the regions of localised deformation and the overall

geometric configurations of the tape-spring hinge.

Figure 10.5 shows a comparison between the deployment moment-rotation profile

measured experimentally with the simulated response. Unlike the moment-rotation

profile in Figure 8.2, the particular simulation results shown here were obtained

from a model that included two 5 mm long Aluminium rods, to model the torsional

stiffness of the holders. The torsional constant of the rod cross-section was set equal

to 12 mm4, to match the angle of snap back observed in the experiment, i.e. 2.3◦.

It can be seen that the bending moment is approximately constant until the

final snap back, apart from a small hump caused by the loss of contact between the

internal and external tape springs, in the fold region. Note that the particular tape-

spring hinge design that was tested had a unique equilibrium configuration when

the deployment moment is zero.

Overall, the simulation has fully captured the experimentally observed behaviour.

However, the measured steady-state deployment moment had an average value of

80 Nmm whereas our simulation gave around 67 Nmm. Also the peak in the hump in

the experiment was at ≈ 40◦ with a maximum moment of 104 Nmm, whereas in the

simulation it was at ≈ 54◦ with a maximum of 117 Nmm. Also, the measured peak

moment at snap back was 660 Nmm whereas it was significantly higher, 1078 Nmm,

in the simulation.
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Figure 10.4: Comparison of hinge configurations during quasi-static deployment.
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Figure 10.5: Comparison of moment-rotation profiles during deployment.

10.3 Dynamic Deployment of Tape-Spring Hinge

The dynamic deployment behaviour of the same tape-spring hinge design considered

in Section 10.2 is investigated here.

10.3.1 Experimental Setup

The hinge was connected to an aluminium-alloy tube with an outer diameter of

38 mm and thickness of 0.9 mm. The connection was made by inserting the

aluminium-alloy tube into the tape-spring hinge to provide a 25 mm overlap which

was wrapped with electrical insulation tape and tightened with a Jubilee clip. The

complete structure was 1025 mm long including the 1000 mm long boom and an

additional length of 25 mm to provide a connection at the root of the boom, Fig-

ure 10.6.

665140 8585

2525

Hinge Section Aluminium Tube

Figure 10.6: Boom with single tape-spring hinge (units: mm).
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Deployment tests were carried out on a rig that provided a single-point offload

through a string attached to the outer surface of a tube, at a point directly above

the centre of gravity of the aluminium-alloy tube. The other end of the string was

run through a pulley located at a height of 4650 mm, directly above the centre of the

tape-spring hinge. This constraint allowed the boom to only move in a horizontal

plane. Figure 10.7 shows the experimental setup.

4650

135

String

Gravity compensation

system

High speed

camera

1000

Center of gravity of

Aluminium tube

Centre

Figure 10.7: Experimental setup for dynamic deployment of single-hinge (units:
mm).

Two different clamping conditions were used to investigate the sensitivity of the

deployment to the boundary conditions. First the root end of the boom was slid onto

a 37.8 mm diameter 25 mm long solid aluminium-alloy cylindrical fitting wrapped

with thread sealing tape. A 6 mm thick sheet of rubber was wrapped around the tube

and clamped with a Jubilee clip tightened with a torque of 1.13 Nm, Figure 10.8a.

The cylindrical fitting was attached to a massive steel structure which provided a

fixed end condition for the boom.

The second method was to slide the root end of the boom onto a similar aluminium-

alloy fitting but then covered with a heat shrinkable sleeve heated to fit onto the tube.

Then two Jubilee clips were tightened with a torque of 1.13 Nm and aluminium-alloy

fitting was attached on to a 1 m by 1 m granite table, Figure 10.8b.

The deployment of the boom was recorded with a Phantom V12.1 high speed

camera held directly above the folding part of the boom; its field of view included

the folding part of the boom, up to the Jubilee clip. A second video camera was used
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(a) Clamp condition I

(b) Clamp condition II

Figure 10.8: Clamp conditions for dynamic deployment of single hinge.

to get an overall view of the deployment. A sheet of white paper with black lines at

5◦ angles provided a horizontal background from which the deployment angle could

be measured.

First the boom was folded 45◦ and then released while recording the deployment

with the high speed camera at a rate of 300 frames per second.

The same procedure was repeated after replacing the composite tube hinge with

a second one, nominally identical to the first. Similar tests were carried out on both

hinges after they were folded 90◦. The experiment with the folding angle of 45◦ was

done only with clamp condition I, but in the case of the 90◦ folding the tests were

repeated with both clamping conditions.

Figure 10.9 shows a series of images obtained from the experiment with the

folding angle of 45◦. The deployment history of the boom was derived by measuring

the deployment angle from one frame out of every 25 frames (0.0083 s) using a

specially written Matlab program that computes the angle between two lines drawn

manually. Each picture was loaded to the background and the two lines were aligned

with the boom and the 0◦ line on the white background sheet.
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t = 0.00 s

t = 1.00 s

t = 0.75 st = 0.50 st = 0.25 s

t = 2.00 s

t = 1.75 st = 1.50 st = 1.25 s

t = 2.25 s t = 2.75 st = 2.50 s

Figure 10.9: Photos taken during deployment of boom folded 45 ◦.
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Note that the hinge takes about 1 s to achieve its fully deployed configuration,

but it is subjected to back buckling due to excessive kinetic energy. Finally it

vibrates about the fully deployed configuration.

The experimental results from the tape-spring hinge initially folded to 90◦ gave

two different angle-time responses for the phase of buckling of the tape-springs,

Figure 10.10. In both experiments the initial deployment took 1.48 s, then the tape

springs back buckled. In the test with clamping condition I, the boom underwent

maximum overshoots of -45◦, +11◦ and -4◦ over a period of 2.95 s before entering

the final vibration phase. In the other case, the boom overshot only twice with

maximum angles of -29◦ and +4◦ over a period of 1.94 s. The final vibration phase

was similar for the two cases.
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Figure 10.10: Angle-time relationship for tape-spring hinge folded 90◦.

It should be noted that, although helpful in describing the deployment behaviour,

the deployment angle does not fully identify the configuration of the boom. For

example, the deployment angle may be zero with the boom not in the fully deployed

configuration, as shown in Figure 10.11. Therefore it is important to investigate the

localised behaviour of the hinge. A detailed comparison of hinge configurations in

the two cases is presented in the next section.

138



10. Experimental Validation

(a) Fully
deployed config-
uration

(b) Hinge
sheared to the
right

(c) Hinge sheared
to the left

Figure 10.11: Different configurations of hinge with a zero deployment angle.

10.3.2 Comparison

Figure 10.12 compares the measured angle-time response with the predictions from

a simulation with parameters ξ = 0.1 and cv = 0. Note that there is excellent

agreement between experiment and simulation during the initial deployment phase.

For example, for the boom folded 45◦ the simulation showed a monotonic decrease

in deployment angle from 45◦ to 0◦ over a period of 0.93 s; in the experiment it took

0.96 s.

The second phase of the dynamic process shows some very interesting behaviour.

The experimental angle-time relationship for the boom folded 45◦, Figure 10.12,

shows that this boom rotated 17◦ beyond the fully deployed configuration and be-

came fully latched the second time it reached the fully deployed configuration. The

simulation predicts that the boom should go through the fully deployed configura-

tion 4 times before becoming fully latched. Also note that simulation gives a noisy

response; this is because use of only ξ is not sufficient to suppress high frequency

oscillations. This oscillation at the snapping of the boom forces the hinge to buckle

and hence overshoot 4 times.

The simulation for the 90◦ folded boom presented in Section 8.2 used the param-

eters ξ = 0.1 and cv = 2×10−5 ×ρcd to suppress these high frequency oscillations.

Figure 10.13 compares the experimental results with the two different clamping con-

ditions to simulations with slight changes in initial conditions. Note that experiment

I and simulation I correspond to a high overshoot angle and experiment II and sim-

ulation II to a low overshoot angle. All four responses show a deployment phase of

1.48 s. In experiment I the boom overshot three times, with maximum overshoot
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Figure 10.12: Comparison of experiment and simulation results for tape-spring hinge
folded 45◦.

angles of -45◦, +11◦ and -4◦ whereas for the simulation the values are -46◦, +19.6◦

and -4◦. In the case of experiment II, the boom overshot only twice, with maximum

overshoot angles of -30◦ and +4◦. This time, simulation II predicts maximum over-

shoot angles of -33◦ and +5◦. The final vibration phase is fairly well matched for

all four cases.

As explained in Figure 10.11 a comparison of overall angles does not fully de-

scribe the behaviour of these structures as the same overall angle may correspond

to different localised folds. Figure 10.14 compares the localised deformations of the

tape-spring hinge by means of snapshots taken from experiment I and simulation I.

Note that the localised deformations are fairly well matched up to 2.25 s. Differences

afterwards are mainly due to the simulation predicting a higher overshoot angle and

so delaying the response.

Figure 10.15 compares snapshots from experiment II and simulation II. Note

that the localised deformations are fairly well matched throughout.

The sensitivity of these results indicates that the particular hinge design used in

the deployment presented in this section is rather unpredictable.
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Figure 10.13: Angle-time comparison for tape-spring hinge folded 90◦.

10.4 Dynamic Deployment of Two-Hinge Boom

The dynamic deployment behaviour of multiple hinge booms were studied in order

validate results presented in Section 9.2. A boom based on Design III which has

two tape-spring hinges with slot parameters, L = 90 mm, SW = 8 mm and D =

15 mm was built and tested to verify the accuracy of the simulation results and the

failure analysis on which this design had been based.

10.4.1 Experimental Setup

A 38 mm diameter, 1.05 m long and 0.22 mm thick boom was made from two-ply

plain weave fabric laid at 45◦ to the axis of the boom. An additional 50 mm section

of the boom was used for the root connection and slots were placed as shown in

Figure 10.16.

The root end of the boom was slid onto a solid aluminium-alloy support with

a 37.8 mm diameter and 50 mm long cylindrical fitting. The overlap region was

wrapped with electrical insulation tape and then clamped with a Jubilee clip tight-

ened with a torque of 1.13 Nm. The aluminium-alloy support was bolted to a 1 m

by 1 m granite table.

This boom is able to self-deploy while carrying its own self weight however, to

minimise the gravitational effects, a single-point off-load was provided through a
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(a) t = 0.00 s (b) t = 0.45 s (c) t = 0.75 s

(d) t = 0.90 s (e) t = 1.05 s (f) t = 1.35 s

(g) t = 1.50 s (h) t = 1.65 s (i) t = 1.80 s

(j) t = 1.95 s (k) t = 2.10 s (l) t = 2.25 s

(m) t = 2.40 s (n) t = 2.55 s (o) t = 2.70 s

(p) t = 2.85 s (q) t = 3.00 s (r) t = 3.15 s

Figure 10.14: Comparison of snapshots from experiment I and simulation I.
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(a) t = 0.00 s (b) t = 0.13 s (c) t = 0.46 s

(d) t = 0.75 s (e) t = 0.98 s (f) t = 1.20 s

(g) t = 1.40 s (h) t = 1.65 s (i) t = 1.87 s

(j) t = 2.06 s (k) t = 2.18 s (l) t = 2.70 s

(m) t = 2.94 s (n) t = 3.15 s (o) t = 3.38 s

(p) t = 3.64 s (q) t = 3.93 s (r) t = 4.13 s

Figure 10.15: Comparison of snapshots from experiment II and simulation II.
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200 20020050 400

Aluminium-alloy support

Jubilee clip

Composite boom

Figure 10.16: Two-hinge boom (units:mm).

string attached to the outer surface of the boom at a distance of 400 mm from the

root. The other end of the string was run through a pulley located at a height of

4.65 m directly above the root hinge.

A 400 mm long, 360 mm wide, and 310 mm tall wood box was placed next to

the boom to simulate the spacecraft. A Phantom V12.1 high speed camera was

held directly above the root hinge with a wide angle lens to capture the detailed

behaviour. A Casio EX-FH20 high speed camera was placed at a height of about

4.8 m above the boom to capture the overall deformation. Figure 10.17 shows a

schematic of the complete experimental setup.

Great care was needed to fold the boom, specially the root hinge because the

chosen design was known to have a very small margin against failure in the folded

configuration. First the root hinge was pinched and folded to 90◦ and then the same

procedure was followed to fold the second hinge, Figure 10.18. The fully folded boom

was held horizontal by hand, in the tip region, and was released while recording the

deployment with the two high speed cameras, at rates of 1000 and 420 frames per

second, respectively.

Snapshots of deployment were extracted from the videos recorded by the two

high speed cameras and the hinge angles were measured using the same technique

described in Section 10.3.1 (Mallikarachchi and Pellegrino, 2011a).

10.4.2 Comparison

It had been predicted by the finite element simulation that this boom should achieve

its fully deployed configuration straight away, without any overshoot. Both simula-

tion and experiment showed that the boom comes to its fully deployed configuration

in about 0.3 s, becomes fully latched, and then oscillates around the deployed con-
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4650

Gravity compensation 

system

High speed

camera 1

200200400 200

High speed

camera 2

Spacecraft

Figure 10.17: Experimental setup for two-hinge boom (units: mm)

(a) Pinching root hinge (b) Folding (c) Fully folded configura-
tion

Figure 10.18: Setting up two-hinge boom deployment experiment.
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figuration. The experiments also confirmed that the root hinge remains practically

folded until the second hinge is completely deployed. Figure 10.19 shows snapshots

of the complete boom deployment, obtained from the second high speed camera.

Figure 10.20 compares the angle-time response of the root hinge. Note that the

hinge remains almost fully folded for about 0.1 s. The second hinge deploys within

this period and then remains latched throughout the rest of the experiment. The

experimental and simulated angle-time responses show excellent agreement apart

from a small initial difference, probably due to the hand release technique in the

experiment. In the experiment the boom comes to its fully deployed state at 0.288 s

whereas in the simulation it takes 0.297 s. The final vibration portion of the response

is also well predicted.

Figure 10.19 compares the localised deformation of the root hinge. Note that

the simulated response shows that after 0.105 s the two tape-spring hinges should

swap their fold locations whereas in the experiment this change did not happen.

It is known that this type of hinge has an unstable symmetric hinge configuration

and hence is forced to take an unsymmetric configuration. When the second hinge

latches a dynamic wave travels through the boom and in the simulation this flips the

root hinge configuration, however this did not happen in the experiment. The energy

difference between these two alternative configurations may possibly be rather small.

However, due to compact hinge geometry this switching does not affect the overall

path of the tip of the boom which was a concern with the design presented in

Section 10.3.
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(a) t =0.000 s (b) t = 0.055 s (c) t = 0.074 s

(d) t = 0.083 s (e) t = 0.102 s (f) t = 0.112 s

(g) t = 0.121 s (h) t = 0.140 s (i) t = 0.198 s

(j) t = 0.226 s (k) t = 0.276 s (l) t = 0.287 s

(m) t = 0.300 s (n) t = 0.324 s

Figure 10.19: Snapshots of two-hinge boom during deployment experiment.
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Figure 10.20: Comparison of root hinge angle-time variation.

t = 0.000 s t = 0.105 s t = 0.130 s t = 0.150 s

t = 0.220 s t = 0.255 s t = 0.270 s t = 0.300 s

Figure 10.21: Comparison of local deformation of root hinge of two-hinge boom.
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Chapter 11

Conclusions and Future Work

This dissertation has presented novel design tools for lightweight composite booms

with multiple tape-spring hinges and has also established a design methodology for

these structures. The whole process of folding and deployment of tape-spring hinges

under both quasi-static and dynamic loading has been captured in detail through

finite element simulations, starting from a micro-mechanical model of the laminate

based on the measured geometry and elastic properties of the woven tows. Geometric

optimisation of the hinge design has been carried out through a parametric study

using a stress-resultant based failure criterion. Finally an example of designing 1 m

long self-deployable boom that can be stowed by folding it around a small spacecraft

has been presented.

The main objectives of research presented in this dissertation were (i) to predict

the stiffness properties of thin laminates made of plain weave carbon fibre reinforced

composites, (ii) to develop a six-dimensional failure criterion based on force- and

moment-resultants, (iii) to capture the detailed structural behaviour of tape-spring

hinges under both quasi-static and dynamic loading conditions, (iv) to investigate

the sensitivity of the dynamic latching behaviour to the method of connection of

tape-spring hinge booms at the root, (v) to perform geometric optimisation of tape-

spring hinges and (vi) to establish a design methodology for tubular booms with

multiple tape-spring hinges. The main achievements are summarised here and rec-

ommendations for future work are presented.
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11.1 Important Findings and Discussion

Micro-Mechanical Modelling

Thin laminates made from woven tows of fibres are not modelled accurately by clas-

sical laminate theory, (Soykasap, 2006). Hence, the two-ply laminate studied in this

dissertation was modelled as a linear-elastic thin Kirchhoff plate whose properties

are defined by a homogenisation technique.

The micro-mechanical models proposed in this study use a simple description

of the geometry of the reinforcement. The tow cross-sectional area, thickness and

waviness were measured from a series of micrographs and the fibre volume fraction

was calculated from the dry weight of the fabric, the resin film weight and the density

of fibres and resin. The fibre and resin properties provided on the manufacturer’s

data sheets were used to estimate the homogenised tow properties. The properties

of the tows were defined by the engineering constants E1, E2, ν12, G12 and G23.

The first four constants were defined based on the rule of mixtures and the Halpin-

Tsai equations. The fifth constant was computed by solving a quadratic equation

proposed by Quek et al. (2003).

Average values for the tow cross-section and wave profile were obtained by study-

ing four different cross-sectional and weave profiles that matched average area and

weave length obtained from micrographs.

The stiffness of two-ply plain weave composites was described by theABD matrix

obtained from a homogenised plate model. This matrix was derived from a unit

cell consisting of triangular prism elements using periodic boundary conditions. A

specific procedure has been set up for deriving the homogenised material properties

of two-ply plain weave laminates, based on a repeating unit cell approach.

The homogenised properties that were determined by this method were verified

with a series of carefully designed experiments, which measured the tensile stiffness,

Poisson’s ratio and bending stiffness for both 0/90 and ±45 fibre orientations.

An important factor in modelling a multi layer fabric composite is the relative

positioning of each layer. Following Soykasap (2006) two extreme ply arrangements,

fibres in-phase and fibres out-of-phase were considered. The results showed that

there is a significant variation in bending stiffness for 0/90 laminates, Table 5.2.

However, the hinges considered in this research were made with two-ply ±45 lami-

nates due to their resistance to crack initiation near the transition region between
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the circular and rectangular part of the slot. The effect of two ply arrangements is

rather small for ±45 laminates.

An attempt was made to use homogenisation in reverse to predict material fail-

ure. Three common failure criteria, maximum strain, maximum stress and Tsai-Wu

were used to predict failure. Laminate failure strains and curvatures obtained from

tension, compression, shear and bending failure tests performed on test coupons

were used for validation. It was shown that although the micro-mechanical model

is effective in predicting initial stiffness its failure predictions are often rather poor.

Failure Criterion

A six-dimensional failure locus for two-ply plain weave laminates was developed

in terms of force and moment resultants. The failure coefficients were estimated

with five uniaxial tests, and five more combined loading configurations were used

for validation of the failure locus. It was shown that the quadratic failure enve-

lope by Karkkainen and Sankar (2007) is only valid for in-plane loading conditions

and hence additional limits were developed for bending and in-plane and bending

interaction.

A new experimental procedure was introduced to investigate the behaviour under

combined bending and in-plane loading by testing initially curved specimens. It

was assumed that an initially curved specimen that is flattened and then pulled to

failure behaves similarly to bending a flat specimen that is subjected to tensile loads

on the micro-level. It was also assumed the moment required to flatten a curved

specimen remains constant when the specimen is being pulled. These assumptions

may not be valid for specimens with initial curvatures close to the bending failure

curvatures, however the tests considered here had comparatively low values, i.e. the

failure curvature of the laminate was about 0.17 mm−1 whereas the maximum initial

curvature used was 0.052 mm−1.

The platen folding setup used for flexural failure does not measure the transverse

moment of a specimen subjected to longitudinal bending. Thus the transverse mo-

ment was estimated by multiplying the measured curvature values with the ABD

matrix obtained from the micro-mechanical model. However, the micro-mechanical

model developed in this research targets only the initial linear stiffness of the lami-

nate. Therefore the bending stiffness was modified with a stiffness reduction factor

which was estimated by comparing the measured longitudinal moment to the mo-
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ment estimated using the ABD matrix. It was then assumed that the reduction in

transverse stiffness is similar to that in the longitudinal direction. This stiffness re-

duction can be explained by laminate thickness being reduced due to the stretching

of the tows having the effect of decreasing their waviness. However during failure

analysis of tape-spring hinges no stiffness reduction was used since the simulations

were based on the initial stiffness specified through the ABD matrix.

The experiments used to measure the shear and twisting strengths do not apply

pure shear or twisting due to the effect of the boundary conditions. Therefore the

proposed failure locus was used to estimate pure shear and twisting strengths and

additional tests were performed for confirming the accuracy of their results. Two or

three rail shear fixtures cannot be used with a thin two-ply laminate since it fails

in buckling rather than in-plane shear. An option would be to use thin sandwich

specimens similar to compression tests (Kueh, 2007).

The failure locus for biaxial bending was obtained by extending the biaxial failure

curvature locus developed by Yee (2006) for a similar laminate. This locus confirmed

that there is no interaction between the longitudinal and transverse bending mo-

ments in the case of pure bending failure. This could be due to the fact that the

ratio D12/D11 is quite small and hence the two moments have very little influence on

each other. However in the case of in-plane loading, even though the ratio A12/A11

is small the neutral axes are subjected to stretching and hence in-plane longitudinal

and transverse loading affect each other.

Failure by delamination was not considered in developing this failure criterion.

It is possible that the two-ply laminate may be subject to delamination, however

this was not visible in any of the coupon tests or in any of the tape-spring hinges

that were tested.

Simulation of Tape-Spring Hinges

The Abaqus/Explicit finite element solver, which advances the kinematic state of

each degree of freedom by direct integration of its equations of motion, was used

for simulating tape-spring hinges. Checks to obtain a stable solution and a detailed

description of the simulation parameters were presented.

A detailed study of quasi-static folding and deployment of a tape-spring hinge

made from a two-ply plain-weave laminate of carbon fibre reinforced plastic was

presented. The first stage of this simulation generated the fully folded, strained
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configuration of the hinge; this was done by pinching the hinge in the middle to

reduce the peak moment required to fold the hinge and then rotating the two ends.

The second stage in the simulation was to gradually decrease the relative rotation

between the ends until it became zero. A physical model of a particular version of

this hinge was constructed and its moment-rotation profile during quasi-static de-

ployment was measured, starting from the fully folded configuration. The simulation

of this process has captured both the steady-state moment part of the deployment,

during which a localised fold can be seen in each of the tape springs that make up

the hinge, as well as the snap back to the straight configuration.

As an alternative to the simulation of the actual folding process, a simulation

of a complete folding and deployment cycle without pinching the hinge was carried

out. This approach provided an estimate of the maximum moment that could be

carried by the hinge during operation. This alternative simulation has shown that for

this particular hinge design the deployment moment peak is about half the folding

moment peak, a situation typical of deployable structures based on thin shells. The

compliance of the testing rig further decreases the deployment moment. From an

operational standpoint, the high peak moment for folding indicates that when the

hinge is latched it is locked in a highly stable configuration and hence a high pointing

accuracy can be expected.

The comparison in Section 10.2 between the measured and predicted moment-

rotation relationships during quasi-static deployment of the tape-spring hinge has

shown that, although there is good qualitative agreement, there are three main

areas of quantitative discrepancy, as follows. The largest discrepancy was in the

magnitude of the snap-back moment, overestimated by 63%; also the rotation angle

at the hump peak — corresponding to the point of separation of the tape springs —

was overestimated by 35% and the deployment moment average was underestimated

by 16%. These errors are significantly larger than those obtained when testing the

validity of the material model, in Section 8.1, but it should be noted that the focus

of Section 8.1 had been on the small-strain behaviour of the material and time-

dependent behaviour was not investigated.

It is believed that the main reasons for these discrepancies are the viscoelastic

behaviour of the composite material, particularly associated with the matrix, tow

misalignment, and deadband effects in the testing machine combined with the in-

ability to measure instantaneous response. The first topic is not well-understood at

present as it has only recently started to be addressed in deployable structures (Kwok
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and Pellegrino, 2011). The two other issues could be addressed by a more precise

manufacturing technique and by the use of a testing rig designed to capture peak

values during snapback. Use of the initial stiffness matrix is not an issue here as the

peak moment occurs almost at the fully deployed configuration, i.e. the curvatures

are almost zero.

The dynamic deployment behaviour of tape-spring hinges was studied by folding

a boom with a selected tape-spring hinge design to a specific angle and then suddenly

releasing it. The simulations were able to capture both the behaviour of the localised

folds and the overall motion of the boom quite accurately. The motion of the boom

can be divided into three phases, as follows:

1. deployment phase;

2. incomplete latching and large rotation phase;

3. vibration phase.

Note that Soykasap (2009) and Yee (2006) had observed a similar behaviour in their

experimental work on a boom with a three-tape-spring hinge.

It was shown that the symmetric configuration of a tape-spring hinge may be

unstable and in this case the fold flips towards one side depending on the particu-

lar loading and boundary conditions. The particular hinge design considered had

long and narrow tape springs which allowed the fold to travel along the length of

the hinge. This provides two different deformation paths which makes the hinge

unpredictable.

These predictions were verified with a series of dynamic deployment experiments

with a single-point gravity off-load system. The simulations were able to capture the

detailed behaviour observed in the experiments. They showed that the deployment

phase and vibration phase can be easily predicted but incomplete latching and the

large rotation phase is quite sensitive to details of the boundary conditions. Also

the second phase is the most critical of the three: if the boom overshoots the fully

deployed configuration and hence can interfere with the spacecraft itself or other

equipment attached to it.

Design of Tubular Booms

A geometric optimisation study was carried out with a series of parametric studies

to improve hinge geometry. The slot geometry was parameterised in terms of slot
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length, width and end circle diameter. Failure indices were calculated for the fully

folded configuration to confirm that a specific design is safe against failure. An

optimisation study was carried out for a hinge that could be folded 180◦ without

breaking, with minimum removal of material from the original tube.

A new design with slot parameters, L = 90 mm, SW = 8 mm and D = 15 mm

was obtained, which provides a six times increase in torsional stiffness, twice the

axial stiffness, a one third increase in bending stiffness and almost two and a half

times the stored energy of the original design. The shorter tape-springs provide

better control over the position of the folded region in the hinge and hence the

kinematics of deployment are likely to be better constrained.

One of the significant findings of this research is that shorter hinges are obtained

if one allows the end cross-sections to deform freely. This means that it is important

to understand how the hinge is going to be connected to the spacecraft and to any

object that are attached to the tip of the hinge.

These optimised hinges were then considered as candidates for a 1 m long self

deployable boom that could be folded around a spacecraft. The hinge design in-

cluded a failure analysis during both stowage and dynamic deployment. This study

has shown that the most critical stages are the fully folded configuration and during

deployment the point at which the second hinge latches, affecting the load on the

root hinge. High tension and compression loads at the root hinge occur also when

the root hinge latches, but it was found that hinges with two tape springs are usually

strong enough to withstand this load.

The most critical portion of a hinge is near the transition region between the

straight and curved parts of the slot, as shown in Figure 9.12. These regions are

subjected to both high bending and some stretching in the mid-plane and hence their

strength is governed by an interaction between in-plane and bending. Therefore

special care should be given to these regions during the fabrication process.

Overall a 1 m long deployable boom with two tape-spring hinges that can be

wrapped around a spacecraft and successfully deployed without any overshoot has

being designed and validated. It can be concluded that the simulation techniques

developed in this research can be used to design deployable booms with multiple

hinges and optimised boom geometry to meet any specific mission requirements.
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11.2 Open Issues and Suggested Further Work

Several areas that require further investigation have been identified during this re-

search and are listed below.

Material

• Extend micro-mechanical model to capture the stiffness reduction by redefining

for geometrically non-linear behaviour simulation.

• Conduct a thorough investigation of the effect of fibre alignment and arrange-

ment on bending stiffness of two-ply 0/90 laminates.

• Consider alternate laminate designs for tape-spring hinges. A two-ply ±45

laminate was chosen in this research due to its resistance to crack initiation and

propagation near circular parts of slots making tape-spring hinges. However,

0/90 orientation provides the highest bending stiffness and it was observed that

0/90, ±45 which is an unsymmetric laminate may provide the best compromise

between these two laminates. Use of different weave styles and the number of

plies should be considered.

• Extend failure criterion to unsymmetric laminates.

• Investigate thermal and viscoelastic effects in the material.

Tape-Spring Hinges

• Improve the quasi-static bending rig to capture high and instantaneous peak

moments.

• Investigate the possibility of using experimental methods like digital image

correlation to measure stress and strain distribution in tape-spring hinges to

compare with simulated values.

• Design a gravity off-load system to test composite booms with several hinges.

• Couple the micro-mechanical finite element model to the tape-spring hinge

model to simulate the reduction in bending stiffness.
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• Investigate the behaviour of tape-spring hinges made with more than two tape

springs.

• Consider the possibility of using hinges with unsymmetric or tapered tape

springs to resist back buckling.

• Consider using different hinge designs at the root and elsewhere in the boom

to improve the overall deployment behaviour.

• Develop effective connection methods that allow boom cross-sections to ovalise

which will reduce the stresses in the tape-spring hinges.
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Appendix A

Abaqus Input Files

A.1 Quasi-Static Folding Tape-Spring Hinge

*HEADING

** Job name: Static-Folding Model name: Exp-Tape-Spring-Hinge

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** =======================================

** Parts

** =======================================

*PART, name=Hinge

*NODE

... ... ...

*ELEMENT, type=S4, elset = eleHinge

... ... ...

**---------------------------------------

** Defining ABD stiffness matrix and orientation

**---------------------------------------

*ORIENTATION, name=Ori-1, system=CYLINDRICAL

0., 0., 0., 0., 0., 1.

1, 0.

** Material properties from micro-mechanical model **

*SHELL GENERAL SECTION, elset=eleHinge, density=3.18E-10, orientation=Ori1

7714,6380,7714,0,0,5962,0,0

0,23.6,0,0,0,17.9,23.6,0

0,0,0,0,16.7

**

*END PART

... ... ...
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... ... ...

** =======================================

** Assembly

** =======================================

*ASSEMBLY, name=Assembly

**

*INSTANCE, name=Hinge-1, part=Hinge

... ... ...

*END INSTANCE

... ... ...

... ... ...

**---------------------------------------

** String-plate connection

**---------------------------------------

*ELEMENT, type=CONN3D2

1, String.2, Punch-Bot.2

2, Punch-Top.2, String.1

*CONNECTOR SECTION, elset=setWires

Weld,

...

**---------------------------------------

** Defining node and element sets

**---------------------------------------

*NSET, nset=setString, instance=String

1, 2

*ELSET, elset=setString, instance=String

1,

... ... ...

... ... ...

**---------------------------------------

** Surface definitions

**---------------------------------------

*ELSET, elset=surfHinge, internal, instance=Hinge-1, generate

1, 2412, 1

*SURFACE, type=ELEMENT, name=surfHinge

surfHinge,

... ... ...

... ... ...

**---------------------------------------

** Constraint: Equation for pure bending

**---------------------------------------

*EQUATION

3
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Ref-Fixed, 4, 1.

Ref-Free, 4, -1.

Ref-Dummy, 4, -1.

**

*END ASSEMBLY

** ======================================

** Amplitude definitions

**---------------------------------------

*AMPLITUDE, name=ampPinching, time=TOTAL TIME, definition=SMOOTH STEP

0., 0., 0.2, 1.

... ...

... ...

**---------------------------------------

** Materials

**---------------------------------------

*MATERIAL, name=Aluminium

*Density

2.7e-09,

*Elastic

70000., 0.35

... ... ...

... ... ...

**---------------------------------------

** Interaction properties

**---------------------------------------

*SURFACE INTERACTION, name=Fric-less

*Friction

0.,

**---------------------------------------

** Predefined fields

**---------------------------------------

*INITIAL CONDITIONS, type=TEMPERATURE

setString, 0.

** ======================================

** Step

** ======================================

*STEP, name=Folding1-Pinching

*DYNAMIC, Explicit, scale factor=0.8

, 0.2

*Bulk Viscosity

0.0, 0.

** Mass Scaling: Semi-Automatic Whole Model

*FIXED MASS SCALING, Type=Below Min, dt=1e-6
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**---------------------------------------

** Boundary conditions: folding

**---------------------------------------

*BOUNDARY, amplitude=ampFolding

Ref-Dummy, 1, 3

Ref-Dummy, 4, 4, 3.

Ref-Dummy, 5, 6

... ... ...

... ... ...

**---------------------------------------

** Loads: Viscous pressure

**---------------------------------------

*DSLOAD, amplitude=ampViscous

surfHinge, vp, 146.28e-8

**---------------------------------------

** Thermal contraction of the string

**---------------------------------------

*TEMPERATURE, amplitude=ampPinching

setString, -100.

**---------------------------------------

** Interaction: General-Contact

**---------------------------------------

*CONTACT, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Exclusions

String.Surf-String, Surf-all-except-string

*Contact property assignment

, , Fric-less

**---------------------------------------

** Output requests

**---------------------------------------

*RESTART, write, number interval=1, time marks=NO

*OUTPUT, field, time interval=0.01

*Node Output

A, U, V

*Element Output, directions=YES

SE, SF

*Contact Output

CSTRESS,

... ... ...

... ... ...

*OUTPUT, history, filter=ANTIALIASING, time interval=0.01

*Energy Output, elset=All-except-hinge
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ALLAE, ALLFD, ALLIE, ALLKE, ALLSE, ALLVD, ALLWK, ETOTAL

... ... ...

... ... ...

END STEP

** =======================================

... ... ...

A.2 Dynamic Deployment Tape-Spring Hinge

*HEADING

** Job name: Dynamic_deployment Model name: Exp-Tape-Spring-Hinge

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** ======================================

... ... ...

... ... ...

... ... ...

** ======================================

** Step3

** ======================================

*STEP, name=Dyanamic_deployment

*DYNAMIC, Explicit, scale factor=0.8

, 1.0

*Bulk Viscosity

0.1, 0.

** Mass Scaling

*FIXED MASS SCALING, factor=1.

**---------------------------------------

** Boundary conditions: fixed end

**---------------------------------------

*BOUNDARY, op=NEW

Fixed_end, 1, 6

**---------------------------------------

** Loads: Viscous pressure

**---------------------------------------

*DSLOAD, op=NEW, amplitude=ampViscous

surfTape, vp, 146.28e-9

**

**---------------------------------------

** Interaction: General-Contact

**---------------------------------------

*CONTACT, op=NEW

*Contact Inclusions, ALL EXTERIOR
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*Contact property assignment

, , Fric-less

**---------------------------------------

** Output requests

**---------------------------------------

*RESTART, write, number interval=1, time marks=NO

*OUTPUT, field, time interval=0.001

*Node Output

A, U, V

*Element Output, directions=YES

SE, SF

*Contact Output

CSTRESS,

... ... ...

... ... ...

*OUTPUT, history, filter=ANTIALIASING, time interval=0.001

*Energy Output, elset=All-except-hinge

ALLAE, ALLFD, ALLIE, ALLKE, ALLSE, ALLVD, ALLWK, ETOTAL

... ... ...

... ... ...

END STEP

** =======================================

... ... ...

A.3 Micro-Mechanical Model

*HEADING

** Job name: Mid-plane strainX Model name: Unitcell_1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** =======================================

*NODE, nset=Ref_P

100001, 0, 0, 0

100002, 6.660000e-002, 0, 0

... ...

... ...

... ...

*NODE, nset=dum_StrainMX

160001,0,0,0

160002,0,0,0

... ...

... ...

**---------------------------------------
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** Orientation

**---------------------------------------

*ORIENTATION, name=Ori_PR

0., 1., 0., 1., 0., 0.

1, 0.

*ORIENTATION, name=Ori_QS

1., 0., 0., 0., 1., 0.

1, 0.

** Tows

*SOLID SECTION, elset=Tow_PR1_Bot, orientation=Ori_PR, Material=T300-1K/913

1.,

... ...

... ...

** Matrix

*SOLID SECTION, elset=Matrix1, orientation=Ori_PR, Material=Hexcel-913

1.,

... ...

... ...

**---------------------------------------

** Multi-point constraints

**---------------------------------------

*MPC

Tie,1641,21

*MPC

Tie,2061,441

... ...

... ...

**---------------------------------------

** Connector elements - rigid beams

**---------------------------------------

*ELEMENT, type=CONN3D2, Elset=ConBeams4

500017,8157,4898

500018,4898,100002

500019,100002,3281

... ...

... ...

*CONNECTOR SECTION, elset=ConBeams4

Beam

**---------------------------------------

** Periodic boundary conditions

**---------------------------------------

*EQUATION

3
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100001, 1, -1.

100041, 1, 1.

150001, 1, -2.664

*EQUATION

3

100001, 2, -1.

100041, 2, 1.

150001, 2, -2.664

*EQUATION

3

100001, 3, -1.

100041, 3, 1.

150001, 3, 0.

*EQUATION

3

100001, 4, -1.

100041, 4, 1.

150001, 4, 2.664

*EQUATION

3

100001, 5, -1.

100041, 5, 1.

150001, 5, -2.664

*EQUATION

3

100001, 6, -1.

100041, 6, 1.

150001, 6, 0.

... ...

... ...

**---------------------------------------

** Material properties

**---------------------------------------

**

*MATERIAL, name=T300-1K/913

*Elastic, type=ENGINEERING CONSTANTS

174450., 13220., 13220., 0.2536, 0.2536, 0.454, 4113., 4113.

4546.,

*Material, name=Hexcel-913

*Elastic

3390., 0.41

** =======================================

** Step
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** =======================================

*STEP, name=Step-1, nlgeom=NO

*STATIC

1., 1., 1e-05, 1.

**---------------------------------------

** Boundary conditions

**---------------------------------------

** Name: Strains solid periodic x-direction

*BOUNDARY

dum_StrainMX, 1, 1, 1.

dum_StrainMX, 2, 6

** Name: Strains solid periodic y-direction

*BOUNDARY

dum_StrainMY, 1, 6

**---------------------------------------

**Output request

**---------------------------------------

*RESTART, write, frequency=0

**

*OUTPUT, field, variable=PRESELECT

*Element Output, Elset=eleTow

EVOL,

*Element Output, Elset=eleMatrix

EVOL,

**

*OUTPUT, history, variable=PRESELECT

*NODE PRINT, Nset=dum_StrainMX, Summary=No, freq=1

RF

*NODE PRINT, Nset=dum_StrainMY, Summary=No, freq=1

RF

*NODE PRINT, Nset=Ref_P, Summary=No, freq=1

U

*NODE PRINT, Nset=Ref_Q, Summary=No, freq=1

U

*NODE PRINT, Nset=Ref_R, Summary=No, freq=1

U

*NODE PRINT, Nset=Ref_S, Summary=No, freq=1

U

*END STEP

** =======================================
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Appendix B

ABD Matrices

Beam Model

[0/90]2 fibre in-phase







































Nx

Ny

Nxy

−−
Mx

My

Mxy







































=





















9102 2877 0 | 0 0 0
2877 9102 0 | 0 0 0
0 0 112 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 45.4 0 0
0 0 0 | 0 45.4 0
0 0 0 | 0 0 0.6
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(B.1)

[0/90]2 fibre out-of-phase
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11995 0 0 | 0 0 0
0 11995 0 | 0 0 0
0 0 114 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 34.4 10.7 0
0 0 0 | 10.7 34.4 0
0 0 0 | 0 0 0.95
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B. ABD Matrices

[± 45]2 fibre in-phase
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=





















6102 5878 0 | 0 0 0
5878 6102 0 | 0 0 0
0 0 3113 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 23.3 22.1 0
0 0 0 | 22.1 23.3 0
0 0 0 | 0 0 22.7
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(B.3)

[± 45]2 fibre out-of-phase)
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=





















6110 5883 0 | 0 0 0
5883 6110 0 | 0 0 0
0 0 5996 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 23.5 21.6 0
0 0 0 | 21.6 23.5 0
0 0 0 | 0 0 11.9
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(B.4)

Solid Model (rectangular cross-section)

[0/90]2 fibre in-phase
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8639 1814 0 | 0 0 0
1814 8639 0 | 0 0 0
0 0 359 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 43 9 0
0 0 0 | 9 43 0
0 0 0 | 0 0 2.5



























































ǫx
ǫy
ǫxy
−−
κx
κy
κxy







































(B.5)

[0/90]2 fibre out-of-phase
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11147 270 0 | 0 0 0
270 11147 0 | 0 0 0
0 0 356 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 33.0 8.0 0
0 0 0 | 8.0 33.0 0
0 0 0 | 0 0 3.0
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B. ABD Matrices

[±45]2 fibre in-phase
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5585 4868 0 | 0 0 0
4868 5585 0 | 0 0 0
0 0 3413 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 24.4 19.4 0
0 0 0 | 19.4 24.4 0
0 0 0 | 0 0 21.1
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(B.7)

[± 45]2 fibre out-of-phase
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6065 5352 0 | 0 0 0
5352 6065 0 | 0 0 0
0 0 5439 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 23 18 0
0 0 0 | 18 23 0
0 0 0 | 0 0 12.3
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(B.8)

Solid Model (sine wave cross-section)

[0/90]2 fibre in-phase
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11712 984 0 | 0 0 0
984 11712 0 | 0 0 0
0 0 563 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 45.0 1.7 0
0 0 0 | 1.7 45.0 0
0 0 0 | 0 0 2.4
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(B.9)

[0/90]2 fibre out-of-phase
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12133 544 0 | 0 0 0
544 12133 0 | 0 0 0
0 0 569 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 41.5 5.5 0
0 0 0 | 5.5 41.5 0
0 0 0 | 0 0 2.4
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B. ABD Matrices

[±45]2 fibre in-phase
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6917 5779 0 | 0 0 0
5779 6917 0 | 0 0 0
0 0 5364 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 25.7 21.0 0
0 0 0 | 21.0 25.7 0
0 0 0 | 0 0 21.6
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(B.11)

[±45]2 fibre out-of-phase
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6907 5770 0 | 0 0 0
5770 6907 0 | 0 0 0
0 0 5794 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 25.9 21.1 0
0 0 0 | 21.1 25.9 0
0 0 0 | 0 0 18.0



























































ǫx
ǫy
ǫxy
−−
κx
κy
κxy







































(B.12)

Solid Model (square root of sine wave cross-section)

[0/90]2 fibre in-phase
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12999 1104 0 | 0 0 0
1104 12999 0 | 0 0 0
0 0 653 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 47.5 1.8 0
0 0 0 | 1.8 47.5 0
0 0 0 | 0 0 2.6
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(B.13)

[±45]2 fibre in-phase
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7704 6399 0 | 0 0 0
6399 7704 0 | 0 0 0
0 0 5947 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 27.2 22.0 0
0 0 0 | 22.0 27.2 0
0 0 0 | 0 0 22.9
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B. ABD Matrices

Solid Model (fourth root of sine wave cross-section)

[0/90]2 fibre in-phase
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13009 1085 0 | 0 0 0
1085 13009 0 | 0 0 0
0 0 667 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 41.3 1.5 0
0 0 0 | 1.5 41.3 0
0 0 0 | 0 0 2.3
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(B.15)

[0/90]2 fibre out-of-phase
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13667 571 0 | 0 0 0
571 13667 0 | 0 0 0
0 0 667 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 36.8 3.5 0
0 0 0 | 3.5 36.8 0
0 0 0 | 0 0 2.3
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(B.16)

[±45]2 fibre in-phase
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7714 6380 0 | 0 0 0
6380 7714 0 | 0 0 0
0 0 5962 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 23.6 19.1 0
0 0 0 | 19.1 23.6 0
0 0 0 | 0 0 19.9
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(B.17)

[±45]2 fibre out-of-phase
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7786 6453 0 | 0 0 0
6453 7786 0 | 0 0 0
0 0 6548 | 0 0 0

−− −− −− −− −− −− −−
0 0 0 | 22.4 17.9 0
0 0 0 | 17.9 22.4 0
0 0 0 | 0 0 16.7
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