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Semi-Markov models are a generalisation of Markov models that explicitly model the state-dependent sojourn time distribution,
the time for which the system remains in a given state. Markov models result in an exponentially distributed sojourn time, while
semi-Markov models make it possible to define the distribution explicitly. Such models can be used to describe the behaviour of
manoeuvring targets, and particle filtering can then facilitate tracking. An architecture is proposed that enables particle filters to
be both robust and efficient when conducting joint tracking and classification. It is demonstrated that this approach can be used
to classify targets on the basis of their manoeuvrability.
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1. INTRODUCTION

When tracking a manoeuvring target, one needs models that
can cater for each of the different regimes that can govern the
target’s evolution. The transitions between these regimes are
often (either explicitly or implicitly) taken to evolve accord-
ing to a Markov model. At each time epoch there is a proba-
bility of being in one discrete state given that the system was
in another discrete state. Such Markov switching models re-
sult in an exponentially distributed sojourn time, the time
for which the system remains in a given discrete state. Semi-
Markov models (also known as renewal processes [1]) are
a generalisation of Markov models that explicitly model the
(discrete-state-dependent) distribution over sojourn time. At
each time epoch there is a probability of being in one discrete
state given that the system was in another discrete state and
how long it has been in that discrete state. Such models of-
fer the potential to better describe the behaviour of manoeu-
vring targets.

However, it is believed that the full potential of semi-
Markov models has not yet been realised. In [2], sojourns
were restricted to end at discrete epochs and filtered mode
probabilities were used to deduce the parameters of the time-
varying Markov process, equivalent to the semi-Markov pro-
cess. In [3], the sojourns were taken to be gamma-distributed
with integer-shape parameters such that the gamma vari-
ate could be expressed as a sum of exponential variates;
the semi-Markov model could then be expressed as a (po-
tentially highly dimensional) Markov model. This paper

proposes an approach that does not rely on the sojourn
time distribution being of a given form, and so is capa-
ble of capitalising on all available model fidelity regarding
this distribution. The author asserts that the restrictions of
the aforementioned approaches currently limit the use of
semi-Markov models in tracking systems and that the im-
proved modelling (and so estimation) accuracy that semi-
Markov models make possible has not been realised up to
now.

This paper further considers the problem of both track-
ing and classifying targets. As discussed in [4], joint track-
ing and classification is complicated by the fact that sequen-
tially updating a distribution over class membership neces-
sarily results in an accumulation of errors. This is because,
when tracking, errors are forgotten. In this context, the ca-
pacity to not forget, memory, is a measure of how rapidly the
distribution over states becomes increasingly diffuse, making
it difficult to predict where the target will be given knowledge
of where it was. Just as the system forgets where it was, so any
algorithm that mimics the system forgets any errors that are
introduced. So, if the algorithm forgets any errors, it must
converge. In the case of classification, this diffusion does not
take place; if one knew the class at one point, it would be
known for all future times. As a result, when conducting joint
tracking and classification, it becomes not just pragmatically
attractive but essential that the tracking process introduces
as few errors as possible. This means that the accumulation
of errors that necessarily takes place has as little impact as
possible on the classification process.

mailto:smaskell@signal.qinetiq.com


2340 EURASIP Journal on Applied Signal Processing

There have been some previous approaches to solving the
problem of joint tracking and identification that have been
based on both grid-based approximations [5] and particle fil-
ters [6, 7]. An important failing of these implementations is
that target classes with temporarily low likelihoods can end
up being permanently lost. As a consequence of this same
feature of the algorithms, these implementations cannot re-
cover from any miscalculations and are not robust. This ro-
bustness issue has been addressed by stratifying the classi-
fier [4]; one uses separate filters to track the target for each
class (i.e., one might use a particle filter for one class and a
Kalman filter for another) and then combines the outputs to
estimate the class membership probabilities and so classifica-
tion of the target. This architecture does enable different state
spaces and filters to be used for each class, but has the defi-
ciency that this choice could introduce biases and so system-
atic errors. So, the approach taken here is to adopt a single
state space common to all the classes and a single (particle)
filter, but to then attempt to make the filter as efficient as pos-
sible while maintaining robustness. This ability to make the
filter efficient by exploiting the structure of the problem in
the structure of the solution is the motivation for the use of
a particle filter specifically.

This paper demonstrates this methodology by consider-
ing the challenging problem of classifying targets which differ
only in terms of their similar sojourn time distributions; the
set of dynamic models used to model the different regimes
are taken to be the same for all the classes. Were one using
a Markov model, all the classes would have the same mean
sojourn time and so the same best-fitting Markov model.
Hence, it is only possible to classify the targets because semi-
Markov models are being used.

Since the semi-Markov models are nonlinear and non-
Gaussian, the particle-filtering methodology [8] is adopted
for solving this joint tracking and classification problem. The
particle-filter represents uncertainty using a set of samples.
Here, each of the samples represent different hypotheses for
the sojourns times and state transitions. Since there is uncer-
tainty over both how many transitions occurred and when
they occurred, the particles represent the diversity over the
number of transitions and their timing. Hence, the parti-
cles differ in dimensionality. This is different from the usual
case for which the dimensionality of all the particles is the
same. Indeed, this application of the particle filter is a spe-
cial case of the generic framework developed concurrently by
other researchers [9]. The approach described here exploits
the specifics of the semi-Markov model, but the reader inter-
ested in the more generic aspects of the problem is referred
to [9].

Since, if the sojourn times are known, the system is linear
and Gaussian, the Kalman filter is used to deduce the param-
eters of the uncertainty over target state given the hypothe-
sised history of sojourns. So, the particle filter is only used for
the difficult part of the problem—that of deducing the tim-
ings of the sojourn ends—and the filter operates much like a
multiple hypothesis tracker, with hypotheses in the (contin-
uous) space of transition times. To make this more explicit,
it should be emphasised that the complexity of the particle

filter is not being increased by using semi-Markov models,
but rather particle filters are being applied to the problem
associated with semi-Markov models. The resulting compu-
tational cost is roughly equivalent to one Kalman filter per
particle and in the example considered in Section 6 just 25
particles were used for each of the three classes.1 The au-
thor believes that this computational cost is not excessive
and that, in applications for which it is beneficial to capi-
talise on the use of semi-Markov models—which the author
believes to be numerous—the approach is practically useful.
However, this issue of the trade-off between the computa-
tional cost and the resulting performance for specific appli-
cations is not the focus of this paper; here the focus is on
proposing the generic methodology. For this reason, a sim-
ple yet challenging, rather than necessarily practically useful,
example is used to demonstrate that the methodology has
merit.

A crucial element of the particle filter is the proposal dis-
tribution, the method by which each new sample is proposed
from the old samples. Expedient choice of proposal distri-
bution can make it possible to drastically reduce the num-
ber of particles necessary to achieve a certain level of per-
formance. Often, the trade-off between complexity and per-
formance is such that this reduction in the number of parti-
cles outweighs any additional computation necessary to use
the more expedient proposal distributions. So, the choice of
proposal distribution can be motivated as a method for re-
ducing computational expense. Here, however, if as few er-
rors as possible, are to be introduced as is critically impor-
tant when conducting joint tracking and classification, it is
crucial that the proposal distribution is well matched to the
true system. Hence, the set of samples is divided into a num-
ber of strata, each of which had a proposal that was well
matched to one of the classes. Whatever the proposal dis-
tribution, it is possible to calculate the probability of ev-
ery class. So, to minimise the errors introduced, for each
particle (and so hypothesis for the history of state transi-
tions and sojourn times), the probability of all the classes
is calculated. So each particle uses a proposal matched to
one class, but calculates the probability of the target being
a member of every class. Note that this calculation is not
computationally expensive, but provides information that
can be used to significantly improve the efficiency of the fil-
ter.

So, the particles are used to estimate the manoeuvres and
a Kalman filter is used to track the target. The particles are
split into strata each of which is well suited to tracking one of
the classes and the strata of particles used to classify the target
on the basis of the target’s manoeuvrability. The motivation
for this architecture is the need to simultaneously achieve ro-
bustness and efficiency.

This paper is structured as follows: Section 2 begins
by introducing the notation and the semi-Markov model

1This number is small and one might use more in practical situations,
but the point is that the number of particles is not large and so the compu-
tational expense is roughly comparable to other existing algorithms.
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Figure 1: Diagram showing the relationship between continuous time, the time when measurements were received, and the time of sojourn
ends. The circles represent the receipt of measurements or the start of a sojourn.

structure that is used. Section 3 describes how a particle fil-
ter can be applied to the hard parts of the problem, the esti-
mation of the semi-Markov process’ states. Some theoretical
concerns relating to robust joint tracking and identification
are discussed in Section 4. Then, in Section 5, efficient and
robust particle-filter architectures are proposed as solutions
for the joint tracking and classification problem. Finally, an
exemplar problem is considered in Section 6 and some con-
clusions are drawn in Section 7.

2. MODEL

When using semi-Markov models, there is a need to distin-
guish between continuous time, the indexing of the measure-
ments, and the indexing of the sojourns. Here, continuous
time is taken to be τ, measurements are indexed by k, and
manoeuvre regimes (or sojourns) are indexed by t. The con-
tinuous time when the kth measurement was received is τk.
The time of the onset of the sojourn is τt ; tk is then the in-
dex of the sojourn during which the kth measurement was
received. Similarly, kt is the most recent measurement prior
to the onset of the tth sojourn. This is summarised in Table 1
while Figure 1 illustrates the relationship between such quan-
tities as (tk + 1) and tk+1.

The model corresponding to sojourn t is st. st is a discrete
semi-Markov process with transition probabilities p(st|st−1)
that are known; note that since, at the sojourn end, a transi-
tion must occur, so p(st|st−1) = 0 if st = st−1;

p
(
st|st−1

) = p
(
st|s1:t−1

)
, (1)

where s1:t−1 is the history of states for the first to the (t−1)th
regime and similarly, y1:k will be used to denote the history
of measurements up to the kth measurement.

For simplicity, the transition probabilities are here con-
sidered invariant with respect to time once it has been de-
termined that a sojourn is to end; that is, p(st|st−1) is not a
function of τ. The sojourn time distribution that determines
the length of time for which the process remains in state st is
distributed as g(τ − τt|st):

p
(
τt+1|τt , st

)
� g

(
τ − τt|st

)
. (2)

The st process governs a continuous time process, xτ ,
which given st and a state at a time after the start of the so-
journ xτt+1 > xτ′ > xτt has a distribution f (xτ|xτ′ , st). So, the

Table 1: Definition of notation.

Notation Definition

τk Continuous time relating to kth measurement

τt Continuous time relating to tth sojourn time

tk Sojourn prior to kth measurement; so that τtk≤τk≤τtk+1

kt Measurement prior to tth sojourn; so that τkt≤τt≤τkt+1

st Manoeuvre regime for τt < τ < τt+1

distribution of xτ given the initial state at the start of the so-
journ and the fact that the sojourn continues to time τ is

p
(
xτ|xτt , st, τt+1 > τ

)
� f

(
xτ|xτt , st

)
. (3)

If xk is the history of states (in continuous time), then a
probabilistic model exists for how each measurement, yk, is
related to the state at the corresponding continuous time:

p
(
yk|xk

) = p
(
yk|xτ1:τk

) = p
(
yk|xτk

)
. (4)

This formulation makes it straightforward to then form
a dynamic model for s1:tk process and τ1:tk as follows:

p
(
s1:tk , τ1:tk

)=

 tk∏

t′=2

p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

)p(s1
)
p
(
τ1
)
,

(5)

where p(s1) is the initial prior on the state of the sojourn time
(which we later assume to be uniform) and p(τ1) is the prior
on the time of the first sojourn end (which we later assume
to be a delta function). This can then be made conditional on
s1:tk−1 and τ1:tk−1 , which makes it possible to sample the semi-
Markov process’ evolution between measurements:

p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1

)
∝ p

(
s1:tk , τ1:tk

)
p
(
s1:tk−1 , τ1:tk−1

)
=
(∏tk

t′=2 p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

))
p
(
s1
)
p
(
τ1
)

(∏tk−1
t′=2 p

(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

))
p
(
s1
)
p
(
τ1
)

=
tk∏

t′=tk−1+1

p
(
st′ |st′−1

)
p
(
τt′ |τt′−1, st−1

)
,

(6)
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where A \ B is the set A without the elements of the set B.
Note that in this case {s1:tk , τ1:tk} \ {s1:tk−1 , τ1:tk−1} could be the
empty set in which case, p({s1:tk , τ1:tk} \ {s1:tk−1 , τ1:tk−1}|s1:tk−1 ,
τ1:tk−1 ) = 1.

So, it is possible to write the joint distribution of the st
and xτ processes and the times of the sojourns, τ1:tk , up to
the time of the kth measurement, τk, as

p
(
s1:tk , xk, τ1:tk |y1:k

)
∝ p

(
s1:tk ,τ1:tk

)
p
(
xk, y1:k|s1:tk , τ1:tk

)
= p

(
s1:tk ,τ1:tk

)
p
(
xk|s1:tk , τ1:tk

)
p
(
y1:k|xk

)

= p
(
s1:tk ,τ1:tk

)
p
(
xτk |xτtk , stk

) tk∏
t′=2

p
(
xτt′ |xτt′−1 , st′−1

)

× p
(
xτ1

) k∏
k′=1

p
(
yk′ |xτk′

)

∝ p
(
s1:tk−1 , xk−1, τ1:tk−1|y1:k−1

)
︸ ︷︷ ︸

The posterior at k−1

× p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1

)
︸ ︷︷ ︸

Evolution of semi-Markov model

× p
(
yk|xτk

)
︸ ︷︷ ︸

Likelihood

p
(
xτk |xτtk , stk

)
p
(
xτk−1|xτtk−1

, stk−1

)
︸ ︷︷ ︸

Effect on xτ of incomplete regimes

×

 tk∏

t′=tk−1+1

p
(
xτt′ |xτt′−1 , st′−1

)
︸ ︷︷ ︸

Effect on xτ of sojourns between k−1 and k

.

(7)

This is a recursive formulation of the problem. The an-
notations indicate the individual terms’ relevance.

3. APPLICATION OF PARTICLE FILTERING

Here, an outline of the form of particle filtering used is given
so as to provide some context for the subsequent discussion
and introduce notation. The reader who is unfamiliar with
the subject is referred to the various tutorials (e.g., [8]) and
books (e.g., [10]) available on the subject.

A particle filter is used to deduce the sequence of sojourn
times, τ1:tk , and the sequence of transitions, s1:tk , as a set of
measurements are received. This is achieved by sampling N
times from a proposal distribution of a form that extends the
existing set of sojourn times and the st process with samples
of the sojourns that took place between the previous and the
current measurements:

{{
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}}i
∼ q

({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}i
, yk
)

,

i = 1, . . . ,N.
(8)

A weight is then assigned according to the principle of im-
portance sampling:

w̄i
k=wi

k−1

p
({
s1:tk , τ1:tk

}i\{s1:tk−1 , τ1:tk−1

}i|{s1:tk−1 , τ1:tk−1

}i)
q
({
s1:tk , τ1:tk

}i \ {s1:tk−1 , τ1:tk−1

}i|{s1:tk−1 , τ1:tk−1

}i
, yk
)

× p
(
yk|
{
s1:tk , τ1:tk

}i)
.

(9)

These unnormalised weights are then normalised:

wi
k =

w̄i
k∑N

i′=1 w̄
i′
k

, (10)

and estimates of expectations calculated using the (nor-
malised) weighted set of samples. When the weights become
skewed, some of the samples dominate these expectations,
so the particles are resampled; particles with low weights are
probabilistically discarded and particles with high weights
are probabilistically replicated in such a way that the expected
number of offspring resulting from a given particle is propor-
tional to the particle’s weight. This resampling can introduce
unnecessary errors. So, it should be used as infrequently as
possible. To this end, a threshold can be put on the approxi-
mate effective sample size, so that when this effective sample
size falls below a predefined threshold, the resampling step is
performed. This approximate effective sample can be calcu-
lated as follows:

Neff ≈ 1∑N
i=1

(
w̄i
k

)2 . (11)

It is also possible to calculate the incremental likelihood:

p
(
yk|y1:k−1

) ≈ N∑
i=1

w̄i
k, (12)

which can be used to calculate the likelihood of the entire
data sequence, which will be useful in later sections:

p
(
y1:k

) = p
(
y1
) k∏
k′=2

p
(
yk′ |y1:k′−1

)
, (13)

where p(y1) � p(y1|y1:0), so can be calculated using (12).

4. THEORETICAL CONCERNS RELATING TO JOINT
TRACKING AND CLASSIFICATION

The proofs of convergence for particle filters rely on the abil-
ity of the dynamic models used to forget, the errors intro-
duced by the Monte Carlo integration [11, 12]. If errors are
forgotten, then the errors cannot accumulate and so the algo-
rithm must converge on the true uncertainty relating to the
path through the state space.
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Conversely, if the system does not forget, then errors will
accumulate and this will eventually cause the filter to di-
verge. This applies to sequential algorithms in general, in-
cluding Kalman filters,2 which accumulate finite precision er-
rors, though such errors are often sufficiently small that such
problems rarely arise and have even less rarely been noticed.

For a system to forget, its model needs to involve the
states changing with time; it must be ergodic. There is then
a finite probability of the system being in any state given that
it was in any other state at some point in the past; so, it is not
possible for the system to get stuck in a state. Models for clas-
sification do not have this ergodic property since the class is
constant for all time; such models have infinite memory. Ap-
proaches to classification (and other long memory problems)
have been proposed in the past based on both implicit and
explicit modifications of the model that reduce the memory
of the system by introducing some dynamics. Here, the em-
phasis is on using the models in their true form.

However, if the model’s state is discrete, as is the case with
classification, there is a potential solution described in this
context in [4]. The idea is to ensure that all probabilities are
calculated based on the classes remaining constant and to run
a filter for each class; these filters cannot be reduced in num-
ber when the probability passes a threshold if the system is
to be robust. In such a case, the overall filter is condition-
ally ergodic. The approach is similar to that advocated for
classification alone whereby different classifiers are used for
different classes [13].

The preceding argument relates to the way that the fil-
ter forgets errors. This enables the filter to always be able to
visit every part of the state space; and the approach advo-
cated makes it possible to recover from a misclassification.
However, this does not guarantee that the filter can calculate
classification probabilities with any accuracy. The problem is
the variation resulting from different realisations of the er-
rors caused in the inference process. In a particle-filter con-
text, this variation is the Monte Carlo variation and is the
result of having sampled one of many possible different sets
of particles at a given time. Put more simply; performing the
sampling step twice would not give the same set of samples.

Equation (13) means that, if each iteration of the tracker
introduces errors, the classification errors necessarily accu-
mulate. There is nothing that can be done about this. All that
can be done is to attempt to minimise the errors that are in-
troduced such that the inevitable accumulation of errors will
not impact performance on a time scale that is of interest.

So, to be able to classify targets based on their dynamic
behaviour, all estimates of probabilities must be based on the
classes remaining constant for all time and the errors intro-
duced into the filter must be minimised. As a result, clas-
sification performance is a good test of algorithmic perfor-
mance.

2It is well documented that extended Kalman filters can accumulate lin-
earisation errors which can cause filter divergence, but here the discussion
relates to Kalman filtering with linear Gaussian distributions such that the
Kalman filter is an analytic solution to the problem of describing the pdf.

5. EFFICIENT AND ROBUST CLASSIFICATION

The previous section asserts that to be robust, it is essential
to estimate probabilities based on all the classes always re-
maining constant. However, to be efficient, the filter should
react to the classification estimates and focus its effort on the
most probable classes (this could equally be the class with
the highest expected cost according to some nonuniform cost
function but this is not considered here).

To resolve these two seemingly contradictory require-
ments of robustness twinned with efficiency, the structure of
the particle filter can be capitalised upon. The particle fil-
ter distinguishes between the proposal used to sample the
particles’ paths and the weights used to reflect the disparity
between the proposal and the true posterior. So, it is possi-
ble for the proposal to react to the classification probabili-
ties and favour proposals well suited to the more probable
classes while calculating the weights for the different classes;
this is equivalent to Rao-Blackwellising the discrete distribu-
tion over class for each particle.

One could enable the system to react to the classification
probabilities while remaining robust to misclassification by
each particle sampling the importance function from a set
of importance samplers according to the classification prob-
abilities. Each importance sampler would be well suited to
the corresponding class and each particle would calculate the
weights with respect to all the classes given its sampled values
of the state.

However, here a different architecture is advocated; the
particles are divided into strata, such that the different strata
each use an importance function well suited to one of the
classes. For any particle in the jth stratum, Sj , and in
the context of the application of particle filtering to semi-
Markov models, the importance function is then of the form
q({s1:tk , τ1:tk}\{s1:tk−1 , τ1:tk−1}|{s1:tk−1 , τ1:tk−1}, yk, Sj). The strata
then each have an associated weight and these weights sum to
unity across the strata. If each particle calculates the proba-
bility of all the classes given its set of hypotheses, then the
architecture will be robust. It is then possible to make the ar-
chitecture efficient by adding a decision logic that reacts to
the weights on the strata; one might add and remove strata
on the basis of the classification probabilities. The focus here
is not on designing such a decision logic, but to propose an
architecture that permits the use of such logic.

To use this architecture, it is necessary to manipulate
strata of particles and so to be able to calculate the total
weight on a class or equally on a stratum. To this end, the
relations that enable this to happen are now outlined.

The classes are indexed by c, particles by i, and the strata
by j. The model used to calculate the weights is M and the
stratum is S. So, the unnormalised weight for the ith particle

in stratum Sj , using model Mc, is w̄
(i, j,c)
k .

The weight on a stratum, p(Sj|y1:k), can be deduced from

p
(
Sj|y1:k

)∝ p
(
y1:k|Sj

)
p
(
Sj
)
, (14)

where p(Sj) is the (probably uniform) prior across the strata.
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This leads to the following recursion:

p
(
Sj|y1:k

)∝ p
(
yk|y1:k−1, Sj

)
p
(
Sj|y1:k−1

)
, (15)

where p(yk|y1:k−1, Sj) can be estimated using a minor modi-
fication of (12) as follows:

p
(
yk|y1:k−1, Sj

) ≈∑
i,c

w̄
(i, j,c)
k . (16)

Similarly, for the classes,

p
(
Mc|y1:k

)∝ p
(
yk|y1:k−1,Mc

)
p
(
Mc|y1:k−1

)
, (17)

where

p
(
Mc|y1:k

) =∑
j

p
(
Sj ,Mc|y1:k

)

=
∑
j

p
(
Sj|y1:k

)
p
(
Mc|Sj , y1:k

)
,

p
(
Mc|Sj , y1:k

)∝∑
i

w̄
(i, j,c)
k .

(18)

To implement this recursion, the weights of the classes
are normalised such that they sum to unity over the particle
in the strata:

w
(c|i, j)
k � w̄

(i, j,c)
k

w̄
(i, j)
k

, (19)

where w̄
(i, j)
k is the total unnormalised weight of the particle:

w̄
(i, j)
k �

∑
c

w̄
(i, j,c)
k . (20)

These weights are then normalised such that they sum to
unity within each strata:

w
(i| j)
k � w̄

(i, j)
k

w̄
( j)
k

, (21)

where w̄
( j)
k is the total unnormalised weight of the stratum:

w̄
( j)
k �

∑
i

w̄
(i, j)
k . (22)

These weights are also normalised such that they sum to
unity across the strata:

w
( j)
k � w̄

( j)
k∑

j w̄
( j)
k

. (23)

The skewness of each stratum is then used to assess
whether that stratum has degenerated and so if resampling is
necessary for the set of particles in that stratum. This means
that the weight relating to Mc for the ith particle within the
jth stratum is

w
(i, j,c)
k ∝ w

( j)
k w

(i| j)
k w

(c|i, j)
k . (24)

For j = 1 : NM

Initialise: w
( j)
0 = 1/NM

For i = 1 : NP

Initialise: w
(i| j)
0 = 1/NP

Initialise: x
(i, j)
0 ∼ p(x0)

For c = 1 : NM

Initialise: w
(c|i, j)
0 = 1/NM

End For
End For

End For
For k = 1 : NK

Implement recursion

End For

Algorithm 1

So, with NP particles and NM classes (and so NM strata),
running the algorithm over NK steps can be summarised as
follows in Algorithm 1. p(x0) is the initial prior on the state
and Implement Recursion is conducted as in Algorithm 2
where Vj is the reciprocal of the sum of the squared weights,
on the basis of which one can decide whether or not it is nec-
essary to Resample. NT is then the threshold on the approxi-
mate effective sample size which determines when to resam-
ple; NT ≈ (1/2)NP might be typical. Note that the resam-
pling operation will result in replicants of a subset of some
of the particles within the jth stratum, but that for each copy
of the ith particle in the jth stratum, w

(c|i, j)
k is left unmodi-

fied.

6. EXAMPLE

6.1. Model

The classification of targets which differ solely in terms of the
semi-Markov model governing the st process is considered.
The classes have different gamma distributions for their so-
journ times but all have the same mean value for the sojourn
time, and so the same best-fitting Markov model. As stated in
the introduction, this example is intended to provide a diffi-
cult to analyse, yet simple to understand, exemplar problem.
The author does intend the reader to infer that the specific
choice of models and parameters are well suited to any spe-
cific application.

The xτ process is taken to be a constant velocity model;
an integrated diffusion process

f
(
xτ+∆|xτ , s

) = N
(
xτ+∆;A(∆)xτ ,Qs(∆)

)
, (25)

where N (x;m,C) denotes a Gaussian distribution for x, with
mean, m, and covariance, C, and where

A(∆) =
[

1 ∆

0 1

]
,

Qs(∆) =



∆3

3
∆2

2
∆2

2
∆


 σ2

s ,

(26)
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Initialise w̄k = 0
For j = 1 : NM

Initialise Vj = 0
Initialise output classification probabilities: P̄c

k = 0
Initialise w̄

( j)
k = 0

For i = 1 : NP

Initialise w̄
(i, j)
k = 0

Sample x
(i, j)
k ∼ q(xk|x(i, j)

k−1, yk , Sj)
For c = 1 : NM

w
(i, j,c)
k = w

( j)
k−1w

(i| j)
k−1w

(c|i, j)
k−1

w̄
(i, j,c)
k = w

(i, j,c)
k (p(yk|x(i, j)

k ,Mc)

×p(x
(i, j,c)
k |x(i, j)

k−1,Mc)/q(x
(i, j)
k |x(i, j)

k−1, yk , Sj))

w̄
(i, j)
k = w̄

(i, j)
k + w̄

(i, j,c)
k

w̄
( j)
k = w̄

( j)
k + w̄

(i, j,c)
k

w̄k = w̄k + w̄
(i, j,c)
k

P̄c
k = P̄c

k + w̄
(i, j,c)
k

End For
End For

End For
For c = 1 : NM

Pc
k = P̄c

k/w̄k , which can be output as necessary

For j = 1 : NM

w
( j)
k = w̄

( j)
k /w̄k

For i = 1 : NP

w
(i| j)
k = w̄

(i, j)
k /w̄

( j)
k

For c = 1 : NM

w
(c|i, j)
k = w̄

(c|i, j)
k /w̄

(i, j)
k

End For
Vj = Vj + (w

(i| j)
k )2

End For
Resample jth stratum if 1/Vj < NT

End For

Algorithm 2

where the discrete state, st, takes one of two values which dif-
fer in terms of σ2

s ; σ2
1 = 0.001 and σ2

2 = 100.
The data are linear Gaussian measurements of position

p
(
yk|xτk

) = N
(
yk;Hxτk ,R

)
, (27)

where

H =
[

1 0
]

, (28)

and R = 0.1. The measurements are received at regular inter-
vals such that τk − τk−1 = 0.5 for all k > 1.

The three classes’ sojourn distributions are

g
(
τ − τt|st,Mc

) =




G
(
τ − τt ; 2, 5

)
, st = 1, c = 1,

G
(
τ − τt ; 10, 1

)
, st = 1, c = 2,

G
(
τ − τt ; 50, 0.2

)
, st = 1, c = 3,

G
(
τ − τt ; 10, 0.1

)
, st = 2, ∀c,

(29)

g(τ; 2, 5)
g(τ; 10, 1)
g(τ; 50, 0.2)

0 2 4 6 8 10 12 14 16 18 20

Sojourn time, t

0
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0.35

p(
t)

Figure 2: Sojourn time distributions for st = 1 for the different
classes.

where G(x;α,β) is a gamma distribution over x, with shape
parameter α and scale parameter β. Figure 2 shows these dif-
ferent sojourn time distributions. Note that since the mean
of the gamma distribution is αβ, all the sojourn distri-
butions for st = 1 have the same mean. Hence, the ex-
ponential distribution (which only has a single parameter
that defines the mean) for all three classes would be the
same.

Since there are only two discrete states, the state transi-
tion probabilities are simple:

p
(
st|st−1

) =



0, st = st−1,

1, st �= st−1.
(30)

This means that, given the initial discrete state, the so-
journ ends define the discrete-state sequence.

p(s1) is taken to be uniform across the two models and
p(τ1) = δ(τ1 − 0), so it assumed known that there was a
transition at time 0. x0 is initialised at zero as follows:

x0 =
[

0

0

]
. (31)

6.2. Tracking of manoeuvring targets

A target from the first class is considered. A Rao-Blackwel-
lised particle filter is used. The particle filter samples the so-
journ ends and then, conditional on the sampled sojourn
ends and state transitions, uses a Kalman filter to exactly de-
scribe the uncertainty relating to xτ and a discrete distribu-
tion over class to exactly describe the classification probabil-
ities (as described previously).
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For the proposal in the particle filter, (6), the dynamic
prior for the st process is used, with a minor modification:

q
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
, yk
)

� p
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|s1:tk−1 , τ1:tk−1 , τtk+1 > τk,Mj
)

=
∫
p
({
s1:tk , τ1:tk+1

} \ {s1:tk−1 , τ1:tk−1

}
|s1:tk−1 , τ1:tk−1 , τtk+1 > τk,Mj

)
dτtk+1,

(32)

that is, when sampling up to time τk, the st process is ex-
tended to beyond τk, but the sample of the final sojourn time
is integrated out (so forgotten); the proposal simply samples
that the next sojourn is after the time of the measurement,
not what time it actually took place. This exploits some struc-
ture in the problem since τtk+1 has no impact on the estima-
tion up to time τk and so classification on the basis of y1:k.
The weight update equation simplifies since the dynamics are
used as the proposal:

w̄i
k = wi

k−1p
(
yk|
{
s1:tk , τ1:tk

}i)
, (33)

where p(yk|{s1:tk , τ1:tk}i) can straightforwardly be calculated
by a Kalman filter with a time-varying process model (with
model transitions at the sojourn ends) and measurement up-
dates at the times of the measurements.

Having processed the k measurement, the ith particle
then needs to store the time of the hypothesised last sojourn,

τ(i)
tk , the current state, s(i)

tk , a mean and covariance for xτk , and

a weight, w(i)
k .

Just NP = 25 particles are used and initialised with sam-
ples from p(s1) and p(τ1) (so all the same τ1). Each particles’
initial value for the Kalman filter’s mean is the true initial
state, m. The initial value for the covariance is then defined
as C:

C =

100 0

0 10


 . (34)

The weights are all initialised as equal for all the particles.
Resampling takes place if the approximate effective sample
size given in (11) falls below NT = 12.5. Since each parti-
cle needs to calculate the parameters of a Kalman filter, the
computational cost is roughly equivalent to that of a multi-
ple hypothesis tracker [14] with 25 hypotheses; here the hy-
potheses (particles) are in the continuous space of the times
of the sojourn ends rather than the discrete space of the asso-
ciations of measurements with the track. The computational
cost is therefore relatively low and the algorithm is therefore
amenable to practical real-time implementation.

With NP particles and NK iterations, the algorithm is im-
plemented as in Algorithm 3.

The true trajectory through the discrete space is given in
Figure 3. The hypothesis for the trajectory through the dis-
crete space for some of the particles is shown in Figure 4.
Note that, as a result of the resampling, all the particles
have the same hypothesis for the majority of the trajectory
through the discrete space, which is well matched (for the

For i = 1 : NP

Initialise wi
0 = 1/NP

Initialise τi1 = 0
Initialise si1 as 1 if i > NP/NM or 2 with otherwise
Initialise Kalman filter mean mi

0 = m
Initialise Kalman filter covariance Ci

0 = C

End For
For k = 1 : NK

Initialise V = 0
Initialise w̄k = 0
For i = 1 : NP

Sample {s1:tk , τ1:tk}i \ {s1:tk−1 , τ1:tk−1}i
∼ p({s1:tk ,τ1:tk}\{s1:tk−1 ,τ1:tk−1}|{s1:tk−1 ,τ1:tk−1}i)

Calculate mi
k and Ci

k from mi
k−1 and Ci

k−1

using si1:tk \ si1:tk−1
Calculate p(yk|{s1:tk , τ1:tk}i) from yk , mi

k ,
and Ci

k
w̄i

k = wi
k−1p(yk|{s1:tk , τ1:tk}i)

w̄k = w̄k + w̄i
k

End For
For i = 1 : NP

wi
k = w̄i

k/w̄k

V = V + (wi
k)2

Resample if 1/V < NT

End For

Algorithm 3
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Figure 3: True trajectory for target through st state space.

most part) to the true trajectory. The diversity of the parti-
cles represents the uncertainty over the later part of the state
sequence with the particles representing different hypothe-
sised times and numbers of recent regime switches.

6.3. Classification on the basis of manoeuvrability

The proposals that are well suited to each class each use the
associated class’ prior as their proposal:

q
({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
, yk, Sj

)
� p

({
s1:tk , τ1:tk

} \ {s1:tk−1 , τ1:tk−1

}|{s1:tk−1 , τ1:tk−1

}
,Mj

)
.

(35)

The weight update equation is then
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Figure 4: A subset of the particles’ hypothesised trajectories through st space. (a) Particle 1. (b) Particle 2. (c) Particle 3. (d) Particle 4.
(e) Particle 5. (f) Particle 6. (g) Particle 7. (h) Particle 8. (i) Particle 9.

w̄
(i, j,c)
k = w

(i, j,c)
k−1

p
(
yk|
{
s1:tk , τ1:tk

}(i, j)
)
p
({
s1:tk , τ1:tk

}(i, j) \ {s1:tk−1 , τ1:tk−1

}(i, j)|{s1:tk−1 , τ1:tk−1

}(i, j)
,Mc

)
p
({
s1:tk , τ1:tk

}(i, j) \ {s1:tk−1 , τ1:tk−1

}(i, j)|{s1:tk−1 , τ1:tk−1

}(i, j)
,Mj

) . (36)

Having processed the k measurement, the ith particle in

the jth stratum stores the time of the hypothesised last so-

journ, τ
(i, j)
tk , the current state, s

(i, j)
tk , a mean and covariance

for xτk , a weight for each class, w
(c|i, j)
k , and a weight, w

(i| j)
k .
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Figure 5: Standard deviation (std) of estimated classification probabilities, (p (class)), across ten filter runs for simulations according to
each of the three models, labelled as 1, 2, and 3. (a) Data simulated from class 1. (b) Data simulated from class 2. (c) Data simulated from
class 3.

Each stratum also stores w
( j)
k . The reader is referred to the

preceding sections’ summaries of the algorithms for the im-
plementation details.

NP = 25 particles are used per stratum, each is initialised
as described previously with a uniform distribution over the
classes and with the weights on the strata initialised as be-
ing equal. Resampling for a given stratum takes place if the
approximate effective sample size given in (11) for the stra-
tum falls below NT = 12.5. Since each of the NM = 3 strata
has NP = 25 particles, the computational cost is approx-
imately that of a multiple hypothesis tracker which main-
tains 75 hypotheses; the algorithm is practicable in terms of
its computational expense.

However, it should be noted that, for this difficult prob-
lem of joint tracking and classification using very similar
models, the number of particles used is small. This is inten-
tional and is motivated by the need to look at the difference

between the variance in the class membership probabilities
and the variance of the strata weights.

Ten runs were conducted with data simulated according
to each of the three models. The number of particles used
is deliberately sufficiently small that the inevitable accumu-
lation of errors causes problems in the time frame consid-
ered. This enables a comparison between the time variation
in the variance across the runs of the classification probabil-
ities and the variance across the runs of the strata weights.
So, Figures 5 and 6 show the time variation in the variance
across the runs of these two quantities. It is indeed evident
that there is significant variation across the runs; the errors
are indeed accumulating with time. It is also evident that this
accumulation is faster for the importance weights than for
the classification probabilities. This implies that the choice
of importance function is less important, in terms of robust-
ness of the estimation of the classification probabilities, than
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Figure 6: Variance of strata weights across ten filter runs for simulations according to each of the three models. (a) Data simulated from
class 1. (b) Data simulated from class 2. (c) Data simulated from class 3.

calculating the probabilities of all the classes for every sam-
ple.

It is difficult to draw many conclusions from the varia-
tions across the true class. Since such issues are quite spe-
cific to the models and parameters, which are not the fo-
cus of this paper, this is not further investigated or dis-
cussed.

7. CONCLUSIONS

Particle filtering has been applied to the use of semi-Markov
models for tracking manoeuvring targets. An architecture
has been proposed that enables particle filters to be both ro-
bust and efficient when classifying targets on the basis of their
dynamic behaviour. It has been demonstrated that it is pos-
sible to jointly track such manoeuvring targets and classify
their manoeuvrability.
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