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Particle Filtering Applied to Musical Tempo Tracking
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This paper explores the use of particle filters for beat tracking in musical audio examples. The aim is to estimate the time-varying
tempo process and to find the time locations of beats, as defined by human perception. Two alternative algorithms are presented,
one which performs Rao-Blackwellisation to produce an almost deterministic formulation while the second is a formulation
which models tempo as a Brownian motion process. The algorithms have been tested on a large and varied database of examples
and results are comparable with the current state of the art. The deterministic algorithm gives the better performance of the two
algorithms.
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1. INTRODUCTION

Musical audio analysis has been a growing area for research
over the last decade. One of the goals in the area is fully auto-
mated transcription of real polyphonic audio signals, though
this problem is currently only partially solved. More realistic
sub-tasks in the overall problem exist and can be explored
with greater success; beat tracking is one of these and has
many applications in its own right (automatic accompani-
ment of solo performances [1], auto-DJs, expressive rhyth-
mic transformations [2], uses in database retrieval [3], meta-
data generation [4], etc.).

This paper describes an investigation into beat tracking
utilising particle filtering algorithms as a framework for se-
quential stochastic estimation where the state-space under
consideration is a complex one and does not permit a closed
form solution.

Historically, a number of methods have been used to at-
tempt solution of the problem, though they can be broadly
categorised into a number of distinct methodologies.1 The
oldest approach is to use oscillating filterbanks and to look
for the maximum output; Scheirer [7] typifies this approach
though Large [8] is another example. Autocorrelative meth-
ods have also been tried and Tzanetakis [3] or Foote [9] are

1A comprehensive literature review can be found in Seppänen [5] or
Hainsworth [6].

examples, though these tend to only find the average tempo
and not the phase (as defined in Section 2) of the beat. Mul-
tiple hypothesis approaches (e.g., Goto [10] or Dixon [11])
are very similar to more rigorously probabilistic approaches
(Laroche [12] or Raphael [13], for instance) in that they all
evaluate they likelihood of a hypothesis set; only the frame-
work varies from case to case. Klapuri [14] also presents a
method for beat tracking which takes the approach typified
by Scheirer [7] and applies a probabilistic tempo smooth-
ness model to the raw output. This is tested on an extensive
database and the results are the current state of the art.

More recently, particle filters have been applied to the
problem; Morris and Sethares [15] briefly present an al-
gorithm which extracts features from the signal and then
uses these feature vectors to perform sequential estimation,
though their implementation is not described. Cemgil [16]
also uses a particle filtering method in his comprehensive
paper applying Monte Carlo methods to the beat tracking
of expressively performed MIDI signals.2 This model will be
discussed further later, as it shares some aspects with one of
the models described in this paper.

The remainder of the paper is organised as follows:
Section 2 introduces tempo tracking; Section 3 covers basic

2MIDI stands for “musical instrument digital interface” and is a language
for expressing musical events in binary. In the context described here, the
note start times are extracted from the MIDI signal.
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particle filtering theory. Sections 4, 5 and 6 discuss onset de-
tection and the two beat tracking models proposed. Results
and discussion are presented in Sections 7 and 8, and conclu-
sions in Section 9.

2. TEMPO TRACKING AND BEAT PERCEPTION

So what is beat tracking?3 The least jargon-ridden descrip-
tion is that it is the pulse defined by a human listener tap-
ping in time to music. However, the terms tempo, beat and
rhythm need to be defined. The highest level descriptor is
the rhythm; this is the full description of every timing re-
lationship inside a piece of music. However, Bilmes [17]
breaks this down into four subdivisions: the hierarchical met-
rical structure which describes the idealised timing relation-
ships between musical events (as they might exist in a mu-
sical score for instance), tempo variations which link these
together in a possibly time varying flow, timing deviations
which are individual timing discrepancies (“swing” is an
example of this) and finally arrhythmic sections. If one ig-
nores the last of these as fundamentally impossible to analyse
meaningfully, the task is to estimate the tempo curve (tempo
tracking) and idealised event times quantised to a grid of
“score locations,” given an input set of musical changepoint
times.

To represent the tempo curve, a frequency and phase is
required such that the phase is zero at beat locations. The
metrical structure can then be broken down into a set of lev-
els described by Klapuri [14]: the beat or tactus is the pre-
ferred human tapping tempo; the tatum is the shortest com-
monly occurring interval; and the bar or measure is related to
harmonic change and often correlates to the bar line in com-
mon score notation of music. It should be noted that the beat
often corresponds to the 1/4 note or crotchet in common no-
tation, but this is not always the case: in fast jazz music, the
beat is often felt at half this rate; in hymn music, traditional
notation often gives the beat two crotchets (i.e., 1/2 note).
The moral is that one must be careful about relating percep-
tion to musical notation! Figure 1 gives a diagrammatic rep-
resentation of the beat relationships for a simple example.
The beat is subdivided by two to get the tatum and grouped
in fours to find the bar. The lowest level shows timing devia-
tions around the fixed metrical grid.

Perception of rhythm by humans has long been an active
area of research and there is a large body of literature on the
subject. Drake et al. [18] found that humans with no musical
training were able to tap along to a musical audio sample “in
time with the music,” though trained musicians were able to
do this more accurately. Many other studies have been un-
dertaken into perception of simple rhythmic patterns (e.g.,
Povel and Essens [19]) and various models of beat percep-
tion have been proposed (e.g., [20, 21, 22]) from which ideas
can be gleaned. However, the models presented in the rest of
this paper are not intended as perceptual models or even as
perceptually motivated models; they are engineering equiva-

3A fuller discussion on this topic can be found in [6].
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Figure 1: Diagram of relationships between metrical levels.

lents of the human perception. Having said that, it is hoped
that a successful computer algorithm could help shed light
onto potential and as yet unexplained human cognitive pro-
cesses.

2.1. Problem statement

To summarise, the aim of this investigation is to extract the
beat from music as defined by the preferred human tapping
tempo; to make the computer tap its hypothetical foot along
in time to the music. This requires a tempo process to be ex-
plicitly estimated in both frequency and phase, a beat lying
where phase is zero. In the process of this, detected “notes”
in the audio are assigned “score locations” which is equiva-
lent to quantising them to an underlying, idealised metrical
grid. We are not interested in real time implementation nor
in causal beat tracking where only data up to the currently
considered time is used for estimation.

3. PARTICLE FILTERING

Particle filters are a sequential Monte Carlo estimation
method which are powerful, versatile and increasingly used
in tracking problems. Consider the state space system defined
by

xk = fk
(

xk−1, ξk
)
, (1)

where fk : �nx ×�nξ → �nx , k ∈ N, is a possibly nonlinear
function of the state xk−1, dimension nx and ξk which is an
i.i.d. noise process of dimension nξ . The objective is to esti-
mate xk given observations,

yk = hk
(

xk, νk
)
, (2)

where hk : �nx ×�nν → �ny is a separate possibly nonlinear
transform and νk is a separate i.i.d. noise process of dimen-
sion nν describing the observation error.

The posterior of interest is given by p(x0:k|y1:k) which is
represented in particle filters by a set of point estimates or

particles {x(i)
0:k,w(i)

k }Ni=1, where {x(i)
0:k, i = 1, . . . ,N} is a set of

support points with associated weights given by {w(i)
k , i =

1, . . . ,N}. The weights are normalised such that
∑N

i=1 w
(i)
k =

1. The posterior is then approximated by

p
(

x0:k|y1:k
) ≈ N∑

i=1

w(i)
k δ
(

x0:k − x(i)
0:k

)
. (3)
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As N → ∞, this assumption asymptotically tends to the true
posterior. The weights are then selected according to impor-

tance sampling, x(i)
0:k ∼ π(x(i)

0:k|y1:k), where π(·) is the so-called
importance density. The weights are then given by

w(i)
k ∝ p

(
x(i)

0:k|y1:k
)

π
(

x(i)
0:k|y1:k

) . (4)

If we restrict ourselves to importance functions of the form,

π
(

x0:k|y1:k
) = π

(
xk|x0:k−1, y1:k

)
π
(

x0:k−1|y1:k−1
)
, (5)

implying a Markov dependency of order 1, the posterior can
be factorised to give

p
(

x0:k|y1:k
)

= p
(

yk|x0:k, y1:k−1
)
p
(

xk|x0:k−1, y1:k−1
)

p
(

yk|y1:k−1
) ×p

(
x0:k−1|y1:k−1

)
∝ p

(
yk|x0:k, y1:k−1

)
p
(

xk|x0:k−1, y1:k−1
)
p
(

x0:k−1|y1:k−1
)
,
(6)

which allows sequential update. The weights can then be
proven to be updated [23] according to

w(i)
k ∝ w(i)

k−1

p
(

yk|x(i)
k

)
p
(

x(i)
k |x(i)

k−1

)
π
(

x(i)
k |x(i)

0:k−1, y1:k
) (7)

up to a proportionality. Often we are interested in the filtered
estimate p(xk|y1:k) which can be approximated by

p
(

xk|y1:k
) ≈ N∑

i=1

w(i)
k δ
(

xk − x(i)
k

)
. (8)

Particle filters often suffer from degeneracy as all but a
small number of weights drop to almost zero, a measure of

this being approximated by N̂eff = 1/
∑N

i=1(w(i)
k )2 [23]. Good

choice of the importance density π(xk|x0:k−1, y1:k) can delay
this and is crucial to general performance. The introduction
of a stochastic jitter into the particle set can also help [24];
however the most common solution is to perform resam-
pling [25] whereby particles with small weights are elimi-

nated and a new sample set {x(i)∗
k }Ni=1 is generated by resam-

pling N times from the approximate posterior as given by (8)

such that Pr(x(i)∗
k = x

( j)
k ) = w

( j)
k . The new sample set is then

more closely distributed according to the true posterior and

the weights should be set to w(i)
k = 1/N to reflect this. Further

details on particle filtering can be found in [23, 26].
A special case of model is the jump Markov linear sys-

tems (JMLS) [27] where the state space, x0:k, can be broken
down into {r0:k, z0:k}. r0:k, the jump Markov process, defines
a path through a bounded and discrete set of potential states

and conditional upon r0:k, z0:k is then defined to be linear
Gaussian. The chain rule gives the expansion,

p
(

r0:k, z0:k|y1:k
) = p

(
z0:k|r0:k, y1:k

)
p
(

r0:k|y1:k
)
, (9)

and p(x0:k|r0:k, y1:k) is deterministically evaluated via the
Kalman filter equations given below in Section 5. After this
marginalisation process (called Rao-Blackwellisation [28]),
p(r0:k|y1:k) is then expanded as

p
(

r0:k|y1:k
)

∝ p
(

yk|r0:k, y1:k−1
)
p
(

rk|rk−1
)× p

(
r0:k−1|y1:k−1

)
,

(10)

with associated (unnormalised) importance weights given by

w(i)
k ∝ w(i)

k−1

p
(

yk|r(i)
0:k, y1:k−1

)
p
(

r(i)
k |r(i)

k−1

)
π
(

r(i)
k |r(i)

0:k−1, y1:k
) . (11)

By splitting the state space up in this way, the dimensionality
considered in the particle filter itself is dramatically decreased
and the number of particles needed to achieve a given accu-
racy is also significantly reduced.

4. CHANGE DETECTION

The success of any algorithm is dependent upon the reliabil-
ity of the data which is provided as an input. Thus, detecting
note events in the music for the particle filtering algorithms
to track is as important as the actual algorithms themselves.
The onset detection falls into two categories; firstly there is
detection of transient events which are associated with strong
energy changes, epitomised by drum sounds. Secondly, there
is detection of harmonic changes without large associated en-
ergy changes (e.g., in a string quartet). To implement the first
of these, our method approximately follows many algorithms
in the literature [7, 11, 12]: frequency bands, f , are separated
and an energy evolution envelope Ef (n) formed. A three
point linear regression is used to find the gradient of Ef (n)
and peaks in this gradient function are detected (equivalent
to finding sharp, positive increases in energy which hope-
fully correspond to the start of notes). Low-energy onsets are
ignored and when there are closely spaced pairs of onsets,
the lower amplitude one is also discarded. Three frequency
bands were used: 20–200 Hz to capture low frequency in-
formation; 200 Hz–15 kHz which captures most of the har-
monic spectral region; and 15–22 kHz which, contrary to the
opinion of Duxbury [29], is generally free from harmonic
sounds and therefore clearly shows any transient informa-
tion.

Harmonic change detection is a harder problem and has
received very little attention in the past, though two recent
studies have addressed this [29, 30]. To separate harmonics
in the frequency domain, long short-time Fourier transform
(STFT) windows (4096 samples) with a short hop rate (1/8
frame) were used. As a measure of spectral change from one
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frame to the next, a modified Kullback-Liebler distance mea-
sure was used:

dn(k) = log2

( ∣∣X[k,n]
∣∣∣∣X[k,n− 1]
∣∣
)

,

DMKL(n) =
∑

k∈K ,d(n)>0

dn(k),
(12)

where X[k,n] is the STFT with time index n and frequency
bin k. The modified measure is thus tailored to accentuate
positive energy change. K defines the region 40 Hz–5 kHz
where the majority of harmonic energy is to be found and to
pick peaks, a local average of the function DMKL was formed
and then the maximum picked between each of the crossings
of the actual function and the average.

A further discussion of the MKL measure can be found
in [31] but a comprehensive analysis is beyond the scope of
this paper. For beat tracking purposes, it is desirable to have a
low false detection rate, though missed detections are not so
important. While no actual rates for false alarms have been
determined, the average detected inter-onset interval (IOI)
was compared with an estimate given by T/(Nb × F), where
T is the length of the example in seconds, Nb is the number
of manually labelled beats and F is the number of tatums in
a beat. The detected average IOI was always of the order or
larger than the estimate, which shows that under-detection is
occurring.

In summary, there are four vectors of onset observations,
three from energy change detectors and one from a harmonic
change detector. The different detectors may all observe an
actual note, or any combination of them might not. In fact,
clustering of the onset observations from each of the indi-
vidual detection functions is performed prior to the start of
the particle filtering. A group is formed if any events from
different streams fall within 50 ms of each other for transient
onsets and 80 ms for harmonic onsets (reflecting the lower
time resolution inherent in the harmonic detection process).
Inspection of the resulting grouped onsets shows that the
inter-group separation is usually significantly more than the
within-group time differences. A set of amplitudes is then as-
sociated with each onset cluster.

5. BEAT MODEL 1

The model used in this section is loosely based on that of
Cemgil et al. [16], designed for MIDI signals. Given the series
of onset observations generated as above, the problem is to
find a tempo profile which links them together and to assign
each observation to a quantised score location.

The system can be represented as a JMLS where condi-
tional on the “jump” parameter, the system is linear Gaussian
and the traditional Kalman filter can be used to evaluate the
sequence likelihood. The system equations are then

xk = Φk
(
γk
)

xk−1 + ξk, (13)

yk = Hkxk + νk, (14)

where xk is the tempo process at iteration k and can be de-
scribed as xk = [ρk,∆k]T . ρk is then the predicted time of
the kth observation and ∆k the tempo period, that is, ∆k =
60/Tk , whereTk is the tempo in beats per minute (bpm). This
is equivalent to a constant velocity process and the state inno-
vation, ξk is modelled as zero mean Gaussian with covariance
Qk.

To solve the quantisation problem, the score location is
encoded as the jump parameter, γk, in Φk(γk). This is equiva-
lent to deciding upon the notation that describes the rhythm
of the observed notes. Φk(γk), is then given by

Φk(γk) =
[

1 γk
0 1

]
,

γk = ck − ck−1.

(15)

This associated evolution covariance matrix is [32]

Qk = q


γ3
k

3

γ2
k

2
γ2
k

2
γk

 , (16)

for a continuous constant velocity process which is observed
at discrete time intervals, where q is a scale parameter.

While the state transition matrix is dependent upon γk,
this is a difference term between two actual locations, ck
and ck−1. It is this process which is important and the prior
on ck becomes a critical issue as it determines the perfor-
mance characteristics. Cemgil breaks a single beat into sub-
divisions of two and uses a prior related to the number of
significant digits in the binary expansion of the quantised
location. Cemgil’s application was in MIDI signals where
there is 100% reliability in the data and the onset times are
accurate. In audio signals, the event detection process in-
troduces errors both in localisation accuracy and in gener-
ating entirely spurious events. Also, Cemgil’s prior cannot
cope with triplet figures or swing. Thus, we break the no-
tated beat down into 24 quantised sub-beat locations, ck =
{1/24, 2/24, . . . , 24/24, 25/24, . . .} and assign a prior

p
(
ck
)∝ exp

(− log2

{
d
(
ck
)})

, (17)

where d(ck) is the denominator of the fraction of ck when
expressed in its most reduced form; that is, d(3/24) = 8,
d(36/24) = 2, and so forth. This prior is motivated by the
simple concern of making metrically stronger sub-beat loca-
tions more likely; it is a generic prior designed to work with
all styles and situations.

Finally, the observation model must be considered. Bear-
ing in mind the pre-processing step of clustering onset ob-
servations from different observation function, the input to
the particle filter at each step yk will be a variable length vec-
tor containing between one and four individual onset obser-
vation times. Thus, Hk becomes a function of the length j
of the observation vector yk but is essentially j rows of the
form [1 0]. The observation error νk is also of length j and
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is modelled as zero-mean Gaussian with diagonal covariance
Rk where the elements r j j are related to whichever observa-
tion vector is being considered at yk( j).

Thus, conditional upon the ck process which defines the
update rate, everything is modelled as linear Gaussian and
the traditional Kalman filter [33] can be used. This is given
by the recursion

x̂k|k−1 = Φkx̂k−1|k−1,

P(k|k − 1) = ΦkP(k − 1|k − 1)ΦT
k + Qk,

K(k) = P(k|k − 1)HT
k

[
HkP(k|k − 1)HT

k + Rk
]−1

,

x̂k|k = x̂k|k−1 + K(k)
[

yk −Hkx̂k|k−1
]
,

P(k|k) = [I − K(k)Hk
]
P(k|k − 1).

(18)

Each particle must maintain its own covariance estimate
P(k|k) as well as its own state. The innovation or residual
vector is defined to be the difference between the measured
and predicted quantities,

ỹk = yk −Hkx̂k|k−1, (19)

and has covariance given by

Sk = HkPk|k−1H
T
k + Rk. (20)

5.1. Amplitude modelling

The algorithm as described so far will assign the beat (i.e.,
the phase of c1:k) to the most frequent subdivision, which
may not be the right one. To aid the correct determination
of phase, attention is turned to the amplitude of the onsets.

The assumption is made that the onsets at some score lo-
cations (e.g., on the beat) will have higher energy than others.
Each of the three transient onset streams maintains a separate
amplitude process while the harmonic onset stream does not
have one associated with it due to amplitude not being rele-
vant for this feature.

The amplitude processes can be represented as separate
JMLSs conditional upon ck. The state equations are given by

αlp = Θl
pα

l
p−1 + εp,

alp = αlp + σp,
(21)

where alp is the amplitude of the pth onset from the observa-
tion stream, l. Thus, the individual process is maintained for
each observation function and updated only when a new ob-
servation from that stream is encountered. This requires the
introduction of conditioning on p rather than k; 1:p then
represents all the indices within the full set 1:k, where an ob-
servation from stream l is found. Θl

p(cp−1, cp) is a function

of cp and cp−1. To build up the matrix, Θl
p, a selection of real

data was examined and a 24× 24 matrix constructed for the
expected amplitude ratio between a pair of score locations.
This is then indexed by the currently considered score loca-
tion cp and also the previously identified one found in stream
l, clp−1, and the value given is returned to Θl

p. For example, it

could be that the expected amplitude for a beat is modelled
as twice that of a quaver off-beat. If the particle history shows
that the previous onset from a given stream was assigned to
be on the beat and the currently considered location is a qua-
ver, Θl

p would equal 0.5. This relative relationship allows the
same model to cope with both quiet and loud sections in a
piece. The evolution and observation error terms, εp and σp,
are assumed to be zero mean Gaussian with appropriate vari-
ances.

From now on, to avoid complicating the notation, the
amplitude process will be represented without sums or prod-
ucts over the three l vectors using ap = {a1

p, a2
p, a3

p} and
αp = {α1

p,α2
p,α3

p} (noting that some of these might well be
given a null value at any given iteration). For each iteration
k, between zero and all three of the amplitude processes will
be updated.

5.2. Methodology

Given the above system, a particle filtering algorithm can
be used to estimate the posterior at any given itera-
tion. The posterior which we wish to estimate is given
by p(c1:k, x1:k,α1:p|y1:k, a1:p) but Rao-Blackwellisation breaks
down the posterior into separate terms

p
(
c1:k, x1:k,α1:p|y1:k, a1:p

)
= p

(
x1:k|c1:k, y1:k

)
× p

(
α1:p|c1:k, a1:p

)
p
(
c1:k|y1:k, a1:p

)
,

(22)

where p(x1:k|c1:k, y1:k) and p(α1:p|c1:k, a1:p) can be deduced
exactly by use of the traditional Kalman filter equations. Thus
the only space to search over and perform recursion upon is
that defined by p(c1:k|y1:k, a1:p). This space is discrete but too
large to enumerate all possible paths. Thus we turn to the
approximation approach offered by particle filters.

By assuming that the distribution of ck is dependent only
upon c1:k−1, y1:k and a1:p, the importance function can be fac-
torised into terms such as π(ck|y1:k, a1:p, c1:k−1). This allows
recursion of the Rao-Blackwellised posterior

p
(
c1:k|y1:k, a1:p

)
∝ p

(
yk, ap|y1:k−1, a1:p−1, c1:k

)
× p

(
ck|ck−1

)
p
(
c1:k−1|y1:k−1, a1:p−1

)
,

(23)

where

p
(

yk, ap|y1:k−1, a1:p−1, c1:k
)

= p
(

yk|y1:k−1, c1:k
)

× p
(
ap|a1:p−1, c1:k

) (24)

and recursive updates to the weight are given by

w(i)
k = w(i)

k−1×
p
(

yk|y1:k−1, c(i)
1:k

)
p
(
ap|a1:p−1, c(i)

1:k

)
p
(
c(i)
k |c(i)

k−1

)
π
(
c(i)
k |y1:k, a1:p, c(i)

1:k−1

) .

(25)
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For k = 1
for i = 1 : N ; draw x(i)

1 , α(i)
1 and c(i)

1 from respective priors
for k = 2 : end

for i = 1 : N
Propagate particle i to a set, s = {1, . . . , S} of new
locations c(s)

k .
Evaluate the new weight w(s,i)

k for each of these by
propagating through the respective Kalman filter.
This generates π(ck|y1:k , a1:p, c(i)

1:k−1).
for i = 1 : N

Pick a new state for each particle from
π(ck|y1:k , a1:p, c(i)

1:k−1).
Update weights according to (25).

Algorithm 1: Rao-Blackwellised particle filter.

The terms p(yk|y1:k−1, c1:k) and p(ap|a1:p−1, c1:k) are calcu-
lated from the innovation vector and covariance of the re-
spective Kalman filters (see (19) and (20)). p(ck|ck−1) is sim-
plified to p(ck) and is hence the prior on score location as
given in Section 5.

5.3. Algorithm

The algorithm therefore proceeds as given in Algorithm 1.
At each iteration, each particle is propagated to a set S of
new score locations and the probability of each is evaluated.
Given the N×S set of potential states there are then two ways
of choosing a new set of updated particles: either stochas-
tic or deterministic selection. The first proceeds in a simi-
lar manner to that described by Cemgil [16] where for each
particle the new state is picked from the importance func-
tion with a given probability. Deterministic selection sim-
ply takes the best N particles from the whole set of propa-
gated particles. Fully stochastic resampling selection of the
particles is not an optimal procedure in this case, as dupli-
cation of particles is wasteful. This leaves a choice between
Cemgil’s method of stochastically selecting one of the up-
date proposals for each particle or the deterministic N-best
approach. The latter has been adopted as intuitively sensi-
ble.

Particle filters suffer from degeneracy in that the poste-
rior will eventually be represented by a single particle with
high weight while many particles have negligible probabil-
ity mass. Traditional PFs overcome this with resampling (see
[23]) but both methods for particle selection in the previ-
ous section implicitly include resampling. However, degen-
eracy still exists, in that the PF will tend to converge to a sin-
gle ck state, so a number of methods were explored for in-
creasing the diversity of the particles. Firstly, jitter [24] was
added to the tempo process to increase local diversity. Sec-
ondly, a Metropolis-Hastings (MH) step [34] was used to ex-
plore jumps to alternative phases of the signal (i.e., to jump
from tracking off-beat quavers to being on the beat). Also, an
MH step to propose related tempos (i.e., doubling or halving
the tracked tempo) was investigated but found to be coun-
terproductive.

6. BEAT MODEL 2

The model described above formulates beat location as the
free variable and time as a dependent, non-continuous vari-
able, which seems counter-intuitive. Noting that the model
is bilinear, a reformulation of the tempo process is thus
presented now where time is the independent variable and
tempo is modelled as Brownian motion4 [35]. The state vec-
tor is now given by zk = [τk,τ̇k]T where τk is in beats and
τ̇k is in beats per second (obviously related to bpm). Brown-
ian motion, which is a limiting form of the random walk, is
related to the tempo process by

dτ̇(t) = √qdB(t) + τ̇(0), (26)

where q controls the variance of the Brownian motion pro-
cess B(t) (which is loosely the integral of a Gaussian noise
process [32]) and hence the state evolution. This leads to

τ(t) = τ(0) +
∫ t

0
τ̇(s)ds. (27)

Time t is now a continuous variable and hence τ(t) is also a
continuously varying parameter, though only being “read” at
algorithmic iterations k thus giving τk � τ(tk).

The new state equations are given by

zk = Ξ
(
δk
)

zk−1 + βk, (28)

yk = Γktk + κk, (29)

where

tk = t0 +
k∑
j=1

δk. (30)

tk is therefore the absolute time of an observation and δk is
the inter-observation time. Ξ(δk) is the state update matrix
and is given by

Ξ(δk) =
[

1 δk
0 1

]
. (31)

Γk acts in a similar manner to Hk in model one and is of
variable length but is a vector of ones of the same length as yk.
κk is modelled as zero mean Gaussian with covariance Rk as
described above. βk is modelled as zero mean Gaussian noise
with covariance given as before by Bar-Shalom [32],

Qk = q


δ3
k

3

δ2
k

2
δ2
k

2
δk

 . (32)

One of the problems associated with Brownian mo-
tion is that there is no simple, closed form solution for
the prediction density, p(tk|·). Thus attention is turned to

4Also termed as Wiener or Wiener-Levy process.
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Initialise: i = 1; z1 = zk ; Xk is the predicted inter-onset
number of beats.
While dt > tol,

i = i + 1
If max(τ1:i) < Xk

dt = (τi−1 − Xk)/τ̇i−1

Draw zi ∼ N (Ξizi−1,Qi)
ti = ti−1 + dt

Else interpolate back
Find I s.t. τI < Xk and τI+1 > Xk

te = tI + (tI+1 − tI)× (Xk − τI)/(τI+1 + τI)
insert state J between I and I + 1

tJ = te
dt = min(tI+1 − te, te − tI)
Draw zJ ∼ N (m,Q′) where m and Q′ are
given below

Index q = min |(τ1:i − Xk)|.
Return τk = Xk , tk = tq and τ̇k = τ̇q.

Algorithm 2: Sample hitting time.

an alternative method for drawing a hitting time sample of
{tk|zk−1, τk = B, tk−1}. This is an iterative process and, con-
ditional upon initial conditions, a linear prediction for the
time of the new beat is made. The system is then stochas-
tically propagated for this length of time and a new tempo
and beat position found. The beat position might under or
overshoot the intended location. If it undershoots, the above
process is repeated. If it overshoots, then an interpolation es-
timate is made conditional upon both the previous and sub-
sequent data estimates. The iteration terminates when the er-
ror on τt falls below a threshold. At this point, the algorithm
returns the hitting time tk and the new tempo τ̇k at that hit-
ting time. This is laid out explicitly in Algorithm 2, where Ξi

is given by

Ξi =
[

1 dt
0 1

]
(33)

and Qi by

Qi = q


dt3

3
dt2

2
dt2

2
dt

 . (34)

N denotes the Gaussian distribution. The interpolation
mean and covariance are given by [36]

Q′ = (Q−1
I :J + ΞJ :I+1Q

−1
J :I+1ΞJ :I+1

)−1
,

m = Q′
(
Q−1

I :J ΞI :JzI + ΞT
J :I+1Q

−1
J :I+1zI+1

)
,

(35)

where the index denotes the use of Ξ and Q from (33) and
(34) with appropriate values of dt.

Thus, we now have a method of drawing a time tk and
new tempo τ̇k given a previous state zk−1 and proposed new
score (beat) location τk. The algorithm then proceeds as be-

fore with a particle filter. The posterior can be updated, thus

p
(

z1:k, t1:k|y1:k
)∝ p

(
yk|z1:k, t1:k

)
p
(
tk|t1:k−1, z1:k

)
p
(

zk|z1:k−1
)

× p
(

z1:k−1, t1:k−1|y1:k−1
)
,

(36)

where p(zk|z1:k−1) can be factorised:

p
(

zk|z1:k−1
) = p

(
τk|zk−1

)
p
(
τ̇k|zk−1, τk

)
. (37)

Prior importance sampling [23] is used via the hitting time
algorithm above to draw samples of τ̇k and tk:

π
(

zk, tk|z1:k−1, t1:k−1, y1:k
) = p

(
τ̇k|zk−1, τk

)
p
(
tk|t1:k−1, z1:k

)
.

(38)

This leads to the weight update being given by

w(i)
k = w(i)

k−1 × p
(

yk|z(i)
1:k, t(i)

1:k

)
p
(
τ(i)
k |z(i)

k−1

)
. (39)

As before in Section 5, a single beat is split into 24 subdi-
visions and a prior set upon these as given above in (17);

p(τk|zk−1) again reduces to p(τk) ≡ p(ck). p(yk|z(i)
1:k, t(i)

1:k) is
the likelihood; if κk from (29) is modelled in the same way as
νk from (14) then the likelihood is Gaussian with covariance
again given by Rk which is diagonal and of the same dimen-
sion, j as the observation vector yk. Γk is then a j × 1 matrix
with all entries being 1.

Also as before, to explore the beat quantisation space τ1:k

effectively, each particle is predicted onward to S new posi-
tions for τk and therefore again, a set of N × S potential par-
ticles is generated. Deterministic selection in this setting is
not appropriate so resampling is used to stochastically select
N particles from the N × S set. This acts instead of the tradi-
tional resampling step in selecting high probability particles.

Amplitude modelling is also included in an identical
form to that described in Section 5.1 which modifies (39) to

w(i)
k = w(i)

k−1 × p
(

yk|z(i)
1:k, t(i)

1:k

)
p
(
ap|z(i)

1:k, t(i)
1:k

)
p
(
τ(i)
k |z(i)

k−1

)
.

(40)

Also, the MH step described in Section 5.3 to explore differ-
ent phases of the beat is used again.

7. RESULTS

The algorithms described above in Sections 5 and 6 have been
tested on a large database of musical examples drawn from a
variety of genres and styles, including rock/pop, dance, clas-
sical, folk and jazz. 200 samples, averaging about one minute
in length were used and a “ground truth” manually generated
for each by recording a trained musician clapping in time to
the music.

The aim is to estimate the tempo and quantisation pa-
rameters over the whole dataset; in both models, the se-
quence of filtered estimates is not the best representation
of this, due to locally unlikely data. Therefore, because each
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Table 1: Results for beat tracking algorithms expressed as a total
percentage averaged over the whole database.

Raw Allowed
C-L TOT C-L TOT

Model 1 51.5 58.0 69.2 82.2
Model 2 34.1 38.4 54.4 72.8
Scheirer 26.8 41.9 33.0 53.4

particle maintains its own state history, the maximum a pos-
teriori particle at the final iteration was chosen. The parame-
ter sets used within each algorithm were chosen heuristically;
it was deemed impractical to optimise them over the whole
database. Various numbers of particles N were tried though
results are given below for N = 200 and 500 for models
one and two, respectively. Above these values, performance
continued to increase very slightly, as one would expect, but
computational effort also increased proportionally.

Tracking was deemed to be accurate if the tempo was cor-
rect (interbeat interval matches to within 10%) and a beat
was located within 15% of the annotated beat location.5 Kla-
puri [14] defines a measure of success as the longest con-
secutive region of beats tracked correctly as a proportion of
the total (denoted “C-L” for consecutive-length). Also pre-
sented is a total percentage of correctly tracked beats (la-
belled “TOT”). The results are presented in Table 1. It was
noted that the algorithms sometimes tracked at double or
half tempo in psychologically plausible patterns; also, dance
music with heavy off-beat accents often caused the algorithm
to track 180o out of phase. The “allowed” columns of the ta-
ble show results accepting these errors. Also shown for com-
parison are the results obtained using Scheirer’s algorithm
[7].

The current state of the art is the algorithm of Klapuri
[14] with 69% success for longest consecutive sequence and
78% for total correct percentage (accepting errors) on his test
database consisting of over 400 examples. Thus the perfor-
mance of our algorithm is at least comparable with this.

Figure 2 shows the results for model one over the whole
database graphically while Figure 3 shows the same for model
two. These are ordered by style and then performance within
the style category. Figure 4 shows the tempo profile for a
correctly tracked example using model one; note the close
agreement between the hand labelled data and the tracked
tempo.

8. DISCUSSION

The algorithms described above have some similar elements
but their fundamental operation is quite different: the Rao-
Blackwellised model of Section 5 actually bears a significant
resemblance to an interacting multiple models system of the
type used in radar tracking [33], as many of the stages are
actually deterministic. The second model, however, is much

5The clapped signals were often slightly in error themselves.
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Figure 2: Results on test database for model one. The solid line rep-
resents raw performance and the dashed line is performance after
acceptable tracking errors have been taken into account. (a) Maxi-
mum length correct (% of total). (b) Total percentage correct.

more typically a particle filter with mainly stochastic pro-
cesses. Both have many underlying similarities in the model
though the inference processes are significantly different.

Thus, the results highlight some interesting compar-
isons between these two philosophies. On close examination,
model two was better at finding the most likely local path
through the data, though this was not necessarily the correct
one in the long term. A fundamental weakness of the models
is the prior on ck (or equivalently, τk in model two) which
intrinsically prefers higher tempos—doubling a given tempo
places more onsets in metrically stronger positions which is
deemed more likely by the prior given in (17). Because the
stochastic resampling step efficiently selects and boosts high
probability regions of the posterior, model two would often
pick high tempos to track (150-200bpm) which accounts for
the very low “raw” results.

A second problem also occurs in model two: because du-
plication of paths through the τ1:k space is necessary to fully
populate each quantisation hypothesis, fewer distinct paths
are kept at each iteration. By comparison, the N-best selec-
tion scheme of model one ensures that each particle repre-
sents a unique c1:k set and more paths through the state space
are kept for a longer lag. This allows model one to recover
better from a region of poor data. This also provides an ex-
planation for why model one does not track at high tempo
so often—because more paths though the state-space are re-
tained for longer, more time is allowed for the amplitude pro-
cess to influence the choice of tempo mode. Thus, the con-
clusion is drawn that the first model is more attractive: the
Rao-Blackwellisation of the tempo process allows the search
of the quantisation space to be much more effective.
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Figure 3: Results for model two. (a) Maximum length correct (%
of total). (b) Total percentage correct.

The remaining lack of performance can be accredited to
four causes: the first is tracking at multiple tempo modes—
sometimes tracking fails at one mode and settles a few beats
later into a second mode. The results only reflect one of these
modes. Secondly, stable tracking sometimes occurs at psy-
chologically implausible modes (e.g., 1.5 times the correct
tempo) which are not included in the results above. The third
cause is poor onset detection. Finally, there are also examples
in the database which exhibit extreme tempo variation which
is never followed.

The result of this is a number of suggestions for improve-
ments: firstly, the onset detection is crucial and if the detected
onsets are unreliable (especially at the start of an example)
it is unlikely that the algorithm will ever be able to track
the beat properly. This may suggest an “online” onset detec-
tion scheme where the particles propose onsets in the data,
rather than the current offline, hard decision system. The
other potential scheme for overcoming this would be to pro-
pose a salience measure (e.g., [21]) and directly incorporate
this into the state evolution process, thus hoping to differen-
tiate between likely and unlikely beat locations in the data;
currently, the Rao-Blackwellised amplitude process has been
given weak variances and hence has little effect in the algo-
rithm, other than to propose correct phase. The other prob-
lems commonly encountered were tempo errors by plausi-
ble ratios; Metropolis-Hastings steps [27] to explore other
modes of the tempo posterior were tried but have met with
little success.

Thus it seems likely that any real further improvement
will have to come from music theory incorporated into the
algorithm directly, and in a style-specific way—it is unlikely
that a beat tracker designed for dance music will work well
on choral music! Thus, data expectations and also antici-
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Figure 4: Tempo evolution for a correctly tracked example using
model one.

pated tempo evolutions and onset locations would have to be
worked into the priors in order to select the correct tempo.
This will probably result in an algorithm with many ad-hoc
features but, given that musicians have spent the better part
of 600 years trying to create music which confounds expec-
tation, it is unlikely that a simple, generic model to describe
all music will ever be found.

9. CONCLUSIONS

Two algorithms using particle filters for generic beat track-
ing across a variety of musical styles are presented. One is
based upon the Kalman filter and is close to a multiple hy-
pothesis tracker. This performs better than a more stochastic
implementation which models tempo as a Brownian motion
process. Results with the first model are comparable with the
current state of the art [14]. However, the advantage of parti-
cle filtering as a framework is that the model and the imple-
mentation are separated allowing the easy addition of extra
measures to discriminate the correct beat. It is conjectured
that further improvement is likely to require music specific
knowledge.
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