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Audio signal enhancement often involves the application of a time-varying filter, or suppression rule, to the frequency-domain
transform of a corrupted signal. Here we address suppression rules derived under a Gaussian model and interpret them as spectral
estimators in a Bayesian statistical framework. With regard to the optimal spectral amplitude estimator of Ephraim and Malah, we
show that under the same modelling assumptions, alternative methods of Bayesian estimation lead to much simpler suppression
rules exhibiting similarly effective behaviour. We derive three of such rules and demonstrate that, in addition to permitting a more
straightforward implementation, they yield a more intuitive interpretation of the Ephraim and Malah solution.
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1. INTRODUCTION

Herein we address an important issue in audio signal pro-
cessing for multimedia communications, that of broadband
noise reduction for audio signals via statistical modelling of
their spectral components. Due to its ubiquity in applica-
tions of this nature, we concentrate on short-time spectral
attenuation, a popular method of broadband noise reduction
in which a time-varying filter, or suppression rule, is applied
to the frequency-domain transform of a corrupted signal. We
first address existing suppression rules derived under a Gaus-
sian statistical model and interpret them in a Bayesian frame-
work. We then employ the same model and framework to de-
rive three new suppression rules exhibiting similarly effective
behaviour, preliminary details of which may also be found in
[1]. These derivations lead in turn to a more intuitive means
of understanding the behaviour of the well-known Ephraim
and Malah suppression rule [2], as well as to an extension of
certain others [3, 4].

This paper is organised as follows. In the remainder of
Section 1, we introduce the assumed statistical model and es-
timation framework, and then employ these in an alternate
derivation of the minimum mean square error (MMSE) sup-
pression rules due to Wiener [5] and Ephraim and Malah [2].
In Section 2, we derive three alternatives to the MMSE spec-

tral amplitude estimator of [2], all of which may be formu-
lated as suppression rules. Finally, in Section 3, we investigate
the behaviour of these solutions and compare their perfor-
mance to that of the Ephraim and Malah suppression rule.
Throughout the ensuing discussion, we consider—for sim-
plicity of notation and without loss of generality—the case
of a single, windowed segment of audio data. To facilitate
a comparison, our notation follows that of [2], except that
complex quantities appear in bold.

1.1. A simple Gaussian model

To date, the most popular methods of broadband noise re-
duction involve the application of a time-varying filter to
the frequency-domain transform of a noisy signal. Let xn =
x(nT) in general represent values from a finite-duration ana-
logue signal sampled at a regular interval T , in which case a
corrupted sequence may be represented by the additive ob-
servation model

yn = xn + dn, (1)

where yn represents the observed signal at time index n, xn is
the original signal, and dn is additive random noise, uncor-
related with the original signal. The goal of signal enhance-
ment is then to form an estimate x̂n of the underlying signal
xn based on the observed signal yn, as shown in Figure 1.
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Figure 1: Signal enhancement in the case of additive noise.

In many implementations where efficient online perfor-
mance is required, the set of observations {yn} is filtered
using the overlap-add method of short-time Fourier analy-
sis and synthesis, in a manner known as short-time spectral
attenuation. Taking the discrete Fourier transform on win-
dowed intervals of length N yields K frequency bins per in-
terval:

Yk = Xk + Dk, (2)

where these quantities are denoted in bold to indicate that
they are complex. Noise reduction in this manner may be
viewed as the application of a suppression rule, or nonnega-
tive real-valued gain Hk, to each bin k of the observed signal
spectrum Yk, in order to form an estimate X̂k of the original
signal spectrum:

X̂k = Hk · Yk. (3)

As shown in Figure 2, this spectral estimate is then inverse-
transformed to obtain the time-domain signal reconstruc-
tion.

Within such a framework, a simple Gaussian model of-
ten proves effective [6, Chapter 6]. In this case, the elements
of {Xk} and {Dk} are modelled as independent, zero-mean,
complex Gaussian random variables with variances λx(k)
and λd(k), respectively:

Xk ∼ �2
(

0, λx(k)I
)
, Dk ∼ �2

(
0, λd(k)I

)
. (4)

1.2. A Bayesian interpretation of suppression rules

It is instructive to consider an interpretation of suppres-
sion rules based on the Gaussian model of (4) in terms of
a Bayesian statistical framework. Viewed in this light, the
required task is to estimate each component Xk of the un-
derlying signal spectrum as a function of the correspond-
ing observed spectral component Yk. To do so, we may de-
fine a nonnegative cost function C(xk, x̂k) of xk (the realisa-
tion of Xk) and its estimate x̂k, and then minimise the risk
� � E[C(xk, x̂k)|Yk] in order to obtain the optimal estima-
tor of xk.

1.2.1. The Wiener suppression rule

A frequent goal in signal enhancement is to minimise the
mean square error of an estimator; within the framework of
Bayesian risk theory, this MMSE criterion may be viewed as a
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Figure 2: Short-time spectral attenuation.

squared-error cost function. Considering the model of (2), it
follows from Bayes’ rule and the prior distributions defined
in (4) that we seek to minimise

E
[
C
(

xk, x̂k
)|Yk

]
∝
∫

xk

∣∣x̂k − xk

∣∣2
exp

− ∣∣yk − xk

∣∣2

λd(k)
−
∣∣xk

∣∣2

λx(k)

dxk.
(5)

The corresponding Bayes estimator is the optimal solu-
tion in an MMSE sense, and is given by the mean of the pos-
terior density appearing in (5), which follows directly from
its Gaussian form:

E
[

Xk|Yk
] = λx(k)

λx(k) + λd(k)
Yk. (6)

The result given by (6) is recognisable as the well-known
Wiener filter [5].

In fact, it can be shown (see, e.g., [7, pages 59–63]) that
when the posterior density is unimodal and symmetric about
its mean, the conditional mean is the resultant Bayes es-
timator for a large class of nondecreasing, symmetric cost
functions. However, we soon move to consider densities that
are inherently asymmetric. Thus we will also employ the so-
called uniform cost function, for which the optimal estima-
tor may be shown to be that which maximises the posterior
density—that is, the maximum a posteriori (MAP) estima-
tor.

1.2.2. The Ephraim and Malah suppression rule

While, from a perceptual point of view, the ear is by no means
insensitive to phase, the relative importance of spectral am-
plitude rather than phase in audio signal enhancement [8, 9]
has led researchers to recast the spectral estimation prob-
lem in terms of the former quantity. In this vein, McAulay
and Malpass [4] derive a maximum-likelihood (ML) spec-
tral amplitude estimator under the assumption of Gaussian
noise and an original signal characterised by a deterministic
waveform of unknown amplitude and phase:

Hk = 1
2

+
1
2

√
λx(k)

λx(k) + λd(k)
. (7)
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As an extension of the model underlying (7), Ephraim
and Malah [2] derive an MMSE short-time spectral ampli-
tude estimator based on the model of (4); that is, under
the assumption that the Fourier expansion coefficients of the
original signal and the noise may be modelled as statistically
independent, zero-mean, Gaussian random variables. Thus
the observed spectral component in bin k, Yk � Rk exp( jϑk),
is equal to the sum of the spectral components of the signal,
Xk � Ak exp( jαk), and the noise, Dk. This model leads to the
following marginal, joint, and conditional distributions:

p
(
ak
) =


2ak
λx(k)

exp

(
− a2

k

λx(k)

)
if ak∈[0,∞),

0 otherwise,

(8)

p
(
αk
) =


1

2π
if αk ∈ [−π, π),

0 otherwise,
(9)

p
(
ak, αk

) = ak
πλx(k)

exp

(
− a2

k

λx(k)

)
, (10)

p
(

Yk|ak, αk
) = 1

πλd(k)
exp

− ∣∣Yk − ake jαk
∣∣2

λd(k)

, (11)

where it is understood that (10) and (11) are defined over
the range of ak and αk, as given in (8) and (9), respectively;
again λx(k) � E[|Xk|2] and λd(k) � E[|Dk|2] denote the re-
spective variances of the kth short-time spectral component
of the signal and noise. Additionally, define

1
λ(k)

� 1
λx(k)

+
1

λd(k)
, (12)

υk � ξk
1 + ξk

γk; ξk � λx(k)
λd(k)

, γk � R2
k

λd(k)
, (13)

where ξk and γk are interpreted after [4] as the a priori and a
posteriori signal-to-noise ratios (SNRs), respectively.

Under the assumed model, the posterior density
p(ak|Yk) (following integration with respect to the phase
term αk) is Rician [10] with parameters (σ2

k , s
2
k):

p
(
ak|Yk

) = ak
σ2
k

exp

(
− a2

k + s2
k

2σ2
k

)
I0

(
aksk
σ2
k

)
, (14)

σ2
k � λ(k)

2
, s2

k � υkλ(k), (15)

where Ii(·) denotes the modified Bessel function of order i.
The mth moment of a Rician distribution is given by

E
[
Xm

] = (2σ2)m/2
Γ
(
m + 2

2

)

×Φ
(
m + 2

2
, 1;

s2

2σ2

)
exp

(
− s2

2σ2

)
, m ≥ 0,

(16)

where Γ(·) is the gamma function [11, equation (8.310.1)]

andΦ(·) is the confluent hypergeometric function [11, equa-
tion (9.210.1)].

The MMSE solution of Ephraim and Malah is simply the
first moment of (14); when combined with the optimal phase
estimator (found by Ephraim and Malah to be the observed
phase ϑk [2]), it takes the form of a suppression rule:

Âk = λ(k)1/2Γ(1.5)Φ
(
1.5, 1; υk

)
exp

(− υk
)

= λ(k)1/2Γ(1.5)Φ
(− 0.5, 1;−υk

) (17)

=⇒ Hk =
√
πυk

2γk

[(
1 + υk

)
I0

(
υk
2

)
+ υkI1

(
υk
2

)]
exp

(−υk
2

)
.

(18)

2. THREE ALTERNATIVE SUPPRESSION RULES

The spectral amplitude estimator given by (18), while being
optimal in an MMSE sense, requires the computation of ex-
ponential and Bessel functions. We now proceed to derive
three alternative suppression rules under the same model,
each of which admits a more straightforward implementa-
tion.

2.1. Joint maximum a posteriori spectral amplitude
and phase estimator

As shown earlier, joint estimation of the real and imaginary
components of Xk under either the MAP or MMSE criterion
leads to the Wiener estimator (due to symmetry of the Gaus-
sian posterior distribution). However, as we have seen, the
problem may be reformulated in terms of spectral amplitude
Ak and phase αk; it is then possible to obtain a joint MAP esti-
mate by maximising the posterior distribution p(ak, αk|Yk):

p
(
ak, αk|Yk

)
∝ p

(
Yk|ak, αk

)
p
(
ak, αk

)
∝ ak

π2λx(k)λd(k)
exp

− ∣∣Yk − ake jαk
∣∣2

λd(k)
− a2

k

λx(k)

. (19)

Since ln(·) is a monotonically increasing function, one may
equivalently maximise the natural logarithm of p(ak, αk|Yk).
Define

J1 = −
∣∣Yk − ake jαk

∣∣2

λd(k)
− a2

k

λx(k)
+ ln ak + constant. (20)

Differentiating J1 with respect to αk yields

∂

∂αk
J1 = − 1

λd(k)

[(
Y∗k − ake

− jαk
)(− jake

jαk
)

+
(

Yk − ake
jαk
)(
jake

− jαk
)]
,

(21)

where Y∗k denotes the complex conjugate of Yk. Setting to
zero and substituting Yk = Rk exp( jϑk), we obtain

0 = jâkRke
j(ϑk−α̂k) − jâkRke

− j(ϑk−α̂k)

= 2 j sin
(
ϑk − α̂k

) (22)
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since âk 	= 0 if the phase estimate is to be meaningful. There-
fore

α̂k = ϑk; (23)

that is, the joint MAP phase estimate is simply the noisy
phase—just as in the case of the MMSE solution due to
Ephraim and Malah [2]. Differentiating J1 with respect to ak
yields

∂

∂ak
J1 = − 1

λd(k)

[(
Y∗k − ake

− jαk
)(− e jαk

)
+
(

Yk − ake
jαk
)(− e− jαk

)]
− 2ak

λx(k)
+

1
ak

.

(24)

Setting the above to zero implies

2â2
k = λx(k)− λx(k)

λd(k)
âk
[
2âk − Rke

− j(ϑk−α̂k) − Rke
j(ϑk−α̂k)]

= λx(k)− ξkâk
[
2âk − 2Rk cos

(
ϑk − α̂k

)]
.

(25)

From (23), we have cos(ϑk − α̂k) = 1; therefore

0 = 2
(
1 + ξk

)
â2
k − 2Rkξkâk − λx(k), (26)

where ξk is as defined in (13). Solving the above quadratic
equation and substituting

λx(k) = ξk
γk
R2
k, (27)

which follows from the definitions of ξk and γk in (13), we
have

Âk =
ξk +

√
ξ2
k + 2

(
1 + ξk

)(
ξk/γk

)
2
(
1 + ξk

) Rk. (28)

Equations (23) and (28) together define the following sup-
pression rule:

Hk =
ξk +

√
ξ2
k + 2

(
1 + ξk

)(
ξk/γk

)
2
(
1 + ξk

) . (29)

2.2. Maximum a posteriori spectral amplitude
estimator

Recall that the posterior density p(ak|Yk) of (14), arising
from integration over the phase term αk, is Rician with pa-
rameters (σ2

k , s
2
k). Following McAulay and Malpass [4], we

may for large arguments of I0(·) (i.e., when, for λx(k) = A2
k,

ξkRk

√
1/[(1 + ξk)λ(k)] ≥ 3) substitute the approximation

I0
(|x|) ≈ 1√

2π|x| exp
(|x|) (30)

into (14), yielding

p
(
ak|Yk

) ≈ 1√
2πσ2

k

(
ak
sk

)1/2

exp

(
− 1

2

[
ak − sk
σk

]2
)
, (31)

which we note is “almost” Gaussian. Considering (31), and
again taking the natural logarithm and maximising with re-
spect to ak, we obtain

J2 = −1
2

[
ak − sk
σk

]2

+
1
2

ln ak + constant, (32)

in which case

d

dak
J2 = sk − ak

σ2
k

+
1

2ak
(33)

=⇒ 0 = â2
k − skâk − σ2

k

2
. (34)

Substituting (15) and (27) into (34) and solving, we arrive
at the following equation, which represents an approximate
closed-form MAP solution corresponding to the maximisa-
tion of (14) with respect to ak:

Âk =
ξk +

√
ξ2
k +

(
1 + ξk

)(
ξk/γk

)
2
(
1 + ξk

) Rk. (35)

Note that this estimator differs from that of the joint MAP
solution only by a factor of two under the square root (owing
to the factor

√
ak in (31), replacement with ak would yield the

spectral estimator of (28)).
Combining (35) with the Ephraim and Malah phase esti-

mator (i.e., the observed phase ϑk) yields the following sup-
pression rule:

Hk =
ξk +

√
ξ2
k +

(
1 + ξk

)(
ξk/γk

)
2
(
1 + ξk

) . (36)

In fact, this solution extends that of McAulay and Malpass
[4], who use the same approximation of I0(·) to enable the
derivation of the ML estimator given by (7). In this sense,
the suppression rule of (36) represents a generalisation of the
(approximate) ML spectral amplitude estimator proposed in
[4].

2.3. Minimum mean square error spectral
power estimator

Recall that Ephraim and Malah formulated the first moment
of a Rician posterior distribution, E[Ak|Yk], as a suppression
rule. The second moment of that distribution, E[A2

k|Yk], re-
duces to a much simpler expression

E
[
A2
k

∣∣Yk
] = 2σ2

k + s2
k, (37)

where σ2
k and s2

k are as defined in (15). Letting Bk = A2
k and

substituting for σ2
k and s2

k in (37) yields

B̂k = ξk
1 + ξk

(
1 + υk
γk

)
R2
k, (38)
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Figure 3: Ephraim and Malah MMSE suppression rule.

5
4
3
2
1
0

−1
−2
−3
−4
−5

G
ai

n
di

ff
er

en
ce

(d
B

)

30
20

10
0 −10

−20 −30

Instantaneous SNR (dB)
−30

−20
−10

0
10

20
30

A priori SNR (dB)

Figure 4: Joint MAP suppression rule gain difference.

where B̂k is the optimal spectral power estimator in an
MMSE sense, as it is also the first moment of a new posterior
distribution p(bk|Yk) having a noncentral chi-square proba-
bility density function with two degrees of freedom and pa-
rameters (σ2

k , s
2
k).

When combined with the optimal phase estimator of
Ephraim and Malah (i.e., the observed phase ϑk), this esti-
mator also takes the form of a suppression rule

Hk =
√√√ ξk

1 + ξk

(
1 + υk
γk

)
. (39)

3. ANALYSIS OF ESTIMATOR BEHAVIOUR

Figure 3 shows the Ephraim and Malah suppression rule as
a function of instantaneous SNR (defined in [2] as γk − 1)

5
4
3
2
1
0

−1
−2
−3
−4
−5

G
ai

n
di

ff
er

en
ce

(d
B

)

30
20

10
0
−10−20 −30

Instantaneous SNR (dB)
−30

−20
−10

0
10

20
30

A priori SNR (dB)

Figure 5: MAP approximation suppression rule gain difference.
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Figure 6: MMSE power suppression rule gain difference.

and a priori SNR ξk.1 Figures 4, 5, and 6 show the gain dif-
ference (in decibels) between it and each of the three derived
suppression rules, given by (29), (36), and (39), respectively
(note the difference in scale). A comparison of the magnitude
of these gain differences is shown in Table 1.

From these figures, it is apparent that the MMSE spec-
tral power suppression rule of (39) follows the Ephraim
and Malah solution most closely and consistently, with only
slightly less suppression in regions of low a priori SNR.
Table 1 also indicates that the approximate MAP suppression
rule of (36) is still within 5 dB of the Ephraim and Malah
rule value over a wide SNR range, despite the approximation

1Recall that the a priori SNR is the “true but unobserved” SNR, whereas
the instantaneous SNR is the “spectral subtraction estimate” thereof.
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Table 1: Magnitude of deviation from MMSE suppression rule gain.

Suppression rule
(γk − 1, ξk) ∈ [−30, 30] dB (γk − 1, ξk) ∈ [−100, 100] dB

Mean Maximum Range Mean Maximum Range

MMSE power 0.68473 −1.0491 1.0469 0.63092 −1.0491 1.0491

Joint MAP 0.52192 +1.7713 2.3352 0.74507 +1.9611 2.5250

Approximate MAP 1.2612 +4.7012 4.7012 1.7423 +4.9714 4.9714

of (30).2 While the sign of the deviation of both the MMSE
spectral power and approximate MAP rules is constant, that
of the joint MAP suppression rule of (29) depends on the
instantaneous and a priori SNRs.

Ephraim and Malah [2] show that at high SNRs, their de-
rived suppression rule converges to the Wiener suppression
rule detailed in Section 1.2.1, formulated as a function of a
priori SNR ξk:

Hk = ξk
1 + ξk

. (40)

This relationship is easily seen from the MMSE spectral
power suppression rule given by (39), expanded slightly to
the following equation:

Hk =
√√√√ ξk

1 + ξk

(
1
γk

+
ξk

1 + ξk

)
. (41)

As the instantaneous SNR becomes large, (41) may be seen to
approach the Wiener suppression rule of (40). As it becomes
small, the 1/γk term in (41) lessens the severity of the atten-
uation. Cappé [12] makes the same observation concerning
the behaviour of the Ephraim and Malah suppression rule,
although the simpler form of the MMSE spectral power es-
timator shows the influence of the a priori and a posteriori
SNRs more explicitly.

We also note that the success of the Ephraim and Malah
suppression rule is largely due to the authors’ decision-
directed approach for estimating the a priori SNR ξk [12].
For a given short-time block n, the decision-directed a pri-

ori SNR estimate ξ̂k is given by a geometric weighting of the
SNRs in the previous and current blocks:

ξ̂k = α

∣∣X̂k(n− 1)
∣∣2

λd(n− 1, k)

+ (1− α) max
[
0, γk(n)− 1

]
, α ∈ [0, 1).

(42)

It is instructive to consider the case in which ξk = γk − 1,
that is, α = 0 in (42) so that the estimate of the a priori
SNR is based only on the spectral subtraction estimate of the

2For a fixed spectral magnitude observation Rk , and with λx(k) = A2
k ,

the approximation of (30) is dominated by the a priori SNR ξk . Hence we
see that when ξk is large, the resultant suppression rule gain exhibits less
deviation from that of the other rules.
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Figure 7: Optimal and derived suppression rules.
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Figure 9: A performance comparison of the derived suppression rules. The top row of figures corresponds to a priori SNR estimation using
the decision-directed approach of (42), with α = 0.98 as recommended in [2]. The bottom row corresponds to α = 0, in which case the gain
surfaces of Figures 3, 4, 5, and 6 reduce to the gain curves of Figure 7.

current block. In this case, the MMSE spectral power sup-
pression rule given by (41) reduces to the method of power
spectral subtraction (see, e.g., [3]). Figure 7 shows a compar-
ison of the derived suppression rules under this constraint;
by way of comparison, Figure 8 shows some standard sup-
pression rules, including power spectral subtraction and the
Wiener filter, as a function of instantaneous SNR (note the
difference in ordinate scale).

Lastly, we mention the results of informal listening tests
conducted across a range of audio material. These tests indi-
cate that, especially when coupled with the decision-directed
approach for estimating ξk, each of the derived estimators
yields an enhancement similar in quality to that obtained us-

ing the Ephraim and Malah suppression rule. To this end,
Figure 9 shows a comparison of SNR gain over a range of in-
put SNRs for three typical 16-bit audio examples, artificially
degraded with additive white Gaussian noise, and processed
using the overlap-add method with a 50% window overlap:
narrowband speech (sampled at 16 kHz and analysed using
a 256-sample hanning window), wideband speech (sampled
at 44.1 kHz and analysed using a 512-sample hanning win-
dow), and wideband music (solo piano, sampled at 44.1 kHz
and analysed using a 2048-sample Hanning window).3

3Segmental SNR gain measurements yield a similar pattern of results.



1050 EURASIP Journal on Applied Signal Processing

As we intend these results to be illustrative rather than ex-
haustive, we limit our direct comparison here to the Ephraim
and Malah suppression rule. Comparisons have been made
both with and without smoothing in the a priori SNR calcu-
lation, as described in the caption of Figure 9. It may be seen
from Figure 9 that in the case of smoothing (upper row), the
spectral power estimator appears to provide a small increase
in SNR gain. In terms of sound quality, a small decrease in
residual musical noise results from the approximate MAP so-
lution, albeit at the expense of slightly more signal distortion.
The joint MAP suppression rule lies in between these two ex-
tremes. Without smoothing, the methods produce a resid-
ual with approximately the same amount of musical noise
as power spectral subtraction (as is expected in light of the
comparison of these curves given by Figure 7). In compari-
son to Wiener filtering and magnitude spectral subtraction,
the derived methods yield a slightly greater level of musical
noise (as is to be expected according to Figure 8).

Audio examples illustrating these features, along with a
Matlab toolbox allowing for the reproduction of results pre-
sented here, as well as further experimentation and com-
parison with other suppression rules, are available online at
http://www-sigproc.eng.cam.ac.uk/∼pjw47.

4. DISCUSSION

In the first part of this paper, we have provided a com-
mon interpretation of existing suppression rules based on
a simple Gaussian statistical model. Within the framework
of Bayesian estimation, we have seen how two MMSE sup-
pression rules due to Wiener [5] and Ephraim and Malah [2]
may be derived. While the Ephraim and Malah MMSE spec-
tral amplitude estimator is well known and widely used, its
implementation requires the evaluation of computationally
expensive exponential and Bessel functions. Moreover, an in-
tuitive interpretation of its behaviour is obscured by these
same functions. With this motivation, we have presented in
the second part of this paper a derivation and comparison of
three alternatives to the Ephraim and Malah MMSE spectral
amplitude estimator.

The derivations also yield an extension of two existing
suppression rules: the ML spectral estimator due to McAulay
and Malpass [4], and the estimator defined by power spectral
subtraction. Specifically, the ML suppression rule has been
generalised to an approximate MAP solution in the case of
an independent Gaussian prior for each spectral component.
It has also been shown that the well-known method of power
spectral subtraction, previously developed in a non-Bayesian
context, arises as a special case of the MMSE spectral power
estimator derived herein.

In addition to providing the aforementioned theoreti-
cal insights, these solutions may be of use themselves in sit-
uations where a straightforward implementation involving
simpler functional forms is required; alternative approaches
along a similar line of motivation are developed in [13, 14].
Additionally, for the purposes of speech enhancement, each
may be coupled with hypotheses concerning uncertainty of

speech presence, as in [2, 4, 13, 14]. Moreover, the form of the
MMSE spectral power suppression rule given by (41) pro-
vides a clearer insight into the behaviour of the Ephraim and
Malah solution. Finally, we note that just as Ephraim and
Malah argued that log-spectral amplitude estimation may
be more appropriate for speech perception [15], so in other
cases may be MMSE spectral power estimation—for exam-
ple, when calculating auditory masked thresholds for use in
perceptually motivated noise reduction [16].
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