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Stephen Burgess: Statistical issues in Mendelian randomization: use of

genetic instrumental variables for assessing causal associations

Mendelian randomization is an epidemiological method for using genetic vari-

ation to estimate the causal effect of the change in a modifiable phenotype on

an outcome from observational data. A genetic variant satisfying the assump-

tions of an instrumental variable for the phenotype of interest can be used

to divide a population into subgroups which differ systematically only in the

phenotype. This gives a causal estimate which is asymptotically free of bias

from confounding and reverse causation. However, the variance of the causal

estimate is large compared to traditional regression methods, requiring large

amounts of data and necessitating methods for efficient data synthesis. Addi-

tionally, if the association between the genetic variant and the phenotype is not

strong, then the causal estimates will be biased due to the “weak instrument”

in finite samples in the direction of the observational association. This bias

may convince a researcher that an observed association is causal. If the causal

parameter estimated is an odds ratio, then the parameter of association will

differ depending on whether viewed as a population-averaged causal effect or

a personal causal effect conditional on covariates.

We introduce a Bayesian framework for instrumental variable analysis, which

is less susceptible to weak instrument bias than traditional two-stage methods,

has correct coverage with weak instruments, and is able to efficiently combine

gene–phenotype–outcome data from multiple heterogeneous sources. Methods

for imputing missing genetic data are developed, allowing multiple genetic vari-

ants to be used without reduction in sample size. We focus on the question of

a binary outcome, illustrating how the collapsing of the odds ratio over hetero-

geneous strata in the population means that the two-stage and the Bayesian

methods estimate a population-averaged marginal causal effect similar to that

estimated by a randomized trial, but which typically differs from the condi-

tional effect estimated by standard regression methods. We show how these

methods can be adjusted to give an estimate closer to the conditional effect.

We apply the methods and techniques discussed to data on the causal effect of

C-reactive protein on fibrinogen and coronary heart disease, concluding with

an overall estimate of causal association based on the totality of available data

from 42 studies.
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2SLS two-stage least squares
2SPS two-stage predictor substitution
2SRI two-stage residual inclusion
ACE average causal effect
BMI body mass index
CCGC CRP CHD Genetics Collaboration
CRP C-reactive protein
CHD coronary heart disease
CI /CrI confidence / credible interval
COR causal odds ratio (Chapter 2)
C(L)OR conditional (log) odds ratio (Chapter 4)
CRR causal risk ratio
DIC deviance information criterion
FE / RE fixed-effects / random-effects
GMM generalized method of moments
GWAS genome-wide association study (or studies)
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IPD individual participant data
IV instrumental variable
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LD linkage disequilibrium
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MAB median absolute bias
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MAR missing at random
MCAR missing completely at random
MCMC Monte Carlo Markov chain
MCSE Monte Carlo standard error
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MNAR missing not at random
M(L)OR marginal (log) odds ratio
P(L)OR population (log) odds ratio
RCT randomized controlled trial
SE standard error
(G)SMM (generalized) structural mean model
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Abbreviations for the various studies in the CCGC are given in Appendix H.
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Notation

Throughout this dissertation, we use the notation:

X phenotype: the risk factor, or protective factor, or intermediate pheno-
type of interest

Y outcome
U confounder in the X-Y association
V unmeasured confounder (Chapter 3); covariate for Y (Chapters 4 and 6)
G instrumental variable
α parameter of genetic association: regression parameter in the G-X re-

gression
β regression parameter in the X-Y regression
β1 causal effect of X on Y : the main parameter of interest
γ parameter of genetic association for haplotypes: regression parameter in

the G-X regression where G represents a haplotype or diplotype
ρ correlation parameter
σ2 variance parameter
τ 2 between-study heterogeneity variance parameter
ψ2 genetic between-study heterogeneity variance parameter
F F statistic from regression of X on G
i subscript indexing individuals
j subscript indexing genotypic subgroups
J total number of genotypic subgroups
k subscript indexing genetic variants (SNPs)
K total number of genetic variants
m subscript indexing studies in a meta-analysis, or imputed datasets (Chap-

ter 7)
M total number of studies, or imputed datasets (Chapter 7)
N total number of individuals
n total number of cases (individuals with a disease event)
t time-to-event
N normal distribution
U uniform distribution

We follow the usual convention of using upper-case letters for random variables and

lower-case letters for data values (except for N and n).
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Chapter 1

Introduction to Mendelian

randomization

The subject of this dissertation is statistical issues in the estimation of causal effects with

genetic instrumental variables using observational data. The concept of assessing causal

relations using genetic data is known as Mendelian randomization. In this introduction,

we shall explore the epidemiological background of Mendelian randomization. We aim to

illustrate the conceptual framework and motivation of Mendelian randomization, giving

context to explain the relevance and timeliness of this dissertation. A genetic approach

to epidemiology offers opportunities to deal with some of the difficulties of conventional

epidemiology. We describe the specific characteristics of genetic data which give rise to

this branch of epidemiology and in particular the Mendelian randomization approach,

but which also lead to difficulties in statistical modelling of the resulting data from the

approach. Finally, we introduce the dataset which gave rise to this PhD project and

which forms the backbone of this dissertation, both illustrating and giving motivation to

the findings.

1.1 The rise of genetic epidemiology

Genetic epidemiology is the study of the role of genetic factors in health and disease (1).

We sketch the history and development of genetic epidemiology, giving a background and

motivation as to why it is an important area of epidemiological and scientific research.

A brief glossary of genetic terminology, reproduced from Lawlor et al. (2) is provided as

Table 1.1. Similar glossaries can be found in (3) and (4).

1



1.1 The rise of genetic epidemiology

• Alleles are the variant forms of a single-nucleotide polymorphism (SNP), a specific polymor-

phic site or a whole gene detectable at a locus.

• Canalization [also known as developmental compensation] is the process by which potentially

disruptive influences on normal development from genetic (and environmental) variations are

damped or buffered by compensatory developmental processes.

• A chromosome carries a collection of genes located on a long string of DNA. A non-homologous

chromosome carries a unique collection of genes on a long string of DNA that is different from

the gene collection of another non-homologue. Normal non-homologous chromosomes are not

attached to each other during meiosis, and move independently of one another, each carrying its

own gene collection. Two homologous chromosomes carry the same collection of genes, but each

gene can be represented by a different allele on the two homologues (a heterozygous individual).

A gamete will receive one of those homologues, but not both. Humans have 22 pairs of autosomal

homologous chromosomes and 1 pair of sex chromosomes.

• DNA – deoxyribonucleic acid is a molecule that contains the genetic instructions used in the

development and functioning of all living organisms. The main role of DNA is the long-term

storage of information. It contains the instructions needed to construct other components of

cells, including proteins and ribonucleic acid (RNA) molecules. DNA has four nucleotide bases

A, T, G and C. The two strands of DNA in the double-helix structure are complementary (sense

and anti-sense strands) such that A binds with T and G binds with C.

• A gene comprises a DNA sequence, including introns, exons and regulatory regions, related

to transcription of a given RNA.

• [The] genotype of an individual refers to the two alleles inherited at a specific locus - if the

alleles are the same, the genotype is homozygous, if different, heterozygous.

• [A] haplotype describes the particular combination of alleles from linked loci found on a single

chromosome.

• Linkage disequilibrium (LD) is the correlation between allelic states at different loci within

the population. The term LD describes a state that represents a departure from the hypothetical

situation in which all loci exhibit complete independence (linkage equilibrium).

• A locus is the position in a DNA sequence and can be a SNP, a large region of DNA sequence,

or a whole gene.

• Pleiotropy is the potential for polymorphisms to have more than one specific phenotypic effect

• Polymorphism is the existence of two or more variants (i.e. SNPs, specific polymorphic sites

or whole genes) at a locus. Polymorphism is usually restricted to moderately common genetic

variants, at least two alleles with frequencies of greater than 1 per cent in the population.

• Recombination is any process that generates new gene or chromosomal combinations not

found previously in that cell or its progenitors. During meiosis, recombination is the process

that generates haploid cells that have non-parental combinations of genes.

• Single-nucleotide polymorphism[s] (SNPs) are genetic variations in which one base in the DNA

is altered, e.g. a T instead of an A.

Table 1.1: A glossary of genetic terminology, reproduced with permission from Lawlor et

al. (2) with minor edits marked in square brackets
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1.1 The rise of genetic epidemiology

1.1.1 Historical background

The concept of inherited characteristics goes back to the dawn of time, although the mech-

anism for inheritance was long unknown1. When Charles Darwin proposed his theory of

evolution in 1859 (6), one of its major problems was the lack of an underlying mechanism

for heredity (7). Grigor Mendel in 1866 proposed two laws of inheritance: the law of

segregation, that when any individual produces gametes (sex cells), the copies of a gene

separate so that each gamete receives only one copy; and the law of independent assort-

ment, that “unlinked or distantly linked segregating gene pairs assort independently at

meiosis” (8). These laws are summarized by the term “Mendelian inheritance”, and it is

this which gives Mendelian randomization its name, specifically due to the second law, the

law of ‘independent assortment’ (3). The two areas of evolution and Mendelian inheritance

were brought together through the 1910s-30s in the “modern evolutionary synthesis”, by

amongst others Ronald Fisher, who helped to develop population genetics (9). The link

between genetics and disease was established by Linus Pauling in 1949, who linked a spe-

cific genetic mutation in patients with sickle-cell anaemia to a demonstrated change in the

haemoglobin of the red-blood cells of affected individuals (10). The discovery of the struc-

ture of deoxyribonucleic acid (DNA) in 1953 gave rise to the birth of molecular biology,

which led to greater understanding of the genetic code (11). The Human Genome Project

was established in 1990, leading to the publication of the entirety of the human genetic

code by 2003 (12; 13). Recently, technological advances have reduced the cost of DNA

sequencing to the level where it is now economically viable to measure genetic information

for a large number of individuals (14).

1.1.2 Shortcomings of classical epidemiology

Epidemiology is the study of patterns of health and disease at the population level. We use

the term ‘classical epidemiology’ meaning epidemiology without the use of genetic factors,

to contrast with genetic epidemiology. A fundamental problem in epidemiological research,

in common with other areas of social science, is the distinction between correlation and

causation. If we want to address basic medical questions, such as to determine disease

aetiology (that is, what is the cause of a disease?), to assess the impact of a public health

intervention (that is, what would be the result of a change in treatment?), to inform public

policy, to prioritize healthcare resources, to advise treatment practice, or to counsel on

the impact of lifestyle choices, then we have to answer questions of cause and effect. The

1For example, Genesis 5:3 reads “When Adam had lived 130 years, he had a son in his own likeness,

in his own image” (5).
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optimal way to address these questions is by appropriate study design, such as the use

of randomized trials and prospective data (15). However, such designs are not always

possible, and often causal questions must be answered using only observational data.

Unfortunately, interpreting the association between a risk factor and a disease outcome

in observational data as a causal association relies on untestable and often implausible as-

sumptions. This has led to several high-profile cases where a risk factor has been widely

advocated as an important factor in disease prevention from observational data, only to

be later discredited when the evidence from randomized trials did not support a causal

interpretation to the findings (16). For example, observational studies reported a strong

inverse association between vitamin C and coronary heart disease (CHD), which did not

attenuate on adjustment for a variety of risk factors (17). However, results of experimen-

tal data obtained from randomized trials showed a null association with a positive point

estimate for the association (18). The confidence intervals for the observational and ex-

perimental associations did not overlap (3). Similar stories apply to the observational and

experimental associations between β-carotene and smoking-related cancers (19; 20), and

vitamin E and CHD (21). More worrying is the history of hormone-replacement therapy,

which was previously advocated as beneficial for the reduction of breast cancer and car-

diovascular mortality on the basis of observational data, but was subsequently shown to

increase mortality in randomized trials (22; 23).

1.1.3 The need for an alternative

As the knowledge of the human genome developed, the search for genetic determinants of

disease expanded from monogenetic disorders (that is, disorders which are due to a single

mutated gene), such as sickle-cell anaemia (cited above), to polygenic and multifactorial

disorders, where the burden of disease risk is not due to a single gene, but to multiple

genes combined with lifestyle and environmental factors. These diseases, such as cancers,

diabetes and CHD, tend to cluster within families, but also depend on other factors, such

as diet or blood pressure. Several genetic factors have been found which relate to these

diseases, especially through the increased use of whole-genome scans known as genome-

wide association studies (GWAS). However, this is of limited interest from a clinical point-

of-view, as an individual’s genome cannot be changed. We here present an introduction to

Mendelian randomization: a method for using genetic data to estimate causal associations

of modifiable (non-genetic) risk factors using observational data.
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1.2 What is Mendelian randomization?

Mendelian randomization is here defined as the use of non-experimental studies to deter-

mine the causal effect of a phenotype on an outcome by making use of genetic variation.

We shall use the word “phenotype” to refer to the putative causal risk factor, which can

be thought of as an exposure, a biomarker or any other risk factor which may affect the

outcome (24). Usually the outcome is disease, although there is no methodological re-

striction as to what outcomes can be considered. Non-experimental studies encompass

all observational studies, including cross-sectional, cohort and case-control designs, where

there is no intervention instituted by the researcher. These are contrasted with clinical

trials.

1.2.1 Motivation

A foundational aim of epidemiological enquiry is the estimation of the effect of changing

one risk factor on an outcome (3). This is known as the causal effect of the phenotype on

the outcome and typically differs from the observational association between phenotype

and outcome (25), due to endogeneity of the phenotype (26). Endogeneity, literally “com-

ing from within”, of a variable in an equation means that there is a correlation between

the variable and the error term, and occurs when the variable is predicted by the terms

in the model in which it appears (27). For example, those who regularly take headache

tablets are likely to have more headaches than those who do not, but taking headache

tablets is unlikely to be a cause of the increased incidence of headaches. Taking tablets

is an endogenous variable in this context, and so the causal effect of taking tablets on

headaches cannot be estimated from this observational setting. The opposite of endoge-

nous is exogenous; an exogenous variable comes from outside of the model and is not

explained by the terms in the model.

The idea of Mendelian randomization is to find an exogenous genetic variant (or vari-

ants) which is associated with the phenotype, but is not associated with any other risk

factor which affects the outcome, and is not directly associated with the outcome, in that

any impact of the genetic variant on the outcome must come via its association with the

phenotype (2). These assumptions define an instrumental variable (IV) (28; 29). As IVs

were initially developed for use in the field of economics, a number of terms commonly

used in the IV literature derive from this field and are not always well understood by

statisticians or epidemiologists. Table 1.2 is a glossary of terms which are commonly used

in each field.
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Economics

term

Statistics term Notes

Endogenous /

endogeneity

Exogenous /

exogeneity

Confounded /

confounding

Unconfounded /

No confounding

Traditionally, confounding refers to a narrower circumstance than

endogeneity. A ‘confounder’ (denoted U) has been defined as

a variable which is associated with the risk factor of interest

and the outcome. However, it has been shown that it is

possible for a variable to be a ‘confounder’ without biasing causal

effects. Endogeneity means that there is a correlation between the

regressor and the error term in an equation. A better definition

for confounding would be a bias in the estimation of a causal

effect, which corresponds with the definition of endogeneity. This

definition includes phenomena which are traditionally thought of as

separate from confounding, such as measurement error and reverse

causation.

Regressor Covariate Any term in a regression equation

Outcome Outcome Denoted Y in this text

Endogenous/

exogenous

regressor

Confounded/

unconfounded

variable

Denoted X in this text; if endogenous, the causal effect of X on Y

cannot be estimated by OLS of Y on X

Instrumental

variable /

Excluded

instrument

Instrumental

variable /

Instrument

Denoted G in this text; the instrument is called ‘excluded’ as it is

not included in the second-stage of the two-stage regression method

often used for calculating IV estimates

Included

regressor

Measured covariate A covariate which is included in a model, such as a multivariate

regression

OLS Least-squares

regression

OLS stands for Ordinary Least Squares. The OLS estimate is the

observational association, as opposed to the IV estimate, which is

the causal association.

Concentrate

out

Profile out To exclude a nuisance parameter from an equation by forming a

profile likelihood by replacing with its maximum likelihood estimate

given the other variables

Panel data Longitudinal data Data on multiple items at multiple timepoints. Panel data

can include time-series (single item) and cross-sectional (single

timepoint) data, neither of which is generally thought of as

longitudinal data.

Table 1.2: A dictionary of instrumental variable terms used in the economics and statistics fields
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1.2.2 Instrumental variables

An alternative definition of Mendelian randomization is “instrumental variable analysis

using genetic instruments” (30; 31). While not all Mendelian randomization studies have

used IV methodology (32), the use of genetic variants as IVs is at the core of Mendelian

randomization (33).

An IV is an exogenous variable associated with an endogenous exposure which is used to

estimate the causal effect of changing the exposure while keeping all other factors equal (25;

34). In the language of Mendelian randomization, the genetic variant(s) are considered as

IVs for the causal association of phenotype on outcome (35). The fundamental conditions

for an IV to satisfy are summarized as (2; 28; 33):

i. the IV is associated with the phenotype,

ii. the IV is not associated with any confounder,

iii. the IV is conditionally independent of the outcome given the phenotype and con-

founders.

The use of a particular genetic variant as an IV is controversial as these assumptions

cannot be fully tested and may be violated for various epidemiological and biological rea-

sons (2; 33; 36; 37; 38). A British study into the distribution of genetic markers and

non-genetic factors (such as environmental exposures) in a group of blood donors and a

representative sample from the population showed marked differences in the non-genetic

factors, but no more difference than would be expected by chance in the genetic factors

(37), indicating that genetic factors seem to be distributed independently of possible con-

founders in the population of the United Kingdom (39). This gives plausibility to the

general suitability of genetic variants as IVs, but in each specific case, justification of the

assumptions relies on biological knowledge about the genetic markers in question.

As a plausible example of a valid genetic IV, in the Japanese population, a common

genetic mutation in the ALDH2 gene affects the processing of alcohol, causing excess pro-

duction of a carcinogenic by-product, acetaldehyde, as well as nausea and headaches. We

can use this genetic variant as an instrumental variable to assess the causal association

between alcohol consumption and oesophageal cancer. Here, alcohol consumption is the

phenotype and oesophageal cancer the outcome. Assessing the causal association here

using observational data is complicated by the strong association between alcohol and

tobacco smoking, another risk factor for oesophageal cancer (40). Individuals with two

copies of the mutation tend to avoid alcohol, due to the severity of the short-term symp-

toms. Their risk of developing oesophageal cancer is one-third of the risk of those with no
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copies of the mutation (41). Carriers of a single copy of this mutation exhibit only a mild

intolerance to alcohol. They are still able to drink, but they cannot process the alcohol

efficiently and have an increased exposure to acetaldehyde. Carriers of a single copy are

at three times the risk of developing oesophageal cancer compared to those without the

mutation, with up to 12 times the risk in studies of heavy drinkers (41). There is no link

between having this genetic mutation and many other risk factors.

The genetic mutation provides a fair test to compare three populations who differ

systematically only in their consumption of alcohol and exposure to acetaldehyde, and who

have vastly differing risks. The evidence for a causal link between alcohol consumption,

exposure to acetaldehyde and oesophageal cancer is compelling (42). In this example, a

further natural experiment can be exploited: women in Japanese culture tend not to drink

for social reasons. A similar study into alcohol and blood pressure showed a significant

association between ALDH2 and blood pressure for men, but not for women (43). This

provides further evidence that the change in outcome is not due to the genetic variant

itself, but due to the effect of the phenotype. This strengthens our belief that the genetic

variant is a valid IV, and the change in outcome is causally due to alcohol consumption

via exposure to acetaldehyde, not due to the violation of the IV assumptions, such as the

correlation of the IV with another risk factor.

In the above example, we used Mendelian randomization to assess the causal nature

of the phenotype-outcome association. There are several reasons why it is desirable to go

beyond testing for a causal effect and to estimate the size of the causal effect. Firstly, this

is usually the parameter representing the answer to the question of interest (24). Secondly,

with multiple genetic variants, greater power can be achieved. If several independent IVs

all show a concordant causal effect, the overall estimate of causal effect using all the IVs

may give statistical significance even if none of the individual IVs does (44; 45). Thirdly,

often a null association is expected (40). By estimating a confidence interval for the causal

effect, we obtain bounds on the plausible size of any causal association. Although it is

not statistically possible to prove the null hypothesis, we can reduce the plausible causal

effect to one which is of no clinical relevance.

1.2.3 Analogy with randomized controlled trials

Mendelian randomization is analogous to a randomized controlled trial (RCT) (46; 47; 48).

A RCT, considered the “gold standard” of medical evidence (32), involves dividing a target

population into two or more subgroups in a random way. These subgroups are each given

different treatment programmes. Randomization is preferred over any other assignment to
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subgroups as all possible confounders, known and unknown, are on average balanced (49).

However in many situations, for ethical or practical reasons, it is not possible to intervene

on the factor of interest to estimate the causal effect by direct experiment (40).

In Mendelian randomization, we use the IV to form subgroups analogous to those

in a RCT, as shown in Figure 1.1. From the IV assumptions, these subgroups differ

systematically in the phenotype, but not in any other factor (50). A difference in disease

incidence between these subgroups would therefore indicate a true causal relationship

between phenotype and outcome (51).

Figure 1.1: Comparison of randomized controlled trial and Mendelian randomization

(adapted from (46))

However, Mendelian randomization is subtly different from a randomized trial. The

aim of Mendelian randomization is not to estimate the size of a genetic effect, but the

causal effect of the phenotype on the outcome. When the proportion of variation in the

phenotype associated with the genetic variant is not large or is imprecisely estimated,

studies will require large sample sizes (42), such as 10 000 or even 30 000 cases (3; 40),

as the risk ratio from the difference in phenotype due to the genetic variant may be low

(52). However, the population attributable risk of the phenotype is not necessarily low

(40). Although the variation in phenotype attributable to the gene may be small, it can

be similar to that attributable to treatment in a RCT (53).
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1.2.4 Confounding

Mendelian randomization has also been named ‘Mendelian deconfounding’ (54) as it aims

to give estimates of causal association free from bias associated with confounding.

The correlations between risk factors make it impossible in an observational study to

look at the increase in one variable keeping all others equal, as changes in one factor

will always be accompanied by changes in other factors (47). While we can measure

individual confounders and adjust for them in our analysis, we can never be certain that

all risk factors have been identified or measured precisely. This leads to what is known

as unmeasured confounding (55). Additionally, if we adjust for a variable that lies on the

true causal pathway between the phenotype of interest and outcome, this represents an

over-adjustment and attenuates the causal association (56). By finding a genetic marker

which satisfies the IV assumptions, we can estimate the unconfounded association between

the genetic marker and outcome (33).

1.2.5 Reverse causation

Mendelian randomization also deals with problems of reverse causation (40). Reverse

causation occurs when an association between the phenotype and outcome is not due to

the phenotype causing a change in outcome, but outcome causing a change in phenotype.

This could happen, for example, if the phenotype increases in response to pre-clinical

disease (24). If the genetic variant is a valid IV, any difference in outcome between

individuals in the genetically-defined subgroups is due to the genetic variant. As the

genotype was determined at conception and cannot be changed, there is no possibility of

reverse causation (50).

1.3 Genetic markers

Generally in Mendelian randomization, genetic markers used as IVs are in the form of

single nucleotide polymorphisms (SNPs) (2; 57; 58; 59). As summarized in Table 1.1, a

SNP is defined as a variation in the deoxyribonucleic acid (DNA) of an individual compared

to the population at a single point (or locus), where one nucleotide, either A, C, G or T,

has been replaced with another. These different variants in the genetic code are called

alleles. Where there are two possible alleles at a particular locus (a diallelic SNP), we

write the more common allele, the major allele or wildtype as A and the less common

allele, the minor allele or variant as a. The proportion of minor alleles in a population is
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1.4 Examples of Mendelian randomization

called the ‘minor allele frequency’. An arbitrary threshold of the minor allele frequency is

set at 1%, below which a SNP is considered a mutation rather than a polymorphism.

As people have two copies of each DNA sequence, individuals can be categorized for

each diallelic SNP into three possible subgroups corresponding to three combinations of

alleles. These subgroups are named major homozygotes (AA), heterozygotes (Aa) and

minor homozygotes (aa). We shall denote these subgroups as 0, 1 and 2, corresponding

to the number of minor alleles for that SNP. For this reason, a diallelic SNP is usually

considered to be a discrete random variable taking values from {0, 1, 2}. For a more

complicated genetic instrument, such as a triallelic SNP where there are three possible

alleles at one locus, there is no natural ordering of the six possible subgroups given by

the SNP. A triallelic SNP can be considered as either an unordered categorical random

variable or a discrete random variable using the average phenotype levels as an ordering.

Genetic sequences can be combined into haplotypes, which can then be used as IVs

(2). A haplotype is a combination of alleles, one from each SNP measured, which are in-

herited together. Humans have two haplotypes at each locus, one from each parent. When

SNPs are inherited together, usually due to physically proximity on the same chromosome,

haplotypes can be inferred from SNP data using computer software as generally not all

possible combinations of SNP alleles will be present in a population. In some cases, haplo-

types can be determined uniquely from SNP data, whereas in others, there is uncertainty

in this determination. If the SNPs satisfy the IV assumptions, then the haplotypes will

also satisfy the IV assumptions.

1.4 Examples of Mendelian randomization

Mendelian randomization has been used in applied studies for a number of different con-

texts. A systematic review of applied Mendelian randomization studies was published by

Bochud and Rousson in 2010 (60) and a list of the phenotypes and outcomes of some

causal associations which have been assessed using Mendelian randomization is given in

Table 1.3. The list includes the fields of epidemiology, nutrition, sociology, and economics.

In summary, the only limitation in the use of Mendelian randomization to assess the causal

effect of a phenotype on an outcome is the availability of a suitable genetic variant to use

as the IV (2; 40).
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Nature of phenotype Phenotype Outcome Reference

Biomarker

CRP insulin resistance (61)

CRP CIMT (62)

CRP CHD (63; 64)

CRP cancer (65)

homocysteine stroke (66)

SHBG CHD (67)

lp(a) MI (68)

HDL-C MI (69)

APOE cancer (70)

folate blood pressure (71)

Physical characteristic

BMI CIMT (72)

BMI blood pressure (73)

BMI early menarche (74)

fat mass academic achievement (75)

Dietary factor

alcohol intake oesophageal cancer (76)

alcohol intake blood pressure (43)

milk intake metabolic syndrome (77)

caffeine intake stillbirth (78)

Pathological behaviour

alcohol abuse drug abuse (79)

ADHD education (80)

depression education (80)

Inter-generational effects interuterine folate NTD (24; 81)

Table 1.3: Examples of causal associations assessed by Mendelian randomization in applied

research (a systematic list can be found in (60)). Acronyms: CRP = C-reactive protein,

SHBG = sex-hormone binding globulin, lp(a) = lipoprotein(a), HDL-C = high-density

lipoprotein cholesterol, APOE = apolipoprotein E, BMI = body mass index, ADHD =

attention deficit hyperactivity disorder; CIMT = carotid intima-media thickness, CHD =

coronary heart disease, MI = myocardial infarction, NTD = neural tube defects
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1.5 The CRP CHD Genetic Collaboration dataset

This dissertation is motivated by data on C-reactive protein (CRP) and coronary heart

disease (CHD) collected by the CRP CHD Genetics Collaboration (CCGC) (82).

The CCGC is a collaboration of 47 epidemiological studies seeking to ascertain the

causal role of CRP on CHD using a Mendelian randomization approach. CRP is an acute-

phase protein found in the blood which is associated with inflammation. It is known that

CRP is observationally associated with CHD (83; 84), but it is not known whether this

association is causal (85; 86; 87; 88). Studies from the collaboration measure CRP levels,

genes relating to CRP, and CHD events. We use the term ‘prevalent’ to refer to a CHD

event prior to blood draw for CRP measurement and ‘incident’ to refer to a CHD event

subsequent to blood draw. Individual participant data (IPD) have been collected by the

coordinating centre. In this dissertation, we restrict attention to participants of European

descent, excluding the four studies with no European descent participants from analysis.

This is to ensure greater homogeneity of the study populations and to prevent violations

of the IV assumptions due to population stratification (40).

Table 1.4 lists the the major statistical features of the studies of the CCGC. Further

epidemiological characterization of the studies can be found in Appendix 1 of the published

paper from the collaboration (64), which is reproduced in this dissertation as Appendix

G. General features of the studies can be found in Appendix G, Table B. Study acronyms

are given in Appendix H. We discuss below issues relating to the phenotype, outcome,

genetic instruments and study design which are relevant to the methods developed in this

dissertation.

1.5.1 Study design

The collaboration includes prospective studies: cohort studies, case-cohort studies, nested

case-control studies (both matched and unmatched); and retrospective studies: case-

control studies (unmatched). In some prospective studies, CRP measurements have not

been taken at recruitment, but rather at a later occasion, which we have defined as our

baseline. Hence, some of the individuals who had incident events in the original study

will have prevalent events in the baseline-transformed study. Four of the studies in the

collaboration did not provide IPD but only summary data on numbers of individuals with

and without CHD events for each genotype.
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1.5 The CRP CHD Genetic Collaboration dataset

1.5.2 Phenotype data

The phenotype CRP was measured throughout using a high-sensitivity assay. Some of

the studies do not measure CRP level for all individuals, and others do not measure it

for any individuals. In prospective cohort studies where individuals with a CHD event at

baseline were not excluded from the study due to the study design, CRP measurements

for individuals with prevalent CHD were excluded from analysis. In nested (prospective)

case-control studies, blood was drawn and stored at baseline, to enable pre-CHD event

measurement of CRP. In retrospective case-control studies, CRP measurements for cases

were excluded from analysis, as they were measured after the CHD event, to prevent bias

in the causal effect due to reverse causation. In both nested and retrospective case-control

studies, preferential selection of diseased individuals into the study population induces

an association between the IV and the outcome, known as selection bias, hence inference

on CRP is taken only on the controls, as they form a more representative sample of the

population as a whole (89). Table 1.4 lists the number of individuals in each study with

a CRP measurement suitable for use in the IV analysis according to the criteria above.

Further details on the measurement and storage of CRP can be found in Appendix G,

Table C.

1.5.3 Genetic data

The 43 studies in the collaboration with European descent participants measure differ-

ent genetic information in the form of SNPs in the CRP gene region. SNPs measured

which lie outside the CRP gene region were discarded due to potential violation of the

IV assumptions. This gene region is on chromosome 1 and is responsible for regulation of

CRP. The number of SNPs measured in each study varied from 1 to 13. Over 20 SNPs

in total were measured in at least one study. Four SNPs were pre-specified in the study

protocol (82) as the instruments to be used in the analysis: rs1205, rs1130864, rs1800947

and rs3093077. These four SNPs show varying degrees of correlation and give rise to

five haplotypes (Table 1.5) which comprise 99% of the variation exhibited in European

descent populations (82). Over 99% of individuals in the CCGC had a genotype which

was compatible with these haplotypes. Only 6 studies measure all four of the pre-specified

SNPs. Some studies measure SNPs which are in complete linkage disequilibrium (LD)

with one of the pre-specified SNPs, and which can be used as proxies for these SNPs (90).

20 measure all four SNPs or proxies thereof and an additional 17 measure some three out

of these four. Five of the remaining studies considered measure fewer than this, and the

final study ISIS measures no SNPs which correspond to any of these four.

15



1.5 The CRP CHD Genetic Collaboration dataset

Haplotype rs1205 (g1) rs1130864 (g2) rs1800947 (g3) rs3093077 (g4)

1 C T G T

2 C C G T

3 C C G G

4 T C G T

5 T C C T

Table 1.5: Haplotypes in the CRP gene region tagged by four pre-specified SNPs

We use proxy rs1417938 which is in complete LD with rs1130864, and proxies rs3093068

and rs12068753 which are in complete LD with rs3093077. For studies FHSGRACE and

INTERHEART, we use proxy rs2794521 in place of rs3093077, which alongside the other

pre-specified SNPs tags the same 5 haplotypes as the pre-specified SNPs, as noted in the

protocol paper (82). For study ARIC, we use SNPs rs2794521 in place of rs3093077 and

the triallelic SNP rs3091244, which tags both SNPs rs1205 and rs1130864. For study

ISIS, we used SNP rs2808628, which is in the CRP gene region but is not a proxy of any

of the pre-specified SNPs. We were able to verify the stated LD relations in the Seat-

tleSNP database (http://pga.gs.washington.edu [checked 01/12/09]), and in the SNAP

database (http://www.broadinstitute.org/mpg/snap/ [checked 01/06/10]) (90), and to as-

sess the correlation of these SNPs in studies from the collaboration measuring both the

pre-specified and proxy SNP, where we saw almost complete LD. Throughout this disser-

tation in the text and in all graphs and tables, proxy SNPs are included as if they are

the SNP of interest. We denote rs1205 (or proxies thereof) as g1, rs1130864 (or proxies

thereof) as g2, rs1800947 (or proxies thereof) as g3, and rs3093077 (or proxies thereof) as

g4.

There was some sporadic missingness in the genetic data in most of the studies, al-

though this was rarely greater than 10% missingness per SNP and usually much less.

Table 1.5 lists the pre-specified SNPs measured in each study. Further details on the

measurement and storage of the genetic material can be found in Appendix G, Table D.

1.5.4 Outcome data

The outcome CHD was defined as fatal coronary heart disease (based on International

Classification of Diseases codings) or nonfatal myocardial infarction (using World Health

Organization criteria). In five studies, coronary stenosis (more than 50% narrowing of at

least one coronary artery assessed by angiography) was also included as a disease outcome.

Only the first CHD event was included in analysis; an individual could not contribute
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1.5 The CRP CHD Genetic Collaboration dataset

more than one event to the analysis. We consider either a binary (all studies) or a survival

outcome (cohort studies). Further details on the classification of disease in each study can

be found in Appendix G, Table E.

1.5.5 Covariate data

Data on various covariates were measured by the individual studies, including physical

variables such as body mass index (BMI), systolic and diastolic blood pressure; lipid

measurements, such as total cholesterol, high-density lipoprotein cholesterol (HDL-C),

and low-density lipoprotein cholesterol (LDL-C), triglycerides, apolipoprotein A1, and

apolipoprotein B; and inflammation markers, such as lipoprotein(a), interleukin 6, and

fibrinogen. Graphs of the associations between the SNPs and covariates can be found in

Figure 1 of the published paper from the collaboration (64), reproduced in Appendix F,

and p-values for the correlation of haplotypes and SNPs with certain covariates can be

found in Appendix G, Tables F and H. These show strong associations of CRP with each of

the SNPs (p < 10−30 for each of the four SNPs), but no more significant associations with

any covariate than would be expected by chance (Figure 1, Appendix F: out of 84 tested

associations between a covariate and SNP, one had p < 0.01 (p = 0.003 for association

between height and rs1205), and three had p ≤ 0.05). We conclude that the SNPs appear

to be valid IVs for CRP.

Of particular interest is fibrinogen, a soluble blood plasma glycoprotein, which enables

blood-clotting and is also associated with inflammation. In this dissertation in addition

to the causal CRP-CHD association, we consider Mendelian randomization analysis of

the causal association of CRP on fibrinogen. We use fibrinogen as an outcome for several

reasons. Firstly, as a continuous variable, it is more convenient to use fibrinogen to demon-

strate methods for IV analysis than CHD, a binary or survival outcome (91). There are

specific difficulties in IV methods for analysis of binary outcomes which we shall discuss

at length later, but which are avoided by the use of a continuous outcome. Secondly,

the causal association of CRP on fibrinogen is of interest in its own right. The pathway

of inflammation is not well understood, but is important as both CRP and fibrinogen

are risk factors for coronary heart disease (CHD). Although CRP is associated with CHD

risk, this association reduces on adjustment for various risk factors, and attenuates to near

null on adjustment for fibrinogen (84). It is important therefore to assess whether CRP

is causally associated with fibrinogen, since if so conditioning the CRP-CHD association

on fibrinogen would represent an over-adjustment, which would attenuate a true causal

association.
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1.5 The CRP CHD Genetic Collaboration dataset

1.5.6 The need for Mendelian randomization

CRP is observationally associated with many known covariates which are also risk factors

for CHD (Appendix G, Table G). Although adjustment for these covariates is possible

and can be shown to reduce the association of CRP with CHD to be compatible with no

association (Appendix G, Table I), such adjustment is controversial as the causal pathway

is unknown, and so it is unclear which covariates should and should not be adjusted for

in analysis. Mendelian randomization is able to answer the question of causal association

without making assumptions about covariates, except that they are not associated with

the SNPs used as IVs.

1.5.7 Statistical issues and difficulties in CCGC

The differences between the studies in the CCGC lead to difficulties in evidence synthesis

and possible statistical heterogeneity in causal estimates from each of the studies.

1. Study design: The parameter usually estimated in a cohort study is typically a

hazard ratio, which differs from the odds ratio estimated in a case-control study. In

a matched case-control study, a conditional odds ratio is estimated, which differs

from an unconditional odds ratio estimated in an unmatched case-control study.

2. Phenotype data: Where individuals in a study do not have a phenotype value

due to sporadic missingness, the phenotype can be imputed from its conditional

distribution in the analysis model. However, it is unclear how to include data from

studies where no CRP data was measured.

3. Genetic data: Where studies have measured the same SNPs, it is possible to

combine the information on the association between the genes and the phenotype

across studies in addition to combining the information on the causal association of

the phenotype on outcome. This should gain precision in estimation of the causal

effect. However, when different studies measure different SNPs, some of which may

be common, it is unclear how to combine the information on the genetic association.

4. Outcome data: Some studies include individuals with both prevalent and incident

CHD. It is unclear how to include all of the CHD events from these studies without

including CRP data on individuals twice. It is not clear how to include survival and

binary outcomes in the same analysis model.
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1.6 Overview of dissertation

Additionally, there are the problems of weak instruments and missing data. A ‘weak

instrument’ is defined as an IV for which the statistical evidence of association with the

phenotype is not strong (2). An instrument can be weak if it explains a small amount

of the variation of the phenotype, where the amount defined as ‘small’ depends on the

sample size (44). Weak instruments give rise to estimates of causal association which may

be biased (92).

Although missing data is a problem which is not unique to Mendelian randomization,

missing genetic data represents a specific problem for such analyses. Mendelian random-

ization studies often have limited power, and so excluding participants due to the presence

of missing data is not ideal if they provide information on the causal effect. Conversely,

sample sizes are often large, and so a 10% gain in efficiency may correspond to a large

absolute gain in sample size. Additionally, if there are multiple genetic variants which

can be used as IVs, the aim would be to include all available genetic information, but

not to exclude participants with missing data on some of the available IVs. Rather than

compromising between maximizing genetic information or sample size, an efficient analysis

would be able to include all participants regardless of which data were available.

Finally, the estimate from the Mendelian randomization analysis represents the answer

the causal question: “for an intervention elevating CRP across their whole life, what

would be the impact of an increase in CRP on CHD risk?”. This raises issues due to the

statistical difficulty of expression and interpretation of risk in a heterogenous population in

the absence of knowledge of covariates, known as the problem of collapsibility. For certain

measures of association, termed ‘non-collapsible’, the estimate of risk differs depending on

whether it is considered for an individual or for the population as a whole.

1.6 Overview of dissertation

The structure of the dissertation is as follows. The central thesis is that the Bayesian

framework presented provides a flexible framework for estimating causal effects using in-

strumental variables in a variety of circumstances. Following a review of the existing

literature for statistical issues relating to Mendelian randomization, we highlight two spe-

cific problems of weak instrument bias and non-collapsibility. Weak instrument bias is a

bias caused by failure of the assumption of no association between instrument and con-

founders being violated in finite samples. Non-collapsibility is the failure of an estimator

to average correctly across a confounding distribution, causing the estimator to be differ-

ent when considered conditionally on levels of the confounder, and when considered for

the population as a whole. We investigate how the Bayesian framework introduced in the
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1.6 Overview of dissertation

thesis and other IV estimators behave in terms of bias and coverage in weak and strong

instrument scenarios with continuous and binary outcomes. The problem of missing data

is considered, with methods presented in a Bayesian framework to impute sporadic missing

genetic data. The methods and observations of the previous chapters are used to analyse

causal associations using data from the CCGC. Finally, we summarize our conclusions and

make suggestions for future work.

1.6.1 Chapter structure

Chapter 2 comprises a literature review of statistical methodology for Mendelian ran-

domization. The focus of the review is on methods for IV analysis and issues associated

with estimating causal effects.

Chapter 3 illustrates, explains and estimates the impact of bias from weak instruments,

and discusses how bias can be minimized in analysis and design of Mendelian randomiza-

tion studies.

Chapter 4 shows how non-collapsibility of the odds ratio results in a difference between

the marginal and conditional odds ratio. In instrumental variable analysis, where adjust-

ment for confounders is not necessary to prevent bias by confounding, it is not clear what

the target parameter for inference is. The findings of Chapters 3 and 4 are demonstrated

by the use of simulation and real data.

Chapter 5 presents a Bayesian framework motivated by the issues of Chapters 3 and

4, as well as the research question posed by the data from the CCGC, involving the meta-

analysis of individual patient data from several sources using different genetic instrumental

variables and a variety of study designs.

Chapter 6 investigates the issues of bias and coverage in the analysis of continuous

and binary outcomes. We show that a simple modification to the Bayesian method with

continuous outcomes is analogous to a control variable approach with binary outcomes.

We see how this reduces bias from weak instruments, changes the target causal parameter

in a binary setting and avoids the need for asymptotic distributional assumptions on the

causal parameter.

Chapter 7 introduces the problem of missing data. In a Bayesian setting, missing

data can be naturally imputed where the distribution of the variable with missing data is

defined in the model. However, it is not clear how to interpret the distribution of genetic

data, which are often highly correlated due to the underlying biological processes of genetic

inheritance. We present four methods to incorporate individuals with missing data into a

Bayesian analysis.
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1.6 Overview of dissertation

Chapter 8 represents both the inspiration and culmination of the dissertation, as we

show how the issues of the previous chapters are relevant to the research question of causal

association of CRP on both fibrinogen and CHD. We analyse several different designs of

study, showing how, under certain assumptions, the information on causal parameters

from each of the studies in the collaboration can be combined using a single hierarchical

model.

Chapter 9 comprises a discussion of the dissertation as a whole, giving conclusions,

critical commentary on the limitations of the work presented, and possible directions for

future work.

1.6.2 Novelty and publications

Although the issues of weak instrument bias and non-collapsibility (Chapters 3 and 4)

are known in the contexts of econometrics and causal analysis, they have not received

attention in the context of Mendelian randomization (2; 33). We provide insights into

both issues with novel explanations of the phenomena and simulations to demonstrate

how they relate to Mendelian randomization. We conclude each chapter with practical

advice on the impact of the theoretical results on applied research. Papers published

on the material presented in this dissertation on weak instrument bias are included in

the dissertation as Appendices A and B. Although Bayesian estimation using IVs has

been proposed elsewhere, the Bayesian framework of Chapter 5 is novel, as is the work in

Chapter 6 on the properties of the Bayesian and other IV methods with continuous and

binary outcomes. A paper published on the Bayesian framework is included as Appendix

C, and a submitted paper on the properties of the IV methods as Appendix D. The work on

missing data (Chapter 7) is novel (45); an accepted paper on the missing data methods is

included as Appendix E. The methods developed for the CCGC applied analysis (Chapter

8) contain several novel components, such as use of haplotypes for studies measuring

different numbers of SNPs and inclusion of studies without phenotype measurements.

The applied CCGC paper is included as Appendix F, with detailed tables published as

eAppendix 1 to the applied paper included as Appendix G, a list of study abbreviations

and names published as eAppendix 2 included as Appendix H, and a précis of the statistical

methods detailed in Chapter 8 published as eAppendix 5 included as Appendix I.
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Chapter 2

Existing statistical methods for

Mendelian randomization

This chapter comprises a review of the existing literature on statistical issues relating to

Mendelian randomization. The scope of this literature review is to discuss methods for

Mendelian randomization, with emphasis on statistical practice. Although specific issues

in instrumental variable (IV) analysis which are relevant to Mendelian randomization

will be discussed, IV analysis will not be reviewed exhaustively. Instrumental variables

methods have been the subject of econometric research and practice for over 80 years

(28; 93), and so a comprehensive treatment is impractical; here we focus on the issues

of bias in finite samples (usually called “weak instrument bias”) and estimation of causal

effects with binary outcomes.

2.1 Review strategy

Papers have been searched for online using Google and Google Scholar search engines,

the search databases PubMed and Web of Science, and the search facilities in the jour-

nals Statistics in Medicine, International Journal of Epidemiology, American Journal of

Epidemiology, Statistical Methods in Medical Research and the Stata Journal. Terms

searched for were: Mendelian randomiz(s)ation, instrumental variable(s), weak instru-

ment. PubMed reported 127 hits for the search string “Mendelian randomization”, Web

of Science 352 and Google Scholar 1700. PubMed reported 335 hits for the string “instru-

mental variables”, Web of Science 2237 and Google Scholar 74 900 (correct on 25/1/11).

Papers were ranked by number of citations and date of publication, and the higher ranking

and more epidemiologically relevant papers were read preferentially when the number of

papers found was high. Relevant papers were found from the references of other papers
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2.2 Finding a valid instrumental variable

read. Abstracts were read to search for methodological papers preferentially over applied

papers, although some applied papers have been included in the review.

2.2 Finding a valid instrumental variable

As has been stated in Section 1.2.2, in order for a genetic marker to be used to estimate

a causal effect, it must satisfy the assumptions of an instrumental variable.

We assume that we have an outcome Y which is thought of as a function of a phenotype

X and confounder U . We consider that the confounding factors can be summarized by

a single random variable U (94), which satisfies the requirements of a sufficient covariate

(95). A sufficient covariate is a covariate which, if known and conditioned on, would

give an estimate of association equal to the causal association. As U is unlikely to be

dominated by just a few confounding factors, ability to reduce the confounding factors to

a univariate random variable seems a reasonable assumption. If we consider confounders

U1, . . . Up which are linearly related and normally distributed, then we can scaleX and Y to

replace these Uj with a single U with a standard normal distribution. We assume that the

phenotype X can be expressed as a function of the confounder U and the genetic marker

G. G may be a single genetic variant or a matrix corresponding to several independent

genetic variants. G is assumed to satisfy the IV assumptions of Section 1.2.2, rewritten

here in terms of random variables:

i. G is not independent of X (G ̸⊥⊥ X),

ii. G is independent of U (G ⊥⊥ U),

iii. G is independent of Y conditional on X and U (G ⊥⊥ Y |X,U).

This means that the joint distribution of Y,X, U,G, p(y, x, u, g) factorizes as

p(y, x, u, g) = p(y|u, x)p(x|u, g)p(u)p(g) (2.1)

which corresponds to the directed acyclic graph (DAG) Figure 2.1 (33; 95).

In the “potential outcomes” or counterfactual causal framework, a set of outcomes

Y (x), x ∈ X are considered to exist, where Y (x) is the outcome which would be observed

if the phenotype were set to X = x. At most one of these outcomes is ever observed

(96). The causal assumptions encoded in the DAG (Figure 2.1) can be expressed in the

language of potential outcomes as follows (25):

i’. p(x|g) is a non-trivial function of g
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G X

U

Y

Figure 2.1: Directed acyclic graph (DAG) of Mendelian randomization assumptions

ii’. E(Y (x)|G) = E(Y (x))

iii’. Y (x, g) = Y (x)

where Y (x, g) is the potential outcome which would be observed if X were set to x and

G were set to g. Assumption ii’. is named ‘conditional mean independence’ and states

that the mean value of the outcome for each phenotype value does not depend on the

IV. This would not be true if, for example, the IV were associated with a confounder U .

Assumption iii’. is named ‘exclusion restriction’ and states that the observed outcome for

each value of the phenotype is the same for each possible value of the IV. This means

that the IV can only affect the outcome through its association with the phenotype (97).

We use the notation do(X = x) to denote setting the value of X to x independent of

confounders (98). We note that E(Y |X = x) ̸= E(Y |do(X = x)) in general, for example

due to confounding.

In order to interpret the unconfounded estimates produced by IV analysis as causal

estimates, we require the additional structural assumption:

p(y, u, g, x|do(X = x0)) = p(y|u, x0)1(X = x0)p(u)p(g) (2.2)

where 1(.) is the indicator function. This ensures that intervening on X does not affect

the distributions of any other variables except the conditional distribution of Y (99).

2.2.1 Parallel with non-compliance

An area in biostatistics where IVs are widely used is the adjustment of randomized trial

results for non-compliance (25; 28). Non-compliance refers to the failure of participants in

a clinical trial to adhere to a specified treatment regime. In this case, the IV is treatment

assignment and the phenotype is treatment as received. Generally, treatment assignment

is associated with treatment as received (assumption i.); treatment is assigned at ran-

dom, so is independent of confounders (assumption ii.); and treatment assignment has
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2.2 Finding a valid instrumental variable

no direct effect on outcome and will be independent of outcome conditional on treatment

received and confounders (assumption iii.). An intention to treat (ITT) analysis consid-

ers the difference in outcome between treatment groups as assigned. This answers the

causal question: “how much does an individual benefit from being assigned to a treatment

group?”. An IV analysis considers the causal difference in outcome due to treatment, and

answers the question: “how much does an individual benefit from receiving treatment?”

(29).

Although there are important parallels between Mendelian randomization and non-

compliance analyses, there are also several differences. The allocated and received treat-

ment in a randomized trial are usually dichotomous, and there is usually a strong associa-

tion between the two, with the majority of participants following their treatment regime.

In Mendelian randomization, the genotype is discrete, but generally polychotomous, and

phenotype is generally continuous. The proportion of variation in the phenotype explained

by the IV may be as small as 1% or less (100). In adjustment for non-compliance, the

IV is randomly allocated and so independence of the IV and confounders is automatic; in

Mendelian randomization, this requires biological knowledge of the genetic variant.

2.2.2 Violations of the IV assumptions

The IV assumptions can be violated in several ways. We here distinguish between finite-

sample violations and asymptotic violations. If the confounder is continuous, then the

correlation between the genotype and confounder in any given dataset is almost surely dif-

ferent from zero, even when G and U are uncorrelated as random variables. We term this

a “finite-sample violation” (101; 102) and do not regard this as invalidating an IV. How-

ever, there may be an underlying correlation structure in the random variables G,X, Y, U

which is considered a violation of the IV assumptions. This may be due to biological

factors, epidemiological factors, or genetic factors. These have been well-documented

(33; 36; 38; 40; 103) and here we consider only statistical criteria for validity of the IV.

We note that the assumption of association between G and X does not preclude a

non-causal interpretation to this association (33). Indeed, if G is not a functional variant

of X, but is correlated with a functional variant, then it may still be a valid IV (51). Such

correlation is known as linkage disequilibrium (LD). However, if there is any association

between G and an alternative risk factor, either through pleiotropy (multiple function of

one gene) (104), LD with another functional variant, population substructure (for example

stratification due to ethnic heterogeneity) (35), developmental compensation (the genetic
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effect on phenotype is dampened or buffered by another biological process) (3), or epige-

netics (genetic effects other than those coded by DNA) (105), then the IV is not valid.

The causal estimate based on this IV will be biased, although if the association with the

phenotype is not strong, then the bias may not be large (34).

Typically, the IV assumptions cannot be tested, as the set of all confounders is unknown

(33). Under certain assumptions, when multiple valid IVs are available, an overidentifi-

cation test can help detect violations (Section 2.11.2). When a specific confounder Up is

known, the G-Up association can be tested empirically (3). Throughout this dissertation,

unless explicitly stated otherwise, we assume that the genetic instruments used are valid

IVs.

2.3 Testing for a causal effect

Mendelian randomization studies address two related questions (33): whether there is a

causal link between the phenotype and disease (4; 58), and what is the size of the causal

effect (2; 54).

Under the assumption that the IV is valid, a valid test for the presence of a causal

association ofX on Y is to test for independence ofG and Y , where a significant association

between G and Y is indicative of a causal association (33; 51). However the converse is

not true, as there may be zero correlation between G and Y without independence. This

is known as the non-faithfulness of a DAG (106).

2.4 Estimating the causal effect

Although testing the causal effect is useful, it is more useful to estimate the magnitude

of the causal effect. Issues relating to estimation of this causal effect will be the main

focus of this literature review and dissertation as a whole. In this section, we list some

of the general issues associated with parameter estimation: the assumptions necessary

to estimate a causal effect, definitions of the causal parameters to be estimated, and

collapsibility, which refers to the behaviour of a parameter when marginalized or averaged

across a distribution. Having discussed these issues, we proceed to consider methods for

constructing different IV estimators.
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2.4.1 Additional IV assumptions

In order to estimate the causal effect, it is necessary to make further assumptions to the

ones listed in Section 2.2. General assumptions often thought of as core assumptions

include the ignorability of the selection mechanism of G (107), which means that G is

assigned randomly, and the stable unit treatment value assumption (SUTVA) (96), which

states that the outcome for one individual should be unaffected by variables in the model

relating to the other individuals (108).

For several of our models, a specific structural form is assumed for the joint distribution

of Y,X, U,G. Commonly assumed forms include the linear model, log-linear model, and

the logistic model. In the linear model, we assume that, for each individual i where

i = 1, . . . , N , the phenotype xi is a linear function of the instruments gik for k = 1, . . . , K,

the confounder ui and an error term ϵxi. We generally assume that each instrument takes a

fixed number of discrete values, usually either two or three (gik ∈ {0, 1} or gik ∈ {0, 1, 2}).
The instruments partition the population into genotypic subgroups indexed by j, with

each subgroup containing all individuals with a particular genotype. The outcome yi is

assumed to be a linear function of the phenotype, confounder and an independent error

term ϵyi:

xi = α0 +
∑
k

α1kgik + α2ui + ϵxi (2.3)

yi = β0 + β1xi + β2ui + ϵyi (2.4)

In the log-linear or logistic model, we assume that for each individual i the probability of

event pi is log-linear or logistic in the phenotype and confounder:

f(pi) = β0 + β1xi + β2ui

yi ∼ Binomial(1, pi)

where f(.) is the the logarithm function for a log relative risk model or the logistic function

for a log odds ratio model. With a single instrument gi, we omit the second subscript k.

We identify β1 as our causal effect of interest.

2.4.2 Causal parameters

Generally, the desired causal parameter of interest is that which corresponds to a population-

based intervention, equivalent to a randomized controlled trial (RCT) (109).
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The average causal effect (ACE) (33) under intervention in X is the expected difference

in Y when the phenotype is set to two different values:

ACE(x0, x1) = E(Y |do(X = x1))− E(Y |do(X = x0)) (2.5)

The ACE is zero when there is conditional independence between Y and X given U , but

the converse is not generally true, due to possible non-faithfulness (33).

With a binary outcome, the ACE is also called the causal risk difference. However, it

is often more natural to consider a causal risk ratio (CRR) or causal odds ratio (COR):

CRR(x0, x1) =
E(Y |do(X = x1))

E(Y |do(X = x0))
(2.6)

COR(x0, x1) =
P(Y = 1|do(X = x1))P(Y = 0|do(X = x0))

P(Y = 1|do(X = x0))P(Y = 0|do(X = x1))
(2.7)

2.4.3 Collapsibility

A measure of association is said to be collapsible over a variable if it is constant across the

strata of the variable, and if this constant value equals the value obtained from the marginal

analyses (110). In a log-linear model, the relative risk is collapsible over a confounder U

since

E(Y |do(X = x)) =

∫
exp(β0 + β1 x+ β2 u)p(u)du (2.8)

= exp(β∗
0 + β1 x)

with β0 ̸= β∗
0 but with the same relative risk β1, where p(u) is the marginal distribution

of the confounder U .

In a logistic model, the odds ratio is non-collapsible, as it differs depending on the

distribution of confounders (33). This is because, in general,

E(Y |do(X = x)) =

∫
expit(α + β1 x+ β2 u)p(u)du (2.9)

̸= expit(α∗ + β1 x)

where expit is the inverse of the logistic function. This means that the COR will be different

considered conditionally or marginally on U . Collapsibility is an important consideration

in Mendelian randomization, as the set of confounders are typically unknown. The impact

of the non-collapsibility of the COR will be discussed further in Chapter 4.
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2.5 Ratio of coefficients method

Over the next sections, we discuss methods for IV estimation with both continuous and

binary outcomes. We explain for each method how to estimate a causal association, and

describe specific properties of the estimator. In turn, we consider the ratio of coefficients

method, two-stage methods, likelihood-based methods, semi-parametric methods, and a

method due to Greenland and Longnecker. We proceed to compare and contrast the

estimators.

The ratio of coefficients method, or the Wald method (111), is the simplest way of

estimating the causal association β1 of X on Y . For a dichotomous IV G = 0, 1 and a

continuous outcome, it is calculated as the ratio of the difference in the average outcomes

to the difference in the average phenotype levels between the two IV groups (34; 112).

β̂R
1 =

ȳ1 − ȳ0
x̄1 − x̄0

(2.10)

where ȳj for j = 0, 1 is the average value of outcome for all individuals with genotype

G = j, and x̄j is defined similarly for the phenotype. This estimator is valid under the

assumption of monotonicity of G on X and linearity of the causal association with no

(X,U) interaction (75; 99; 112). Monotonicity means that the average phenotype for each

individual would be increased (or equivalently for each individual would be decreased) if

that person had G = 1 compared to if they had G = 0.

With a binary outcome, the estimator is defined similarly, with ȳj the log of the

probability of an event in a log-linear model or the log odds of an event in a logistic

model. This is also commonly quoted in its exponentiated form as exp(β̂R
1 ) = R1/∆x

where R is the relative risk or odds-ratio and ∆x = x̄1 − x̄0 is the average difference in

phenotype between the two groups (54; 71). This estimator is valid under the assumption

of monotonicity of G on X and a log-linear or logistic model of disease on phenotype with

no (X,U) interaction (99).

For a polytomous or continuous IV, the estimator is calculated as the ratio of the

regression coefficient of outcome on IV (G-Y regression) to the regression coefficient of

phenotype on IV (G-X regression) (2; 28).

β̂R
1 = β̂GY /β̂GX (2.11)

With a continuous outcome, theG-Y regression uses a linear model; with a binary outcome,

a linear model may be used (34), although a log-linear or logistic regression is preferred.
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For linear models, then this estimator is valid when

E(Y ) = β1X + h(U). (2.12)

For a log-linear model, where f is the log function, then this estimator is valid when

E(f(Y )) = β1X + h(U) (2.13)

where h(U) is an arbitrary function of U (99; 112). However, with a logistic model where

f is the logit function, the ratio estimator β̂R
1 does not consistently estimate the coefficient

β1 (94; 99).

The ratio estimator can be intuitively motivated: the increase in Y for a unit increase

in G (β̂GY ) can be estimated as the product of the increase in X for a unit increase in

G (β̂GX) and the increase in Y for a unit increase in X (β̂R
1 ) (2). For this reason, for

continuous outcomes it has been called the linear IV average effect estimator (LIVAE)

(99).

The ratio method uses a single IV. If more than one instrument is used then the causal

estimates for each IV can be calculated separately. A bound on the size of the causal

parameter may be calculated when the associations are non-linear (33; 113). The ratio

estimator has no finite moments (101).

2.5.1 Confidence intervals

If the regression coefficients β̂GY and β̂GX are assumed to be normal, critical values and

confidence intervals for the estimator may be calculated using Fieller’s Theorem (2; 114).

For this, we need the correlation between β̂GY and β̂GX , which is generally assumed to be

zero (89; 100). There are three possible forms of this confidence interval (115):

i. The interval may be a closed interval [a, b],

ii. The interval may be the complement of a closed interval (−∞, a] ∪ [b,∞),

iii. The interval may be unbounded.

The interpretation of the second interval is, for example, that the confidence interval

for the ratio of the normal variables when viewed as a gradient on a graph of Y on X

includes the vertical line (i.e. infinite ratio) but excludes the horizontal line (i.e. zero

ratio). The interpretation of the third interval is that the confidence interval for the

ratio of the normal variables when viewed as a gradient on a graph cannot exclude any

interval of values. These unbounded confidence intervals occur because there is a non-zero
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probability that the denominator term in the ratio may be close to zero. The confidence

interval is more likely to be a closed interval if we have a “strong” instrument, that is an

instrument with a large association with the phenotype.

Alternatively, asymptotically correct confidence intervals can be estimated using a

Taylor expansion (116).

2.6 Two-stage methods

A two-stage method comprises two regression stages: the first-stage regression of the

phenotype on the genetic IVs, and the second-stage regression of the outcome on the

fitted values of the phenotype from the first stage. It is not a likelihood-based method, as

the two stages are performed separately with no feedback from the second stage into the

first.

2.6.1 Continuous outcome - two-stage least squares

With continuous outcomes and a linear model, the two-stage method is known as two-stage

least squares (2SLS), or in some econometrics circles simply as the IV estimator (117). It

can be used with multiple continuous or categorical IVs. The method is so called because

it can be calculated using two regression stages (93). The first stage (G-X regression)

regresses X on G to give fitted values X̂|G. The second stage (X-Y regression) regresses

Y on the fitted values X̂|G from the first stage regression. The causal estimate is this

second-stage regression coefficient for the change in outcome caused by unit change in the

phenotype.

Although estimation in two stages gives the correct point estimate, the standard error

is not correct; the use of 2SLS software is recommended for estimation in practice (118).

The estimated causal parameter is generally assumed to be normally distributed (119).

The variance for the two-stage estimator with continuous outcomes is here calculated using

a sandwich variance estimator to account for uncertainty in the first-stage regression (120;

121). Alternatively, uncertainty can be incorporated by the use of bootstrap confidence

intervals (122; 123). The 2SLS estimator has a finite kth moment with at least (k + 1)

instruments when all the associations are linear and the error terms normally distributed

(124). Estimates are consistent under the assumption of homoskedasticity and correct

specification of the linear regressions (117).

With multiple instruments, the 2SLS estimator may be viewed as a weighted average

of the ratio estimators using the instruments one at the time, where the weights are
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determined by the relative strength of the instruments in the first-stage regression (112;

118).

2.6.2 Binary outcome

The analogue of 2SLS with binary outcomes is a two-stage estimator where the second-

stage regression (X-Y regression) uses a log-linear or logistic regression model. This has

been called the two-stage estimator (125), standard IV estimator (94), pseudo-2SLS (126),

two-stage predictor substitution (2SPS) (127; 128) or Wald-type estimator (99).

However, such regression methods do not always yield ‘consistent’ estimators and have

been called “forbidden regressions” (118; 129). For example, in the logistic case, the

parameter β1 in the logistic model is estimated with bias (99; 130). This is because the

non-linear model does not guarantee that the residuals from the second-stage regression

are uncorrelated with the instruments (126).

An alternative estimate has been proposed, using the residuals from the regression of

phenotype on genotype in the regression of disease on genotype (94). This is known as a

control function approach (131), or two-stage residual inclusion (2SRI) (127). If we have

a first stage regression of X on G with fitted values X̂|G and residuals R̂|G = X − X̂|G,
then the alternative IV estimator comes from a logistic regression additively on X̂|G and

R̂|G. The residual incorporates information from confounders in the first stage regression,

for example with X defined as in equation (2.3), E(R|X = x, U = u) = α2u.

Sandwich variance estimators can be calculated, although coverage may be poor due

to inconsistent estimation of the parameter β1 (94).

2.7 Likelihood-based methods

We consider the likelihood-based limited information maximum likelihood method and a

Bayesian framework which can use a similar model. These likelihood-based methods are

parametric, in contrast to the semi-parametric methods of Section 2.8.

2.7.1 Limited information maximum likelihood method

If we have the linear model (2.3) and (2.4) but subsume the confounder into the error

structure, such that for individual i = 1, . . . , N :

xi = α0 +
∑
k

αkgik + ϵxi (2.14)

yi = β0 + β1xi + ϵyi
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then we can make assumptions of a bivariate normal distribution for ϵ = (ϵY , ϵX)
T ∼

N(0,Σ) and calculate the maximum likelihood estimate of β1. This is known as limited

information maximum likelihood (LIML) (27). We maximize the likelihood substituting

for and profiling out (referred to by economists as ‘concentrating out’) Σ. If we rewrite

the equations (2.14) as:(
1 −β1
0 1

)(
Y
X

)
=

(
α0

β0

)
+

(
α
0

)
G+

(
ϵY
ϵX

)
(2.15)

where α = (α1 . . . αK) and then define matrices B =

(
α
0

)
and Γ =

(
1 −β1
0 1

)
then

we can write the profile likelihood as

N log | det Γ| − N

2
log

∣∣∣∣∣ 1n
((

Y
X

)
Γ−BG

)T ((
Y
X

)
Γ−BG

)∣∣∣∣∣ (2.16)

We then maximize the profile likelihood to find the LIML estimate of β1, noting that

det |Γ| = 1.

An alternative to LIML is full information maximum likelihood (FIML) (27). In FIML,

each of the equations in the model are estimated simultaneously, whereas in LIML only a

limited number of the equations are estimated and the other parameters are profiled out.

For example, if there are measured covariates, then these can be incorporated into the

model. If we seek to simultaneously model these covariates as functions of Y , X and G, in

LIML the covariates are replaced by their unrestricted reduced form (i.e. written in terms

of the parameters of equations 2.15), and only the parameters relevant to the equations of

interest are estimated. Hence LIML is similar to FIML where there is a single phenotype

of interest, but where there are multiple phenotypes, some of which are of interest, the

estimates differ.

The LIML estimate (β̂L
1 ) minimizes the residual sum of squares from the regression of

the component of Y not caused by X, (yi − β̂L
1 xi), on G. Informally, the LIML estimator

is the one for which the component of Y due to confounding is as badly predicted by G

as possible.

LIML has been called the “maximum likelihood counterpart of 2SLS” (132) and is

equivalent to 2SLS with a single instrument and single phenotype. As with 2SLS, estimates

are sensitive to heteroskedasticity and misspecification of the equations in the model. Use

of the LIML estimator has been strongly discouraged, as it does not have defined moments

for any number of instruments (133). However, use has also been encouraged especially

with weak instruments, as the median of the distribution of the estimator is close to

unbiased with even weak instruments (118).
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2.7.2 Bayesian methods

Although Bayesian techniques for IV analysis do exist in the econometrics literature (134;

135) and the non-compliance literature (136), Bayesian methods for IVs are rare and have

not received much attention from applied practitioners (137). In the context of genetic

epidemiology, they have been used for meta-analysis of summary results from Mendelian

randomization studies (71; 138) and modelling of gene-phenotype associations (139)

Bayesian methods have been recently proposed for IV analysis in the context of Mendelian

randomization (140; 141). Models equivalent to equations (2.14) from LIML can be esti-

mated in a Bayesian setting. Bayesian models are appealing due to the flexibility of the

modelling assumptions, lack of reliance on conventional asymptotics for inference, correct

propagation of uncertainty through the model, and natural extension to meta-analysis

through the use of hierarchical modelling. A drawback is that prior distributions of the

model parameters and error structures of the random variables must be fully specified.

Posterior distributions can be estimated using Monte Carlo Markov chain (MCMC) meth-

ods. Bayesian methods will be discussed further in Chapter 5.

2.8 Semi-parametric methods

A semi-parametric model is a model with both parametric and non-parametric compo-

nents. Typically semi-parametric estimators with IVs assume a parametric form assumed

for the equations relating the outcome and phenotype, but make no assumption on the

distribution of the errors. Semi-parametric models are designed to be more robust to

model misspecification than fully parametric models (97).

2.8.1 Generalized method of moments

The generalized method of moments (GMM) is a semi-parametric estimator designed as

a more flexible form of 2SLS to deal with problems of heteroskedasticity of error distri-

butions and non-linearity in the two-stage structural equations (126; 142). With a single

instrument, the estimator is chosen to give orthogonality between the instrument and the

residuals from the second-stage regression. Using bold face to represent vectors, if we have

E(y) = f(x;β) (2.17)
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then the GMM estimate is the value of β such that∑
i

(yi − f(xi;β)) = 0 (2.18)

and
∑
i

gi (yi − f(xi;β)) = 0

where the summation is across i, which indexes study participants. In the linear case,

f(xi;β) = β0 + β1xi; in the log-linear case, f(xi;β) = log(β0 + β1xi); and in the logistic

case, f(xi;β) = logit(β0 + β1xi); where β1 is our causal parameter of interest. We can

solve these two equations numerically (142).

When there is more than one instrument, gi becomes gik and we have a separate

estimating equation for each instrument k for k = 1, . . . , K. The orthogonality conditions

for each instrument cannot generally be simultaneously satisfied. The estimate is taken

as the minimizer of the objective function

(y − f(x;β))TG(GTΩG)−1GT (y − f(x;β)) (2.19)

where G = (1g1 . . .gK) is the N by K + 1 matrix of instruments, including a column of

1s for the constant term in the G-X association.

Although this gives consistent estimation for general Ω, efficient estimation is achieved

when Ωij = cov(ϵi, ϵj) (i, j = 1, . . . , N), where ϵi is the residual yi− f(xi;β) (143). As the

estimation of Ω requires knowledge of the unknown β, we use the two-stage approach of

Greene (144). We firstly estimate β∗ using (GTΩG) = I, where I is the identity matrix,

which gives consistent but not efficient estimation of β. We then use ei = yi − f(xi;β
∗)

to estimate GTΩG =
∑

i gigi
T ϵ2i as

∑
i gigi

T e2i in a second-stage estimation (142).

2.8.2 Structural mean models

The structural mean model (SMM) approach is another semi-parametric estimator de-

signed in the context of randomized trials with incomplete compliance (145; 146). We

recall that the potential outcome Y (x) is the outcome which would have been observed if

the phenotype X were set to x. This is also written as Y |do(X = x) (147). In particular,

the exposure-free outcome Y (0)|X = x is the outcome which would have been observed if

we had set X = 0 (97). Explicit conditioning is performed on X = x to show that no other

variable is changed from the value it would take if X = x were true. We note that the

expectation E(Y (0)|X = x) is typically different from the expected outcome if X = 0 had

been observed, as intervening on X alone would not change the confounder distribution.

An explicit parametric form is assumed for the expected difference in potential outcomes
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between the outcome for the observed X = x and the potential outcome for X = 0. In

the continuous case, the linear or additive SMM is

E(Y (x))− E(Y (0)|X = x) = β1x (2.20)

and β1 is taken as the causal parameter of interest. In the context of non-compliance, this

is referred to as the “effect of treatment on the treated” (148).

As the expected exposure-free outcome E(Y (0)|X = x) is statistically independent of

G, the causal effect is estimated as the value of β1 which gives zero covariance between

E(Y (0)|X = x) = E(Y (x) − β1x) and G. This process is known as ‘G-estimation’ (149;

150). The estimating equations are∑
i

(gik − ḡk)(yi − β1xi) = 0 k = 1, . . . , K (2.21)

where ḡk =
1
N

∑
i gik and the summation is across i, which indexes study participants.

Where the model for the expected outcomes is non-linear, this is known as a generalized

structural mean model (GSMM). With a binary outcome, it is natural to use a log-linear

or multiplicative GSMM:

logE(Y (x))− logE(Y (0)|X = x) = β1x (2.22)

Unfortunately, due to non-collapsibility, the logistic GSMM cannot be estimated in

the same way, as the expectation logitE(Y (x)) depends on the distribution of the IV p(g)

(151). Vansteelandt and Goetghebeur address this problem by estimating Y (x) assuming

an observational model (152):

logitE(Y (x)) = β0a + β1ax (2.23)

where the subscripts a indicate associational, as well as an GSMM model:

logitE(Y (x))− logitE(Y (0)|X = x) = β1cx (2.24)

where the subscript c indicates causal. The associational parameters can be estimated by

logistic regression, leading to estimating equations∑
i

(gik − ḡk) expit(Ŷ (x)− β1cxi) = 0 k = 1, . . . , K (2.25)

where logit Ŷ (x) = β̂0a + β̂1ax (153).

We note that the choice of estimating equations presented here are not the most effi-

cient, but lead to consistent estimates (152).
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2.9 Method of Greenland and Longnecker

A method of Greenland and Longnecker for meta-analysis of summarized data (154) has

been proposed for Mendelian randomization analysis (155). The method for meta-analysis

uses summary data in the form of log odds ratios for different exposure groups relative to

a baseline group. These ratios are correlated, and so an estimate of the overall effect is

calculated allowing for correlation using generalized least squares regression.

In adopting the method for IV analysis, we partition individuals into genotypic sub-

groups, with every individual in each subgroup having the same genotype. We estimate

the difference in average phenotype and in log odds ratio of each subgroup compared to a

baseline subgroup, and estimate a causal effect of increase in log odds ratio of disease for

a unit increase in phenotype allowing for correlation between the subgroups using gener-

alized least squares regression. The subgroups take the place of the exposure groups in

the original method (65). This method is similar to one proposed for Bayesian analysis

presented in Chapter 5. It does not require individual participant data, only numbers

of diseased and healthy individuals and mean phenotype values in each subgroup. No

allowance is made for the possible uncertainty in the mean phenotype values.

2.10 Comparison of methods

In several cases, estimates from different IV methods coincide. With a single instrument,

the ratio and two-stage estimates are equal (99), and in the continuous setting the 2SLS,

LIML, GMM and SMM point estimates coincide, although their estimates of uncertainty

may not (97). For a general instrument, the linear (additive) and log-linear (multiplicative)

GMM and GSMM models give rise to the same estimates (97). This is not true in the

logistic case (97).

We will consider the following features when comparing IV methods: existence of

finite moments, mean bias, median bias, coverage under the null, power, and robustness

to model misspecification. Median bias refers to the difference between the median of the

estimator over its distribution and the true parameter value. We generally prefer median

bias as a criterion to mean bias, as mean bias is undefined when an estimator has no

finite first moment. We are especially concerned about the behaviour of the estimators

when the instruments are not strongly associated with the phenotype, so called weak

instruments (see Section 2.13). Chapter 6 includes a theoretical discussion of the methods

and comprehensive set of simulations for empirical comparison.
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2.11 Efficiency and validity of instruments

2.11.1 Use of measured covariates

If we can find measured covariates which explain variation in the phenotype or outcome,

and which are not on the causal pathway between phenotype and outcome, then we can

incorporate such covariates in our model. In econometrics, such a variable is called an

an exogenous regressor or included instrument, as opposed to an IV, which is called an

excluded instrument (117). This is because the covariate is included in the model for

the outcome. Incorporation of covariates increases efficiency and precision of the causal

estimate (118). In a two-stage estimation, any covariate adjusted for in the first-stage

regression should also be adjusted for in the second-stage regression; failure to do so can

cause associations between the IV and confounders leading to bias. When adjusting for

covariates, the correct measure of instrument strength is a partial R2 statistic (156) (see

Section 2.13).

2.11.2 Overidentification tests

When more than one instrument is used, an overidentification test, such as the Basmann

test (157) or Sargan test (158), can be carried out to test whether the instruments have

additional effects on the outcome beyond that mediated by the phenotype (30). Overi-

dentification means that the number of instruments used in a GMM (or 2SLS) method

is greater than the number of phenotypes measured. (The latter is usually one, although

causal effects for additional phenotypes could be simultaneously estimated if the IV is

valid for more than one phenotype.) This means that there is no unique solution to the

GMM equations. The overidentification test is equivalent to testing whether the IVs have

residual associations with the outcome once the main effect of the phenotype has been

removed (30).

For example, the Sargan test statistic (117) is motivated as the average of the residual

sum of squares in the regression of residuals from the IV regression on the instruments.

It has a χ2
K−1 distribution under the null hypothesis of asymptotic orthogonality of the

instruments to the IV residual errors, where K is the number of instruments.

Sargan’s statistic = (y − β̂0 − β̂1x)
T (I− PG)(y − β̂0 − β̂1x)/N (2.26)

where PG = G(GTG)−1GT is the projection matrix of G = (1g1 . . .gK), the N by K + 1

matrix of instruments. I is the identity matrix and N is the total number of individuals.
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Overidentification tests are omnibus tests, where the alternative hypothesis includes

failure of IV assumptions for one IV, failure for all IVs, and non-linear association between

phenotype and outcome (117). They have limited power (30) and so may have limited

practical use in detecting violations of the IV assumptions.

2.12 Meta-analysis

Having considered methods for the analysis of a single Mendelian randomization study, we

turn our attention to the issue of meta-analysis. Meta-analysis of Mendelian randomization

studies is of particular interest as it is generally necessary for precise estimation of the

gene-phenotype and gene-disease associations (40), and hence for the estimation of the

causal effect.

If it is possible to estimate the causal effect in each study, a meta-analysis can be

performed directly on the estimated causal associations (89). However, due to imprecise

or near-zero G-X association in some studies, some of the causal associations can have

large or even infinite variance.

The simplest situation for meta-analysis is when a single dichotomous IV is used,

which is the same in all studies. One difficulty is that when some studies are used in

calculating both G-X and G-Y associations, these estimates will be correlated (2). If all

studies measure both these associations, we can test the effect of phenotype on outcome

by plotting a graph of the regression estimates of G-Y association against the regression

estimates of G-X association (89). The points on this graph will have error in both

directions and the gradient of the graph will show the causal X-Y association.

To include studies when either or both associations have been reported, a bivariate

distribution of phenotype difference and outcome difference can be assumed, with variance-

covariance matrix the sum of two components, for within and between study heterogeneity

(71). For each study m measuring both G-X and G-Y associations, the estimated G-X

association β̂GXm is assumed to be normally distributed with mean µxm and variance

vxm and the estimated G-Y association β̂GYm is normally distributed with mean µxm and

variance vxm. The correlation τ between βGXm and βGYm is assumed to be independent

of m. The mean values µxm are assumed normally distributed across studies with mean

µx and variance σx and the mean values µym are normally distributed with mean µy and

variance σy with correlation ψ between µxm and µym.

39



2.13 Weak instruments

(
β̂GXm

β̂GYm

)
∼ N2

((
µxm

µym

)
,

(
vxm τ

√
vxm vym

τ
√
vxm vym vym

))
(2.27)(

µxm

µym

)
∼ N2

((
µx

µy

)
,

(
σx ψ

√
σx σy

ψ
√
σx σy σy

))
To include studies where only one of the associations has been reported, we use the

marginal distribution of β̂GXm or β̂GYm as appropriate. The correlation τ between associ-

ations within each study is usually assumed to be zero (138). A sensitivity analysis shows

that this assumption is reasonable and robust (71). This method for the meta-analysis of

the effect of one SNP on X and Y can be extended to treat G as a trichotomous random

variable (138), corresponding to the three possible values of a SNP.

The parameters in the meta-analysis can be estimated either by maximization of the

log-likelihood using numerical methods (71) or by using Bayesian methods with flat priors

(71; 138). We note that this method only covers meta-analysis of causal associations

when one SNP is measured in every study; Bayesian methods for meta-analysis to cover

situations of multiple SNPs and different SNPs will be considered further in Chapter 5.

2.13 Weak instruments

Practical application of IV methods, especially in a Mendelian randomization context,

is complicated by the issue of weak instruments. A ‘weak instrument’ is defined as an

instrument for which the statistical evidence of association with the phenotype (X) is not

strong (2). An instrument can be weak if it explains a small amount of the variation

of the phenotype, where the amount defined as ‘small’ depends on the sample size (44).

The F statistic in the first stage regression of X on G is usually quoted as a measure of

the strength of an instrument (92). In this context, the F statistic is also known as the

Cragg–Donald statistic (159). It is related to the proportion of variance in the phenotype

explained by the genetic variants (R2), sample size (N) and number of instruments (K)

by the formula F = (N−K−1
K

) ( R2

1−R2 ). As the F statistic depends on the sample size and

number of instruments used, instrument strength is not a property of the genetic variant

itself; the absolute strength of an instrument is only relevant in the context of a specific

dataset. Weak instruments typically produce estimates of causal association with wide

confidence intervals, but there is a further troublesome aspect to IV estimation with weak

instruments.

Although IV methods are asymptotically unbiased, they demonstrate systematic finite

sample bias. This bias, known as ‘weak instrument bias’, acts in the direction of the
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confounded observational association between phenotype and outcome, and depends on

the strength of the instrument (160). Weak instruments are also associated with under-

estimated confidence intervals and poor coverage properties (161). A generally quoted

criterion is that an instrument is weak if the F statistic in the G-X regression is less than

10 (2; 102). However, using instruments with F > 10 only reduces bias to less than a

certain level, and problems with weak instrument bias still occur (92).

A power-series expansion shows that the bias in the IV estimator is related to the F

statistic (F ) from the G-X regression (101). As F decreases, the bias of the IV estima-

tor approaches the bias of the confounded association. If we consider “weak instrument

asymptotics”, where as the sample size increases, the coefficients in the G-X regression

tend to zero and specifically are O(N− 1
2 ), where N is the sample size, then, as the sample

size tends to infinity, the F statistic from the G-X regression tends to a finite limit (102).

We consider the relative mean bias B, which is the ratio of the bias of the IV estimator

to the bias of the confounded association β̂OBS found by linear regression of Y on X:

B =
E(β̂IV )− β1

E(β̂OBS)− β1
(2.28)

This measure has the advantage of invariance under change of units in Y . The relative

mean bias in this case from the 2SLS method is asymptotically approximately equal to

1/F (102).

The accuracy of this approximation has been assessed by tabulating a series of critical

values derived from simulations of the required F statistic to ensure, with 95% confidence,

a relative mean bias in the 2SLS method of less than 5%, 10%, 20% and 30% with a given

number of instruments (161). While this approximation is reasonable for a large number

of instruments, it is less accurate when there are few instruments, as there typically are

in an epidemiological context. Indeed, the relative mean bias cannot be estimated when

there is only one instrument, since the 2SLS IV estimator and hence B has no finite kth

moment when the number of instruments is less than or equal to k (162).

While the topic of weak instrument bias has been discussed for some years in econo-

metrics (160; 163; 164), it is not well understood in relation to Mendelian randomization;

this will be considered further in Chapters 2 and 6.

2.14 Computer implementation

Several commands are available in statistical software packages for IV estimation, such as R

(165) and Stata (166). The commands in Stata ivreg2, ivhettest, overid, and ivendog (117)
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have been written to implement the 2SLS method, with estimators and tests, including

the Sargan statistic and the F (Cragg–Donald) statistic. The R command tsls in the

library sem carries out a 2SLS procedure (167). The command in Stata qvf (123) has

been written to implement a fast bootstrap estimation of standard errors for IV analysis.

This can be used with non-linear models, such as with binary outcomes.

Linear GMM and SMM can be estimated in Stata using the ivreg2 command with

option gmm (117) or the ivregress command. Multiplicative GMM or GSMM can be

estimated in Stata using the ivpois command (168). Generic estimating equations for

GMM or GSMM can be solved in Stata using the gmm command (169) and in R using

the gmm package (170).

The method of Greenland and Longnecker has been implemented in Stata as the glst

command (171).

2.15 Mendelian randomization in practice

Having considered the methodological aspects of IV estimation for Mendelian randomiza-

tion, we present some examples of the use of the methods and techniques listed above in

epidemiological practice.

The majority of Mendelian randomization studies have used a single SNP as the genetic

variant. Casas et al. (85) investigate the causal effect of C-reactive protein (CRP) on

incident coronary events. They look at the effect of one gene on CRP levels, showing a

significant association between the gene and CRP levels, but no association between the

gene and disease, though with wide CIs on the G-Y association. Keavney et al. (172)

assess the causal association of fibrinogen on coronary heart disease (CHD). Although

there is a significant per allele effect on fibrinogen levels, there is no association between

the genetic variant and CHD incidence, with fairly tight CIs. In each of these studies, tests

of the association between the gene and known competing risk factors have been carried

out, to assess the IV assumptions. No formal IV analysis is attempted and no estimate is

made of the causal X-Y association.

The assessment of causal association has also been undertaken using multiple studies.

Lewis et al. (76) show a null association between a genetic polymorphism associated with

homocysteine levels and CHD in a random-effects meta-analysis comparing participants

with two different genotypes. Lewis and Davey Smith (41) show a statistically significant

result in a meta-analysis of the effect of alcohol on oesophageal cancer. Here, estimating

the causal X-Y association was not possible, as the association of genotype with alcohol
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intake was not linear in the three genotypes, and the alcohol intake in different studies

showed considerable heterogeneity.

Causal estimation using the ratio method was employed by Kamstrup et al. (68) in

assessing the causal association between lipoprotein(a) and risk of myocardial infarction.

They demonstrate the crucial role played by the magnitude of theG-X association. In their

study, known genetic variants explained 21-27% of the variation in lipoprotein(a), leading

to a statistically significant estimate of the causal effect. In contrast, Lawlor et al. (31)

show a null association between a genetic polymorphism associated with CRP levels and

CHD in a random-effects meta-analysis comparing participants with TT versus CT or CC

genotype, but the confidence interval for the causal estimate included the observational

association estimate, despite a greater sample size and number of events. This is because

the genetic marker used only explained less than 1% of the variance in CRP.

The 2SLS method has been used to synthesize evidence using haplotypes as an IV to

test the effect of CRP on HOMA-R (2) (a measure of insulin resistance) and CRP on

carotid intima-media thickness (62). Kivimäki et al. (62) measure three genetic variants

which they combine as haplotypes, and use the four most common haplotypes as instru-

ments. They note that the haplotypes are associated with CRP levels, but that there is

no significant association between the haplotypes and CIMT. The 2SLS method gives a

null causal association between CRP and CIMT, although with wide CIs. The confidence

intervals given by this method are large compared to a standard multivariable regression

technique adjusting for measured confounders. Lawlor et al. (2) take the most common

pair of haplotypes (diplotype) for each participant as an IV to assess the causal association

of CRP on HOMA-R. They exclude diplotypes with less than 10 participants, and plot

CRP against HOMA-R for each of the 9 subgroups, using 2SLS to assess the association.

Timpson et al. (61) use 2SLS, but take the Durbin–Wu–Hausman test as the primary

outcome of interest. This is a test of equality of the observational and IV associations,

where a significant result indicates disagreement between the two estimates. However, this

is not a test of no causal effect, as there may be a causal effect, but this may be different

to the observational association. For this reason, it is more appropriate to consider the

causal estimate as the outcome of interest (173).

The two-stage method has been used with binary outcomes to test the causal asso-

ciation of CRP on hypertension (174) and of sex-hormone binding globulin on type 2

diabetes (67). Confidence intervals were estimated by bootstrapping techniques using the

qvf command in Stata.

Several variations on the two-stage method have been attempted with methods de-

veloped either heuristically or borrowed from other areas of research. Elliott et al. (63)
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simply scale the coefficients in the G-Y regression by an estimate of the G-X association.

Allin et al. (65) use the method of Greenland and Longnecker documented above. Neither

of these allow for the uncertainty in the G-X association.

2.16 Conclusion

Although there is a wealth of IV methodology accumulated from many years of econometric

research and practice, practical use of IV methodology in Mendelian randomization is

limited and not well understood. This is for three main reasons. Firstly, there is a need

for translational research to assess the implementation of IV research in the specific context

of Mendelian randomization (30). This requires the search for a mutual language between

medical statisticians and econometricians (31), as well as an investigation of the application

of techniques and methods common in econometric practice in an epidemiological setting.

An example is the use of measured covariates, which is common in econometric analysis

but rare in Mendelian randomization practice, possibly due to the analogy of Mendelian

randomization with an RCT, where adjustment for measured covariates is not uniformly

practised. In areas such as weak instrument bias, where there is a growing body of research

evidence, translational work is needed to see how the findings and practice of economics

translates to the context of Mendelian randomization.

Secondly, there are still unanswered questions about the estimation of causal effects

using IVs. In this dissertation, we focus on the issues of weak instruments and binary

outcomes. The instruments used in Mendelian randomization typically have a small effect

on the phenotype and show a high degree of correlation. Research is needed to investigate

the effect of the use of weak instruments and multiple instruments on Mendelian random-

ization estimation, to find ways of minimizing bias and maintaining accurate coverage

properties. We seek to form guidelines as to how to choose how many and which instru-

ments to use in applied research. The majority of applications of Mendelian randomization

involve binary outcomes, and so estimation of a causal effect which can be compared with

an observational effect is of great practical importance. The bias of the ratio estimate in

a logistic model and the status of “forbidden regressions” are highly relevant to applied

analysis.

Thirdly, causal estimates from IV analysis tend to have wide confidence intervals com-

pared to conventional epidemiological estimates, which deters applied researchers from re-

porting numerical results from IV analysis. We seek to expand methods for meta-analysis

of Mendelian randomization to cover features exhibited in the CCGC, such as the avail-

ability of multiple genetic variants and individual participant data, to make efficient use of
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data even with heterogeneous studies. We seek to exploit the structure of genetic data to

find methods for imputation of missing data to maximize information from a given study.

Although the literature on IVs from econometrics and non-compliance provides meth-

ods for IV analysis which can be translated into a Mendelian randomization context, the

specific nature of Mendelian randomization gives rise to issues which have not been ade-

quately addressed elsewhere in the literature. This dissertation is intended to “bridge the

gap”, both to answer some of the open methodological questions concerning IV analysis

and to communicate findings in existing research, hopefully leading to more principled

analysis of Mendelian randomization studies.
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Chapter 3

Weak instrument bias for continuous

outcomes

3.1 Introduction

Although IV techniques can be used to give asymptotically unbiased estimates of causal

association in the presence of confounding, these estimates suffer from a bias, known as

weak instrument bias, when evaluated in finite samples (160; 163; 164). This bias acts in

the direction of the observational confounded association, and its magnitude depends on

the strength of association between genetic instrument and phenotype (34; 101). In this

chapter, we consider the effect of this bias for continuous outcomes; we consider the biases

affecting IV estimates with a binary outcome in Chapter 6.

We use data from the CRP CHD Genetics Collaboration (82) to estimate the causal

association of C-reactive protein (CRP) on fibrinogen. Both CRP and fibrinogen are

markers for inflammation. As the distribution of CRP is positively skewed, we take its

logarithm and assume a linear association of log(CRP) on fibrinogen. Although log(CRP)

and fibrinogen are highly positively correlated (r = 0.45− 0.55 in the studies below), it is

thought that long-term elevated levels of CRP are not causally associated with an increase

in fibrinogen (64).

In this chapter, we demonstrate the direction and magnitude of weak instrument bias

in IV estimation from simulated data, and show that it can be an important issue in

practice (Section 3.2). We explain why this bias comes about, why it acts in the direction

of the confounded observational association and why it is related to instrument strength

(Section 3.3). We quantify the size of this bias for different strengths of instruments and

different analysis methods, describing how important the bias may be expected to be in

a given application (Section 3.4). When multiple genetic variants or models of genetic

46



3.2 Demonstrating the bias from IV estimators

association are available, we show how the choice of IV affects the variance and bias of

the IV estimator (Section 3.5). We discuss methods of design and analysis of Mendelian

randomization studies to minimize bias (Section 3.6). We conclude (Section 3.7) with a

discussion of this bias from a theoretical and practical viewpoint, ending with a summary of

recommendations aimed at applied researchers for how to design and analyse a Mendelian

randomization study.

3.2 Demonstrating the bias from IV estimators

Firstly, we seek to demonstrate the bias in IV estimation using both real and simulated

data.

3.2.1 Bias of IV estimates in small studies

As a motivating example, we consider the Copenhagen General Population Study (CGPS)

(175), a cohort study from the CRP CHD Genetics Collaboration (CCGC) with complete

cross-sectional baseline data on CRP, fibrinogen and three SNPs from the CRP gene region

(rs1205, rs1130864 and rs3093077) for 35 679 participants. We calculate the observational

estimate (simply regressing fibrinogen on log(CRP)) and IV estimate of association using

all three SNPs as instrumental variables in a linear additive model. We then analyze

the same data as if it came from multiple studies by dividing the study randomly into

substudies of equal size, calculating estimates of association in each substudy and meta-

analyzing the results using a fixed-effect model. We divide into 5, 10, 16, 40, 100 and 250

substudies.

We see from Table 3.1 that the observational estimate stays almost unchanged whether

the data are analyzed as one study or as several studies. However, the IV estimate increases

from near zero until it approaches the observational estimate and the standard error of

the estimate decreases. We can see that even where the number of substudies is 16 and

the average F statistic is around 10, there is a serious bias with a positive causal estimate

(p = 0.09 using 2SLS) despite the causal estimate with the data analyzed as one study

being near zero.

3.2.2 Simulation with one IV

As a simulation exercise, we take a simple example of a confounded association with a

single IV, as considered previously in Section 2.4.1. Phenotype xi for individual i is a linear

combination of a genetic component gi which can take values 0 or 1, normally distributed
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No. of substudies Observational estimate 2SLS estimate LIML estimate Mean F

1 1.6799 (0.0143) -0.0468 (0.1510) -0.0531 (0.1515) 152.0

5 1.6796 (0.0143) -0.0092 (0.1478) -0.0541 (0.1508) 31.44

10 1.6789 (0.0143) 0.0871 (0.1426) -0.0068 (0.1485) 16.44

16 1.6781 (0.0143) 0.2300 (0.1372) 0.1641 (0.1426) 10.81

40 1.6761 (0.0143) 0.4562 (0.1266) 0.3093 (0.1385) 4.833

100 1.6713 (0.0142) 0.8279 (0.1078) 0.6575 (0.1279) 2.516

250 1.6695 (0.0141) 1.2711 (0.0826) 1.1796 (0.1022) 1.646

Table 3.1: Estimates of effect (standard error) of log(CRP) on fibrinogen (µmol/l) from

Copenhagen General Population Study (N = 35 679) divided randomly into substudies

of equal size and combined using fixed-effect meta-analysis: observational estimate using

unadjusted linear regression, IV estimate from Mendelian randomization using 2SLS and

LIML methods. F statistics from linear regression of log(CRP) on three genetic IVs

averaged across substudies.

confounder ui, and error ϵxi terms. Outcome yi is a linear combination of xi and ui with

normally distributed error ϵyi. The true causal association of X on Y is represented by

β1. To simplify, we have set the constant terms in the equations to be zero:

xi = α1 gi + α2 ui + ϵxi (3.1)

yi = β1 xi + β2 ui + ϵyi

ui ∼ N(0, σ2
u)

ϵxi ∼ N(0, σ2
x); ϵyi ∼ N(0, σ2

y) independently

We simulated 50 000 datasets from this model, each with 200 individuals divided equally

between the two genotypic subgroups, for a range of values of α1. We set β1 = 0, α2 =

1, β2 = 1, σ2
u = σ2

x = σ2
y = 1, corresponding to a true null causal association, but simply

regressing Y on X yields a strong positive confounded observational association of close

to 0.5. We took 6 different values of α1 from 0.05 to 0.55, thus varying the strength of the

G-X association, corresponding to mean F statistic values between 1.07 and 8.65.

Causal estimates are calculated using the ratio method, although with a single linear

instrument the estimates from the ratio, 2SLS and LIML methods are the same. The

resulting distributions for the estimate of the causal parameter β1 are shown in Figure 3.1

and Table 3.2. Because the IV estimate can be expressed as the ratio of two normally

distributed random variables, it does not have a finite mean or variance; so we have

expressed results using quantiles. For smaller values of α1, there is a marked median bias

in the positive direction and long tails in the distribution of the causal estimate. For the
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smallest value α1 = 0.05, the mean F statistic is barely above its null expectation of 1

and the median IV estimate is close to the confounded observational estimate. For large

values of α1, the causal estimates have a skew distribution, with median close to zero but

with more extreme causal estimates tending to take negative values. The F statistics vary

greatly between simulations for each given α1, with an interquartile range of similar size

to the mean value of the statistic (Table 3.2). In practical applications therefore the F

statistic from a single analysis is not necessarily a reliable guide to the underlying mean

F statistic.

α1 Mean F statistic Quantiles: 2.5% 25% 50% 75% 97.5%

(Observed IQ range)

0.05 1.07 (0.11 - 1.41) -10.5393 -0.3859 0.4686 1.3159 10.8918

0.15 1.58 (0.18 - 2.17) -9.2289 -0.4436 0.2870 0.9819 9.3405

0.25 2.59 (0.44 - 3.73) -6.4495 -0.4672 0.1296 0.5983 5.8267

0.35 4.10 (1.17 - 5.94) -4.0480 -0.4124 0.0456 0.3838 2.8776

0.45 6.12 (2.49 - 8.55) -2.4233 -0.3423 0.0108 0.2806 0.9167

0.55 8.65 (4.27 - 11.81) -1.5435 -0.2849 0.0002 0.2247 0.6417

Table 3.2: Quantiles of IV estimates of causal association β1 = 0 using weak instruments

with different mean F statistics (interquartile range (IQ)) from simulated data

3.3 Explaining the bias from IV estimators

We give three separate explanations for the existence of weak instrument bias, using the

languages of algebra, random variables and graphs.

3.3.1 Correlation of associations

Firstly, there is a correlation between the numerator (G-Y association) and denominator

(G-X association) in the ratio estimator. In the zero error case (σ2
x = σ2

y = 0) with true

causal association of X on Y , and confounded association through U , model (3.1) reduces

to

xi = α1 gi + α2 ui (3.2)

yi = β1 xi + β2 ui

ui ∼ N(0, σ2
u)

49



3.3 Explaining the bias from IV estimators

α1 = 0.05, F = 1.07

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

α1 = 0.15, F = 1.58

D
en

si
ty

−2 −1 0 1 2
0.

0
0.

2
0.

4

α1 = 0.25, F = 2.59

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

α1 = 0.35, F = 4.10

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

α1 = 0.45, F = 6.12

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
4

0.
8

α1 = 0.55, F = 8.65

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
4

0.
8

Figure 3.1: Histograms of IV estimates of causal association β1 = 0 using weak instruments

from simulated data. Average F statistics for each value of α1 are shown
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3.3 Explaining the bias from IV estimators

If ūj is the average confounder level for genotypic subgroup j, an expression for the

causal association from the ratio method is

βR
1 = β1 +

β2∆u

α1 + α2∆u
(3.3)

where ∆u = ū1 − ū0 is normally distributed with expectation zero. When the instrument

is strong, α1 is large compared to α2 ∆u, and the expression βR
1 will be close to β1. When

the instrument is weak, α1 may be small compared to α2∆u, and the bias βR
1 −β1 is close

to β2

α2
, which is the bias of the confounded observational association. This is true whether

∆u is positive or negative. Figure 3.2 (left panel), reproduced from Nelson and Startz

(160), shows how the IV estimate bias varies with ∆u. Although for any non-zero α1 the

IV estimator will be an asymptotically consistent estimator as sample size increases and

∆u → 0, a bias in the direction of the confounded association will be present in finite

samples. From Figure 3.2 (left panel), we can see that the median bias will be positive, as

the bias is positive when ∆u > 0 or ∆u < −α1

α2
, which happens with probability greater

than 0.5. When the instrument is weak, the IV is measuring not the systematic genetic

variation in the phenotype, but the chance variation in the confounders (101). If there

is independent error in x and y, then the picture is similar, but more noisy, as seen in

Figure 3.2 (right panel). Under model (3.1), the expression for the IV estimator is

βR
1 = β1 +

β2∆u+∆ϵy
α1 + α2 ∆u+∆ϵx

where ∆ϵx = ϵ̄x1 − ϵ̄x0 and ∆ϵy = ϵ̄y1 − ϵ̄y0 defined analogously to ∆u above.

This also explains the heavier negative tail in the histograms in Figure 3.1. The

estimator takes extreme values when the denominator α1 +α2∆u is close to zero. Taking

parameters α1, α2 and β2 as positive, as in the example of Section 3.2, this is associated

with a negative value of ∆u, where the numerator of the ratio estimator will be negative.

As ∆u has expectation zero, the denominator is more likely to be small and positive than

small and negative, giving more negative extreme values of βR than positive ones.

3.3.2 Finite sample violation of IV assumptions

Alternatively, we can think of the bias as a violation of the first IV assumption in a fi-

nite sample. Although a valid instrument will be asymptotically independent from all

confounders, in a finite sample there will be a non-zero correlation between the instru-

ment and confounders. As before, this correlation biases the IV estimator towards the

confounded association.

51



3.3 Explaining the bias from IV estimators

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

8

Difference in confounder: ∆u

B
ia

s:
 β

1R
−

β 1

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

8

Difference in confounder: ∆u

B
ia

s:
 β

1R
−

β 1
Figure 3.2: Bias in IV estimator as a function of the difference in mean confounder between

groups (α1 = 0.25, α2 = β2 = 1). Horizontal dotted line is at the confounded association
β2

α2
, and the vertical dotted line at ∆u = −α1

α2
where βR

1 is not defined. Left panel: no

independent error in x or y, right panel: ∆ϵx,∆ϵy ∼ N(0, 0.12) independently.

If the instrument is strong, then the difference in phenotype between subgroups will

be due to the genetic instrument, and the difference in outcome (if any) will be due

to this difference in phenotype. However if the instrument is weak, that is it explains

little variation in the phenotype, the chance difference in confounders may explain more

of the difference in phenotype between subgroups than the instrument. If the effect of

the instrument is near zero, then the estimate of the “causal association” approaches the

association between phenotype and outcome caused by changes in the confounders, that

is the observational confounded association (101). This shows that even stochastic (i.e.

non-systematic) violation of the IV assumptions causes bias.

3.3.3 Sampling variation within genotypic subgroups

Finally, we can explain the bias graphically. We take model (3.1) with a negative causal

association between phenotype and outcome (β1 = −0.4), but with positive confounding

(α2 = 1, β2 = 1, σ2
x = σ2

y = 0.2, σ2
u = 1) giving a strong positive observational association

between phenotype and outcome. We performed 1000 simulations with 600 subjects di-

vided equally into 3 genotypic groups (gi ∈ {0, 1, 2}). We took α1 = (0.5, 0.2, 0.1, 0.05),

corresponding to mean F values of (100, 16, 4.7, 2.0). The mean levels of phenotype and

outcome for each genotypic group are plotted (Figure 3.3), giving simulated density func-

tions for each group. In each simulation, we effectively draw one point at random from

52



3.3 Explaining the bias from IV estimators

each of these distributions; the gradient of the line through these three points is the 2SLS

IV estimate. When the instrument is strong, the large phenotypic differences between

the groups due to genotypic variation will generally lead to estimating a negative effect of

phenotype on outcome, whereas when the instrument is weak the phenotypic differences

between the groups due to genetic variation are small and the original confounded positive

association is more likely to be recovered.
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Figure 3.3: Distribution of mean outcome and mean phenotype level in three genotypic

groups for various strengths of instrument

In summary, weak instrument bias reintroduces the problem that IVs were developed

to solve. Weak instruments may convince a researcher that the observational association

which they have measured is a causal association (101). The reason for the bias is that
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3.4 Quantifying the bias from IV estimators

the variation in the phenotype explained by the IV is too small compared to the variation

in the phenotype caused by chance correlation between the IV and confounders.

3.4 Quantifying the bias from IV estimators

To get an idea as to whether the bias demonstrated and explained above is of sufficient

magnitude to be a practical concern, we present simulations with parameters similar to

what might be expected in a Mendelian randomization study, and examine the bias in the

causal estimate. As discussed in Section 2.13, we consider the relative mean bias B, which

is the ratio of the bias of the IV estimator (β̂IV ) to the bias of the confounded association

(β̂OBS) found by linear regression of Y on X:

B =
E(β̂IV )− β1

E(β̂OBS)− β1
(3.4)

The relative mean bias from the 2SLS method is asymptotically approximately equal

to 1/F , where F is the expected F statistic in the regression of X on G (102). Both with a

single instrument and with the LIML method, the mean of the IV estimator is not defined,

so to compare bias in this setting, we instead consider the relative median bias. This is a

novel measure formed by replacing the expectations in equation (3.4) with medians across

simulations (118).

B∗ =
median(β̂IV )− β1

median(β̂OBS)− β1
(3.5)

3.4.1 Simulation of 2SLS bias with different strengths of 1 and

3 IVs

To investigate the size of the bias when there are few instruments, we take both model

(3.1) with one genetic variable and a similar model except with three genetic variables g1,

g2 and g3:

xi =
3∑

k=1

α1k gik + α2 ui + ϵxi (3.6)

yi = β1 xi + β2 ui + ϵyi

ui ∼ N(0, σ2
u); ϵxi ∼ N(0, σ2

x); ϵyi ∼ N(0, σ2
y) independently

In model (3.6), each IV is taken as dichotomous, giving 8 possible genotype combinations.

We simulated 100 000 datasets from this model for each set of parameters with 200 indi-

viduals divided equally between the 8 genotypic subgroups, meaning that the instruments
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3.4 Quantifying the bias from IV estimators

are uncorrelated. Model (3.1) was treated similarly, except the 200 individuals were di-

vided into 2 genotypic subgroups. We considered four scenarios covering a range of typical

situations, with σ2
x = σ2

y = σ2
u = 1 throughout:

a) null causal effect, moderate positive confounding (β1 = 0, α2 = 1, β2 = 2);

b) null causal effect, strong positive confounding (β1 = 0, α2 = 1, β2 = 4);

c) negative causal effect, moderate positive confounding (β1 = −1, α2 = 1, β2 = 2);

d) negative causal effect, moderate negative confounding (β1 = −1, α2 = 1, β2 = −2).

We took six values of α1 = α11 = α12 = α13 from 0.1 to 0.6, corresponding to different

strengths of instrument with mean F3,196 and F1,198 values from 1.3 to 10.1. For each

sample we calculated the IV estimator β̂IV using the 2SLS method, and the confounded

estimate β̂OBS by linear regression.

Table 3.3 shows how the relative mean and median bias across simulations vary for

different strengths of instrument. For three IVs, especially for stronger instruments, the

relative median bias is larger than the relative mean bias. This is because the IV estimator

has a negatively skewed distribution, as shown in Figure 3.1, and the skewness is more

marked as the instrument becomes stronger. We can see that 1/F seems to be a good, if

slightly conservative, estimate for the relative median bias, agreeing with Staiger and Stock

(102). A mean F statistic of 10 would on average limit the IV estimator bias to 10% of the

bias of the confounded association. For a single IV, the relative median bias is lower than

for three IVs, and substantially so for stronger instruments. Although the distribution of

the IV estimator for a single instrument is skew and heavy-tailed, the relative median bias

is around 5% or less for even fairly weak instruments with F = 5 (118).

Although these results show that for a mean F value of 10 we have a relative median

bias of less than 10%, there is no guarantee that if we have observed an F statistic of 10

or greater from data that the mean value is 10 or greater. From Table 3.2, for a mean F

value of 4.10, we observe an F value greater than 10 in 8% of simulations, and for a mean

F value of 6.12 in 18% of simulations.

3.4.2 Comparison of bias using different IV methods

There are several methods for calculating IV estimates, some of which are more robust

to weak instruments than others. We here comment on the 2SLS, limited information
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α1 0.1 0.2 0.3 0.4 0.5 0.6

Mean F statistic 1.26 2.02 3.29 5.06 7.33 10.1

1/F 0.79 0.49 0.30 0.198 0.136 0.099

a) Null causal effect, moderate positive confounding

Relative mean bias with 3 IVs 0.78 0.42 0.19 0.101 0.063 0.044

Relative median bias with 3 IVs 0.79 0.46 0.26 0.163 0.112 0.080

Relative median bias with 1 IV 0.78 0.38 0.15 0.038 0.010 0.002

b) Null causal effect, strong positive confounding

Relative mean bias with 3 IVs 0.79 0.41 0.19 0.099 0.062 0.042

Relative median bias with 3 IVs 0.79 0.46 0.26 0.162 0.109 0.079

Relative median bias with 1 IV 0.77 0.38 0.14 0.041 0.011 0.002

c) Negative causal effect, moderate positive confounding

Relative mean bias with 3 IVs 0.79 0.42 0.20 0.100 0.061 0.042

Relative median bias with 3 IVs 0.79 0.47 0.27 0.164 0.110 0.081

Relative median bias with 1 IV 0.77 0.40 0.15 0.040 0.011 0.002

d) Negative causal effect, moderate negative confounding

Relative mean bias with 3 IVs 0.79 0.41 0.19 0.098 0.062 0.044

Relative median bias with 3 IVs 0.80 0.46 0.26 0.160 0.110 0.081

Relative median bias with 1 IV 0.80 0.39 0.15 0.035 0.011 -0.000

Table 3.3: Relative mean and median bias of the 2SLS IV estimator across 100 000 simu-

lations for different strengths of instrument using three IVs and one IV. Mean F3,196 and

F1,198 statistics are equal to 2 decimal places

maximum likelihood (LIML) (27) and the Fuller(1) methods (176) as they can be calcu-

lated using the ivreg2 command in Stata and have different finite moments properties with

various numbers of instruments (117).

The LIML estimator is close to median unbiased for all but the weakest instrument

situations (102; 177). With one IV, the estimate from LIML coincides with that from

the ratio and 2SLS methods. However, Hahn, Hausman and Kuersteiner (133) strongly

discourage the use of the LIML estimator, as it does not have defined moments for any

number of instruments, as opposed to the 2SLS estimator, which has a finite variance

when there are three or more instruments. The 2SLS method, when all the associations

are linear and the error terms normally distributed, has a finite kth moment when the

number of instruments is at least (k + 1) (124). The Fuller(1) estimator is an adaption of

the LIML method (133), which again has better weak instrument properties than 2SLS

(92), and is designed to have all moments, even with a single instrument (92; 177).

To investigate the bias properties of these methods, we conduct a simulation using
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the same parameters as in Section 3.4.1, analysing 100 000 simulations with 1 and 3

instruments using the 2SLS, LIML and Fuller(1) methods for instruments with α1 =

0.2, 0.4, 0.6. Table 3.4 shows how, with three IVs, the median bias is close to zero for

LIML with instruments with mean F statistic greater than 5, whereas it is large for the

2SLS and Fuller(1) methods. For instruments with F close to 10, the mean bias of the

Fuller(1) estimator is close to zero. With one IV, as before, the 2SLS / LIML estimator

is approximately median unbiased with a mean F statistic of 10, whereas the Fuller(1)

estimate still shows considerable median and mean bias with a mean F statistic of 10.

This simulation shows a trade-off amongst IV methods between asymptotic and finite

sample properties. The LIML method performs best overall in terms of median bias, even

though mean bias is always undefined. However, methods with finite mean bias perform

badly in terms of median bias. Although absence of a finite mean presents serious theo-

retical problems in the comparison of bias, it would seem to be more of a mathematical

curiosity than a practical problem. Extreme values of the causal estimate would gen-

erally be discarded due to implausibility and finite-sample near violation of the first IV

assumption (non-zero G-X association) in the dataset.

3.5 Choosing a suitable IV estimator

Including more instruments, where each instrument explains extra variation in the phe-

notype, should give more information on the causal parameter. However as shown above,

bias may increase, due to the weakening of the set of instruments. In this section, we

consider the impact of choice of instrument on the bias of the IV estimator.

3.5.1 Multiple candidate IVs

In order to investigate how using more instruments affects bias in the IV estimator, we

perform 100 000 simulations in a model where, for each participant indexed by i, the

phenotype xi depends linearly on six dichotomous genetic instruments (gik = 0 or 1, k =

1, . . . , 6), a normally distributed confounder ui, and an independent normally distributed

error term ϵxi. Outcome yi is a linear combination of phenotype, confounder, and an

independent error term ϵyi.

xi =
6∑

k=1

α1k gik + α2 ui + ϵxi (3.7)

yi = β1 xi + β2 ui + ϵyi

ui ∼ N(0, σ2
u); ϵxi ∼ N(0, σ2

x); ϵyi ∼ N(0, σ2
y) independently
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3 IVs 1 IV 1

α1 = 0.2 α1 = 0.4 α1 = 0.6 α1 = 0.2 α1 = 0.4 α1 = 0.6

Mean F statistic 2.02 5.06 10.1 2.02 5.06 10.1

a) Null causal effect, moderate positive confounding

Median bias

2SLS 0.4556 0.1526 0.0702 }
0.3872 0.0401 0.0022

LIML 0.1617 0.0033 -0.0017

Fuller(1) 0.3888 0.0858 0.0353 0.7324 0.2863 0.1159

Mean bias 2
2SLS 0.4129 0.0935 0.0374 - - -

Fuller(1) 0.4248 0.0338 0.0006 0.7091 0.2661 0.0673

b) Null causal effect, strong positive confounding

Median bias

2SLS 0.9081 0.3121 0.1414 }
0.7692 0.0850 0.0041

LIML 0.2899 0.0127 -0.0004

Fuller(1) 0.7675 0.1757 0.0718 1.4530 0.5678 0.2260

Mean bias
2SLS 0.8217 0.1916 0.0761 - - -

Fuller(1) 0.8376 0.0721 0.0034 1.4235 0.5347 0.1297

c) Negative causal effect, moderate positive confounding

Median bias

2SLS 0.4571 0.1531 0.0715 }
0.3908 0.0399 0.0019

LIML 0.1601 0.0028 0.0014

Fuller(1) 0.3915 0.0858 0.0376 0.7319 0.2860 0.1145

Mean bias
2SLS 0.4096 0.0927 0.0391 - - -

Fuller(1) 0.4223 0.0339 0.0030 0.7083 0.2682 0.0643

d) Negative causal effect, moderate negative confounding

Median bias

2SLS -0.4555 -0.1545 -0.0706 }
-0.3842 -0.0413 -0.0020

LIML -0.1580 -0.0035 0.0004

Fuller(1) -0.3858 -0.0862 -0.0360 -0.7297 -0.2882 -0.1158

Mean bias
2SLS -0.4076 -0.0930 -0.0385 - - -

Fuller(1) -0.4214 -0.0339 -0.0019 -0.7086 -0.2694 -0.0659

Table 3.4: Median and mean bias across 100 000 simulations using 2SLS, LIML and

Fuller(1) methods for a range of strength of three IVs and one IV

1With 1 IV, the estimates from 2SLS and LIML coincide.
2Mean bias is reported only when it is not theoretically infinite
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We set β1 = 0, α2 = 1, β2 = 1, σ2
x = σ2

y = σ2
u = 1 so that X is observationally strongly

positively associated with Y , but there is a null causal association. We take parameters

for the genetic association α1k = 0.4 for each genetic instrument k, corresponding to a

mean F value of 10.2 (quartiles 5.8, 9.3, 13.7). We used a sample size of 512 divided

equally between the 26 = 64 genotypic subgroups. The instruments are uncorrelated, so

that variation explained by each of the instruments is independent, and the mean F values

do not depend greatly on the number of IVs (mean 10.2 using 1 IV, 11.3 using 6 IVs).

Table 3.5 shows the median and 95% range of the estimates of bias from the 2SLS

and LIML methods and the mean bias for the 2SLS method using all combinations of all

numbers of IVs as the instrument, with the mean across simulations of the F statistic for

all the instruments used. We also give results using the IV with the greatest and lowest

observed F values in each simulation, as well as using all IVs with an F statistic greater

than 10 in univariate regression of phenotype on each IV.

Using 2SLS, as the number of instruments increases, while the variance of estimates

decreases the bias increases, despite the mean F value remaining fairly constant. This is

because there is a greater risk of imbalances in confounders between the greater number of

genotypic subgroups defined by the instruments. The data are being subdivided in more

different ways, and so there is more chance of one of these divisions giving genotypic groups

with different average levels of confounders. However, the more instruments that are used,

the smaller the variability of the IV estimator. This is because a greater proportion of the

variance in the phenotype is being modelled.

The greatest increase in median bias is from one instrument to two instruments, and

coincides with the greatest increase in precision. With LIML, a similar increase in precision

is observed, but no increase in bias. For 2SLS, the mean bias is similar to the median

presented, except that mean bias is close to zero with two IVs, increasing steadily as the

number of instruments increases. In the case of a single IV, the theoretical mean is infinite

(101). For LIML, the mean bias is infinite for all numbers of IVs (133).

Using the single IV with the greatest observed F gives markedly biased results, despite

a mean F value of 23.9. There is a similar bias only using IVs with F > 10. In the

simulation, each IV in truth explains the same amount of variation in the phenotype. If

however the IVs used are chosen because they explain a large proportion of the variation in

the phenotype in the data under analysis, then the estimate using these IVs is additionally

biased. This is because the IVs explaining the most variation will be overestimating

the proportion of true variation explained, due to chance correlation with confounders

overestimating the underlying difference between genotypic groups in both phenotype

and outcome, leading to an overestimate of the causal association in the direction of the
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confounded observational association. In the notation of Section 3.3.1, ∆u is large and,

having the same sign as α1, leads to an estimate biased in the direction of β2

α2
. Similarly, if

the IV with the least F statistic is used as an instrument, the IV estimator will be biased in

the opposite direction to the observational association. These characteristics are evident

in the simulations (Table 3.5). A commonly used rule for the validity of an IV is that the

observed F statistic is greater than 10. However, if this rule is used to choose between

instruments, this rule itself introduces a selection bias (178).

We therefore have a situation analogous to a bias–variance trade-off (26). As an al-

ternative to the mean squared error, we suggest using the median absolute bias (MAB)

(median |β̂IV − β1|) as a criterion for how many instruments should be used. Table 3.5

shows that in this case, despite the increase in the bias, the 2SLS estimate using all six

IVs is preferred. However, naive use of the MAB as a criterion for choosing between es-

timators would seem unwise, as the MAB is less for the estimator using the single SNP

with the greatest observed F statistic than for choosing a single SNP at random, despite

the increase in median bias from the selection effect.

Median 2.5% to 97.5% quantiles Mean bias 1 MAB Mean F

2SLS LIML 2SLS statistic

Estimate using 1 IV 0.0001 -1.1151 to 0.5345 - 0.2130 10.2

2 IVs 0.0239 -0.5380 to 0.3947 -0.0003 -0.6383 to 0.3900 -0.0002 0.1472 10.4

3 IVs 0.0312 -0.3871 to 0.3342 -0.0004 -0.4801 to 0.3233 0.0165 0.1205 10.6

4 IVs 0.0346 -0.3109 to 0.2982 -0.0003 -0.3961 to 0.2833 0.0241 0.1051 10.8

5 IVs 0.0367 -0.2633 to 0.2731 -0.0004 -0.3430 to 0.2552 0.0284 0.0948 11.0

6 IVs 0.0378 -0.2294 to 0.2552 -0.0003 -0.3055 to 0.2344 0.0312 0.0875 11.3

IV with greatest F 0.1419 -0.2988 to 0.5206 - 0.1777 23.9

IV with least F -0.3208 -2.5742 to 0.5795 - 0.3956 6.7

IVs with F > 10 0.1114 -0.2032 to 0.3919 0.0989 -0.2204 to 0.3895 0.1071 0.1304 16.4

Table 3.5: Median and 95% range of bias using 2SLS and LIML methods, mean bias and median

absolute bias (MAB) using 2SLS method and mean F statistic across 100 000 simulations using

combinations of six uncorrelated instruments

1Mean bias is reported only when it is not theoretically infinite

3.5.2 Overidentification

When multiple instruments are used, a common econometric tool is an overidentification

test (117), such as the Sargan test (158). This is a test for incompatibility of estimates

based on different instruments, and can be used to test validity of the IV assumptions

in a dataset. While this can be useful in indicating possible bias from violation of the
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underlying IV assumptions, it does not identify bias from the finite-sample violation of

the IV assumptions due to weak instruments. For the data summarized in Table 3.5 using

all six IVs, 7% of the simulations failed the Sargan test at p < 0.05, slightly more than

would be expected with a valid instrument. While the median estimate from 2SLS using

all six IVs in simulations which failed the Sargan test was 0.0789, the median estimate in

simulations which passed the Sargan test was 0.0345, close to the overall median of 0.0378.

Overidentification tests are omnibus tests, where the alternative hypothesis includes fail-

ure of IV assumptions for one IV, failure for all IVs, and non-linear association between

phenotype and outcome. Hence, while the test can recognize problems with the model, it

has limited use to combat weak instruments.

3.5.3 Multiple instruments in the Framingham Heart Study

As a further illustration, we consider the Framingham Heart Study (FHS), a cohort study

measuring CRP and fibrinogen at baseline with complete data for nine SNPs on the

CRP gene for 1500 participants. The observational estimate of the log(CRP)–fibrinogen

(µmol/l) association is 1.134 (95% CI 1.052 to 1.217). We calculate the causal estimate of

the association using the 2SLS method with different numbers of SNPs as an instrument.

Figure 3.4 shows a plot of the 2SLS IV estimates against number of instruments, where

each point represents the causal estimate calculated using the 2SLS method with a different

combination of SNPs. The range of point estimates of the causal association reduces as we

include more instruments, but the median causal estimate across the different combinations

of IVs increases. The 2SLS estimate using all 9 SNPs in an additive per allele model

is -0.005 (95% CI: -0.721 to 0.711, p = 0.99, F9,1490 = 3.34). If we relax the genetic

assumptions of a per-allele model and additivity between SNPs to instead use a model

with one coefficient for each of the 49 genotypes represented in the data, the 2SLS estimate

is 0.792 (95% CI 0.423 to 1.161, p = 0.00003, F48,1451 = 1.66). Using LIML, the estimate is

0.052 (95% CI -0.706 to 0.809, p = 0.89). This illustrates the bias in the 2SLS method due

to the use of multiple instruments, showing how an estimate close to the observational

association (1.134, 95% CI: 1.052 to 1.217) can be recovered by injudicious choice of

instrument. The LIML method with 48 genetic parameters shows signs of some bias, but

gives a substantially different answer to the 2SLS method, suggesting its possible use as

a sensitivity analysis to the 2SLS method. In the extreme case, if each of the individuals

in a study were placed into separate genetic groups, then the IV estimate would be the

observational association.
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Figure 3.4: IV estimates for causal association in Framingham Heart Study of log(CRP)

on fibrinogen (µmol/l) using all combinations of varying numbers of SNPs as instruments.

Point estimates, associated box plots (median, inter-quartile range, range) and mean F

statistics across combinations are displayed

3.5.4 Model of genetic association

As the magnitude of weak instrument bias depends on the F statistic, models for the G-X

association which give larger F statistics would be preferred. A model of genetic association

with one parameter per SNP (for example a dominant/recessive model or per-allele model)

will typically have a greater F statistic than a model with a separate coefficient for each

level of the SNP (here called a categorical model). However, if the simpler model does not

represent the true model under which the data were generated, then bias due to model

misspecification may be introduced.

To investigate this we modify model (3.6) with three instruments and model (3.1) with

one instrument, so that the genetic association is not necessarily additive:

xi =
K∑
k=1

(α1k gik + dk 1(gik = 2)) + α2 ui + ϵxi (3.8)

where 1(.) is the indicator function, gik ∈ {0, 1, 2} for all i, k andK = 1 or 3. We conducted

100 000 simulations using the same parameters as Section 3.5.1, with α1k fixed at 0.5 for

all k and the dominance parameter dk taking values 0 (true additive model), +0.2 (major

dominant model) and −0.2 (minor dominant model). With three instruments, the genetic

instruments divide the chosen population of size 243 into 27 equally sized subgroups.
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3.6 Minimizing the bias from IV estimators

With one instrument, the population is divided into subgroups of size 108, 108 and 27,

corresponding to a SNP with minor allele frequency 1
3
.

3 IVs 1 IV

Median bias MAB Mean F Median bias MAB Mean F

Additive: categorical 0.038 0.087 11.2 0.056 0.218 7.8

Per-allele 0.016 0.086 21.4 0.000 0.228 14.6

Major dominant: categorical 0.027 0.072 15.9 0.045 0.200 9.9

Per-allele 0.011 0.072 30.3 0.000 0.207 18.5

Minor dominant: categorical 0.056 0.109 7.7 0.068 0.240 6.3

Per-allele 0.024 0.108 14.0 0.002 0.253 11.3

Table 3.6: Median bias and median absolute bias (MAB) of 2SLS IV estimate of β1 = 0

and mean F statistic across 100 000 simulations using per-allele and categorical modelling

assumptions for true additive, major dominant and minor dominant models

We analysed the data generated assuming additivity between instruments and either a

per-allele model (1 instrument per SNP) or a categorical model (2 instruments per SNP)

for each IV. Table 3.6 shows that the per-allele model has lower median bias than the

categorical model even when the underlying genetic model is misspecified. The median

absolute bias (MAB) is similar in each model, with a slight preference for the categor-

ical model with a single instrument. The categorical model suffers from greater weak

instrument bias because the mean F statistic is smaller. This indicates that, where the

genetic model is approximately additive, the more parsimonious per-allele model should

be preferred over a categorical model, as the gain in precision would not seem to justify

the increase in bias.

3.6 Minimizing the bias from IV estimators

We continue by listing specific ways to minimize bias from weak instruments in the design

and analysis of Mendelian randomization studies.

3.6.1 Increasing the F statistic

The F statistic is related to the proportion of variance in the phenotype explained by the

genetic variants (R2), sample size (N) and number of instruments (K) by the formula F =

(N−K−1
K

) ( R2

1−R2 ). As the F statistic depends on the sample size, then bias can be reduced by

increasing sample size. Similarly, if there are instruments that are not contributing much
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3.6 Minimizing the bias from IV estimators

to explaining the variation in the phenotype, then excluding these instruments will increase

the F value. As demonstrated in Section 3.5, in general, employing fewer degrees of freedom

to model the genetic association, that is using parsimonious models, will increase the F

statistic and reduce weak instrument bias, provided that the model does not misrepresent

the data (44; 45).

However, as shown above, it is not enough to simply rely on an F statistic measured

from data to inform us about bias (178). Returning to the example from Section 3.2.1

where we divided the CGPS study into 16 equally sized substudies with mean F statistic

10.81, Figure 3.5 shows the forest plot of the estimates of these 16 substudies using the

2SLS method with their corresponding F values. We see that the substudies which have

greater estimates are the ones with higher F values. The correlation between F values

and point estimates is 0.83 (p < 0.001). The substudies with higher F values also have

tighter CIs and so receive more weight in the meta-analysis. If we exclude from the meta-

analysis substudies with an F statistic less than 10, then the pooled estimate increases

from 0.2300 (SE 0.1372, p = 0.09) to 0.4322 (SE 0.1574, p = 0.006). Equally, if we only

use as instruments in each substudy the IVs with an F statistic greater than 10 when

regressed in a univariate regression on the phenotype, then the pooled estimate increases

to 0.2782 (SE 0.1470, p = 0.06). So neither of these approaches are useful in reducing

bias.

Although the expectation of the F statistic is a good indicator of bias, with low expected

F statistics indicating greater bias, the observed F statistic shows considerable variation.

In the 16 substudies of Figure 3.5, the F statistic ranges from 3.4 to 22.6. In more

realistic examples, assuming similar instruments in each study, larger studies would have

higher expected F statistics due to sample size which would correspond to truly stronger

instruments and less bias. However, the sampling variation of causal effects and observed

F statistics in each study would still tend to follow the pattern of Figure 3.5, with larger

observed F statistics corresponding to more biased causal estimates.

So while it is desirable to use strong instruments, the measured strength of instruments

in data is not a good guide to the true instrument strength. As also demonstrated in

Section 3.5.1 for the choosing of IVs, any guidance that relies on providing a threshold

(such as F > 10) for choosing which instruments to use or as an inclusion criterion for a

meta-analysis, is flawed and may introduce more bias than it prevents.
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Figure 3.5: Forest plot of causal estimates of log(CRP) on fibrinogen (µmol/l) using data

from Copenhagen General Population Study divided randomly into 16 equally sized sub-

studies (each N ≃ 2230). Studies ordered by causal estimate. F statistic from regression

of phenotype on three IV. Size of markers is proportional to weight in a fixed-effect meta-

analysis
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3.6 Minimizing the bias from IV estimators

3.6.2 Adjustment for measured covariates

If we can find measured covariates which explain variation in the phenotype, and which

are not on the causal pathway between phenotype and outcome, then we can incorporate

such covariates in our model. This will increase precision and reduce weak instrument bias.

Precision will be further increased if these covariates can be used to explain variation in

the outcome.

To exemplify this, we perform 100 000 simulations in a model similar to (3.1) with

a single IV, but with two separate terms accounting for confounding between X and Y,

corresponding to measured (V) and unmeasured (U) confounders.

xi = α1 gi + α2 ui + α2 vi + ϵxi (3.9)

yi = β1 xi + β2 ui + β2 vi + ϵyi

ui, vi, ϵxi, ϵyi ∼ N(0, 1) independently

We again set β1 = 0, α2 = 1, β2 = 1 and vary the parameter for the genetic association α1

from 0.05 to 0.55, corresponding to mean F values from 1.05 to 6.11. We use a sample size

of 200 equally divided between two genotypic groups, gi = 0, 1. We calculate an estimate

of causal association from the 2SLS method, both with and without adjustment for V

in the G-X and X̂-Y regressions. R2 in the regression of X on V is 33%. The relevant

measure of instrument strength with a measured confounder is the partial F statistic for

G in the regression of X on G and V (156). Table 3.7 shows that adjustment for measured

covariates increases the F statistic and decreases the median bias of the IV estimator. For

stronger instruments, we also see a reduction in the variability of the estimator.

Not adjusted Adjusted

α1 Mean F Median bias IQ range Partial F Median bias IQ range

0.05 1.05 0.6418 -0.1026 to 1.3859 1.58 0.4659 -0.3830 to 1.3138

0.15 1.39 0.4573 -0.2408 to 1.1406 2.09 0.2916 -0.4442 to 0.9776

0.25 2.06 0.2478 -0.3819 to 0.7446 3.09 0.1290 -0.4535 to 0.5949

0.35 3.08 0.1110 -0.4282 to 0.4821 4.62 0.0460 -0.4104 to 0.3883

0.45 4.42 0.0412 -0.4122 to 0.3414 6.63 0.0115 -0.3468 to 0.2819

0.55 6.11 0.0138 -0.3620 to 0.2691 9.16 0.0030 -0.2822 to 0.2277

Table 3.7: Bias of the IV estimator, median and interquartile (IQ) range across simulations

from model (3.9), for different strengths of instrument without and with adjustment for

confounder
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3.6 Minimizing the bias from IV estimators

As an example, we consider data on interleukin-6 (IL6), a cytokine which is involved

in the inflammation process upstream of CRP and fibrinogen (179). Elevated levels of IL6

lead to elevated levels of both CRP and fibrinogen, so IL6 is correlated with short-term

variation in CRP (84), but is independent of underlying genetic variation in CRP (64). We

assume that it is a confounder in the association of CRP with fibrinogen and not on the

causal pathway (if such a pathway exists). As IL6 has a positively skewed distribution, we

take its logarithm. The Cardiovascular Health Study (CHS) is a cohort study measuring

CRP, IL6 and fibrinogen at baseline, as well as 3 SNPs on the CRP gene, with complete

data for 4137 subjects. The proportion of variation in log(CRP) explained in the data by

log(IL6) is 26%. We calculate the causal estimate of the CRP-fibrinogen association for

each SNP separately and for all the SNPs together in an additive per allele model, both

without and with adjustment for log(IL6) in the first and second stage regressions. Results

are given in Table 3.8. We see that after adjusting for log(IL6) the causal estimate in each

case has decreased, its standard error has reduced, and the F statistic has increased. This

indicates both that weak instrument bias has been reduced, and that precision has been

improved.

Not adjusted Adjusted

IV estimate Estimate (SE) F statistic Estimate (SE) Partial F

Using rs1205 0.219 (0.201) 79.6 0.173 (0.196) 100.2

Using rs1417938 -0.457 (0.407) 27.6 -0.458 (0.362) 37.2

Using rs1800947 0.354 (0.325) 28.6 0.324 (0.316) 36.5

Using all SNPs 0.186 (0.194) 24.4 0.127 (0.188) 32.2

Table 3.8: Estimate and standard error (SE) of IV estimator for causal effect of log(CRP)

on fibrinogen and F statistic for regression of log(CRP) on IVs calculated using each SNP

separately and all SNPs together in additive per allele model, without and with adjustment

for log(IL6) in Cardiovascular Health Study

3.6.3 Borrowing information across studies

The IV estimator would be unbiased if we knew the true values for the average phenotype in

different genotypic groups. In a meta-analysis context (71), we can combine the estimates

of genotype–phenotype association from different studies to give more precise estimates

of phenotype levels in each genetic group. In the 2SLS method, an individual participant

data (IPD) fixed-effect meta-analysis for data on individual i in study m with phenotype
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3.6 Minimizing the bias from IV estimators

xim, outcome yim and gikm for number of alleles of genetic variant k (k = 1, 2, . . . K) is:

xim = α0m +
K∑
k=1

αkm gikm + ϵxim (3.10)

yim = β0m + β1 x̂im + ϵyim

ϵxim ∼ N(0, σ2
x); ϵyim ∼ N(0, σ2

y) independently

The phenotype levels are regressed on the instruments using a per allele additive linear

model separately in each study, and then the outcome levels are regressed on the fitted

values of phenotype (x̂im). The terms α0m and β0m are study-specific intercept terms.

Here we assume homogeneity of variances across studies; we can use generalized method

of moments (GMM) (117) or Bayesian methods (140) (see Chapter 5) to allow for possible

heterogeneity.

If the same genetic variants are measured and assumed to have the same effect on the

phenotype in each study, we can use common genetic effects (ie. αkm = αk) across studies

by replacing the first line in model (3.10) with

xim = α0m +
K∑
k=1

αk gikm + ϵxim (3.11)

where the coefficients αk are the same in each study. If the assumption of fixed genetic

effects is correct, this will improve the precision of the x̂im and reduce weak instrument

bias. Model (3.11) can be used even if, for example, the phenotype is not measured in one

study, under the assumption that the data are missing at random (MAR) (180).

To illustrate, we consider the Copenhagen City Heart Study (CCHS), Edinburgh Artery

Study (EAS), Health Professionals Follow-up Study (HPFS), Nurses Health Study (NHS),

and Stockholm Heart Epidemiology Program (SHEEP), which are cohort studies or case-

control studies measuring CRP and fibrinogen levels at baseline (82). In case-control stud-

ies, we use the data from controls alone since these better represent cross-sectional popula-

tion studies. These five studies measured three SNPs: rs1205, rs1130864 and rs3093077 (or

rs3093064, which is in complete linkage disequilibrium with rs3093077). We estimate the

causal association using the 2SLS method with different genetic effects (model 3.10), com-

mon genetic effects (model 3.11) and by a fixed-effect meta-analysis of summary estimates

from each study.

Table 3.9 shows that the studies analyzed separately have apparently disparate causal

estimates with wide CIs. The meta-analysis estimate assuming common genetic effects

across studies is further from the confounded observational estimate and closer to the
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3.6 Minimizing the bias from IV estimators

Causal Observational

Study N estimate 95% CI F statistic df estimate (SE)

CCHS 7999 -0.286 -1.017 to 0.445 29.6 (3,7995) 1.998 (0.030)

EAS 650 0.745 0.113 to 1.396 6.9 (3,646) 1.115 (0.056)

HPFS 405 0.758 -0.071 to 1.587 5.3 (3,401) 1.048 (0.081)

NHS 385 -0.906 -2.154 to 0.341 6.1 (3,381) 0.562 (0.114)

SHEEP 1044 0.088 -0.588 to 0.763 10.5 (3,1040) 1.078 (0.051)

Different genetic effects 0.021 -0.362 to 0.403 14.4 (15, 10463)

Common genetic effects -0.093 -0.534 to 0.348 56.6 ( 3, 10475)

Summary estimates 0.234 -0.107 to 0.575

Table 3.9: Estimates of effect of log(CRP) on fibrinogen (µmol/l) from each of five studies

separately and from meta-analysis of studies: studies included, number of participants

(N), causal estimates using 2SLS with 95% confidence interval (CI), F statistic with

degrees of freedom (df) from additive per allele regression of phenotype on SNPs used as

IVs, observational estimate (standard error). Fixed-effect meta-analyses conducted using

individual participant data (IPD) with different study-specific genetic effects, common

pooled genetic effects and using summary estimates with inverse-variance weighting

estimate from the largest study with the strongest instruments (CCHS) than the model

with different genetic effects, suggesting that the latter suffers bias from weak instruments.

The estimate from meta-analysis of study-specific causal estimates is greater than that

from meta-analysis using the individual participant data. Although the CCHS study has

about 8 times the number of participants as SHEEP and 12 times as many as EAS, its

causal estimate has a larger standard error. The standard errors in the 2SLS method, cal-

culated by sandwich variance estimators using strong asymptotic assumptions, are known

to be underestimated, especially with weak instruments (161). Also, Figure 3.5 shows

that causal estimates nearer to the observational association have lower variance. So a

meta-analysis of summary outcomes may be biased due to overestimated weights in the

studies with more biased estimates.

In the example at the beginning of the chapter (Section 3.2.1), if we use the IPD data

to combine the substudies in the meta-analysis rather than combining summary estimates,

then comparing Table 3.10 to Table 3.1 shows that the pooled estimates are somewhat less

biased. If we additionally assume common genetic effects across studies, then we recover

close to the original estimate based on analyzing the full dataset as one study and weak

instrument bias has been eliminated.
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IPD different IPD common

Substudies Summary p-value genetic effects p-value genetic effects p-value

1 -0.0468 (0.1510) 0.76

5 -0.0092 (0.1478) 0.95 -0.0273 (0.1479) 0.85 -0.0473 (0.1511) 0.75

10 0.0871 (0.1426) 0.54 0.0370 (0.1430) 0.80 -0.0457 (0.1510) 0.76

16 0.2300 (0.1372) 0.09 0.1530 (0.1372) 0.26 -0.0482 (0.1512) 0.75

40 0.4562 (0.1266) < 0.001 0.2986 (0.1272) 0.02 -0.0433 (0.1511) 0.77

100 0.8279 (0.1078) < 0.001 0.6782 (0.1056) < 0.001 -0.0450 (0.1506) 0.77

250 1.2711 (0.0826) < 0.001 1.1499 (0.0793) < 0.001 -0.0413 (0.1505) 0.78

Table 3.10: Estimates of causal effect (SE) of log(CRP) on fibrinogen from Copenhagen

General Population Study divided randomly into substudies and combined: using 2SLS

summary study estimates by fixed-effect meta-analysis, using individual patient data

(IPD) with different and common genetic effects across substudies

3.7 Discussion

This chapter demonstrates the effect of weak instrument bias on causal estimates in real

and simulated data. We have shown by simulation and using a variety of explanations that

the magnitude of this bias depends on the statistical strength of the association between

instrument and phenotype. Using 2SLS, when multiple instruments were used, we found

in our simulations that the median size of the bias of the IV estimator was approximately

1/F of the bias in the observational association, where F is the mean F statistic from

the regression of phenotype on instrument. So a mean F statistic of 10 limits the median

relative bias to less than 10%. When a single instrument was used, a mean F statistic

of 5 seemed to be sufficient to ensure median relative bias was about 5%, and a mean F

statistic greater than 10 ensured negligible bias from weak instruments. A limitation of

this conclusion is that, unlike for the relative mean bias (181), there is no theoretical basis

for this approximation and we have undertaken only a simulation exercise. Using LIML,

the median bias was close to zero throughout, even in a real data example using a large

number of correlated instruments.

While the magnitude of the bias depends on the instrument strength through the mean

or expected F statistic, for a study of fixed size and underlying instrument strength, an

observed F statistic greater than the expected F value corresponds to an estimate closer to

the observational association with greater precision; conversely an observed F statistic less

than the expected F value corresponds with an estimate further from the observational

association with less precision. So simply relying on an F statistic from an individual
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study is over-simplistic and simple threshold rules such as ensuring F > 10 may cause

more bias than they prevent.

Using the 2SLS method, we demonstrated a bias–variance trade-off for number of

instruments used in IV estimation. For a fixed mean F statistic, as the number of instru-

ments increases, the precision of the IV estimator increases, but the bias also increases.

Using the LIML method, bias did not increase appreciably with the number of instru-

ments. Nevertheless, we seek parsimonious models of genetic association, for example

using additive per allele effects and including only IVs with a known association with the

phenotype, based on biological knowledge and external information. Provided the data are

not severely misrepresented, these should provide the best estimates of causal association.

It is also possible to summarize multiple SNPs using a gene score (44). If this is done

using pre-specified weights, this makes strong assumptions about the effects of different

SNPs which may itself introduce bias. The use of a data-derived weighted gene score is

equivalent to 2SLS (182). Again, post-hoc use of observed F statistics to choose between

instruments may cause more bias than it prevents.

Ideally, issues of weak instrument bias should be addressed prior to data collection,

by specifying sample sizes, instruments, and genetic models using the best prior evidence

available to ensure that the expected value of F statistics are large. Where this is not

possible, our advice would be to conduct sensitivity analyses using different IV methods,

numbers of instruments and genetic models to investigate the impact of different assump-

tions on the causal estimate.

Generally, the LIML estimate is less biased than the 2SLS estimate. Difference between

the 2SLS and LIML IV estimates is evidence of possible bias from weak instruments. When

a single instrument is used, the 2SLS and LIML estimates coincide, and the IV estimate

is close to median unbiased. The LIML estimate with any number of instruments and

the 2SLS estimate with one instrument do not have finite moments, and so do not have

a defined mean bias; however this would not generally be a problem in applied research.

The Fuller(1) estimator does have a finite mean for any number of instruments, but shows

considerable median and mean bias with one instrument.

Another technique which helps reduce weak instrument bias is adjustment for covari-

ates. Including predictors of the phenotype in the first stage regression, or predictors

of the outcome in the second stage regression, increases precision of the causal estimate.

The former will also increase the F statistic for the genetic IVs, and thus reduce weak

instrument bias.

In a meta-analysis context, bias is a more serious issue, as it arises not only from the

bias in the individual studies, but also from the correlation between causal effect size and
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variance which results in studies with effects closer to the observational estimate being

over-weighted. By using a single IPD model, we reduce the second source of bias. Addi-

tionally, we can pool information on the genetic association across studies to strengthen

the instruments. The assumptions of homogeneity of variances and common genetic effects

across studies will often be overly restrictive. Allowing for heterogeneity across studies in

phenotype variance, genetic effects, and in the causal effects themselves, is possible in a

Bayesian framework (140), and is discussed in Chapter 5.

Finally, we emphasize that the use of a genetic instrument in Mendelian randomization

relies on certain assumptions. In this chapter we have assumed, although these may fail

in finite samples, that they hold asymptotically. If these assumptions do not hold, for

example if there were a true correlation between the instrument and a confounder, then

IV estimates can be entirely misleading (183) and “the cure can be worse than the disease”

(184).

3.7.1 Key points from chapter

• Bias from weak instruments can result in seriously misleading estimates of causal

effects. Studies with instruments having high mean F statistics are less biased on

average. However, if a study by chance has a higher F statistic than expected, then

the causal estimate will be more biased.

• Data-driven choice of instruments or analysis can exacerbate bias. In particular,

any guideline such as F > 10 is misleading. Methods, instruments, and data to be

used should be specified prior to data analysis. Meta-analysis based on summary

study-specific estimates of causal association are susceptible to bias.

• Bias can be alleviated in a single study by using the LIML rather than 2SLS method

and by adjusting for measured confounders, and in a meta-analysis by using IPD

modelling. We advocate parsimonious modelling of the genetic association (e.g. per

allele additive SNP model rather than one coefficient per genotype). This should be

accompanied by sensitivity analyses to assess potential bias.
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Chapter 4

Collapsibility for IV analyses of

binary outcomes

4.1 Introduction

When an estimate of association between a phenotype and outcome from an observational

study is compared to that from a randomized controlled trial (RCT), there is often dis-

agreement between the estimates (3). As previously stated, this may be due to confounding

or reverse causation in observational studies, or non-compliance in trials (185). However,

even when there is no confounding, reverse causation or non-compliance and the model is

correctly specified, there may be a difference between the estimates, as the observational

study estimate will typically be conditional on covariates, while the RCT estimate is typ-

ically marginal across these covariates (109). This is known as non-collapsibility, and it

affects estimates of odds ratios (33).

A second, related issue is that of whether an effect estimate represents a subject-specific

or a population-based effect (186). If individuals in a population have heterogeneous

levels of risk, a non-collapsible measure of association differs depending on whether it

is considered for an individual within the population or for the population as a whole.

Covariates for the outcome represent one source of such heterogeneity for risk.

As we have seen in previous chapters, instrumental variables (IV) can be used to

estimate causal effects which are free of bias from confounding and reverse causation.

However, when the measure of association is not collapsible across variation in risk, it

is not clear which quantity is being estimated. For this reason, regression analyses of

non-linear problems using IV techniques have been labelled “forbidden regressions” by

econometricians (118; 129; 187). We explore the reasons for this prohibition in this chapter.
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4.2 Collapsibility

The use of instrumental variables in epidemiological research has been advocated in

randomized trials to adjust for non-compliance, and in observational studies to adjust for

unmeasured covariates. Difference between the estimates of an association in a randomized

trial with and without adjustment for compliance is taken as evidence of bias due to

treatment contamination. Similarly, difference between an association using observational

data estimated by conventional regression methods with adjustment for known covariates

and by IV analysis is taken as evidence of unmeasured confounding or reverse causation.

For this reason, it is important to know whether the estimates compared are targeting

the same quantity or not. Although the general context of this chapter will be that of

Mendelian randomization, there is no restriction of the mathematical findings to the use

of genetic IVs.

In this chapter, we define non-collapsibility, and illustrate it for the odds ratio param-

eter (Section 4.2). We define odds ratios which are marginal and conditional on the phe-

notype, which reflect the effect of a population intervention in the phenotype (marginal)

or an individual intervention (conditional). Odds ratio also differ depending on the choice

of covariates conditioned on. The difference between various odds ratios is demonstrated

using simulated and real data (Section 4.3). We show how the ratio or two-stage IV es-

timate in a logistic model is consistent for the odds ratio corresponding to an increase

in the risk factor across its population distribution, conditional within strata of the in-

strument and marginal across all other covariates. This is similar to the odds ratio from

a randomized controlled trial without adjustment for any covariates, where the interven-

tion in the risk factor corresponds to a unit change across the population. Under certain

specific conditions, when adjustment in the IV regression is made for an estimate of the

unmeasured covariates, an individual odds ratio can be estimated which is conditional on

covariates (Section 4.4). Finally, we discuss how the issue of non-collapsibility affects the

interpretation of analyses of observational data, RCTs and instrumental variable situations

(Section 4.5).

4.2 Collapsibility

We introduce the concept of collapsibility by telling two short stories about odds ratios

which represent the answer to different causal questions about interventions in a risk factor.
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4.2.1 Collapsibility across a covariate

A person approaches a statistician in a dark alleyway and says in a low and indeterminate

voice: “What’s the odds ratio for heart disease of smoking?”. The statistician replies,

“1.89”. The stranger comes closer: “Thank you, kind sir, for helping a lady with her

problem”. The statistician replies, “Oh, you are female. In that case, your odds ratio

is actually 2.” The lady exclaims, “So the odds ratio for men is less than 1.89?”. The

statistician replies, “No, for men it is also 2.”.

Paradoxically, this story can be true. The numbers chosen to tell the story are given

in the left half of Table 4.1. We see that the odds ratio changes depending on whether

the ratio is conditional on sex or not. While the statistician is being obtuse, as in this

toy example the stratum-specific or individual odds ratio is the same for men and women

and each individual is a member of exactly one of those categories, this story illustrates

the non-collapsibility of the odds ratio. For simplicity, we assume that the populations of

smokers and non-smokers contains men and women in equal proportions, meaning that sex

is not a confounding factor in the association of smoking with heart disease. In contrast,

as the right half of Table 4.1 shows, a relative risk is the same whether conditional or

marginal on sex.

Probability of event Probability of event

Non-smoker Smoker Odds ratio Non-smoker Smoker Relative risk

Men 3
13

3
8

2 0.3 0.6 2

Women 1
21

1
11

2 0.05 0.1 2

Overall 0.168 0.318 1.89 0.175 0.35 2

Table 4.1: Illustrative example of collapsing an effect estimate over a covariate: non-

equality of conditional and marginal odds ratios and equality of relative risks

A measure of association is collapsible over a covariate, as defined by Greenland et al.

(110), if, when it is constant across the strata of the covariate, this constant value equals

the value obtained from the overall (marginal) analysis. Non-collapsibility is the violation

of this property. The relative risk and absolute risk difference are collapsible across strata

measures of association (188; 189). Odds ratios are generally not collapsible unless both

risk factor and outcome are independent of the covariate, or risk factor and covariate are

conditionally independent given the outcome, or outcome and covariate are conditionally

independent given the risk factor (190). Hazard ratios from survival analyses are also not

generally collapsible (191).
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4.2.2 Collapsibility across the risk factor distribution

The lady continues: “My cardiovascular risk score is 1.8. What is the odds ratio for

heart disease of increasing the score by one?”. The statistician replies: “2”. “And for my

husband, who has a risk score of 1.4?”. “2”. “And for my children, who have risk scores

of 0.4 and 0.2?”. “The odds ratio for an individual is 2”. “So the odds ratio for our family

if everyone’s risk score increased by one is . . . ”. “1.94”.

If the true probability of event (π) is related to the risk score (X) by the risk model

logitπ = −2 + X log(2), then the odds ratio for any individual for a unit increase in X

is 2. However, for a group of heterogeneous individuals, the odds ratio is different to 2.

As above, if the true risk model is log π = −2 + X log(2), then the relative risk for any

individual is 2 and the population relative risk is also 2.

Logistic-linear model: logit π = −2 +X log(2)

Risk score (x) Probability given X = x Probability given X = x+ 1 Odds ratio

0.2 0.135 0.237 2

0.4 0.152 0.263 2

1.4 0.263 0.417 2

1.8 0.320 0.485 2

Average 0.217 0.351 1.94

Log-linear model: log π = −2 +X log(2)

Risk score (x) Probability given X = x Probability given X = x+ 1 Relative risk

0.2 0.155 0.311 2

0.4 0.179 0.357 2

1.4 0.357 0.714 2

1.8 0.471 0.943 2

Average 0.291 0.581 2

Table 4.2: Illustrative example of collapsing an effect estimate across the risk factor dis-

tribution: non-equality of individual and population odds ratios and equality of relative

risks

These two examples both demonstrate the attenuation of the odds ratio when the

probability of an event is averaged across a distribution. In the first example, the varia-

tion can be explained by a covariate, and the different odds ratios represent the measure

of association for a change from non-smoker to smoker conditional or marginal on the

covariate, sex. In the second example, the risk model is constructed so that there is no

omitted covariate, simply individuals with different levels of the risk factor, and the odds
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ratio represents the measure of association for a unit increase in the risk score. In both

cases, the odds ratio for an individual in the population is different to the odds ratio for

the population as a whole.

4.3 Exploring differences in odds ratios

Before considering how issues of collapsibility affect IV estimation, we firstly consider

different definitions of odds ratios, and then see how these odds ratios have different

numerical values in simulated and real data.

4.3.1 Individual and population odds ratios

We consider the association between a phenotype (X) and an outcome (Y ). We assume

the covariates for the outcome can be summarized by a single random variable V (94). If

V were known and conditioned on, the estimate of association of X on Y would be equal

to the causal association. We note that as V contains all information on the covariates

for Y , any sufficient covariate U is a function of V . As the distribution of Y is unlikely to

be dominated by just a few factors, ability to reduce the covariates to a single univariate

random variable seems a reasonable assumption. For example, if all the covariates V1, . . . Vp

are linearly associated and normally distributed, then we could replace these Vj with a

single normally distributed V .

An individual effect is the change in outcome due to an intervention in the phenotype

conditional on the phenotype, and a population effect is the change in outcome due to

an intervention in the phenotype averaged across the distribution of the phenotype. For

a binary outcome Y = 0 or 1, the conditional individual odds ratio (CIOR) is defined as

the odds ratio for unit increase in the phenotype from x to x+ 1 for a given value of v:

CIOR(x, v) =
odds(Y (x+ 1, v))

odds(Y (x, v))
(4.1)

where odds(Y ) = P(Y=1)
P(Y=0)

and Y (x, v) = Y |(X = x, V = v) is the outcome random variable

with phenotype level x and covariate level v.

The conditional population odds ratio (CPOR) is defined as the odds ratio for unit

increase in the distribution of the phenotype from X to X + 1. This is an increase from

x to x+ 1 marginalized over the phenotype distribution for a given value of v:

CPOR(v) =
odds(Y (X + 1, v))

odds(Y (X, v))
(4.2)
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where the probabilities in the odds function are averaged across (or integrated over) the

distribution of X.

In general, the CIOR may be a function of x and v, although in a logistic-linear model

of association, where the logit of the probability of outcome (π) is a linear function in X

and V with no interaction term:

Y ∼ Binomial(1, π) (4.3)

logit(π) = β0 + β1X + β2V

the CIOR is independent of x and v:

CIOR(x, v) =
P(Y (x+ 1, v) = 1)

P(Y (x+ 1, v) = 0)

/
P(Y (x, v) = 1)

P(Y (x, v) = 0)
(4.4)

=

(
exp(β0+β1(x+1)+β2v)

1+exp(β0+β1(x+1)+β2v)

)(
1

1+exp(β0+β1x+β2v)

)
(

exp(β0+β1x+β2v)
1+exp(β0+β1x+β2v)

)(
1

1+exp(β0+β1(x+1)+β2v)

)
= exp(β1)

This is the odds ratio estimated by a logistic regression of Y on X and V .

Unless X is constant, the CPOR is a non-trivial function of the variable v even in the

case of model (4.3), and so we remove the dependence on V by integrating over the joint

distribution of X and V to obtain a marginal population odds ratio (MPOR):

MPOR =
odds(Y (X + 1, V ))

odds(Y (X,V ))
(4.5)

=
PX,V (Y (X + 1, V ) = 1)

P(Y (X + 1, V ) = 0)

/
P(Y (X,V ) = 1)

P(Y (X,V ) = 0)

=
EX,V [Y (X + 1, V )]

1− EX,V [Y (X + 1, V )]

/
EX,V [Y (X, V )]

1− EX,V [Y (X, V )]
(4.6)

This represents the ratio of the odds for a population with the whole distribution of the

phenotype shifted up by one to the odds for a population with the original distribution of

the phenotype. From here on, we assume that the model of association is logistic-linear,

and drop the dependence on the value of x and v, referring to the CIOR(x, v) as simply

the individual odds ratio (IOR) and the MPOR as the population odds ratio (POR). The

POR depends on the (usually unknown) distributions of the phenotype and covariate,

and is generally attenuated compared to the exp(β1) due to the convexity of the logit

function (Jensen’s inequality). In Model (4.3), we can write the population log odds ratio
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(PLOR = log POR) explicitly as:

PLOR = logit

∫ ∫
expit(β0 + β1(x+ 1) + β2v)f(x, v)dxdv

− logit

∫ ∫
expit(β0 + β1x+ β2v)f(x, v)dxdv (4.7)

where f(x, v) is the joint distribution of X and V and expit(x) = (1− exp(−x))−1 is the

inverse of logit(x).

We can think of the PLOR as the estimate of association from a simulated RCT where

the intervention is a unit increase in the phenotype. In the context of a randomized trial,

the ratio between the odds of two randomized groups is known as an incident odds ratio

(109). In a simulated example, we can calculate the incident odds ratio in our simulated

population. For each individual i = 1, . . . , N , we consider a counterfactual individual,

identical to the first, except with phenotype xi increased by one. We separately draw two

independent sets of outcomes y1i, y2i for the original and counterfactual populations.

logit(π1i) = β0 + β1xi + β2vi (4.8)

y1i ∼ Binomial(1, π1i)

logit(π2i) = β0 + β1(xi + 1) + β2vi

y2i ∼ Binomial(1, π2i)

The incident log odds ratio (InLOR) is calculated as the log odds ratio for a unit

intervention on phenotype, which is the difference in log odds between the real and coun-

terfactual populations.

InLOR = log

(
ôdds(Y2)

ôdds(Y1)

)
(4.9)

= log

( ∑
y2i

N −
∑
y2i

)
− log

( ∑
y1i

N −
∑
y1i

)
(4.10)

This is a Monte Carlo approximation to the integrals in (4.7), meaning that InLOR →
PLOR as N → ∞. In our calculations, we sum the probabilities π̂1i, π̂2i rather than

summing over the events y1i, y2i to reduce sampling variation in equation (4.10).

Both the individual and population effects are ceteris paribus (Latin: “with all other

things equal”) estimates; they estimate the effect on the outcome of an intervention on

the risk factor with all other factors (such as covariates) kept equal (192). For this reason,

both can be thought of as causal effects. The population estimate is averaged across levels

of the phenotype and other covariates, whereas the individual estimate is conditional on

the value of phenotype and other covariates (186).
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4.3.2 Marginal and conditional estimates

If there are multiple covariates, then a causal effect can be conditional on some covariates

and marginal across others, depending on which covariates are conditioned on. Although

odds ratios typically differ depending on covariate adjustment, a null causal association

of X on Y leads to an odds ratio of one no matter which covariates the odds ratio is

considered to be marginal and conditional across. For this reason, distinction between un-

confounded odds ratios is not an issue for hypothesis testing, but for parameter estimation

(see Section 2.3); conditional and marginal odds ratios test the same null hypothesis.

4.3.3 Population and individual odds ratios in simulated data

We consider a confounded model of association between a phenotype and outcome, sim-

ulating data for N participants indexed by i. We aim to show how the individual and

population odds ratios differ in a simple setting. The phenotype (X) is a linear combi-

nation of a covariate G which takes two values, a normally distributed covariate V and

an error term. The outcome (Y ) is a binary variable, taking value 1 with probability π1,

which is a logistic function of the phenotype and covariate V . Although G will be thought

of later as an IV, it could here be any covariate dividing the population independently of

V into strata with different mean phenotype levels.

xi = α0 + α1gi + α2vi + ϵi (4.11)

logit(π1i) = β0 + β1xi + β2vi

yi ∼ Binomial(1, π1i)

vi ∼ N(0, 1), ϵi ∼ N(0, σ2
x) independently

The individual log odds ratio (ILOR) conditional on V is β1 as in equation (4.4).

To illustrate the difference between the population and individual log odds ratios, we

set β0 = −2, α0 = 0 throughout and consider two different sizes of ILOR, β1 = 0.4,−0.8

(corresponding to IORs 1.49 and 0.45), and seven different values for the covariate effect

(β2 = −1.0,−0.6,−0.2, 0, 0.2, 0.6, 1.0). We assume that G divides the population into two

strata of equal size (gi = 0, 1). We consider the PLOR in five scenarios:

1. X is constant (α1 = 0, α2 = 0, σ2
x = 0)

2. X varies independently of the covariate V (α1 = 0, α2 = 0, σ2
x = 2)

3. X is correlated with the covariate V (α1 = 0, α2 = 1, σ2
x = 1)
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4. X has constant levels depending on G (α1 = 1, α2 = 0, σ2
x = 0)

5. X varies with V and G (α1 = 1, α2 = 1, σ2
x = 1)

Results were calculated using the Monte Carlo method (equation (4.10)) for a large

sample (N > 1000000) and checked by numerical integration using the adapt package in

R (193). The numerical integration algorithm was quite sensitive to the parameters used,

as integrating over too large a range induced numerical overflow and integrating over too

small a range lost accuracy by clipping the tails of the distribution. In contrast, the Monte

Carlo estimates were very stable across iterations.

β2 = −1.0 β2 = −0.6 β2 = −0.2 β2 = 0 β2 = 0.2 β2 = 0.6 β2 = 1.0

Scenario 1
β1 = 0.4 0.3491 0.3814 0.3980 0.4000 0.3980 0.3814 0.3491

β1 = −0.8 -0.7202 -0.7742 -0.7975 -0.8000 -0.7975 -0.7742 -0.7202

Scenario 2
β1 = 0.4 0.3347 0.3648 0.3814 0.3835 0.3814 0.3648 0.3347

β1 = −0.8 -0.6220 -0.6678 -0.6933 -0.6967 -0.6933 -0.6678 -0.6220

Scenario 3
β1 = 0.4 0.3364 0.3683 0.3863 0.3886 0.3863 0.3683 0.3364

β1 = −0.8 -0.6739 -0.7227 -0.7475 -0.7506 -0.7475 -0.7227 -0.6739

Scenario 4
β1 = 0.4 0.3437 0.3772 0.3955 0.3978 0.3955 0.3772 0.3437

β1 = −0.8 -0.7227 -0.7709 -0.7910 -0.7931 -0.7910 -0.7709 -0.7227

Scenario 5
β1 = 0.4 0.3683 0.3863 0.3863 0.3794 0.3683 0.3364 0.2994

β1 = −0.8 -0.5429 -0.6097 -0.6738 -0.7010 -0.7227 -0.7475 -0.7475

Table 4.3: Population log odds ratio (PLOR) for unit increase in phenotype from five example

models

Table 4.3 shows that even in this simple model, the PLOR is only equal to the ILOR

when X is constant and there is no other covariate which is a competing risk factor

for Y . A competing risk factor (even if it is not a confounder), variation in X, and

stratification of X all result in an attenuation of the PLOR. The maximal attenuation in

the examples considered here is 27% (−0.5429 from −0.8). If we had instead considered

a log-linear model of Y on X and examined the population relative risk, Table 4.3 would

have contained only the two values 0.4 and −0.8, as the population relative risk is equal

to the individual relative risk throughout.

This example illustrates the non-collapsibility of the odds ratio. The odds ratio for a

risk factor does not average correctly, attenuating when averaged across a population with

any variation or heterogeneity in the risk factor, or when there is an alternative risk factor.

The relative risk does average correctly. This means that an odds ratio for a risk factor

estimated from observational data by logistic regression conditional on covariates will be

an overestimation of the expected effect of the same intervention on the population.
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4.3.4 Population and individual odds ratios in five studies

To show a similar difference between the population and the individual odds ratios in

real data, we consider data from five studies which investigate heart disease, of which

three are retrospective case-control studies: Precocious Coronary Artery Disease Study

(PROCARDIS), Ludwigshafen Risk and Cardiovascular Health Study (LURIC), Stock-

holm Heart Epidemiology Program (SHEEP); and two are cohort studies: Cardiovascular

Health Study (CHS) and Rotterdam Study (ROTT). We take cross-sectional data from

21 090 individuals including 6218 with a previous history of myocardial infarction (MI)

(defined using World Health Organization criteria) to investigate the effect of C-reactive

protein (CRP) on MI. Logistic models of disease outcome on log-transformed CRP were

constructed with various levels of adjustment for confounding. In this section, the goal is

not the estimation of causal association, but rather to investigate the magnitude of the

attenuation of the population from the individual odds ratio.

We compare the ILOR of a unit increase in log(CRP), estimated by logistic regression,

with the PLOR of a unit increase in log(CRP). The PLOR is estimated by increasing

the predictor in the logistic model, which represents the probability of an event, by β̂1,

the coefficient for a unit increase in log(CRP) from the logistic regression model, and

summing over the new probabilities to obtain the mean number of cases for a counterfactual

population with log(CRP) increased by one.

For individual i, if we have the linear predictor (ηi) for our regression model of proba-

bility of MI event (πi) on log(CRP) (xi) and confounders (vij):

ηi = logit(πi) = β0 + β1xi +
∑
j

β2jvij (4.12)

Then our population log odds ratio is estimated as:

P̂LOR = logit( 1
N

∑
i

expit(β̂0 + β̂1(xi + 1) +
∑
j

β̂2jvij))

− logit( 1
N

∑
i

expit(β̂0 + β̂1(xi) +
∑
j

β̂2jvij)) (4.13)

This is similar to the Monte Carlo approach of equation (4.10), except that summation

of the event probabilities is across the empirical distribution of the phenotype and con-

founders from the data.

This calculation assumes that the regression model in use is correct, and specifically

that all covariates which represent competing risk factors have been accounted for. Al-

though this is an unrealistic assumption, it is made here for purpose of illustration. In
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case-control studies, as the probabilities of an event cannot be estimated directly, we have

adjusted the model intercept to give a 7% incidence rate in the population from which the

case-control sample was ascertained (194).

Table 4.4 shows how the individual odds ratios represent an over-estimation of the

true effect of a population unit intervention in CRP levels on MI. While the estimates

of association in Table 4.4 should not be regarded as causal effects, due to the unrealis-

tic assumptions of no unmeasured confounders or competing risk factors, the estimates

illustrate that, in real data, the individual and population odds ratios can be somewhat

different. The linear predictor, the logit of the probability of an event, has an approximate

normal distribution. In PROCARDIS, with no adjustment, the standard deviation of the

linear predictor for the cohort is 0.41, increasing to 0.92 on adjustment for sex, diabetes

status and age, and to 1.38 on further adjustment for total cholesterol, high-density lipid

cholesterol and log(triglycerides). This indicates that individuals in the population have

heterogeneous levels of risk of developing MI. In CHS, the standard deviation of the linear

predictor for the fully adjusted model considered here is 0.89, and there is less attenuation

of the individual odds ratio compared with PROCARDIS. Even assuming the effect of

CRP is no longer confounded, further adjustment for unmeasured covariates would lead

to greater attenuation of the POR. This is because the logistic function is less well approx-

imated by a linear function as the domain and range of the function considered widens.

In the maximally-adjusted models considered here, there is a 5–14% attenuation of the

PLOR compared to the ILOR.

4.3.5 Summary

An odds ratio changes when marginalized across heterogeneity in risk, whether the hetero-

geneity is explainable by covariates or represents different levels of the phenotype. These

two issues of marginalization across a covariate and phenotype distribution are related, but

separate. Marginalizing over covariates is necessary when considering a population odds

ratio, as otherwise the population odds ratio is a function of the covariate and so takes

different values across strata of the covariate. With an individual odds ratio, marginaliz-

ing over or conditioning on a covariate is a choice to be made in terms of interpretation

of the coefficients in the model. An odds ratio from a RCT usually targets a odds ratio

marginal across covariates, as adjustment for covariates is not necessary. Observational

epidemiological analysis using logistic regression targets a conditional individual odds ra-

tio, as adjustment for covariates is necessary to avoid confounding. Once a choice of

covariates has been made for the model, a population or an individual odds ratio can
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Model 1 Individual Population

(log) odds ratio (log) odds ratio

PROCARDIS (N = 6464, n = 3135)

No adjustment 1.4408 (0.3652) 1.4330 (0.3598)

Adjustment for sex, diabetes
1.4371 (0.3626) 1.3911 (0.3301)

status and age

Further adjustment for tchol, hdl, log(tg) 1.3048 (0.2661) 1.2570 (0.2287)

LURIC (N = 3236, n = 1335)

No adjustment 1.2801 (0.2470) 1.2775 (0.2449)

Adjustment for sex, diabetes
1.2690 (0.2382) 1.2633 (0.2337)

status and age

Further adjustment for sbp, tchol, hdl,
1.1927 (0.1762) 1.1852 (0.1699)

bmi, log(tg)

SHEEP (N = 1994, n = 858)

No adjustment 1.4312 (0.3585) 1.4241 (0.3535)

Adjustment for sex, diabetes
1.4057 (0.3405) 1.3881 (0.3280)

status and age

Further adjustment for tchol, hdl, bmi, log(tg) 1.2872 (0.2525) 1.2637 (0.2341)

CHS (N = 4506, n = 449)

No adjustment 1.2554 (0.2275) 1.2538 (0.2262)

Adjustment for sex, diabetes
1.2284 (0.2057) 1.2186 (0.1977)

status and age

Further adjustment for sbp, tchol, hdl 1.1854 (0.1701) 1.1758 (0.1619)

ROTT (N = 5402, n = 647)

No adjustment 1.3525 (0.3020) 1.3476 (0.2983)

Adjustment for sex, diabetes
1.2327 (0.2092) 1.2200 (0.1988)

status and age

Further adjustment for tchol, hdl 1.1849 (0.1697) 1.1732 (0.1597)

Table 4.4: Individual and population odds ratios (log odds ratios) for a unit increase in

log(CRP) on myocardial infarction (MI) odds from logistic regression in five studies (N =

number of participants, n = number of events)

1tchol = total cholesterol, hdl = high-density lipid cholesterol, bmi = body mass index, sbp = systolic

blood pressure, tg=triglycerides
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be estimated. The difference in interpretation between the two odds ratios is between a

population-averaged and an individual-specific effect. Neither of the estimates is ‘correct’

or ‘incorrect’; they simply represent the answer to different questions.

4.4 Instrumental variables

In this section, we consider how the difference between individual and population odds

ratios is relevant to IV estimation. We show this firstly analytically, considering a simple

model of association between an instrument, phenotype and outcome. We then show this

by simulation in a more realistic setting.

4.4.1 Relation of the two-stage IV estimator and population

odds ratio

We aim to show through analytic results and careful simulation how the quantity estimated

by the two-stage method is a population odds ratio.

With a single instrument, the two-stage estimator equals the ratio of the coefficient

from the logistic regression of outcome on the IV to the coefficient from the linear regression

of phenotype on the IV.

β̂R
1 = β̂GY /β̂GX (4.14)

We assume here that G takes values 0 and 1, and that the outcome Y has a Bernouilli

distribution with probability of event π and linear predictor η = logit(π).

X = α0 + α1G+ g(U) + ϵX (4.15)

η = logit(π) = X + h(V )

Y ∼ Bernouilli(π)

where g(.) is an arbitrary function of the covariates U for X, h(.) is an arbitrary function

of the covariates V for Y , and ϵX is an independent error term for X. We consider the

logistic regression of Y on G using the model:

logit(πi) = γ0 + γ1gi (4.16)
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We have the likelihood L and log-likelihood ℓ such that

L =
∏
i

πyi
i (1− πi)

1−yi (4.17)

ℓ =
∑
i

yi log πi + (1− yi) log(1− πi) (4.18)

=
∑
i

yi log

(
πi

1− πi

)
+
∑
i

log(1− πi)

=
∑
i

yi(γ0 + γ1gi)−
∑
i

log(1 + exp(γ0 + γ1gi))

Differentiating, we obtain

∂ℓ

∂γ0
=
∑
i

yi −
∑
i

expit(γ0 + γ1gi) (4.19)

∂ℓ

∂γ1
=
∑
i

giyi −
∑
i

gi expit(γ0 + γ1gi) (4.20)

Whence,

γ̂0 = logit

(∑
i yi(1− gi)∑
i(1− gi)

)
(4.21)

γ̂1 = logit

(∑
i yigi∑
i gi

)
− logit

(∑
i yi(1− gi)∑
i(1− gi)

)
(4.22)

As the sample size N tends to infinity, by the law of large numbers,
∑

i yigi → E[Y G] =
P(Y = 1, G = 1). Thus

γ̂1 → logit

(
P(Y = 1, G = 1)

P(G = 1)

)
− logit

(
P(Y = 1, G = 0)

P(G = 0)

)
(4.23)

= logit(P(Y = 1|G = 1))− logit(P(Y = 1|G = 0))

= logit(E[Y |G = 1])− logit(E[Y |G = 0])

= logit(E[Y (X(1))]− logit(E[Y (X(0))]

where here Y (x) = Y |(X = x) and X(g) = X|(G = g) (note that Y ⊥⊥ G|X in this

example) and the probabilities and expectations are averaged across the distribution of X

and V . Hence we see that the coefficient γ̂1 = β̂GY is the log odds ratio corresponding to

an increase of α1 across the distribution of X conditional on G. As we see, this log odds

ratio is a population odds ratio conditional on G but marginal in all other covariates. As

the sample size increases, the denominator of the IV estimate converges in probability to

the constant α1, so the IV estimator converges to the ratio 1
α1

plimN→∞ β̂GY by Slutsky’s

theorem. We write this quantity as plim β̂R
1 as we shall refer to it as the IV estimand.
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4.4.2 IV estimation in simplistic simulated scenarios

We take a series of scenarios, starting with a simple model for the joint distribution of G,

U , V , X and Y and adding complexity step-by-step. U represents a covariate for X and

V a independent covariate for Y . For simplicity of calculation, both U and V take values

0 or 1 with equal probability. Neither covariate is regarded as known and so both are

omitted from the models. In each case, the coefficient of X (the ILOR) is 1. We calculate

the PLOR (which is marginal in all covariates) and IV estimand plim β̂R
1 = 1

α1
plim β̂GY

1

for five scenarios.

1. No variation in phenotype or linear predictor.

X = G (4.24)

η = logit(π) = X

2. No variation in phenotype or linear predictor, smaller IV effect.

X = 0.3G (4.25)

η = logit(π) = X

3. No variation in phenotype, variation in linear predictor.

X = G (4.26)

η = logit(π) = X + V

V ∼ Bernouilli(0.5)

4. No variation in phenotype, variation in linear predictor, smaller IV effect.

X = 0.3G (4.27)

η = logit(π) = X + V

V ∼ Bernouilli(0.5)

5. Variation in phenotype, variation in linear predictor.

X = G+ U (4.28)

η = logit(π) = X + V

U, V ∼ Bernouilli(0.5) independently

Results are given in Table 4.5. In each of the first four examples, there is no random

variation in X. In examples 1 and 2, there is no variation in the linear predictor except
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PLOR

Example 1
logit(1

2
{expit(2) + expit(1)})

= 0.953
− logit(1

2
{expit(1) + expit(0)})

Example 2
logit(1

2
{expit(1.3) + expit(1)})

= 0.995
− logit(1

2
{expit(0.3) + expit(0)})

Example 3
logit(1

4
{expit(3) + 2× expit(2) + expit(1)})

= 0.927
− logit(1

4
{expit(2) + 2× expit(1) + expit(0)})

Example 4
logit(1

4
{expit(2.3) + expit(2) + expit(1.3) + expit(1)})

= 0.952
− logit(1

4
{expit(1.3) + expit(1) + expit(0.3) + expit(0)})

Example 5
logit(1

8
expit(1) + 3

8
expit(2) + 3

8
expit(3) + 1

8
expit(4))

= 0.915
− logit(1

8
expit(0) + 3

8
expit(1) + 3

8
expit(2) + 1

8
expit(3))

IV estimand = 1
α1

plimN→∞ β̂GY

Example 1 1 = 1.000

Example 2 0.3
0.3

= 1.000

Example 3
logit(1

2
{expit(2) + expit(1)})

= 0.953
− logit(1

2
{expit(1) + expit(0)})

Example 4
1
0.3

{logit(1
2
{expit(1.3) + expit(0.3)})

= 0.946
− logit(1

2
{expit(1) + expit(0)})}

Example 5
logit(1

4
{expit(3) + 2× expit(2) + expit(1)})

= 0.927
− logit(1

4
{expit(2) + 2× expit(1) + expit(0)})

Table 4.5: Population log odds ratio (PLOR) and scaled limit of regression coefficient for

IV in logistic regression of outcome on IV in infinite sample (IV estimand) for five example

scenarios of IV estimation
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due to the IV. Hence, the PLOR is different from 1, but plimN→∞ β̂GY = 1. In the

first example, the IV causes a 5% attenuation, whereas in the second case with a weaker

instrument, the attenuation is ten times smaller. In examples 3 and 4, the PLOR and

plimN→∞ β̂GY are both attenuated from 1. In example 3, there is an appreciable difference

between the two, whereas in example 4 with less difference in the phenotype due to the

IV, they are close. In example 3, the IV estimand is 0.953, the same as the PLOR in

example 1; the heterogeneity in both cases is due to a single random variable with the

same distribution: in example 1 the variable G for the PLOR, and in example 3 the

variable V for 1
α1

plimN→∞ β̂GY .

In example 5, we note that E
[
β̂GY

β̂GX

]
̸= E[β̂GY ]

E[β̂GX ]
, and so we cannot make any conclusion

about the expected value of the IV estimator in a finite sample without considering the

joint distribution of β̂GY and β̂GX . Running the model of example 5 across 100 000

simulations with a sample size of 100, we obtained a mean two-stage estimate of 0.9488

(Monte Carlo error: 0.0012); with a sample size of 1000, mean estimate 0.9296 (0.0004);

with a sample size of 10 000, mean estimate 0.9275 (0.0001). This compares with the

true value of plimN→∞ β̂GY of 0.9273. As the sample size increases, the impact of the

correlation between the numerator and denominator on the IV estimate reduces, and the

IV estimate is closer to the ratio of probability limits of the two regression coefficients, the

IV estimand.

We conclude that the PLOR and IV estimand are not the same, as the IV estimand is

conditional on the IV and the PLOR is not. However, when the variation in the phenotype

is small, the difference between the estimands may be small.

4.4.3 IV estimation in more realistic simulated scenarios

To investigate how the IV estimator behaves in more realistic situations, we simulate

data from a logistic model (4.29) (same model as (4.11) in Section 4.3.3) for confounded

association with a single instrument.

xi = α0 + α1gi + α2vi + ϵi (4.29)

logit(π1i) = β0 + β1xi + β2vi

y1i ∼ Binomial(1, π1i)

vi ∼ N(0, 1), ϵi ∼ N(0, σ2
x) independently

We take a large sample size of 4000 divided equally into two groups (gi = 0, 1). The

parameter α1 = 0.3 with σ2
x = 1 corresponds to a strong instrument with mean F statistic

in the regression of X on G of around 45. We set α0 = 0, α2 = 1, β0 = −2 and consider
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three values for β1 of 0.4, −0.8 and 1.2 and seven values for β2 of −1.0, −0.6, −0.2, 0,

0.2, 0.6, 1.0 corresponding to different levels and directions of confounding. We perform

2 500 000 simulations for each set of parameter values.

We estimate the observational log odds ratio by logistic regression of outcome on the

phenotype X with no adjustment for confounding. The PLOR and IV estimand (plim β̂R
1 )

are calculated using both numerical integration as per equation (4.7) and the Monte Carlo

approach of equation (4.10); identical answers are produced by both approaches. Using

IVs, we calculate the two-stage estimate and the adjusted two-stage estimate. The ad-

justed two-stage estimate is calculated by regressing the outcome Y on both the fitted

values X̂|G and the residuals from the first stage regression R = X − X̂|G. These resid-

uals are unbiased scaled estimators of the covariate V , which is considered unknown, and

so including these in the second-stage regression is thought to give a better estimate of

the ILOR (which is β1) (94; 131).

Confounded association β2 = −1.0 β2 = −0.6 β2 = −0.2 β2 = 0 β2 = 0.2 β2 = 0.6 β2 = 1.0

β
1
=

0
.4

Observational -0.0887 0.1012 0.3005 0.4003 0.4978 0.6780 0.8279

PLOR 0.3721 0.3893 0.3893 0.3828 0.3721 0.3405 0.3031

IV estimand 0.3749 0.3907 0.3907 0.3848 0.3748 0.3443 0.3068

Two-stage method 0.3751 0.3911 0.3907 0.3852 0.3751 0.3447 0.3066

Adjusted two-stage 0.3760 0.3921 0.3992 0.4005 0.3994 0.3899 0.3703

β
1
=

−
0.
8

Observational -1.1977 -1.0662 -0.8967 -0.8004 -0.6995 -0.4919 -0.2876

PLOR -0.5387 -0.6062 -0.6721 -0.7004 -0.7234 -0.7500 -0.7500

IV estimand -0.5248 -0.5903 -0.6557 -0.6852 -0.7098 -0.7394 -0.7394

Two-stage method -0.5256 -0.5919 -0.6567 -0.6848 -0.7103 -0.7396 -0.7403

Adjusted two-stage -0.7419 -0.7794 -0.7991 -0.8005 -0.7988 -0.7823 -0.7542

β
1
=

1
.2

Observational 0.6531 0.8773 1.0981 1.2009 1.2953 1.4529 1.5651

PLOR 0.9527 0.9163 0.8544 0.8185 0.7813 0.7080 0.6403

IV estimand 0.9851 0.9477 0.8831 0.8451 0.8056 0.7276 0.6558

Two-stage method 0.9859 0.9482 0.8832 0.8456 0.8059 0.7276 0.6558

Adjusted two-stage 1.1124 1.1664 1.1968 1.2012 1.1970 1.1650 1.1094

Table 4.6: Observational log odds ratio, population log odds ratio (PLOR) and IV estimand

compared to two-stage and adjusted two-stage estimates of log odds ratio for unit increase in

phenotype from model of confounded association. Median estimates across 2 500 000 simulations

Table 4.6 shows the observational log odds ratio, PLOR and IV estimand, and median

estimates across simulations of the two-stage and adjusted two-stage methods. We see

that the observational estimate is biased in the direction of the confounded association

(β2). The two-stage method estimates are attenuated compared to the conditional causal
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effect, but close to the IV estimand and PLOR throughout. The difference between the

two-stage estimate and the PLOR is due to the conditioning on G; the IV estimand, which

is marginal in V and conditional on G is closer to the average two-stage estimate. The

difference between the PLOR and IV estimand is however not large compared to that

between the PLOR and ILOR. The adjusted two-stage method estimates are closer to the

ILOR, with some attenuation when there is strong confounding, as the residuals measure

variation in X not explained by G, which is the confounders plus error (α2vi + ϵi).

A further set of simulations was conducted with the same parameters using Model (4.30),

which is identical to the above model except with independent covariates U and V for the

phenotype and outcome. This means that the association between X and Y is no longer

confounded. The residual R is no longer related to the relevant covariate V in the second-

stage logistic regression, but instead the variation in X not explained by G (α2ui + ϵi).

xi = α0 + α1gi + α2ui + ϵi (4.30)

logit(π1i) = β0 + β1xi + β2vi

y1i ∼ Binomial(1, π1i)

ui, vi ∼ N(0, 1), ϵi ∼ N(0, σ2
x) independently

Results are given in Table 4.7. We see that the PLOR and IV estimand are close

throughout, and the median two-stage method is closest to the IV estimand as before.

The observational estimate is an individual odds ratio, so conditional on X, but marginal

in the unmeasured V as the model is misspecified when β2 ̸= 0, and so the observational

estimate is attenuated compared to the ILOR even though there is no confounding (195)

(see Section 4.3.2). The median adjusted two-stage estimate is more attenuated than in

the previous example (128), and is not different to the observational estimate. This is

because adjustment is made for the error term α2ui+ ϵi in X, meaning that the odds ratio

is conditional on all variation in X except that caused by G. Except for this variation in

G, this is an individual odds ratio marginal in V , which is the same as the observational

estimate.

4.4.4 Interpretation of the adjusted two-stage estimand

In an idealized setting, where the first-stage residual is precisely the correct term to adjust

for in the second-stage regression, the adjusted two-stage approach is consistent for the

ILOR (127). In Model (4.29), this would occur if σ2
x = 0. However, when this is not

true, the adjusted two-stage estimate is attenuated (128). In the situation where none of

the covariates for Y are associated with variation in X (i.e. there is no confounding), the
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Unconfounded association β2 = −1.0 β2 = −0.6 β2 = −0.2 β2 = 0 β2 = 0.2 β2 = 0.6 β2 = 1.0

β
1
=

0
.4

Observational 0.3494 0.3811 0.3980 0.4001 0.3981 0.3811 0.3493

PLOR 0.3335 0.3637 0.3806 0.3828 0.3807 0.3637 0.3335

IV estimand 0.3373 0.3669 0.3828 0.3848 0.3828 0.3669 0.3374

Two-stage method 0.3381 0.3672 0.3834 0.3852 0.3832 0.3673 0.3375

Adjusted two-stage 0.3499 0.3812 0.3985 0.4008 0.3984 0.3814 0.3496

β
1
=

−
0.
8

Observational -0.6961 -0.7592 -0.7958 -0.8006 -0.7958 -0.7593 -0.6960

PLOR -0.6266 -0.6721 -0.6972 -0.7004 -0.6972 -0.6721 -0.6265

IV estimand -0.6102 -0.6559 -0.6818 -0.6852 -0.6818 -0.6558 -0.6102

Two-stage method -0.6107 -0.6562 -0.6824 -0.6855 -0.6823 -0.6564 -0.6102

Adjusted two-stage -0.6964 -0.7595 -0.7963 -0.8008 -0.7962 -0.7598 -0.6960

β
1
=

1
.2

Observational 1.0333 1.1326 1.1928 1.2009 1.1926 1.1323 1.0334

PLOR 0.7513 0.7922 0.8155 0.8185 0.8154 0.7923 0.7513

IV estimand 0.7737 0.8172 0.8419 0.8451 0.8419 0.8173 0.7737

Two-stage method 0.7746 0.8172 0.8419 0.8453 0.8424 0.8177 0.7741

Adjusted two-stage 1.0348 1.1322 1.1932 1.2003 1.1929 1.1326 1.0334

Table 4.7: Observational log odds ratio, population log odds ratio (PLOR) and IV estimand compared

to two-stage and adjusted two-stage estimates of log odds ratio for unit increase in phenotype from

model of unconfounded association. Median estimates across 2 500 000 simulations

residual in the adjusted two-stage method adjusts for the variation in X independent of

that explained by the IV, leading to an estimate close to a marginal individual odds ratio.

However, in such a scenario, the same estimate could be obtained by direct regression

of Y on X. A more realistic situation is where some of the variation in X is due to

covariates associated with Y , but not all. This corresponds to Model (4.29) with σ2
x ̸= 0.

Here, the residual is a combination of the independent variation in X and the covariate

V , meaning that the adjusted two-stage analysis estimates an effect which is an odds

ratio, but conditional on some unknown combination of variation in X and V . If there

were additional covariates in Y not associated with X, as in Model (4.30), the odds ratio

would be marginal in these covariates. When the covariates are unknown, as is usual in a

Mendelian randomization study, it is not clear what odds ratio is being estimated by an

adjusted two-stage approach. We return to this question of interpretation of IV estimates

in the discussion.

4.4.5 IV estimation in five studies

We use a Mendelian randomization approach for the five studies from Section 4.3.4 viewed

as cross-sectional studies using three or four SNPs in the CRP gene region as IVs to
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estimate the causal association of log(CRP) on prevalent MI. We estimate the causal

effect using the two-stage and adjusted two-stage methods, as well as a two-stage analysis

adjusting for covariates in the first- and second-stage regressions. The covariates adjusted

for in each study were the same as in the maximally adjusted model for each study in

Table 4.4. If adjustment is made for a particular covariate in one stage of an IV analysis,

it should be made in both stages (118). As the CRP levels were measured after the

event, there is a possibility of bias in this analysis due to reverse causation. We therefore

also perform a two-stage analysis using the CRP values only in non-cases, using the G-

X association to give fitted values for cases. An adjusted two-stage method is here not

possible, as residuals cannot be defined for cases except using CRP levels measured post

event.

SNPs used 1 Two-stage Adjusted Two-stage with

method two-stage covariate adjustment 2

CRP in all participants

PROCARDIS g1, g2, g4, g6 0.044 (0.172) 0.043 (0.175) 0.204 (0.194)

LURIC g1, g2, g4, g6 -0.011 (0.251) -0.011 (0.255) -0.049 (0.254)

SHEEP g1, g2, g7 0.231 (0.277) 0.240 (0.282) 0.188 (0.340)

CHS g1, g3, g4, g5 0.352 (0.322) 0.352 (0.322) 0.214 (0.323)

ROTT g1, g2, g6 0.299 (0.383) 0.306 (0.385) 0.326 (0.396)

CRP in non-cases only

PROCARDIS g1, g2, g4, g6 0.038 (0.181) - 0.205 (0.206)

LURIC g1, g2, g4, g6 -0.042 (0.213) - -0.058 (0.207)

SHEEP g1, g2, g7 0.139 (0.249) - 0.058 (0.299)

CHS g1, g3, g4, g5 0.303 (0.316) - 0.170 (0.315)

ROTT g1, g2, g6 0.270 (0.388) - 0.303 (0.403)

Table 4.8: Estimates (SE) of causal association of log(CRP) on myocardial infarction (MI)

from two-stage, adjusted two-stage methods, and two-stage method with adjustment for

measured covariates in five studies

1g1 = rs1205, g2 = rs1130864, g3 = rs1417938, g4 = rs1800947, g5 = rs2808630, g6 = rs3093068, g7

= rs3093077
2Adjustment is made in each study for covariates as per the maximally adjusted model in Table 4.4

We note that these estimates of causal association (Table 4.8) are somewhat different to

the observational associations estimated in Table 4.4. This indicates that the association

between CRP and CHD may not be causal, although there are wide confidence intervals.

In each study, the causal estimate decreases (that is becomes more negative) when CRP

values are taken in non-cases only, indicating there may be some reverse causation, but
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that confounding seems to be the main cause of the observational association. In some

studies, there is a decrease in standard error of the causal effect despite the omission of

half the data on CRP, indicating that the model of genetic association may be better

estimated on the non-diseased subset of the population. Estimates of both individual and

population causal effects test the same null hypothesis, and so assuming a model of null

association, the two-stage and adjusted two-stage estimates should be similar with the

adjusted estimate slightly larger in magnitude, as is the case here.

4.5 Discussion

In this chapter, we have seen how odds ratios differ depending on their exact definition.

The magnitude of an odds ratio corresponding to an intervention depends on the choice of

adjustment for competing risk factors, even if these are not confounders (i.e. not associated

with the phenotype), and on whether the estimate is for an individual or population change

in the phenotype. This is due to non-collapsibility of the odds ratio. This effect is especially

severe when there is considerable between-individual heterogeneity for risk of event. When

there is confounding, instrumental variable methods can be used to target a quantity close

to the population odds ratio in a two-stage approach. The population odds ratio is similar

to the incident odds ratio from an idealized RCT with intervention corresponding to

a unit population intervention on the phenotype. By including the residuals from the

first-stage regression in the second-stage analysis, an adjusted two-stage approach targets

an odds ratio which is closer to the target parameter from a traditional multivariate

regression analysis, the individual odds ratio conditional on all covariates. However there

is attenuation from the individual odds ratio when there is variation in X not explained

by covariates for Y or variation in the probability of Y not associated with variation in

X. It is not clear for a general specification of the model what odds ratio is estimated by

an adjusted two-stage approach.

4.5.1 Connection to existing literature and novelty

The appropriateness of the two-stage and adjusted two-stage methods have been the sub-

ject of recent discussion. Terza et al. (127) advocated adjusted two-stage methods as un-

biased under certain circumstances as discussed in Section 4.4.4, as opposed to unadjusted

two-stage methods, which are biased under all circumstances. Cai et al. (128) question

the unbiasedness of the adjusted two-stage method, and provide independently the same

derivation of the two-stage estimate as presented here in equation (4.23). This chapter
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adds to the debate by interpreting the estimate from the two-stage method as a popula-

tion effect, interpreting the estimate from the adjusted two-stage method as marginal in a

certain combination of covariates, and by separating the issues of collapsibility into those

due to unmeasured confounding and those due to intervention in the entire phenotype dis-

tribution. This is an important issue in Mendelian randomization, where the intervention

is usually on a continuous phenotype, as opposed to in clinical trials, the context of the

Terza and Cai papers, where the phenotype tends to be dichotomous.

4.5.2 Choice of target effect estimate

Generally, a population causal effect marginal across all covariates is the estimate of in-

terest for a policy-maker as it represents the effect of intervention on the phenotype at a

population level (153; 196). This is the effect estimated by a RCT without adjustment for

covariates (197). However, the mathematical properties of population and marginal odds

ratios are not as nice as those of the individual odds ratio conditional on all covariates, in

that their attenuation from the coefficient β1 in the underlying model depends on the size

of the intervention, the amount of variation in the phenotype and the distribution of the

covariates for the outcome. As the IV estimate corresponds to a change in the phenotype

scaled by the effect of the instrument on the phenotype, it is advisable in IV analyses to

quote odds ratios scaled for an increase (or decrease) in phenotype of comparable size to

the size of the effect of the instrument on the phenotype.

In order to estimate an individual odds ratio conditional on all covariates in a logistic

regression or two-stage IV analysis, it is necessary to measure and adjust for all covariates.

An adjusted two-stage approach targets an odds ratio conditional on the phenotype and on

some combination of covariates which are associated with the phenotype. In most appli-

cations of Mendelian randomization, there will be some correlation between the covariates

for the phenotype and outcome, as otherwise, a causal association could be estimated

using conventional regression methods. However, it is unlikely that all the covariates for

the outcome constitute all of the variation in the phenotype, and so it is unclear what

effect is estimated by an adjusted two-stage analysis. For this reason, although there

is mathematical interest in the adjusted method, an untestable and usually implausible

assumption of a specific form of the error structure is required for interpretation of the ad-

justed two-stage estimator, and so its use should not be recommended in applied practice.

A better alternative would be to use the same covariates in the first- and second-stage IV

regressions as in the observational analysis, so that under the hypothesis of no unmeasured

confounding, the same conditional association is estimated in both analyses.
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In a logistic regression, adjustment for covariates does not necessarily increase preci-

sion of the regression coefficients (198) and the decision of which covariates to adjust for

should be guided by both understanding of the underlying model and desired interpreta-

tion of the effect estimate (195; 199). If we desire to estimate a population effect marginal

across covariates then the two-stage method would seem appropriate. If estimation of a

conditional parameter is desired, adjustment can be made for specific covariates.

4.5.3 “Forbidden” regressions

Much of the criticism of two-stage methods for IV estimation with non-linear models

in econometric circles centres around the question of consistency of the estimator (187).

Although consistency is a desirable property, it would seem to be a less important property

than, say, coverage under the null. The work in this chapter suggests that the problem

of consistency is one of interpretation of the IV estimate, rather than one of intrinsic bias

of the estimate. As all odds ratios test the same null hypothesis, while caution should

be expressed in comparing the magnitude of odds ratios estimating different quantities,

it seems that there is no justification in labelling all such regressions as “forbidden” for

reasons of consistency. This is especially true as some non-linear functions are collapsible,

and so do not suffer from the problems highlighted in this chapter.

4.5.4 Different designs, different parameters

Table 4.9 summarizes how an odds ratio depends on the design and analysis of the study.

We note that not all sources of bias have been included in this table (eg. non-compliance

or treatment contamination in a RCT, canalization in an IV analysis). Nevertheless, it

provides a useful summary of odds ratios estimated in different study designs and analyses.

A RCT and an instrumental variable approach target similar population-based pa-

rameters. For example, a study into effectiveness of invasive cardiac management on MI

survival showed that an IV analysis gave results which were most similar to results from a

RCT, compared to analyses using multivariable adjustment, propensity score adjustment,

and propensity-based matching (197). However the estimands of the population effect of

an intervention in phenotype of equal size in a RCT and an IV analysis may not be the

same. This is because the RCT estimate is based on the difference in outcome caused

by a short-term intervention, whereas, in the example of Mendelian randomization, the

estimate is based on the difference in outcome caused by a life-long intervention due to

the genetic variant. It has been argued that the Mendelian randomization estimate will

be larger in magnitude than the RCT estimate (47), although this may be affected by
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4.5 Discussion

developmental compensation (also known as canalization) (3). This is compensation for

the effect of the genetic variation on the phenotype by developmental processes which

damp or buffer the genetic effect (2). For example, Mendelian randomization analysis of

the effect of cholesterol on CHD have shown greater effects than RCTs (200).

Another reason why different answers may be obtained from analysis of a RCT and an

IV approach is measurement error. IVs were initially conceived to deal with measurement

error rather than confounding (111). Ratio IV estimates are not attenuated by measure-

ment error, as the ratio IV method is symmetric in X and Y , and the G-X association

is estimated. Estimates from conventional regression analysis are attenuated by measure-

ment error, and correction for regression dilution bias would be necessary to ensure that

the two estimands were the same (201).

It is tempting in Mendelian randomization studies to “claim the null hypothesis” of

no causal effect by demonstrating that the causal effect of a phenotype on an outcome as

estimated by Mendelian randomization is not compatible with the expected effect based

on the observational effect (69; 85). Not only is this not valid as there may be a true

causal effect smaller in magnitude than the observational association, but the two odds

ratios may be estimating different quantities, making a test of equality of effects invalid.

In summary, the two-stage method has been criticized for a lack of theoretical basis and

for giving inconsistent estimates even under the true model (99; 153). We have shown that

this inconsistency is a property not of the two-stage approach, but of logistic regression

in general, and can be partially rectified under certain assumptions by use of the adjusted

method, or better, can be properly explained by correct interpretation of the causal effect.

4.5.5 Key points from chapter

• Odds ratio estimates for a binary outcome depend on the choice of covariates condi-

tioned on and whether the odds ratio is for the change in phenotype for an individual

or across a population.

• The two-stage IV analysis targets a parameter termed the ‘IV estimand’, a pop-

ulation odds ratio marginal across all covariates except the IV, which represents

the population-averaged effect of an intervention in the phenotype averaged across

covariate strata. It can be thought of as the estimate from an idealized RCT.

• The IV estimand and the estimate from the idealized RCT are similar in magni-

tude, and both attenuated compared to the individual odds ratio conditional on all

covariates.
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4.5 Discussion

Method and analysis Parameter Bias

of interest

Observational study, Crude Biased due to confounding

- no adjustment odds ratio and reverse causation,

Observational study, Individual None (assuming no measurement error,

- adjusted for all covariates odds ratio model correctly specified, etc.)

Observational study, Individual Biased if there is residual confounding

- adjusted for known covariates odds ratio or reverse causation, OR is conditional

on covariates included in model,

marginal in others

Randomized controlled trial Population None, effect corresponds to

- no adjustment for confounders odds ratio short-term intervention

Instrumental variable analysis - Population None, OR is conditional on IV, marginal

two-stage method odds ratio in other covariates, effect may

correspond to longer-term intervention

Instrumental variable analysis - Marginal Consistent for the individual OR under

adjusted two-stage method individual very specific assumptions.

odds ratio OR is conditional on variation in X

not explained by G; hence conditional

on some combination of covariates

associated with X and independent

error in X

Table 4.9: Summary of odds ratios (ORs) estimated by different study designs and analysis

methods and possible sources of bias

• Adjustment can be made for specific covariates to estimate an odds ratio conditional

on those covariates, and an adjusted method can be used to estimate an odds ratio

which is generally closer to the individual odds ratio, but only interpretable based

on a specific assumption about the error structure. The adjusted two-stage method

is not recommended for use in practice.
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Chapter 5

A Bayesian framework for

instrumental variable analysis

5.1 Introduction

Our purpose in this chapter is to extend existing methods for instrumental variable (IV)

analysis of Mendelian randomization studies to the context of multiple genetic markers

measured in multiple studies, based on analysis of individual participant data (IPD).

We consider first the case where the outcome is continuous, and then consider binary

outcomes. Several methods are available to estimate the causal association of a phenotype

(X) on an outcome (Y ) by use of an IV (G) in the presence of arbitrary confounding by

a confounder (U) (see Chapter 2 for a review).

We seek to add to these established methods by introducing a Bayesian method. The

main motivation for the method is to gain power by using data from multiple studies. We

seek to use multiple, potentially different, SNPs simultaneously in each of these studies to

obtain the most precise estimate possible of causal association by using all the available

genetic data, while avoiding the problems of weak instruments. We recall from Chapter 3

that IV estimates using a weak instrument, where the association between phenotype and

the IV is not statistically strong, suffer bias in the direction of the original observational

association and deviation from a normal to a more heavy-tailed distribution.

We describe a Bayesian approach to the estimation of causal effects using genetic IVs.

We present the simple case of a single genetic marker in one study (Section 5.2), and

extend this to an analysis of multiple genetic markers in one study (Section 5.3). A hi-

erarchical model for meta-analysis is then developed (Section 5.4) which efficiently deals

with different genetic markers measured in different studies, and with heterogeneity be-

tween studies. The methods are exemplified by data on the causal association of C-reactive
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5.2 Continuous outcome — A single genetic marker in one study

protein (CRP) on fibrinogen from the CRP CHD Genetics Collaboration (CCGC). We con-

tinue to consider a similar model for binary outcomes (Section 5.5). Specific extensions

associated with evidence synthesis and efficient analysis for the CCGC data are proposed

(Section 5.6). The applied focus in this chapter is on the continuous outcome case for

single studies and meta-analysis; the main analysis for the CRP-CHD causal association

is presented in Chapter 8. We conclude by briefly discussing some of the features of the

Bayesian framework for IV analysis (Section 5.7); this will be considered further with

extensive simulation and comparison to alternative methods in Chapter 6.

5.2 Continuous outcome — A single genetic marker

in one study

We consider in turn methods appropriate for use with a continuous outcome, and then for

use with a binary outcome.

5.2.1 Conventional methods

We first consider the case of a single SNP in one study, where confounding causes the

observational estimate of the association of phenotype and outcome to be different from

the causal relationship. Let individual i have phenotype level xi, outcome yi, genotype gi

taking values 0,1,2, and unmeasured confounder ui. We assume that all the confounders

can be summarized by a single value ui. Similarly to Palmer et al. (94), we consider the

model represented in Figure 5.1:

xi = α0 + α1gi + α2ui + ϵxi (5.1)

yi = β0 + β1xi + β2ui + ϵyi

ui ∼ N(0, σ2
u), ϵxi ∼ N(0, σ2

1), ϵyi ∼ N(0, σ2
2) independently

As an example, we simulate data for a sample of size 300, containing 12 individuals with

gi = 2, 96 with gi = 1 and 192 with gi = 0, corresponding to Hardy-Weinberg equilibrium

for a minor allele frequency of 20%. We set the parameters (α0, α2, β0, β1, β2, σ
2
u, σ

2
1, σ

2
2)

= (0, 1, 0, 2, −3, 1, 0.25, 0.25), and consider the cases of a weak instrument (α1 = 0.3,

giving an expected F statistic for the regression of X on G of 7), a moderate instrument
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5.2 Continuous outcome — A single genetic marker in one study

(α1 = 0.5, F statistic 20) and a strong instrument (α1 = 1, F statistic 75):

xi = α1gi + 1ui + ϵxi (5.2)

yi = 2xi − 3ui + ϵyi

ui ∼ N(0, 1), ϵxi ∼ N(0, 0.25), ϵyi ∼ N(0, 0.25) independently

Figure 5.2 shows the simulated data grouped by genotype graphically. For each of the

three genotypic groups, the mean of the phenotype and outcome with 95% confidence

intervals (CIs) are plotted. This shows how the genotypic groups differ on average in

phenotype, and how the mean outcome differs as a result of the phenotype differences.

G X

U

Y
.
1

.
2

�
1

�
2

Figure 5.1: Directed acyclic graph (DAG) of Mendelian randomization assumptions

The observational estimates obtained by regressing Y on X (Table 5.1) are far from

the true causal association (β1 = 2) as expected because of the strong negative confound-

ing (U is positively related to X but negatively to Y ). The ratio method (assuming zero

correlation between coefficients) gives estimates compatible with β1 = 2, but with a wide

confidence interval in the case of the weak or moderate instrument. Sensitivity analy-

ses taking values for correlation of ±0.1,±0.2 gave similar wide asymmetric confidence

intervals.

5.2.2 A Bayesian method

Estimating the causal parameter by the ratio method is equivalent to determining the

gradients in Figure 5.2 (2). We can reformulate the problem as one of linear regression

with heterogeneous error in X. For each genotype value j = 0, 1, 2 we calculate the mean

level of the phenotype x̄j with its variance σ2
xj and mean outcome ȳj with its variance σ2

yj.

The model is

X̄j ∼ N(ξj, σ
2
xj) (5.3)

Ȳj ∼ N(ηj, σ
2
yj)

ηj = β0 + β1 ξj
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Figure 5.2: Graphs of mean outcome (ȳ) against mean phenotype (x̄) in three genetic

groups for the weak, moderate and strong instrument simulated examples of Section 5.2.1.

Error bars are 95% CIs for the means

Thus we assume that each observed mean phenotype x̄j is from a normal distribution with

unknown true mean ξj and known variance σ2
xj, each observed mean outcome ȳj is from

a normal distribution with unknown true mean ηj and known variance σ2
yj, and there is a

linear relationship between η and ξ. β1 represents the increase in outcome for unit increase

in true phenotype and is the parameter of interest.

To implement this model, we employ Bayesian analysis and Markov Chain Monte

Carlo (MCMC) methods with Gibbs sampling. This allows extension to more complicated

situations, as in the next sections. We used vague priors (independent normals with

zero mean and large variance of 1002) for the regression parameters and each ξj. We

performed this analysis in WinBUGS (202) using 150 000 iterations, discarding the first

1000 as “burn-in”, employing different starting values to assess convergence of the posterior

distribution and sensitivity analyses to show lack of dependence on the prior distributions.

The posterior distributions shown in Figure 5.3 are non-normal, with a heavier tail towards

larger values especially for the weaker instruments. For this reason, the posterior median

of the distribution of β1 is taken as the estimate of the causal association. Table 5.1 shows

that the estimates and intervals from this Bayesian group-based method are similar to

those from the ratio method. Other simulated examples (not shown) also demonstrated

similar results. The 2SLS method (assuming linear effect of the IV on the phenotype) gives
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5.2 Continuous outcome — A single genetic marker in one study

the same estimates as the ratio method, but the intervals are symmetric and so deviate

from the ratio and Bayesian methods for the weaker instruments. In particular here, the

confidence intervals for the 2SLS method with the weak instrument include zero; the ratio

and Bayesian intervals both exclude zero.

A difference between the ratio and Bayesian method (5.3) is that the ratio method

assumes a linear association of the genetic variant and phenotype with a constant increase

in mean phenotype for each copy of the variant allele (here called a “per allele” model),

whereas the Bayesian method (5.3) models the mean phenotype separately for each number

of variant alleles (here called a two-degree of freedom or “2df” model). We shall see that

the Bayesian and 2SLS methods can incorporate either per allele or 2df models for the

G-X association.

Weak instrument - (E(F ) = 7) Estimate 95% CI/CrI

Observational estimate -0.358 -0.506, -0.210

Ratio method 1.637 0.563, 6.582

2SLS method 1.637 -0.126, 3.400

Bayesian method 1.496 0.536, 7.190

Moderate instrument - (E(F ) = 20) Estimate 95% CI/CrI

Observational estimate -0.251 -0.393, -0.109

Ratio method 2.555 1.481, 6.007

2SLS method 2.555 0.801, 4.309

Bayesian method 2.417 1.473, 4.592

Strong instrument - (E(F ) = 75) Estimate 95% CI/CrI

Observational estimate 0.108 -0.061, 0.276

Ratio method 2.136 1.632, 2.906

2SLS method 2.136 1.469, 2.804

Bayesian method 2.107 1.633, 2.817

Table 5.1: Causal parameter estimates and confidence/credible intervals using ratio, 2SLS

and Bayesian methods compared with observational estimate for the weak, moderate and

strong instrument simulated examples of Section 5.2.1

This Bayesian method assumes that the variances σ2
xj and σ2

yj are known, whereas in

fact they need to be estimated from the data, an issue which is addressed in the next

section.
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5.3 Continuous outcome — Multiple genetic markers in one study
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Figure 5.3: Kernel-smoothed density of posterior distribution of the causal parameter for

the weak, moderate and strong instrument simulated examples of Section 5.2.1 using the

group-based Bayesian method of Section 5.2.2

5.3 Continuous outcome — Multiple genetic markers

in one study

5.3.1 Methods

If we have data in the study from more than one SNP then, provided they satisfy the

IV assumptions above, all SNPs can be used simultaneously to divide the population into

many subgroups. For each diallelic SNP, there are three genotypic subgroups, correspond-

ing to 0, 1 or 2 variant alleles. For a dataset with K diallelic SNPs, we have a maximum

3K subgroups, for each of which we can measure the mean phenotype and outcome, and

examine the regression as in (5.3) above to estimate β1, the causal association. In prac-

tice, fewer than the maximum number of genotypic groups will be observed, due to linkage

disequilibrium (LD) between SNPs.

If the number of groups is large, and so their sizes Nj are small, then the assumption

of exact knowledge of σ2
xj and σ2

yj for each group is not appropriate. Indeed if Nj = 1, a

group-specific estimate of variance cannot even be expressed. It is then preferable to base

the analysis on the standard deviation in the whole population for the phenotype (σx) and

the outcome (σy), using an individual-based model for phenotype and outcome. For each
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5.3 Continuous outcome — Multiple genetic markers in one study

individual i in subgroup j, we have

Xij ∼ N(ξj, σ
2
x) (5.4)

Yij ∼ N(ηj, σ
2
y)

ηj = β0 + β1 ξj

The observed phenotype and outcome for each individual are here modelled using normal

distributions, although other distributions might be more appropriate for some applica-

tions. The information about ξj now depends on the population standard deviation for the

phenotype as well as the size of the group. In the application below, vague Uniform[0,20]

priors are used for σx and σy, while the other priors remain as before.

An alternative analysis is to assume a linear relationship between the phenotype and

the number of variant alleles for each SNP which is also additive across SNPs. If this

structure is appropriate, the analysis should be more efficient as the correlation between

similar genotypes is accounted for and fewer parameters are estimated. Then we use these

modelled values in the second-stage regression.

ξi = α0 +
∑
k

αk gik (5.5)

Xi ∼ N(ξi, σ
2
x)

Yi ∼ N(ηi, σ
2
y)

ηi = β0 + β1 ξi

where gik is the number of variant alleles in SNP k for individual i, and αk are the first-

stage genetic regression coefficients. Independent vague N(0, 1002) priors are now placed

on the αk rather than the ξi. The values of the α and β regression parameters depend,

through feedback, on all the data including the outcome Y .

Models (5.4) and (5.5) are the equivalent of 2SLS in a Bayesian setting, except that

there is feedback on the first-stage coefficients from the second-stage regression; the poste-

rior distribution of the causal association parameter β1 naturally incorporates the uncer-

tainty in the first-stage regression, but with no assumption of asymptotic normality on its

distribution. The models are also analogous to the likelihood-based FIML/LIML, except

that here the correlation between X and Y is set to be zero; we discuss the role of this

correlation further in Chapter 6.

5.3.2 Application to C-reactive protein and fibrinogen

C-reactive protein (CRP) is an acute-phase protein produced by the liver as part of the

inflammation response pathway. Fibrinogen is a soluble blood plasma glycoprotein, which
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5.3 Continuous outcome — Multiple genetic markers in one study

enables blood-clotting and is also associated with inflammation. The pathway of inflam-

mation is not well understood, but is important as both CRP and fibrinogen are proposed

as risk markers of coronary heart disease (CHD) (82). Furthermore, although CRP is

associated with CHD risk, this association reduces on adjustment for various risk factors,

and attenuates to near null on adjustment for fibrinogen (84). It is important therefore to

assess whether CRP causally affects levels of fibrinogen, since if so adjusting for fibrinogen

would represent an overadjustment. The CRP gene has several common variations which

are associated with different blood concentrations of CRP. We use IV techniques to esti-

mate the causal effect of CRP on fibrinogen. As CRP has a positively skewed distribution,

we take its natural logarithm, and assume a linear relationship between fibrinogen and

log(CRP). All SNPs used here as IVs are in the CRP regulatory gene on chromosome 1.

The Cardiovascular Health Study (203) is an observational study of risk factors for

cardiovascular disease in adults 65 years or older. We use cross-sectional baseline data for

4469 white subjects from this study, in which four diallelic SNPs relevant to CRP were

measured: rs1205, rs1800947, rs1417938 and rs2808630. Each of these SNPs was found

to be associated with CRP levels. We checked their associations with seven known CHD

risk factors (age, body mass index, triglycerides, systolic blood pressure, total cholesterol,

low and high density lipoproteins) for each SNP, and found no significant associations

(P < 0.05) out of the 28 examined. This suggests that the SNPs are valid instruments.

We used the ratio, 2SLS, and Bayesian methods using models (5.3), (5.4) and (5.5)

for estimating causal associations. The ratio method for each SNP separately is based

on per allele regressions. For the 2SLS method, we use first a per allele model additive

across SNPs and secondly a fully factorial version of the 2df model where each observed

genotype is placed in a separate subgroup. The 2SLS per allele model is equivalent to the

structural-based Bayesian model (5.5) and the 2SLS factorial model is equivalent to the

individual-based Bayesian model (5.4). When using the group-based regression (5.3), we

excluded all genotypic groups with less than 5 subjects (14 subjects excluded, Figure 5.4).

The individual-based (5.4), structural-based (5.5), ratio and 2SLS analyses include all

subjects. A sensitivity analysis was performed excluding from the 2SLS factorial and

Bayesian individual-based analyses all individuals from genotypic groups with less than 5

subjects. The observational increase in fibrinogen (µmol/l) per unit increase in log(CRP)

is 0.937 (s.e. 0.024) and correlation between fibrinogen and log(CRP) is 0.501. The F4,4464

statistic in the regression of log(CRP) on the SNPs additively per allele is 27.2, indicating

that the instruments together are moderately strong (92; 161). As we have used more

IVs than we have phenotypes, we can perform an overidentification test. The Sargan test

(158) is a test of the validity of the IV and linearity assumptions in the model. The test
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5.3 Continuous outcome — Multiple genetic markers in one study

statistic is 7.15, which compared to a χ2
3 distribution gives a p-value of 0.067, meaning

that the validity of the instruments is not rejected at the 5% level.

The ratio method gives a different point estimate for each SNP, all of which are com-

patible with zero association (Table 5.2). Using the 2SLS methods on all of the SNPs

together, we obtain answers which synthesize all of the relevant data for each of the

SNPs. The Bayesian methods give causal estimates consistent with the 2SLS estimates

(Table 5.2). The Bayesian structural-based and 2SLS per allele models give lower esti-

mates of causal association than the other models, with 95% CIs that include zero. The

Bayesian credibility intervals are (appropriately) asymmetric, as no normal assumption

has been made. The Bayesian individual-based and the 2SLS factorial methods both give

different results when individuals from small genotypic groups are excluded. The direction

of the differences in the estimates is consistent with weak instrument bias.

Method Estimate 95% CI

Ratio using rs1205 0.234 -0.169 to 0.660

Ratio using rs1417938 -0.608 -1.581 to 0.137

Ratio using rs1800947 0.203 -0.478 to 0.940

Ratio using rs2808630 2.722 −∞ to ∞
2SLS factorial using all SNPs 0.376 0.088 to 0.665

2SLS factorial (excluding small groups) 0.280 -0.041 to 0.601

2SLS per allele using all SNPs 0.200 -0.138 to 0.538

Bayesian methods Estimate 95% CrI

Group-based (excluding small groups) 0.342 0.004 to 0.698

Individual-based 0.389 0.049 to 0.728

Individual (excluding small groups) 0.300 -0.045 to 0.666

Structural-based 0.212 -0.157 to 0.586

Table 5.2: Comparison of the causal estimates of increase in fibrinogen (µmol/l) per

unit increase in loge(CRP) in the Cardiovascular Health Study. 95% confidence/credible

intervals (CI/CrI) are shown. Small groups are genotypic groups with less than 5 subjects
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Figure 5.4: Plot of mean fibrinogen against mean log(CRP) in the Cardiovascular Health

Study stratified by genotypic group. Error bars are 95% CIs. Groups with less than 5

subjects omitted. The size of the shaded squares is proportional to the number of subjects

in each group. The dashed line is the estimate of causal association from the group-based

method

5.4 Continuous outcome — Multiple genetic markers

in multiple studies

5.4.1 Methods

The above framework leads naturally to a model for meta-analysis across multiple studies.

IV assumption iii. in Sections 1.2.2 and 2.2 states that the IV is conditionally independent

of the outcome given the phenotype and confounders. This ensures that, in principle, the

same parameter β1 is being estimated regardless of how many and which SNPs are available

in each study. This is because the outcome is independent of the IV given the phenotype

(which is measured) and the confounders (which are averaged over). We thus propose a

hierarchical model for β1 estimated across multiple studies as follows. For a fixed-effect

meta-analysis, we assume the same value of β1 for each study. For a random-effects meta-

analysis, we allow β1m from studym to come from a distribution with mean β1 and variance
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5.4 Continuous outcome — Multiple genetic markers in multiple studies

ψ2. This acknowledges the possibility that the causal parameters are somewhat different

across studies, as is plausible due to the influences of different population characteristics,

but that they are expected to have generally similar values.

For the group-based regression (5.3), for group j in studym, a fixed-effect meta-analysis

is:

X̄jm ∼ N(ξjm, σ
2
xjm) (5.6)

Ȳjm ∼ N(ηjm, σ
2
yjm)

ηjm = β0m + β1 ξjm

Values for β0m, the constant terms in the regression, will vary depending on the average

level of outcome in the population in each study, and are thus given independent vague

N(0, 1002) priors for each study.

For a random-effects meta-analysis, the last line of (5.6) is replaced by:

ηjm = β0m + β1m ξjm (5.7)

β1m ∼ N(β1, ψ
2)

We use a Uniform[0,20] prior for ψ in the example below.

These modifications to the simple group-based analysis (5.3) for a meta-analysis con-

text can also be similarly made to the individual-based model (5.4), and to the structured

model (5.5). For example, the full model using a structured model (5.5), assuming het-

erogeneity between studies, for individual i and SNP k = 1 . . . Km in study m = 1, . . . ,M

is:

ξim = α0m +
Km∑
k=1

αkm gikm (5.8)

Xim ∼ N(ξim, σ
2
xm)

Yim ∼ N(ηim, σ
2
ym)

ηim = β0m + β1m ξim

β1m ∼ N(β1, ψ
2)

The standard deviation parameters (σxm, σym) are given independent priors. In this model,

we assume that the first-stage regression coefficients αkm are unrelated in the different

studies. An extra sophistication would be to assume that these coefficients are common or

related when different studies involve the same set of SNPs (see Section 5.6.2). Example

WinBUGS code is given in the appendix to this chapter.
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5.4 Continuous outcome — Multiple genetic markers in multiple studies

5.4.2 Application to C-reactive protein and fibrinogen

We give an example of meta-analysis of eleven studies (82) using the methods described.

In addition to the Cardiovascular Health Study (CHS) used in Section 5.3.2, we incorpo-

rate data from a further eight general population cohort studies: British Women’s Heart

and Health Study (BWHHS), Copenhagen City Heart Study (CCHS), Copenhagen Gen-

eral Population Study (CGPS), English Longitudinal Study of Ageing (ELSA), Framing-

ham Health Study (FRAM), Northwick Park Heart Study II (NPHS2), Rotterdam Study

(ROTT), and Whitehall II Study (W2). In each of these the analyses presented here are

cross-sectional, based on baseline measurements of CRP and fibrinogen. We also use data

from two case-control studies, the Nurses’ Health Study (NHS) and Stockholm Heart Epi-

demiology Program (SHEEP), again with CRP and fibrinogen measured at baseline. We

use the data from controls alone since these better represent cross-sectional population

studies. Details of these studies are summarized in Table 5.3.

To avoid problems with weak instruments, we want to choose genetic instruments which

together are strongly related to log(CRP). For this, the instrument was chosen to maintain

the F statistic above 10 and to include sequentially, where available, each of SNPs rs1205,

one of rs1130864 and rs1417938 (these SNPs are in complete LD), rs3093077, rs1800947 and

rs2808630. In the meta-analysis we use between 2 and 4 SNPs as instruments in each study;

the Sargan overidentification tests were satisfied (Table 5.3). The choice of instruments

here is not made a priori, as should ideally be the case, but pragmatically to exemplify

the method. For comparison with the Bayesian methods, we use the study-specific 2SLS

causal estimates and corresponding asymptotic standard errors in a standard two-step

inverse variance weighted meta-analysis (using a moment estimator of the between-study

variance in the case of random-effects meta-analysis). Mean log(CRP) and fibrinogen levels

for the genotypic groups for six of the studies are shown in Figure 5.5. We note that the

treatment of the two-stage method is not the same as that of the Bayesian method, as the

two-stage results are combined in a two-step summary effects meta-analysis rather than

an one-step IPD meta-analysis. A two-step approach is used as it is difficult to specify an

error structure for the phenotype in a possible hierarchical two-stage analysis, and because

a two-step analysis is usually used in practice, and so provides a more relevant comparison

than a one-step method.

Table 5.4 shows a causal association of log(CRP) on fibrinogen which does not signifi-

cantly differ from the null, except for the structural-based fixed-effect meta-analysis, which

suggests a weak negative causal association. Groups of size less than 5 have been omit-

ted in the 2SLS factorial, group-based and individual-based analyses. There is no clear

preference for the random-effects models from the Deviance Information Criterion (DIC)
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Figure 5.5: Plot of mean fibrinogen against mean log(CRP) for six studies from Sec-

tion 5.4.2 stratified by genetic group. Error bars are 95% CIs. Groups with less than 5

subjects omitted. The size of the shaded squares is proportional to the number of subjects

in each group.
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5.5 Binary outcome — Genetic markers in one study

SNPs used 1 Overidentification

Study as IV Participants Excluded F statistic df p-value

BWHHS g1, g3, g5 3188 7 16.7 (3, 3184) 0.638

CCHS g1, g2, g4 7998 5 29.6 (3, 7994) 0.358

CGPS g1, g2, g4 35679 5 152.0 (3, 35675) 0.439

CHS g1, g3, g5, g6 4469 15 27.2 (4, 4464) 0.067

ELSA g1, g2, g4 4409 8 24.7 (3, 4405) 0.367

FRAM g1, g2, g4 1575 4 10.0 (3, 1571) 0.447

NHS g1, g6 414 0 13.2 (2, 411) 0.984

NPHS2 g1, g2, g4 2153 3 11.6 (3, 2149) 0.344

ROTT g1, g2 2077 2 11.9 (2, 2074) 0.983

SHEEP g1, g2, g4 1044 4 10.5 (3, 1040) 0.680

W2 g1, g2, g4 4354 5 21.5 (3, 4350) 0.469

Total 67361 58

Table 5.3: Summary of studies in meta-analysis of Section 5.4.2: SNPs used as instrumen-

tal variable (IV), number of participants with complete genetic data, number of partici-

pants in genotypic groups of size less than 5 excluded from some analyses, F value with

degrees of freedom (df), p-value from Sargan test of overidentification from additive per

allele regression of phenotype on SNPs used as IVs

1g1 = rs1205, g2 = rs1130864, g3 = rs1417938, g4 = rs3093077, g5 = rs1800947, g6 = rs2808630

(204). The DIC should only be used to compare between a fixed- or random-effect model,

and not between models based on different data structures. Again, the structural-based

models give lower estimates of causal association than the other methods.

5.5 Binary outcome — Genetic markers in one study

We now consider methods for use with a binary outcome, assuming a logistic model of

association and targeting an odds ratio parameter. A log-linear model could also be

considered; in this case a relative risk parameter would be estimated.

5.5.1 Conventional methods

We again consider the case of a single SNP in one study, where confounding causes the

observational estimate of the association of phenotype and outcome to be different from

the causal relationship. Let individual i have phenotype level xi, outcome yi, genotype
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5.5 Binary outcome — Genetic markers in one study

Fixed-effect meta-analysis Estimate 95% CI/CrI DIC 1

2SLS factorial -0.005 -0.139 to 0.130

2SLS per allele -0.086 -0.255 to 0.082

Group-based -0.008 -0.142 to 0.125 -242.1

Individual-based -0.036 -0.164 to 0.090 500692

Structural-based -0.136 -0.276 to -0.002 501037

Random-effects meta-analysis Estimate 95% CI/CrI DIC ψ

2SLS factorial -0.007 -0.151 to 0.137 0.072

2SLS per allele -0.086 -0.255 to 0.082 0.000

Group-based -0.017 -0.234 to 0.177 -244.5 0.188

Individual-based -0.039 -0.228 to 0.153 500692 0.155

Structural-based -0.150 -0.365 to 0.048 501037 0.169

Table 5.4: Estimates of increase in fibrinogen (µmol/l) per unit increase in log(CRP),

95% confidence/credible interval (CI/CrI), deviance information criterion (DIC) and het-

erogeneity parameter (ψ) in meta-analysis of eleven studies using 2SLS and Bayesian

methods. Genotypic groups with less than 5 individuals excluded from the 2SLS factorial,

group-based and individual-based analyses

1We note that DIC should be used to compare between a fixed- or random-effect model and not

between models.

gi taking values 0,1,2, and unmeasured confounder ui. We consider the model of logistic

association:

xi = α0 + α1gi + α2ui + ϵxi (5.9)

logit(πi) = β0 + β1xi + β2ui

yi ∼ Binomial(1, πi)

ui ∼ N(0, σ2
u), ϵxi ∼ N(0, σ2

1) independently

As an example, we simulate data for a sample of size 1200, containing 48 individuals

with gi = 2, 384 with gi = 1 and 768 with gi = 0, corresponding to Hardy-Weinberg

equilibrium for a minor allele frequency of 20%. We consider the same parameter values

as in Section 5.2.1 above except for β0 = −2: (α0, α2, β0, β1, β2, σ
2
u, σ

2
1) = (0, 1, −2, 2, −3,

1, 0.25). Setting β0 = −2 ensures a large but realistic number of cases, as the probability

of an event for an individual with xi = 0, ui = 0 is expit(−2) = 0.12. We consider the

cases of a weak instrument (α1 = 0.15, giving an expected F statistic for the regression of

X on G of 7), a moderate instrument (α1 = 0.25, F statistic 20) and a strong instrument

113



5.5 Binary outcome — Genetic markers in one study

(α1 = 0.5, F statistic 75):

xi = α1gi + 1ui + ϵxi (5.10)

logit(πi) = −2 + 2xi − 3ui

ui ∼ N(0, 1), ϵxi ∼ N(0, 0.25) independently

Figure 5.6 shows the simulated data grouped by genotype graphically. The standard error

for the log odds of an event in each group has been estimated using a normal approxima-

tion.

The observational estimates obtained by regressing Y on X (Table 5.5) are far from

the true causal association (β1 = 2) as expected because of the strong negative confound-

ing (U is positively related to X but negatively to Y ). The ratio method (assuming zero

correlation between coefficients) gives estimates compatible with β1 = 2, but with a wide

confidence interval in the case of the weak or moderate instrument. Sensitivity analy-

ses taking values for correlation of ±0.1,±0.2 gave similar wide asymmetric confidence

intervals.
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Figure 5.6: Graphs of log odds of event against mean phenotype (x̄) in three genetic groups

for the weak, moderate and strong instrument simulated examples of Section 5.2.1. Error

bars are 95% CIs for the mean and log odds

5.5.2 A Bayesian method

As in the continuous setting, we can reformulate the problem as one of linear regression

with heterogeneous error in X. For each genotype value j = 0, 1, 2 we calculate the mean
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5.5 Binary outcome — Genetic markers in one study

level of the phenotype x̄j with its variance σ2
xj and log odds of event ȳj with its asymptotic

variance σ2
yj. The model is

X̄j ∼ N(ξj, σ
2
xj) (5.11)

Ȳj ∼ N(ηj, σ
2
yj)

ηj = β0 + β1 ξj

where β1 represents the increase in log odds of event for unit increase in true phenotype

and is the parameter of interest. This corresponds to the group-based regression from

above.

Alternatively, we can model on an individual level. An individual-based model for

phenotype and outcome can be constructed, using a normal distribution for the phenotype

and a binomial distribution for the outcome with a logistic link function. Let the number

of individuals in genotypic subgroup j be Nj and nj be the number of them who have

events. Then for each individual i in subgroup j, we have

Xij ∼ N(ξj, σ
2
x) (5.12)

nj ∼ Binomial(Nj, πj)

ηj = logit(πj) = β0 + β1 ξj

Equivalently, we would obtain the same model by taking the likelihood contributions

to the binomial density for each individual separately:

Yij ∼ Binomial(1, πij) (5.13)

ηij = logit(πij) = β0 + β1 ξj

Models (5.12) and (5.13) correspond to the individual-based regression model (5.4) with

a continuous outcome.

Finally, we can consider a structural-based model:

ξi = α0 +
∑
k

αk gik (5.14)

Xi ∼ N(ξi, σ
2
x)

Yi ∼ Binomial(1, πi)

ηi = logit(πi) = β0 + β1 ξi

where gik is the number of variant alleles in SNP k for individual i. Equivalent models

could be constructed to estimate a relative risk in a log-linear model, by replacing the

logistic function with a logarithm function in each of the above models.
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5.5 Binary outcome — Genetic markers in one study

Results for the group-based, individual-based and structural-based Bayesian methods,

as well as the confounded observational estimate and estimates from the ratio and two-

stage IV methods are shown in Table 5.5. Posterior distributions for the structural-based

Bayesian method are displayed as Figure 5.7. We see that the group-based method gives

wider confidence intervals, but similar point estimates to the ratio/two-stage estimate.

This is partially due to the lack of a linearity assumption in the gene-phenotype association.

The estimate from the structural-based method did not converge for the weak instrument,

but similar estimates to the ratio method are given especially with the strong instrument.

Weak instrument - (E(F ) = 7) Estimate 95% CI/CrI

Observational estimate -0.25 -0.38, -0.12

Ratio method 1.33 -0.83, 21.16

Two-stage method 1.33 -0.68, 3.33

Group-based Bayesian method 0.82 -12.13, 12.76

Individual-based Bayesian method Did not converge

Structural-based Bayesian method Did not converge

Moderate instrument - (E(F ) = 20) Estimate 95% CI/CrI

Observational estimate -0.15 -0.28, -0.03

Ratio method 1.48 0.47, 3.36

Two-stage method 1.48 0.49, 2.47

Group-based Bayesian method 1.44 -0.84, 8.61

Individual-based Bayesian method 1.62 0.48, 3.38

Structural-based Bayesian method 1.58 0.48, 3.80

Strong instrument - (E(F ) = 75) Estimate 95% CI/CrI

Observational estimate -0.10 -0.22, 0.02

Ratio method 1.55 1.04, 2.20

Two-stage method 1.55 1.10, 1.99

Group-based Bayesian method 1.56 0.93, 3.05

Individual-based Bayesian method 1.51 0.99, 2.14

Structural-based Bayesian method 1.57 1.06, 2.23

Table 5.5: Causal parameter estimates of β1 = 2 and confidence/credible intervals using

ratio, two-stage and Bayesian group-based, individual-based and structural-based meth-

ods compared with observational estimate for the weak, moderate and strong instrument

simulated examples of Section 5.5.1

These methods can be naturally extended for meta-analysis of multiple studies by use
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Figure 5.7: Kernel-smoothed density of posterior distribution of the causal parameter

for the moderate and strong instrument simulated examples of Section 5.5.1 using the

structural-based Bayesian method of Section 5.5.2

of a hierarchical model as in Model 5.8 for the continuous outcome setting:

ξim = α0m +
Km∑
k=1

αkm gikm (5.15)

Xim ∼ N(ξim, σ
2
xm)

Yim ∼ Binomial(1, πim)

ηim = logit(πim) = β0m + β1m ξim

β1m ∼ N(β1, ψ
2)

Having introduced the Bayesian models for continuous and binary outcomes in this

chapter, we discuss extensions to this model, before returning to consider the properties of

the models under simulation in Chapter 6, where we discuss estimation and interpretation

of the causal parameter β1 in the light of the work in Chapter 3 (weak instrument bias)

and Chapter 4 (non-collapsibility).

5.6 Dealing with issues of evidence synthesis in meta-

analysis

In this section, we detail how the problems of combining evidence of heterogenous sources

can be efficiently accomplished in the Bayesian models detailed above, with a focus on
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5.6 Dealing with issues of evidence synthesis in meta-analysis

specific features exhibited in the CCGC dataset. Aside from the first subsection on cohort

studies, these extensions are relevant in both continuous and binary outcome cases.

5.6.1 Cohort studies

In a cohort study, if individuals are not excluded from study entry at baseline due to history

of disease, each participant has two windows of opportunity to become a case: one before

study entry and one after. We want to include participants in cohort studies up to twice

in the analysis, once in the study viewed retrospectively and once prospectively. A cross-

sectional or retrospective analysis is performed by viewing the cohort at baseline as a cross-

sectional study with cases taken as individuals with previous history of disease (prevalent

cases) and controls as all non-diseased individuals. A prospective analysis excludes all

prevalent cases and considers events within the reporting period. An individual who is

censored at the end of the follow-up period is taken as a control in both the retrospective

and prospective analyses as he has two separate opportunities to become a case. However,

we do not want to include the individual’s phenotype twice, and we want to ensure that

the same parameter is estimated in both analyses.

In the corresponding model (5.16), we consider genotypic subgroup j. This subgroup

contains N1j individuals, n1j of whom are prevalent cases, and N2j(= N1j − n1j) non-

prevalent individuals, n2j of whom have incident events.

Xij ∼ N(ξj, σ
2) for i = 1, . . . N2j non-prevalent individuals (5.16)

n1j ∼ Binomial(N1j, π1j)

n2j ∼ Binomial(N2j, π2j)

logit(π1j) = η1j = β01 + β1 ξj

logit(π2j) = η2j = β02 + β1 ξj

This model ensures that the same fitted values of phenotype are used in both logistic

regressions without including individuals twice in the regression of phenotype on genotype.

5.6.2 Common SNPs

Where the same subset of SNPs has been used in several studies, we can combine the

estimates of genetic association αkm across studies. This should give a more precise model

of association in smaller studies and should reduce weak instrument bias, as instrument

strength will be combined across the studies. Due to possible heterogeneity between popu-

lations, we use a random-effects model, where we impose a multivariate normal distribution
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5.6 Dealing with issues of evidence synthesis in meta-analysis

on the study level parameters αkm with mean vector µα and variance-covariance matrix

Ψ. Note that the intercept parameters α0m are not pooled.

Xijm ∼ N(ξjm, σ
2
m) (5.17)

ξjm = α0m +
K∑
k=1

αkm gjkm

αkm ∼ NK(µα,Ψ)

5.6.3 Common haplotypes

Alternatively, we can model the phenotype additively across haplotypes as in model (5.18).

Each individual has two haplotypes h1i and h2i and phenotype is modelled additively in

a meta-analysis as the sum of three components, a study specific intercept γ0m in study

m and a component from each haplotype γkm for haplotype k. The haplotype parameters

are modelled as random-effects to allow for heterogeneity between genetic effects in each

study. The study-specific estimates γm = (γ2m, . . . , γKm)
T are modelled as being drawn

from a multivariate normal distribution with mean µγ and variance-covariance matrix Ψ.

Xim ∼ N(ξjm, σ
2
m) (5.18)

ξim = γ0m + γh1im + γh2im

γm ∼ NK(µγ,Ψ)

A multivariate normal distribution is assumed for each γm. A multivariate prior is assumed

for the mean vector µγ with mean 0 and diagonal variance-covariance matrix with 10 as

each diagonal element, and a non-informative inverse-Wishart prior is assumed for Ψ,

where the scale matrix in the Wishart distribution is diagonal with 10 as each diagonal

element.

Due to collinearity from each individual having exactly two haplotypes, one of the

haplotype effects (γ1m) is arbitrary fixed to zero throughout. The parameter γkm (k =

2, . . . , K) is then interpreted as the increase in log(CRP) for an individual in study m

having a copy of haplotype k relative to haplotype 1. As each of the γkm is estimated

relative to the effect of haplotype 1, it seems prudent to label the most common haplotype

category as haplotype 1, to reduce the uncertainty in estimation of the γkm, although this

should not affect the overall causal estimate of β1.

119
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5.6.4 Lack of phenotype data

Where a study has not measured the phenotype (X) but has genetic data in common

with other studies, we use the random-effects distributions for the genetic association

parameters defined in Sections 5.6.2 or 5.6.3 as a predictive distribution or implicit prior

for the unknown parameters. This requires an assumption of exchangeability that the

change in phenotype per additional allele is similar (i.e. can be drawn from the same

random-effects distribution) as the other studies. For identifiability, we set α0m = 0 in

(5.17) or γ0m = 0 in (5.18) as with no data on the G-X association, this parameter cannot

be identified.

Incorporation of studies with information on only some of the gene–phenotype–outcome

triangle needed for Mendelian randomization analysis is known in econometrics circles as

the “two sample problem” (205).

5.6.5 Tabular data

For studies providing tabular data only, we were provided for each genetic subgroup j with

binary outcome data on the total number of individuals (Nj) and the number with an event

(nj). We are able to incorporate such studies into an analysis using the random-effects

distributions for the parameters of genetic association as above.

5.7 Discussion

In this chapter, we have described a Bayesian approach to analysis of Mendelian ran-

domization studies. We introduced the approach in a simple example of a confounded

association with one IV. We extended the method to use multiple IVs, to use individual

participant data and to incorporate an explicit, here additive, genetic model. We then

show how this leads naturally to a meta-analysis, which can be performed even with het-

erogeneous genetic data. These methods have been applied in the estimation of the causal

association of CRP levels on fibrinogen.

5.7.1 Bayesian methods in IV analysis

The Bayesian approach has similarities to the 2SLS method. In both, fitted values of

phenotype are estimated for each genotypic group, which are then used in a regression of

outcome on phenotype. In 2SLS, these fitted values are assumed to be precisely known

in the second-stage regression. In the Bayesian framework, the fitted values of phenotype
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and outcome are estimated simultaneously, and the standard error in the causal parameter

is directly estimated from the MCMC sampling process. This means that no assumption

is made on the distribution of the causal parameter, giving appropriately sized standard

errors and skew CIs. The Bayesian approach allows us to be explicit about the assumptions

made. This gives us flexibility to determine the model according to what we believe is

plausible without being limited to linear or normal assumptions.

Additionally, the Bayesian approach provides a framework to perform analyses that

are difficult or not possible using 2SLS. These include meta-analysis in a single hierarchi-

cal model, imputation of missing data (see Chapter 7), inclusion of studies with partial

information on the gene-phenotype-outcome associations, and hierarchical random-effects

modelling of the first-stage genetic association parameters.

Bayesian methods have not been widely proposed for IV analyses or applied in Mendelian

randomization studies. Although Bayesian methods for IV analysis have been suggested

in the econometrics literature (134; 135), their use is not common and differences between

the fields mean that methods cannot easily be translated into an epidemiological setting

(31). McKeigue et al. (141) have performed a Bayesian analysis in the single SNP and

single study situation, but regarding the parameter of interest as the “ratio of the causal

effect to crude [i.e. observational] effect”. We prefer to regard β1, the causal association,

as the parameter of interest.

5.7.2 Bayesian analysis as a likelihood-based method

Although this chapter focuses the advantages of a Bayesian IV framework, several of

these advantages are inherited from the fact that the Bayesian methods examine the full

likelihood of the model, and would be shared by other likelihood-based methods such

as a full information maximum likelihood (FIML) approach. Such advantages include

the propagation of uncertainty through the model. Indeed, it could be argued that the

Bayesian method is not a truly Bayesian method, but simply a MCMC method. As the

prior distributions are not informative, the Bayesian approach simply gives a sample from

the posterior distribution, which approximates the likelihood. In a FIML approach, the

mode of the likelihood is considered, rather than the median or mean usually considered in

a Bayesian analysis, but otherwise the estimates will be similar. Similarly, bootstrapping

could be used in non-Bayesian approaches like FIML to remove the dependence of inference

for the causal effect on asymptotic assumptions.

A specific advantage of the Bayesian framework over a FIML approach is the possi-

bility of the use of informative prior information in estimation. This is often important
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for hyperparameters, such as the between-study variance ψ2, where the information in

the dataset on the parameter may be limited. Another advantage is the computational

problems associated with FIML. Maximizing the likelihood of such a complex function is

computationally expensive, especially in a meta-analysis context. It is not clear that such

a likelihood would be unimodal. Bootstrapping to give robust confidence intervals may

be theoretically possible, but impractical in large datasets. If a particular genetic variant

had a low minor allele frequency, all individuals in a particular genotypic subgroup may

be omitted from a given bootstrap sample, leading to possibly unidentifiable parameters.

By contrast, the Bayesian approach is robust to these difficulties. Although the MCMC

algorithm is computationally expensive, it is not prohibitively so. The Bayesian model

can be fitted using standard software, meaning that diagnostics for convergence and fit

are really available, whereas a FIML approach would need to be fitted ‘by hand’.

Generally, we do not consider the FIML method in this chapter as it is not widely

used in practice. One reason for this is that, even though asymptotic assumptions are

not required for inference, the parametric and distributional assumptions made by fully

likelihood methods, such as Bayesian and FIML methods, are strong and may be violated

in practice. We discuss this trade-off further in Section 6.5.3.

5.7.3 Meta-analysis

Methods for meta-analysis of Mendelian randomization studies have not been extensively

explored, and have been restricted to studies measuring one identical SNP (71; 89; 138).

In applications, meta-analyses of studies have concentrated on testing for a causal effect,

without accounting for the uncertainty in the estimated mean difference in phenotype

values between genotypic groups (76; 172). Where this uncertainty has been accounted

for, confidence intervals for the causal association have been too wide to exclude a moderate

causal association (100; 174). Our proposed analysis thus extends this previous work in a

number of ways: first by using a flexible Bayesian framework that eliminates the problems

caused by non-normal causal estimates, second by presenting a coherent framework for

estimation of the causal association using data from multiple studies, and third by allowing

the use of different genetic markers in different studies.

An advantage of the Bayesian setting for meta-analysis is that the whole meta-analysis

can be performed in one step. This keeps each study distinct within the hierarchical model,

only combining studies at the top level. This is more effective at dealing with heterogeneity,

both statistical and in study design, than performing separate meta-analyses on each of

the genotype-phenotype and genotype-outcome associations (71). An alternative approach
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where the causal association estimate and its precision are estimated in each study, and

these estimates combined in a meta-analysis in a second stage, is not recommended for

two reasons. First, the distribution of each causal estimate is not normal (especially

if the instrument is not strong), and so the uncertainty is not well represented by its

standard error, and secondly, some causal estimates from individual studies may have

infinite variance. Examples of these problems are apparent in Figure 5.3 and Table 5.2.

5.7.4 Conclusion

The validity of IV analyses relies on assumptions specified in previous chapters. These

assumptions can only be partially verified from data, and there are a number of ways in

which they may be violated for Mendelian randomization studies (2). Nevertheless, this

proposed Bayesian method for meta-analysis of Mendelian randomization studies is a useful

methodological advance. It should also find application in the context of the increasing

number of consortia that are now collating the relevant individual genetic, phenotype and

outcome data from multiple studies (82).

5.7.5 Key points from chapter

• A Bayesian approach for IV analysis gives similar results to other established meth-

ods, while allowing extensions to analyses not possible in other frameworks.

• Estimation is possible with both continuous and binary outcomes and extension to

a hierarchical meta-analysis model is natural.

Appendix: WinBUGS code

WinBUGS code for random-effects meta-analysis of group-based

model

model {

# prior for hierarchical causal estimate (parameter of interest)

betatrue ~ dnorm(0, 0.000001)

# prior for standard deviation of individual study estimates

betasd ~ dunif(0, 20)

betatau <- pow(betasd, -2)

for(m in 1:M) { # M = number of studies

# prior for regression intercept parameter
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beta0[m] ~ dnorm(0, 0.000001)

# distribution of study-specific causal estimates

beta[m] ~ dnorm(betatrue, betatau)

for (j in 1:G[m]) { # G[m] = number of genetic subgroups in study m

# distribution of phenotype in subgroup j, study m

x[j, m] ~ dnorm(xi[j, m], xtau[j, m])

# distribution of outcome in subgroup j, study m

y[j, m] ~ dnorm(eta[j, m], ytau[j, m])

# prior for true value of phenotype in subgroup j, study m

xi[j, m] ~ dnorm(0, 0.000001)

# linear model of true outcome on true phenotype

eta[j, m] <- beta0[m] + beta[m] * xi[j, m]

} } }

WinBUGS code for fixed-effect meta-analysis of structural-based

model

model {

# prior for fixed causal estimate (parameter of interest)

beta ~ dnorm(0, 0.000001)

for(m in 1:M) {

# prior for regression intercept parameter

beta0[m] ~ dnorm(0, 0.000001)

alpha0[m] ~ dnorm(0, 0.000001)

# prior for study phenotype standard deviation

xsd[m] ~ dunif(0, 20)

xtau[m] <- pow(xsd[m], -2)

# prior for study outcome standard deviation

ysd[m] ~ dunif(0, 100)

ytau[m] <- pow(ysd[m], -2)

for(k in 1:G[m]) { # G[m] = number of genes in study m

# prior for gene-phenotype regression parameters

alpha[k, m] ~ dnorm(0, 0.000001)

}

for (i in 1:N[m]) { # N[m] = number of individuals in study m

# linear model of true phenotype on genes

xi[i, m] <- inprod(alpha[1:G[m], m], gene[i, 1:G[m], m]) + alpha0[m]
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5.7 Discussion

# distribution of phenotype in individual i, study m

x[i, m] ~ dnorm(xi[i, m], xtau[m])

# distribution of outcome in individual i, study m

y[i, m] ~ dnorm(eta[i, m], ytau[m])

eta[i, m] <- beta0[m] + beta * xi[i, m]

} } }
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Chapter 6

Improvement of bias and coverage in

instrumental variable analysis

6.1 Introduction

In this chapter, we explore the bias and coverage properties of some commonly used

methods for calculating instrumental variable (IV) estimates of causal association, and

specifically the Bayesian methods introduced in Chapter 5.

We investigate two specific issues related to bias and coverage of estimates. The first is

weak instrument bias (see Chapter 3) (101; 160). A weak instrument is an IV which does

not explain a large proportion of the variation in the risk factor (102). Weak instruments

are known to produce biased estimates with incorrectly sized confidence intervals (161).

The second issue is that of non-collapsibility in analyses involving binary outcomes

and logistic modelling (see Chapter 4) (110). When a log odds ratio is marginalized

over the distribution of a confounder, its value changes (33). So the interpretation of a

regression parameter in a logistic association model depends on the distribution and choice

of covariates in the model. With binary outcomes, several different parameters of interest

and estimation methods have been proposed (97; 125). We seek to estimate an individual

odds ratio conditional on all covariates, as this is the parameter targeted in a standard

logistic regression analysis with adjustment for confounders (94; 153), and a population

odds ratio marginal across all covariates (153), as this is the parameter typically estimated

in a randomized controlled trial (109).

Although the results in this chapter can be applied generally to IV problems, the

models and parameters of the simulations will correspond to those typical in a Mendelian

randomization analysis. Specifically, we consider G as discrete and thus dividing the data

into ‘genetic subgroups’.
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6.2 Example — British Women’s Heart and Health Study

We first present data from the British Women’s Heart and Health Study, one of the

studies in the CRP CHD Genetics Collaboration (CCGC), to give a background to the

estimation problem (Section 6.2). We give methods and a simulation study with contin-

uous outcomes (Section 6.3), introducing a novel development in the continuous outcome

Bayesian model introduced in Chapter 5 to model the observational correlation between

risk factor and outcome, which reduces bias to near zero with even moderately weak in-

struments. We show methods for binary outcomes corresponding to those with continuous

outcomes (Section 6.4), and demonstrate that adjusting for the first-stage residuals in

a logistic model, which is similar to modelling the correlation in a continuous setting,

changes the target parameter from a population odds ratio to an odds ratio conditional

on variation in the phenotype. In the discussion, we relate these results to the analysis of

Mendelian randomization studies (Section 6.5).

6.2 Example — British Women’s Heart and Health

Study

We motivate our methodological discussion using data from the British Women’s Heart

and Health Study (BWHHS) on C-reactive protein (CRP) and fibrinogen with complete

data on three SNPs in the CRP coding region as IVs: rs1205, rs1130864, rs1800947.

Although CRP and fibrinogen are positively correlated (β̂ = 0.807, SE 0.029, r = 0.45), it

is not thought that long-term variation in CRP is causally associated with increased levels

of fibrinogen (140). As CRP has a skewed distribution, a linear association is assumed

between log-transformed CRP and fibrinogen.

Figure 6.1 gives several graphical representations of the BWHHS data which will help

us understand the requirements of methods for data analysis later in the chapter. The

top-left graph shows the levels of log(CRP) and fibrinogen for all 3188 individuals in

the study. The line plotted represents the observational association with 95% confidence

interval obtained by linear regression. 122 individuals have CRP reported as 0.16 or 0.17

as this is the minimum level detectable by the assay used. A sensitivity analysis omitting

these individuals made little difference to the overall results. The top-right graph shows

the distribution of the mean of log(CRP) and fibrinogen for all individuals, estimated

by a 1000 iterations of a non-parametric bootstrap. In each iteration, a sample of the

population (with replacement) of the same size as the dataset is taken, and the mean of

log(CRP) and fibrinogen are evaluated. Both graphs show a positive correlation between

log(CRP) and fibrinogen.
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6.3 Continuous outcomes and linear models

The middle row of graphs shows the bootstrapped distributions of the mean of log(CRP)

and fibrinogen for the group of individuals with each number of variant alleles of a SNP.

We see that the within-group correlation (due to confounding) is represented by the di-

rection of the major axis of the oval-shaped distribution, and the between-group causal

effect is estimated by the regression line through the centres of these distributions. With

one instrument, there are only three genetic groups, and the causal effect is not estimated

precisely.

The bottom row of graphs shows the bootstrapped distributions of the mean of log(CRP)

and fibrinogen for each of the genotypic groups based on each of the SNPs. The bottom-left

graph illustrates the four groups containing more than 400 individuals and the bottom-

right graph the nine groups containing more than 10 individuals (minimum groups size is

108). Each of these groups consists of all individuals with the same genotype across the

three SNPs. We see that the correlation between the means of log(CRP) and fibrinogen

is similar for each of the groups. The lines plotted in the bottom row represent the causal

association with 95% confidence interval obtained from the 2SLS method. These lines

through the means of the groups do not seem to have a clear positive or negative gradi-

ent. This visual inspection of the distribution of the means indicates that modelling the

correlation between the means may be important and that the within-group correlation

appears to be similar in each group.

These graphs provide an illustration of Mendelian randomization data. The observa-

tional correlation between phenotype and outcome, and the correlation between the mean

phenotype and the mean outcome, are both positive. However, when the participants are

divided into genotypic subgroups, as in the lower graphs, the causal effect is seen to be

the gradient of the line through the means of phenotype and outcome for each group.

Although the correlation between the mean phenotype and mean outcome for each group

is strongly positive, this could be due to confounding. The gradient between the groups,

representing the change in outcome for a unit change in phenotype where the confounder

levels are the same in each group, is null. Assuming that the SNPs used as IVs are valid

instruments, it is this between-group gradient which is the causal association.

6.3 Continuous outcomes and linear models

We describe both established and novel IV methods to estimate causal associations with

continuous outcomes and linear models, and then examine how they perform in simu-

lations. We are specifically interested in the bias and coverage properties of different
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6.3 Continuous outcomes and linear models

Figure 6.1: British Women’s Heart and Health Study data on log-transformed CRP (mg/l)

against fibrinogen (µmol/l): top row - left: raw data with observational association; - right:

bootstrapped distribution of means of log(CRP) and fibrinogen for population with ob-

servational association; middle row - distribution of bootstrapped means for each number

of variant alleles for - left: rs1205; - middle: rs1130864; right: rs1800947; bottom row -

distribution of bootstrapped means for each genetic subgroup with estimate of causal asso-

ciation - left: four largest subgroups; right - nine largest subgroups (dashed lines are 95%

confidence intervals throughout, area of squares is proportional to number of individuals

in the group)
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6.3 Continuous outcomes and linear models

estimators. Apart from the Bayesian method introduced in Chapter 5, these methods

were introduced in Chapter 2, and the salient features of the methods are recalled here.

6.3.1 Methods

a) Two-stage: The two-stage least squares (2SLS) estimator is so called because

it can be calculated using two regression stages (93). The first stage (G-X regression)

regresses X on G to give fitted values X̂|G. The second stage (X-Y regression) regresses

Y on the fitted values X̂|G from the first stage regression. The causal estimate is this

second-stage regression coefficient for the change in outcome caused by unit change in the

risk factor. The variance for the two-stage estimator with continuous outcomes is here

calculated using a sandwich variance estimator to account for possible misspecification of

the first-stage regression (121). The estimated causal parameter is generally assumed to

be normally distributed (119). The 2SLS estimator has a finite kth moment with (k + 1)

instruments when all the associations are linear and the error terms heteroscedastic and

normally distributed (124).

Estimates using the 2SLS method are known to be biased in the direction of the

confounded association between the risk factor and outcome (160; 206). The magnitude

of the bias depends on the statistical strength of association between the instrument and

risk factor (101). The relative bias, defined as the bias of the IV estimator divided by the

bias of the observational estimator (ie. from ordinary least squares regression of Y on X)

(102), is asymptotically approximately 1/F , where F is the expected F statistic for the IVs

in the first-stage regression (102; 161). Hence an expected F-value of 10 leads to a relative

bias of about 10%. Weak instruments also lead to overly narrow confidence intervals and

poor coverage properties (161), and methods which do not allow for the possibility of

an infinite confidence set will not be robust to weak instruments (119). When the IV is

weak, the IV estimator has a long-tailed distribution, which is not well approximated by

a normal distribution (122).

b) Ratio: The ratio of coefficients (or Wald (111)) estimator is calculated as the ratio

of two regression coefficients: from the regression of Y on G (G-Y regression) and the

regression of X on G (G-X regression) (2). The ratio method can only be used when

there is a single instrument, in which case the causal estimate coincides with that from

the 2SLS method. Confidence intervals for the ratio estimator can be calculated using

Fieller’s theorem (100; 114), assuming a bivariate normal distribution of the regression

estimates with zero correlation.
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6.3 Continuous outcomes and linear models

c) LIML: The limited information maximum likelihood (LIML) method is the “max-

imum likelihood counterpart of 2SLS” (132). It is calculated by a maximum likelihood

procedure on the unrestricted reduced form (where each endogenous variable is expressed

in terms of the exogenous variables) on the assumption of homoscedastic errors (27). With

a single instrument, the estimate coincides with that from 2SLS. LIML is close to median

unbiased for all but the weakest instruments (118), although it does not have any fi-

nite moments for any number of instruments (133). We also perform an analysis using

full information maximum likelihood (FIML), which is similar to LIML, except that in

LIML each equation is estimated separately, whereas in FIML all equations are estimated

simultaneously.

d) Bayesian: We use a Bayesian method (Section 5.3) which is analogous to the 2SLS

model for a normally distributed risk factor and exposure (140). For each individual i, we

model the measured risk factor xi as coming from a normal distribution for Xi with mean

ξi and variance σ2
x; similarly, measured outcome yi comes from an independent normal

distribution for Yi with mean ηi and variance σ2
y. The mean risk factor ξi is assumed to

be a linear function of the instruments gik, k = 1, . . . , K. The model is estimated in one

stage, allowing propagation of uncertainty and feedback between the two regression stages.

There is no assumption on the distribution of the causal parameter β1 (141).

Xi ∼ N(ξi, σ
2
x) (6.1)

Yi ∼ N(ηi, σ
2
y)

ξi = α0 +
K∑
k=1

αkgik

ηi = β0 + β1 ξi

e) Adjusted Bayesian: The above model (6.1) assumes that an individual’s risk

factor and outcome are uncorrelated within genetic subgroups. This is not true, since

there will be a correlation between X and Y due to the true causal association and to

confounding, as seen in Section 6.2. The correlation due to confounding is the cause

of weak instrument bias in the 2SLS method (101; 206). In the Bayesian formulation,

we introduce a new model which explicitly includes the correlation between risk factor

and outcome by using a bivariate normal distribution for (Xi, Yi) with correlation ρ. We

replace the first two lines of (6.1) by(
Xi

Yi

)
∼ N2

((
ξi
ηi

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
(6.2)
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6.3 Continuous outcomes and linear models

Equivalently, to avoid bivariate distributions, we use the properties of the bivariate

normal distribution to model Xi by its univariate marginal distribution and Yi by its

conditional distribution given Xi = xi.

Xi ∼ N(ξi, σ
2
x) (6.3)

Yi|Xi = xi ∼ N(ηi +
σy
σx
ρ(xi − ξi), (1− ρ2)σ2

y)

6.3.2 Simulations for continuous outcomes

We take a simple model of confounded association. Risk factor xi for individual i is a linear

combination of three instruments gik for k = 1, 2, 3 which take values 0 or 1, normally

distributed confounder ui, and error ϵxi terms. Outcome yi is a linear combination of xi

and ui with normally distributed error ϵyi. The true causal effect of X on Y is represented

by β1. To simplify, the constant terms in the equations are set to be zero:

xi = α11 gi1 + α12 gi2 + α13 gi3 + α2 ui + ϵxi (6.4)

yi = β1 xi + β2 ui + ϵyi

ui ∼ N(0, σ2
u); ϵxi ∼ N(0, σ2

x); ϵyi ∼ N(0, σ2
y) independently

Since each instrument is dichotomous, there are 8 possible IV combinations. We sim-

ulated 100 000 datasets from this model for each set of parameters with 200 individuals

divided equally between the combinations. The instruments can be thought of as un-

correlated SNPs with dominant minor allele frequency 0.293. We considered four sets of

parameter values covering a range of typical situations, with σ2
x = σ2

y = σ2
u = 1 throughout:

a) null causal effect, moderate positive confounding (β1 = 0, α2 = 1, β2 = 2);

b) null causal effect, strong positive confounding (β1 = 0, α2 = 1, β2 = 4);

c) positive causal effect, moderate positive confounding (β1 = 1, α2 = 1, β2 = 2);

d) positive causal effect, strong negative confounding (β1 = 1, α2 = 1, β2 = −4).

The instruments are taken to be of equal strength, α11 = α12 = α13 = α1 with α1 taking

five values from 0.2 to 0.6, corresponding to mean F3,196 statistic values between 2.0 and

10.1.
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6.3 Continuous outcomes and linear models

6.3.3 Implementation

For computational reasons, we only perform 10000 simulations in a Bayesian framework

for each scenario. Results using classical methods for 10000 and 100 000 simulations are

given to assess the validity of results based on only 10000 simulations. We firstly consider

median bias rather than mean bias, as mean bias is not defined for the LIML estimator.

Results for 2SLS were obtained using the sem package in R (167) and for LIML using

the ivreg2 command in Stata (117). In the Bayesian analyses, we use vague prior distri-

butions on all parameters: normal priors with mean zero, variance 102 for all regression

parameters, uniform priors on [0, 20] for standard deviations and a uniform prior on [−1, 1]

for the correlation ρ. We use Markov chain Monte Carlo (MCMC) methods in WinBUGS

(207) with at least 5000 iterations, of which the first 500 are discarded as ‘burn-in’. We

assess convergence by examining the Monte Carlo error, re-running simulations which have

failed to converge. We regard the mean of the posterior distribution as the ‘estimate’ of

the parameter of interest and the standard deviation of the posterior distribution as the

‘standard error (SE)’; the posterior mean gave better properties than the posterior me-

dian for the median bias. We used the 2.5th to the 97.5th percentile range as the ‘95%

confidence interval’ to estimate coverage.

Although “credible interval” is the more appropriate term with Bayesian estimates,

the term “confidence interval” is here used to encompass both Bayesian and non-Bayesian

interval estimates.

6.3.4 Results

Table 6.1 shows the median bias and coverage of a 95% confidence interval for the first

10000 simulations using the 2SLS, LIML and Bayesian methods and for all 100 000 simula-

tions using 2SLS and LIML. . Results are not presented for the FIML method as for each

dataset the FIML estimate typically differed from the LIML estimates only in the fourth

decimal place, and the standard error in the third decimal place (the FIML standard

error was consistently less than the LIML standard error). The Monte Carlo standard

error (MCSE), representing the uncertainty due to the limited number of simulations, for

10 000 simulations is 0.003–0.008 for the median estimate (depending on the strength of

the instrument) and 0.002 for the coverage.

We can see that all methods exhibit some bias. When the instruments are very weak

(E(F ) = 2.0, 3.3), the 2SLS and Bayesian methods are severely biased in the direction of

the observational association. When the instrument has a mean strength of E(F ) = 10.1,

the 2SLS method has a substantial median bias of around 0.07 with moderate confounding
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6.3 Continuous outcomes and linear models

and 0.14 with strong confounding. In contrast, the LIML method shows minimal bias

throughout for all but the weakest instruments (E(F ) = 2.0). The unadjusted Bayesian

method has results similar to that for the 2SLS method with a null causal effect, and is

biased in the same direction when there is a true causal effect.

The adjusted Bayesian method has an absolute median bias less than 0.03 in the eight

simulations when E(F ) = 7.3 or 10.1. As the standard error of the median estimate due to

the number of simulations is of the order of 0.005 to 0.015, these results are compatible with

the adjusted Bayesian method being median unbiased for E(F ) > 7. When the instrument

is very weak, the posterior distributions for β1 have a long-tailed distribution which is often

skew. With a single instrument, the confidence interval in the ratio method using Fieller’s

theorem (114) may include infinity (89). This corresponds in the Bayesian analysis with

multiple instruments to a bimodal posterior distribution. In both the skewed and bimodal

cases, neither the posterior median nor mean is a good summary of the distribution, and

the corresponding median bias across simulations is not close to zero despite analyzing the

data under the correct model.

The 2SLS method underestimates CIs throughout, with coverage consistently less than

95% and as small as 80% with the weakest instruments under strong confounding. LIML

again underestimates coverage throughout, especially with weak instruments, though not

as severely as 2SLS. The adjusted Bayesian method has correct coverage throughout, with

coverage within 2 standard deviations (0.44%) of 95% for 18 of the 20 sets of parameter val-

ues. Both the 2SLS and LIML methods rely on asymptotic normality to perform inference

on the causal effect. As the true distribution of the causal effect with a finite population

is not normal, but in fact heavy-tailed, the asymptotic standard error is an underestimate

of the true uncertainty in the causal effect, and so coverage is underestimated.

The unadjusted Bayesian method usually has good coverage with a null causal effect,

but incorrectly estimated confidence intervals throughout when there is a true effect. This

is because the error structure between X and Y is incorrectly specified. The true contour

lines of the joint probability density function of X and Y within genetic subgroups (for

people with the same mean risk factor and outcome) should be elliptical with major axis

in the direction of the confounded association. However, by ignoring the correlation, cir-

cular contour lines are assumed. Figure 6.2 shows simulations for the mean risk factor and

outcome of three genetic subgroups assuming positive (left), zero (centre) and negative

(right panel) correlation between X and Y with a positive true causal effect to illustrate

the within-subgroup density function. We see that when the correlation is positive, the

variation in the gradient between the groups (the causal effect, estimates shown as grey
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6.3 Continuous outcomes and linear models
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6.3 Continuous outcomes and linear models

lines passing through the true mean of the middle subgroup) is less than when zero cor-

relation is assumed, which in turn is less than when there is a true negative correlation.

Hence when the confounded correlation within groups is in the same direction as the causal

effect, ignoring this correlation will result in overly wide confidence intervals, and when

the correlation is in the opposite direction, confidence intervals will be underestimated.
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Figure 6.2: Simulated data illustrating joint distribution of mean phenotype and outcome

in three genetic subgroups and causal estimate of association (grey lines) with positive

between-group association and positive (left), null (centre) and negative (right panel)

within-group correlation

6.3.5 Comparing mean and median bias

Table 6.2 explores the mean and median estimates of bias for the 2SLS and adjusted

Bayesian approaches. Although LIML has no finite moments, the estimators for the 2SLS

and Bayesian methods with three IVs have finite first moments, and so the mean estimate

(and equally the mean bias) is a sensible quantity to consider for these estimators. The

Bayesian method would even give an estimate with a finite mean even if there were no

data, due to the prior distribution. The true distribution of the IV estimator is biased

in the direction of the observational correlation between X and Y , and skewed in the

opposite direction. This can be observed in the difference between the mean and median

2SLS estimates across simulations. The posterior distribution from the adjusted Bayesian

method is also skewed in the same direction, as it reflects the true uncertainty of the

sampling distribution of the IV estimate. As the instrument becomes stronger, there is
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6.3 Continuous outcomes and linear models

no clear pattern since this skew has become less pronounced. For the adjusted Bayesian

method with E(F ) = 10, as already noted, the median bias is close to zero when the

posterior mean is considered as a point estimate. We see here that the mean bias is

close to zero when the posterior median is considered as a point estimate. The effect of

considering the posterior median or the sample median biases the point estimate in the

opposite way to considering the posterior mean or the sample mean. When the sample

mean of the posterior medians or the sample median of the posterior means is considered,

with moderately strong instruments the two effects seem to cancel each other out, leading

to bias being close to zero.

For a Bayesian, bias is an odd concept as it requires reducing the posterior distribution

to a single point value. As is seen in this example, depending on how bias is defined, differ-

ent summaries of the posterior distribution will be more or less biased. A Bayesian would

rather report the entire posterior distribution, as this represents their true belief about

the parameter of interest. Coverage is a much more important property to a Bayesian, as

this depends on the entire posterior distribution.

6.3.6 Different strength instruments

In response to concerns in Kleibergen and Zivot’s paper (134), that the adjusted Bayesian

method may perform badly when instruments of different strength were used, we perform

simulations similar to those in Section 6.3.2, except with the ratio of the genetic association

parameters (α1.) set at 1:3:5.

xi = 1α1 gi1 + 3α1 gi2 + 5α1 gi3 + α2 ui + ϵxi (6.5)

yi = β1 xi + β2 ui + ϵyi

ui ∼ N(0, σ2
u); ϵxi ∼ N(0, σ2

x); ϵyi ∼ N(0, σ2
y) independently

Five values of α1 were considered (0.1, 0.15, 0.2, 0.25 and 0.3) corresponding to mean F

statistics between 4.0 and 27.5. All other parameters were taken to be the same as in the

original simulation, and the same four scenarios are considered.

Results are presented in Table 6.3 for the 2SLS, Bayesian, adjusted Bayesian and LIML

methods across 1000 simulations. Although the reduced number of simulations means that

the MCSE for the median estimates are around 0.005–0.020 (depending on the strength

of the instrument) and for the coverage are 0.007, the pattern of results is very similar to

that in the equal strength instrument case considered previously. The adjusted Bayesian

estimates are consistent with zero median bias for E(F ) ≥ 7.6, and the coverage of the

adjusted Bayesian method is close to the nominal level throughout. This is compared to
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6.3 Continuous outcomes and linear models

Posterior mean from Posterior median from

Method: 2SLS adjusted Bayesian model (6.2) adjusted Bayesian model (6.2)

α1 Mean F Mean Median Mean Median Mean Median

a) Null causal effect (β1 = 0), moderate positive confounding

0.2 2.0 0.4138 0.4598 0.4246 0.4520 0.4753 0.4826

0.3 3.2 0.1824 0.2555 0.0755 0.1324 0.1707 0.2067

0.4 5.1 0.1023 0.1589 -0.0410 0.0323 0.0573 0.1049

0.5 7.2 0.0596 0.1031 -0.0539 0.0072 0.0165 0.0609

0.6 10.2 0.0375 0.0695 -0.0409 0.0007 0.0056 0.0371

b) Null causal effect (β1 = 0), strong positive confounding

0.2 2.7 0.8336 0.9098 0.8189 0.8601 0.9223 0.9212

0.3 4.6 0.3726 0.5223 0.1581 0.2688 0.3484 0.4140

0.4 7.5 0.1901 0.3132 -0.1023 0.0463 0.0970 0.1965

0.5 11.2 0.1253 0.2154 -0.1046 0.0297 0.0371 0.1331

0.6 15.7 0.0722 0.1390 -0.0752 -0.0093 0.0146 0.0687

c) Positive causal effect (β1 = 1), moderate positive confounding

0.2 2.0 1.4111 1.4637 1.4245 1.4500 1.4732 1.4810

0.3 3.3 1.1920 1.2513 1.0864 1.1420 1.1814 1.2130

0.4 5.1 1.0914 1.1511 0.9458 1.0265 1.0455 1.1010

0.5 7.3 1.0607 1.1089 0.9456 1.0100 1.0169 1.0630

0.6 10.2 1.0425 1.0752 0.9666 1.0040 1.0122 1.0415

d) Positive causal effect (β1 = 1), strong negative confounding

0.2 2.0 0.1489 0.0718 0.1626 0.1311 0.0572 0.0650

0.3 3.3 0.6397 0.4957 0.8781 0.7558 0.6790 0.6059

0.4 4.9 0.8074 0.6962 1.1115 0.9555 0.9111 0.8091

0.5 7.4 0.8948 0.8138 1.1192 1.0190 0.9771 0.9068

0.6 10.2 0.9226 0.8549 1.0749 0.9945 0.9846 0.9177

Table 6.2: Simulations for continuous outcome – Mean and median estimates of β1 = 0

or 1 for 2SLS, posterior mean and posterior median of adjusted Bayesian method across

10000 simulations for various scenarios and strengths of instrument
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6.3 Continuous outcomes and linear models

the 2SLS method, which still shows signs of non-zero median bias even with E(F ) = 27.5,

and to each of the other methods, which display incorrect coverage for weak instruments

with E(F ) = 4.0.

α1 Mean F 2SLS Bayesian Adjusted Bayesian LIML

a) Null causal effect (β1 = 0), moderate positive confounding

0.1 4.0 0.192 (0.878) 0.212 (0.944) 0.060 (0.951) -0.015 (0.927)

0.15 7.6 0.098 (0.904) 0.108 (0.937) -0.002 (0.941) -0.012 (0.931)

0.2 12.8 0.053 (0.926) 0.057 (0.938) -0.007 (0.942) -0.009 (0.939)

0.25 19.4 0.042 (0.949) 0.042 (0.964) 0.003 (0.960) 0.004 (0.958)

0.3 27.5 0.017 (0.951) 0.018 (0.959) -0.013 (0.960) -0.010 (0.960)

b) Null causal effect (β1 = 0), strong positive confounding

0.1 4.0 0.474 (0.845) 0.520 (0.926) 0.198 (0.939) 0.099 (0.900)

0.15 7.6 0.205 (0.912) 0.214 (0.951) -0.014 (0.949) -0.022 (0.948)

0.2 12.8 0.114 (0.905) 0.123 (0.944) 0.020 (0.948) 0.014 (0.935)

0.25 19.4 0.049 (0.939) 0.051 (0.950) -0.018 (0.953) -0.016 (0.949)

0.3 27.5 0.036 (0.940) 0.037 (0.953) -0.010 (0.955) -0.009 (0.949)

c) Positive causal effect (β1 = 1), moderate positive confounding

0.1 4.0 1.188 (0.885) 1.206 (1.000) 1.034 (0.959) 0.991 (0.932)

0.15 7.6 1.068 (0.922) 1.086 (0.997) 0.970 (0.956) 0.966 (0.952)

0.2 12.8 1.059 (0.918) 1.072 (1.000) 1.007 (0.948) 1.007 (0.939)

0.25 19.4 1.040 (0.938) 1.050 (0.999) 1.004 (0.950) 1.005 (0.956)

0.3 27.5 1.022 (0.939) 1.034 (1.000) 0.993 (0.949) 0.994 (0.947)

d) Positive causal effect (β1 = 1), strong negative confounding

0.1 4.0 0.638 (0.876) 0.712 (0.923) 0.853 (0.949) 0.998 (0.923)

0.15 7.6 0.805 (0.922) 0.912 (0.928) 0.983 (0.951) 1.003 (0.946)

0.2 12.8 0.854 (0.917) 0.923 (0.907) 0.964 (0.937) 0.973 (0.936)

0.25 19.4 0.925 (0.932) 0.972 (0.916) 0.997 (0.947) 0.998 (0.945)

0.3 27.5 0.952 (0.946) 0.981 (0.921) 0.998 (0.957) 0.996 (0.953)

Table 6.3: Simulations for continuous outcome with unequal strength instruments – Me-

dian estimate of β1 = 0 or 1 (coverage probability of 95% confidence interval) for 2SLS,

LIML and Bayesian methods across 1000 simulations for various scenarios and strengths

of instrument

We conclude from this limited simulation exercise that the results and conclusions

of this section are likely to apply equally in situations where the instruments used have

different strength, and where they have the same strength.
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6.3 Continuous outcomes and linear models

6.3.7 Summary

We conclude that modelling the correlation between the risk factor and outcome is neces-

sary in a Bayesian model in cases where there is a true causal effect or in any model where

the instrument is weak. Compared with a 2SLS approach, the adjusted Bayesian method

gives an improvement in coverage properties, and a marked reduction in bias for all but

the weakest instruments.
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6.4 Binary outcomes and logistic models

6.4 Binary outcomes and logistic models

We firstly recall the individual and population log odds ratios from Chapter 4. These are

typically different quantities. We list IV methods to estimate causal effects with binary

outcomes, showing how they are analogous to methods for continuous outcomes, and then

present simulations with binary outcomes to investigate bias and coverage properties in

these methods.

6.4.1 Collapsibility

A measure of association is collapsible over a variable if it is constant across the strata of

the variable, and if this constant value equals the value obtained from the marginal analyses

(110). In a logistic model, the odds ratio is non-collapsible, as it differs depending on the

distribution of confounders (33). As defined in Chapter 4, the individual log odds ratio

(ILOR) represents the difference in log-odds when the risk factor X = x is increased by

one to x + 1 conditional on all other covariates (V = v). This is a constant function of

x and v in a logistic-linear model, and so the dependence on these variables is dropped.

The population log odds ratio (PLOR) represents the difference in log-odds for an unit

increase across the distribution of X marginal in all other variables (V ):

ILOR = log(odds(Y (x+ 1, v)))− log(odds(Y (x, v))) (6.6)

PLOR = log(odds(Y (X + 1, V )))− log(odds(Y (X,V ))) (6.7)

where odds(Y ) = P(Y=1)
P(Y=0)

and Y (x, v) is Y (x, v) = Y |(X = x, V = v) is the outcome

random variable with phenotype level x and covariate level v. The probabilities in the

definition of the PLOR are taken across the joint distribution of X and V .

In a logistic risk model linear in X and V , the ILOR can be estimated by logistic

regression of Y on X and V . The PLOR cannot be estimated without knowledge of

the distribution of X or V , even if V is not a confounder in the X-Y association. We

calculate the PLOR here by numerical integration using the adapt package in R (193) as

per equation 4.10. Additionally, we refer to the confounded ‘observational’ association,

calculated by logistic regression of Y on X ignoring V . This will be biased compared

to the ILOR due to confounding, with direction of bias depending on the Y -V and X-V

associations.
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6.4.2 Methods

a) Two-stage: The analogue of 2SLS with binary outcomes is a two-stage estimator

where the second stage (X-Y regression) uses logistic regression. The standard error is

taken from the logistic regression with no correction. This will be underestimated, as the

uncertainty in the first stage regression is not acknowledged.

b) Ratio: Similarly, with a single instrument, a ratio estimator with binary outcomes

can be calculated using logistic regression in the G-Y regression (54; 173). Again, this

coincides with the two-stage estimator. However, such regression methods do not yield

consistent estimators of the ILOR and have been called “forbidden regressions” (118; 129).

This is because the non-linear model does not guarantee that the residuals from the second-

stage regression are uncorrelated with the instruments. As we have seen in Chapter 4,

this leads to population-based causal estimates which are marginal with respect to the

covariates for Y .

c) Adjusted two-stage: The adjusted two-stage approach uses the estimated residu-

als from the first stage (G-X) regression in the second stage (X-Y ) regression, as they are

unbiased estimates of the covariates for X, some of which will be related to Y (94). Includ-

ing these residuals in the second stage regression is an attempt to adjust for unmeasured

covariates in estimating the ILOR. This is known as a control function approach (131).

We note that this adjustment is not relevant in the linear case, as the first-stage fitted

values and residuals are uncorrelated, meaning that the second-stage regression coefficient

for X would not change if the orthogonal first-stage residuals were added to the regression

model.

d) Maximum likelihood: By jointly modelling the risk factor and outcome distri-

butions, a maximum likelihood estimate of the causal effect can be calculated. We model

the risk factor as normally distributed in a linear regression on the number of genetic

variants, and the outcome as a Bernoulli random variable in a logistic model on the mean

risk factor.

xi ∼ N(X̄i, σ
2
x) (6.8)

yi ∼ Bernoulli(πi)

x̄i = α0 +
K∑
k=1

αkgik

logit(πi) = β0 + β1 x̄i
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6.4 Binary outcomes and logistic models

The joint likelihood ℓ is given by:

ℓ =
∏

i=1,...,N

(
πyi
i (1− πi)

1−yi
1√
2πσx

{exp(− 1

2σ
(xi − x̄i)

2)}
)

(6.9)

As maximization is performed over the joint model, this is a full information maximum

likelihood (FIML) approach. The optim command in R can be used to perform maximiza-

tion of the log-likelihood. Although results using the FIML method were not considered

in this dissertation, they were added to the paper produced from work in this chapter,

which can be found in Appendix D.

e) Bayesian: In the Bayesian approach with binary outcomes (Section 5.5), we assume

the probability of an event (πi) for each individual i is associated with the mean risk factor

(ξi) in a logistic model (140; 141). The outcome Yi is modelled as a Bernoulli random

variable:

Xi ∼ N(ξi, σ
2
x) (6.10)

Yi ∼ Bernoulli(πi)

ξi = α0 +
K∑
k=1

αkgik

ηi = logit(πi) = β0 + β1 ξi

f) Adjusted Bayesian: Similarly to the adjusted two-stage model, we can adjust for

the underlying first stage residuals in a Bayesian model.

Yi|Xi = xi ∼ Bernoulli(πi) (6.11)

ηi = logit(πi) = β0 + β1 ξi + δ(xi − ξi)

We note that the coefficient δ for the residual association is analogous to the correlation

parameter ρ in the continuous model (6.3), both algebraically as a coefficient for the first-

stage residuals, and conceptually as a way of adjusting for unmeasured covariates. As in

the continuous case, uncertainty in both the G-X and G-Y associations feeds back into

the model through the joint distribution of the variables.

6.4.3 Simulations for binary outcomes

In order to investigate the bias associated with different levels of confounding for different

strengths of instrument, we consider a model of confounded association with three in-

struments. Data were simulated from model (6.12), a binary outcome analogue of model

143



6.4 Binary outcomes and logistic models

(6.4):

xi = α11g1i + α12g2i + α13g3i + α2ui + ϵi (6.12)

ηi = logit(πi) = β0 + β1xi + β2ui

yi ∼ Bernoulli(πi)

ϵi ∼ N(0, σ2
x);ui ∼ N(0, 1) independently

The continuous outcome ηi is converted to a binary outcome by drawing Bernoulli

random variables with probability of event πi = expit(ηi), where expit is the inverse of

the logit function. The three instruments were thought of as uncorrelated SNPs in Hardy-

Weinberg equilibrium with minor allele frequencies of 1
3
, 1

3
and 1

5
, and the sample size

was set to 2025 (= 34 × 52). We set β0 = 0, giving close to 50% prevalence of disease

and took two sets of values of (α11, α12, α13) = (0.5, 0.4, 0.6), (0.10, 0.08, 0.12) with σ2
x = 1

corresponding to strong and weak instrument scenarios, with mean F statistics of 100

and 5 respectively in the regression of phenotype on the instruments. Parameter values

were chosen to correspond to a case-control study with approximately equal number of

cases and controls, with large enough sample size to give reasonable precision of the causal

effect in the simulation. The genetic association parameters corresponding to the strong

instruments were chosen to examine the effect of non-collapsibility in the absence of weak

instrument bias; the weak instrument parameters were chosen to correspond roughly to

the parameters in a recent study of the causal effect of C-reactive protein on coronary

heart disease (64).

We consider two values for β1 of 0.4 and −0.8 (corresponding to odds ratio 1.49 and

0.45) and four values for β2 of 0.0, 0.2, −0.6 and 1.0 corresponding to different directions

and levels of confounding, with α2 = 1 . We perform 100 000 simulations for each set of

parameter values (results using Bayesian methods from 1000 simulations).

6.4.4 Results

Table 6.4 gives the median estimate and coverage for β1 = 0.4 or −0.8 for the two-stage and

Bayesian methods both adjusted and unadjusted for the first-stage residuals, together with

the median observational estimate and population log odds ratio (PLOR). Monte Carlo

standard error across 1000 simulations is approximately 0.002 with the strong instrument

and 0.02 with the weak instrument. The individual log odds ratio (ILOR) is equal to

β1 throughout. Coverage for the PLOR is also given for the unadjusted two-stage and

Bayesian methods. The MCSE based on 1000 simulations for the coverage is 0.007, and
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for the median estimate is about 0.012 with the weak instrument and 0.002 with the strong

instrument.

With the stronger instrument, the two-stage and Bayesian estimators are attenuated

compared to the ILOR, even when there is no confounding (β2 = 0). The median estimates

from both methods approximate the PLOR throughout. The estimates from the adjusted

approaches are much closer to the ILOR, but there is still some attenuation especially

when the confounding is strong.

By comparing the results with the weak and strong instruments, we see that there is

an effect of weak instrument bias in the two-stage methods depending on the direction

of confounding. The weak instrument bias generally appears to be less in the adjusted

Bayesian method than in the adjusted two-stage method, although it is difficult to make

a firm conclusion because of Monte Carlo standard error due to the small number of

simulations.

Although with the weak instrument, coverage is fairly close to the nominal level, this

may be due to the lack of precision in the causal estimates rather than because the inference

is good. With the strong instrument, the unadjusted estimators have poor coverage of β1

but reasonable coverage of the PLOR. The adjusted estimators have coverage of the ILOR

close to 95% throughout, except with strong confounding. Except for 1 of the 16 sets

of parameter values, the adjusted Bayesian method has coverage within two standard

deviations (1.4%) of 95%.

6.4.5 Simulations for semi-parametric estimators

Two other approaches to IV estimation are the Generalized Method of Moments (GMM)

and Generalized Structural Mean Models (GSMM). GMM is designed as a more flexible

form of 2SLS to deal with problems of heteroscedasticity of error distributions and non-

linearity in the two-stage structural equations (126; 142). GSMM were designed in the

context of randomized trials with incomplete compliance (145; 146). In the IV setting,

the potential outcome Y (x) is defined as the outcome which would have been observed if

the risk factor X were set to x. A structural form is assumed for Y (X)−Y (0)|X = x and

the causal parameter is found using “G-estimation” (149; 150), using the independence of

the ‘exposure-free outcome’ Y (0)|X = x and the IV. Both of these methods are described

as semi-parametric, with a parametric form assumed for the structural equations but no

assumption on the error distribution. With a normal error distribution, the logistic GSMM

is equivalent to an adjusted two-stage approach (153). With retrospective data, the risk

factor for the cases can be omitted or down-weighted in a GSMM approach (208).
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In order to learn more about the behaviour of these semi-parametric estimators, we

repeat the simulation of Section 4.4.3 which uses Model (6.13) below. This is equivalent

to Model (6.12), expect that there is only one IV.

xi = α1gi + α2ui + ϵi (6.13)

logit(π1i) = β0 + β1xi + β2ui

y1i ∼ Binomial(1, π1i)

ui ∼ N(0, 1), ϵi ∼ N(0, σ2
x) independently

For computational reasons, it was not practical to run the GMM and GSMM algorithms

for 2 500 000 simulations as in Chapter 4. Hence, we changed some of the parameters

from the simulation in Section 4.4.3 to give more precise estimation of the causal effect

at the cost of making the generating model slightly less realistic. We set α1 = 0.5, α2 =

1, σ2
x = 0.12, corresponding to a slightly stronger instrument with a mean F statistic of 60

on a reduced sample size of 1000. We set β1 = −1, corresponding to a greater number of

events. We retained the same range of three values for β1 of 0.4, −0.8 and 1.2 and seven

values for β2 of −1.0, −0.6, −0.2, 0, 0.2, 0.6, 1.0. The 100 000 simulations below of the

GMM and GSMM methods took 17 CPU-days on a 2.2GHz processor.

We calculated the GMM and GSMM estimators “by hand” using the optim command

in R for computational speed. Similar results were obtained using a number of user-written

packages including the ivpois and gmm commands in Stata, and the gmm package in R.

We calculated the GSMM estimator following the work of Vansteelandt and Goetghebeur

(152) in two ways: firstly, with a logistic associational model of outcome on phenotype, in-

strument and the interaction term (as recommended by the original authors), and secondly

omitting the interaction term in the associational model. We refer to these variations as

GSMM-1 and GSMM-2.

The results in Table 6.5 show that the two-stage method again gives attenuated results

compared to β1, but similar to the PLOR. The adjusted two-stage and GSMM (especially

GSMM-2) methods give similar results throughout, as has been theoretically shown when

the distribution of X is normal (208). In this example, neither the adjusted two-stage nor

the GSMM estimators are far from the ILOR. This is because the majority of the variation

in X is due to U and not the error term, and so the residual in the adjusted two-stage

method R = X − X̂ is close to the true residual term in the second-stage regression. The

GMM estimate is generally biased in the opposite direction to the direction of the bias of

the observational estimate due to confounding. The bias of the GMM estimate is large,

especially with large values of the true causal effect (β1 = 1.2).
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Additionally, we calculated the GMM and GSMM results for 1000 simulations of

Model (6.12) from Section 6.4.3 above. We here use the gmm package in R to calcu-

late GMM and GSMM estimates (170). Results, together with the PLOR and those from

the adjusted two-stage method are given in Table 6.6. As before, Monte Carlo standard

error across 1000 simulations is approximately 0.002 with the strong instrument and 0.02

with the weak instrument.

In Table 6.6, much of the variation in X is due to the error term ϵi, and the adjusted

two-stage and GSMM estimators are attenuated compared to the ILOR. In the E(F ) = 5

case, the GSMM often failed to converge, leading to discrepancies between the adjusted

two-stage and GSMM estimates.

We conclude that the median values of the GSMM estimates are close to the ILOR

with no confounding, but attenuate especially when confounding is large. The median

values of the GMM estimate were close to the ILOR with no confounding, but biased for

the ILOR when confounding is present. Both estimators display problems of convergence,

especially when the instrument is weak.

6.4.6 Summary

In conclusion, these simulations for binary outcomes show the effect of both non-collapsibility

and weak instrument bias. Although all of the estimates give some bias in estimation of

a causal effect, the results suggest that the two-stage and Bayesian methods estimate

the PLOR, and that adjusting for the first-stage residuals in either approach gives better

estimation of the ILOR. There is nothing to choose between the classical and Bayesian ad-

justed estimators with a strong instrument, but the adjusted Bayesian approach generally

shows less bias due to weak instruments.

Having discussed estimation of the ILOR, we recall from Chapter 4 that adjusting

for the first-stage residual in either a two-stage or Bayesian analysis only adjusts for the

variation in the phenotype not explained by the IV. While estimation of the ILOR is a

noble goal, when the covariates for the outcome are unknown, this is not possible. In

general, it is not clear what effect is being estimated in an adjusted analysis. Hence,

while the binary outcome adjusted methods are of theoretical interest, the conclusion

from Chapter 4 that their use in practice should not be recommended still holds.
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6.4 Binary outcomes and logistic models

β2 = −1.0 β2 = −0.6 β2 = −0.2 β2 = 0 β2 = 0.2 β2 = 0.6 β2 = 1.0

β
1
=

0
.4

PLOR 0.3708 0.3955 0.3955 0.3857 0.3708 0.3333 0.2945

Two-stage method 0.3744 0.3981 0.3977 0.3886 0.3726 0.3358 0.2973

Adjusted two-stage 0.4013 0.4016 0.4015 0.4018 0.3996 0.4003 0.4008

GSMM-1 0.4018 0.4023 0.4021 0.4023 0.4005 0.3998 0.4017

GSMM-2 0.4017 0.4019 0.4014 0.4018 0.3998 0.4003 0.4011

GMM 0.3858 0.4117 0.4113 0.4013 0.3837 0.3444 0.3034

β
1
=

−
0.
8

PLOR -0.5366 -0.6098 -0.6873 -0.7233 -0.7538 -0.7903 -0.7903

Two-stage method -0.5285 -0.6008 -0.6793 -0.7164 -0.7509 -0.7938 -0.7930

Adjusted two-stage -0.8002 -0.8025 -0.8015 -0.8008 -0.8020 -0.8006 -0.7990

GSMM-1 -0.8019 -0.8042 -0.8015 -0.8030 -0.8031 -0.8019 -0.7999

GSMM-2 -0.8008 -0.8026 -0.8013 -0.8008 -0.8020 -0.8005 -0.7989

GMM -0.5633 -0.6510 -0.7506 -0.7996 -0.8458 -0.9042 -0.9035

β
1
=

1
.2

PLOR 1.1600 1.0873 0.9791 0.9226 0.8678 0.7676 0.6821

Two-stage method 1.1863 1.1127 1.0002 0.9412 0.8846 0.7811 0.6899

Adjusted two-stage 1.1991 1.2020 1.2024 1.2020 1.2035 1.2045 1.1990

GSMM-1 1.2026 1.2027 1.2049 1.2035 1.2044 1.2058 1.2001

GSMM-2 1.2001 1.2019 1.2023 1.2019 1.2036 1.2046 1.1989

GMM 1.8202 1.5983 1.3235 1.1997 1.0931 0.9185 0.7806

Table 6.5: Simulation for semi-parametric estimators — Population log odds ratio (PLOR) compared

to two-stage, adjusted two-stage, generalized method of moments (GMM) and two generalized struc-

tural mean model (GSMM) methods from Model (6.13) of confounded association. Median estimates

across 100 000 simulations
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PLOR Adjusted two-stage GMM GSMM-1 GSMM-2

Strong instrument (E(F ) = 100)

β
1
=

0.
4 β2 = 0 0.370 0.400 0.400 (0.952) 0.417 (0.926) 0.415 (0.937)

β2 = 0.2 0.357 0.400 0.385 (0.954) 0.413 (0.934) 0.407 (0.934)

β2 = −0.6 0.379 0.386 0.414 (0.960) 0.398 (0.944) 0.391 (0.947)

β2 = 1.0 0.287 0.361 0.297 (0.788) 0.369 (0.949) 0.365 (0.951)

β
1
=

−
0
.8 β2 = 0 -0.635 -0.805 -0.815 (0.963) -0.792 (0.931) -0.794 (0.930)

β2 = 0.2 -0.659 -0.792 -0.842 (0.981) -0.786 (0.921) -0.786 (0.908)

β2 = −0.6 -0.548 -0.781 -0.657 (0.745) -0.763 (0.935) -0.771 (0.945)

β2 = 1.0 -0.690 -0.724 -0.911 (0.988) -0.721 (0.831) -0.721 (0.824)

Weak instrument (E(F ) = 5)

β
1
=

0.
4 β2 = 0 0.370 0.423 0.422 (0.997) 0.424 (0.979) 0.422 (0.985)

β2 = 0.2 0.357 0.421 0.416 (0.998) 0.368 (0.955) 0.383 (0.970)

β2 = −0.6 0.379 0.330 0.352 (0.989) 0.413 (0.950) 0.378 (0.956)

β2 = 1.0 0.287 0.433 0.367 (0.999) 0.322 (0.948) 0.347 (0.958)

β
1
=

−
0
.8 β2 = 0 -0.635 -0.783 -0.784 (0.960) -0.640 (0.914) -0.651 (0.916)

β2 = 0.2 -0.659 -0.801 -0.855 (0.960) -0.679 (0.973) -0.687 (0.961)

β2 = −0.6 -0.548 -0.808 -0.692 (0.945) -0.599 (0.959) -0.682 (0.977)

β2 = 1.0 -0.690 -0.628 -0.751 (0.945) -0.620 (0.979) -0.601 (0.963)

Table 6.6: Simulations with binary outcomes – Population log odds ratio (PLOR) and

median estimate from adjusted two-stage method compared to median estimate (coverage

probability of 95% confidence interval for β1) from IV analyses of Model (6.12) using gen-

eralized method of moments (GMM) and two generalized structural mean model (GSMM)

methods across 1000 simulations in strong and weak instrument scenarios
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6.5 Discussion

In this chapter, we observed how weak instrument bias gives rise to biased causal esti-

mates in instrumental variable analyses. We introduced a Bayesian method to explicitly

model the correlation between risk factor and outcome, which reduced median bias from

weak instruments to close to zero when the mean F statistic is around 10 in a simulation

exercise. We saw how this adjustment is analogous to a control variable approach with

binary outcomes, which targets a conditional odds ratio in a logistic model as opposed to

unadjusted methods, which target the population odds ratio.

6.5.1 Comparison with previous work

This chapter builds on previous work, which has shown that the likelihood-based LIML

method is median unbiased in the continuous outcome case. The adjusted Bayesian ap-

proach, also likelihood-based, is also median unbiased for moderately strong instruments,

and does not suffer from the problems of underestimated confidence intervals given by

LIML with weak instruments. Although the adjusted Bayesian estimate is not median

unbiased for very weak instruments, this problem is at least partially due to the shape

of the posterior distribution, which cannot always be summarized by a single value. We

have seen how failure to take into account the correlation in a Bayesian approach leads to

weak instrument bias and incorrect coverage.

In the binary case, the adjusted two-stage estimator has been shown to estimate a

conditional odds ratio which more closely estimates the individual odds ratio than the

unadjusted two-stage estimator, as seen in Chapter 4 (94). We build on this and the

Bayesian estimator of Chapter 5 by introducing an adjusted Bayesian approach, which

adjusts for the first-stage residuals in a Bayesian framework. With a strong instrument,

the adjusted two-stage and adjusted Bayesian approach give similar answers. With a weak

instrument, the adjusted Bayesian approach seems to be less biased than the adjusted two-

stage approach.

Previous work on improving coverage for weak instruments have proposed methods

based on the inversion of tests which are robust to weak instruments (92; 209; 210) or per-

mutation tests (122). We provide an alternative method which simultaneously estimates

the causal parameter of interest and provides a confidence interval, uses available statis-

tical software, and appears to generalize more easily, for example to the case of multiple

phenotypes.
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6.5.2 Retrospective data

In Mendelian randomization, when retrospective data have been measured, it is usual to

make inference on the G-X association using non-diseased individuals, such as a control

population in a case-control setting (89). This makes the assumption that the distribution

of X in the controls is similar to that of the general population, which is true for a rare

disease (208) and is necessary to prevent bias of the causal estimate due to reverse causation

and ascertainment of case-control status (33). In the two-stage method, fitted values

for the diseased individuals can be estimated from the G-X model on the non-diseased

individuals only. However, residual values cannot be used as there is no pre-event exposure

measurement, so the adjusted two-stage approach is not possible. In a Bayesian MCMC

setting, the adjusted approach is possible even with retrospective data. An exposure value

can be imputed for diseased individuals from the distribution of X in the model fitted on

the healthy individuals only. At each iteration in the MCMC procedure, a value of xi is

drawn from this distribution, which is used to form the residual (xi − ξi). Feedback from

these imputed values to the parameters of genetic association (αk) should be cut (211), as

otherwise the imputation process will affect the parameters in the G-X association.

6.5.3 Comparison with semi-parametric methods

As all of the simulations considered in this chapter have used a correctly specified model,

the advantages of the semi-parametric approach of the GMM and GSMM estimators are

not apparent. What is clear however is that, in the simple setting considered, the GMM

estimator suffers from bias. With a normally distributed phenotype, the GSMM estimate

can be approximated by the adjusted two-stage estimate, and so suffers from the same

problems of attenuation from the ILOR when the variation in X is not correlated with

variation in Y .

Although the Bayesian method introduced is parametric, the posterior distribution

enables hypothesis testing without the need for asymptotic approximation, giving accu-

rate coverage even with weak instruments. This contrasts with asymptotic assumptions

of normality for the causal estimate in each of the other methods, which can give incor-

rect coverage especially with weak instruments. Although the assumptions necessary to

estimate the model are stronger, the assumptions for accurate inference are less strong.

It is not generally the case that either semi-parametric or parametric models should be

preferred in practice. In this chapter, and in this dissertation as a whole, we only consider

correctly specified models. This means that the robustness advantages of semi-parametric
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models will not be evident from the results shown. The main reason for excluding sen-

sitivity analyses with misspecified models from this dissertation is the multitude of dif-

ferent simulation results which could be presented by adjusting different aspects of the

data-generating model. While such sensitivity analyses would be interesting to consider,

conclusions about the methods based on these simulations would be difficult to generalize

and limited in relevance to the specific departures from the model considered.

6.5.4 Key points from chapter

• Explicitly modelling the correlation between phenotype and a continuous outcome

within genetic subgroups is preferable in a Bayesian model, and results in an esti-

mator which is less affected by weak instrument bias than a two-stage method.

• Adjusting for the first-stage residuals in a binary outcome analysis is analogous to

adjusting for this correlation, and results in estimates closer to the individual log

odds ratio, especially when the majority of variation in the phenotype is correlated

with variation in the outcome.

• However, this adjustment gives an estimate which is marginal in some covariates

but conditional in others, and so does not have an obvious interpretation. A logistic

generalized structural mean model targets this same estimand.

• Uncertainty in the causal parameter is accurately represented in the Bayesian method

by the shape of the posterior distribution, resulting in better inference and coverage

properties compared with classical two-stage methods.

Acknowledgement

We thank John Thompson (Leicester) for helpful discussions that led to the proposal of

Bayesian model (6.2).

Appendix: WinBUGS code

WinBUGS code for adjusted Bayesian model with continuous out-

come

model {

beta ~ dnorm(0, 0.000001)
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beta0 ~ dnorm(0, 0.000001)

xtau <- pow(xsd, -2)

xsd ~ dunif(0, 20)

ytau <- pow(ysd, -2)

ysd ~ dunif(0, 20)

rho ~ dunif(-1, 1)

tauy <- ytau/(1-pow(rho,2))

# tauy is the precision of y conditional on x

alpha0 ~ dnorm(0, 0.000001)

for(k in 1:K) {

alpha[k] ~ dnorm(0, 0.000001)

}

for (i in 1:N) {

xi[i] <- alpha0 + inprod(alpha[1:K], g[i,1:K])

x[i] ~ dnorm(xi[i], xtau)

eta[i] <- beta0 + beta * xi[i]

muy[i] <- eta[i] + sqrt(xtau/ytau)*rho*(x[i]-xi[i])

# muy[i] is the mean of y[i] conditional on x[i]

y[i] ~ dnorm(muy[i], tauy)

} } }

WinBUGS code for adjusted Bayesian model with binary out-

come and case-control data

model {

beta ~ dnorm(0, 0.000001)

beta0 ~ dnorm(0, 0.000001)

xtau <- pow(xsd, -2)

xsd ~ dunif(0, 20)

gamma ~ dnorm(0, 0.000001)

alpha0 ~ dnorm(0, 0.000001)

for(k in 1:K) {

alpha[k] ~ dnorm(0, 0.000001)

}

for (i in 1:N) {

xi[i] <- alpha0 + inprod(alpha[1:K], g[i,1:K])

x[i] ~ dnorm(xi[i], xtau)
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6.5 Discussion

logit(pi[i]) <- beta0 + beta * xi[i] + gamma * xres[i]

y[i] ~ dbern(pi[i])

}

for (i in 1:C) {

xres[i] <- cut(x[i]-xi[i])

} # C = number of cases, which are placed first in the data file

for (i in (C+1):N) {

xres[i] <- x[i]-xi[i]

} } }
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Chapter 7

Missing data methods with multiple

instruments

7.1 Introduction

One difficulty with applied Mendelian randomization studies is that, although the IV

estimate is consistent (and so asymptotically unbiased) for the causal association, its

variance is typically much larger than the variance from a standard analysis (ie. regression

of Y on X adjusted for known confounders) (40). This is because the variation in the

phenotype explained by the instrumental variable is usually small (100; 104). To test

some causal associations, sample sizes of several thousands are needed (47).

A possible solution is to use multiple IVs. Where there are several genetic variants

which can be used as IVs and each explains independent variation in the phenotype, the IV

estimate using all of the instruments will have lower variance than the IV estimate using

a subset of the IVs (44; 212). However, a problem arising from including multiple IVs in

an analysis is missing data (45). Sporadically missing genetic data typically arise due to

difficulty in interpreting the output of genotyping platforms. If the output is not clear, a

“missing” result is recorded. Hence, although efficiency will be gained from using multiple

instruments, this may be offset in a complete-case analysis due to more participants with

missing data being omitted.

Rather than omitting participants, we seek to use the structure of the genetic data, in

particular the correlation between genetic markers known as linkage disequilibrium (LD),

to impute missing data and include all participants in an analysis, acknowledging uncer-

tainty in the imputation. In this chapter, we introduce four methods for imputing missing

data under the missing at random (MAR) assumption (i.e. the pattern of missingness in

the genotype data does not depend on the values of the missing genetic data but only on
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data that are observed) (180). We use the Bayesian method introduced in Chapter 5, and

discuss possible modifications if data are missing not at random (MNAR, i.e. missingness

depends also on the unobserved missing values). We apply these methods in a simulation

study and to real data from the British Women’s Heart and Health Study on the associa-

tion between C-reactive protein (CRP) and each of fibrinogen and coronary heart disease

(CHD). The observational associations between CRP and fibrinogen, and CRP and CHD

are both positive, but attenuate on adjustment for known confounders. It is thought that

the true causal associations are null (64; 175).

While missing data methods have been proposed for longitudinal analysis of non-

compliance in a randomized trial (213), these are limited to a single IV and a continuous

outcome. Neither a general purpose method for imputing missing data in an IV analysis,

nor specific methods for Mendelian randomization data, are known to exist.

7.2 Methods for incorporating missing data

We conduct our analyses in a Bayesian framework as this lends itself naturally to data

imputation. We use the complete-case Bayesian methods introduced in Chapters 5 and 6,

and introduce four methods for imputing genetic data under the MAR assumption which

can be incorporated into the Bayesian model to include subjects with missing genetic data.

We assume throughout that all IVs are single nucleotide polymorphisms (SNPs) with

two possible alleles. We code each SNP as 0, 1 or 2, representing the number of variant

alleles. Individuals with 1 variant allele on a SNP are heterozygotes; otherwise they are

homozygotes. A per-allele genetic model is presumed for each SNP; another model could

be used if considered more appropriate.

Genetic data may be missing for several reasons: an individual may fail to provide a

sample for analysis, consent may not be given for genetic testing, DNA extracted may be

of insufficient quality or quantity for analysis, or the reading from a genetic platform may

be difficult to interpret and hence a missing result may be recorded. In the first three

cases, no genetic data would be available for the individual, but they could be included in

the analysis. Although they would be informative about the distribution of the phenotype

and outcome, they would not generally contribute greatly to the estimation of a causal

effect. The focus of this work is on individuals who have missing data for only some SNPs,

as these would contribute most to the estimation of the causal effect.
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7.2.1 Bayesian model

With continuous outcomes, we use the adjusted Bayesian model (6.2) and with binary

outcomes, the unadjusted Bayesian model (6.10). In all binary outcome analyses, we only

make inference on the gene-phenotype association in individuals without prior history of

disease (33).

In each case, the causal parameter of interest is β1, the increase in mean outcome (or

log-odds of outcome) per unit increase in the phenotype. We use vague prior distributions

on all parameters: in our example these are normal priors with mean zero and variance

10002 for all regression parameters, uniform priors on [0, 20] for standard deviations, and

a uniform prior on [−1, 1] for the correlation ρ. We employ Markov chain Monte Carlo

(MCMC) sampling using WinBUGS (207) for all analyses, with at least 50000 iterations,

of which the first 1000 are discarded as ‘burn-in’. We assess convergence by running three

parallel chains with different starting values, examining the Gelman-Rubin plots (214).

Missingness in either phenotype or outcome is easily dealt with by the model, as in-

formation on ξ and η is gained from all other individuals with data on phenotype and

outcome. However, missingness in the IVs is less simple, as it is not clear what the under-

lying distribution of the genetic parameters is. We present four methods for addressing

missing genetic data below.

7.2.2 Multiple imputations method

We first impute the genetic data multiple times using a genetic software package (we used

Beagle (215; 216) in this chapter), and incorporate the imputations into the Bayesian

model using the WinBUGS dpick function (207) to choose one of the imputed datasets

at random in each MCMC iteration. Beagle imputes genetic data using a hidden Markov

model and empirical Bayes methods under a MAR assumption. The dpick function gives

a discrete uniform categorical random variable taking integer values such that feedback

from the rest of the model to this random variable is not permitted (211), so that the

imputed datasets are used equally often on average. We add to the Bayesian model:

m ∼ Discrete Uniform(1,M) (7.1)

ξi = α0 +
K∑
k=1

αk gikm

where gikm is the number of variant alleles of SNP k for individual i in imputed dataset

m,m = 1, . . . ,M . When M = ∞, this is equivalent to imputing from the posterior

distribution of the genotypes given by the genetic software package without feedback.
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This is a similar idea to classical multiple imputation, but implemented in a Bayesian

setting. In the examples below, we use M = 10 imputations.

7.2.3 SNP imputation method

Instead of using the multiple imputations approach, we can use the posterior probabilities

of genotypes given by the same software package for each SNP directly in the Bayesian

model. The output from Beagle gives us posterior probabilities pijk that SNP k for indi-

vidual i takes value j. We model the number of variant alleles of SNP k for individual i as

a categorical random variable taking values in {0, 1, 2}. We add to the Bayesian model:

gik ∼ Categorical(pi0k, pi1k, pi2k) (7.2)

A disadvantage of this method is that it does not account for known correlation between

SNPs when imputing multiple SNPs in the same individual. Additionally, in both the

multiple and SNP imputation methods, only the genetic data are used to impute missing

values. As the phenotype and outcome data contain information about the missing genetic

data values, they should also be used in the imputation model (217). However, if the

genetic markers are highly correlated and the genetic data do not explain much variation

in the phenotype, then we would not expect the bias caused by this omission to be large.

7.2.4 Multivariate latent variable method

In this method, we extended our Bayesian model to include the Bayesian model for impu-

tation of correlated SNPs proposed by Lunn et al. (218). Genetic material in humans is

arranged in two haplotypes, each consisting of combinations of alleles which are inherited

together. We use latent vectors ψ1i = (ψ1i1, . . . , ψ1iK) and ψ2i = (ψ2i1, . . . , ψ2iK) to model

each of the haplotypes for an individual i by a multivariate normal random variable with

one component corresponding to each SNP. If ψ1ik is positive, SNP k on the first hap-

lotype (numbered arbitrarily) has a variant allele; otherwise not. Hence the number of

variant alleles for SNP k is I(ψ1ik > 0) + I(ψ2ik > 0), where I(.) is an indicator function.

We use the WinBUGS function dgene.aux to model the number of variant alleles (218).

This function describes a discrete distribution on {0,1,2} taking two arguments. When

both arguments are negative, dgene.aux is 0 with probability 1; when the arguments have

opposite sign, dgene.aux is 1 with probability 1; when both are positive, dgene.aux is

2 with probability 1. The function is coded as a probability distribution rather than a

deterministic function for technical reasons: missing genetic data values are required to

be stochastic, rather than deterministic nodes. The latent variables are a convenient way
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of modeling correlations in discrete distributions with analogy to the underlying biological

structure of the problem.

ψ1i ∼ NK(µ,Σ) (7.3)

ψ2i ∼ NK(µ,Σ)

gik ∼ dgene.aux (ψ1ik, ψ2ik)

The parameters of the multivariate normal distribution are given vague priors. The prior

for the mean (µ) is multivariate independent normal with mean 0 and diagonal variance-

covariance matrix with 10 as each diagonal element. The prior for the variance-covariance

matrix (Σ) is inverse Wishart, where the scale matrix in the Wishart distribution is diag-

onal with 10 as each diagonal element.

7.2.5 Haplotype imputation method

If the variation in the genetic data can be summarized by a small number of haplotypes,

then instead of using an additive SNP-based model of genetic association, we can use an

additive haplotype-based model. If individual i has haplotypes h1i and h2i, we have:

ξi = γh1i
+ γh2i

(7.4)

There is no need of a constant term γ0, as each individual has exactly two haplotypes.

Often, when there is limited genetic variation, SNPs are chosen to tag haplotypes

and there is a one-to-one correspondence between SNPs and haplotypes. In this case, a

per-allele additive SNP-based model is equivalent to this additive haplotype model. When

there is uncertainty in haplotype assignment due to missing data, we use the available SNPs

to reduce the genetic variation in the data to a set of candidate haplotypes, and model

each unknown haplotype value by a categorical random variable with probabilities for each

haplotype estimated from the relative proportions of each of the possible haplotypes in

the dataset. This method is illustrated for a specific dataset below.

A disadvantage of this method is that it is difficult to write a general model which

could be used for arbitrary genetic data. A separate imputation model is needed for each

genotypic pattern of observed and missing data in the study population. This method is

not recommended when there is an uncertainty in haplotype assignment for individuals

with complete data, as the model may lose identifiability.
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7.2.6 Use of Beagle for genetic imputation

Out of the four methods given for incorporation of missing data, two of them are self-

contained methods for imputation (the latent variable and haplotype imputation meth-

ods), whereas the other two use an external program to impute the genetic variables (the

multiple imputations and SNP imputation methods). In the second case, the output from

the genetic imputation method is incorporated into a Mendelian randomization model,

while allowing for uncertainty in the output from the model. From a Bayesian point of

view, we use the posterior output from the genetic imputation model as a prior for the

genetic variables in the instrumental variable analysis. Where the genetic variables are

imputed with no uncertainty, either due to complete genetic information or linkage be-

tween genetic variants, this prior is equivalent to inclusion of the variables in the model

with no allowance for uncertainty, as in the methods of Chapters 5 and 6.

Several reviews on models and algorithms for imputation of genetic variables are avail-

able (for example, (219)). Although the focus of this dissertation is not the comparison of

different imputation software, we provide some details on how the algorithm used in the

Beagle program works, as this is the program used in this chapter.

The Beagle input comprises genetic markers and their respective positions. These

positions are used to form a “localized haplotype-cluster model” based on the biologi-

cal principle that markers which are physically closer are more likely to be correlated

than those which are physically distant. In this chapter, we do not specify the distances

between markers, and so the markers are considered to be equidistant. The localized

haplotype-cluster model is a hidden Markov model (HMM) where the states are diplotype

pairings. Phased haplotypes for each individual are drawn from this HMM conditional on

the observed genotype data. The haplotypes drawn are used to construct a new localized

haplotype-cluster model, and the procedure is repeated for 10 iterations. The most-likely

diplotype for each individual is outputted, and the probabilities of missing genotypes are

calculated from the model that is fitted at the final iteration (216). No other information

than the measured and missing genotype values are used in the imputation.

7.3 Simulation study

We perform a simulation study to assess the performance of the four imputation methods.
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7.3.1 Set-up

Three genetic variants (G1, G2, G3) are used as IVs. The data for each individual i =

1, . . . , N are generated from the model:

xi = α1g1i + α2g2i + α3g3i + ui + ϵxi (7.5)

yi = β1xi − 2ui + ϵyi

ui, ϵxi, ϵyi ∼ N(0, 1) independently (7.6)

where U is a confounder, and ϵx and ϵy are independent error terms. Missing data are

introduced by random draws Rk for SNP k for each individual, where Gk is observed if

Rk = 1, and missing if Rk = 0. The true causal effect was β1 = 1. Datasets of 1000

individuals were generated for a range of five realistic scenarios:

• Scenario 1 has P(R1 = 1) = P(R2 = 1) = 1,P(R3 = 1) = 0.8, so that only SNP

3 contains any missingness. SNPs 2 and 3 are taken to be in complete LD. Minor

allele frequencies (MAF) are all 0.4.

• Scenario 2 has correlated SNPs tagging four haplotypes with frequencies 0.4, 0.3, 0.2

and 0.1. R1, R2 and R3 are independent with P(Rj = 1|G1, G2, G3) = 0.93.

• Scenario 3 has the same missingness mechanism as Scenario 2 but SNPs are uncor-

related. MAFs are 0.4, 0.4 and 0.2.

• Scenario 4 has the same haplotypes as Scenario 2 but R1, R2 and R3 are independent

with P(Rj = 1|G1, G2, G3) = 0.98 if Gj = 0 or 2 (i.e. homozygous at SNP j), and

P(Rj = 1|G1, G2, G3) = 0.88 if Gj = 1 (i.e. heterozygous).

• Scenario 5 has the same missingness mechanism as Scenario 4 but same uncorrelated

SNPs as Scenario 3.

Parameters of genetic association (α1, α2, α3) were chosen as in Table 7.1 to give an

average F statistic of around 16–20 in Scenarios 2–5. The relation between the four

haplotypes and three SNPs in Scenarios 2 and 4 is given in Table 7.2. In each scenario,

the complete-case analysis contains on average around 20% fewer individuals than the

complete-data analysis due to missingness. Scenarios 1–3 follow the MCAR assumption,

while Scenarios 4 and 5 do not.

The simulation study was very computer-intensive. For each method, we performed

11 000 iterations of the MCMC algorithm to estimate the posterior distribution of the

causal effect. The first 1000 iterations were discarded as “burn-in”. Calculations were

162



7.3 Simulation study

performed on a multi-core computer with 2.20GHz central processing units (CPUs). For

the complete-data, complete-case and haplotype imputation methods, analysis of each

simulated dataset took 8-12 minutes. The multiple imputations method took 20-30 min-

utes, the latent variable method took 40-50 minutes, and the SNP imputation method

took 100-120 minutes. Analyses of 1000 simulated datasets were performed for each sce-

nario (100 for the SNP imputation method for computational reasons). Convergence was

assessed by examination of the posterior variance of the causal effect parameter. Results

for simulations with a high estimated posterior variance were discarded, the MCMC algo-

rithm was re-run with different initial parameter values, and convergence was checked by

examination of the trace plot and empirical posterior distribution. In total, the simulation

study took over 1 CPU-year of processing time.

We regard the mean of the posterior distribution as the ‘estimate’ of the parameter

of interest and the standard deviation of the posterior distribution as the ‘standard error

(SE)’. We used the 2.5th to the 97.5th percentile range as the ‘95% confidence interval’ to

estimate coverage.

α1 α2 α3 Expected F statistic

Scenario 1 0.5 0.6 0.8 55 1

Scenario 2 0.5 0.6 0.8 16

Scenario 3 0.2 0.3 0.4 20

Scenario 4 0.5 0.6 0.8 16

Scenario 5 0.2 0.3 0.4 20

Table 7.1: Parameters of genetic association used in simulation study and expected F

statistic from the regression of X on G (on 3 and 996 degrees of freedom) with complete

data

1G2 and G3 are collinear, so the relevant F statistic here is on 2 and 997 degrees of freedom

G1 G2 G3 Frequency

Haplotype 1 1 0 0 0.4

Haplotype 2 0 1 0 0.3

Haplotype 3 0 0 1 0.2

Haplotype 4 0 0 0 0.1

Table 7.2: Relation between haplotypes and SNPs in Scenarios 2 and 4 and frequency of

haplotypes
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Analysis Estimate Sample relative Coverage Mean width Per dataset

method of β1 efficiency of 95% CI of 95% CI relative

(MCSE) (MCSE) (MCSE) (MCSE) efficiency (MCSE)

S
ce
n
ar
io

1

Complete-data 1.012 (0.005) 1 0.961 (0.007) 0.628 (0.003) 1

Complete-case 1.019 (0.006) 0.788 (0.024) 0.960 (0.007) 0.713 (0.004) 0.791 (0.004)

Multiple imputations 1.013 (0.005) 1.000 (0.002) 0.961 (0.007) 0.627 (0.003) 1.003 (0.001)

SNP imputation 0.998 (0.016) 0.989 (0.008) 0.96 (0.02) 0.622 (0.009) 1.016 (0.005)

Latent variable 1.005 (0.005) 1.053 (0.004) 0.961 (0.007) 0.613 (0.003) 1.046 (0.001)

S
ce
n
ar
io

2

Complete-data 1.028 (0.008) 1 0.953 (0.007) 1.039 (0.011) 1

Complete-case 1.031 (0.009) 0.768 (0.021) 0.947 (0.007) 1.186 (0.013) 0.801 (0.007)

Multiple imputations 1.024 (0.009) 0.818 (0.022) 0.945 (0.007) 1.150 (0.011) 0.848 (0.009)

SNP imputation 1.032 (0.030) 0.941 (0.078) 0.94 (0.02) 1.134 (0.036) 0.904 (0.024)

Latent variable 1.012 (0.008) 0.960 (0.027) 0.946 (0.007) 1.086 (0.009) 0.943 (0.014)

Haplotype imputation 1.010 (0.009) 0.910 (0.021) 0.944 (0.007) 1.097 (0.011) 0.916 (0.007)

S
ce
n
ar
io

3

Complete-data 1.012 (0.007) 1 0.949 (0.007) 0.891 (0.007) 1

Complete-case 1.017 (0.008) 0.797 (0.023) 0.948 (0.007) 1.014 (0.009) 0.804 (0.006)

Multiple imputations 1.012 (0.008) 0.904 (0.019) 0.949 (0.007) 0.939 (0.008) 0.919 (0.005)

SNP imputation 0.998 (0.024) 0.904 (0.049) 0.92 (0.02) 0.913 (0.022) 0.976 (0.012)

Latent variable 1.001 (0.007) 1.000 (0.033) 0.944 (0.007) 0.901 (0.006) 1.013 (0.010)

S
ce
n
ar
io

4

Complete-data 1.006 (0.008) 1 0.948 (0.007) 1.006 (0.009) 1

Complete-case 1.009 (0.009) 0.841 (0.022) 0.948 (0.007) 1.107 (0.010) 0.857 (0.006)

Multiple imputations 1.008 (0.009) 0.848 (0.022) 0.947 (0.007) 1.107 (0.010) 0.856 (0.006)

SNP imputation 1.000 (0.029) 0.963 (0.054) 0.98 (0.02) 1.057 (0.033) 0.942 (0.019)

Latent variable 1.002 (0.008) 0.955 (0.022) 0.946 (0.007) 1.037 (0.008) 0.957 (0.006)

Haplotype imputation 0.996 (0.008) 0.925 (0.018) 0.945 (0.007) 1.044 (0.010) 0.949 (0.005)

S
ce
n
ar
io

5

Complete-data 1.013 (0.007) 1 0.939 (0.007) 0.888 (0.006) 1

Complete-case 1.018 (0.008) 0.814 (0.021) 0.933 (0.007) 0.986 (0.008) 0.836 (0.005)

Multiple imputations 1.015 (0.007) 0.972 (0.015) 0.943 (0.007) 0.916 (0.007) 0.949 (0.004)

SNP imputation 0.971 (0.021) 0.972 (0.041) 0.94 (0.02) 0.864 (0.017) 0.977 (0.010)

Latent variable 1.008 (0.007) 1.021 (0.013) 0.941 (0.007) 0.891 (0.006) 1.000 (0.003)

Table 7.3: Mean estimate of causal effect (β1), sample relative efficiency, coverage of the 95%

confidence interval (CI) for β1 = 1, mean width of the 95% CI, and per dataset relative efficiency

(Monte Carlo standard error (MCSE) in brackets) from simulation study for up to six analyses

in five scenarios
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7.3.2 Results

Table 7.3 gives results for each scenario and method. We note that the haplotype imputa-

tion analysis is possible in Scenario 1, but results would be as the complete-data analysis,

because data would be imputed without uncertainty. The haplotype imputation is not

attempted in Scenarios 3 and 5 as the SNPs are uncorrelated. All other models, including

the latent variable model (which estimates a variance-covariance matrix with near zero

correlation in Scenarios 3 and 5), have been applied in each scenario.

In addition to the mean causal effect estimate, we give the coverage and mean width

of the 95% confidence interval (CI) and two estimates of relative efficiency. The sample

relative efficiency is calculated as the ratio of variance of the 1000 estimates of β1 from the

method in question to the variance of the estimates of β1 from the complete-data analysis.

We also give the mean estimate of the relative efficiency from each dataset, referred to here

as the per dataset relative efficiency. The relative efficiency from each dataset is calculated

as the ratio of the variance of the estimate of β1 for that dataset from the method in ques-

tion to the variance of the estimate of β1 for that dataset from the complete-data analysis.

For each estimate, we give the Monte Carlo standard error (MCSE), which represents the

uncertainty in the result due to the limited number of simulations performed (220). Con-

sistent estimation of the relative efficiency in each dataset relies on consistent estimation

of the standard error, and so the per dataset relative efficiency does not necessarily tend

to the true relative efficiency for large numbers of simulations. However the per dataset

relative efficiency has a lower MCSE than the estimate of the relative efficiency, and so is

informative for efficiency in this simulation study.

The additional results in Table 7.3 help to inform us about the analysis methods. The

MCSEs of the sample and per dataset relative efficiency indicate that sufficient simulations

have been performed to estimate the relative efficiency with a reasonable level of precision.

We firstly note that the estimate of β1 in the complete-data analysis is slightly larger than

1 in each of the scenarios. This is due to weak instrument bias and is a result of the skew

posterior distribution for β1. Although the sample and per simulation relative efficiencies

of the complete-case analysis are close to 0.80 (as expected) in the MAR Scenarios 1–3,

they are greater than 0.80 in the MNAR Scenarios 4 and 5, with the difference for the

per simulation relative efficiency greater than would have been expected by chance. In

these scenarios, the majority of the data lost is in the heterozygote group. The minor

homozygotes, who constitute the smallest group and exhibit the greatest mean difference

in phenotype level from the overall mean phenotype, contribute disproportionately to the

precision of the causal effect. Less missingness in the minor homozygotes means that the

precision of the causal effect is not so greatly reduced compared to the complete-data
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analysis as in the MAR scenarios. However, the coverage of the complete-case method in

Scenario 5 suggests that CIs of the complete-case analysis are maybe narrow in this MNAR

scenario, although further simulations would be required to reach a firm conclusion.

Taking each of the missing data methods in turn, we see that the multiple imputations

method performs better, especially in terms of efficiency, when used with uncorrelated

SNPs (Scenarios 3 and 5) than with correlated SNPs (Scenarios 2 and 4). In Scenario

4 with correlated SNPs and a MNAR model, its efficiency is no better than that of the

complete-case analysis; it does however outperform the complete-case analysis in the other

four scenarios. It may be that using more than 10 imputations in the multiple imputations

method would give better performance. A limited sensitivity analysis found that increasing

the number of iterations in the multiple imputations method did not appreciably change

the results; a further large-scale simulation study would be required to verify this. In

practice, it would seem prudent to use a larger number of imputations than 10 when

computing resources allow. The SNP imputation method seems to be an improvement on

the multiple imputations method, although the reduced number of simulations does limit

this conclusion.

Although the latent variable method gives the most precise estimation of the causal

effect, there are signs in the simulation study that the method may give underestimated

standard errors. In Scenario 1, the mean width of the 95% CI is narrower for the latent

variable method than for the complete-data method, and the relative efficiency is greater

than 1. However, there does not seem to be a problem with the coverage, which is close to

the nominal 95% level throughout. Reasons for this phenomenon are given in Section 7.3.3.

The haplotype imputation method is only implemented in Scenarios 2 and 4, but in

these scenarios, it gives the good performance in terms of mean width of the 95% CI

and per dataset relative efficiency. We recommend the haplotype imputation method

where it can be used. Otherwise, we favour the multiple imputations method over the

SNP imputation method because of its better mathematical properties (such as imputing

multiple missing SNPs in an individual taking account of the correlation between SNPs),

lack of inferiority in Scenarios 3 and 5 where the SNPs are not correlated, and additional

evidence (1000 versus 100 simulated datasets) from the simulation study.

7.3.3 Apparent precision of the latent variable method

It is not clear why the latent variable method gives more precise estimates than the

complete data analysis, but we here give three observations about the methods and two

plausible reasons for this phenomenon.

166



7.3 Simulation study

Firstly, the latent variable method gives estimates which are smaller (closer to zero)

than the complete-data method. In Table 7.3, the mean estimates of β1 across simulations

are lower for the latent variable method than for the complete case method in each of

the five scenarios. In Scenario 1, in 807 of the 1000 datasets the latent variable estimate

is smaller than that of the complete-case analysis. In the other scenarios, the respective

totals are 545, 549, 524, and 520. If the probability of one method giving a smaller estimate

were 0.5, we would expect 95% of the totals to lie between 469 and 531.

Secondly, the mean estimate of β1 from the complete-data analysis is greater than 1

in all scenarios. While in any individual scenario (with the possible exception of Scenario

2) this could be explained as a chance finding, the consistency of the finding combined

with the known non-normality of the posterior distribution suggest that this is not just

the result of random variation. Therefore, if the latent variable method estimates are

slightly attenuated, there may be no deviation in the mean bias from β1 = 1. Although the

coverage is not calculated using the posterior mean, it is plausible that a slight attenuation

in the distribution of β1 would not severely affect the coverage. Hence we search for reasons

why the latent variable method gives attenuated results compared to the complete-data

analysis.

Thirdly, in Scenario 1, about 3-5% of the missing data values are incorrectly imputed

at any one iteration for any dataset by the latent variable method. This compares to a

posterior probability of incorrect imputation from Beagle of < 0.01%.

The term ‘non-differential misclassification’ refers to the incorrect classification of an

observation into a certain category due to measurement error which is independent of the

true value. It is well-known that such misclassification generally biases results towards the

null (221). Although that the misclassification from the latent variable imputation may

not be non-differential, this is a possible reason for the attenuation.

A second possible reason for the attenuation is the feedback in the Bayesian model.

When a two-stage Bayesian model is fitted, uncertainty propagates throughout the model.

It may be that uncertainty in the model of causal association is in some way traded off

with uncertainty in the imputation model, and so the uncertainty in β1 is underestimated

at a cost of some incorrect imputation in the latent variable model.

Whatever the reason, as compared to the multiple imputations method which gives

mean estimates of β1 within 0.004 of the mean estimate from the complete-data analysis

throughout, the latent variable method gives results close to β1 = 1 in all scenarios.

Paradoxically, the aim of the missing data analysis is not to “give the correct answer”

(that is to estimate β1 = 1), but to give the same inference as would have been obtained

if no data were missing. In this case, the attenuation from the latent variable method
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“cancels out” the skewness of the posterior distribution, giving additional precision at no

apparent cost of bias or coverage. However, that does not mean that the latent variable

method is superior; it may be possible to construct a scenario where the latent variable

method is either severely biased or gives incorrect coverage for the same reasons that the

method works suspiciously well in the scenarios presented.

7.4 British Women’s Heart and Health Study

We illustrate our methods using data from the British Women’s Heart and Health Study

(BWHHS) to assess the impact of using multiple instruments and missing data on Mendelian

randomization analyses. BWHHS is one of the constituent studies of the CRP CHD Genet-

ics Collaboration (CCGC). We examine the causal effect of CRP on fibrinogen (continuous

outcome) and on coronary heart disease (binary outcome) using three SNPs in the CRP

gene region as instrumental variables: rs1205, rs1130864, rs1800947. These three SNPs

tag four haplotypes (Table 7.4) which comprise over 99% of the variation in the CRP gene

in European descent populations (82).

Haplotype rs1205 rs1130864 rs1800947

1 C T G

2 C C G

3 T C G

4 T C C

Table 7.4: Haplotypes in the CRP gene region tagged by three SNPs used as instruments

BWHHS is a prospective cohort study of heart disease in British women between the

ages of 60 and 79. We use cross-sectional baseline data on 3693 participants who have

complete or partial data for CRP, fibrinogen and the three SNPs. There is missingness in

2.1% of participants for CRP, 2.4% for fibrinogen, 10.8% for rs1205, 1.9% for rs1130864,

and 2.6% for rs1800947. Genotyping was undertaken by Kbioscience on two separate oc-

casions for SNP rs1205, and then for SNPs rs1130864 and rs1800947. Table 7.5 shows

the pattern of missingness of SNPs. Although it is unusual to see so much more miss-

ing data in one SNP than in another, this may be due to the individual characteristics

of that SNP or region of the DNA. 3188 individuals (86% of the total) had data on

all three SNPs; of these 12 (0.4%) individuals had a genotype which did not conform

to the haplotype patterns of Table 7.4. CRP measurements were assessed using an im-

munonephelometric high-sensitivity assay supplied by Behring. Only CRP measurements
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from non-diseased individuals were considered to rule out reverse causation. CHD was

defined as non-fatal myocardial infarction (using World Health Organization criteria). We

assessed CHD at baseline, comparing individuals with a definite previous myocardial in-

farction (6.9%) against all other individuals. CRP was log-transformed throughout. We

found that a per-allele model of genetic association was appropriate for each of the SNPs.

Each of the SNPs was in Hardy-Weinberg equilibrium. Only participants of European

descent were included to ensure homogeneity of the population in question.

The Sargan overidentification test (158) gives p = 0.72 with fibrinogen and p = 0.08

with CHD. This indicates that there is no more heterogeneity between the causal estimates

using different IVs than might be expected by chance. Failure of an overidentification test

is taken as evidence that there is a violation of the IV assumptions (30). We also tested

a range of six continuous and three binary coronary risk factors: body mass index, to-

tal cholesterol, systolic blood pressure, diastolic blood pressure, low density lipoprotein,

triglycerides, history of diabetes (definite vs other), history of hormone replacement ther-

apy (never vs current/ex) and use of hypertensive medicine (current vs never/ex). Out of

27 tests of association between the 3 SNPs and 9 risk factors, none gave p < 0.05. We

conclude that the IVs appear to be valid instruments for the data in question.

rs1205 rs1130864 rs1800947 Participants

3 3 3 3201

3 3 7 32

3 7 3 20

7 3 3 373

3 7 7 43

7 3 7 17

7 7 3 4

7 7 7 3

Table 7.5: Patterns of missingness in three SNPs used as instruments

7.4.1 Complete-case analyses

We analyze the BWHHS data using each of the three SNPs measured as the sole IV, and

with all of the SNPs included as IVs. We perform two sets of analyses: firstly including

all participants with complete data on the IV in question, and secondly using the common

set of 3188 participants with measured values for all three SNPs. The F statistic in mul-
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tivariate regression of phenotype on all the instruments is 16.7, indicating little potential

bias from weak instruments (161).

Continuous outcome: mean difference in fibrinogen

IV N Participants with complete data Participants with complete data

on IV (sample size = N) on all IVs (sample size = 3188)

rs1205 3283 0.029 (0.399) 0.021 (0.488)

rs1130864 3609 -0.146 (0.340) -0.266 (0.432)

rs1800947 3584 -0.217 (0.428) -0.166 (0.409)

All three -0.102 (0.274)

Binary outcome: log odds ratio of CHD

rs1205 3283 1.04 (0.77) 1.06 (0.80)

rs1130864 3609 -0.50 (0.61) -0.55 (0.75)

rs1800947 3584 1.24 (0.90) 1.16 (0.84)

All three 0.44 (0.55)

Table 7.6: Estimate (SE) from IV analysis of causal effect of unit increase in log(CRP)

on fibrinogen (µmol/l) and coronary heart disease (CHD) (β1) for various instrumental

variables (IVs): complete-case analysis for participants (N) with complete data on SNP

used as IV in analysis and for participants with complete data on all SNPs

Table 7.6 shows that, considering the data on participants with complete data for

each of the SNPs, using all the SNPs as the IV gives the most precise estimator, with at

least 20% reduction in SE compared to using any of the SNPs individually. However, a

substantial proportion of the data has been discarded in the complete-case analyses. If

we only use SNP rs1130864 as the IV, an additional 421 participants can be included in

the analysis, resulting in about a 20% reduction in SE. Although this gain in precision is

not uniform across all SNPs, with a slight loss of precision in the causal estimates using

SNP rs1800947 as the IV despite a sample size increase of 396, this analysis motivates us

to use methods for incorporating individuals with missing data.

7.4.2 Haplotype-based analysis

For the haplotype imputation method, we note that each of the SNPs available here tags

one haplotype. This means that the haplotype assignment of an individual with complete

genetic data that are consistent with the haplotypes 1-4 of Table 7.4 can be determined

without uncertainty. Where there is missing data, we consider the possible haplotype

assignments consistent with the four haplotypes of Table 7.4. For example, an individual

measured as heterozygous in SNPs rs1205 and rs1800947 (CT and CG) with a missing
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data value for SNP rs1130864 must have one copy of haplotype 4 and one copy of either

haplotype 1 or 2. An individual measured as homozygous CC in SNP rs1205 and GG

in rs1800947 with a missing data value for SNP rs1130864 has two haplotypes which

must each be either 1 or 2. For each individual, we model the unknown haplotypes using

categorical random variables. For example, the variables in these examples would each

have a binomial distribution taking value 1 or 2 with probabilities corresponding to the

relative proportions of the haplotypes in the population. To estimate the proportions of

each haplotype, we assume independence of haplotypes within and between individuals

and maximize the likelihood of a multinomial distribution with the correct likelihood

contributions from individuals with complete and missing data. These probabilities are

used to form the priors for the categorical variables in the Bayesian analysis. The 12

individuals with genotypes not conforming to the haplotype patterns of Table 7.4 (hereafter

labeled as ‘rogue’) were omitted from the analysis.

7.4.3 Results under the MAR assumption

We applied each of the four methods described above. Each of the imputation methods

gives similar answers, which differ somewhat from the complete-case analysis results in

terms of point estimate (Table 7.7), especially in the binary case. The exception is the

latent variable method, which reported poor convergence for the parameters in the multi-

variate latent variable distribution, even when the number of iterations was substantially

increased. However, the distribution of the causal parameter seemed to have converged.

The reduction in the standard error for all missing data methods compared to the com-

plete case analysis is 8-12%, corresponding to a 17-29% increase in sample size (assuming

that the precision of the causal estimate increases proportional to the sample size), slightly

more than the true increase in sample size of 16%. The Monte Carlo standard error, which

describes the uncertainty about the value of the causal estimate due to using MCMC, is

approximately 0.002 for the continuous outcome and 0.01 for the binary outcome.

It is perhaps surprising to find a gain in precision greater than the gain in sample

size. However, the increase in sample size within each of the genotypic subgroups, each

containing all individuals with a particular genotype, is not uniform. In this case, the

individuals with imputed data fall disproportionately into the smaller subgroups. This

means that most of the smaller subgroups increase in size by more than 16%, giving rise

to a greater than expected increase in precision. These results assume that the data is

missing at random (MAR), meaning that the fact that a data value is missing gives no
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information about the true value of the data point beyond that provided by the observed

data.

Continuous outcome: Binary outcome:

mean difference in fibrinogen log odds ratio of CHD

Imputation method Effect (SE) 95% CI Log odds ratio (SE) 95% CI

Complete case analysis -0.102 (0.274) -0.699, 0.382 0.44 (0.55) -0.57, 1.59

Multiple imputations -0.088 (0.249) -0.619, 0.358 0.22 (0.50) -0.75, 1.25

SNP imputation -0.075 (0.250) -0.613, 0.369 0.22 (0.49) -0.73, 1.22

Latent variable method 1 -0.040 (0.241) -0.552, 0.401 0.20 (0.48) -0.72, 1.15

Haplotype imputation -0.061 (0.250) -0.590, 0.391 0.23 (0.51) -0.75, 1.25

Table 7.7: Estimates of causal effect of unit increase in log(CRP) on fibrinogen (µmol/l) and

coronary heart disease (CHD) (β1) in complete-case analysis (N = 3188) and in entire study

population (N = 3693) using different imputation methods for missing genetic data

1The latent variable results are presented with the caveat that the parameters in the multivariate

normal distribution of the latent variables did not converge, although the causal parameter did seem to

have converged.

7.4.4 Assessing the missingness assumption

One plausible way that the data may be MNAR is that heterozygotes are thought to be

harder to determine than homozygotes on many high-throughput genotypic platforms, and

so a missing value is more likely to be assigned to a heterozygote than to a homozygote

(222). We therefore describe a test of the null hypothesis that a missing value is equally

likely for heterozygotes and homozygotes. In the absence of knowledge of the true genetic

data for all individuals, we use correlations between the SNPs in the observed haplotype to

infer missing SNP values. If the whole cohort is assumed to have genotypes conforming to

the four haplotypes of Table 7.4, then the true missing SNP values can sometimes be de-

termined. Although there may truly be individuals with rogue genotypes, the appearance

of such individuals in the data may be due to genotyping error, which occurs typically in

about 1% of instances.

Assuming that all of the individuals with missing data conform to the four haplotypes

of Table 7.4, we see that if an individual is homozygous TT in SNP rs1205, then the

individual must be homozygous CC in SNP rs1130864. If an individual is homozygous CC

or heterozygous in SNP rs1205, then the individual’s genotype for SNP rs1130864 cannot

be determined. Of the 331 individuals homozygous TT in rs1205, 326 are homozygous CC
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in rs1130864, 2 are rogue and 3 (0.9%) are missing. Out of the 3033 individuals with CC

or CT in rs1205, 60 (2.0%) are missing in rs1130864.

We see that 0.9% of individuals who are by assumption homozygous in SNP rs1130864

are missing, compared to 2.0% of individuals who may be heterozygous in this SNP. We

apply similar logic to SNPs rs1205 and rs1800947 to construct Table 7.8 in such a way that

an individual cannot be included as having missing data more than once. We fit a logistic

selection model for missingness, assuming that the probability that the SNP k is missing

(πjk) depends on the SNP, and on whether an individual is definitely a homozygote (j = 1)

or possibly a heterozygote (j = 0).

logit(πjk) = δj + γk (j = 0, 1; k = 1, 2, 3; δ0 = 0)

Such selection models are rightly criticized as being very sensitive to the specification

of the model (223). The analysis is presented not because the given model is assumed

to be correct or of interest, but purely to provide an informal assessment of whether the

differences in missingness rates between different groups can be explained by chance alone.

If the selection model does fit the data well with a negative value of δ, this may mean

that the data are MNAR. However, a poorly fitting model does not necessarily mean that

the data are MAR; it may simply mean that the selection model considered is the wrong

model.

Missing SNP: rs1205 rs1130864 rs1800947

Must be homozygous 30/331 (9.1%) 3/331 (0.9%) 11/1486 (0.7%)

Could be heterozygous 331/3043 (10.9%) 60/3033 (2.0%) 22/1815 (1.2%)

Table 7.8: Proportions of missingness for each SNP for individuals who are definitely

homozygous in that SNP versus those whose true genetic data cannot be determined by

reference to haplotypes in Table 7.4

In this model, δ̂1 = −0.325 (SE 0.169, p = 0.06), providing weak evidence against the

null hypothesis that an individual with a missing result for a SNP is as likely to be a

heterozygote as a homozygote. This suggests that MAR may be violated. We note that as

we are using observed data to test for patterns in the missing data where the true values

of the missing data can be determined, any pattern observed in the missingness would not

violate the MAR assumption. However, it strongly suggests that the pattern would also

be present in individuals where the true values of the missing data cannot be determined,

which would violate MAR. As there is both a biologically plausible reason for potential

violation of the MAR assumption and weak evidence from a selection model, we proceed to
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perform a sensitivity analysis. Even in the absence of evidence from the selection model,

a sensitivity analysis would seem prudent.

7.4.5 Sensitivity to the MAR assumption

In the following analyses, we assess sensitivity of the results to departure from the MAR

assumption.

The SNP imputation method (Section 7.2.3) is the simplest of the four missing data

techniques to modify under the MNAR assumption. For example, if we believe that

heterozygotes are more likely to have missing data than homozygotes, we can increase the

probability of being a heterozygote pi1 for each individual i.

To assess sensitivity to the MAR assumption, we increased the probability of an indi-

vidual with missing data being a heterozygote in the SNP imputation method. We logit-

transformed the probability of being a heterozygote (pi1) for each individual i, added a con-

stant d (here referred to as the heterozygote-missingness parameter), and back-transformed

to the probability scale. This ensured that when the genotype of an individual is known

with high probability, there would be little change in the posterior probabilities, whereas

when the genotype was uncertain, the probability of the individual being a heterozygote

would increase; the probabilities of major and minor homozygotes would remain in the

same ratio. We varied d from 0 to 2 in steps of 0.5, where d = 0 corresponds to the MAR

assumption. For example, a probability of being a heterozygote of 0.2 increases to 0.65

when d = 2.

Continuous outcome Binary outcome

(mean difference in fibrinogen) (log odds ratio of CHD)

Effect (SE) 95% CI Log odds ratio (SE) 95% CI

MAR d = 0.0 -0.075 (0.250) -0.613, 0.369 0.22 (0.49) -0.73, 1.22

MNAR


d = 0.5 -0.073 (0.249) -0.608, 0.370 0.24 (0.48) -0.68, 1.23

d = 1.0 -0.075 (0.246) -0.603, 0.366 0.29 (0.48) -0.63, 1.26

d = 1.5 -0.080 (0.245) -0.605, 0.362 0.29 (0.49) -0.62, 1.29

d = 2.0 -0.078 (0.244) -0.595, 0.360 0.28 (0.48) -0.65, 1.26

Table 7.9: Sensitivity analysis on the heterozygote-missingness parameter in a MNAR

model for estimates of causal effect of unit increase in log(CRP) on fibrinogen (µmol/l)

and coronary heart disease (CHD) (β1) using SNP imputation method

We see that the estimates are not particularly sensitive to departures from the MAR

assumption (Table 7.9). Part of the reason for this may be that, for many individuals, geno-

174



7.5 Discussion

type can be imputed with little uncertainty due to the LD between the genetic markers.

There is a slight increase in precision for the continuous outcome as the heterozygote-

missingness parameter increases, possibly due to decreased uncertainty in genotype as-

signment, and a slight increase in the association for the binary outcome.

7.5 Discussion

In this chapter, we have considered using multiple instruments in IV analyses. Using

multiple instruments has the potential to reduce the variance of the causal estimates,

but if there are sporadic missing data, this increase is offset by a decrease in sample size

in a complete-case analysis. The missing data methods we have described can be used

to include all participants and gain precision in the analysis under the assumption of

missingness at random (MAR). Even though this assumption may not be fully valid, the

results in our example were not sensitive to departures from this assumption. A further

assumption of the imputation methods is that of Hardy–Weinberg equilibrium (HWE).

However, violation of HWE is often an indication of a population substructure; if a SNP is

not in HWE, then this may call into question its use as an IV for Mendelian randomization

in the dataset.

Although the haplotype imputation model is the most natural of the methods, re-

lying on only the independent inheritance of haplotypes in the study population, it is

not necessarily applicable to all Mendelian randomization studies. A characteristic of the

BWHHS dataset is that the SNPs can be summarized as a small number of haplotypes

with certainty; haplotype imputation in this dataset is the preferred analysis.

Out of the three general purpose methods for missing data imputation, the latent vari-

able method is the most interpretable in terms of the underlying biology. One concern

may be that the impact of the distributional assumptions of the latent variables on the

analysis is not clear. There is a danger of lack of convergence or poor mixing in compli-

cated Bayesian models such as this, which resulted in a somewhat different estimate from

the other methods in the BWHHS example with the continuous outcome, although less

difference was observed with the binary outcome.

The SNP imputation and the multiple imputations methods are both easy to implement

and based on the same idea. In the multiple imputations method, we rely on sampling

from a discrete number of imputations rather than from the entire probability distribution,

although the number of imputations could be increased if this were thought to be a prob-

lem. A drawback of the SNP imputation model is the assumption of prior independence

of the SNPs in the imputation. One problem with these two methods is that the genetic
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data are imputed without using the phenotype and outcome. Although we would expect

some attenuation in the causal estimate due to the omission of the phenotype, the results

seem fairly similar to those of the haplotype and latent variable models, both of which

allow feedback from the phenotype and outcome in the imputation process. In this chapter

we have used Beagle for genetic imputation; results were similar when other imputation

programs such as fastPHASE (224) were used.

Our recommended preference, where possible, would be to use a haplotype imputation

method. If this is not possible, due to uncertainty in haplotype ascertainment, we would

suggest using the multiple imputations method, with the latent variable method as a sen-

sitivity analysis for the effect of omitting the phenotype and outcome from the imputation

model.

The WinBUGS code for the general purpose multiple imputation methods used is

available online (225) and as an appendix to this chapter.

7.5.1 Key points from chapter

• Use of multiple instruments in Mendelian randomization leads to more precise esti-

mates of causal association. Sporadic missing genetic data can offset this gain, but

missing data methods can recover the full sample size.

• Out of the four proposed methods in this chapter, the haplotype imputation method

is recommended where the genetic variation in the population can be summarized

by a set of haplotypes, and the SNP imputation method otherwise with the latent

variable method as a sensitivity analysis.

Appendix: WinBUGS code

Bayesian method incorporating correlation

model {

alpha0 ~ dnorm(0, 0.000001) # priors for regression parameters

beta ~ dnorm(0, 0.000001)

beta0 ~ dnorm(0, 0.000001)

xtau <- pow(xsd, -2) # priors for variance parameters

xsd ~ dunif(0, 20)

ytau <- pow(ysd, -2)

ysd ~ dunif(0, 20)
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tauy <- ytau/(1-pow(rho,2)) # conditional precision given x[i]

rho ~ dunif(-1, 1) # prior for correlation

for(k in 1:K) { # index across IVs

alpha[k] ~ dnorm(0, 0.000001) # prior for IV effects

}

for (i in 1:N) { # index across individuals

xi[i] <- alpha0 + inprod(alpha[1:K], gene[i, 1:K])

# phenotype regression in additive model across IVs

x[i] ~ dnorm(xi[i], xtau) # normal model of phenotype

muy[i] <- eta[i] + sqrt(xtau/ytau)*rho*(x[i]-xi[i])

# conditional mean given x[i]

y[i] ~ dnorm(muy[i], tauy) # normal model of outcome

eta[i] <- beta0 + beta * xi[i] # unconditional mean of outcome

} # beta is causal parameter of interest

}

Multiple imputations method

model {

alpha0 ~ dnorm(0, 0.000001)

beta ~ dnorm(0, 0.000001)

beta0 ~ dnorm(0, 0.000001)

xsig ~ dunif(0, 20)

xtau <- pow(xsig, -2)

ysig ~ dunif(0, 20)

ytau <- pow(ysig, -2)

tauy <- ytau/(1-pow(rho,2))

rho ~ dunif(-1, 1)

r ~ dpick(1,10) # r indexes imputations

for (j in 1:K) {

alpha[k] ~ dnorm(0, 0.000001)

}

for (i in 1:N) {

xi[i] <- alpha0 + alpha[1]*gene[i, 1, r] + alpha[2]*gene[i, 2, r]

+ alpha[3]*gene[i, 3, r] # phenotype regression uses current imputation

x[i] ~ dnorm(xi[i], xtau)

muy[i] <- eta[i] + sqrt(xtau/ytau)*rho*(x[i]-xi[i])

y[i] ~ dnorm(muy[i], tauy)
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eta[i] <- beta0 + beta * xi[i]

} }

SNP imputation method

model {

alpha0 ~ dnorm(0, 0.000001)

beta ~ dnorm(0, 0.000001)

beta0 ~ dnorm(0, 0.000001)

xsig ~ dunif(0, 20)

xtau <- pow(xsig, -2)

ysig ~ dunif(0, 20)

ytau <- pow(ysig, -2)

tauy <- ytau/(1-pow(rho,2))

rho ~ dunif(-1, 1)

for (k in 1:K) {

alpha[k] ~ dnorm(0, 0.000001)

}

for (i in 1:N) {

for (k in 1:K} {

gene[i, k] ~ dcat(geneprobs[i, k, 1:3]

} # geneprobs are posterior probabilities from genetic imputation

xi[i] <- alpha0 + inprod(alpha[1:K], gene[i, 1:K])

x[i] ~ dnorm(xi[i], xtau)

muy[i] <- eta[i] + sqrt(xtau/ytau)*rho*(x[i]-xi[i])

y[i] ~ dnorm(muy[i], tauy)

eta[i] <- beta0 + beta * xi[i]

} }

Multivariate latent variable model

model {

mu[1:K] ~ dmnorm(mu0[1:K], Sigma0[1:K, 1:K])

Sigma[1:K, 1:K] ~ dwish(Sigma1[1:K, 1:K], K)

# priors for the haplotype distributions:

alpha0 ~ dnorm(0, 0.000001)

beta ~ dnorm(0, 0.000001)

beta0 ~ dnorm(0, 0.000001)
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xsig ~ dunif(0, 20)

xtau <- pow(xsig, -2)

ysig ~ dunif(0, 20)

ytau <- pow(ysig, -2)

for (k in 1:K) {

alpha[k] ~ dnorm(0, 0.000001)

}

for (i in 1:N) {

psi1[i, 1:K] ~ dmnorm(mu[1:K], Sigma[1:K, 1:K])

psi2[i, 1:K] ~ dmnorm(mu[1:K], Sigma[1:K, 1:K])

# psi1 and psi2 are drawn from the same multivariate distribution

# and represent the two haplotypes

for (k in 1:K) {

gene[i, k] ~ dgene.aux(psi1[i, k], psi2[i,k])

} # gene values when known are entered as data, when unknown as NA

# missing data values are imputed from the multivariate haplotype model

xi[i] <- alpha0 + inprod(alpha[1:K], gene[i, 1:K])

x[i] ~ dnorm(xi[i], xtau)

muy[i] <- eta[i] + sqrt(xtau/ytau)*rho*(x[i]-xi[i])

y[i] ~ dnorm(muy[i], tauy)

eta[i] <- beta0 + beta * xi[i]

} }
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Chapter 8

Meta-analysis of Mendelian

randomization studies of C-reactive

protein and coronary heart disease

8.1 Introduction

In previous chapters, we have explored various statistical issues related to instrumental

variable (IV) analysis and in particular to Mendelian randomization. Throughout, data

has been used to illustrate findings. In this chapter, we perform a comprehensive analysis

of these data to answer definitively the applied research question of interest: the causal

effect of C-reactive protein (CRP) on coronary heart disease (CHD) based on the totality

of the data available. We use data collected by the CRP CHD Genetics Collaboration

(CCGC) (64; 82), which were introduced in Chapter 1. Although the methods in this

chapter were developed for the CCGC, we believe that they cover a wide range of study

designs and scenarios and will also be useful for meta-analysis of Mendelian randomization

data in other contexts.

Typically, the variation in the phenotype explained by genetic variants is small, and so

adequately powered Mendelian randomization studies usually require large sample sizes,

demanding synthesis of evidence from multiple studies (40). Traditionally, meta-analysis

is performed on summary data from already published sources (226). While meta-analysis

of causal effects from Mendelian randomization in individual studies is possible, there are

several reasons why this may not be a preferable option. Firstly, the distribution of the

causal effect in a given study is not normal (89) (Chapter 3), and the estimate of standard

error given by some methods underestimates the true level of uncertainty (Chapter 6),

meaning that simple inverse variance weighting methods are not optimal. Moreover, some
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study-specific estimates may have infinite variance. Secondly, the estimates in smaller

studies may be biased due to weak instruments (2) (Chapter 3). Thirdly, there is a

correlation between bias and precision, meaning that more biased studies are overweighted

in a meta-analysis (212) (Chapter 3). Fourthly, not all studies may have data available

on both the phenotype and outcome, meaning that a causal estimate cannot be estimated

in these studies (71) (Chapter 5). Fifthly, the studies could be combined more efficiently

by allowing inference on a joint model rather than limiting our attention to each study in

turn (Chapter 5). Finally, individual participant data (IPD) enable overall assessment of

the IV assumptions by the use of measured confounders.

We combat these problems by use of the Bayesian hierarchical model introduced in

Chapters 5 and 6 (140). By making certain simplifying assumptions, which are fully

detailed below, we demonstrate how a range of different designs of studies with binary

outcomes can be analysed, and how these causal estimates can be combined in a hierarchi-

cal model. By exploiting correlation between single nucleotide polymorphisms (SNPs), and

defining haplotype patterns in a way which allows for individuals with missing genetic data

in certain SNPs to be included in the analysis, we show how studies measuring different

genetic markers can be included in the same genetic association model. By pooling esti-

mates of genetic association in a random-effects model from studies which have measured

the same genetic variants, we strengthen the instrument and increase precision (Chapter

5). By using the random effects distribution as an implicit prior, we show how studies

with no data on the phenotype or only providing tabular data, which have measured the

same genetic variants as other studies in the collaboration, can be included in the analysis

(Chapter 5). By including measured covariates, we can reduce weak instrument bias and

improve efficiency in estimation (Chapter 3). By including both prevalent disease events

(those reported at baseline) and incident events in prospective studies, we use all available

data on disease outcomes.

The structure of this chapter is as follows: having discussed the genetic instruments

available in each study (Section 8.2), the two-stage and Bayesian frameworks for analysis

are recalled (Section 8.3). We show how these frameworks can be used to analyse a single

study as a worked example (Section 8.4), then each study in the collaboration (Section 8.5),

assessing the model assumptions by use of sensitivity analyses. Extensions are recalled

which efficiently deal with issues of combining evidence across studies (Section 8.6), and

then results are presented for the causal change in CHD due to CRP (Section 8.7). We

conclude by discussing the interpretation and potential applications of these methods

(Section 8.8).
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8.2 The CRP CHD Genetics Collaboration

The CCGC is a collaboration of 47 epidemiological studies seeking to ascertain the causal

role of C-reactive protein (CRP) in coronary heart disease (CHD) using a Mendelian

randomization approach. In all analyses, we restrict attention to participants of European

descent, excluding from analysis the four studies with no European descent participants.

This is to ensure greater homogeneity of the study populations and to prevent violations of

the IV assumptions due to population stratification (2). CRP is positively-skewed, and so

we take log(CRP) as the phenotype. We use the term risk ratio as a generic term meaning

hazard ratio, odds ratio or relative risk as appropriate.

8.2.1 Genetic data and choice of instrument

Genetic data measured in the collaboration were introduced in Chapter 1. We use g1, g2,

g3, and g4 to represent the four SNPs (or proxies thereof) pre-specified for use as IVs in

the protocol to the CCGC (82). Studies are divided into four patterns based on the SNPs

available in that study: Pattern 4, where all four SNPs (or suitable proxies) are measured;

Pattern 3, where all SNPs except g3 are measured; Pattern 2, where all SNPs except g4

are measured; and Pattern 1, where SNP g2 (and possibly other SNPs) is measured. The

exception is study ISIS, which does not measure any of the pre-specified SNPs, where we

use SNP rs2808628 as the single IV.

To find the most appropriate model of genetic association, we plot for each study the

mean level of the phenotype log(CRP) by number of variant alleles against the number

of alleles (Figure 8.1). In this chapter, we use the word “per allele” to refer to linearity

of a model for different levels of a SNP, and “additive” to mean additivity across SNPs.

If a per allele model is appropriate, we expect to see straight lines through the means of

log(CRP) per number of variant alleles. If the per allele parameter is the same in each

study, then we expect these lines to be parallel. These figures suggest visually that for

each SNP an additive assumption with similar size effect across studies seems reasonable;

a more principled analysis follows. Only individuals who have not suffered a prevalent

event at time of blood draw, or who are not cases in a case-control study are included in

analyses involving the phenotype, to minimize the possibility of reverse causation.

8.2.2 Linear versus factorial versus saturated genetic models

For each study, Table 8.1 gives the minor allele frequencies for each of the SNPs, the

adjusted R2 and F statistic for various models making different assumptions about the
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data. The linear model (8.1) assumes an additive effect of each SNP per variant allele.

The factorial model (8.2) is additive between SNPs and models each SNP as a three-level

factor. The saturated model (8.3) takes each SNP as a linear covariate and includes all

possible interactions between the SNPs. One coefficient is included for each genotype

exhibited in the population. The phenotype xi is expressed as a function of the number

of variant alleles gik of each SNP k (1 ≤ k ≤ K) with residual term ϵi:

Linear: xi = α0 +
K∑
k=1

αkgik + ϵi (8.1)

Factorial: xi = α0 +
K∑
k=1

αk11gik=1 +
K∑
k=1

αk21gik=2 + ϵi (8.2)

Saturated: xi = α0 +
3∑

j1=1

. . .

3∑
jK=1

αj1j2...jK + ϵi (8.3)

In Table 8.1, the factorial regression contains two terms for each SNP included in the

model, except where there are no participants with a particular number of variant alleles

for a SNP, when the number of terms reduces. The saturated regression contains one

term for each complete genotype exhibited in the population. In principle, for example in

Pattern 4 studies, 34 = 81 genotypes are possible, though if the assumption that the data

can be summarized by 5 haplotypes (Section 8.2.4) is true, only 10 genotypes should be

exhibited. The adjusted R2 statistic shows that the proportion of variation explained by

the SNPs beyond chance remains similar in the studies under each model of association.

The F statistics, given in each case for testing the model in question against the null

model, for the linear model shows that the SNPs are associated with log(CRP) and so are

potential instruments, with p < 0.001 in 26 out of the 33 studies (including all the studies

with CRP measurements in over 1000 individuals). The p-values for analysis of variance

(ANOVA) tests are displayed in Table 8.1 by formatting of the text for the linear model

versus the null model, and the factorial and saturated models versus the linear model.

Tests of the factorial and saturated models against the linear model give little evidence to

favour either model except in studies with only one SNP. Out of the 30 studies measuring

CRP and more than one SNP, evidence favouring the factorial model (p < 0.05) was found

in one study (WHITE2, p = 0.021) and for the saturated model in no studies. This is not

more than would be expected by chance.

Estimates of causal association from IV methods are biased in the direction of the

observational confounded association when the association between the instrument and

phenotype is not statistically strong (2). Generally, an F statistic of 10 or less is quoted

183



8.2 The CRP CHD Genetics Collaboration

as a rule of thumb as to when weak instrument bias would be an issue (102). As the F

statistic for several of the studies is below 10 and as there is little evidence for the factorial

or saturated models, we use a linear model throughout as the most parsimonious model

of the three which seems to be explaining a similar proportion of variation.

8.2.3 Common versus different per allele genetic parameter in

each study

For each SNP, we fit a linear regression of log(CRP) on the number of variant alleles in

each study where CRP was measured. Figure 8.2 gives the forest plots of these effects in

all studies. The between-study heterogeneity, as measured by I2 (227) is for g1, 58% (95%

CI: 37–72%); for g2, 29% (95% CI: 0–54%); for g3, 14% (95% CI: 0– 51%); and for g4,

8% (95% CI: 0–41%). This indicates that there is considerable statistical heterogeneity

between the study-specific estimates, although visual inspection of the forest plots suggests

that there is a consistent direction of association with similar magnitude across studies.

8.2.4 Defining haplotypes

Rather than analyzing studies measuring different subsets of SNPs separately, we can

use the SNPs to define haplotypes as listed in Table 8.2. For studies measuring all four

pre-specified SNPs (Pattern 4), we use five candidate haplotypes, as defined in the study

protocol paper (82) and as found in the data. For studies measuring three of the pre-

specified SNPs g1, g2 and g4 (Pattern 3), we use four candidate haplotypes. For studies

measuring three of the pre-specified SNPs g1, g2 and g3 (Pattern 2), we use four candi-

date haplotypes. For studies measuring two of the pre-specified SNPs g1 and g2, we use

three candidate haplotypes. We note that restricting the possible haplotypes in this way

does not allow any possibility of phase uncertainty. Over 99% of the European descent

participants in the CCGC had a genotype corresponding to a pair of these haplotypes.

Four studies (CAPS, HIFMECH, ISIS, WOSCOPS) which did not measure SNPs g1 and

g2 are excluded from the haplotype-based analyses.

We see that haplotype 1 is tagged by alleles C in SNP rs1205 (g1) and T in SNP

rs1138064 (g2). This means that, even with missing data on SNPs rs1800947 (g3) and

rs3093077 (g4), due to correlation between SNPs (LD), this haplotype can be uniquely

determined. Haplotypes 4 and 5 differ only in SNP rs1800947 (g3). We categorize an

individual having haplotype 4 or 5 with a missing value for g3 as having haplotype 7. This

means that haplotype 7 will be an amalgamated category, consisting of a combination of

haplotypes 4 and 5. Similarly, haplotype 6 will consist of a combination of haplotypes
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2 and 3. Hence, in addition to the five candidate haplotypes observable in the data

and pre-specified in the protocol paper, we used two haplotype categories corresponding

to haplotypes which could not be determined between two candidate haplotypes due to

missing or unmeasured genetic data.

We divide the haplotypes into three groups as follows. Group I contains haplotype 1,

and is defined by a C allele in SNP rs1205 (g1) and a T allele in SNP rs1130864 (g2).

Group II contains haplotypes 2 and 3 plus category 6, and is defined by a C allele in

SNP rs1205 (g1) and a C allele in SNP rs1130864 (g2). Group III contains haplotypes

4 and 5 plus category 7, and is defined by a T allele in SNP rs1205 (g1) and a C allele

in SNP rs1130864 (g2). A summary of the SNPs corresponding to the haplotypes and

groups, including question marks for categories 6 and 7 where data are missing, is given

in Table 8.3. Although studies may have different proportions of haplotypes 6 and 7

due to different proportions of missing data, if the participants in different studies come

from comparable populations, then the proportions of haplotypes in groups I, II and III

should be the same across all studies. Figure 8.3 and Table 8.4 show the frequency of each

haplotype and group of haplotypes within each study. Group I haplotypes are coloured

green, group II blue and group III red. The similarity in proportions of haplotypes across

studies supports our claims of homogeneity of European descent populations, use of proxy

SNPs (in complete LD) and determination of haplotypes.

8.2.5 Equivalence of SNP and haplotype models

If the assumption that the genetic variation in a population can be summarized by the

five haplotypes of Table 8.3, then the linear SNP-based model (8.1) is equivalent to a

linear haplotype-based model, where there is one coefficient (γk) per haplotype. For an

individual with haplotypes h1 and h2, we have

xi = γh1 + γh2 + ϵi (8.4)

where ϵi is an error term as before. This is because each haplotype is identified by the

presence of a variant allele in one particular SNP (except haplotype 2, which is identified

by no variant alleles in any of the SNPs). Such a combination of SNPs is known as

a tagging set of SNPs. This is not a coincidence: the pre-specified SNPs were chosen

precisely because they tag the five main haplotypes in European descent populations, so

that no redundant genetic information need be measured.

The linear SNP-based model (8.1) and linear haplotype-based model (8.4) are trivially

the same under this restriction, as there is a linear transformation (reparameterization)
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taking the coefficients from one model to the other. Hence validity of the linear SNP-based

model implies validity of the linear haplotype-based model.

8.2.6 Phenotype and outcome data

For each prospective (cohort) study in the collaboration, we show the quantile plot of

the distribution of log(CRP) against quantiles of the standard normal distribution (Fig-

ure 8.4) and the piecewise constant estimate of hazard function (number of CHD events

per participant-year) for each year of follow-up (Figure 8.5). Apart from for low levels

of CRP, where assays are not sensitive enough to determine between small values, the

distribution of log(CRP) can be approximated by a normal distribution. In most of the

studies, the hazard function appears to be a smooth function of time. In later sections, we

will investigate the sensitivity of regression of the outcome in cohort studies on parametric

assumptions, and on ignoring variable follow-up. Although there are anomalous results in

some of the studies (such as BRHS and CCHS), it seems that these assumptions may not

severely misrepresent the data.
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Figure 8.1: Studies with CRP measured – mean level of log(CRP) with 95% confidence

interval in all non-diseased participants (control participants in case-control studies) with

different numbers of variant alleles in each SNP. (Studies are separated vertically for visual

purposes; some points omitted due to ≤ 1 participant with that number of variant alleles)
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Minor allele frequencies Adjusted R2 F statistic (degrees of freedom) 1

Study g1 g2 g3 g4 2 Linear Factorial Saturated Linear Factorial Saturated

P
at
te
rn

4

BRHS 0.330 0.302 0.065 0.051 0.021 0.021 0.021 19.73 (4, 3511) 10.19 (8, 3507) 7.84 (11, 3504)

DDDD 0.349 0.295 0.074 0.054 0.016 0.012 0.015 3.45 (4, 609) 1.95 (8, 605) 1.91 (10, 603)

EPICNL 0.324 0.322 0.063 0.056 0.019 0.019 0.018 16.5 (4, 3198) 8.75 (8, 3194) 6.37 (11, 3191)

FRAMOFF 0.328 0.306 0.056 0.069 0.016 0.017 0.021 7.2 (4, 1474) 4.22 (8, 1470) 4.10 (10, 1468)

HPFS 0.319 0.307 0.070 0.065 0.029 0.025 0.022 3.98 (4, 398) 2.30 (8, 394) 1.76 (12, 390)

LURIC 0.341 0.321 0.067 0.058 0.019 0.021 0.017 8.73 (4, 1594) 5.19 (8, 1590) 3.48 (11, 1587)

MALMO 0.333 0.323 0.070 0.043 0.037 0.031 0.059 2.31 (4, 134) 1.55 (8, 130) 1.96 (9, 129)

NHS 0.325 0.295 0.061 0.059 0.045 0.039 0.056 5.53 (4, 382) 3.26 (7, 379) 3.08 (11, 375)

NSC 0.330 0.333 0.086 0.055 0.020 0.022 0.027 6.04 (4, 964) 3.66 (8, 960) 3.22 (12, 956)

PROCARDIS 0.330 0.303 0.063 0.057 0.016 0.015 0.017 14.13 (4, 3297) 7.28 (8, 3293) 6.85 (10, 3291)

SPEED 0.355 0.303 0.045 0.055 0.037 0.032 0.043 6.43 (4, 559) 3.69 (7, 556) 3.54 (10, 553)

WHIOS 0.328 0.313 0.062 0.065 0.011 0.011 0.009 5.73 (4, 1717) 3.33 (8, 1713) 2.49 (11, 1710)

FHSGRACE 0.320 0.307 0.069 0.057

No CRP data No CRP data

GISSI 0.321 0.297 0.089 0.055
HVHS 0.328 0.309 0.058 0.062
UCP 0.335 0.294 0.062 0.065
AGES 0.312 0.317 0.050 0.077

HEALTHABC 0.334 0.316 0.064 0.064
MONICAKORA 0.332 0.315 0.067 0.066
PENNCATH 0.337 0.297 0.062 0.057

P
at
te
rn

3

ARIC 0.349 0.292 - 0.068 0.021 0.025 0.024 7.12 (3, 855) 4.60 (6, 852) 4.55 (6, 852)

CCHS 0.343 0.311 - 0.051 0.010 0.010 0.009 32.09 (3, 9499) 16.12 (6, 9496) 13.86 (7, 9495)

CGPS 0.337 0.314 - 0.049 0.012 0.012 0.012 126.47 (3, 30487) 63.53 (6, 30484) 54.39 (7, 30483)

CIHDS 0.336 0.320 - 0.048 0.015 0.016 0.015 23.98 (3, 4411) 13.19 (6, 4408) 12.15 (6, 4408)

EAS 0.329 0.288 - 0.068 0.022 0.027 0.023 5.88 (3, 640) 4.00 (6, 637) 3.54 (6, 637)

ELSA 0.327 0.272 - 0.087 0.016 0.016 0.016 25.49 (3, 4500) 12.96 (6, 4497) 11.23 (7, 4496)

EPICNOR 0.324 0.313 - 0.073 0.012 0.011 0.013 9.46 (3, 2122) 5.02 (6, 2119) 4.88 (7, 2118)

NPHSII 0.339 0.292 - 0.048 0.014 0.015 0.014 11.58 (3, 2154) 6.68 (6, 2151) 5.45 (7, 2150)

ROTT 0.326 0.293 - 0.088 0.011 0.010 0.010 17.37 (3, 4520) 9.00 (6, 4517) 7.78 (7, 4516)

SHEEP 0.338 0.309 - 0.052 0.026 0.024 0.026 10.47 (3, 1079) 5.52 (6, 1076) 5.84 (6, 1076)

WHITE2 0.333 0.316 - 0.035 0.015 0.016 0.015 24.71 (3, 4796) 14.04 (6, 4793) 11.2 (7, 4792)

CHAOS 0.330 0.310 - 0.061 No CRP data No CRP data

P
a
tt
er
n
2 BWHHS 0.325 0.301 0.065 - 0.015 0.015 0.016 16.34 (3, 2966) 8.59 (6, 2963) 7.77 (7, 2962)

CHS 0.339 0.304 0.069 - 0.018 0.018 0.018 26.45 (3, 4047) 13.67 (6, 4044) 11.53 (7, 4043)

HIMS 0.334 0.307 0.060 - 0.019 0.018 0.018 20.45 (3, 3073) 10.56 (6, 3070) 10.41 (6, 3070)

PROSPER 0.330 0.297 0.060 - 0.017 0.018 0.017 29.1 (3, 4872) 15.53 (6, 4869) 12.8 (7, 4868)

INTERHEART 0.350 0.314 0.069 - No CRP data No CRP data

P
at
te
rn

1 CAPS - 0.329 0.076 0.051 0.019 0.017 0.021 5.86 (3, 753) 3.63 (5, 751) 3.65 (6, 750)

CUDAS 0.349 0.293 - - 0.006 0.009 0.006 4.15 (2, 974) 3.16 (4, 972) 2.98 (3, 973)

CUPID 0.342 0.298 - - 0.061 0.060 0.060 7.27 (2, 190) 4.06 (4, 188) 5.04 (3, 189)

HIFMECH - 0.291 - - -0.002 0.0107 0.23 (1, 493) 3.66 (2, 492)

WOSCOPS - 0.315 - - -0.000 -0.001 0.66 (1, 1332) 0.33 (2, 1331)

ISIS 3 - - - - -0.000 0.018 0.58 (1, 1235) 12.21 (2, 1234)

Table 8.1: All studies – Minor allele frequencies, adjusted R2 and F statistics (with degrees
of freedom in regression model) for linear, factorial and saturated models of phenotype
regressed on SNPs in non-diseased, non-cases

1F statistics are for linear, factorial or saturated model versus null model. Text formatting indicates
p-value in ANOVA test of linear versus null, factorial versus linear, or saturated versus linear models.
Bold-italic: p < 0.001, Bold 0.001 < p < 0.01, Italic: 0.01 < p < 0.05, Normal: p > 0.05.

2g1 = rs1205, g2 = rs1130864, g3 = rs1800947, g4 = rs3093077.
3SNP rs2808628 used as instrument.
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Figure 8.2: Studies with CRP measured – Forest plots for per allele effect of SNPs in

univariate regression of log(CRP) on each SNP in non-diseased, non-cases. Pooled effects

calculated using two-step random-effects meta-analysis
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Haplotype (group) rs1205 (g1) rs1130864 (g2) rs1800947 (g3) rs3093077 (g4)

Pattern 4: 4 SNPs measured – g1, g2, g3, g4

1 (I) C T G T

2 (II) C C G T

3 (II) C C G G

4 (III) T C G T

5 (III) T C C T

Pattern 3: 3 SNPs measured – g1, g2, g4

1 (I) C T T

2 (II) C C T

3 (II) C C G

7 (III) = 4+5 T C T

Pattern 2: 3 SNPs measured – g1, g2, g3

1 (I) C T G

4 (III) T C G

5 (III) T C C

6 (II) = 2+3 C C G

2 SNPs measured – g1, g2

1 (I) C T

6 (II) = 2+3 C C

7 (III) = 4+5 T C

Table 8.2: Candidate haplotypes used as instruments for each combination of SNPs mea-

sured. SNPs in bold represent those used as minimal tagging SNPs used for that haplotype

Haplotype rs1205 rs1130864 rs1417938 rs1800947 rs2794521 rs3091244 rs3093068 rs3093077

(group) (g1) (g2) (g2) (g3) (g4) (g4)

1 (I) C T A G T T C T

2 (II) C C T G C C C T

3 (II) C C T G T A G G

4 (III) T C T G T C C T

5 (III) T C T C T C C T

6 (II) C C T G ? ? ? ?

7 (III) T C T ? T C C T

Table 8.3: Candidate haplotypes used as instruments in all studies. Question marks denote

unknown values either due to missing or unmeasured data. SNPs in bold represent those

used as minimal tagging SNPs for that haplotype
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Figure 8.3: All studies with determinable haplotypes – Frequency of haplotypes in each

study. Group I haplotypes (haplotype 1) are coloured green, Group II (haplotypes 2, 3

and haplotype category 6) are coloured blue and Group III (haplotypes 4, 5 and haplotype

category 7) are coloured red

1The equivalent figure including Asian and African descent population groups separately (not dis-

played) shows that both African and Asian populations have different haplotype frequencies to European

descent populations, but have similar frequencies for different study populations within each ethnic clas-

sification.
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Group I Group II Group III
Study N Haplo 1 Total Haplo 2 Haplo 3 Total Haplo 4 Haplo 5 Other

Pattern 4: Studies measuring 4 SNPs – g1, g2, g3, g4
AGES 3219 0.322 0.368 0.316 0.052 0.310 0.233 0.077 0
BRHS 3824 0.301 0.368 0.316 0.051 0.330 0.263 0.063 2
DDDD 897 0.295 0.356 0.302 0.054 0.349 0.274 0.073 0
EPICNL 3478 0.322 0.354 0.299 0.056 0.324 0.259 0.062 6

FHSGRACE 4548 0.307 0.374 0.305 0.069 0.320 0.261 0.057 3
FRAMOFF 1680 0.308 0.366 0.300 0.067 0.326 0.261 0.055 2

GISSI 4034 0.297 0.382 0.294 0.088 0.321 0.266 0.055 0
HEALTHABC 1660 0.309 0.350 0.286 0.065 0.341 0.277 0.064 0

HPFS 737 0.304 0.380 0.309 0.063 0.316 0.247 0.068 3
HVHS 4407 0.308 0.366 0.308 0.058 0.327 0.259 0.061 6

INTHEART 4188 0.311 0.336 - - 0.353 0.282 0.072 2
LURIC 2747 0.320 0.338 0.281 0.057 0.341 0.274 0.067 0
MALMO 2148 0.320 0.344 0.296 0.043 0.337 0.254 0.069 2

MONAKORA 1673 0.309 0.357 0.288 0.068 0.334 0.267 0.067 1
NHS 684 0.296 0.374 0.301 0.057 0.331 0.265 0.061 0
NSC 1673 0.332 0.338 0.289 0.046 0.330 0.243 0.086 0

PENNCATH 1509 0.304 0.368 0.305 0.064 0.328 0.271 0.057 0
PROCARDIS 6464 0.303 0.367 0.311 0.056 0.330 0.266 0.063 1

SPEED 854 0.302 0.354 0.291 0.054 0.344 0.279 0.045 1
UCP 3756 0.293 0.371 0.306 0.059 0.335 0.268 0.065 2

WHIOS 2011 0.313 0.360 0.295 0.064 0.328 0.266 0.062 7
Pattern 3: Studies measuring 3 SNPs – g1, g2, g4

ARIC 2261 0.292 0.359 0.291 0.068 0.349 - - 0
CCHS 10259 0.310 0.349 0.298 0.050 0.342 - - 18
CGPS 32038 0.314 0.351 0.302 0.049 0.336 - - 49
CHAOS 2475 0.310 0.359 0.299 0.060 0.331 - - 1
CIHDS 6716 0.320 0.345 0.297 0.048 0.335 - - 9
EAS 907 0.288 0.383 0.315 0.068 0.329 - - 0
ELSA 5496 0.305 0.368 0.303 0.057 0.327 - - 2

EPICNOR 3298 0.308 0.368 0.302 0.061 0.324 - - 2
NPHSII 2282 0.304 0.363 0.310 0.052 0.333 - - 8
ROTT 5406 0.316 0.357 0.293 0.057 0.327 - - 1
SHEEP 2671 0.321 0.337 0.279 0.054 0.342 - - 1
WHITE2 5515 0.308 0.359 0.303 0.054 0.333 - - 5

Pattern 2: Studies measuring 3 SNPs – g1, g2, g3
BWHHS 3771 0.303 0.373 - - 0.324 0.255 0.065 3
CHS 4511 0.304 0.358 - - 0.339 0.271 0.068 1
HIMS 3946 0.306 0.361 - - 0.333 0.270 0.059 3

PROSPER 5777 0.296 0.374 - - 0.329 0.269 0.060 4
Studies measuring 2 SNPs – g1, g2

CUDAS 1107 0.290 0.364 - - 0.346 - - 5
CUPID 555 0.305 0.370 - - 0.325 - - 1

Table 8.4: All studies with determinable haplotypes – Proportion of seven haplotypes
patterns in each of three groupings in each study, with total number of participants (N)
and number omitted (other) due to not conforming to one of the seven candidate haplotype
patterns
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Figure 8.4: Cohort studies – Quantile plot of log(CRP) distribution against quantiles of a

normal distribution

1CHS is displayed in Figure 8.7 and hence excluded from this figure.
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Figure 8.5: Cohort studies – Piecewise constant estimate of hazard function for each year

of follow-up (lines are 95% confidence intervals from normal approximation for the log

hazard)

1WHITE2 does not contain any incident CHD cases. It is therefore only analyzed retrospectively and

is omitted from this figure.
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8.3 Methods for instrumental variable analysis

In this section, we recall the two-stage method introduced in Chapter 2 and the Bayesian

models of Chapters 5 and 6. We then discuss approaches to IV estimation with a survival

outcome.

8.3.1 Two-stage methods

Two-stage methods, such as two-stage least squares (2SLS) (117) and two-stage predictor

substitution (2SPS) (127), are so called because they can be calculated using two regression

stages (93). The first stage (G-X regression) regresses X on G to give fitted values X̂|G.
The second stage (X-Y regression) regresses Y on the fitted values X̂|G from the first stage

regression. In this chapter, we generally use a logistic second-stage regression, although we

also use conditional logistic, Cox and Weibull regression. The standard error is taken from

the second-stage regression with no correction for uncertainty in the first-stage regression.

We note that we use the term ‘two-stage’ to refer to a two-stage IV analysis and ‘two-

step’ to a two-step meta-analysis based on combining summary estimates from individual

studies. All two-step meta-analyses in this chapter use inverse-variance weighting and

the DerSimonian–Laird method of moments to estimate heterogeneity in a random-effects

model (228).

8.3.2 Bayesian models

We use a Bayesian framework with vague priors for our model. We divide our population

using genetic information into subgroups, where a subgroup contains all individuals in

a study with a certain genotype. For each subgroup j, we estimate the mean level of

phenotype for the subgroup ξj assuming that, for each individual i in the subgroup j,

the measured values of phenotype xij come from a normal distribution with mean ξj

and variance σ2, assumed to be common across subgroups. Assuming a logistic model

of outcome on phenotype, we model the probability of an event πj in subgroup j by

assuming a binomial distribution of number of events nj from total number at risk Nj.

We use a logistic model and assume a linear relationship between the log-odds of event

ηj = logit(πj) and mean level of phenotype ξj. The coefficient β1, the increase in log-odds

of event for unit increase in phenotype, is taken as our causal parameter of interest. As

in the two-stage methods, we only use the phenotype values xij for individuals from the

control population in a case-control study, and for individuals without previous history of
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disease in a cohort study. Individuals with missing phenotype values are still included as

cases or controls in the logistic regression.

Xij ∼ N(ξj, σ
2) (8.5)

nj ∼ B(Nj, πj)

logit(πj) = ηj = β0 + β1 ξj

In a meta-analysis context, we combine estimates on the causal parameter across stud-

ies in a hierarchical model. In a fixed-effects model, the causal parameter β1 is the same

for each study m = 1, . . . ,M :

Xijm ∼ N(ξjm, σ
2
m) (8.6)

njm ∼ B(Njm, πjm)

logit(πjm) = ηjm = β0m + β1 ξjm

In a random-effects model, the causal parameter is allowed to vary between studies,

with a normal distribution imposed on the study-level causal parameters. Here, the causal

parameter of interest µβ is the mean causal effect across studies. We replace the final line

from (8.6) with

logit(πjm) = ηjm = β0m + β1m ξjm (8.7)

β1m ∼ N(µβ, τ
2)

where τ 2, the variance of the random-effects distribution, is a measure of the between-study

heterogeneity in the β1m.

Hence, unlike the two-stage method, the Bayesian analysis is performed in one stage,

and the meta-analysis is performed in one step.

In a SNP-based approach, we model the phenotype additively across SNPs with a per

allele model for each SNP. For each subgroup j comprising all people with gjk variant allele

copies for SNP k, where there are K total SNPs, we estimate the change in phenotype per

allele αk to give average levels of phenotype ξj for each subgroup:

ξj = α0 +
K∑
k=1

αk gjk (8.8)

Alternatively, we can model the phenotype additively across haplotypes as in model

(8.9). For each subgroup j comprising all people with haplotypes h1j and h2j, we can

estimate the mean phenotype contribution per haplotype γk:

ξj = γh1j
+ γh2j

(8.9)
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We note that there is no intercept term γ0, as each individual has exactly two haplotypes.

In each of the Bayesian analyses below, vague independent N(0, 10002) priors were

placed throughout on all regression parameters and independent U(0, 20) priors on the all

standard deviation parameters in normal distributions. Throughout, we use an additive

per-allele SNP based model of genetic association (Model 8.1) using the pre-specified SNPs

measured in each study. We regard the mean of the posterior distribution as the ‘estimate’

of the parameter of interest, the standard deviation of the posterior distribution as the

‘standard error (SE)’, and the 2.5th to the 97.5th percentile range as the ‘95% confidence

interval’.

8.3.3 Survival regression models

Using the two-stage paradigm with survival outcomes, we perform second-stage Cox and

Weibull regressions. It is not clear what the parameter estimated by such regressions

represents (recalling the difficulty with binary outcomes in Chapter 4), and the results

presented here are for comparative purposes only. We also convert the survival outcome

into a binary outcome, ignoring variable follow-up, and use a logistic regression model.

In the Bayesian framework, we can use aWeibull distribution of survival times (Model 8.10),

with shape parameter r and a log-linear model for the rate parameter µj for each individual

i in genotypic group j with time-to-event tij.

Xij ∼ N(ξj, σ
2) (8.10)

Tij ∼ W(r, µj)

log(µj) = ηj = β0 + β1 ξj

If there is no event but an individual is right-censored, then we introduce a censoring

indicator and use the likelihood contribution from the probability of not seeing an event

until the time of censoring. A gamma distribution is used for the prior distribution of r

with shape parameter 0.1 and rate parameter 0.1.

An alternative approach, not considered here, would be a Poisson regression model

based on numbers of events and person-years of follow-up stratified by year of follow-up.

This should estimate a relative rate which closely approximates the hazard ratio.

8.4 Worked example: Cardiovascular Health Study

We firstly analyse the Cardiovascular Health Study (CHS) (203) in detail as a worked

example before considering the other studies.
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8.4.1 Exploratory analyses

The CHS is an observational study of risk factors for cardiovascular disease in adults 65

years or older. We use cross-sectional baseline data for 4511 subjects of European descent

from this study who have data for CRP, of whom 447 have a previous history of CHD,

and survival data for the remaining 4064 subjects with no previous history of CHD. 793

of these subjects had an incident CHD event during the follow-up period.

Follow-up for participants ranges up to 13 years. The plot of hazard against year of

follow-up shows an increasing risk of CHD event, as well as an increasing probability of

censoring, for individuals during the follow-up period (Figure 8.6). 2365 participants have

over 10 years of follow-up.
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Figure 8.6: CHS – Piecewise constant estimate of hazard function (black squares) and

probability of censoring (grey triangles) for each year of follow-up (lines are 95% confidence

intervals from normal approximation for log rates)

The distribution of CRP is known to be skewed with large extreme values. It is usual

to consider the log-transformed distribution of CRP. Figure 8.7 shows that, aside from

extreme values of log(CRP), where the assay method is not sensitive enough to determine

between small values, the log-transformed distribution of CRP is similar to a normal

distribution.

The Kaplan-Meier curve (Figure 8.8) for CHD outcomes has a curved shape with

survivor function decreasing more rapidly throughout the follow-up period. When the

population is divided by quintile of CRP, we see separate lines for the survivor function
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Figure 8.7: CHS – Quantile plot of log(CRP) distribution against quantiles of a normal

distribution

with the survivor functions nearly coincident for the lowest two quintiles of CRP, but

separated for higher quintiles of CRP with worse survival for increasing levels of CRP.

8.4.2 Observational analysis

We firstly analyse the study prospectively, fitting different survival models and a logistic

model to the data to see how they differ in estimates of the association between outcome

and CRP. We then analyse the study cross-sectionally (retrospectively) to estimate the

observational CRP-CHD association using a logistic model. We adjust in all observational

analyses for age at study entry.

We compare a Cox proportional hazards (PH) model, a Weibull PH model, and a

logistic model. The Cox PH model is the most flexible, with a non-parametric baseline

hazard. The Weibull model uses the Weibull distribution as a parametric baseline hazard

function. To assess the suitability of a Weibull distribution, we plot the log cumulative

hazard against the log of survival time (Figure 8.9, left pane). If the graph is a straight

line, as is approximately the case, then the Weibull assumption is plausible (229). If the

graphs when the population is divided into quintiles of CRP are parallel straight lines,

as is approximately the case, then a Weibull PH model is appropriate (Figure 8.9, right

pane) (229). We estimate cumulative hazard using the Kaplan-Meier estimator.

Alternatively, we can regard survival outcomes as binary data and use logistic regres-

sion, taking value 0 for no event and 1 for an event. This ignores the variable follow-up, and
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Figure 8.8: CHS – Kaplan-Meier plots, left - for all participants with 95% confidence

interval (dashed line), right - divided by quintile of CRP (1 = lowest, 5 = highest)

so may result in a less precise estimate. However, under the assumption that individuals

leave the study at random and the disease is rare, the estimates of association should be

similar. Instead of a logistic model, we could use a log-linear model where the parameter

of interest is a log-relative risk. Under the rare disease assumption, these parameters are

approximately equal (230). However, the disease in this case does not seem to be rare,

with 19.5% of the participants having a CHD event.

Each of the above models can be fitted in a classical and a Bayesian framework. For

computational reasons, we do not present results from a Bayesian Cox PH model. As the

two approaches are both based on likelihood, when vague priors are used we should obtain

similar results from each method.

Results (Table 8.5) show that the estimates of log-hazard ratios using the Cox and

Weibull models are very similar. The logistic model generally shows slightly lower esti-

mates than the Cox or Weibull survival models. The larger standard errors reflect the
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Figure 8.9: CHS – Assessing the Weibull baseline hazard assumption (left) and the pro-

portional hazard assumptions (right)

loss of information in discarding the time-to-event data. The Bayesian estimates are very

similar to the classical estimates with a similar degree of uncertainty. The shape parame-

ter in the Weibull method is estimated at 1.372 (95% CI: 1.286 to 1.463) by the classical

method and 1.375 (95% CrI: 1.288 to 1.469) by the Bayesian method.

In the cross-sectional (retrospective) analysis, only a logistic model is estimated. Bayesian

and classical analyses give very similar results, and the log odds ratios estimated in the

prospective and cross-sectional analyses are similar, especially log odds ratio per unit

increase in log(CRP).

8.4.3 Causal analysis

To illustrate the instrumental variable method, we provide a visual representation of the

causal analysis. We use four genetic variants as instruments: rs1205 (g1), rs1417938 (g2),
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Prospective Classical methods Bayesian methods

analysis log-HR (SE) log-HR (SE) log-OR (SE) log-HR (SE) log-OR (SE)

Quintile Cox model Weibull model Logistic model Weibull model Logistic model

Lowest 0 (reference) 0 (reference) 0 (reference) 0 (reference) 0 (reference)

2 -0.052 (0.124) -0.052 (0.124) -0.074 (0.136) -0.053 (0.123) -0.074 (0.136)

3 0.166 (0.119) 0.163 (0.119) 0.164 (0.132) 0.166 (0.120) 0.165 (0.131)

4 0.392 (0.115) 0.388 (0.115) 0.379 (0.128) 0.393 (0.116) 0.379 (0.127)

Highest 0.638 (0.111) 0.630 (0.112) 0.580 (0.125) 0.633 (0.113) 0.581 (0.124)

Per unit increase 0.250 (0.034) 0.247 (0.035) 0.227 (0.039) 0.248 (0.035) 0.227 (0.039)

Retrospective Classical methods Bayesian methods

analysis log-OR (SE) log-OR (SE)

Quintile Logistic model Logistic model

Lowest 0 (reference) 0 (reference)

2 -0.170 (0.179) -0.170 (0.180)

3 0.211 (0.166) 0.214 (0.166)

4 0.495 (0.159) 0.498 (0.159)

Highest 0.523 (0.158) 0.528 (0.158)

Per unit increase 0.230 (0.047) 0.229 (0.047)

Table 8.5: CHS – Observational log-risk ratio of CHD according to log(CRP) in prospective

analysis (study viewed longitudinally with n = 793 events out of N = 4064 participants)

and retrospective analysis (study viewed cross-sectionally with n = 447 baseline cases out of

N = 4511 participants). Cox, Weibull, and logistic models of outcome regressed on quintile of

CRP and on log(CRP), adjusting for age at study entry estimated using classical and Bayesian

methods: log hazard ratios (HR) and log odds ratios (OR) with standard error (SE)
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rs1800947 (g3) and rs2808630 (another SNP in the CRP coding region, here called g5).

We divide the population up into genotypic subgroups using each of the genetic variants

in turn, and then all of the variants together. For each group, we use bootstrap sampling

to estimate the distribution of mean log(CRP) and log-odds of CHD within that group.

Graphs are given separately for retrospectively (Figure 8.10) and prospectively assessed

CHD (Figure 8.11). Using each of the SNPs individually, gives three subgroups which

differ in mean CRP level. The gradient of the line passing through the centre of these

distributions represents the causal association. The bottom two graphs in each figure use

information from all the SNPs, taking the subgroups with greater than 400 participants,

then with greater than 200 participants. Although the picture becomes less clear as more

distributions are added, we see that the causal estimates should be more precise with

multiple SNPs, as there are more subgroups.

We see from Table 8.6 that the results from different two-stage and Bayesian analyses

are similar throughout. Different regression models give fairly similar results, though with

some differences due to the different assumptions used for baseline hazard and follow-

up, as discussed in the next section. The prior and posterior distributions of β1 for

the retrospective logistic analyses using SNPs g1, g2 and g3 separately are shown in

Figure 8.12, and for g5 after 502 000 iterations (first 2000 discarded as ‘burn-in’) in

Figure 8.13. We see that while the posterior distributions using g1, g2 and g3 are very

different to the prior distribution, that in the case of g5, much of the information in the

posterior distribution comes from the prior. The Markov chain in the MCMC process for

g5 spent the majority of the time close to zero, but periodically “wandered off”, as can be

seen by the posterior distribution having long tails.

8.4.4 Differences between two-stage and Bayesian IV estimates

in a single study

Although there is broad agreement between the Bayesian and two-stage IV results in

Table 8.6, the differences are considerably greater than those between the classical and

Bayesian observational analyses in Table 8.5. We discuss some possible reasons for the

differences.

The Bayesian IV estimates in Table 8.6 are generally greater in magnitude than their

two-stage counterparts, although p-values are very similar. The increase in size of effect

may be due to random error in the mean phenotype estimates in genotypic groups leading

to dilution of the regression coefficients in the second-stage regression and attenuation in
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Figure 8.10: CHS – Bootstrap distributions of mean log(CRP) and log-odds of retrospec-

tively assessed CHD within each genetically-defined subgroup with means (area of points

is proportional to number of individuals in the group)
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Figure 8.11: CHS – Bootstrap distributions of mean log(CRP) and log-odds of prospec-

tively assessed CHD within each genetically-defined subgroup with means (area of points

is proportional to number of individuals in the group)
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Figure 8.12: CHS – Prior and posterior distributions of β1 for retrospective logistic analyses

using SNPs g1, g2 and g3

the two-stage estimates (231). As the Bayesian analyses allow for error in X, the Bayesian

estimates should be unaffected by regression dilution bias.

The Bayesian model estimates causal association in one stage, allowing for propagation

of error and feedback throughout the model. In the two-stage model, there is no possibility

of propagation of error or feedback from the second-stage to the first-stage regression.

The Bayesian analysis gives a posterior distribution rather than a single point estimate.

When the posterior distribution cannot be well-approximated by a normal distribution, the

mean and median of the posterior can be quite different, and neither may be an adequate

summary of the posterior. The two-stage estimate may be closer to one of the posterior

mean or median than the other.

With regards to the causal estimates using g5, Figures 8.10 and 8.11 show that the

mean phenotype distributions in the subgroups defined by different numbers of variant

alleles of g5 overlap substantially. Visually, the gradient joining the line through the mean

phenotype and log odds ratio of the three subgroups in each case could plausibly be either

horizontal or vertical. This is expressed in the two-stage method by a large standard error

on the causal parameter, but expressed more accurately by the confidence interval in the

ratio method from Fieller’s Theorem, which covers the entire real line, or by the Bayesian
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Figure 8.13: CHS – Prior and posterior distributions of β1 for retrospective logistic analysis

using SNP g5 (rs2808630)

method, where the posterior distribution fails to converge. Hence, failure to converge in

the Bayesian method is not (necessary) a negative feature, but can be an indication that

no proper posterior distribution reflects the uncertainty due to the weakness in the G-X

association.

For these reasons, while we would expect the results from a Bayesian and two-stage IV

analysis to be close for large studies, they may well give different estimates if the sample

size is small, if there are few events, or if the IV is weak.

8.4.5 Summary of causal association in CHS

The estimates of causal association in the prospective analysis confirm the apparent pos-

itive causal association of the graphical representation (Figure 8.11). We see how using

all of the SNPs as an IV rather than using the SNPs individually gives a more precise

estimate of the causal association, synthesizing the individual causal estimates, which will

be correlated if the SNPs are in LD. CHS was chosen as an example study as it shows a

significant causal effect in some of the analyses: this is not representative of the totality

of the data (Section 8.7).
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Prospective Two-stage methods Bayesian methods 1

analysis log-HR (SE) log-HR (SE) log-OR (SE) log-HR (SE) log-OR (SE)

Using IV Cox model Weibull model Logistic model Weibull model Logistic model

g1 0.664 (0.264) 0.661 (0.265) 0.758 (0.295) 0.680 (0.283) 0.784 (0.320)

g2 0.681 (0.424) 0.673 (0.424) 0.671 (0.475) 0.725 (0.504) 0.728 (0.559)

g3 0.580 (0.505) 0.583 (0.506) 0.723 (0.556) 0.665 (0.621) 0.830 (0.704)

g5 1.525 (5.845) 1.583 (5.846) 1.889 (6.546)

all 0.609 (0.225) 0.606 (0.226) 0.725 (0.252) 0.600 (0.233) 0.717 (0.264)

Retrospective Two-stage methods Bayesian methods 1

analysis log-OR (SE) log-OR (SE)

Using IV Logistic model Logistic model

g1 0.388 (0.366) 0.408 (0.382)

g2 -0.527 (0.671) -0.531 (0.696)

g3 0.627 (0.620) 0.864 (0.893)

g5 3.521 (2.614)

all 0.352 (0.322) 0.309 (0.326)

Table 8.6: CHS – Causal log odds ratio of CHD per unit increase in log(CRP) in prospective

analysis (study viewed longitudinally with n = 793 events out of N = 4064 participants) and

retrospective analysis (study viewed cross-sectionally with n = 447 baseline cases out of N =

4511 participants). Cox, Weibull, logistic and log-linear two-stage and Bayesian instrumental

variable models: log hazard ratio (HR) and odds ratio (OR) estimates with standard error (SE)

1Posterior distribution of causal effect using g5 (rs2808630) did not converge.
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8.5 Analysis of individual studies

Having discussed one particular study in detail, we return to the examine the other studies

in the collaboration, which we consider in groups corresponding to different study designs.

For each of the study designs in the CCGC, we desire to use a logistic model of disease

association. This is for three reasons: first, to simplify calculations in the computationally

intensive Bayesian framework; secondly, to aim to estimate the same target parameter in

each of the studies; and thirdly, because there is an interpretation of the parameter in the

logistic case (Chapter 4). In this section, we detail the conditions required for a logistic

model to be valid for each study design and examine the difference between IV estimates

based on different approaches (two-stage and Bayesian) and different models of association

as a sensitivity analysis for the assumptions made in Section 8.7.

In cohort studies, where possible, two analyses are performed, as shown with the CHS

analysis of Section 8.4 1. A retrospective analysis is performed by viewing the cohort at

baseline as a cross-sectional study with cases taken as individuals with previous history

of disease (prevalent cases) and controls as all non-diseased individuals. A prospective

analysis excludes all prevalent cases and considers CHD events within the reporting period.

An individual who is censored at the end of the follow-up period is taken as a control in

both the retrospective and prospective analyses as they have two separate opportunities

to become a case.

We look in turn at unmatched case-control studies and cohort studies viewed cross-

sectionally (retrospectively), then matched case-control studies, and finally cohort studies

viewed prospectively. In each case, we use both two-stage and Bayesian models to estimate

a causal effect. For each study design, we estimate a pooled estimate from a meta-analysis

across all the studies of that design.

8.5.1 Differences between two-stage and Bayesian IV estimates

in a meta-analysis

As previously stated, the Bayesian model estimates causal association in one stage. Sim-

ilarly, the Bayesian meta-analysis model estimates a pooled association in one step. In

the Bayesian meta-analysis, the prior for the heterogeneity parameter ensures that the

heterogeneity is always positive. In a two-step meta-analysis, the DerSimonian–Laird

heterogeneity can be (and is often) zero. If there are not many studies or studies have

1We note that the results for the CHS study in this section are different to those in the previous

section due to a different choice of instruments.
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imprecise estimates, the DerSimonian–Laird estimate may be zero due to lack of evidence

of heterogeneity, whereas the Bayesian one-step model sees a lack of information on the

between-study variance, and the posterior for τ is similar to the prior. The point estimate

changes as heterogeneity increases, as larger studies are down-weighted in comparison to

small studies (232).

8.5.2 Unmatched case-control studies and cross-sectional analy-

sis of cohort studies

In the case-control studies and cohort studies viewed cross-sectionally, we use a logistic

model in the second stage regression. In both cases, this is the correct analysis, although

with a cohort study, a log-linear model could also be used to estimate a relative risk, which

is close to the odds ratio estimated by the logistic model under the rare-disease assumption.

Table 8.7 shows that the two-stage and Bayesian methods give similar answers in most

large studies. Some studies give less consistent results, especially ISIS and HIFMECH,

where no results are given as the posterior distribution of the causal effect did not converge.

In both of these studies, only one SNP is available and the F statistic in the additive model

is less than 1, indicating that the IV explains less of the variation in the phenotype than

would be expected by chance. As explained in Section 8.4.4, the Bayesian and two-stage

estimates are not likely to agree in such a situation.

8.5.3 Analysis of matched case-control studies

In the matched case-control studies, in the two-stage approach, we use conditional and un-

conditional logistic models in the second stage regression. In a matched case-control trial,

the effect size should be estimated using conditional logistic regression (233), although

under certain assumptions about the matching variables, this should be equivalent to un-

conditional logistic regression. A sufficient condition is that the stratification variables (S)

are either:

i. conditionally independent of the outcome given the phenotype (S ⊥⊥ Y |X)

ii. conditionally independent of the phenotype given the outcome (S ⊥⊥ X|Y )

Under this condition, both approaches asymptotically give the same estimates (234). Gen-

erally, the regression coefficient from unconditional logistic regression is conservatively

biased compared to that from conditional logistic regression (235), but the bias is not

generally very severe (188; 233)
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In the Bayesian approach, we use an unconditional logistic model, due to issues of

computational complexity and difficulty of Bayesian inference on a conditional likelihood.

Table 8.8 shows that for most studies the two approaches give broadly similar estimates.

The Bayesian and two-stage random-effects pooled results are quite different due to differ-

ent assumptions about heterogeneity, as stated in Section 8.5.1. The lack of information

on between-study heterogeneity due to the paucity of studies and diffuse prior on the het-

erogeneity parameter in the Bayesian approach gives a large estimate of τ . This conflict

can be redressed by use of a more informative prior; two-stage and Bayesian fixed-effect

meta-analyses (a point-mass prior for τ concentrated at 0) give much closer results.

8.5.4 Prospective analysis of cohort studies

In the cohort studies (viewed prospectively), as with the CHS analysis of Section 8.4 in

the two-stage approach, we use Cox PH, Weibull, and logistic models in the second stage

regression. In the Bayesian approach, we use a logistic model (8.5) and a Weibull model

(8.10). For most studies, Table 8.9 shows that the approaches give similar estimates. There

is a slight loss in precision in using a logistic model over a Cox or Weibull model, due to

the loss of time-to-event information. We note that the Bayesian and two-stage analyses

give similar inference throughout in studies, especially in studies with over 100 events.

The standard error of the causal parameter in the Bayesian Weibull model is occasionally

marginally larger than in the logistic model due to Monte Carlo error, despite dropping

information on the time-to-event. As in Section 8.5.3, the random-effects meta-analysis

results are different between the Bayesian and two-stage analyses, but the fixed-effect

results are almost identical.

The correlation between the two-stage IV estimates in cohort studies viewed prospec-

tively and cross-sectionally (using a logistic model in both analyses, similar results using

a Cox or Weibull model) is 0.590 (10 studies). Figure 8.14 shows the estimates with 95%

CIs from the two analyses for each study as a scatter plot.

8.5.5 Use of covariates

As mentioned in Chapter 3, use of covariates in IV analyses should help strengthen in-

struments and give more precise IV estimates. In a logistic regression, adjustment for

covariates does not necessarily reduce the standard error of a coefficient, as the interpre-

tation of the coefficient changes (Chapter 4), but the power to detect an effect should

increase (195). Although adjustment for standard covariates such as age and sex is pos-

sible, we particularly want to adjust for other markers of inflammation as they typically
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Figure 8.14: Cohort studies with prevalent cases – Scatter plot of two-stage IV log odds

ratio estimates from cross-sectional and prospective analysis of each study in turn

explain a large proportion of variation in CRP. However, adjustment for covariates requires

individual modelling of CRP, which means that a CRP measurement is needed from each

individual. We therefore look at cohort studies viewed prospectively, excluding all par-

ticipants with a prevalent disease event to avoid reverse causation. We take five cohort

studies with measurements for fibrinogen (which should not be on the causal pathway

from CRP to CHD, see Chapter 5) and the three cohort studies with measurements for

fibrinogen and interleukin-6 (IL6), which was introduced and used as a covariate in Chap-

ter 3. As individual modelling is necessary, we exclude from analysis all individuals with

a missing value in CRP, fibrinogen, and IL6 (when adjusted for); hence results without

adjustment will be slightly different to those in Section 8.5.4. As is conventional, we use

log-transformed IL6, as the distribution of log(IL6) is closer to normal. We use two-stage

and Bayesian approaches with a logistic model, adjusting for covariates in both the G-X

and X-Y regression stages (118).

We see from Table 8.10 that, despite fibrinogen explaining 15–36% of the variance in

log(CRP) and log(IL6) and fibrinogen together explaining 34–49% of the variance, the

standard errors of the estimates of causal association did not consistently decrease. We

note that the standard errors in Table 8.10 are typically wider than those in Table 8.9 due

212



8.5 Analysis of individual studies

to the decrease in sample size caused by restricting analysis to those with measured values

of the phenotype and covariate(s). This is in contrast to the findings of Section 3.6.2.

Although covariate adjustment increases the strength of the instrument, the uncertainty

in the causal estimate is mainly due to the second-stage X-Y regression, not the first stage

G-X regression. Adjustment for covariates in a logistic model changes the interpretation

of the coefficients in the second-stage regression, generally leading to greater estimates and

increased standard errors (191). It seems that covariate adjustment in the CCGC dataset

is not a fruitful avenue to pursue. A further technical problem is that the Bayesian model

takes longer to run, as each individual has a different level of disease risk in the model, as

opposed to all individuals in a genotypic group having the same level of risk.

As inclusion of covariates explaining a large proportion of the variation in the pheno-

type does not make a great difference to the precision of the causal effect and sometimes

increases the standard error while decreasing the available sample size, we conclude that

adjustment for covariates is not worth performing in the overall analysis.

8.5.6 Summary of individual study analyses

To summarize Sections 8.4 and 8.5, we see that despite the logistic model relying on certain

assumptions, the causal estimates are not particularly sensitive to these assumptions, and

the loss of information in discarding survival outcomes is not great. We conclude that

using a logistic model in all studies is a reasonable simplifying assumption.

The Bayesian and two-stage approaches make different assumptions in terms of feed-

back and propagation of errors between the regression stages, normality of the causal

estimate, and heterogeneity in the random-effects models. We have seen that, where the

number of cases is fairly large (n > 100), the sample size is large (N > 1000) and the

instrument strength is moderate (F > 5), the Bayesian and two-stage analyses give simi-

lar inferences. In meta-analysis models, the fixed-effects two-stage and Bayesian analyses

agree throughout, and the random-effects analyses agree when the number of studies is

large (e.g. Table 8.7 with M = 27).
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Study N n Two-stage analysis Bayesian analyses
C
a
se
-c
on

tr
ol

st
u
d
ie
s

ARIC 2261 632 0.249 (0.279) 0.248 (0.314)

CAPS 1157 198 -0.292 (0.505) -0.291 (0.600)

CIHDS 6716 2236 -0.229 (0.225) -0.240 (0.235)

CUDAS 1107 56 -0.801 (1.392) -1.012 (2.176)

CUPID 555 340 0.250 (0.326) 0.276 (0.491)

DDDD 897 269 -0.368 (0.446) -0.517 (0.628)

EPICNL 3478 426 -0.131 (0.340) -0.134 (0.347)

HIFMECH 1006 490 1.022 (2.508) - 1

HIMS 3946 522 -0.461 (0.318) -0.453 (0.333)

ISIS 3618 2075 0.467 (1.480) - 1

LURIC 2747 1137 -0.080 (0.212) -0.086 (0.235)

MALMO 2148 928 -0.111 (0.158) -0.099 (0.194)

PROCARDIS 6464 3126 0.033 (0.180) 0.032 (0.185)

SHEEP 2671 1113 0.275 (0.216) 0.311 (0.250)

SPEED 854 90 0.009 (0.488) 0.058 (0.608)

WHIOS 3756 1725 0.017 (0.202) 0.017 (0.216)

C
oh

or
t
st
u
d
ie
s

BRHS 3824 151 0.258 (0.491) 0.259 (0.500)

BWHHS 3771 236 0.345 (0.475) 0.416 (0.531)

CCHS 10259 241 0.986 (0.772) 0.988 (0.792)

CGPS 32038 899 -0.517 (0.325) -0.518 (0.326)

CHS 4511 447 0.336 (0.358) 0.349 (0.375)

EAS 907 28 1.666 (0.974) 1.726 (1.209)

ELSA 5496 241 -0.506 (0.461) -0.551 (0.496)

FRAMOFF 1680 81 1.186 (0.747) 1.261 (0.852)

PROSPER 5777 768 -0.156 (0.258) -0.153 (0.261)

ROTT 5406 614 0.254 (0.388) 0.271 (0.417)

WHITE2 5515 31 0.535 (0.901) 1.289 (1.238)

Pooled 122 565 18 900 -0.011 (0.061) -0.008 (0.065)

Heterogeneity I2 = 0% (0–33%) τ̂ = 0.086

Table 8.7: Case-control studies and cohort studies viewed cross-sectionally – Log odds

ratio of (retrospectively assessed) CHD per unit increase in log(CRP) using two-stage and

Bayesian IV methods, number of participants in study (N), number of events (n), pooled

results from two-step inverse-variance weighted random-effects meta-analysis (two-stage)

or hierarchical random-effects meta-analysis model (Bayesian), heterogeneity estimate (I2

with 95% confidence interval for two-step method, τ̂ for hierarchical model): log odds ratio

estimates with standard error

1Posterior distribution of causal effect did not converge.
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Two-stage analyses Bayesian analyses

Study N n Conditional logistic model Unconditional logistic model Logistic model

EPICNOR 3298 1074 0.102 (0.284) 0.125 (0.280) 0.139 (0.319)

HPFS 737 200 -0.372 (0.405) -0.408 (0.362) -0.572 (0.543)

NHS 684 196 -0.294 (0.327) -0.204 (0.308) -0.228 (0.374)

NSC 1673 577 0.326 (0.327) 0.258 (0.316) 0.245 (0.338)

Pooled (FE) 6392 2047 -0.019 (0.164) -0.027 (0.156) -0.031 (0.166)

Pooled (RE) 6392 2047 -0.019 (0.164) -0.027 (0.156) -0.063 (0.509)

Heterogeneity I2 = 0% (0–83%) I2 = 0% (0–82%) τ̂ = 0.531

Table 8.8: Matched case-control studies – Conditional and unconditional logistic models for causal log

odds ratio of CHD per unit increase in log(CRP) using two-stage and Bayesian IV methods with standard

error (SE), number of participants in study (N), number of events (n), pooled results from two-step

inverse-variance weighted fixed-effects/random-effects (FE/RE) meta-analysis (two-stage) or hierarchical

FE/RE meta-analysis model (Bayesian), heterogeneity estimate (I2 with 95% confidence interval for two-

step method, τ̂ for hierarchical model) from random-effects meta-analysis: log odds ratio estimates with

standard error
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Two-stage analyses Bayesian analyses

log-HR log-HR log-OR log-HR log-OR

Study N n Cox model Weibull model Logistic model Weibull model 1 Logistic model

BRHS 3824 379 0.463 (0.305) 0.456 (0.306) 0.493 (0.323) 0.51 (0.33) 0.535 (0.351)

BWHHS 3771 43 -0.253 (1.034) -0.255 (1.036) -0.268 (1.042) -0.17 (1.08) -0.222 (1.085)

CCHS 10259 680 0.038 (0.457) 0.042 (0.457) 0.067 (0.472) 0.04 (0.48) 0.066 (0.482)

CGPS 32038 188 -0.460 (0.699) -0.460 (0.700) -0.502 (0.702) -0.46 (0.71) -0.516 (0.709)

CHS 4511 793 0.680 (0.258) 0.677 (0.259) 0.767 (0.288) 0.68 (0.28) 0.770 (0.307)

EAS 907 61 0.626 (0.689) 0.629 (0.692) 0.583 (0.722) 0.67 (0.84) 0.611 (0.891)

ELSA 5496 71 -0.487 (0.828) -0.480 (0.829) -0.539 (0.833) -0.46 (0.85) -0.554 (0.857)

FRAMOFF 1680 46 0.398 (0.965) 0.363 (0.965) 0.332 (0.974) 0.51 (1.21) 0.430 (1.204)

NPHSII 2282 99 -1.729 (0.815) -1.727 (0.830) -1.755 (0.837) -1.94 (0.97) -2.014 (1.008)

PROSPER 5777 476 0.252 (0.311) 0.237 (0.312) 0.196 (0.328) 0.25 (0.32) 0.205 (0.337)

ROTT 5406 259 -0.313 (0.564) -0.313 (0.565) -0.334 (0.582) -0.35 (0.61) -0.374 (0.635)

WOSCOPS 1451 279 -0.380 (2.539) -0.429 (2.540) -1.287 (2.806) - 2

Pooled (FE) 77402 3374 0.266 (0.137) 0.262 (0.137) 0.251 (0.145) 0.26 (0.13) 0.252 (0.145)

Pooled (RE) 77402 3374 0.208 (0.159) 0.214 (0.156) 0.175 (0.175) 0.14 (0.23) 0.114 (0.139)

Heterogeneity I2 = 14% (0–54) I2 = 12% (0–51) I2 = 19% (0–57) τ̂ = 0.38 τ̂ = 0.419

Table 8.9: Cohort studies – Cox, Weibull and logistic models for causal log risk ratio of CHD per

unit increase in log(CRP) using two-stage and Bayesian IV methods with standard error (SE), num-

ber of participants in study (N), number of events (n), pooled results from two-step inverse-variance

weighted fixed-effects/random-effects (FE/RE) meta-analysis (two-stage) or hierarchical FE/RE meta-

analysis model (Bayesian), heterogeneity estimate (I2 with 95% confidence interval for two-step method,

τ̂ for hierarchical model): log-hazard ratio (HR) and odds ratio (OR) estimates with standard error

1The Weibull models were slower to run and mixed poorly, so results are only given to 2 decimal

places due to Monte Carlo random error.
2Posterior distributions of causal effect did not converge.
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Two-stage analyses Bayesian analyses 1

Study N n Not adjusted Adjusted Not adjusted Adjusted

Adjustment for fibrinogen only

BWHHS 3005 43 -0.261 (1.031) -0.251 (1.011) -0.15 (1.09) -0.14 (1.04)

CCHS 8217 644 -0.182 (0.509) -0.113 (0.489) -0.31 (0.54) -0.21 (0.53)

ELSA 4234 50 -1.081 (0.970) -0.984 (0.865) -1.10 (1.00) -0.98 (0.89)

NPHSII 2153 99 -1.749 (0.834) -1.998 (0.851) -1.99 (0.99) -2.19 (1.01)

ROTT 1775 94 -0.626 (0.834) -0.436 (0.667) -0.65 (0.92) -0.44 (0.70)

Adjustment for fibrinogen and log(IL6)

CHS 3728 708 0.666 (0.301) 0.712 (0.314) 0.67 (0.32) 0.71 (0.33)

EAS 612 40 0.709 (0.867) 0.498 (1.063) 0.81 (1.13) 0.54 (1.25)

FRAMOFF 1471 43 0.374 (0.987) 0.166 (1.048) 0.56 (1.34) 0.24 (1.24)

Table 8.10: Cohort studies measuring fibrinogen – Causal log odds ratio of CHD per unit

increase in log(CRP) using two-stage and Bayesian IV methods and logistic model with

standard error (SE) without and with and adjustment for fibrinogen or fibrinogen and

log-transformed interleukin-6 (log(IL6)), number of participants in study (N), number of

events (n)

1Results given to two decimal places due to Monte Carlo error.
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8.6 Dealing with issues of evidence synthesis

In this section, we recall some of the problems and solutions of combining evidence from

heterogenous sources. These extensions in the Bayesian framework were first introduced

in Section 5.6 and are briefly summarized here.

8.6.1 Cohort studies

We would like to include up to two outcomes for participants in cohort studies in the

analysis, one in the study viewed retrospectively and one prospectively. However, the

individual’s phenotype should only be included once. Additionally, the same parameter

should be estimated in both analyses. In the Bayesian model of Section 5.6.1, this is

achieved by modelling two regression equations simultaneously. In the two-stage method,

we calculate the causal effect separately using prospectively and retrospectively assessed

events, combine the two estimates using an inverse-variance weighted fixed-effect meta-

analysis, and take the result of this as the study-specific effect. This assumes, incorrectly,

that the two estimates are independent; such an assumption is not made in the Bayesian

method. Although in this case the phenotype data is used twice, the main source of un-

certainty in the causal estimates comes from the second-stage regression, and so inclusion

of the phenotype data twice should not add undue precision to the overall pooled result.

8.6.2 Common SNPs and haplotypes

In the Bayesian model, where studies have measured the same SNPs or have measured

SNPs identifying the same haplotypes, the parameters of genetic association can be pooled

across studies using a random-effects distribution as stated in Sections 5.6.2 and 5.6.3.

Where two sets of studies have measured some of the same SNPs, we have not been

able to pool parameters of association due to linkage disequilibrium (LD) between SNPs

leading to correlation of the parameters. In SNP-based meta-analyses pooling parameters

of genetic association, four parameter distributions were used in Pattern 4 studies, three

in Pattern 3 and Pattern 2 studies, and one in Pattern 1 studies, leading to a total of

eleven parameter distributions. In haplotype-analyses, only six parameter distributions

were needed to cover all of the studies (except the four studies where sufficient genetic

data to determine haplotypes were not available).
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8.6.3 No phenotype data or tabular genetic data

As stated in Section 5.6.4, we can use the random-effects distributions of the genetic

association parameters as a predictive distribution or implicit prior to enable inclusion

of the 10 studies in the collaboration without phenotype data or with only tabular data

in the Bayesian analysis. As no study-specific causal estimate can be obtained for these

studies using a two-stage method, they are omitted from the two-step meta-analyses of

the two-stage results.

8.7 Meta-analysis

We apply the methods of the previous sections to the CCGC data. Firstly, we look at

estimation of the causal effect using a single instrument; then we present overall meta-

analyses results from summary two-stage estimates and from Bayesian hierarchical models.

8.7.1 Using instruments one at a time

The forest plot of Figure 8.15 shows the results for the G-Y associations in all of the stud-

ies using each SNP in turn. In each case, we use the “correct” regression model: logistic

regression for matched case-control studies and cross-sectional analysis of cohort studies,

conditional logistic regression for unmatched case-control studies and Cox regression for

cohort studies. Prospective and cross-sectional analyses of cohort studies have been com-

bined in fixed-effect meta-analyses to give a single study-specific estimate. We see that

the estimates are all close to null.

Using the method of Thompson et al. (71) (see Section 2.12), we calculate causal

estimates using each instrument in turn. Confidence intervals are constructed assuming

the within-study correlation between G-X and G-Y association is zero, as recommended

in the Thompson paper. Results for the G-X and G-Y associations, as well as the causal

X-Y association are given in Table 8.11.

The causal estimates from each SNP are similar; heterogeneity of estimates would

be evidence against the validity of one or more of the instruments (117). As the causal

estimates are derived from the same data and are correlated, they cannot be combined.

As none of these analyses uses the totality of the genetic data, a two-stage or Bayesian

approach would be preferred.
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Figure 8.15: All studies – Forest plots for per allele log odds ratio of CHD for each SNP in

univariate regression of CHD on the SNP using correct regression. Pooled effects calculated

using two-step random-effects meta-analysis

1Using logistic regression for unmatched case-control studies and cross-sectional analysis of cohort

studies, conditional logistic regression for matched case-control studies and Cox regression for prospective

analysis of cohort studies. Prospective and cross-sectional analyses of cohort studies combined in fixed-

effect meta-analysis to give single study-specific estimate.
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SNP Number of Pooled effect p-value Heterogeneity

studies (SE) (I2 and 95% CI)

G
-X

g1 29 -0.1703 (0.0097) 2× 10−77 58% (37–72%)

g2 32 0.1281 (0.0070) 2× 10−75 29% (0–54%)

g3 17 0.2635 (0.0194) 3× 10−42 14% (0–51%)

g4 24 -0.1985 (0.0125) 6× 10−57 8% (0–41%)

G
-Y

g1 39 -0.0136 (0.0129) 0.29 31% (0–54%)

g2 42 0.0012 (0.0105) 0.91 2% (0–37%)

g3 26 0.0041 (0.0241) 0.86 0% (0–41%)

g4 34 0.0030 (0.0227) 0.90 4% (0–32%)

SNP Number of studies Causal estimate (95% CI)

X
-Y

g1 39 0.150 (-0.011, 0.310)

g2 42 0.007 (-0.178, 0.191)

g3 26 0.122 (-0.109, 0.353)

g4 34 -0.033 (-0.315, 0.248)

Table 8.11: Pooled estimates from two-step inverse-variance weighted random-effects meta-

analysis of per allele effect on log(CRP) (G-X association) and log odds of CHD (G-Y

association) in regression on each SNP in turn, heterogeneity estimate; causal estimates

(X-Y association) of log odds ratio of CHD per unit increase in log(CRP) from meta-

analysis using method of Thompson et al. (71)

8.7.2 Using all instruments

Table 8.12 shows the pooled estimates of association using two-stage and Bayesian meth-

ods. We used an additive genetic model throughout with all the pre-specified SNPs avail-

able in each study as the IV. Figure 8.16 gives a forest plot of the two-stage causal estimates

in each study using a logistic model. In the Bayesian analyses, we used either SNPs ac-

cording to the four patterns or haplotypes. In the haplotype models, we used the seven

defined haplotypes (Table 8.3) as instruments. When using a pooled model (Model (5.17)

for SNPs, Model (5.18) for haplotypes), studies where CRP has not been measured have

been included, resulting in a narrowed confidence interval, and the causal estimate is fur-

ther from the confounded association, as would be anticipated due to reduction in weak

instrument bias if the true causal effect were null.

We see that the causal effect is close to null. The results for the two-stage analysis

using logistic regression throughout and the Bayesian analysis without pooling are the

most directly comparable, as they use the same data and the same model of association.

The point estimates in these analyses are very similar and the 95% CIs are of similar
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width, with the Bayesian interval slightly wider. The pooled analyses based on the same

data here give a slight reduction in precision, but the pooling enables the inclusion of

studies without phenotype data, whence the precision of the causal effect increases.

The prediction interval (236), which represents the the range of values in which the

true value of the causal effect for an additional study would be expected to lie with 95%

certainty is −0.319 to 0.283. This is calculated from the SNP-based method using data

from all the studies. The prediction interval is wider than the pooled estimate due to

between-study heterogeneity.

These analyses rule out even a small causal effect of long-term CRP levels on CHD

risk, with the upper bound of the 95% CI in the SNP-based pooled analyses using the

totality of the data available corresponding to an odds ratio of 1.1 for a unit increase in

log(CRP) (which is close to a 1 standard deviation increase in log(CRP) (64)).

Two-stage analyses

IV used Studies N n Causal estimate Heterogeneity

SNPs - Correct regression 1 33 129777 24135 0.030 (-0.086 to 0.146) I2 = 14% (0–44%)

SNPs - Logistic regression 33 129777 24135 0.024 (-0.092 to 0.140) I2 = 13% (0–43%)

Bayesian analyses

SNPs - unpooled 33 129777 24135 0.016 (-0.114 to 0.146) τ̂ = 0.132

SNPs - pooled (same studies) 33 129777 24135 0.009 (-0.134 to 0.150) τ̂ = 0.153

SNPs - pooled (all studies) 43 159207 36463 -0.013 (-0.115 to 0.094) τ̂ = 0.106

Haplotypes - unpooled 29 123120 21228 0.023 (-0.094 to 0.146) τ̂ = 0.126

Haplotypes - pooled 39 152678 33589 0.008 (-0.095 to 0.112) τ̂ = 0.099

Table 8.12: All studies measuring CRP (all studies if noted) – Causal estimate of log odds ratio of

CHD per unit increase in log(CRP) using all available pre-specified SNPs (unpooled and pooled)

or haplotypes (unpooled and pooled) as instruments in random-effect meta-analyses: number of

studies, participants (N) and events (n) included in analysis, estimate of causal association (95%

confidence interval), heterogeneity estimate (I2 with 95% confidence interval for two-step method, τ̂

for hierarchical model)

1Using logistic regression for unmatched case-control studies and cross-sectional analysis of cohort

studies, conditional logistic regression for matched case-control studies and Cox regression for prospective

analysis of cohort studies.
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Figure 8.16: All studies measuring CRP – Forest plot for causal estimate of log odds ratio

of CHD per unit increase in log(CRP) from two-stage method using logistic regression in

each study. Studies ordered by size of causal association. Pooled effect calculated using

two-step inverse-variance weighted random-effects meta-analysis
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8.8 Discussion

This chapter illustrates methods for synthesis of Mendelian randomization data compris-

ing a variety of study designs and measuring a variety of instruments. Studies with

differing design can be analyzed separately and combined in a summary effect meta-

analysis, or analyzed together in an individual participant data (IPD) meta-analysis using

a Bayesian hierarchical design. Genetic variants can be used as instruments in SNP-based

or haplotype-based models. In a Bayesian analysis, genetic effects can be pooled across

studies by imposing a random-effects distribution on the study-specific genetic effects.

This enables studies without phenotype data to be included in the meta-analysis, with

genetic effect estimates drawn from the random-effects distribution. Heterogeneity in the

Bayesian model is acknowledged when combining studies by the use of hierarchical models.

8.8.1 Precision of the causal estimate

To obtain a precise estimate of the causal association, one needs to have a precise estimate

of both the genotype–phenotype and genotype–outcome associations. A precise estimate of

the genotype–phenotype association comes from a study with many participants without

a prevalent event, such as a cohort study. A precise estimate of the genotype–disease

association comes from a study with many participants with events, such as a case-control

study. The proposed Bayesian method borrows strength across all studies to provide a

precise estimate of the genetic association in all studies, and therefore obtains a more

precise estimate of the causal association. This is illustrated by the width of the 95%

confidence interval of the causal parameter reducing from 0.321, 0.369, 0.462 and 0.563

using a single SNP as the instrument (Table 8.11), 0.232 or 0.260 (two-stage method

or Bayesian method without pooling, Table 8.12) using all the pre-specified SNPs in an

additive model with logistic regression throughout, down to 0.209 or 0.207 (SNP-based and

haplotype-based) in the Bayesian method with pooling (Table 8.12) due to the borrowing

of information across studies and inclusion of studies without measured phenotype levels.

The use of the pooled Bayesian method represents approximately a 136% gain in efficiency

compared to the single SNP analyses of Table 8.11, and a 26% gain compared to the two-

stage estimate. This compares to the increase in sample size from the two-stage analysis

of just under 30 000, and an increase in number of events of around 50%.
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8.8.2 Non-collapsibility and heterogeneity

The statistical interpretation of the causal parameter from a Mendelian randomization

analysis is an unconfounded population-averaged (marginal) effect. This is not the same

estimate as the conditional association in a fully adjusted model (99; 153), due to non-

collapsibility of the logistic model (110; 126). In logistic regression, the estimate of asso-

ciation obtained changes when we marginalize over a covariate, even if this covariate is

not a confounder (33) (Chapter 4). Although the estimate gives a true test of the null

hypothesis, the effect size will be attenuated compared to the association estimated in

a fully adjusted model. Further, the IV estimate will be different for populations with

different confounder distributions even when the underlying individual change in log-odds

of event for unit change in phenotype is the same, giving rise to statistical heterogeneity.

The advantages of using logistic regression in each study is that the estimate in each

study has an interpretation, and further each estimate has the same interpretation. Ad-

ditionally, the computational time needed to obtain precise estimates is not prohibitive.

The disadvantages are the assumptions made in ignoring matching and variable follow-

up in some studies, and that the estimates will be different in each study as explained

above. We prefer to use logistic regression and allow for heterogeneity through the use of

random-effects models.

8.8.3 Comparison of two-stage and Bayesian methods

The Bayesian method is known to perform better than the two-stage method in terms of

bias and coverage in the presence of weak instruments (237) (Chapter 6). Bias due to finite

sample non-zero correlation between the IV and confounders gives rise to a bias in the

causal effect in the direction of the observational association (102). As noted in Chapter 3,

this is especially evident in a two-step meta-analysis. The Bayesian method is less biased

with weak instruments and does not suffer from the problems of underestimated coverage

also associated with asymptotic inference in the two-stage method (237) (Chapter 6). In

our results, we see that the two-stage method gives slightly narrower confidence intervals

than the Bayesian method when the same data is analysed, and the meta-analysis results

show estimates from the two-stage method closer to the observational association than the

Bayesian results. By using the Bayesian methodology, we can be more certain that our

estimate is unbiased and that the true uncertainty of the estimate is expressed. Differences

in the way in which uncertainty in between-study heterogeneity also give rise to greater

standard errors of the pooled effect in the Bayesian meta-analysis model, although these

could be reduced by use of a more realistic prior on the heterogeneity parameter. Despite
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this, using the extensions to the Bayesian method described in Chapter 5 and recalled here,

a more precise estimate of the causal estimate can be obtained in the Bayesian framework

than that given by the two-stage approach, due to the flexibility of the Bayesian framework

to make inference on all the data available.

8.8.4 Advantages of individual participant data meta-analysis

Individual participant data (IPD) present a number of advantages to the researcher. Sev-

eral of the features of this analysis, especially those listed in Section 8.8.5, could not be

attempted using summary statistics from each study. This is true both in the two-stage

and Bayesian approaches. Specifically in Mendelian randomization, IPD enables the IV

assumptions to be assessed carefully in each study as much as is possible (see Appendix

F), increasing the plausibility of a causal interpretation from the IV estimate (64). The

Bayesian method proposed is also able to incorporate the tabular data from studies which

did not share IPD with the collaboration.

8.8.5 Novelty

Several aspects of this analysis are believed to be novel. This is one of the first meta-

analyses in Mendelian randomization conducted using IPD, and the first to use a one-step

or Bayesian model. The pooling of genetic parameters across studies is novel, as is the

inclusion of studies where the phenotype has not been measured. The use of amalgam

haplotype categories to represent genetic data across all the studies is novel, as is the

inclusion of simultaneous prospective and cross-sectional analyses of cohort studies.

8.8.6 Conclusion

Our methods provide a way of synthesizing heterogenous studies measuring different ge-

netic variants to give a single causal estimate corresponding to a population intervention

in long-term phenotype levels based on the totality of available data. By combining all

the evidence in this way, we here obtain an estimate precise enough to rule out even a

moderate causal effect of CRP on CHD.

8.8.7 Key points from chapter

• The Bayesian and two-stage methods gave different results for single study analyses

with small sample sizes and very weak instruments due to different modelling and

inference assumptions. When the instruments were robustly associated with the
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phenotype, and the number of participants and events were moderate to large (N >

1000, n > 100), Bayesian and two-stage methods gave similar results which were not

especially sensitive to the modelling assumptions.

• Bayesian and two-stage fixed-effects meta-analyses gave similar results. With a mod-

erate number of studies (M = 12), random-effects results differed due to differ-

ent assumptions on between-study heterogeneity. With a large number of studies

(M = 27), similar results were obtained.

• The standard error for the Bayesian analyses was greater than for the two-stage

analyses, but this may better reflect the true uncertainty in the causal parameter.

• Pooling parameters of genetic association in the Bayesian method allows for inclusion

of data from all the studies in the collaboration, leading to more precise estimates

of causal association based on the totality of the data available.

Appendix: WinBUGS code for models

Meta-analysis with SNP-based logistic model of association with-

out pooling

model {

mubeta ~ dnorm(0, 0.000001) # prior for mubeta: the causal effect random-effects mean

sigbeta ~ dunif(0, 20) # prior for sigbeta: the causal effect random-effects sd

taubeta <- pow(sigbeta, -2) # taubeta: the causal effect random-effects precision

for(m in 1:T) { # m is study number, T is number of studies with CRP data

for(k in 1:K[m]) { # k is SNP number, K[m] is number of SNPs in each study

alpha[k,m] ~ dnorm(0, 0.000001) # alpha are study-specific SNP effects

}

alpha0[m] ~ dnorm(0, 0.000001) # alpha0 is intercept in G-X regression

xsd[m] ~ dunif(0, 20) # xsd is standard deviation for phenotype distribution

xtau[m] <- pow(xsd[m], -2) # xtau is precision for phenotype distribution

beta[m] ~ dnorm(mubeta, taubeta) # beta is study-specific causal effect

beta0[m] ~ dnorm(0, 0.000001) # beta0 is intercept in X-Y regression

muxi[m] <- mean(xi[1:G[m], m]) # muxi is mean phenotype level

for(j in 1:G[m]) { # j is genotypic group, G is number of groups in study

for (i in 1:P[j,m]) { # P is number of individuals with phenotype measurement

x[i, j, m] ~ dnorm(xi[j, m], xtau[m]) # G-X regression

}
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xi[j, m] <- alpha0[m] + inprod(alpha[1:K[m], m], gene[j, m, 1:K[m]])

# gene is number of alleles of each SNP in each genotypic group

n[j, m] ~ dbin(pi[j, m], N[j, m]) # G-Y regression

eta[j, m] <- beta0[m] + beta[m] * (xi[j, m] - muxi[m]) # eta is linear predictor

pi[j, m] <- exp(eta[j, m])/(exp(eta[j, m])+1) # pi is event probability

} }

for (m in 1:U) { # U is number of cohort studies

beta0q[m] ~ dnorm(0, 0.000001) # beta0 is intercept in X-Y prospective regression

for(j in 1:G[m]) {

nq[j, m] ~ dbin(piq[j, m], Nq[j, m]) # G-Y prospective regression

etaq[j, m] <- beta0q[m] + beta[m] * (xi[j, m] - muxi[m]) # etaq is linear predictor

piq[j, m] <- exp(etaq[j, m])/(exp(etaq[j, m])+1) # piq is event probability

} }

Meta-analysis with haplotype-based logistic model of association

with pooling

model {

mubeta ~ dnorm(0, 0.000001) # prior for mubeta: the causal effect random-effects mean

sigbeta ~ dunif(0, 20) # prior for sigbeta: the causal effect random-effects sd

taubeta <- pow(sigbeta, -2) # taubeta: the causal effect random-effects precision

for(k in 1:K) { # k is haplotype number, K is number of haplotypes in each study

mugamma[m] ~ dnorm(0, 0.000001)

} # prior for mugamma: the haplotype random-effects multivariate mean

K1 <- K-1 # taubeta: the haplotype random-effects precision

Tau[1:K1, 1:K1] ~ dwish(Tau1[1:K1, 1:K1], K1)

for(m in 1:M) { # M is total number of studies

gamma[1, m] <- 0 # gamma1 is zero throughout for orthogonality

gamma[2:K, k] ~ dmnorm(mugamma4[2:K], Tau[1:K1, 1:K1])

# gamma is study specific haplotype effect from random-effects distribution

beta[m] ~ dnorm(mubeta, taubeta) # beta is study-specific causal effect

beta0[m] ~ dnorm(0, 0.000001) # beta0 is intercept in X-Y regression

muxi[m] <- mean(xi[1:G[m], m]) # muxi is mean phenotype level

for(j in 1:G[m]) { # j is genotypic group, G is number of groups in study

n[j, m] ~ dbin(pi[j, m], N[j, m]) # G-Y regression

eta[j, m] <- beta0[m] + beta[m] * (xi[j, m] - muxi[m]) # eta is linear predictor

pi[j, m] <- exp(eta[j, m])/(exp(eta[j, m])+1) # pi is event probability

xi[j, m] <- gamma0[m] + gamma[h1[j,m], m] + gamma[h2[j,m], m]

# h1 and h2 are haplotypes for individuals in that genotypic group
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} }

for(m in (T+1):M) {

gamma0[m] <- 0 # gamma0 is intercept in G-X regression

} # for studies with no CRP data, this is not identifiable

for (m in 1:T) { # m is study number, T is number of studies with CRP data

gamma0[m] ~ dnorm(0, 0.000001)

xsd[m] ~ dunif(0, 20) # xsd is standard deviation for phenotype distribution

xtau[m] <- pow(xsd[m], -2) # xtau is precision for phenotype distribution

for(j in 1:G[m]) { # j indexes genotypic groups, i indexes individuals

for (i in 1:P[j,m]) { # P is number of individuals with phenotype measurement

x[i, j, m] ~ dnorm(xi[j, m], xtau[m]) # G-X regression

} } }

for (m in 1:U) { # U is number of cohort studies

beta0q[m] ~ dnorm(0, 0.000001) # beta0q is intercept in X-Y prospective regression

for(j in 1:G[m]) {

nq[j, m] ~ dbin(piq[j, m], Nq[j, m]) # X-Y prospective regression

etaq[j, m] <- beta0q[m] + beta[m] * (xi[j, m] - muxi[m]) # etaq is linear predictor

piq[j, m] <- exp(etaq[j, m])/(exp(etaq[j, m])+1) # piq is event probability

} } }

SNP-based Weibull model in a single study

model {

xtau <- pow(xsig, -2); xsig ~ dunif(0, 20); muxi <- mean(xi[1:G])

alpha0 ~ dnorm(0, 0.000001); beta0 ~ dnorm(0, 0.000001)

beta ~ dnorm(0, 0.000001) # priors on parameters as above

r ~ dgamma(0.1, 0.1) # shape parameter in Weibull distribution

for (k in 1:K) { # k indexes SNPs

alpha[k] ~ dnorm(0, 0.000001)

}

for (j in 1:G) { # j indexes genotypic groups

xi[j] <- alpha0 + inprod(alpha[1:G], gene[j, 1:G])

log(eta[j]) <- beta0 + beta * (xi[j] - muxi) # log-linear regression

for (i in 1:P[j]) { # i indexes individuals

x[i, j] ~ dnorm(xi[j], xtau)

tx[i, j] ~ dweib(r, eta[j]) I(tc[i, j], ) # dweib is Weibull distribution

# tx is event time (NA if no event),

# tc is time at (right-)censoring (NA if no censoring)

} } }
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Chapter 9

Conclusions and future directions

9.1 Introduction

In this final chapter, we summarize the findings of each chapter of this dissertation, listing

specific contributions and limitations of the work presented (Section 9.2). We then propose

ideas for future research (Section 9.3). We finally discuss some general issues relating to

Mendelian randomization and instrumental variable (IV) estimation (Section 9.4).

9.2 Summary of the dissertation

We recall each of the chapters of the dissertation in turn, summarizing the main findings,

conclusions and limitations of the chapter.

9.2.1 Chapter 1

Chapter 1 provides an introduction to Mendelian randomization. The data to be used in

the dissertation from the CRP CHD Genetics Collaboration (CCGC) are introduced, and

are subsequently used throughout the dissertation to illustrate statistical findings, and

specifically in Chapter 8 to address the question of the causal association of C-reactive

protein (CRP) on coronary heart disease (CHD).

9.2.2 Chapter 2

Chapter 2 gives a literature review of statistical methods and issues relating to Mendelian

randomization. This review comprises methods for IV analysis and the assumptions neces-

sary for the methods to give valid answers, as well as the specific issues of weak instruments

and meta-analysis. The general conclusion from the chapter is that although there has
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been much research into IVs in econometric and epidemiological contexts, that this has

not made a deep impact into applied Mendelian randomization analysis. This is due to:

1) problems of translation of concepts into an understandable language and a setting rep-

resentative of a typical Mendelian randomization problem, 2) methodological gaps where

concepts which are required in Mendelian randomization analysis are currently poorly un-

derstood in the literature, and 3) the lack of power of IV methods leading to reluctance

to accept more robust estimation methods. These three strands form the motivation for

the direction of the dissertation as a whole.

9.2.3 Chapter 3

Chapter 3 illustrates the problem of weak instrument bias. We demonstrate how IV

estimates from finite samples typically have non-normal distributions and non-zero bias.

The reasons for the bias are clearly explained, and the magnitude of the bias investigated

in different scenarios. A novel measure, median relative bias, is introduced to compare

different IV methods, some of which lack first moments. A bias–variance trade-off for the

number of instruments used in an IV analysis is shown, and advice given as to how to

choose the IV and method of analysis to minimize bias. A key finding is that post hoc

choice of IVs can result in worse biases than use of the weak IVs themselves.

This chapter takes findings which are known in the econometrics literature about weak

instruments and applying them to the context of Mendelian randomization. The conclu-

sions reached in this chapter provide guidance to applied researchers in the planning and

analysis of Mendelian randomization studies.

A major limitation of this chapter is that many of the findings rely on the results

of simulation studies. However, the results did seem to be consistent under a range of

parameter values, and they followed the known theoretical results on relative mean bias

closely. A further limitation is that weak instrument analyses in practice are susceptible to

bias due to violation of the IV assumptions (183). Although such biases are not unique to

weak instrument scenarios, they are likely to be more pronounced with weak instruments

as the instrument explains a small proportion of variance in the phenotype, and so any

association of the IV with a confounder may be of similar magnitude to the association

of the IV with the phenotype of interest. As opposed to the finite-sample problems of

weak instruments caused by chance correlation with confounders, true correlation with

confounders does not disappear even with increasingly large sample sizes, and leads to

bias in IV estimates.
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9.2.4 Chapter 4

Chapter 4 introduces the property of collapsibility. Of particular interest is the prob-

lem of IV estimation with binary outcomes and logistic regression, as the odds ratio is

a non-collapsible measure of association across heterogeneous strata of the population,

or across the distribution of a continuous phenotype. Different odds ratios are defined

which represent the increase in risk corresponding to a unit increase in the phenotype

for an individual or for a population. These odds ratios can be considered marginal or

conditional on relevant covariates. We investigate a two-stage method for IV estimation,

showing theoretically in a simple case, and by simulation in a more realistic case, how

the method estimates a marginal population-averaged odds ratio. An adjustment to the

two-stage method proposed in the literature gives estimates which are closer to the pa-

rameter estimated from a fully-adjusted logistic model, but which have no interpretation

for a general model of confounded association.

This chapter builds on previous work, which focused on collapsibility across a covariate,

by introducing the concept of collapsibility across the distribution of the variable inter-

vened upon. Identification of the two-stage estimate as a marginal population-averaged

odds ratio gives justification and interpretability to the two-stage method. This runs con-

trary to the perceived wisdom on “forbidden regressions” from the economics literature:

that non-linear two-stage regressions give biased estimates and should be avoided. This

chapter advances the debate on the bias of two-stage methods by identifying and defining

the quantity estimated.

However the interpretation of the odds ratio from a two-stage analysis represents a

limitation on the use of IVs with binary outcomes. The main motivating factor for the use

of odds ratios and logistic models of association in conventional epidemiological methods

is that the same odds ratio is estimated in a logistic regression analysis of the popula-

tion and of a case-control sample from the same population. With the population odds

ratios estimated by a two-stage approach, this property is not retained. The odds ratio

estimated in an IV analysis is not the same in an analysis of the population and of a

case-control sample, nor does it remain constant if the distribution of covariates or phe-

notype in the population changes. This is because the distribution of the covariates is

different in the population and in the case-control sample. This phenomenon can also lead

to between-study heterogeneity in a meta-analysis, as discussed in Section 8.8.2. However,

this problem is not unique to IV estimation: the same objection could be made in a con-

ventional logistic regression analysis for the misspecified individual odds ratio marginalized

across a covariate estimated if not all relevant covariates are measured and adjusted for.
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9.2.5 Chapter 5

Chapter 5 proposes a Bayesian framework for IV analysis. This framework is initially

advocated as an alternative to the two-stage least squares (2SLS) method, giving similar

results in analyses of the same data. It has advantages over the two-stage method, par-

ticularly in the analysis of data from multiple sources, where a natural extension allows

each study to be analysed separately and combined in a hierarchical model on the causal

parameter. The Bayesian framework can also be used to analyse binary outcomes with a

logistic model, where it again gives results similar to a two-stage method. Several exten-

sions are proposed to the Bayesian meta-analysis model, such as pooling of the parameters

of genetic association across studies in a random-effects model, and inclusion of studies

where phenotype data has not being measured but the same set of genetic variants has

been measured in other studies. In this case, the random-effects distribution is used as

an implicit prior for the parameters of genetic association, as there is no study-specific

information on these parameters.

This chapter provides a novel framework for meta-analysis of causal associations in

studies measuring multiple, possibly different, genetic variants. Chapter 8 shows that

such a framework is able to include data from all of the studies in the CCGC in an

efficient way.

A major limitation of the Bayesian methods proposed is a reliance on parametric

assumptions and specification of error distributions. Due to the computationally intensive

nature of the method, it is not always practical to assess departures from the parametric

assumptions by sensitivity analyses. The less intensive two-stage method could be used for

assessing sensitivity to these assumptions, which may be informative about the behaviour

of the Bayesian methods under similar departures.

9.2.6 Chapter 6

Chapter 6 considers bias and coverage properties of various IV methods, primary among

which are the two-stage and Bayesian methods. We bring together issues of weak in-

struments and non-collapsibility with the Bayesian methods introduced in the previous

chapter. The chapter is divided into two parts. Firstly, with continuous outcomes, an

adjustment is proposed in the Bayesian method to explicitly consider the observational

correlation between phenotype and outcome, which leads to IV estimates which are free

from bias with even moderately weak instruments. Secondly, with binary outcomes, the

analogous adjustment is equivalent to the adjustment considered in Chapter 4. This leads
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to estimates which are closer to the parameter usually considered the target of estimation,

but which have no clear interpretation.

The Bayesian method also differs from other methods in that inference is based on

the posterior distribution, rather than on an asymptotic estimate of the standard error.

This leads to better coverage properties, especially with weak instruments, as the posterior

distribution accurately expresses the true uncertainty in the causal estimate. Estimates

using semi-parametric methods are also considered.

This chapter establishes an empirical justification for use of the Bayesian method,

especially in the continuous outcome case. With binary outcomes, the Bayesian method

performs similarly to the two-stage method, and so has the same interpretation of the

causal effect of interest, leading to the same limitation that the estimand varies depending

on the covariate and phenotype distributions.

A limitation of this chapter is that all of the simulations were undertaken with lin-

ear or logistic-linear models of association and normal error distributions. Although it is

never possible to produce simulations for every possible scenario, no simulations are per-

formed where the semi-parametric methods may be preferable, due to being more robust

to departures from the strict distributional assumptions of the two-stage and Bayesian

methods.

9.2.7 Chapter 7

Chapter 7 covers the problem of missing data in Mendelian randomization studies. Of

particular interest is the problem of sporadic missing genetic data, as these are the hardest

to impute and common in applied Mendelian randomization studies. Four methods to

impute such missing data are proposed and implemented in a Bayesian model, which is also

able to impute missing phenotype and outcome data. These methods are demonstrated to

work well, giving improved precision compared to a complete-case analysis in simulations

and with real data.

This chapter demonstrates the potential of the Bayesian framework to deal with differ-

ent statistical issues. Missing data is an especially important issue where multiple genetic

variants are measured, as the inclusion of all available genetic variants in a model may

lead to loss of sample size due to missing data in particular genetic markers.

A limitation of the methods presented is computational intensity. While the methods

work well with the datasets of several thousand, they would be more difficult to use in a

meta-analysis context and impractical to use in the analysis of the entirety of data from

the CCGC.
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9.2.8 Chapter 8

Chapter 8 represents the culmination of the dissertation and the definitive analysis of

the causal association between CRP and CHD based on data from the CCGC. Different

assumptions of genetic association are made, including SNP-based and haplotype-based

models. Different assumptions in the phenotype–outcome association model are made, and

results are compared with different analysis models in two-stage and Bayesian frameworks.

These are performed initially in one study, then in all studies of a particular design, and

finally in all of the studies in the collaboration. Differences between results from the two-

stage and Bayesian analyses are explained, and typically are small when the numbers of

participants and cases are large, and the instruments are strong. The Bayesian methods

lead to the most precise overall estimates as they are able to include data on almost 25%

more participants and 50% additional CHD events compared to the two-stage analyses.

This chapter builds on the previous chapters, which have each included estimates of

causal association based on individual studies, by combining evidence from all of the

studies into a single estimate. This provides an answer to the question of applied research

interest based on the totality of the evidence available.

As previously stated, the estimates from individual studies represent marginal popu-

lation effects. The pooled estimate under a random-effects model does not represent the

marginal population effect for any population. The prediction interval, which is calculated

from the random-effects distribution, is more relevant if we are interested in the potential

size of a causal effect in a new study population.

Several simplifying assumptions are made in the overall meta-analyses, which repre-

sent limitations to the analyses. One particular assumption was that all of the studies

could be analysed using a logistic model of association. Although sensitivity analyses

showed that results were similar for a wide range of assumptions, the results given rely

on these assumptions. If studies with different designs were to be analysed using different

assumptions, the assumption would then shift to the meta-analysis, to whether estimates

of somewhat different parameters from studies of different designs can be combined in a

single meta-analysis model.

9.3 Future work

We propose ideas for future work, both extensions to findings in this dissertation, and

future directions for Mendelian randomization and genetic epidemiology in general. Most

directly, there are several blood-based biomarkers similar to CRP for which consortia

235



9.3 Future work

similar to the CCGC can be established, to assess the causal effect of these biomarkers on

a range of diseases including CHD.

The vast majority of applied Mendelian randomization analyses have included one

single nucleotide polymorphism (SNP), one phenotype, and one disease. The majority of

analyses have used the ratio estimate (60). Hence, translational work (eg. (44; 212)) is

necessary to bring applied practice up to date with the current methodological state-of-the-

art in terms of use of multiple IVs, more robust inference methods (such as the generalized

method of moments (GMM), structural mean models (SMM)), and meta-analyses of causal

associations.

Other areas which require methodological development are now discussed.

9.3.1 IV estimation using survival data

Although the methods of Section 8.3.3 provide IV estimates with survival data, they are

fairly ad hoc and are only included in the dissertation for purpose of sensitivity analysis.

Although the two-stage and Bayesian approaches proposed may lead to meaningful esti-

mates, a more principled approach to estimation and interpretation with survival outcomes

should be possible. One suggestion for such an approach is an accelerated failure-time

model, as this has proved to be a good choice in other aspects of causal modelling (238).

9.3.2 Mendelian randomization with GWAS data

A genome-wide association study (GWAS) is an examination of the whole genome of group

of individuals to discover genes associated with a particular trait or disease (239). Such

studies present difficulties due to the sheer number of genetic variants which are tested for

association. Stringent levels for p-values, such as p < 10−7, have been used as a threshold

for statistical significance to minimize the number of false-positive findings. However, such

a stringent p-value means that the power to detect relevant variants may be low. Rather

than testing many genetic variants, if there are several genes associated with a phenotype,

a concordant relationship between the number of phenotype-increasing alleles across all

these genetic variants and the trait of interest may be interpreted as evidence of a causal

effect of the phenotype, even if none of the variants individually reaches the threshold for

significance.

A Mendelian randomization approach adds an extra dimension to the interpretation

of a GWAS. GWAS were designed to facilitate discovery of genetic variants which are

associated with a disease. This is useful for prediction of disease and identification of indi-

viduals at elevated disease risk, but since the genetics of an individual cannot be changed,
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the consequences of GWAS in terms of finding therapeutic targets can only come via a

Mendelian randomization paradigm. Equally, the Mendelian randomization paradigm can

be used in reverse, by searching for modifiable risk factors which are associated with SNPs

which have already been shown to be robustly associated with disease.

If there are many known genetic variants associated with a phenotype, fitting a model

of genetic association may require construction of a gene score or weighted gene score to

avoid problems of multiple IVs such as weak instruments (44). It is not known what the

impact of the assumptions necessary to construct a gene score are, or how it is best to

combine information on a large number of genetic variants.

9.3.3 Hypothesis-free inference

The interpretation of GWAS above through the lens of Mendelian randomization requires

prior knowledge and understanding of the function of genetic variants used as IVs. Where

this is not available, the use of a genetic variant as an IV is questionable. It has been

claimed (240) that a hypothesis-free approach to Mendelian randomization could be devel-

oped, where the association between genetic variant and disease, and genetic variant and

phenotype are both considered simultaneously. In the spirit of the GWAS, no hypothesis

is assumed and the data are allowed to speak for themselves. The idea is that pleiotropy

and other violations of the IV assumptions are avoided by sheer weight of data. Suppose

1000 SNPs which are associated with the outcome are concordantly associated with the

phenotype. Although it may be plausible for each of these associations individually to be

due to, say, pleiotropy, it is implausible for all 1000 associations to be. We are then led to

the conclusion that the phenotype is a true cause of variation in the outcome. This ap-

proach could be especially fruitful for multifactorial polygenic phenotypes, such as body

mass index (BMI) or height, where genetic variants associated with the phenotype are

found in many sites on many different chromosomes.

While such an approach is possible, it is currently unclear whether there are bene-

fits over traditional Mendelian randomization, what is the impact of violation of the IV

assumptions, or how to analyse such data efficiently.

9.3.4 Untangling multifactorial associations

Another possible extension of Mendelian randomization is to examine multiple risk factors

simultaneously. In the inflammation pathway, for example, there are many other factors in

addition to CRP that have an observational association with CHD risk. Looking at each

of the markers in isolation is not the true goal of scientific inquiry, and leads to limited
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conclusions. Examining several risk factors simultaneously would help to clarify the overall

picture of disease aetiology. If a dataset has information on a number of phenotypes and

genetic variants associated with each phenotype, then the causal effect of each phenotype

on disease risk can simultaneously be estimated. Although additional assumptions about

the causal pathway of disease may be necessary, simultaneous estimation of the effect of

different phenotypes may improve the precision of causal estimates, due to a large propor-

tion of the unmeasured confounders overlapping for each phenotype–disease association.

Such analysis would require high-quality data and sensitivity analyses to assess the impact

of assumptions about the causal pathways from genetic variants to phenotypes to disease.

9.3.5 Pathway analysis

Data on multiple phenotypes and genetic instruments collected in a cross-sectional sample

of the population can be investigated in a Mendelian randomization setting. Here, the

target of analysis would not be the causal association of a particular phenotype or set

of phenotypes on disease, but the network of causal associations between phenotypes.

Knowledge about such networks or pathways is informative about the underlying biological

associations between risk factors, which may help to identify possible therapeutic targets

(241). If the phenotypes vary over time, it may be necessary measure data at different

time-points to investigate the temporal behaviour of the pathway.

9.4 Discussion

We finally discuss some general issues relating to Mendelian randomization and instru-

mental variable (IV) estimation, which have arisen as a result of this dissertation, but

which do not fit neatly into any of the previous chapters.

9.4.1 Relevance of the dissertation to areas outside Mendelian

randomization

The Bayesian framework introduced in this dissertation provides an alternative to the

strong and sometimes misleading asymptotic assumptions necessary for inference in IV

methods. This may have relevance in small sample IV problems, where the econometric

literature currently lacks generally applicable methods robust to weak instruments (210).

Identification of the two-stage IV estimate for binary outcomes has relevance to the de-

bate in the econometrics literature about the validity of such two-stage methods (127), and

in the randomized trials literature, where the difference between marginal and conditional
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estimates is recognized, but the interpretation of IV estimates addressing non-compliance

is less well understood (128; 242).

Generally, although the focus of this dissertation has been Mendelian randomization,

some of the issues discussed apply to a range of problems, including the use of IVs in other

research contexts.

9.4.2 Differences between economic and epidemiological contexts

An issue which has been in the background throughout this dissertation has been the dif-

ference between the priorities in economic (or econometric) and epidemiological contexts.

In translating methodology and findings between the established econometrics literature

and the emerging field of Mendelian randomization, there are some differences in terminol-

ogy between the two literatures. Once the researcher has become fluent in both languages,

they realize that the applied problems faced by the fields are different. As applied prob-

lems tend to be the motivation for methodological research, this means that the two areas

have evolved and specialized to deal with different issues.

One particular difference between the fields is most evident through the justification

for using a candidate IV. In economics, to use a single instrument requires strong a priori

belief in the validity of the IV assumptions, and to use multiple instruments without

employing an overidentification test is anathema (118). In epidemiology, the belief for

validity of a genetic IV comes via biological knowledge, with empirical justification from

testing the association of the IV with various known risk factors. In economics, there are

so few points agreed on by all economists that a priori belief and external knowledge are

not to be relied on. Hence, much of the economics literature revolves around a barrage

of tests for the validity of IVs and IV estimates. Although there is some justification for

their use in an epidemiological context (30), the priorities for epidemiologists usually lie

elsewhere.

9.4.3 Mendelian randomization and conventional epidemiologi-

cal methods

Part of the scientific backdrop to this methodological dissertation is a controversy about

the role of CRP in atherosclerosis and cardiovascular disease, with evidence from a ran-

domized trial that statins reduce the risk of cardiovascular disease to a greater level than

expected in a population with low lipid levels and elevated CRP levels (243).

The concept of causation has different meanings to different people. For example, to

a biochemist, the question of causality is one of function. The question “Is CRP causally
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implicated in atherosclerosis?” can be seen as equivalent to “In the absence of CRP, can

atherosclerosis take place?”. If the presence of CRP is necessary for the formation of

atherosclerotic plaques then, on a biochemical level, CRP is causal for CHD. However, the

epidemiological interpretation of the causal question of interest is: “What is the impact

of an increase in CRP on CHD risk?”. This is the relevant aetiological question from a

clinical point of view where the primary concern is public health and patient risk. It may

be that the amount of CRP necessary for the formation of atherosclerotic plaques is so

small that no intervention can reduce CRP to a level where the CHD risk is eliminated.

The biochemical notion of causation does not necessarily inform about the consequences

of an intervention targeted at CRP.

In a randomized controlled trial (RCT), a population is chosen and intervened upon

at a specific point in their disease progression. In Mendelian randomization, the genetic

natural experiment occurs at conception. This means that the estimate from a RCT

represents the answer to the question: “What is the effect on the study population of an

intervention in usual CRP levels starting today?”. A Mendelian randomization estimate

typically represents the answer to the question: “What is the effect on the study population

of an intervention in usual CRP levels across the life course?”. It is conceivable that an

intervention across the life course may have more impact than a targeted intervention even

at a critical stage of disease development. Results also typically differ due to the choice

of study population, which in a RCT is often recruited from a clinical context, whereas in

Mendelian randomization is usually chosen from a population-based cohort or case-control

study.

The estimate given by a statistical analysis should always be thought of as an answer to

a question. When the question changes, we should also expect the answer to change. Hence

incompatibility of estimates from different methodological approaches may not represent

an antinomy, and assessing the reasons for the apparent contradiction requires a priori

knowledge and reasoning, not statistical testing alone.

9.4.4 Conclusion

In conclusion, we recall that the aim of this dissertation was to help “bridge the gap”

between statistical methodology and applied practice. While there remain many prob-

lems to address, we hope that the explanations, interpretations and methodological tools

provided in this dissertation will help to bring the two research communities closer, facil-

itating better collaboration and leading to research which is more effective, efficient and

credible.
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