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ABSTRACT 

 

SUBMARINE LANDSLIDE FLOWS SIMULATION 

THROUGH CENTRIFUGE MODELLING 

 

Chang Shin GUE 

 

 

Landslides occur both onshore and offshore. However, little attention has been given 

to offshore landslides (submarine landslides). Submarine landslides have significant 

impacts and consequences on offshore and coastal facilities. The unique 

characteristics of submarine landslides include large mass movements and long travel 

distances at very gentle slopes. This thesis is concerned with developing centrifuge 

scaling laws for submarine landslide flows through the study of modelling submarine 

landslide flows in a mini-drum centrifuge. A series of tests are conducted at different 

gravity fields in order to understand the scaling laws involved in the simulation of 

submarine landslide flows. The model slope is instrumented with miniature sensors 

for measurements of pore pressures at different locations beneath the landslide flow. 

A series of digital cameras are used to capture the landslide flow in flight. Numerical 

studies are also carried out in order to compare the results obtained with the data from 

the centrifuge tests. The Depth Averaged Material Point Method (DAMPM) is used in 

the numerical simulations to deal with large deformation (such as the long runout of 

submarine landslide flows). Parametric studies are performed to investigate the 

validity of the developed centrifuge scaling laws under the initial and boundary 

conditions given in the centrifuge tests. Both the results from the centrifuge tests and 

numerical simulations appear to follow the proposed centrifuge scaling laws, which 

differ from the conventional centrifuge scaling laws. The results provide a better 

understanding of the centrifuge scaling laws that need to be adopted for centrifuge 

experiments involving submarine landslide flows, as well as giving an insight into the 

flow mechanism involved in submarine landslide flows. 
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CHAPTER I 

1.0 INTRODUCTION 

1.1 Background 

 

Landslides occur both onshore and offshore. However, rather little 

attention has been given to offshore landslides (submarine landslides). They 

occur below water level, and our knowledge of their development is quite 

limited. These submarine landslides are rather mysterious, as they frequently 

occur in slopes that should be stable beyond any doubt according to 

conventional stability analyses (Andresen and Bjerrum, 1967). However, 

substantial progress has been made in the understanding of the geological 

process and physical mechanisms operating at different stages of a submarine 

landslide event (Vanneste et al., 2011). 

 

Both onshore landslides (subaerial landslides) and submarine 

landslides have many similarities in terms of landslide mechanics (Hampton et 

al., 1996; Locat and Lee, 2000). Nevertheless, they also have some significant 

and remarkable differences. In particular, the unique characteristics of 

submarine landslides are the huge volume of mass movements and large travel 

distances at very gentle slopes.  

 

These submarine landslides are known to have significant impacts and 

consequences on offshore and coastal facilities such as oil and gas production 

wells, platforms, pipelines, seafloor communication cables, as well as marine 

habitats. Furthermore, submarine landslides may also trigger tsunamis as a 

result of their own displacements, leading to considerable damage to 

properties and loss of lives. Therefore, a further understanding of submarine 

landslides is essential in order to mitigate these occurrences. 

 

This study is a pilot study of simulations of submarine landslide flows 

through centrifuge modelling, which aims to give an insight in the centrifuge 
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scaling laws as well as the flow mechanism involved in submarine landslide 

flows. This study also explores the usage of a geotechnical centrifuge to model 

submarine landslide flows. The experimental works are carried out using the 

mini-drum centrifuge at the Schofield Centre of the Engineering Department, 

University of Cambridge. 

 

1.2 State of the Art - Limitations 

 

Considering the increasing interest in offshore developments and 

potential hazards to mankind, research has been active particularly in the 

COSTA-Canada project (Locat and Lee, 2000) 2000–2004, and the 

development of the Ormen Lange gas field in Norway (Kvalstad et al., 2005), 

which is considered the world’s largest subsea pipeline project. Most 

interestingly, the Ormen Lange gas field is located near to an ancient 

submarine landslide, which leads to a number of researches principally carried 

out by the Norwegian Geotechnical Institute (NGI) and the International 

Centre for Geohazards (ICG). 

 

According to the available literature, the main factors that initiate 

submarine landslides include rapid deposition, extremely high pore water 

pressure, earthquakes and gas hydrate dissociation (Schwarz, 1982; Hampton 

et al., 1996; Locat and Lee, 2000; Kvalstad et al., 2005). The state-of-the-art 

paper by Kvalstad et al. (2005) has proposed a retrogressive slide model, 

which demonstrates that large-scale submarine slide processes are possible 

even at a low slope gradient. 

 

A number of laboratory experimental works have been carried out to 

investigate the mechanisms of long runout submarine landslides and 

submarine debris flows (Mohrig, et al., 1998; Mohrig, et al., 1999; Mohrig and 

Marr, 2003; Ilstad et al., 2004a; Ilstad et al., 2004b; Ilstad et al., 2004c; Ilstad, 

2005). Interestingly, all the above findings suggest that hydroplaning is the 

main reason for the mobility of long runout submarine landslides at very 



Chapter I – Introduction   

 3

gentle slopes. However, it is important to note that all these experimental 

works were performed in a 1 g test environment. Actual submarine slides are 

very large while the scaled model in a 1 g test environment is relatively small, 

hence the stresses in such conditions are also small. It is, therefore, 

questionable whether the findings in the above studies are representative of 

actual submarine landslides, as the stress-strain behaviour of soils is stress-

level dependent. Therefore, the behaviour of a small-scale model may not 

represent the behaviour of its prototype if the stress-strain behaviour is not 

properly modelled. 

 

With centrifuge modelling, soil stresses related to self-weight are able 

to be correctly reproduced and observations from small scale-models can be 

related to the full-scale prototype situation using appropriate scaling laws. 

Through the available literature, laboratory experimental works on submarine 

landslides simulation using centrifuge modelling are rather limited. Coulter 

and Phillips (2003) and Coulter (2005) carried out experimental works using 

centrifuge modelling, specifically focused on seismic initiation of submarine 

landslides. Zhou et al. (2002) investigated the critical gradient for slopes under 

water at various g-levels. More recently, Boylan et al. (2010) developed a 

centrifuge model capable of modelling submarine slides using a drum 

centrifuge. They focused on the initiation of submarine slides, in which they 

have developed a slide triggering device for use in the drum centrifuge. 

 

Centrifuge modelling on the mobility of long runout submarine 

landslide flows, which is considered as one of the key areas with great 

importance for subsea development projects, is yet to be conducted. Clearly, 

there is a pushing need to conduct research work in this area. It is also 

important to note that there are no centrifuge scaling laws for submarine 

landslide flows available prior to this study. Thus, this study aims to explore 

the centrifuge scaling laws for submarine landslide flows in order to fill in the 

gap of knowledge in this particular field. 
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1.3 Objectives and Purpose of Research 

 

The key to understanding the phenomena of submarine landslide flows 

is obviously to model the problem and be able to correctly relate to the actual 

situation. There is no doubt that the knowledge and further understanding of 

submarine landslide flows is vital, that it will enable further innovative and 

economical engineering works on both nearshore and offshore developments. 

 

Simulations of submarine landslide flows with a very gentle slope 

using the mini-drum centrifuge are conducted in this research. A series of tests 

are conducted in different gravity fields in order to understand the scaling laws 

involved in the simulation of submarine landslide flows in centrifuge 

modelling. The slope is instrumented with miniature sensors in order to 

measure pore pressures and soil stresses at different locations beneath the 

landslide flow. A series of digital cameras are used to capture the landslide 

flow in flight.  

 

In addition to centrifuge modelling, numerical studies are also carried 

out to compare the results obtained through centrifuge modelling. Hence, 

parametric studies through numerical studies are also performed to investigate 

the validity of the developed centrifuge scaling laws for given initial 

conditions applied by the centrifuge tests conducted in this study. 

  

The specific objectives of the research are as follows: 

 To investigate and deduce the centrifuge scaling laws for 

submarine landslide flows. 

 To develop a centrifuge model package capable of modelling 

submarine landslide flows and to examine the validity of the 

deduced centrifuge scaling laws. 

 To compare the results of centrifuge tests with numerical 

simulations. 

 To further explore any errors associated with the deduced 

centrifuge scaling laws with numerical simulations. 
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1.4 Significance of Study 

 

During the 1990s petroleum exploration and field development 

activities expanded to continental deepwater slopes and into water depths 

greater than 1000 m. Since then, offshore geohazards have been crucial to the 

developments of the oil and gas industry, in which submarine landslides have 

been the central scientific topic in offshore geohazards (NGI, 2005 and 

Vanneste et al., 2011).  

 

The consequences of submarine landslides are immense as they do not 

only affect offshore facilities and generate tsunamis. Retrogressive slides as a 

result of submarine landslides, may progress back onshore and hence present 

potential hazards to mankind and infrastructure, both offshore and near 

coastal. These consequences will result in a severe loss of lives and damage to 

properties.  

 

Although a number of pieces of literature on submarine landslides 

exist, the knowledge in this particular field is still indeed lacking. Therefore, 

the knowledge and further understanding of submarine landslide flows 

through simulations using centrifuge modelling is essential in order to 

understand the phenomena, and thus mitigate these occurrences which enables 

further innovative and economical engineering works for both near coastal and 

offshore developments.  

 

1.5 Report Structure 

 

Chapter 2 presents the phenomena of submarine landslides, which 

include the characteristics and the significant consequences of submarine 

landslides. This chapter also summarises documented submarine landslides 

from the available literature. The mechanics of submarine landslide flows with 

the governing equations and analytical solutions are discussed. In addition, 
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this chapter presents experimental works (at both 1 g and centrifuge scales) 

that have been carried out by researchers around the world. 

 

Chapter 3 contains the background knowledge of centrifuge testing and 

briefly presents the mini-drum centrifuge at the Schofield Centre of the 

Engineering Department, University of Cambridge. This chapter also proposes 

and discusses the centrifuge scaling laws for submarine landslide flows 

through analytical solutions. 

 

Chapter 4 presents the design of the centrifuge model package for 

modelling of submarine landslide flows and the experimental procedures, as 

well as some of the initial challenges encountered at the early stages of the 

experiments. This chapter also presents the results and interpretations of the 

experiments, which include experiments at different g levels with various 

scaled flow rates as well as experiments in dry conditions (not submerged in 

water). This facilitates an understanding of the influence of surrounding fluid 

towards the development of submarine landslide flows.  

 

Chapter 5 presents the results and interpretations of the numerical 

simulations, which include parametric studies using the Depth Average 

Material Point Method (DAMPM). The sensitivity of the DAMPM model is 

also discussed.  

 

Chapter 6 discusses the comparisons of the developed centrifuge 

scaling laws and the results from the centrifuge experiments. This chapter also 

compares the numerical simulations with the centrifuge experiments in order 

to investigate the two methods more thoroughly.  

 

Chapter 7 gives the research summaries and conclusions, as well as the 

recommendations for future research.  
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CHAPTER II 

2.0 Literature Review – Submarine Landslides 

 

2.1 Introduction 

 

The term "submarine landslide" essentially refers to landslides under 

water, which is known for their extensive mass movements. This chapter 

introduces some of the unique features and characteristics of submarine 

landslides, as well as a brief history of their documentation and recognition. 

Further in this chapter, the causes of failure, the mechanics (governing 

equations & analytical solutions) of submarine landslides, as well as the 

importance and significance of submarine landslides, are discussed. 

Experimental works by other researchers, both in 1 g and centrifuge 

modelling, are also included in this chapter, which gives the general picture of 

the major research efforts into submarine landslides. 

 

2.2 Submarine Landslides 

 

Submarine landslides are considered to be potential offshore 

geohazards. Figure 2.1 shows the typical offshore geohazards in which 

submarine landslides are considered as the most serious offshore threats on 

both local and regional scales; the figure is modified after the Norwegian 

Geotechnical Institute (NGI), 2005.  

 

Submarine landslides have been the central scientific topic in offshore 

geohazards in recent years. This focus has increased significantly over the last 

decade, as more offshore and nearshore structures will be constructed in the 

future. It is therefore essential to consider the risks associated with submarine 

landslides.  
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It is important to note that submarine landslides generally consist of 

two parts: sliding and debris flow. The key characteristics of submarine 

landslides, which are distinct from subaerial landslides, are their long runout 

distances and volumes, which fail at a very gentle slope inclination.  

 

Figure 2.1: Offshore geohazards (modified after NGI, 2005) 
 

2.3 Classification and Characteristics  

 

Classification of submarine landslides is particularly complex as the 

landslide movements are not directly observed. Many authors have 

commented and proposed different types of submarine landslides and their 

characteristics. For example, Schwarz (1982) and Prior (1984) suggested a 

classification scheme in which the concept of slides to flows is a continuum 

process. Locat and Lee (2000) classified slides and flows as different types of 

submarine landslides. Mulder and Cochonat (1996) used the term “slides” and 

“slump”; in addition, they also include "creep" and "cyclic mobility" in their 

classification of offshore mass movements. In marine geological literature, 

authors overuse the term “slump”, which is applied to extensively different 
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types of offshore mass movement. Above all, many classifications create 

confusion and misapplication. Figure 2.2 shows an example of the proposed 

scheme of various types of submarine landslides reproduced after Prior 

(1984), indicating a wide range of submarine landslides.  

 

 
Figure 2.2: Various types of submarine landslides – a continuum of slides and 

flows (reproduced after Prior, 1984) 
 
 

The unique features of submarine landslides, which are distinct from 

normal subaerial landslides, can be summarised as follows: 

 Enormous size involving large volumes of mass movements 

 Long runout distance 

 Failure can occur on very low slope inclination  

 

Appendix 1 summarises the characteristics of submarine landslides 

from the available literature. It is found that the slope inclination of a 

submarine landslide may be as low as 1o or less while the runout distance may 

be more than hundreds of kilometres. Hence, the volume of failure may be 
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more than a trillion cubic metres. The characteristics tabulated in Appendix 1 

include maximum runout distance (Lmax), maximum height (Hmax), volume, 

slope inclination and the ratio of (Lmax/Hmax). 

 

Figure 2.3 shows the relationship of slope inclination and the 

maximum runout length. The data in this graph is obtained from Appendix 1. 

It can be seen that the slope inclinations for submarine landslides are generally 

small (< 10o). Figures 2.4 and 2.5 show the relationship of the submarine 

landslide volume with the maximum runout length and the ratio of (Lmax/Hmax) 

respectively. It can be seen that there are no specific trends for the 

relationships of runout, and the ratios of Lmax/Hmax with the submarine 

landslides volume as the data are quite scattered.  
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Figure 2.3: Relationship of slope inclination and the maximum runout length 
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Figure 2.4: Relationship of volume and the maximum runout length 
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Figure 2.5: Relationship of volume and the ratio of (Lmax/Hmax) 
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2.4 Documentation and Recognition 

 

Most recorded submarine landslides occurred in prehistoric times. The 

phrase “submarine landslide” has not been commonly used until recently, after 

improved techniques in seismic profiling that have allowed observation of 

certain characteristics such as deposits, shapes and geometries. Usually, a 

potential submarine landslide problem is initially revealed by the 

geomorphology and topography of the sea floor, suggesting that the sea floor 

or slope has been modified in a catastrophic manner (Locat and Lee, 2000). 

 

One of the earliest pieces of literature on submarine landslides is 

documented by Terzaghi (1956). Terzaghi recognised submarine landslides as 

spontaneous mass movements of short duration involving large quantities of 

material on both steep and gentle slopes. Moore (1961), who studied the shear 

strength of the sediment and deposits of submarine landslides, found that the 

rate of sedimentation required to produce unstable slope occurs only in areas 

of relatively rapid accumulation. Andresen and Bjerrum (1967) compiled 

some case studies on submarine slope failures such as the flow slide in 

Trondheim Harbour, Norway in 1888 (Figure 2.6) and Helsinski Harbour, 

Finland in 1936 (Figure 2.7). They found that it is useful to distinguish 

between flow slides and liquefaction slides, where the former shows typical 

retrogressive development that fails in shear, while the latter propagates with 

great speed in all direction. Morgenstern (1967) looked into submarine slope 

failures which initiate turbidity currents and found that the mixing of soil with 

overlaying water is an important factor in the development of a turbidity 

current, and controls its density. Henkel (1970) investigated the role of waves 

in causing submarine landslides, and found that there is limited evidence to 

suggest that the pressure differences on the sea floor associated with waves 

may be important in the development of submarine landslides. Lewis (1971) 

studied the failure of submarine slopes at inclinations of 1o – 4o. It was found 

that normal submarine slopes can occur at a slope angle of 1o, while the data 

that Lewis gathered supported the theory that soft sediments could be 

deformed by gravitational forces on gentle slopes on the open continental shelf 
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or continental slope. Coleman and Prior (1978) reported submarine landslides 

in the Mississippi River Delta with the aid of seismic profiling and surveys, 

which concluded that the submarine landslide is a complex problem that may 

occur as a result of a combination of rapid sedimentation that generates high 

pore water pressure, wave-induced stresses and methane gas pressures .  

 

In 1982 Edgers and Karlsrud investigated soil flows generated by 

submarine slides through a collection of case studies, including field data such 

as runout distance and volume of submarine landslides. The data in Figures 

2.3 to 2.5 are mostly from this study. They found that the maximum possible 

extent of a submarine landslide may be estimated from the relative runout 

distances observed in previous slides, but it requires an estimate of the volume 

of the potential slide masses. Furthermore, the thickness of the slide masses at 

a site can only be roughly estimated from the volume of available slide 

materials and some reasonable estimate of their distribution along the slide 

runout. Prior (1984) revealed the methods of submarine landslides 

identification, such as echo sounding, side-scan sonar and subbottom seismic 

profiles. It can be seen that active studies on submarine landslides began with 

the improvements of seismic profiling and advancements of bathymetric 

surveys. 

 

Developments within the oil and gas industry in the 1990s have given 

more momentum for research in submarine landslides. Hampton et al. (1996) 

and Locat and Lee (2000) have given state-of-the-art reviews on submarine 

landslides. Both describe an in-depth assessment on submarine landslides and 

their challenges. These will be discussed in the following sections. 

 

In connection with petroleum exploration, one of the most famous 

submarine landslides, is the Storegga slide (Figure 2.8), in which the failure 

occurred about 8,200 years ago. The enormous slide mass involved 3,000 km3 

of material volume and affected an area of 90,000 km2. The average slope 

inclination was in the order of 0.6-0.7o (Kvalstad et al., 2005). 
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Figure 2.6: Failure at Trondheim Harbour, Norway in 1888  
(after Andresen and Bjerrum, 1967) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Failure at Helsinki Harbour, Finland in 1936  
(after Andresen and Bjerrum, 1967) 
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Figure 2.8: Storegga slide, Norway 8200 years ago 
(after Bryn et al., 2005) 

 

Though most of the submarine landslides occurred in prehistoric times, 

there are some which occurred more recently. These include the failure at 

Helsinki Harbour in 1936 and the 1994 submarine landslide at Skagway, 

Alaska. A massive submarine landslide at Skagway, Alaska on 3 November 

1994 destroyed 275 m of dock during a reconstruction project. Bathymetric 

surveys before and after the failure showed that the ground had been scoured 

to depths of up to 21 m immediately downslope from the dock and the volume 

of the failure was estimated at around 760,000 m3 (Cornforth, 2004).  

 

It is important to note that there is very limited information regarding 

the flow velocity of the documented submarine landslides as they occurred 

under water. Table 2.1 summaries the available information on the velocities 

of submarine landslides. The information in Table 2.1 includes data from field 

and laboratory experiments. Some of the field data are collected by various 
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authors through literature. It can be seen that the flow distances from the field 

data are several magnitudes larger than the flow distances produced in the 

laboratory experiments. 

 

Table 2.1: Summary of flow velocity, distance and thickness of various 

submarine landslides 

Reference 

Flow 

Velocity 

(m/s) 

Flow 

Distance 

(m) 

Flow 

Thickness 

(m) 

Notes 

De Blasio 

et al. 

(2004) 

20 - 50 
10000 - 

200000 
5 - 50 

Finneidfjord, Norway field 

data. 

De Blasio 

et al. 

(2005) 

60 400000++ 50 

Numerical simulation of 

Storegga slide based on the 

generated tsunami wave. 

Edgers and 

Karlsrud 

(1982) 

0.8 – 7.7 
1200 – 

750000++
- 

Data collected from various 

literatures. Flow velocity 

estimated based on time 

sequence of submarine cable 

breaks.  

Marr et al. 

(2001) 
0.65 7.2 

0.01 – 

0.07 
Data from 1 g test 

Norem et 

al. (1990) 
23.5 2000 15 - 20 Calculated velocity 

Ilstad 

(2005) 

0.74 - 

1.04 
9 0.03 0.06 Data from 1 g test 

Schwarz 

(1982) 
4 - 28 - - 

Data collected from various 

literatures. 

Terzaghi 

(1956) 
5.8 – 28 1000 12 

Flow velocity estimated 

based on time sequence of 

submarine cable breaks at 

Folla fjord. 
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Appendix 1 tabulates some submarine landslides which are 

summarised from literature available to date. It should be noted that not all the 

information on each submarine landslide is presented, as it is only based on 

the best available information from the literature. A more comprehensive list 

of submarine landslides can be found in Schwarz (1982), which tabulated the 

occurrences of submarine landslides through the available information at the 

time of the publication.  

 

The consequences of submarine landslides are no doubt immense. 

Submarine landslides impose a serious threat to offshore industries, in which 

they have a direct impact on offshore structures such as oil and gas rigs 

(platforms). A submarine landslide may not only affect any structures 

immediately above it; it may also affect adjacent or nearby structures, since 

submarine landslides are massive and have long runout distances. The results 

of failure towards oil and gas rigs are unimaginable, an occurrence which 

would cost lives and cause damage to properties. Subsea pipelines and utilities 

are also considered to be directly affected by submarine landslides. The effects 

from submarine landslides are not only limited to offshore structures and 

subsea pipelines; near shore or coastal structures and facilities are also 

affected.  

 

Submarine landslides may also generate tsunamis by their own 

displacements. A study carried out by Silva (2003) stated that the 

displacements due to submarine landslides may induce tsunami. Synolakis et 

al. (2002) showed evidence on the generation of the 1998 Papua New Guinea 

tsunami by submarine landslides which killed over 2100 people, based on 

fundamental geological and geotechnical information. It is, therefore, 

recognised that tsunamis could be generated by large submarine landslides; 

hence, they pose significant threats to mankind.  

 

Since submarine landslides are increasingly recognised and 

documented, research on the causes and the mechanics of failure are no doubt 

actively ongoing at present. 
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2.5 Causes of Failure 

 

A great deal of notable literature on submarine landslides has specified 

some of the most probable causes of failure. Although many proposed the 

possibility of different causes of failure, all are in close agreement regarding 

the most common and probable causes of failure, such as rapid sedimentation, 

retrogressive failure, earthquake and tectonic activity, gas hydrate dissociation 

and wave loading. These causes of failure are discussed in this sub-section. 

 

2.5.1 Rapid sedimentation 
 

High excess pore water pressures are commonly associated with 

submarine landslides. Numerous authors have referred to rapid sedimentation 

as being one of the most probable causes for submarine landslides. These 

include, but are not limited to, Moore (1961), Schwarz (1982), Prior (1984), 

Hampton et al. (1996), Locat and Lee (2000), and Kvalstad et al. (2005).  

 

Rapid sedimentation may cause the development of excess pore water 

pressures when the length of the drainage path increases faster than the time 

required for consolidation within the buried sediment and does not allow the 

normal increase in shear strength with the depth of burial. Terzaghi (1956) 

mentioned that, for fine-grained soil, rapidly deposited sediment may 

accumulate so fast that the process of consolidation through dissipation of 

excess pore water pressures may not keep pace with it. Sediments rich in 

coarse silt and very fine sand frequently have low shear strengths and often 

accumulate with loose, open metastable packing. Deposits of this type are 

called underconsolidated soil and are normally found in the marine 

environment (Moore, 1961). 

 

Schwarz (1982) made a rigorous compilation of submarine landslides 

and found that 29.3% of submarine landslides are due to rapid sedimentation, 

which is the highest cause of other submarine landslides. He sorted rapid 

sedimentation into four sub categories: 
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 Long-term high sedimentation rate which favours sliding. As a 

releasing mechanism, this process is generally combined with 

an additional triggering effect. 

 Short-term heavy sediment supply can be considered as self-

sufficient to generate slope failures at suitable places, such as 

off-river mouths. 

 Overloading of insufficiently consolidated slope by periodical 

accumulation off-river mouths and progradation of marine 

foreset beds. 

 Oversteepening of a depositional slope, which is possibly 

increased by tectonic movements. 

 

According to Schwarz (1982), the sedimentation rates found in failure 

areas generally range from 0.1mm to 1mm/year on continental slopes. Moore 

(1961), based on various literature, found a tremendous variation in the rate of 

sedimentation, which could be as low as 0.5mm in 1000 years and as high as  

300mm a year.  

 

2.5.2 Retrogressive failure 
 

As cited in Hampton et al. (1996), retrogressive failure is defined as 

sliding that occurs serially as numerous adjacent failures that progress 

upslope. Other authors who quote that retrogressive failure is one of the causes 

of submarine landslides include Andresen and Bjerrum (1967), Coleman and 

Prior (1978), Hampton et al. (1996), and Kvalstad et al. (2005). 

 

 It could be asked how a retrogressive failure is discovered, since 

submarine landslides occur under water. The retrogressive failure can be 

deduced from slide scar and debris formation through bathymetry and seismic 

profiles. Figure 2.9 shows an example of deducing retrogressive failure of the 

Storegga slide through bathymetry and seismic profiles; the figure is adopted 
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from Kvalstad et al. (2005). The black lines are the interpreted morphology of 

the slide. 

 

The retrogressive failure has significant impact on structures near 

shore, as a retrogressive failure may fail and progress upslope. This 

phenomenon is most commonly referred to the Trondheim Harbour slide in 

1888 (Andresen and Bjerrum, 1967). The slide retrogressed across the 

shoreline, sinking sections of coastal land, harbour facilities and railways. It is 

therefore important to understand how retrogressive failures take place in 

order to mitigate failures near shore. 

 

Figure 2.9: Interpreted morphology of slide through bathymetry and 
seismic profiles (after Kvalstad et al., 2005) 

 

Kvalstad et al. (2005) proposed a model for evaluation of retrogressive 

failure. This can be described as follows: 

 

 An initial slide is developed in the lower and possibly steeper part 

of a slope, and the mobility of the slide material is sufficient to 

more or less completely unload the earth pressure against the 

initially developed headwall (Figure. 2.10a). 

 The unloading of the headwall causes undrained lateral expansion 

of the soil, while strain concentrations develop in the toe area of 

the headwall. 
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 The large shear strain in the strain concentration zones causes 

strain softening, primarily in the marine clay base layer, and 

progressive failure develops along this layer. 

 The safety factor decreases below unity and the failing soil mass 

(Figure. 2.10b) starts to accelerate downslope. A triangular front 

wedge is formed, being pushed along the slide base by a gradually 

distorted rhomb and triangular wedge creating a graben behind the 

front wedge, thus forming a new headwall (Figure. 2.10c). 

 The released potential energy is partly consumed as friction along 

the base and circumference of the slide mass, and partly in 

remoulding of the slide material along the slide base and internally 

in the distorted slide mass.  

 Excess potential energy is transformed to kinetic energy 

accelerating the slide mass further downslope. 

 The reduction in strength gives sufficient mobility to unload the 

next headwall. The process then repeats itself (Figure. 2.10d) until 

soil strength and layering or geometry change sufficiently to reduce 

mobility and decelerate the sliding process. 

 If the mobility is too low, the slide mass will block further 

retrogression along the base layer and the process will, if possible, 

continue along shallower marine clay layers, creating steps in the 

slide base (Figure. 2.10e). 
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Figure 2.10: Retrogressive slide model (after Kvalstad et al., 2005) 
 

2.5.3 Earthquake and tectonic activity 
 

Earthquakes and tectonic activities are generally thought to be one of 

the most effective triggering mechanisms for submarine landslides. Many 

researchers recognise that earthquake and tectonic activities pose a significant 

threat to submarine slopes, such as Prior (1984), Hampton et al. (1996), Locat 

and Lee (2000), Biscontin et al. (2004), Kvalstad et al. (2005), and Coulter 

(2005).   
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Coulter (2005) states that the main effect of earthquakes is the creation 

of horizontal waves which travel through the bedrock and soil deposits.  In the 

case of a submarine slope, these waves will cause significant shear stress, both 

dynamic and cyclic, and may also cause the loss of soil resistance. Cyclic 

loading of clay continues with the accumulation of plastic strains and shear-

induced excess pore water pressure with increasing number of cycles 

(Biscontin et al., 2004). As mentioned in Kvalstad et al. (2005), earthquake-

induced shear strains generating excess pore pressure leads to the reduction of 

effective stress and hence initiates failure. 

 

Besides earthquakes-induced shear strains, tectonic activities will also 

trigger submarine landslides. As mentioned in Prior (1984), in areas of active 

crustal tectonism, bottom slope angles can be increased by upwarping and 

faulting. The increase of slope angles causes instability to submarine slopes 

and hence initiates failure. 

 

The most notable submarine landslide associated with an earthquake is 

the Grand Banks slide in Canada. Mulder and Cochonat (1996) mention that 

the Grand Banks slide can be attributed to cyclic liquefaction that arose from 

earthquake exposure. There are other notable earthquake-induced landslides 

including the Humboldt slide off of Northern California, USA, in the 

Saguenay Fjord in Quebec, Canada, the slide off of Vancouver Island, British 

Columbia, Canada in 1946, and the slide cause by the 1964 Alaska Earthquake 

(Coulter, 2005). 

 

2.5.4 Gas hydrate 
 

Gas hydrate dissociation contributing to submarine landslides is 

currently gaining more and more attention. The potential of gas hydrates being 

associated with submarine landslides is mentioned in Hampton et al. (1996), 

Locat and Lee (2000), and Paull et al. (2000). 
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Gas hydrates are ice-like substances consisting of natural gas and 

water, which are stable under certain pressure and temperature conditions that 

are common in the seafloor. When temperatures increase or pressures 

decrease, the stability field changes and some of the hydrates may disassociate 

and release bubble-phase natural gas (Locat and Lee, 2000). A drop in sea 

level also reduces the pressure existing on the seafloor, causing gas hydrates to 

disassociate.   

 

According to Paull et al. (2000), the formation and dissociation of gas 

hydrates in the sea floor appears to have a direct influence upon the 

mechanical properties of marine sediments. When gas hydrates become 

unstable, they disassociate into water plus gas. The dissociation of gas 

hydrates leads to excess pore pressure and reduces slope stability. 

 

The connection between submarine slope failures and gas hydrates can 

be linked to the coincidence of slide scars and known gas hydrate distribution.  

According to Paull et al. (2000), bottom simulating reflectors (BSR) are the 

most commonly available remote detection indicators for the presence of gas 

hydrates that occur in sediments around the slide scar. One of the huge 

submarine landslides known to be associated with gas hydrates is the Cape 

Fear slide of the United States Atlantic margin. Paull et al. (2000) pointed out 

that the level of BSR rises at the edges of the slide scar but disappears near its 

centre, where gas hydrates apparently escaped. This suggests that the base of 

gas hydrate stability is associated with a zone of weakness and failure within 

the sediments.  

   

2.5.5 Wave loading 
 

A number of authors have recognised that wave loading could be an 

initiation of submarine landslides. These include Henkel (1970), Schwarz 

(1982), Prior (1984), Hampton et al. (1996), Locat and Lee (2000) and Coulter 

(2005). Wave action causes a bottom pressure that is a function of the wave 

height, wave length and water depth. This wave induced bottom pressure acts 
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as a driving force and exerts stress in the bottom sediments, which can be felt 

horizontally, vertically and, most importantly in the shear direction (Coulter, 

2005). 

 

 Henkel (1970) cited that one of the effects of ocean waves is to 

produce pressure changes within the water, in which the differential loading of 

the water will impose stresses on underlying soil. If the stresses exceed the 

strength of the soil, significant displacements may occur. It is also considered 

that there is an energy transfer between the wave and the moving soil, and the 

work done against the shearing strength of the soil provides damping to the 

oscillatory motion imposed by the wave.  

 

Although many recognise that wave loading can be the cause of 

submarine landslides, limited evidence has been presented in the literature that 

points to the fact that a particular submarine landslide is due to wave loading. 

Wave loading is a complex dynamics problem where satisfactory evidence and 

investigation depends on the acquisition of data on the actual bottom pressures 

found on the seabed. More information such as shear strength distribution with 

depth and the solution of the energy transfer problem between waves and the 

submarine sediments are needed to assess the influence of wave loading 

towards submarine landslides.  

 

2.5.6 Other possible causes 
 

As seen from a number of pieces of literature, there are several other 

possible causes of submarine landslides. Tidal changes, as quoted in Prior 

(1984), Hampton et al. (1996), and Coulter (2005), are a possible causes for 

submarine landslides. The concept is similar to rapid drawdown for the case of 

instability of dams or river banks. 

 

Schwarz (1982) cited an increase in sensitivity of soils due to the 

leaching of marine sediments by influx of fresh water into marine sediments, 

resulting in the weakening of sediment strength.  
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 Erosion causes an undercutting of slope deposits as well as 

oversteepening of slopes, which may cause submarine landslides (Schwarz, 

1982). This has also been recognised in Hampton et al. (1996) and Locat and 

Lee (2000). 

 

Chemical decomposition of organic and inorganic sedimentary 

components, which lead to changes in physical and chemical properties, may 

reduce shear strength and so contribute to failure (Schwarz, 1982).   

 

Man-made slope failures can be initiated particularly during 

constructions of harbours and dams. Such an increased use of aqueous 

environments will cause submarine landslides if proper protection works are 

not implemented. Such failures in the past include the Helsinki harbour failure 

in 1936, where failure occurred after the additional load from filling the basin 

with sand (Andresen and Bjerrum, 1967), and failure at Skagway, Alaska in 

1994 due to the additional fill that had been placed upslope for the dock 

renovation project at Skagway (Cornforth and Lowell, 1996).  

 

2.6 Mechanics of Submarine Landslides 

 

It is essential to understand the basic mechanics of submarine 

landslides, as such information is particularly important for assessing offshore 

geohazards in areas considered for offshore construction, as well as for in-

depth research into the governing factors of submarine landslides. In addition, 

understanding the physics and mechanics of submarine landslides enables 

laboratory experiments to be quantified.  

 

2.6.1 Limit equilibrium 
 
 

Generally, initiation of a landslide is widely accepted when the driving 

shear stress exceeds the shear strength of the slope-forming material. This 

phenomenon is also true for submarine landslides. Figure 2.11a shows the 
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forces acting on a slice in a submarine infinite slope adopted from Locat and 

Lee (2000). Parameters can be defined as follows: 

 

S  = shear resistance of sediment 

N  = normal force 

W  = vertical component of body force of slice 

z  = depth of sediment 

h  = height of slice 

  = slope angle 

 

The failure criterion can be described with the Mohr-Coulomb failure 

criterion: 

 = (-u)tan’ + c’   (2.1) 

where, 

  = shear strength 

   normal stress acting to the failure surface 

 u = pore water pressure 

 ’ = friction angle 

 c’ = effective cohesion 

 

The term (-u) is the effective normal stress, generally summarised as 

’. It should be noted that the Mohr-Coulomb failure criterion indicates a 

linear relationship between shear strength,  and effective stress,’. This 

means that, when effective stress is reduced by the increase of pore water 

pressure, shear strength will be reduced.  
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Figure 2.11: The failure (a) and post-failure (b) mechanics along an 

infinite slope (after Locat and Lee, 2000)  
 

 

Locat and Lee (2000) showed that, following an initial failure (Figure 

2.11a), some submarine landslides mobilise into flows, whereas others remain 

as limited deformation slides and slumps. Figure 2.11b shows the general 

model of submarine landslide failure. Although the diagram shown in the 

figure is limited in its ability to describe the full flow, nevertheless it may be 

able to predict the final shape of the failure deposits. More detail regarding the 

flow behaviour is given in the later part of this chapter. Furthermore, they 

mentioned that, although the mechanisms for mobilisation into flows are not 

well understood, the initial density state of the sediment is the likely 

controlling factor. Figure 2.12a shows the mechanistic condition leading to 

failure of soils. The annotation A is the dilative failure, B is the contractive 

failure, and C is the generation of pore pressure due to cyclic loading, while D 

is the cyclic loading failure. As cited, if the sediment is less dense than an 

appropriate steady state condition (contractive behaviour), the sediment 

appears to be more likely to flow than one that is denser than the steady state 

(dilative behaviour) as shown in Figure 2.12b. 
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Figure 2.12: The mechanistic illustration of conditions leading to: (a) 
failure in soils (b) onset of liquefaction (after Locat and Lee, 2000)  

 

 

It should be noted that the majority of the submarine landslides 

occurred at a very low slope inclination. For a fully submerged soil at low 

slope inclination, the soil will not fail if solely quantified by the Mohr-

Coulomb failure criterion. From the Mohr-Coulomb failure criterion, the only 

way for a failure to take place is to have a very high pore water pressure. It can 

also be interpreted that a failure is affected by other possible boundary 

conditions.   

 

2.6.2 Possible boundary conditions 
 

As cited in Locat and Lee (2000), the possible boundary conditions 

during a submarine landslide event are illustrated in Figure 2.13. It can be seen 

that the flowing material is divided into two components; the dense flow and 

suspension flow. The dense flow is generally associated with debris flow, 

while the suspension flow is generated by the drag forces acting on the upper 

surface of the dense flow.  

Dilative 

Contractive 

Cyclic loading failure 
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Figure 2.13: Possible boundary conditions for submarine landslides (after 
Locat and Lee, 2000)  

 
 

Research, such as Mohrig et al. (1998), De Blasio et al. (2004), and 

Ilstad (2005), consider hydroplaning as the phenomena that increases the 

mobility of submarine landslides, which makes the long runout distances are 

made possible. Hydroplaning reduces the shearing resistance at the base of the 

flowing mass as shown in Figure 2.13. It is known that this process will tend 

to lift the frontal portion of the dense flow, thus reducing the shearing 

resistance at the interface with the underlying immobile layer.  

 

It is assumed that, once a dense flow is generated (i.e. in the event that 

the velocity of the flowing material is fast enough), it remains under undrained 

conditions. In such a scenario, considering the high rate of movement, the 

phenomenon is commonly described by means of fluid mechanics rather than 

soil mechanics (Locat and Lee, 2000). However, soil may still show 

geotechnical behaviour. 

2.6.3 Flow behaviour 
 

As mentioned previously, dense flow is best described by fluid 

mechanics. It is therefore important to study the rheology, which is the 
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deformation and flow of matter under the influence of an applied stress. Locat 

and Lee (2000) quoted that the flow behaviour can be represented by three 

types of rheology, namely Bingham, Herschel-Bulkley and bilinear rheologies.  

 

These rheological models treat a moving slide mass as a flowing, fluid-

like material; thus, the soil described in a rheological model is typically 

referred to as fluid. The typical quantities used to define the properties of 

materials are yield stress (strength), y , and dynamic viscosity,  . These 

quantities are defined by measurements of shear stress,  , and rates of shear 

strain,   or dydv / , using a viscometer. The yield stress, y , is the shear 

stress required to cause motion of the fluid. The motion of a fluid stops when 

the shear stress falls below the yield stress. The dynamic viscosity,  , is the 

slope of the shear stress-strain rate curve, which itself depends on the type of 

sediment and the rate of shear (Hance, 2003). 

 

Figure 2.14 shows the classical types of fluid behaviour. It should be 

noted that Newtonian and Bingham fluids have a viscosity that remains 

constant with the shear strain rate. The viscosity of shear thickening fluids 

increases with rate of shear strain, while Herschel-Bulkley fluids have a 

viscosity that decreases with increasing rate of shear strain. It is also important 

to note that Newtonian fluids have no yield strength, y  while the other fluids 

have yield strength. 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Stress-strain rate relationships (Modified after Hance, 2003) 
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2.6.3.1 Bingham rheology 
 

Bingham rheology, also known as linear visco-plastic fluid, is a 

material that behaves as a rigid body at low stresses but flows as a viscous 

fluid at high stress. Figure 2.15 shows the submarine uniform Bingham flow. 

The Bingham rheology is the most common rheological model applied to 

submarine flowslides. Several authors have presented models for submarine 

landslides based on Bingham fluid assumptions, such as Edgers and Karlsrud 

(1982), Norem et al. (1990), Huang and Garcia (1997), and Huang and Garcia 

(1999).  

 

As cited in Huang and Garcia (1997), the relationship between shear 

stress and shear strain rate for a Bingham fluid can be expressed as: 
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  (2.2) 

or      y     (2.3) 

 

where  is the shear stress,y is the yield stress and is the dynamic viscosity. 

The sgn ( v/ y) notation is the standard form for obtaining the correct sign in 

the Bingham rheology.  

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Submarine, uniform Bingham flow 
(after Huang and Garcia, 1999) 
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As shown in Figure 2.15, it is assumed that the shear stress is linearly 

increasing with depth, as shown by the following equation:   

  

 

   sinyhhg ps     (2.4) 

 

where y is the distance above the bed and h = hs (height of shear layer) + hp  

(height of plug layer). 

 

For 0 ≤  y  ≤ hs, inserting equation (2.4) into (2.2) and integrating with 

the no slip boundary condition v = 0 at the bed and v = Vp at the yield surface, 

results in a parabolic distribution of the velocity in the shear flow region given 

by: 
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and the velocity at the plug flow regions is given by: 
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then, the averaged velocity over the entire flow depth is given by: 
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Hence, the bed shear stress is given by: 
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The basic feature for a submarine uniform Bingham flow is that the 

velocity has uniform and parabolic distributions in the plug layer and shear 
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layer (viscous flow) respectively. The parabolic distribution in the shear layer 

is based on the assumption of the shear stress, which varies linearly from zero 

to b on the basal surface. The plug layer has a constant downslope velocity 

and there is no velocity gradient within the plug layer. In the shear layer 

(viscous flow), however, the downslope velocity decreases from the velocity 

of the plug layer to zero at the base of the flow. 

 

Although it is assumed that the shear stress varies linearly on the basal 

surface, it is also known that this may overestimate the true yield stress 

significantly due to shear thinning at low shear rates (Huang and Garcia, 

1998). Shear thinning is a phenomenon where viscosity decreases with 

shearing rate.  

 

2.6.3.2 Herschel-Bulkley rheology 
 

Herschel-Bulkley rheology is also known as nonlinear visco-plastic 

fluid, which allows shear thinning. Similar to Bingham rheology, the 

Herschel-Bulkley model consists of a distinct shear layer and a plug layer. The 

shear stress at the interface of these two layers is the yield stress. The material 

can deform only if the applied stress exceeds the yield strength (Imran et al., 

2001). 

 

As cited in Huang and Garcia (1998), the relationship between shear 

stress and shear strain rate for a Herschel-Bulkley fluid in laminar flows can 

be expressed as: 
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or    n
y       (2.10) 

 

where n is the flow index and n = 1 corresponds to the Bingham rheology.  
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Similar to the derivation for Bingham rheology, assuming shear stress varies 

linearly with depth, for 0 ≤  y  ≤ hs, and integrating with the no slip boundary 

condition v = 0 at the bed and v = Vp at the yield surface, this results in a 

depth averaged velocity: 
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where Vp is the plug flow velocity, given by: 
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Hence, the bed shear stress is given by: 
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It is important to note that the fluid is qualified as pseudo plastic for n 

< 1, as a dilatant fluid for n > 1, and as Bingham fluid for n = 1. Therefore, the 

Bingham rheology is a limiting case of Herschel-Bulkley rheology with a 

linear stress-strain relationship (Locat and Lee, 2000). In addition, the 

Herschel-Bulkley rheology has been found to be more appropriate for 

depicting the nonlinear visco-plastic behaviour of debris flows (Huang and 

Garcia, 1998; Imran et al., 2001). Coussot and Piau (1994) cited that the 

Herschel-Bulkley rheology fits well with their experimental data but not with 

Bingham rheology.  

 

2.6.3.3 Bilinear rheology 
 

The bilinear rheology is based on a slightly different philosophy as 

compared to the Bingham and Herschel-Bulkley rheologies. The bilinear 
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rheology does not consider a separate plug and viscous layer. The formulation 

uses apparent yield strength to distinguish between behaviour at low and high 

shear stress, which allows a smooth transition between viscous and plastic 

behaviour of the flow (Imran et al., 2001).  

 

Figure 2.16 shows the relationship between shear stress and shear 

strain rate. It can be seen that the bilinear model is a hybrid of a Bingham and 

Newtonian fluid at sufficiently low strain rates; the fluid behaves as a 

Newtonian fluid with viscosity, and no yield strength, y. While at 

sufficiently high strain rates, the fluid behaves as a Bingham fluid with lower 

viscosity, (Hance, 2003)



As cited in Locat and Lee (2000) and Hance (2003), the general 

bilinear rheology can be written as:  
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where, y is the apparent yield strength, 0  is a rheological constant with units 

of the inverse of time and c is an empirical constant that has a negative value 

and units of pressure divided by time. 

 

According to Imran et al. (2001), unlike the Bingham and Herschel-

Bulkley rheologies, a closed form solution for a function describing the 

velocity profile for the case of a steady developed debris flow cannot be 

obtained with the bilinear rheological model. However, as proposed in Imran 

et al. (2001), the relationship of the depth averaged flow velocity is given by: 

 

 pVv 1     (2.15) 



where 1 is the shape factor and Vp is the top surface flow velocity.

  
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Figure 2.16: Bilinear rheological model (after Hance, 2003) 



2.6.3.4 Power Law and Logarithmic Law 
 

Boukpeti et al. (2011) proposed two models to describe the velocity 

distribution in the slide for the case of a steady uniform flow material obeying 

the Herschel-Bulkley model: (i) the Power Law and (ii) the Logarithmic Law.  

 

The equilibrium of shear stresses in the debris layer, which is assumed 

to obey the Power Law, is expressed as: 

 


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




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ref
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,)1(    (2.16) 

 

where b is the shear stress at the base, Y is the vertical coordinate normalised 

with the flow height, su,ref is the shear strength at the reference strain rate 

ref

.

 and  is the rate parameter. From the equation (2.16), the strain rate 

distribution is obtained as: 

 

 /1
.

)1( Y
dy

du
b     (2.17) 

 

y 

dv 




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where b

.

  is the strain rate at the bed,  /1
..

 trrefb S  and brefutr sS /,  

which is called the strength ratio. By integrating equation (2.17) with the 

boundary condition v(0) = 0 (no slip), this yields the velocity profile: 

 

  /)1()1(1  Yvv t   (2.18) 

 

where ut denotes the velocity at the top of the flow layer: 
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Following the same derivation procedure as for the Power Law, the 

strain rate and velocity profiles for Logarithmic Law can be expressed as: 
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with 
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where  is the rate parameter. 

 

Boukpeti et al. (2011) pointed out that, for the Power Law, it can be 

seen that when the parameter  increases, the thickness of the layer where 

significant shearing occurs increases. The increased rate dependence of shear 

strength leads to a diffusion of the shearing, thus reducing the maximum strain 

rate. Similarly for the Logarithmic Law, an increase in  results in an increase 

in the thickness of the layer where significant shearing occurs, reducing the 
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maximum strain rate. The authors concluded that the Power Law stands out 

for its simplicity in which the velocity profile is governed by the parameter . 

 

2.6.4 Governing equations and analytical solutions through mass 
and momentum conservations 

 

As mentioned earlier in this chapter, many investigators have modelled 

flow events by specifying rheological rules that govern flow behaviour. 

However, in general, specified rheologies are neither well-constrained nor 

sufficient to explain flow dynamics; this is because steady, uniform, 

rheometric flows of grain-fluid mixtures do not occur in nature (Iverson and 

Denlinger, 2001).  

 

Savage and Hutter (1989) developed a mathematical model which 

describes the motion and the spreading of a finite mass of fluid-like granular 

material along a rough plane bed. The model was based on the balance laws of 

mass and momentum and depth averaging. The balance of mass and 

momentum can be defined as: 

 

0 v                         (2.23)                                       

  gT
dt

dv       (2.24)  

 

where, 

 v  = flow velocity  

  = mixture density 

 t = time 

g = gravitational acceleration 

T = pressure tensor 

 

The Coulomb friction model for characterising continuum-scale 

stresses in slowly deforming granular material was used in the model by 

Savage and Hutter (1989). The main limitation of this model is that the 
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interparticle interactions are not accounted for, in which the intergranular pore 

fluid pressures influence the Coulomb friction in deforming granular masses. 

It is important to note that the pressure tensor term T in equation 2.24, which 

is the total stress of the mixture and does not separate the mixture into the 

effective stress and the pore fluid pressure. It is well known that the effective 

stress principle can describe the effects of pore fluid pressures; this leads to 

the model which incorporated the effective stress principle to account for the 

influence of pore fluid pressured, developed by Iverson and Denlinger (2001).    

 

Iverson and Denlinger (2001) developed a model to describe a 

spectrum of flows in order to clarify the physical basis of similarities and 

differences among events. This model generalises depth-averaged mass and 

momentum balance equations. The equations describe the behaviour of finite 

masses of variably fluidised grain-fluid mixtures that move unsteadily across 

three-dimensional terrain, from initiation to deposition. 

 

It is important to note that mass and momentum conservation equations 

provide the fundamental tools for analysis of debris-flow continuum 

mechanics. As quoted in Iverson and Denlinger (2001), the simplified mass 

and momentum conservation equations can be written as follows (assuming 

that the density change of the soil is negligible): 

 

0 sv                         (2.25)                                       

       gTTvvtv fssss   /   (2.26) 

 where, 

 s  = flow velocity of solid phase 

  = mixture density 

 t = time 

g = gravitational acceleration 

Ts = stress of the solid phase 

Tf = stress of the fluid phase 

 



Chapter II – Literature Review – Submarine Landslides   

 41

It should be noted that depth averaging is used to further simplify the 

equations of motion in order to eliminate explicit dependence on the 

coordinate normal to bed. Figure 2.17 shows the schematic cut-away view of 

an unsteady flow down a curvilinear slope. This illustrates the local coordinate 

system and dependent variables ),,(),,,(),,,( tyxvtyxvtyxh yx that describe 

depth-averaged flow. 

 

As cited in Iverson and Denlinger (2001), the depth averaged theory 

uses the kinematic boundary conditions where mass neither enters nor leaves 

at the free surface or base of the flow as: 

 

0
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0zv   0z     (2.28) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Schematic cut-away view of an unsteady flow down a 

curvilinear slope (after Iverson and Denlinger, 2001) 

 

Depth averaging also implies that the total normal stress (the sum of 

solid and fluid normal stresses) in the z direction balances the z component of 

the mixture weight, which gives the following equation: 

 

      zzzfzzs gzhTT     (2.29) 
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Quantities with subscript s refer to the solid phase, subscript f refers to 

the fluid phase, while those with no subscript refer to the solid-fluid mixture 

phase. gz is the gravity contribution in the z-direction. 

 

Equation (2.29) leads to expressions for the total normal stress at the 

bed, while the depth averaged total normal stress in the z direction gives the 

following equations:  

 

    hgTT zzzzfzzzs   00    (2.30) 
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Similarly, the depth averaged velocities components can be written as: 
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While the depth averaged stress components (denoted generically by 

subscript ij) can be defined as: 
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Combining the mass and momentum conservations as well as the depth 

averaged components yield the following equations: 
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Iverson and Denlinger (2001), assumed that the pore fluid pressure 

varies linearly from a maximum of bedp  at the base of the flow to zero at the 

flow surface, yielding:  

 

      bedzzzf

h

zzfzzf pTdzT
h

T
2

1

2

11
00


   (2.36) 

 

Due to the assumption of linear variation of fluid pressure, the fluid 

pressure can also be expressed as a fraction  of the total basal normal stress, 

in which, 

hgp zbed    @ 
hg

p

z

bed


    (2.37) 

It should be noted that when  = 1, this represents a case of zero basal 

effective stress or complete liquefaction.  

 

In addition to the fluid pressure, the viscous resistance comes from the 

viscosity of the fluid phase, , which is multiplied by a fluid volume fraction, 

f, because only this fraction of mixture produces viscous stresses (Iverson 

and Denlinger, 2001). By integration of the velocity derivatives in equation 

(2.35), in which adapting the Navier-Stokes equations for flow of 

incompressible Newtonian fluids into the fluid stress terms in equation (2.35), 

and by depth averaging yields the viscous stress term: 

 

h

vx

f 3     (2.38) 

 

Based on Iverson and Denlinger (2001), by combining the equations 

above, which include solid and fluid stresses, and by using depth average 

theory, the final form of the depth averaged x direction momentum equation 

can be written as: 
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where, 

 xr   = radius of local bed curvature in the x direction 

bed   = bed friction angle 

 f   = fluid volume fraction 

    = mixture viscosity 

passactk /  = lateral stress coefficient 

int  = mixture internal friction angle 

sgn = sign function (+1 for positive number and -1   

   for negative number) 

 

The terms on the right-hand side of equation (2.39) are grouped by line 

according to type of stress: the first line represents basal shear stresses from 

the soil skeleton and fluid, the second line represents longitudinal normal 

stress, the third and fourth lines represent transverse shear stresses, while the 

fifth line represents the driving stress due to the gravitational body force in the 

x-direction.  

 

It is important to note that the governing equation proposed by Iverson 

and Denlinger (2001) was for describing typical flowing of grain-fluid 

mixtures on land. This does not account for the case of grain-fluid mixture 

flows under fully-submerged conditions as in submarine landslide flows.  
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To account for this, the buoyancy effect has to be considered for fully 

submerged conditions. This can be done by deducting the density of the 

surrounding fluid (i.e. water), w  from the mixture mass density,  , in which 

the density term becomes  w  . Note that the viscosity of the fluid 

medium may also affect the flow; however the fluid medium in this study is 

water therefore, the governing equation for the fully submerged condition can 

then be written as: 
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For specific cases, analytical solutions can be obtained to predict 

phenomena in the field as well as aiding comparisons with numerical 

solutions. An example of the analytical solution for an unsteady motion of a 

mass of uniform height descending down a slope, as proposed by Iverson and 

Denlinger (2001), is shown in equation (2.41). It should be noted that this 

equation is modified after the original equation in Iverson and Denlinger 

(2001) to incorporate the submerged conditions. This simplified linear 

equation describing translational motion is reduced from the governing 

equation (2.40), with the assumption of a flow with uniform thickness moving 

downslope with no velocity gradients in the x and y directions.  
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With algebraic manipulation including the substitution 

of tanzx gg  , where   is the slope angle, this gives the following 

equations: 
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  where, 

 
  bed tan1tan     (2.43) 

 

It should be noted that the parameter  is constant if the pore pressure 

ratio (ratio of the excess pore pressure and the effective stress), slope 

angle , and friction angle bed  are constant, or if changes in their values 

cancel one another. For constant  the solution of (2.42), subjected to the 

initial condition of 0vv x   at 0t , yields the following equation: 

 

   

 









 






















 














f

w

f

w

f

zw
x

h
tv

h
t

hg
v

3
exp

3
exp1

3

2

0

22

  (2.44) 

 

Equation (2.44) enables the prediction of flow velocities with given 

material parameters and the gravitational levels. Most importantly, this 

facilitates the developments of centrifuge scaling laws, which will be 

described in more detail in Chapter III. 

 

Based on equation (2.44), the dimensionless groups for deducing 

variation in importance of mechanisms for the submarine landslide flows can 

be deduced as: 
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2.6.5 A numerical model that incorporates various rheologies 
 

 

A 1-D depth average numerical model that incorporates the Bingham, 

Herschel-Bulkley, and bilinear rheologies to simulate dynamics of an unsteady 

subaqueous debris flow called "BING" was proposed by Imran et al. (2001). 

The formulation of this model is based on the laminar flow of a constant-

volume high-density debris mass evolving in the down slope direction. 

Incorporation of different rheological formulations within the framework of a 

single numerical model provides the opportunity to select a rheology that is 

most appropriate for any specific case. The numerical model code is written in 

the visual basic programming language and has a graphical user interface. The 

code starts from an initial debris mass and is allowed to collapse and 

propagate on a given topography. By assuming that shear stress increases 

linearly with depth, the velocity profile within the debris mass can be derived 

from a rheological model. The depth average technique is then used to solve 

the governing equations.  

 

The governing equations for the momentum conservation (based on 

equations 2.23 and 2.24) used in the BING code for the Herschel-Bulkley and 

the bilinear rheology, as mentioned by Imran et al. (2001), are defined as 

follows: 
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 For the Herschel-Bulkley rheology, 

 

 


















 hvVhVhv
xhdt

dv
pp

1

22

1

212

1

1

1

1







 

 
h

V

x

h
g py





sgn





  

 p

n

sr

py V
h

V

h
sgn1




      (2.47) 

 

 and for the bilinear rheology, 
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where, 

v   = depth averaged mean velocity 

Vp = plug layer velocity (velocity at the top flow surface)   

h  = debris flow thickness (h = hS + hP) 

hS = shear layer thickness 

hP = plug layer thickness 

  1 = shape factor 

2  = shape factor 

y = yield stress 

b = bed shear stress 

ya = apparent yield strength 

 = density of debris material 

r = reference strain rate  

 = shape factor 

  = slope of the existing bed 

  = b/ya sgn (Vp) 
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This numerical model is able to evaluate the dynamics and the final 

deposit shape of debris flows of different sizes, sources and rheologies. 

However, there are certain limitations to it. One limitation is that the 

hydrodynamic pressure and tensile strength of debris materials in the 

theoretical treatment of debris flow hydrodynamics are not included.  

2.6.6 Runout efficiency 
 

The runout efficiency, commonly known as the net efficiency, defines 

as the ratio of  the horizontal distance of flow from source to deposit, L and 

the vertical elevation of flow above deposit, H. (L/H) has always been the 

research focal point for subaerial debris flow and submarine landslides. 

Iverson (1997) quoted that the energetics and runout efficiency of debris flow 

differ dramatically from those of a homogenous solid or fluid. Logically, one 

can consider that a mixture of solid grains and fluid (less dense than the solid) 

which loses energy as it moves downslope due to viscous shearing as well as 

energy dissipation caused by grain contact friction and collisions. It can also 

be comprehended that viscous fluid increases energy dissipation and reduces 

runout. In addition, plastic deformation of soil also contributes to the 

dissipation mechanism. 

 

It is interesting to note that water-saturated debris flows show that the 

presence of viscous fluid (i.e. water) increases runout even though the fluid 

dissipates energy. Interactions of viscous fluid with dissipative solid grains of 

widely varying sizes produce this behaviour and merit an emphasis in efforts 

to understand debris flow motion. Debris flow motion involves a cascade of 

energy that begins with incipient slope movement and ends with deposition 

(Iverson, 1997). As a debris flow moves downslope, its energy degrades and 

undergoes the conversions shown in Figure 2.18. The one-way arrows indicate 

conversions that are irreversible, whereas the two-way arrow indicates a 

conversion that involves significant transfer of energy.  

 

Figure 2.18 describes the conversion of gravitational potential energy 

to the work done during the flow translation. As cited in Iverson (1997), the 
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more efficiently this conversion occurs, the less vigorously energy degrades to 

irrecoverable forms such as heat, and the further the flows run out before 

stopping.  

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 

Figure 2.18: Energy conversion for debris flows (modified after Iverson, 
1997) 

 

Iverson (1997) recognised that the net efficiency of debris flow can be 

evaluated by equating the total potential energy lost during motion, MgH to 

the total energy degraded to irrecoverable forms by resisting forces, MgR, that 

work through the distance L: 

MgH = MgRL    (2.49) 

 

where,  

 M  = flow mass 

 g = magnitude of gravitational acceleration 

 R = dimensionless net resistance coefficient 

 H = vertical elevation of flow above the deposit 

 L  = horizontal distance from source to deposit 

 

Figure 2.19 shows the schematic cross-section defining H and L. The 

dimensionless net resistance coefficient, R, incorporates the effects of internal 

Irrecoverable energy 

Transfer of energy 

Bulk gravitational potential energy 

Bulk translational kinetic energy 

Grain vibrational kinetic energy + Fluid pressure energy 

Heat 
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forces (or dissipation), but depends also on external forces that act at the bed 

to the soil flows.  

 

Figure 2.19: Schematic cross-section defining H and L, after Iverson 
(1997) 

 

It is important to quantify the mechanical phenomena that govern R, in 

order to understand and predict flow motion of debris flows. Iverson (1997) 

proposed a simpler form from Equation (2.49) for evaluating net efficiency: 

 

   1/R = L/H    (2.50) 

 

This is obtained by dividing each side of the original net efficiency for 

debris flow by MgHR. It can be seen that the net efficiency 1/R corresponds 

directly to L and H, where 1/R increases as the runout distance L increases for 

a fixed height, H. It is therefore important to evaluate L/H from a debris flow 

to find typical values of (1/R) for different conditions. Based on observations 

and experiments, Iverson (1997) pointed out three important points upon 

evaluation of L/H: 

 

1. (1/R) of water saturated debris flows exceeds that of drier 

sediment flow with comparable masses. 

2. Large debris flows appear to have greater (1/R) than small 

flows. However based on the available database (Figure 2.5), 

there is no clear trend on this. 
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3. (1/R) depends on runout path geometry and boundary 

conditions such as the extent of erosion, sedimentation and 

flow channelisation. 

2.7 Major Research Efforts 

 

The increasing interest in offshore developments and mitigation of 

potential hazard requires a better understanding of submarine landslides.  

 

According to Locat and Lee (2000), there have been some major 

international research projects related to submarine landslides, such as: 

GLORIA (1984-1991), ADFEX (Artic Delta Failure Experiment, 1989-1992), 

STEAM (Sediment Transport on European Atlantic Margins, 1993-1996), 

ENAM II (1996-1999), STRATAFORM (1995-2001) and COSTA 

(Continental Slope Stability, 2000-2004). 

 

The main objective of ADFEX was to obtain real-time data on 

submarine debris flow, turbidity current and dynamics for the first time. 

STEAM and ENAM II had a strong component dedicated to submarine mass 

movements with particular reference to those in the North West African and 

North Sea continental margin respectively. STRATAFORM was aimed at 

developing a better understanding of the formation of sedimentary strata, 

including submarine mass movements. This involved a series of surveys, in-

situ monitoring, observations, laboratory testing and numerical modelling. 

 

The COSTA project, dealt with coastal slope stability with the 

following objectives (Locat and Lee, 2000): 

 Assessment of historical records of slope instability, slope 

parameters, seismicity, and tectonic setting. 

 Understanding of seafloor failure dynamics through 3-D 

imaging of sediment architecture and geometry of slope 

failures. 
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 Understanding of sediment physical, mechanical and elastic 

properties of slip planes and areas prone to slope failures. 

 Determination of the presence of gas hydrate and its 

significance for slope stability. 

 Modelling of forces and mechanical processes that control the 

initiation of slope instabilities (release mechanisms), flow 

dynamics and initiation of tsunamis. 

 Assessment of risk-fields related to slope stability 

 

More recently, the Research institution-based strategic project for 

offshore geohazards (SIP) and the Ormen Lange gas field development (2003-

2007) led to a number of researches on submarine landslides which are largely 

carried out by the International Centre for Geohazards (ICG) and the 

Norwegian Geotechnical Institute (NGI).  

 

Furthermore, the IGCP project 511 (IUGS-UNESCO’s International 

Geoscience Programme 511) (2005-2009) carried out research on submarine 

mass movements and their consequences. This project has attracted numerous 

contributions from active researchers, groups and institutions for research in 

the scientific and engineering aspects of offshore geohazards. 

 

Since the significance and importance of submarine landslides have 

been recognised, research in this area has gained more attention from the 

public as well as the professional sectors. Figure 2.20 shows the logical 

sequence from the recognition of submarine landslides leading to research 

studies, implementing designs from research output, and best practice, which 

leads to the ultimate objective in mitigating the occurrences of offshore 

geohazards. 
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Figure 2.20: Sequence of research leading to the mitigation of offshore 
geohazards 

 

Above all, these projects have inspired a number of experimental 

works and numerical studies on submarine landslides. The next section in this 

chapter covers the experimental works in 1 g environment and centrifuge tests 

that have been carried out by other researchers, particularly in submarine 

landslides. It should be noted that, to date, there are only very limited 

laboratory studies on submarine landslides through centrifuge modelling. 

Therefore, this study will particularly focus on laboratory studies of submarine 

landslides through centrifuge modelling.   

 

2.8 Experimental Works by Other Researchers 

 
Experimental works are generally performed in the context of solving a 

particular problem or query to support research concerning phenomena or to 

verify a hypothesis. Laboratory experiments are therefore important in order to 
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study and acquire deeper knowledge on the nature of submarine landslides as 

well as to give an insight into the mechanism of failures.  Valuable data are 

not only the results from laboratory experiments; observations in experiments 

provide a better understanding of the physical phenomena of the research 

problem.  

 

This section summarises the laboratory experimental works on 

submarine slopes carried out by various leading researchers in this particular 

field, both in 1 g environments and centrifuges. The purpose, methods, 

equipments, materials, geometries and limitations of the models in each 

experiment are discussed.  

 

2.8.1 Past experimental works in 1 g environment 
 

The term "1 g environment" means experiments that are carried out in 

the normal earth’s gravity condition. There are a number of experimental 

works in 1 g environment on submarine slopes for various purposes and to 

study specific phenomenon that occur during a submarine landslide. These 

works include: Schwarz (1982), Mohrig et al. (1998, 1999), Marr et al. (2001), 

Mohrig and Marr (2003), Vendeville and Gaullier (2003), and Ilstad et al. 

(2004a, b and c).  Table 2.2 summarises these 1 g environment experimental 

works in chronological order.   

Although, there are a few 1 g environmental works on submarine 

slopes, only the most relevant experiments to the current research work are 

discussed in detail. These include Mohrig et al. (1998, 1999) and Ilstad et al. 

(2004a, b and c).  



Chapter II – Literature Review – Submarine Landslides                           

 56

Table 2.2: Summary of submarine slope experimental works in 1 g environment 

Reference 
Type of 

Experiment 

Geometry 
Materials and soil 

properties 

Methodology 
Measured 

Parameters 
Key Findings Comments 

Slope 
angle 

Slope 
Length 

Slope 
Width 

Soil Type 
Soil 

Properties 

Schwarz 
(1982) 

Various 
submarine 
slope 
experiments 
on 
sedimentation 
as well as 
sediment flow 
and related 
phenomena 

10o- 
30o 

1.6 – 3.7 
m 

0.48 – 
0.76 m 

 

Wet lime 
mud and 
illitic clay 

Wet lime 
  = 2.63g/cm3     
LL = 46.1 
PL = 32.6 
median size = 
2.9m 
 
illitic clay 
  = 2.78g/cm3     
LL = 85.5 
PL = 40.4 
median size = 
0.67-1m 

Three methods: 1) 
mud & silt grain 
mixed with water 
and pour into a 
water tank, 2) 
semi-automatic 
continuously 
stirring and 
pumping 
apparatus, 3) 
circuit feed system 
and control of 
sedimentation rate 

Sedimentation 
rate and 
thickness of 
sedimentation 

Organisation of 
slide structure 
and structural 
transformation 

No pore 
pressure 
measurement 

Mohrig et al. 
(1998) 

To 
demonstrate 
hydroplaning 
of submarine 
debris flows 

0o – 
20o 

10 m 0.2 m 
Slurry 
(55%silt, 
45%sand) 

slurry = 
2.08g/cm3     
y=29Pa   
s=13Pa s 
K=3x10-12 m2        
k=3x10-5m/s 
WC = 16.5% 

Single slurry fed 
into a channel of 
hard bottom, with 
varying slope 
inclinations 

Flow velocity, 
thickness of 
deposition 
and discharge 
 

Hydroplaning 

Influence of 
soil and fluid 
type and 
stresses of 
soil flow are 
not 
investigated 

Mohrig et al. 
(1999) 

Relative 
mobility of 
muddy 
submarine 
debris flows 
on different 
beds 

1o – 6o 10 m 

 
 
 
 

0.2 m 

Slurry 
(40%clay, 
35%silt, 
25%sand) 

slurry = 
1.60g/cm3     
y=29Pa   
s=13Pa  s             
K=1x10-14 m2        
k=1x10-5cm/s 
WC = 39.0% 

Single slurry fed 
into a channel of 
hard and soft 
bottom, with and 
without water in 
the channel 

Flow velocity, 
thickness of 
deposition 
and discharge 
 

Hydroplaning is 
independent of 
rheology 

Influence of 
soil and fluid 
type and 
stresses of 
soil flow are 
not 
investigated 

K  = hydraulic conductivity  k  = hydraulic permeability 
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Table 2.2: Summary of submarine slope experimental works in 1 g environment (cont.) 

Reference 
Type of 

Experiment 

Geometry 
Materials and soil 

properties 

Methodology 
Measured 

Parameters 
Key Findings Comments 

Slope 
angle 

Slope 
Length 

Slope 
Width 

Soil Type 
Soil 

Properties 

Marr et al. 
(2001) 

To examine 
the role of 
clay and water 
content in 
flow dynamics 
and 
depositional 
structure on 
submarine 
sandy flows 

0o – 6o 10 m 0.3 m 

kaolinite, 
bentonite, 
white silica 
sand 
+ coal slag 

sand = 2.65g/cm3   
median size = 
110 m 
 
coal slag= 
2.60g/cm3     
median size = 
500 m 

Mixtures with 
varying water and 
clay contents, 
release from a 
head tank 

Head velocity 
and runout 
distance 

Strong coherent 
flows with 
plastic rheology 
in laminar 
regime, weak 
coherent flows 
increase breakup 
and suspension 
of the head flow 

No pore 
pressure and 
soil stresses 
measurement 

Mohrig and 
Marr (2003) 

Efficiency of 
turbidity 
current 
generation 
from 
submarine 
debris flows 
with 
acoustical 
imaging 

1o – 6o 10 m  0.2 m 
kaolinite, 
bentonite, 
silica 

N/A 

Motion of mixtures 
released from a 
head tank were 
recorded; 
acoustical imaging 
methods were also 
used to generate 
images of ambient 
water turbulently 
mixed into the 
heads of submarine 
debris flow 

Head velocity 
and acoustical 
reflectance 

Turbulence 
concentrated at 
flow heads, 
developed a 
framework for 
quantifying the 
erosion rate of 
sediment from 
the head of the 
submarine 
debris flows 

No pore 
pressure and 
soil stresses 
measurement 

Vendeville 
and Gaullier 
(2003) 

Role of pore 
pressure and 
slope angle in 
triggering 
submarine 
mass 
movements 

3o – 6o N/A N/A 

High 
porosity 
sand and 
clay or 
viscous 
silicone 
polymer 

N/A 

Tilting the slope 
and progressively 
increase fluid 
pressure (air and 
water) 

N/A 

Fluid pressure 
effectively 
triggers failure, 
sediment 
deformed as a 
coherent slab  

No detailed 
information 
on materials 
used 
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Table 2.2: Summary of submarine slope experimental works in 1 g environment (cont.) 

Reference 
Type of 

Experiment 

Geometry 
Materials and soil 

properties 

Methodology 
Measured 

Parameters 
Key Findings Comments 

Slope 
angle 

Slope 
Length 

Slope 
Width 

Soil Type 
Soil 

Properties 

Ilstad et al. 
(2004)a 

Measurement 
of pore fluid 
pressure and 
total stress on 
submarine 
debris flows 

6o 9.0 m 0.2 m 

Kaolin clay 
(Snowbrite) 
and fine 
brown 
silica sand 
(330 m) 

kaolin = 
2.75g/cm3              
sand = 
2.65g/cm3            

Various mixtures 
of clay/sand ratio, 
released from a 
submerged 
compartment into a 
channel 

Pore pressure 
and total 
stress 

Hydroplaning 
front for high 
clay/sand ratio, 
turbulent front 
for low 
clay/sand ratio 

Influence of 
small soil 
stresses due to 
gravity not 
investigated 

Ilstad et al. 
(2004)b 

Submarine 
debris flows 
through 
particle 
tracking by 
high speed 
video 

6o 9.0 m 0.2 m 

Kaolin clay 
(Snowbrite) 
and fine 
brown 
silica sand 
(330 m) 

kaolin = 
2.75g/cm3              
sand = 
2.65g/cm3            

Various mixtures 
of clay/sand ratio, 
released from a 
submerged 
compartment into a 
channel, high 
speed video to 
capture the flows 

Flow velocity, 
thickness of 
deposition 

Strong coherent 
flows lower 
velocity, 
velocity 
decreases 
behind the front, 
weak coherent 
flows uniform 
velocity 

Influence of 
small soil 
stresses due to 
gravity not 
investigated 

Ilstad et al. 
(2004)c 

Frontal 
dynamics and 
morphology of 
submarine 
debris flows 

8o 9.0 m  2.25 m  

Kaolin clay 
(Snowbrite) 
and fine 
brown 
silica sand 
(330 m) 

kaolin = 
2.75g/cm3              
sand = 
2.65g/cm3            

Mixture fully 
submerged at the 
beginning, released 
from a gate and 
captured the flow 
with high speed 
video 

Front velocity 
and runout 
distance 

Laboratory 
results are 
comparable with 
field, tensile 
stresses lead to 
formation of 
outrunner blocks 

Influence of 
soil type is 
not 
investigated 
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2.8.1.1 Mohrig et al. (1998, 1999) experimental works 
 

The experiments carried out by Mohrig et al. (1998, 1999) were 

primarily to investigate the hydroplaning phenomena of submarine debris 

flows and their relative mobility, which mobilise antecedent deposits.  

 

2.8.1.1.1      Experimental setup 
 

The experimental setup in Mohrig (1998, 1999) consisted of a glass-

walled tank 10 m long, 3 m high, and 0.6 m wide. A 0.2 m wide channel with 

smooth transparent walls was suspended within the tank as shown in Figure 

2.21.  

Figure 2.21: Illustration of the experimental facility (after Mohrig et al., 1998, 

1999) 
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The suspended channel was articulated so that a slope break and/or gap 

in its bed may be introduced about 6 m down-dip from the channel head. It 

should be noted that each channel segment can be adjusted to tilt between 00 

and 200.  

 

The flow material (slurry) was continuously mixed in a head tank and 

fed into the channel through a debris feed point as shown in Figure 2.21. It is 

important to note that the slurry was not compacted or densified, and no time 

was allowed for consolidation. It was prepared by incrementally adding 

approximately 5 kg batches of sediment to a tumbling mixture in a portable 

concrete mixer. A complete mixing was reported to last approximately 30 min, 

starting with finest grain size and adding coarser material progressively.  

 

The volume discharge of slurry into the channel was measured by 

either a load cell or a sonic profiler recording depending on either weight or 

volume change through time respectively. Multiple video cameras were used 

to capture the motion of the debris flow. These cameras were arranged 

accordingly to capture the velocity of the debris flow as well as the flow 

depths.   

 

The first series of tests carried out by Mohrig et al. (1998) reported that 

the debris flows were released into the channel, where the bottom of the 

channel consisted of a rough, non-erodible rubber matting, named “hard” 

bottom. The second series of tests which was reported in Mohrig et al. (1999), 

were performed with two different conditions for the bottom of the channel, 

namely a hard bottom and a soft bottom.  

 

The soft bottom, which consisted of an antecedent debris flow 

material, formed at the bottom of the channel in the tank by feeding the 

material down the channel through the debris feed point when the tank was 

dry. The tank was then filled with fresh water slowly so as to prevent 

disturbance of the base at the bottom of the channel. A water-soluble dye was 

added to the soil representing the slide debris to distinguish the slide material 

from the existing antecedent debris flow material at the bottom of the channel. 
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2.8.1.1.2       Materials used 
 

A single mixture of slurry was used throughout the series of tests. It 

was reported that the mixture had a bulk density of 2.08 (±0.03) x 103 kg/m3 

and 1.60 (±0.03) x 103 kg/m3 for the experiments in 1998 and 1999, 

respectively. The mixture in 1998 consisted of 55% silt and 45% sand, in 

which no clay was used. For the experiments in 1999, a mixture of 40% clay, 

35% silt and 25% sand was used. It should be noted that the percentage of 

materials was based on weight. The water content of the mixtures was 16.5% 

and 39% for experiments in 1998 and 1999, respectively. The detail 

mineralogy of materials used was not reported in either experiments; however, 

the clay used in the 1999 experiment was reported as Kaolin clay with a 

median size of 1-3 m.  

 

Hydraulic permeability (k) for the soils tested were estimated by 

Mohrig et al. (1998, 1999) using an empirical method in which k was a 

function of both median grain size and particle sorting. k was estimated to be 3 

x 10-5 m/s for the slurry in the 1998 experiments, whereas k was estimated to 

be 1 x 10-4 m/s for the slurry in the 1999 experiments.  

 

As mentioned in the previous section, the rheological properties are 

important as they describe flow behaviour and hence the two main parameters 

used to describe the rheology are yield strength y and viscosity s. Mohrig et 

al. (1998, 1999) estimated y ands by means of experiments on slurry flow in 

half-pipe channels, of which details are given in Mohrig et al. (1999). The 

values for y and s were 29 Pa and 13 Pa.s respectively for the experiments in 

1998. It should be noted that the dye used in the 1999 experiments affected the 

consistency of the slurry, hence resulting in three consistencies of slurry. 

Mohrig et al. (1999) described them as “sticky” for dye-free slurry, “runny” 

for the least amount of dye and “more runny” for the larger amount of dye 

used. The values of y were 49 Pa, 36 Pa and 33 Pa for slurry of “sticky” 

“runny” and “more runny”, respectively. Consecutively the values of s were 
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0.035 Pa.s, 0.023 Pa.s and 0.019 Pa.s for slurry of “sticky” “runny” and “more 

runny”, respectively. 

 

All experiments were conducted using fresh water rather than sea 

water. It was reported that the difference between the two could have a 

possible effect on clay rheology, particularly for the case of active clays. 

However, the clay used in the 1999 experiments was Kaolin, which is known 

as a relatively inactive clay.  

 

2.8.1.1.3      Observations and findings 
 

The key observation in a number of tests performed by Mohrig et al. 

(1998, 1999) was that a thin layer of fluid was observed as being entrapped 

between the sliding soil mass and underlying surface. This served as evidence 

of hydroplaning, which increases the mobility of the flow. The majority of the 

experiments showed hydroplaning; however, there were a few exceptions.  

 

Figure 2.22 shows the flows from the experiments in 1998. Figure 

2.22A shows the subaerial debris flow, B shows the subaqueous debris flow 

overlying suspended sediment cloud and demonstrates the behaviour prior to 

hydroplaning, while C shows the hydroplaning of the subaqueous debris flow. 

The horizontal distances in A, B and C were reported as 61, 50, and 68 cm, 

respectively. 

 

Mohrig et al. (1998, 1999) observed several characteristics of 

hydroplaning. The hydroplaning of a debris flow is caused by hydrodynamic 

pressures deforming its wetted perimeter from the stagnation point, which “s” 

is marked on each front down to the bed, as shown in Figure 2.23. A layer of 

water penetrates underneath the debris as a result of the deformation. Mohrig 

et al. (1998) found that the fluid with lower viscosity is easily sheared and is 

associated with a dramatic reduction in the bed-resistance force acting on that 

section of the debris flow, which is detached by a layer of fluid thick enough 

to submerse roughness elements on the bed. As mentioned in Mohrig et al. 
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(1998), the shape in Figure 2.23 (a) is shared by all non-hydroplaning flows, 

(b) shows the front at the very onset of hydroplaning and (c) shows the 

hydroplaning front with a necking in the flow behind the head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22: Fronts of laboratory debris flows (after Mohrig et al., 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: Schematic profiles of the fronts of observed debris flows  

(after Mohrig et al., 1998) 
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It was observed that the thickness of the debris flow head, hh could be 

as much as three times as great as the average flow height ha. The maximum 

distance underneath the hydroplaning debris flow is about 10 times ha. It is 

interesting to note that the consequence of hydroplaning is the increase front 

velocities relative to those non-hydroplaning debris flows. It was also found 

that the velocity of the hydroplaning front was greater than the velocity that 

was supplied to the channel. This resulted in the head of the flow detaching 

from the body, which suggested the idea of forerunning blocks.  

  

In the 1999 experiments, the front velocity of the flow against the 

distance downslope for the “soft” and “hard” bottom and different 

consistencies is shown in Figure 2.24. It can be seen that the front velocity of 

“hard” bottom flows are generally greater than the “soft” bottom in the early 

stage of flows; however, they become similar at the later stage of the flow 

regardless of their slurry consistency. It was hypothesised that a thin layer of 

water was entrapped due to hydroplaning, which resulted in similar velocity 

profiles on different conditions of the channel bottom. Therefore hydroplaning 

was regarded as a mechanism independent of rheology. 

 

 

Figure 2.24: Front velocity ‘vs’ distance downslope (modified after 

Mohrig et al., 1999) 

 

“hard” bottom 
“soft” bottom 

Slurry consistency  
 
“sticky”             Flow 1w,2w,4w 
“runny”             Flow 3w 
“more runny”    Flow 5w 
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2.8.1.2 Ilstad et al. (2004a, b) experimental works 
 

The experiments carried out by Ilstad et al. (2004a,b) were primarily to 

investigate the behaviour within the subaqueous flow and the effects of 

varying the clay-sand mass ratio of the slurry at a fixed water content, as well 

as to investigate the changes in pressure during subaqueous debris flows.  The 

work was carried out as part of the PhD study of Ilstad (2005). 

 

2.8.1.2.1      Experimental setup 
 

The experiments were carried out in a channel 0.2 m wide and 9.5 m 

long suspended inside a larger glass-walled tank. The glass-walled tank was 

10 m long, 3 m high and 0.6 m wide. The slope for the channel was set to be 

60; a granular bed was placed along the channel with the roughness of 1mm to 

prevent undesired slip.  

 

Measurements of both pore water pressure and total bed normal stress 

were performed simultaneously at the base of the channel to quantify the 

conditions during flow. Pore pressure transducers (PPT) and stress cells were 

placed in two cross-sections along the flow channel, 3.5 and 7.6 m from the 

head gate.   

 

It should be noted that the experiments were recorded with two video 

cameras at the locations with PPTs and stress cells, while a high speed video 

camera was mounted on a rail. It was reported that the high speed video 

camera was able to film at a speed of 250 frames per second at a resolution of 

480 x 512 pixels.  

 

The experimental setup and instrumentation is shown in Figure 2.25. 
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Figure 2.25: Illustration of the experimental setup  

(modified after Ilstad et al. 2004a, b) 

 

The glass-walled water tank was filled with water to about 0.5 m above 

the gate, at the beginning of the experiment. Then 0.16 m3 of slurry was added 

into the sediment tank. The slurry was released into the channel through a gate 

5.3 cm high and 15 cm wide. Data acquisition started at the moment the gate 

opened. It was reported that all pressure signals were measured simultaneously 

at a rate of 500 Hz during the flow event. The high speed videos were used for 

particle tracking of soil grains, thus describing the flow behaviour. During the 

flow, measurements of pore water pressure and total stress were made using 

the pre-located PPTs and stress cells. The experiments were performed with 

slurries of various clay/sand compositions. 

 

 

Sediment tank 
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2.8.1.2.2      Materials used 
 

The materials used to form the slurries were kaolin clay (snowbrite) 

and fine brown silica sand. The kaolin clay used had a specific density of 2.75 

g/cm3, while the fine brown silica sand had a specific density of 2.65 g/cm3 

and a median grain size of 330 m. As stated in Ilstad et al. (2004a), a 

siliceous material produced as a residue from burning coal named “coal slag” 

was used in a small amount for the purpose of flow visualisation. The material 

was reported to be black in colour, which had a median grain size of 500 mm, 

and a specific density of 2.6 g/cm3.  

 

Eight slurries were prepared, all of which had the same solid content of 

65% corresponding to 35% of water. It should be noted that the slurries used 

in the experiments were characterised by the weight of total mass. The coal 

slag used was less than 1% of the total weight of the slurry in each test. Table 

2.3 shows the material compositions for each experiment. 

 

The slurries were mixed using a tumbling concrete mixer, where water 

was loaded at the beginning followed by clay and sand. The mixing took about 

1 hour to produce a homogeneous mixture. After mixing was completed, the 

slurry was then loaded to the sediment tank. Slurry with low clay content 

tended to settle; therefore, continuous stirring in the sediment tank was carried 

out until seconds before releasing the slurry into the channel.  
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Table 2.3: Slurry compositions in percentage of weight of total mass 

(after Ilstad et al., 2004a, b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8.1.2.3       Observations and findings 
 

Through the series of tests carried out by Ilstad et al. (2004a, b), a 

number of key observations and findings were found. One of the main findings 

was the hydroplaning front occurring in clay rich flows (high clay/sand ratio), 

as shown in Figure 2.26 A, while a turbulent front was observed for sand rich 

flows (low clay/sand ratio) as shown in Figure 2.26 B. They stated that 

hydroplaning started with the front lifting off the bed and a thin water layer 

penetrating underneath (Figure 2.26 A). Hydroplaning effectively reduced bed 

friction and significantly increased debris flow mobility. At the rear part of the 

hydroplaning layer, they discovered that a small amount of sediment was 

incorporated into the water layer in which the basal layer transformed into a 

mud layer, as shown in Figure 2.27. It was observed that the subaqueous 

debris flow sediments at the basal layer were eroded from below and mixed 

into the basal layer, which increased the viscosity and yield stress due to the 

incorporation of clay in the basal layer.  

Exp. 

No. 

Water 

(%) 

Clay 

(kaolin) 

(%) 

Sand 

(330mm) 

(%) 

Density 

(kg/m3) 

Measure 

water content 

(%) 

1 35 5 60 1680 37.3 

2 35 10 55 1690 39.1 

3 35 15 50 1690 35.3 

4 35 20 45 1690 36.0 

5 35 20 45 1690 35.8 

6 35 25 40 1690 35.6 

7 35 28.7 36.7 1690 35.1 

8 35 32.5 32.5 1690 35.2 
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Figure 2.26: Fronts of laboratory subaqueous debris flows  

(after Ilstad et al. 2004a, b) 

Figure 2.27: Materials from the base of the debris flow are eroded and 

incorporated into basal layer (after Ilstad et al. 2004b) 

 

Figure 2.28 shows the pressure measurements at the base of a clay-rich 

subaqueous debris flow (28.7% clay). It can be seen that both the pore 

pressure and the total stress underneath the subaqueous debris flow show 

similar readings at the hydroplaning front; this indicates that a thin water layer 

mud mixing water 
Basal 
layer 
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penetrates the bottom of the front flow. Towards the end of the flow, the total 

stress rises with a slight increase in pore pressure. This indicates an increase in 

the basal friction since the flow matrix is carrying parts of the debris flow 

weight.  

 

Figure 2.28: Pressure measurements at the base of a clay rich flow 

(modified after Ilstad et al. 2004b) 

 

Ilstad et al. (2004a, b) proposed three main pressure patterns found in 

the experiments. Figure 2.29 shows the schematic overview of the three main 

pressure patterns. The upper panel indicates a flow with constant frictional 

contact with the bed, where the grains are in constant contact with the bed as 

they move. The middle panel represents a flow where the layer is liquefied or 

fluidised, in which grains may collide with the bed but will remain in 

suspension; therefore a fluctuating pressure can be seen. The third pattern 

shows a rigid block riding upon a layer of water where the total stress and pore 

pressure are approximately equal. This pattern particularly refers to 

hydroplaning. 

 
 

 

 

 

 

stress
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Figure 2.29: Schematic overview of the three main pressure patterns 

(after Ilstad et al. 2004a) 

 

According to Ilstad et al. (2004b), the front speeds of the subaqueous 

debris flows were measured based on video recordings. Figure 2.30 shows the 

trendlines of the front speed along the channel for various slurry compositions. 

The highest clay-rich flow (32.5 % clay) moved with the lowest velocities of 

77 cm/s in the upper part of the slope, decreasing to 68 cm/s towards the end. 

It can be seen that a decreasing front speed for clay-rich flows, while an 

almost uniform front speed, was observed for sand rich flows. It was 

surprising that the flow with high clay content show low flow velocity and 

hydroplaned.  

 

 

 

 

 

 

Figure 2.30: Trendlines of the front velocity along the channel for various 

slurry compositions (after Ilstad et al. 2004b) 
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2.8.2   Overview of other submarine slope experimental works 
in 1 g 

 

Schwarz (1982) carried out a series of tests on sedimentation and dealt 

with the slide processes. Three sedimentation methods have been used as 

stated in Table 2.2. Tilt experiments were conducted after the end of primary 

consolidation by tilting of one tank section up to the critical inclination where 

the slope fails; the second method with sedimentation on the inclined bottom 

with various sedimentation rates without initiating a failure; and the third 

method with sedimentation on the flat bottom with an escarpment block 

forming a steep angle. 

 

Observations were made on the internal organisation of slide structures 

and time sequences as well as the transformation of various deformational 

structures. Five deformation stages were proposed based on the observations 

from the experiments, while a structural transformation model of gravitational 

subaqueous slope failure was also proposed. The model gave the relationship 

between deformational energy and degree of deformation. Table 2.2 shows the 

general information of the tests; further detailed information is given in 

Schwarz (1982). 

 

Marr et al. (2001) investigated the role of clay and water content in 

subaqueous flow dynamics. Mixtures with varying water and clay contents 

were prepared and released from a head tank in which the head velocity and 

runout distance were recorded. The main findings from the series of 

experiments showed that features of subaqueous gravity flow deposits were 

directly related to flow coherence. They found that strongly coherent flows 

commonly hydroplaned and flowed in a laminar regime, while moderately and 

weakly coherent flows showed an increasing amount of breakup and 

suspension of the head flow, which produced turbidity currents. It should be 

noted that no pore pressure and stress measurements were made throughout 

the series of tests. The general information of the tests is shown in Table 2.2 
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Another series of tests performed by Mohrig and Marr (2003) 

investigated the turbidity current generation from submarine debris flow, with 

the aid of acoustical imaging. Measurements of acoustic reflectance collected 

with a reversible ultrasonic transducer were used to generate images 

constraining the extent to which ambient water was turbulently mixed into the 

heads of some submarine debris flows. According to Mohrig and Marr (2003), 

such an imaging technique was necessary because sediment concentration in 

the diluted portions of these flows was so high that it could not be 

distinguished from unmodified parent material by visual inspection alone. This 

acoustical imaging showed that any production of turbulence within the parent 

material was focused at their flow heads. They have also proposed a 

framework for quantifying the erosion rate of sediment from the head of the 

submarine debris flows. Table 2.2 shows the general information of the tests. 

 

Vendeville and Gaullier (2003) investigated the role of pore fluid 

pressure and slope angle on triggering submarine mass movements using a 

basic experimental setup. Experiments were done by tilting the slope and 

progressively increasing the fluid pressure. Compressed air was used as fluid 

in a scenario and water in the other scenario. The results in their experiments 

indicated that an increase in fluid pressure could effectively trigger 

instantaneous gliding of sediment strata downslope. It was also observed that, 

during a failure, gliding of the slope deformed as a coherent slab. The general 

information of the tests is shown in Table 2.2 

 

Part of the PhD work of Ilstad (2005) investigated the frontal dynamics 

and morphology of submarine debris flows, as published in Ilstad et al. 

(2004c). The procedures of the experiments were similar to those in Ilstad et 

al. (2004a, b); however, particular focus was placed at the front of the flows 

where videos were captured in plan view. Interestingly, they found that the 

hydroplaning front of the flow progressively detached from the main flow 

forming an outrunner block. Upward flipping of the front of outrunner blocks 

were observed during flow. Ilstad et al. (2004c) recognised that the frontal part 

of a submarine debris flow can affect the dynamics of the whole body. They 

also concluded that, due to hydroplaning, tensile stresses led to the formation 
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of outrunner blocks, and the dimensions of the outrunner blocks were related 

to the material strength. Table 2.2 shows the general information of the tests.  

 

2.8.3  Past experimental works in centrifuge 
 

Soil stresses are related to self-weight, therefore centrifuges are often 

used for studying various geotechnical engineering problems. Information on 

centrifuges is further discussed in Chapter III. It should be noted that there are 

only very limited experiments on submarine slopes using centrifuge testing. 

One of the earliest experiments on submarine slopes using a centrifuge was 

discussed in Phillips and Byrne (1994).  

 

Phillips and Byrne (1994) carried out centrifuge tests to model slope 

liquefaction due to static loading. The main intentions of the tests were to aid 

in the design of field events as well as to serve as a numerical model’s 

calibration. A saturated sand model slope was formed at 160, with PPTs (Pore 

Pressure Transducers) placed within the model. A surcharge was dropped on 

the crest of the submerged slope causing the slope to liquefy and flow with 

deep-seated lateral movements. In the tests, the slope was subjected to two 

loading sequences. One started with a static bearing pressure and the 

centrifuge was accelerated up to 50 g in stages, while in another loading 

sequence the surcharge was dropped at a fixed drop height after the centrifuge 

achieved 50g in stages. They found that a static liquefaction event could be 

induced in a centrifuge test, where the results indicated that liquefaction 

occurred as confirmed in both video recordings as well as pore pressure 

measurements. Table 2.4 shows the general information of the tests. 

 

Zhou et al. (2002) investigated the stability of underwater slopes 

through a series of centrifuge tests. The main objective of the tests was to 

obtain the critical slope angle for an underwater slope of silty sand and fine 

sand. The tests were carried out in such a way that the slope angle was 

increased or decreased gradually after each test in order to obtain the critical 

slope angle. Although the tests were carried out at different g-levels, the study 
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was not made on the influence of g-levels. Some of the general information of 

the tests is listed in table 2.4. 

 

One of the recent experiments on submarine slopes using a centrifuge 

was carried by Coulter (2005), where seismic initiation of submarine slope 

failures was modelled. The objective of the study was to examine the dynamic 

response of submarine slopes exposed to earthquake loadings. The slope was 

instrumented with PPTs, LVDTs, miniature accelerometers, a laser sensor and 

a triaxial accelerometer.   

 

Three different slope profiles were tested at the targeted g-levels. The 

targeted g-level for this experiment was 70 g at a depth of two-thirds the 

model slope height. The submerged slope was then exposed to three different 

earthquake, based on acceleration time histories. A substitute pore fluid 

(Hydroxypropyl methycellulose – HPMC) was used to saturate the model in 

order to satisfy the scaling differences between static and dynamic events in 

the centrifuge. According to Coulter (2005), this particular fluid was selected 

because of its similarity to water in unit weight, surface tension, Newtonian 

behaviour and the ability to mix into a wide range of viscosities. 

 

Through the series of tests, Coulter (2005) found that excess pore 

pressure and subsequent liquefaction occurred first in downslope areas and 

progressed upslope. The generation of excess pore pressure increased with the 

increase in earthquake magnitude. Both horizontal and vertical movements of 

the slope were detected after the earthquakes. It was observed that a small 

amount of short-term surface heave was found on the slopes that failed. 

Liquefaction was found to occur more readily in larger earthquake motions 

both at deeper locations in the model as well as at drainage boundaries. It was 

interesting to note that the slope experienced densification and seismic 

strengthening with exposure to a series of smaller seismic motions; this 

conclusion was supported with surface settlement data as well as the decrease 

in excess pore pressure generation that was caused in each successive smaller 

earthquakes. The general information of the test is summarised in Table 2.4 
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More recently, Boylan et al. (2010) developed a centrifuge model 

capable of modelling submarine slides using a drum centrifuge. They focused 

on the initiation of submarine slides, in which they developed a slide 

triggering device for use in the drum centrifuge. The submarine slide was 

modelled on a flat seabed (Kaolin clay) which was consolidated in the channel 

of the drum centrifuge prior to the consolidation of the slide material in the 

slide triggering device. The slide material (presumably Kaolin clay) was 

partially consolidated at 100 g from slurry with a water content of 120%. The 

slide could then be triggered remotely in the drum centrifuge control room. 

The post-slide characterisation could be characterised using a miniature T-bar 

penetrometer and samples of the slide runout were taken for moisture content 

testing. There was no predetermined slope for the slide to runout but the slope 

was then back calculated based on the runout thickness at the toe of the runout 

and the thickness close to the triggering device. They found that examination 

of the properties of the runout material could provide an insight into the 

previous history of mass movement of the seabed (i.e. the moisture content of 

the post-slide material was lower than the original slide material). The general 

information of the test is summarised in Table 2.4 
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Table 2.4: Summary of submarine slope experimental works in centrifuges 

Reference 
Type of 

Experiment 

Geometry Materials and soil properties 
Methodology 

‘g’ 
Levels 

Key Findings Comments 
Slope 
angle 

Slope 
Length 

Slope 
Width 

Soil 
Type 

Soil Properties 

Phillips and 
Byrne 
(1994) 

Modelling of 
slope 
liquefaction 
due to static 
loading 

16o 0.94 m 0.4 m 
Oil sand 
tailings 

Gs = 2.64 
emax = 0.96 
emin = 0.53 
d50 = 0.17mm 
d10=0.092mm 
WC = 7-9% 
k = 1.6e-05m/s  

Surcharge 
dropped on the 
crest of the 
slope, 
measurement of 
pore pressure 
with PPTs 

50 
Static liquefaction 
could be induced in 
a centrifuge test 

Tests were carried 
out only in a certain 
g level which did 
not investigate the 
influence of g levels 

Zhou et al. 
(2002) 

To estimate 
the stability of 
underwater 
slope 

26o – 
57o 

0.41m 0.3 m 

Fine 
sand 
and silty 
sand 

fine sand = 15.8-18.2kN/m3 

e = 0.8 - 0.9 
c = 3.5 - 4.9 
 = 25.5 - 30.6 
WC = 23-26.4% 
silty sand = 19.7kN/m3 
e = 0.54 - 0.67 
 = 22.5 - 29.4 
WC = 16.8-22.3% 

Test at different 
slope angles to 
obtain the 
critical slope 
angle 

5, 60, 
140, 
150, 
190 

The critical slope 
angle of silty sand is 
steeper than fine 
sand, height of 
underwater slope 
has no influence on 
critical slope angle 

Did not compare the 
same slope angle at 
different g levels  

Coulter and 
Phillips 
(2003) / 
Coulter 
(2005) 

Modelling of 
seismic 
initiation of 
submarine 
slope failures 

26o 0.74 m 0.3 m 

Fraser 
River 
sand 
and US 
fine 
ground 
silica 
Sil-Co-
Sil 52 



sand = 
1.4-1.67 g/cm3 
Gs = 2.71 
e = 0.62 - 0.94 
d50 = 0.26 mm 
 
 
 

Three different 
slope profiles 
submerged with 
fluid and 
subjected to 
three different 
earthquakes 

70 

Liquefaction 
occurred first in 
downslope areas 
and progressed 
upslope, 
densification and 
seismic 
strengthening on 
smaller seismic 
motion 

Tests were carried 
out only in a certain 
g level which did 
not investigate the 
influence of g levels 

Boylan et al. 
(2010) 

Modelling of 
initiation of 
submarine 
slides 

N/A N/A N/A 
Kaolin 
clay 

’ = 5kN/m3 

WC = 120%

Consolidate 
slide material 
from slurry and 
initiate the slide 
with a triggering 
device into a 
consolidated flat 
seabed 

100 

Examination of the 
properties of the 
runout material can 
provide insight into 
previous history of 
mass movement of 
the seabed  

Tests were not 
carried out in a 
slope but on a flat 
seabed. Only tested 
in a certain g level 
and did not 
investigate the 
influence of g levels  
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2.9 Constraints of Past Experimental Works in Submarine 

Slopes 

 

Through the available literature, it can be seen that there are more 

submarine slope experiments in 1 g test environments than centrifuge 

experiments. From this, it can be interpreted that 1 g laboratory tests are 

generally easier and cheaper to conduct. However, as mentioned previously, 

actual submarine slides are very large; as a small-scale model in a 1g test 

environment is relatively small, hence the soil stresses in such conditions are 

also very small. Soil stresses are gravity-dependent in which small-scale 1 g 

laboratory tests do not necessarily show the true soil behaviour and may not 

represent the real situation. It is therefore questionable as to whether the 

findings from 1 g test environments are representative of actual submarine 

landslides.  

 

Table 2.5 summarises various aspects of submarine slope experiments 

in both a 1 g test environment and centrifuge tests. It should be noted that 

flows, sliding mechanism and sedimentation are the important aspects in 

submarine landslides.  

 

Table 2.5: Summary of various submarine slope experimental works 

 

 

 

 

 

 

 

 

Clearly, it can be seen that there are only very limited experiments on 

submarine slopes through centrifuge modelling, in particular the influence of 

different g levels towards the flow and the scaling laws for submarine 

Type of test 1 g test 
Centrifuge 

test 

Flow   

Sliding   

Sedimentation   

Initiation of failure   
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landslide flows. Also, the slope angles from the centrifuge experimental works 

available in the literature are generally larger than the 1 g experimental works. 

No doubt, that there is an urgent need to study submarine landslides through 

centrifuge modelling. Through centrifuge modelling, self-weight stresses and 

gravity-dependent processes are able to be correctly reproduced, and 

observations from small-scale models can be related to full-scale prototype 

situations using appropriate scaling laws. This will be further discussed in 

Chapter III.  

 

2.10 Summary 

 
An understanding of submarine landslide features and characteristics, 

mechanics, and their importance and significance, as well as the lack of 

knowledge in the particular area, have inspired the current study on submarine 

landslides, particularly focusing on submarine landslide flows through 

centrifuge modelling and developing the centrifuge scaling laws for submarine 

landslide flows.  

 

As can be seen from the submarine landslides work by centrifuge 

modelling, the effects of different g levels and whether the results would scale 

at different g levels were not considered. It should be noted that this PhD 

study is considered as the pilot study for centrifuge modelling of submarine 

landslide flows and to develop the appropriate centrifuge scaling laws for 

submarine landslide flows.  

 

Prior to this date, there have been no well-established centrifuge 

scaling laws for submarine landslide flows. It is therefore the main objective 

of this study to develop the centrifuge scaling laws for submarine landslide 

flows. Since this is a pilot study, this study also explores the reliability of 

using centrifuge modelling to study such phenomena. Chapter III discusses the 

concept of centrifuge modelling and proposes the scaling laws for submarine 

landslide flows. 
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CHAPTER III 

3.0 CENTRIFUGE MODELLING 

 

3.1 Introduction 

 

The principle of centrifuge modelling is to reproduce the behaviour of 

a prototype in a small-scale model subjected to centrifugal acceleration of 

magnitude many times the earth’s gravity. With this technique, self-weight 

stresses and gravity-dependent processes can be correctly reproduced, while 

observations from small-scale models can be related to the full-scale prototype 

situation using well-established scaling laws (Taylor, 1995). 

 

This chapter summarises the use of centrifuges in geotechnical 

engineering, centrifuge scaling laws, restrictions and limitations, and 

introduces the mini-drum centrifuge at the Schofield Centre (The Centre for 

Geotechnical Process and Construction Modelling), University of Cambridge. 

This chapter also proposes and discusses the centrifuge scaling laws for 

submarine landslide flows derived through analytical solutions. 

 

3.2 Principles of Centrifuge Modelling 

 

Almost every scenario in geotechnical engineering is concerned with 

soil self-weight and stresses in which gravity effects are the significant 

contributing factors to soil self-weight and stresses. In order to study the soil 

properties related to geotechnical engineering, scaled-down models are 

frequently used in the laboratory to study the actual prototype’s behaviour.  

 

It is important to note that the stress-strain behaviour of soils is well 

known to be non-linear. Therefore, the behaviour of a small-scale model may 

not represent the behaviour to its prototype if the stress-strain behaviour is not 
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properly modelled, as shown in Figure 3.1. The scaled-down model exerts 

only a small fraction of stress compared to the stresses exerted by the ‘N’ 

times larger prototype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Different soil behaviour at different stress level 
 

 

A centrifuge is able to provide the N times gravity environment. When 

a centrifuge is rotating with an angular velocity of ‘ω’, the centrifugal 

acceleration at any radius ‘r’ is given by: 

 

Centrifugal acceleration = r x ω2  (3.1) 

 

In order to match this centrifugal acceleration to be the same as the 

prototype, therefore: 

 

N x g = r x ω2    (3.2) 

 

With this method, self-weight stresses and gravity-dependent processes 

can be reproduced. Currently, the two widely accepted basic principles for 

centrifuge modelling as mentioned in Schofield (1988), are:  
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1) The increase of self-weight by increase of acceleration is equal 

to the reduction of model scale. 

2) The reduction of time for model tests as the scale is reduced. 

 

The observations from small-scale models can therefore be related to 

the full-scale prototype using the appropriate scaling laws.  

 

3.3 Centrifuge Scaling Laws 

 

As mentioned above, stress similarity between model and prototype is 

needed, which leads to the derivation of scaling laws. Taking into 

consideration the different types of scaling laws in centrifuge modelling, it is 

essential to recognise the following three fundamentals as proposed by 

Fulgsang and Ovesen (1988): 

 All significant influences should be modelled in similarity 

 All effects not modelled in similarity should be proven 

secondary by experimental evidence, and 

 Any unknown effect should be revealed or proven insignificant 

by means of the test results. 

3.3.1 General scaling laws 
 

As summarised in Barker (1998), the scaling laws for centrifuge 

modelling can be briefly described as follows: 

 

a) If a soil with identical material properties is formed into 

geometrically similar bodies, one a full-size prototype and the 

other a model at scale 1/N (in dimension), and if the model has 

its self-weight increased by a factor of N times by being 

subjected to the centrifugal acceleration in a centrifuge, then 

the initial stress at corresponding points in the model and the 

prototype will be the same, provided the boundary conditions 

for each are also similar. 
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b) If the stress increment is uniquely determined by the strain 

increment [ = f()], the strain field of the model will be the 

same as that of the prototype. This leads to the scaling law for 

displacement being: displacement (model) = (1/N) 

displacement (prototype). Hence, the scaling law for length 

remains the same. 

 

c) If the excess pore pressure distributions within the model and 

the prototype are similar, then all subsequent primary pore 

water flows and consolidation will be modelled at times N2 

faster than in the prototype if the same pore fluid is used. 

 

A summary of basic centrifuge modelling scaling laws is shown in 

Table 3.1, while Figure 3.2 shows the basic principle of scaling laws in a 

centrifuge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

PARAMETER PROTOTYPE 

MODEL 

SCALING 

(basic) 

MODEL 

SCALING 

(this study) 

Acceleration of Gravity 1 N N 

Length L L / N L / N 

Legth (Flow distance) L L / N L / N3 

Area A A / N2 A / N2 

Volume Vol Vol / N3 Vol / N3 

Stress   

Strain   

Displacement L L / N L / N

Pore Pressure u u u 

Hydraulic Gradient i Ni Ni 

Time (Seepage/Consolidation) t t / N2 t / N2 

Flow velocity v N v / N 

Table 3.1: Summary of basic centrifuge modelling scaling laws (after Barker, 1998) 
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Figure 3.2: Basic principle of scaling laws 
  

3.3.2 Development of Scaling laws for soil flow through analytical 
solutions 

 

The conventional scaling law for displacement L (and hence Length, 

L) comes from the fact that stress increment (i.e. satisfying the stress 

equilibrium condition) of a body is related to strain increment through a given 

stress-strain relationship of the tested soil (see Point b in Section 3.3.1). If 

strains in both the prototype and model are the same, then the flow distance is 

scaled at a given location in both the prototype and model are the same, then 

the ground movement is scaled at N times (Lprototype = NLmodel) as the 

conventional scaling law for length. That is, the scaling law for length 

originates from the fact that stresses depend on strains.  

 

In this study, the movement of the soil-fluid mixture is large, and the 

soil, particularly in contact at the base boundary, is extensively sheared. If the 

soil is at failure (critical state) and the effective stress state of the soil becomes 

independent of strain, the scaling law for length (or flow distance) is 
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indeterminate. However, by assuming that the shear resistance of a moving 

soil-fluid mixture has some viscous effect (strain rate dependent), a new 

scaling law can be derived as shown below. The derivation simplifies the 

problem by assuming that the movement of the soil perpendicular to the slope 

is negligible compared to that parallel to the slope (i.e. the depth average 

assumption). Hence, the scaling law of length in the direction parallel to the 

slope will be considered here. 

 

As mentioned in Chapter II, Iverson and Denlinger (2001) developed a 

model which generalises depth-averaged mass and momentum balance 

equations that described finite masses of variably fluidised grain-fluid 

mixtures that move unsteadily across three-dimensional terrains, from 

initiation to deposition. It is assumed that the effective stress state of soil is 

governed by the failure criteria (i.e. strain independent), while the viscosity of 

the pore fluid contributes to the shear resistance. For specific cases, analytical 

solutions can be obtained to predict phenomena in the field as well as aiding 

comparison with numerical simulations.  

 

Based on the equation (2.44) which enables the prediction of flow 

velocities with given material parameters and gravitational levels, the 

dimensionless groups for deducing variation in importance of mechanisms for 

submarine landslide flows can be deduced as: 
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 Combining equations (3.3) and (3.4) gives, 
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where xv  is the average flow velocity at the x direction (i.e. parallel to the 

slope); is the mixture density; w is the density of the surrounding fluid (i.e. 

water); gz is the gravitational acceleration; h  is the average flow height 

(thickness of flow); f is the fluid volume fraction; and  is the mixture 

viscosity. These dimensionless groups facilitate the developments of the 

centrifuge scaling laws for submarine landslide flows.  

 

The main aim is to have the same stress field (effective stress and pore 

pressure) in both the model and the prototype. Therefore, the scaling law for 

the flow height is  

 

h prototype = N h model   (3.6) 

 

This ensures that the stress field inside the moving soil body of the 

model is the same as the prototype, while the friction at the base will also be 

the same. 

 

In this study, it is assumed that the soil is sheared extensively and that 

the effective stress state of the soil is independent of strain (i.e. critical state). 

It is noted that, if the stresses are a function of strains, the conventional 

centrifuge scaling laws would apply. However, based on the equation (2.44) 

and the abovementioned dimensionless groups (3.3), the scaling laws for 

submarine landslide flow velocity of the modelled soil-fluid mixture can be 

deduced as follows: 

      

v prototype = N v model   (3.7)  

 

where v  is the average flow velocity. In order to verify this scaling law, the 

scaled flow rate (Q= v  x h x w, where w is the width of the channel and h x w 

gives the cross-sectional area of the flow) can be applied at different g levels, 

and this will be tested in this study. 
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 The scaling law for time to model the transient behaviour can be 

obtained from the dimensionless groups (3.4) or (3.5): 

 

tprototype = N2tmodel   (3.8) 

 

If the flow velocity is scaled at v prototype = N v model, the flow distance 

increment, dL, is flow velocity multiplied by flow time increment, dt. 

 

dLmodel = v model  x  dtmodel  (3.9) 

        

 Using the scaling laws from (3.7) and (3.8), the scaling of equation 

(3.9) is: 

 

        N3dLmodel = N v model  x N2 dtmodel  (3.10) 

       

Therefore, it can be argued that the flow distance of the prototype is 

scaled at: 

 

                                      dLprototype = N3dLmodel   (3.11) 

 

It is intriguing to find that the flow distance of a prototype is scaled at 

N3 times of the model. Based on the conventional centrifuge scaling law of 

soil body, the movement in the flow direction would have scaled at N times of 

the model.  

 

3.3.3 Discussion of the proposed scaling laws for soil flow  
 

The scaling law for height as in equation (3.6) (i.e. perpendicular to the 

slope) comes from the fact that the stress state is governed by the weight of the 

soil, which gives the basal and side frictions. This means that the variation in 

the change in height is considered to be small compared to the movement in 

the direction parallel to the slope and hence the depth average technique can 

be adopted. It is assumed that, in most submarine landslide problems, the soil 
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body is moving in one direction, while the movement in the direction 

perpendicular to the moving direction is very small or negligible compared to 

the movement in the parallel direction.  

 

The scaling laws for velocity (equation 3.7) and movement for soil 

flow (equation 3.11) parallel to the slope come from (i) the equation of 

motion, (ii) the effective stress state being independent of strain (e.g. critical 

or residual state) and (iii) the viscous resistance of pore fluid. An important 

assumption to derive the proposed scaling laws is that the velocity profile 

within the moving soil body is the same between the model and the prototype, 

as shown in Figure 3.3. Based on the scaling law for flow height (3.6) and the 

scaling law for the averaged flow velocity (3.7), the velocity gradient (or strain 

rate) profiles will be the same between the prototype and the model. If the 

viscous effect is governing the movement of the moving mass, it will therefore 

give the same viscous resistance at the sliding boundary as shown in Figure 

3.3.  

 

 

 

 

 

 

 

 

Figure 3.3: Conceptual flow profile in prototype and model 

 

Since the proposed scaling laws for soil flow differ from the 

conventional scaling laws of the soil mechanics problem, this has further 

motivated the call for centrifuge experiments to validate the deduced scaling 

laws. It should be noted that, while carrying out experiments at different g 

levels, the various flow heights at the corresponding g levels must be scaled as 

in equation (3.6). Ideally, this will give the same magnitude of basal friction to 

resist the flow movement as well as the effective stress field in the soil 

skeleton to drive the soil body to move along the slope. 

hm vm 
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hp vp 
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3.4 Restrictions and Limitations of Centrifuge Modelling 

 
Despite the fact that the centrifuge is a very powerful tool for analysing 

complex problems in geotechnical engineering, there are certain restrictions 

and limitations. It is essential to identify and quantify these limitations in order 

to minimise the errors in centrifuge modelling.  

 

3.4.1 Variations of stress and gravity field with depth 
 

Centrifuge testing of a small-scale model in a gravity field has a strong 

function of distance from the centre of rotation. From, Ng = rω2; it can be 

undestood that the gravity field varies with radius r. It can also be seen that the 

gravity field increases as the distance from the centre of rotation increases.  

 

It should be noted that the top region of a model is typically the closest 

to the centre of rotation while the bottom region of the model is furthest away 

from the centre of rotation. This results in a greater gravity field at the bottom 

region of the model and lower gravity field at the top region of the model. It is 

important to note that a prototype would experience a linear increase in stress 

as depth into the soil increases due to the constant gravity put upon it by the 

Earth’s rotation. However, the model experiences a nonlinear stress profile 

that increases with depth proportional to the variation of the induced 

acceleration field (Coulter, 2005).   

 

Therefore, the error brought about by the change in radius in a 

centrifuge model is indeed an important factor. The error might be in the 

region of under-stress in the upper depths, or over-stress in the lower depths, 

as shown in Figure 3.4. These errors can be minimised by knowing the relative 

magnitudes of the over-stress and the under-stress in the centrifuge model. 
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Figure 3.4: Stress variation with depth in a centrifuge model and its 

corresponding prototype (after Taylor, 1995) 

 

According to Taylor (1995), the exact corresponding stress between 

model and prototype is at two-thirds model depth, while the effective 

centrifuge radius should be measured from the central axis to one-third the 

depth of the model. It should be noted that generally, this error is less than 3% 

of the prototype stress, which is considered as not overly significant. 

Furthermore, Schofield (1980) suggests that the acceleration level may be 

assumed constant with model depth without excessive error if the overall soil 

model depth is less than 10% of the effective centrifuge radius. In this study, 

the centrifuge experiments of submarine landslide flows experience the 

variation with depth therefore; the flows may be subjected to errors due to the 

stress variation with depth in the mini-drum centrifuge. Baker (1998) 

mentioned that the typical errors of variation with depth of the mini-drum 

centrifuge were 6.4 % and 7.4 %, for over-stress and under-stress respectively. 

 

3.4.2 Radial gravity field 
 

In a centrifuge, the centrifugal acceleration field which provides the g 

is in radial, while the earth’s gravity field is assumed to be vertically 

downwards or parallel in the context of geotechnical structures. Figure 3.5 

shows the error of radial gravity field. It can be seen that, at the centre of the 

model, the direction of the acceleration is in the vertical direction, while 

towards the side of the model the acceleration becomes more inclined. It can 
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also be seen that the error due to the radial gravity field gets worse in a smaller 

diameter centrifuge compared to a larger diameter centrifuge. 

 

This effect may cause a significant error if testing activity is in the 

region close to the sides of the model. It is, therefore, advisable to ensure all 

major events of testing occur at the centre of the model where the direction of 

acceleration is closer to vertical. It is important to note that this problem 

becomes insignificant in drum centrifuge as the model is along the circular 

channel where the direction of the acceleration is always vertical relative to 

the model. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Error due to radial gravity field (after Madabhushi, 2006)  

 

3.4.3 Coriolis effects 
 

According to Schofield (1980), Coriolis effects occur whenever there 

is a radial velocity inside the model in the plane of rotation. In addition, in a 

centrifuge test there may be vertical velocities in the plane of rotation in which 

the Coriolis effects need to be assessed. Taylor (1995) stated that the Coriolis 

acceleration, ac, is related to the angular velocity, , of the centrifuge, while 

the velocity, vmass, of a mass within the model can be written as ac = 2vmass.  

 

It should be noted that the inertia acceleration, a, of the model is a = 

2Re = vmodel, where Re is the effective radius of the centrifuge and vmodel is 

Radial gravity field in a 
larger diameter centrifuge 

R 

Radial gravity field in a 
smaller diameter centrifuge 

r 
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the velocity of the model in a centrifuge. The error due to Coriolis acceleration 

can be determined as the ratio between the Coriolis acceleration and the 

inertial acceleration (ac/a). Taylor (1995) concluded that the Coriolis effects 

would be negligible if the ratio of ac/a, is less than 10%, while the range of 

velocities within a model would not lead to a significant Coriolis effect, is 

given by 0.05vmodel > vmass > 2vmodel. Based on this recommendation, it is 

found that the centrifuge experiments in this study are within the limits. 

3.4.4 Particle size effects 
 

A well-known argument made on centrifuge modelling is that, if a 

model test is scaled down to 1:N, the grain size of soils in the model should 

also be scaled down N times in order to model the prototype. This implies that 

if a prototype with fine sand is to be modelled, then clay particles have to be 

used in the model. However, it is important to note that in soil mechanics, the 

stress strain behaviour of sand and clay is different. It should also be noted 

that soils are considered as continuum, in which the approach of modelling 

fine sand using clay does not portrait the true behaviour of the modelled soils.  

 

It is therefore sensible to develop simple guidelines on the critical ratio 

between a major dimension in the model to the average grain diameter to 

avoid problems of particle size effects (Taylor, 1995). For example, Goodings 

and Gillette (1996) studied 61 centrifuge models of slopes brought to failure to 

assess side boundary and particle size effects on model behaviour. They found 

that the particle size effects are negligible if the model failure surface is at 

least 30 grain diameters below the soil surface.  

3.4.5 Natural earth acceleration field (1 g effects) 
 

It should be noted that besides experiencing the centrifugal 

acceleration in a centrifuge, models in a centrifuge also experience the earth’s 

natural acceleration field. This results in centrifuge models not experiencing 

the acceleration field that acts truly parallel to the vertical axis of the model, 

where the prototype does so in its vertical axis as caused by the Earth’s 
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gravity. Hence, this implies that centrifuge models experience a resultant 

acceleration field which may induce errors to the results.  

 

This effect of the Earth’s constant natural acceleration field is 

impossible to eliminate. However, if a centrifuge is brought up to an 

acceleration field many times larger than the natural earth acceleration field, 

this effect will be insignificant. As cited in Coulter (2005), considering a test 

at 100 g, the resultant acceleration will act less than 0.6 degrees from vertical. 

Therefore, the 1 g effect will be insignificant if a test is conducted at higher g 

levels. 

 

3.5 Mini-Drum Centrifuge 

 

The mini-drum centrifuge is specifically chosen for the submarine 

landslide experiments because of its flexibility for materials to move freely 

within the circular ring channel. Unlike beam centrifuges, the soil test package 

is mounted on one end of the rotating arm. The mini-drum centrifuge at the 

Schofield Centre is known as the Mk II mini-drum which was manufactured 

by Andrew N. Schofield & Associates (ANS&A) and has been in operation 

since 1995. 

 

Figures 3.6 and 3.7 show the elevation of the mini-drum centrifuge 

with its axis horizontal and the cross-section through the main rotating 

components with its axis vertical, respectively. It should be noted that the 

mini-drum centrifuge is capable of rotating the drum through 900 about the 

pivot until the drive shaft is vertical, without stopping the spinning drum. 

Testing of the models is carried out with the axis vertical to minimise the ±1g 

variations in accelerations, which are experienced by the model when the axis 

is horizontal (Barker, 1998). 

 

The mini-drum centrifuge has a radius of 370 mm with a width of 180 

mm and depth of 120 mm. Figure 3.8 shows the internal dimensions of the 
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mini-drum centrifuge. According to Barker (1998), the maximum speed of the 

motor in the mini-drum is 1067 rpm which corresponds to 471 g at radius 370 

mm.  

It should be noted that the face plate and turntable can be rotated 

independently. This feature is designed for any actuator to rotate relative to the 

face plate. Instruments used in the mini-drum can be attached to the 

instrumentation housing ring as shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Elevation of the mini-drum centrifuge with axis horizontal 

(after Barker, 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Cross-section of the mini-drum centrifuge with axis vertical  

(after Barker, 1998) 
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Figure 3.8: Internal dimensions of the mini-drum centrifuge 

(after Barker, 1998) 

 

It is essential to note that water is supplied to the bottom of the ring 

channel through the water supply hole in the ring channel as shown in Figure 

3.9. The water can then be drained through the drainage holes in the channel 

wall. The drainage of water from these holes is connected to a standpipe. This 

allows drainage and water levels to be controlled in the ring channel. The 

inclination of the standpipe is controlled by an air motor. 

 

Figure 3.9: Water supply and channel drainage of the mini-drum 
centrifuge (after Barker, 1998) 
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3.6 Summary 

 

Understanding the principles of centrifuge modelling enables the 

development of a centrifuge experiment to simulate submarine landslide 

flows. Since the mini-drum centrifuge has the flexibility to enable materials to 

move freely within the circular ring channel, as well as the capability of 

containing water, a centrifuge model specifically designed for simulations of 

submarine landslide flows in this mini-drum centrifuge is developed and is 

discussed in Chapter IV. 

 

Scaling laws for submarine landslide flows are proposed and 

centrifuge experiments at various gravity fields with scaled flow heights are 

performed to further verify and investigate the proposed scaling laws. Chapter 

IV discusses the development of the model and the experimental results. 
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CHAPTER IV 

4.0 CENTRIFUGE MODELLING OF SUBMARINE 

LANDSLIDE FLOWS 

 

4.1 Introduction 

 
As mentioned in previous chapters, this research study has been 

inspired by the importance and the lack of submarine landslide experiments 

through centrifuge modelling. The submarine landslide experimental works 

were carried out using the Mk II mini-drum centrifuge at the Schofield Centre, 

University of Cambridge. This chapter discusses the design of the centrifuge 

model, experimental procedures, results and interpretations of the experiments 

as well as the challenges faced during the development of the centrifuge model 

while carrying out the experiments.  

 

4.2 Design of the Centrifuge Model 

4.2.1 Geometry of the model 
 

The geometry of the slope for the experiments is shown in Figure 4.1. 

In order to produce a slope inclination of 6o, the length of the slope needed to 

be 1 m with a height of 0.105 m. The 6o slope inclination was initially chosen 

for comparison with Ilstad's (2005) PhD work; however, at the later stage of 

the experiments, it was found that the comparison with this work was not 

feasible due to the material used in the experiments. This is discussed in more 

detail in this chapter. The width of the slope was approximately 0.1 m to leave 

an area for the cameras to capture the flow events. Knowing that submarine 

landslides have a long runout distance, the 1 m length of the slope was chosen 

due to the limitation of the Mk II mini-drum centrifuge. It should be noted 

that, while maintaining the constant slope inclination of 6o, increasing the 

slope length resulted in an increase of the slope height, in which the slope 
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height would exceed the depth of the ring channel in the mini-drum centrifuge. 

Also, it is noted that the depth of the ring channel in the mini-drum was 0.12 

m; therefore, the slope height of 0.105 m was considered to be an optimum 

choice.  

 

Figure 4.1: Geometry of the slope 

 

The challenging part in designing the model was to fit the 1 m slope 

into the ring channel which was circular in shape. The 1 m slope therefore 

needed to be in a circular shape as shown in Figure 4.2. The circular slope was 

divided into two sections. The reason for having two separate sections was to 

enable the sections to be easily placed into the mini-drum’s ring channel with 

considerations of the clearance (opening) of the mini-drum centrifuge being 

only 0.5 m. The material of the circular slope was made of stiff foam. The 

overview of the centrifuge model for the experiment is shown in Figure 4.3. 

The units in all drawings are in metres, unless otherwise stated. 

Figure 4.2: Geometry of the circular slope in the ring channel 
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Figure 4.3: Overview of the centrifuge model
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4.2.2 Compartments for slope and cameras 
 

The model was divided into two compartments, one for the slope and 

the other for the cameras. The size of the slope’s compartment was restricted 

by the width of the ring channel, as well as the need to give a clearance for the 

camera’s compartment. The optimum slope width was approximately 0.1 m 

(the actual model’s width measurement is 0.098 m); this left a clearance for 

the camera’s compartment to be 0.05 m as shown in Figure 4.3. This imposed 

a challenge in obtaining small compact digital cameras with a very good 

macro mode for video recording in the experiments.  

 

The camera’s compartment was sealed at the bottom, which prevented 

water from entering into the compartment. This resulted in loss of weight 

since the entire ring channel of the mini-drum centrifuge was flooded with 

water during the experiment, which would affect the balance of the mini-drum 

centrifuge. Similarly, the weight loss due to the foam slope also contributed to 

the balancing of the mini-drum centrifuge. Therefore, counterweights had to 

be installed in the centrifuge to compensate for the weight loss. Appendix 2 

shows the estimation of weight balancing in the mini-drum centrifuge. 

 

As shown in Figure 4.3, there is a head tank in the slope’s 

compartment. The initial idea of having a head tank was to temporarily store 

the slurry. There was also supposed to be an opening gate at the front of the 

head tank to initiate the flow, as well as to control the flow height. However, it 

was found that the slurry would segregate and consolidate if placed at the head 

tank. It was also discovered that it was not possible to control the flow height 

using an opening gate due to the workability of the slurry used in the 

experiments. The flow height of the actual experiments was controlled through 

the flow rates rather than an opening of a gate. This is described in more detail 

in the latter part of this chapter. The opening at the head tank served only as 

the reference for the starting point of the flows.  
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The events in the slope’s compartment during the tests were recorded 

by five digital cameras, which were placed into the camera’s compartment, 

each with a bracket holding the cameras. Perspex window openings were 

placed in front of each camera enabling the events in the slope’s compartment 

to be captured. Figure 4.4 shows the details and positions of the Perspex 

windows within the model. Calculations were made for the bending moments 

imposed on the Perspex windows for safety operation under g-levels of up to 

100 g. The calculations are shown in Appendix 3.  

 

Four of the digital cameras were placed at the side of the slope 

corresponding to the locations of the pore pressure transducers (PPT). The 

fifth camera was positioned at the top end of the slope with the intention of 

capturing the aerial view of the flow events. Figures 4.5 and 4.6 show the 

actual model with the Perspex windows and the compartments for both the 

slope and cameras respectively. The detailed information on the digital 

cameras is given in sub-section of 4.2.3.2.   

 

Both the slope and camera compartments were sealed at the bottom as 

shown in Figure 4.7. The overall view of the experimental setup in the mini-

drum centrifuge with the labelled parts is shown in Figure 4.8.  
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Figure 4.4: Details of Perspex windows 
 
 

Figure 4.5: Perspex windows  
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Figure 4.6: Slope and camera compartments 
 

Figure 4.7: Slope and camera compartments sealed at the bottom 
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Figure 4.8: Experimental setup in the mini-drum centrifuge 
 

4.2.3 Instrumentation 
 

4.2.3.1 Pore Pressure Transducer (PPT) and Stress Cell 
 

Four 1 bar Pore Pressure Transducers (PPTs) manufactured by GE 

Druck and four 35 bar load cells manufactured by Entran, were used to 

measure pore pressures and total stresses during the experiments, respectively. 
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It was decided to use the 1 bar PPTs for the experiments because the expected 

highest total pressure (slurry + water) was less than 100 kPa while running the 

centrifuge at 60g. Porous stones were used in the PPTs as filters. The 

instrumentation’s layout is shown in Figure 4.9 (a). It can be seen that the 

spacing of PPTs and stress cells was not constant. This was to accommodate 

the Perspex windows where the cameras were located, so that the 

measurements of pore pressure and total stress corresponded to the location 

where the videos were recorded. Figure 4.9 (b) shows that the instrument was 

embedded in the foam slope. A groove was made on the foam slope and the 

instruments and its wiring were embedded in the foam slope. This gave the 

instruments and the slope the same surface level so that the measurements 

would represent more accurately at the bottom of the flow.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 (a): Instrumentation layout in the model 
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Figure 4.9 (b): Instrumentations embedded in the foam slope 

 

4.2.3.2 Digital Camera 
 

Five Pentax Optio W10 digital cameras were used in the experiments, 

all of which were dustproof and waterproof up to 1.5 metres of water. Figure 

4.10 shows the actual digital camera used in the experiments together with the 

dimensions. A high speed 2GB Secure Digital (SD) memory card in each 

camera was used, enabling a continuous video of the highest possible quality 

of approximately 30 minutes to be recorded. This had imposed another 

challenge while carrying out the experiments, where all the events (starting 

from spinning up the centrifuge, flooding channel and the flow of the 

submarine landslides) for each experiment had to be finished within 30 

minutes.  It should be noted that the cameras were not SDHC (Secure Digital 

High Capacity) compatible, otherwise a larger memory card could have been 

used to record a longer video running time, which would allow a longer 

experimental running time.  

 

The digital camera was capable of capturing videos at 640 x 480 pixels 

with a frame rate of 30 frames per second (fps) at the best video quality mode. 

The macro mode of this camera was approximately 0.01 m, where the nearest 

focusable distance was 0.01 m away from the lens. This was ideal for the 

experiments in the mini-drum centrifuge. The video format used in this camera 

was QuickTime Motion JPEG (MOV).  

 

 

PPT 

Foam slope 
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Figure 4.10: The digital camera used in the experiments 

 

4.2.3.3 LED lights  
 

LED lights were used in the model in order to get a better video quality 

and pictures. An array of LED lights was mounted around the centre shaft as 

shown in Figure 4.11. This provided a brighter view of the entire flow event. 

However, this was found to be not sufficient as the videos recorded by the 

cameras by the side of the flows were still dark. As a further improvement to 

the lighting conditions, five LED “push lights” were mounted on top of each 

camera, as shown in Figure 4.12, providing direct lighting to each camera. 

These LED “push lights” were powered by two AAA batteries each which had 

to be switched on manually prior to spinning up the centrifuge. Further details 

on the challenges encountered for getting good quality videos involving LED 

lights are discussed in sub-section 4.5.1. 
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Figure 4.11: Array of LED lights mounted around the centre shaft 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: LED push lights mounted on the centrifuge model 
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4.3 Choice of Slurry for the Experiments 

 

The clay slurry mixture for the experiments was made out of a mixture 

of E-grade Kaolin clay and water. The slurry was composed of 45% of the 

clay and 55% water, giving the water content of the slurry to be 122%. The 

plastic limit of E-grade Kaolin was 30%, the liquid limit was 58% and the 

density was 2600 kg/m3. The bulk unit weight of the slurry was 13.5 kN/m3. 

The viscosity of the slurry was 0.4 Pa.s and found to be relatively similar at 

various strain rates. 

 

 The initial plan for the choice of slurries was to replicate the slurries 

used in Ilstad's (2005) experiments. According to Ilstad (2005), the slurries 

used in the experiments were characterised by material compositions in 

percentage of the total mass. The compositions in his slurries were Kaolin clay 

(Snow-brite) with a specific density of 2750 kg/m3 and brown silica sand with 

a specific density of 2650 kg/m3 and a median size of 330 m. The bulk 

density of the slurry was 16.9 kN/m3. 

 

 However, the Kaolin clay used in Ilstad's (2005) experiments was not 

commonly found in the industry. Therefore, it was unavailable for the purpose 

of this research study. Furthermore, no other information was available on the 

Snow-brite Kaolin clay, such as the liquid limit and plastic limit. Such 

information would have been useful in order to recreate a slurry with a more 

similar flow behaviour.   

 

Efforts were also made to use a slurry mixture with sand. Fraction E 

fine Silica sand was used in the initial phase of the experiments. Trial mixtures 

of slurries have been carried out, using the E-grade Kaolin and Fraction E fine 

Silica sand with 35% water. However, it was found that the slurry made of 

35% water induced a significant segregation of clay, sand and water even after 

thorough mixing of the materials. The trial test for the material compositions 

was made in a small scale 1 g environment laboratory test as well as in the 

mini-drum centrifuge. The results from both tests were similar, in which the 
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slurry segregated into clay, sand and water. Significant segregation occurred 

even for the highest clay content used in Ilstad (2005), which was composed 

of 32.5% clay, 32.5% sand and 35% water. Figures 4.13a and b show the 

segregation of materials in the highest sand content (5% clay, 60% sand and 

35% water). 

Figure 4.13: Segregation of materials 

4.4 Experimental Procedures 

 

Due to the complexity of the experimental procedure, it is best to 

separate the experimental procedures into three parts: before, during and after 

the experiments. A detailed checklist for operating the mini-drum centrifuge to 

ensure a safe working environment during each test was produced as shown in 

Appendix 4. 

4.4.1 Before the experiment 
 

The centrifuge model package, which consisted of the slope and 

cameras, was assembled prior to installation into the mini-drum centrifuge. 

Once the centrifuge model package was installed in the mini-drum centrifuge, 

a layer of fine sandpaper (SIANOR B 1600) was attached on the surface of the 

foam slope to prevent undesired slip during the experiments. The sandpaper is 

replaced after each experiment. 

 

The slurry was prepared separately outside of the mini-drum 

centrifuge. The slurry was mixed according to the predetermined clay and 

water ratio and continuous stirring was carried out until seconds before 

a b



Chapter IV – Centrifuge Modelling of Submarine Landslide Flows  

 111

pouring it into the mini-drum centrifuge. This was to ensure a homogenous 

mixture, as well as minimising the segregation of clay and water. 

 

The PPTs and stress cells were installed into the model after the model 

was properly installed in the mini-drum centrifuge. It should be mentioned that 

small trenches were made on the foam slope in order to have the PPTs in place 

and have the same surface level as the slope. The wirings of the PPTs were 

also placed in the trenches. Sandpaper was cut to expose the PPTs and stress 

cells. 

 

The porous filter stones of the PPTs were well-saturated before 

attaching to the model. It was important to ensure that the filter stones were 

saturated before the experiments, as partly saturated filter stones would affect 

the measurements of the pore pressure. It should be noted that attaching the 

PPTs was considered one of the very last things to do before the actual 

experiments; however, other necessary procedures had to be performed after 

installing the PPTs and before the actual experiments could take place. For 

example, the cameras had to be switched on to start recording videos, and the 

camera compartments had to be secured with aluminium tape to prevent water 

splashing onto the cameras. All these steps took a certain amount of time after 

the PPTs were installed into the model. However, this could have resulted in 

the porous stones in the PPTs not being fully saturated; therefore, some soaked 

tissue papers were placed on top of the PPTs to ensure that the porous stones 

were well saturated. The soaked tissue papers were checked to ensure they 

were always fully saturated to prevent the adverse effects of water escaping 

from the porous stones. The tissues were removed immediately before 

covering the mini-drum centrifuge with the safety cover. 

 

Once everything was in place, the safety cover was then installed. The 

data acquisition system was switched on before spinning the mini-drum 

centrifuge. This was to ensure that all data before and after the experiments 

were recorded. Checks were performed to ensure that the changes in the 

measurements were due to the actual experiment and not system artefacts. The 

experiments were then ready to be carried out. 
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4.4.2 During the experiment 
 

At the beginning of the experiment, the mini-drum centrifuge was spun 

up to 10 g, at which point water was then carefully introduced into the mini-

drum centrifuge through a water pipe. Water steadily rose to the top of the 

model and then the model was spun up progressively to the desired g level for 

the experiments. Water was fed continuously to maintain a constant water 

level in the channel. The overflow water was drained off from the ring 

channel.  

 

As mentioned earlier, the slurry was mixed and continuous stirring was 

carried out seconds before pouring it into the funnel to ensure a homogeneous 

mixture and to minimise the segregation of clay and water. A stopper was 

placed at the tip of the funnel’s opening. When the slurry was full and reached 

the top of the funnel, the stopper was released and the slurry flowed onto the 

slope through the central shaft with the inlet pipe. Continuous feeding of 

slurry was carried out, where the slurry was always full at the top of the 

funnel. The stopper was placed back onto the tip of the funnel at the end of the 

flow while the funnel was still full. This was to ensure a constant flow rate of 

the slurry. For each experiment the total volume of the slurry was 

approximately 5.7 litres. The illustration of the experiment is shown in Figure 

4.14. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Illustration of the experiment 
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The experiments were carried out at different gravity levels with scaled 

flow rates. The different flow rates were controlled by using different funnel 

opening sizes of the tip. Figure 4.15 shows the various funnel opening sizes 

used to achieve the desired flow rates. These various opening sizes were 

calibrated to give the scaled flow rates. It was found that a smaller funnel 

opening (smaller flow rate), was better at keeping a constant flow rate. In 

general, the control of the flow rate through the funnel opening was relatively 

good, with an accuracy range from 4 to 10% as shown in Figure 4.16. 

  

 

 

 

 

 

 

 

 

F

Figure 4.15: Various funnel opening sizes 

Figure 4.16: Flow rate accuracy from various funnel opening sizes 
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4.4.3 After the experiment 
 

Once the slurry flow had run down the slope, the mini-drum centrifuge 

was allowed to continue spinning so that the clay could gain in strength to ease 

the cleaning and clearing of the clay after the experiments. Water in the ring 

channel was then slowly drained off while the mini-drum centrifuge was still 

spinning. The speed of the mini-drum centrifuge was lowered down 

progressively. The model package was removed so that the videos from the 

cameras could be extracted.  

 

Once the model package had been taken out of the mini-drum 

centrifuge, the ring channel had to be cleaned thoroughly to avoid the drainage 

holes from becoming clogged up due to the fine clay particles. It should be 

mentioned that filter papers were attached to the drainage holes before the 

model package was installed and replaced after each experiment. A further 

flushing procedure was needed to completely flush out all the fine clay 

particles in the drainage system of the mini-drum centrifuge. This was done by 

spinning up the mini-drum centrifuge again while introducing water into the 

ring channel; the water was then drained off at higher g levels in order flush 

away any fine clay particles.  

 

4.5 Initial Encountered Challenges  

 

Several challenges were encountered while developing the centrifuge 

model package before arriving at the actual model used in the experiments. A 

number of trial tests were carried out without any data logging in the mini-

drum centrifuge. Observations through video recordings were made during 

these trial tests, and problems encountered during these tests were noted. 

Improvements were made throughout the process to improve the quality of the 

experiments. Proof testing of the model package was also carried out at 70 g to 

ensure it was safe and working properly. The subsections below summarise 

the initial challenges encountered while developing the model package and 

how they were overcome. 
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4.5.1 Challenges encountered and comments 
 

As mentioned above, several issues arose during the period of the 

model development as well as in the trial tests. Table 4.1 tabulates some of the 

challenges encountered and their comments. 

 

Table 4.1: Initial encountered challenges while developing the model 

Challenges encountered Comments 

Developing a model slope of 
1 m in length for the mini-
drum centrifuge. 

The circular model slope was developed and 
separated into two sections.  

Intentions of getting multiple 
video recordings during the 
flow events; however, the 
mini-drum centrifuge could 
only accommodate 1 or 2 web 
cameras. 

Small compact digital cameras were used 
with very good macro mode (0.01m) and 
video quality. Able to capture continuous 
video for approx. 30 minutes with a high 
speed 2 GB memory card. 

Uplift of foam slope while 
submerged in water. 

Struts were installed to hold the foam with 
the aluminium plates. 

Camera out of focus in the 
mini-drum centrifuge 
resulting in bad quality video 
recordings. 

Managed to manually focus the camera with 
memory set in order to start capturing with 
the predetermined focal distance. 

Insufficient lighting in the 
mini-drum centrifuge 
resulting in flickering images 
in the video recordings.  

LED “push lights” were installed on top of 
each camera to provide constant light 
source. An array of LED lights was mounted 
around the central shaft to improve general 
lighting conditions around the channel. 

Slurry outflow from the 
prefix gate height did not 
achieve the required 
thickness. 

Different funnel opening sizes were used to 
achieve the required flow rates.  

Water entering to the 
camera’s compartment, as 
well as water splashing at the 
cameras. 

The camera’s compartment was completely 
sealed at the bottom and the top was sealed 
with aluminium tape to prevent splashing 
while water was injected into the ring 
channel. 

Clogging of drainage holes 
from the fine sediments. 

Filter papers were used to cover the drainage 
holes. Flushing procedure after each test. 
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4.5.2 Brief description of some trial tests 
 

A few trial tests were conducted in the mini-drum centrifuge without 

any pore pressure and total stress measurements. One of the very first trial 

tests was conducted without water or slurry. The purpose of this was to 

examine the position of cameras and proof test for the cameras up to 70 g. 

Generally, all cameras were functional under the range of interested g levels.  

 

Another trial test was carried out at 10 g with slurry while the slope 

was submerged with water. Unfortunately, there was a leakage within the ring 

channel of the mini-drum centrifuge during the test. The water level was, 

therefore, not enough to submerge the slope. Regardless of the dry run, it was 

interesting to note that the flow during the test tended to flow one-sided due to 

the 1 g effect. Figure 4.17 shows the sequence of flow from the view of 

camera 5. The 1 g effect was found to be minimal for experiments in 30 g and 

above; therefore, the actual experiments were carried out from 30 g to 60 g. 

 

After the leakage of the mini-drum centrifuge was resolved, another 

trial test was carried out with the intention of verifying the drainage system 

and the water tightness of the camera’s compartment as it was sealed with a 

rubber membrane and aqueous sealant. Minor leakage was still found in the 

camera’s compartment. However, videos were successfully recorded but with 

severe flickering due to insufficient lighting sources. The video recordings 

were occasionally out of focus. This was because the camera’s default setting 

was in the auto focus mode. This issue was then resolved by resetting the 

cameras to manual focus mode. The camera was capable of storing its 

previous focal settings, thus enabling preset focus and other settings to be 

stored. This feature was extremely useful since the cameras were positioned 

inside the mini-drum centrifuge prior to the test, which would be started 

moments before spinning. The camera compartments were completely sealed 

with a steel plate and aqueous sealant. This prevented any further leakage. 
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Figure 4.17: View of debris flow sequence from camera 5 at 10 g (slope not 

submerged - picture interval at 0.033s) 
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4.6 Results and Interpretations 

This section presents the data and interpretations of the four series of 

centrifuge experiments that have been carried out in this study. Three of the 

series were carried out in the submerged condition while the other series was 

carried out in a non-submerged condition (dry condition). The four series of 

centrifuge experiments are as follows: 

 Series 1: Experiments at various g levels and various flow rates 

 Series 2: Experiments at only 30g with various flow rates 

 Series 3: Experiments at various g levels with a large flow rate 

 Series 4: Experiments at various g levels with a large flow rate 

in the dry condition. 

4.6.1 Series 1: Experiments at various g levels and flow rates 
This series of experiments was performed at various g levels (30 g, 40 

g, 50 g and 60 g) with scaled flow rates in which the flow velocities and height 

were scaled according to the proposed scaling laws (see equations 3.6 and 

3.7). The reason for going up to 60g was that the equipment such as the 

cameras was known to have problems focusing at higher g levels. The purpose 

of this series was to check on the validity of the proposed scaling laws. Table 

4.2 shows the details of the experiments at various g levels with their 

corresponding flow rates and flow heights.  

 

Table 4.2: Experimental details of flow rates and flow heights 

g 

levels 

 

Funnel 

opening, 

diameter 

(mm) 

Average 

flow 

rate, Q 

(m3/s) 

*10-4 

Average 

flow rate 

per unit 

length, Qul 

(m3/s/m) 

*10-4 

Average 

prototype 

flow rate per 

unit length, 

QPul (m
3/s/m) 

(QPul = N2Qul) 

Expected 

average 

flow 

height, 

h (mm) 

Average 

prototype 

flow 

height, 

ph (mm) 

30 19.4 3.50 35.0 3.2 7.0 210 

40 13.9 1.97 19.7 3.2 5.3 210 

50 12.0 1.26 12.6 3.2 4.2 210 

60 9.7 0.88 8.8 3.2 3.5 210 

Note: The unit length is the width of the channel, which is 0.1 m. The flow velocity, v times 

the average flow height, h equals to the average flow rate per unit length, Qul. v  x h  = Qul 
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Based on the proposed scaling laws, the tested cases with different 

flow rates at different g levels will give the prototype flow height of 

approximately 210 mm. Ideally, this will give the same magnitude of basal 

friction to resist the flow movement, as well as the soil stress field to drive the 

soil body to move along the slope, resulting in the motion of the soil body to 

be modelled by the governing equations proposed in the previous chapter. The 

results from the experiments of various g levels and the measured flow heights 

and velocities can then verify the validity of the proposed scaling laws. 

 

Figure 4.18 shows the change in pore pressure measured at various 

locations and g levels beneath the submarine landslide flows along the slope. 

The change in pore pressure generally increases when the front of the flow 

arrives at the location of the PPTs. The change in pore pressure at various 

locations along the slope is relatively similar indicating that the flow height 

along the slope is relatively constant (i.e. steady state flow). It can also be seen 

that the change in basal pore pressure at different g levels is relatively 

comparable. This means that the stresses at various g levels are possibly 

correctly modelled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: The change in pore pressure for various g levels at various 

locations along the slope 
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Figures 4.19 (a) to 4.19 (d) show the side view of the submarine 

landslide flows from Camera 1 for 30 g, 40 g, 50 g, and 60 g respectively at 

the opening of the head tank where PPT1 was located. It can be seen that the 

flow height decreases with increasing g level, as observed by the pore pressure 

data. Similarly, Figures 4.20 to 4.22, show the side view of the submarine 

landslide flows from Camera 2 (0.17 m from opening of head tank), Camera 3 

(0.36 m from opening of head tank) and Camera 4 (0.57 m from opening of 

head tank) respectively for the various g levels. Note that Figures 4.19 to 4.22 

were not in synced to each other, as Cameras 1 to 4 were not started together. 

 

It can be seen that, in Camera 3 (Figure 4.21), the flow heights are 

higher than the other locations. This is because there is a small drop between 

the joint of the two slope compartments. Based on Figures 4.19 to 4.22, it can 

be seen that there is a turbidity current above the submarine landslide flows, 

and this turbidity current increases as the flow distance increases. The 

turbidity current was suspended in the water and it did not affect the 

measurement of the change in basal pore pressure, which was measured by the 

PPTs beneath the flows. Hence, the thickness of the turbidity current was not 

taken into account for the measured flow heights. Further details on the 

measured flow heights are discussed in the later part of this section. 

 

 The side Cameras 1 to 4 only gave a limited view of the flow distance 

(range between 2-3 cm long). This resulted in difficulty in checking the 

scaling laws on flow velocity and flow distance. In order to check the scaling 

laws for the flow velocity and flow distance, a larger flow distance was 

extracted from Camera 5 (plan view), where a flow distance of approximately 

30 cm could be seen. Figure 4.23 shows the sequence of the submarine 

landslide flow from the plan view. The interval of these pictures is at 0.033s. 

In order to extract the flow distance and time from each picture frame, 

Photoshop was used to combine these picture frames as shown in Figures 4.24 

to 4.27 for 30 g, 40 g, 50 g and 60 g respectively. Note that the measured flow 

distance were may be subjected to potential error as the pictures from Camera 

5 were subjected to distortions since the actual model is a curvature while the 

pictures were capture in plan view. 
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Figure 4.19: Side view of submarine landslide flows for various g levels 

from Camera 1 (0 m from opening of head tank) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Side view of submarine landslide flows for various g levels 

from Camera 2 (0.17 m from opening of head tank) 

(d) 60 g (c) 50 g 

(b) 40 g (a) 30 g 
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Figure 4.21: Side view of submarine landslide flows for various g levels 

from Camera 3 (0.36 m from opening of head tank) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Side view of submarine landslide flows for various g levels 

from Camera 4 (0.57 m from opening of head tank) 

(d) 60 g (c) 50 g 

(b) 40 g (a) 30 g 
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Figure 4.23: Plan view of submarine landslide flows from Camera 5 (picture 

interval at 0.033s) 

 

       (a)        (b)        (c) 

       (d)        (e)        (f) 
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       (j)        (k)        (l) 
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Figure 4.24: Combined picture frames from plan view for flow at 30 g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Combined picture frames from plan view for flow at 40 g 
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Figure 4.26: Combined picture frames from plan view for flow at 50 g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27: Combined picture frames from plan view for flow at 60 g 
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Figure 4.28 shows the flow distance against time for various g levels. 

The slope of the flow distance against time gives the frontal velocity of the 

flow. The velocities are relatively constant after 0.3 s, while the flow at the 

beginning is not so representative to the overall flow due to the pouring impact 

of the slurry from the funnel onto the slope and the transition time required to 

reach the steady state condition. In addition, as mentioned before the measured 

flow distance were may be subjected to potential error as the pictures from 

Camera 5 were subjected to distortions since the actual model is a curvature 

while the pictures were capture in plan view, in which the earlier part of the 

flow is subjected to more image distortion. Therefore, an average flow 

velocity for each flow is established after 0.3 s, as shown in Table 4.3.  

 

 

 

 

 

 

 

 

 

 

Figure 4.28: Flow distance against time for flows at various g levels 

 

Table 4.4 shows the summary of the measured and back-calculated 

flow heights from the experiments at various g levels. A range of upper and 

lower bounds of the measured flow heights from the four side cameras are also 

given here. The measured flow heights are taken from the visual inspection of 

the videos from the side cameras. These flow heights fluctuate along the slope 

due to the pouring impact of the slurry from the funnel onto the slope, as well 

as the small drop between the joint of the two slope compartments. Since the 

flow height fluctuates along the slope, the back-calculated flow height for each 



Chapter IV – Centrifuge Modelling of Submarine Landslide Flows  

 127

experiment is given in Table 4.4. The back-calculated flow heights are 

computed by dividing the known flow rate per unit length, Qul by the 

measured frontal velocity. 

 

It can be seen that the back-calculated flow heights are slightly lower 

than the measured flow heights. This may be due to the suspension of the flow 

slurry in the submerged condition, in which the visual inspection of the flow 

height through the cameras may over-estimate the flow heights. In the 

submerged condition, water may entrap in the flow thus increasing the flow 

height. The back-calculated flow height is assumed to have no water 

entrapment.  

 

The prototype flow velocities and flow heights in Tables 4.3 and 4.4 

respectively indicate that, by specifically scaling the flow rate, the scaled flow 

velocity and height are achieved. It should be noted that, based on the 

centrifuge tests data, the scaling law for time (tprototype = N2tmodel) cannot be 

demonstrated due to the fact that the flow velocity reached the steady state 

very quickly, and therefore it was not possible to check the scaling law for 

time. However, the scaling law for flow velocity seems to be based on the 

proposed scaling laws.  

 

 

Table 4.3: Summary of the measured flow velocities for various g levels 

 

 

 

 

 

 

 

 

 

 

 

g 

levels 

 

Average flow velocity,       

v  (m/s) 

Average prototype flow 

velocity, pv = N* v  (m/s) 

30 0.60 18.0 

40 0.45 18.0 

50 0.37 18.5 

60 0.32 19.2 
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Table 4.4: Summary of the measured and back-calculated flow heights for 

various g levels 

 

 

 

 

 

 

 

 

 

Figure 4.29 shows the prototype flow distance against the prototype 

time at various g levels. The prototype scale is based on the proposed scaling 

laws, where the flow distance is scaled at N3 times of the model and the time 

is scaled at N2 times of the model. It can be seen that the centrifuge 

experimental data from various g levels scaled reasonably well to the proposed 

scaling laws.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: Prototype flow distance against prototype flow time based on 

the proposed scaling laws 

 

Figure 4.30 shows the relationship of flow velocities and g levels. If 

this figure gives the correct relationship, then it will be useful in predicting the 
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actual flow velocity in the field when the submarine landslide thickness is 

approximately 0.21 m for a given boundary and soil slurry condition. It should 

be noted that the flow velocity in the field differs from those obtained from the 

experiments, as the flow velocity depends on the type of viscous fluid mixture, 

the thickness of flow and the basal friction. However, the proposed scaling law 

for flow velocity appears to be valid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: Relationship of flow velocity and g level 

 

4.6.2 Series 2: Experiments at 30 g only with various flow rates 
 

This series of experiments was performed only at 30 g with various 

flow rates. It should be noted that these experiments were carried out before 

the series of experiments at various g levels and flow rates in section 4.6.1. 

The purpose of this series of experiment was to investigate the possibility of 

producing results to distinguish the flows from the various flow rates under the 

same g level (30 g). Therefore, the flow rates used in this series of experiments 

were the same as in 4.6.1. 
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Table 4.5 shows the details of the experiments at 30 g with their 

corresponding flow rates. Theoretically, this will not give a similar prototype 

height from this series of tests as the flow heights and velocities are scaled to 

the appropriate g levels. 

 

Table 4.5: Experimental details of flow rates for experiments at 30 g 

g 

levels 

 

Funnel 

opening, 

diameter 

(mm) 

Average 

flow rate, Q 

(m3/s)*10-4 

Average flow 

rate per unit 

length, Qul 

(m3/s/m) *10-3 

Average 

prototype flow 

rate per unit 

length, QPul 

(m3/s/m)  

30 19.4 3.50 3.50 3.2 

30 13.9 1.97 1.97 1.8 

30 12.0 1.26 1.26 1.1 

30 9.7 0.88 0.88 0.8 

 

Figure 4.31 shows the change in pore pressure measured beneath the 

submarine landslide flows along the slope at various locations for the four 

experiments at 30 g. Similar to Figure 4.18, the change in pore pressure 

increases when the front of the flow arrives at the location of the PPTs. The 

change in pore pressure at various locations along the slope for each 

experiment of the specific flow rate is relatively similar, thus indicating that 

the flow height along the slope is relatively constant (i.e. steady state). It can 

also be seen that the change in pore pressure increases with higher flow rates, 

indicating increasing modelled flow height.  

 

Similarly, Figure 4.32 shows the averaged measured pore pressure 

with the input flow rate per unit width, Qul. This figure clearly indicates that, 

at the same g level, the high flow rates induce higher changes in pore pressure. 

 

Figures 4.33 (a) to (d) show the side view of the submarine landslide 

flows from Camera 1 for flow rates of 3.50*10-3 m3/s/m width, 1.97*10-3 

m3/s/m width, 1.26*10-3 m3/s/m width, and 0.88*10-3 m3/s/m width 
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respectively at the opening of the head tank where PPT1 was located. It can be 

seen that the flow heights are smaller at lower flow rates.  

 

Similarly, Figures 4.34 to 4.36 show the side view of the submarine 

landslide flows from Camera 2 (0.17 m from the opening of the head tank), 

Camera 3 (0.36 m from the opening of the head tank) and Camera 4 (0.57 m 

from the opening of the head tank) respectively for the various flow rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31: The change in pore pressure for experiments at 30 g at 

various locations along the slope 
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Figure 4.32: Relationship of pore pressure and input flow rate for Series 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: Side view of submarine landslide flows for various flow rates 

at 30 g from Camera 1 (0 m from opening of head tank) 
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Figure 4.34: Side view of submarine landslide flows for various flow rates 

at 30 g from Camera 2 (0.17 m from opening of head tank) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: Side view of submarine landslide flows for various flow rates 

at 30 g from Camera 3 (0.36 m from opening of head tank) 

1cm 

(a) 3.50 m3/s/m *10-3 (b) 1.97 m3/s/m *10-3 

(c) 1.26 m3/s/m *10-3 (d) 0.88 m3/s/m *10-3 

(c) 1.26 m3/s/m *10-3 (d) 0.88 m3/s/m *10-3 

1cm 

(a) 3.50 m3/s/m *10-3 (b) 1.97 m3/s/m *10-3 
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Figure 4.36: Side view of submarine landslide flows for various flow rates 

at 30 g from Camera 4 (0.57 m from opening of head tank) 

 

Figure 4.37 shows the flow distance against time for various flow 

rates. Similar to the previous section, the range of frontal flow velocities 

(upper and lower bounds) for each experiment is established after 0.3 s, when 

the steady state condition seems to have been achieved. In addition, as 

mentioned before the measured flow distance were may be subjected to 

potential error as the pictures from Camera 5 were subjected to distortions 

since the actual model is a curvature while the pictures were capture in plan 

view, in which the earlier part of the flow is subjected to more image 

distortion. Therefore, an average flow velocity for each flow is established 

after 0.3 s, as shown in Table 4.6. 
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Figure 4.37: Flow distance against time for flows at various flow rates 

 

From Table 4.6, it can be seen that the flow velocity reduces with flow 

rate, which also corresponds with the smaller flow heights at lower flow 

velocity as shown in Table 4.7. The relationship of flow rate per unit width 

and the range of flow velocities is shown in Figure 4.38. This clearly indicates 

that at a constant g level (30 g) the higher flow rates produce higher flow 

velocity. 

 

Figure 4.39 shows the relationship of prototype flow velocity and 

prototype flow rate. Also included in this figure are the data from Series 1 

(with scaled flow rates and flow velocities). This again confirms that at a 

constant g level (30g), the prototype flow velocity increases with the prototype 

flow rate. While the data from Series 1 are scaled, the prototype flow 

velocities and prototype flow rates are seen to be relatively similar at various g 

levels, as shown in this figure. 

 

  

 

 



Chapter IV – Centrifuge Modelling of Submarine Landslide Flows  

 136

 

Table 4.6: Summary of the measured flow velocities for various flow rates 

at 30 

g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38: Relationship of flow velocity and flow rate at 30 g 
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Figure 4.39: Relationship of prototype flow velocity and prototype flow 

rate for Series 1 and 2 

 

Table 4.7 shows the summary of the measured and back-calculated 

flow heights from the experiments at various flow rates. Since the flow height 

fluctuates along the slope during the flow, a range of upper and lower bounds 

of the flow heights measured from the four side cameras are given in Table 

4.7. The average flow heights are the average of the upper and lower bounds. 

The back-calculated flow heights are also given in Table 4.7.  

 

Figure 4.40 shows the averaged measured flow height with the input 

flow rate per unit metre width, Qul. Both the measured and back-calculated 

flow heights are included in this figure. Similar to the previous section, the 

back-calculated flow heights are slightly lower than the measured flow 

heights. This again indicates that visual inspection of the flow height may 
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smaller than the measured flow heights; the measured flow heights based on 

the visual inspection from the side cameras are shown to be consistent.  

 

Figure 4.41 shows the relationship of prototype back-calculated flow 

height and prototype flow rate. Also included in this figure are the data from 

Series 1 (with scaled flow rates and flow heights). This also demonstrates that 

at a constant g level (30g), the prototype flow height increases with the 

prototype flow rate. Hence, the data from the tests at various g levels in Series 

1 show that the prototype flow heights and prototype flow rates are relatively 

similar. 

 

Table 4.7: Summary of the measured and back-calculated flow heights for 

various flow rates at 30 g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average 
prototype 
flow rate 
per unit 
length, 

QPul 
(m3/s/m) 

Flow height, h (m)

Back 
calculated 
averaged 

flow 
height, 

h BC (m) 

Prototype 
flow 

height, 

h P=N* h  
(m) 

Prototype 
back 

calculated 
flow 

height, 

h PBC=N* 

h BC (m) 

Lower 
bound 

Upper 
bound 

Averaged 
flow 

height 

3.2 0.0068 0.0080 0.0074 0.0058 0.22 0.18 

1.8 0.0049 0.0055 0.0052 0.0043 0.16 0.13 

1.1 0.0033 0.0050 0.0042 0.0032 0.13 0.10 

0.8 0.0030 0.0040 0.0035 0.0025 0.11 0.08 
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Figure 4.40: Relationship of measured and back-calculated flow height 

and input flow rate for Series 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41: Relationship of prototype flow height and prototype flow 

rate for Series 1 and 2 
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4.6.3 Series 3: Experiments at various g levels with a large flow rate 
 
 

This series of experiments was performed at various g levels with a 

larger flow rate. The purpose of these experiments was to simulate a higher 

prototype flow height. Table 4.8 shows the details of the experiments at 

various g levels with their corresponding flow rates and funnel opening 

diameters. The large flow rate from this section onwards refers to the flow rate 

of 1.09*10-3 m3/s or 10.9*10-3 m3/s/m for the flow rate per unit length. 

 

Table 4.8: Experimental details of flow rates and funnel opening diameter 

for the series of experiments at the large flow rate 

g 

levels 

 

Funnel 

opening, 

diameter 

(mm) 

Average 

flow rate, Q 

(m3/s)*10-3 

Average flow 

rate per unit 

length, Qul 

(m3/s/m)*10-3 

Average 

prototype flow 

rate per unit 

length, QPul 

(m3/s/m) 

30 46 1.09 10.9 9.8 

40 46 1.09 10.9 17.4 

50 46 1.09 10.9 27.3 

60 46 1.09 10.9 39.2 

 

Figure 4.42 shows the change in pore pressure measured beneath the 

submarine landslide flows along the slope at various locations for the 

experiments at various g levels with the large flow rate. Similar to the two 

series of experiments in sections 4.6.1 and 4.6.2, the change in pore pressure 

increases when the front of the flow arrives at the location of the PPTs. 

 

The change in pore pressure at various locations along the slope for 

experiments at their specific g level is relatively similar, thus indicating that 

the flow height along the slope is relatively constant. The only exception is for 

the experiment at 50 g where there is a dip in the middle of the flow. This dip 

is consistent throughout the various locations of the slope for the experiment at 
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50 g. This dip is due to a sudden jerk from a slight distraction while pouring 

the slurry into the funnel.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.42: The change in pore pressure for various g levels with the 

large flow rate at various locations along the slope 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.43: Relationship of pore pressure and the prototype input flow rate for 

Series 3 
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Figure 4.43 shows the relationship of the measured change in pore 

pressure and the prototype input flow rate per unit width for Series 3. It can be 

seen that the measured change in pore pressure increases with the prototype 

flow rate. This indicates that, at a similar large input flow rate, a large g test 

models a higher prototype flow rate hence models a submarine landslide with 

a larger flow height. 

  

Figure 4.44 shows the flow distance against time for the experiments at 

various g levels with the large flow rate. The flow rate in the experiments of 

this series is relatively large, which tends to give a larger flow velocity 

compared to the previous series of experiments. The flow at the beginning is 

not so representative of the overall flow due to the pouring impact of the slurry 

from the funnel onto the slope. In addition, as mentioned before the measured 

flow distance were may be subjected to potential error as the pictures from 

Camera 5 were subjected to distortions since the actual model is a curvature 

while the pictures were capture in plan view, in which the earlier part of the 

flow is subjected to more image distortion. Therefore, an average flow 

velocity for each flow is established after 0.1 s, as shown in Table 4.9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.44: Flow distance against time for Series 3 
   
 

From Table 4.9, it can be seen that the flow velocity increases with g 

level at a given flow rate. Table 4.10 shows the summary of the measured and 

back-calculated flow heights from the experiments at various g levels with a 

large flow rate. Since the flow height fluctuates along the slope during the 
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flow, a range of upper and lower bounds of the flow heights measured from 

the four side cameras are given in Table 4.10. The average flow heights are the 

average of the upper and lower bounds. The back-calculated flow heights are 

also given in Table 4.10.  

 

Table 4.9: Summary of the measured flow velocities for various g levels 

with the large flow rate 

 
Table 4.10: Summary of the measured and back-calculated flow heights 

for various g levels with the large flow rate 

 
 

Similar to the previous section, the back-calculated flow heights are 

slightly lower then the measured flow heights. This again indicates that visual 

inspection of the flow height may have over-estimated the flow heights and 

may not reflect the actual flow height since the slurry is in suspension under 

the submerged condition. Based on the visual inspection of flow heights, the 

g 

levels 

 

Average prototype 

flow rate per unit 

length, QPul 

(m3/s/m) 

Average flow velocity,   

v  (m/s) 

Average prototype flow 

velocity, pv = N* v  (m/s) 

30 9.8 0.70 21.0 

40 17.4 0.78 31.2 

50 27.3 0.89 44.5 

60 39.2 0.98 58.8 

g 

levels 

Average 

prototype 

flow rate 

per unit 

length, QPul 

(m3/s/m) 

Flow height, h (m) 

Back 

calculated 

averaged 

flow 

height, 

h BC (m) 

Prototype 

flow 

height, 

h P=N* h  

(m) 

Prototype 

back 

calculated 

flow height, 

h PBC= 

N* h BC (m) 

Lower 

bound 

Upper 

bound 

Averaged 

flow 

height 

30 9.8 0.0134 0.0192 0.0163 0.0156 0.49 0.47 

40 17.4 0.0138 0.0217 0.0177 0.0140 0.71 0.56 

50 27.3 0.0158 0.0228 0.0193 0.0123 0.97 0.62 

60 39.2 0.0183 0.0215 0.0199 0.0111 1.19 0.67 



Chapter IV – Centrifuge Modelling of Submarine Landslide Flows  

 144

flow heights fluctuated greatly as shown in Table 4.10, where the difference in 

the upper and lower bounds of the flow heights are relatively large. This may 

have been due to the large flow rate used in this series. 

 

It should be noted that the flow rate used in this series of experiment is 

relatively large compared with the previous series. The large flow rate was 

more difficult to control due to the large funnel opening diameter. Also the 

funnel opening diameter in this series of tests was larger by approximately 

137% compared to the largest opening in sections 4.6.1 and 4.6.2.  

 
The relationship of flow velocity and g level is shown in Figure 4.45. It 

can be seen that the flow velocity increases with g level at a given flow rate. 

This tends to indicate that additional forces from the higher g level drive the 

slurry to a faster flow.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.45: Relationship of flow velocity and g level for Series 3 

 

Figure 4.46 shows the relationship of prototype flow velocity and 

prototype flow rate. This again confirms that, at a given flow rate, a higher g 

level increases the prototype flow velocity and the prototype flow rate. 

Similarly, this also reflects the relationship between prototype flow height and 

prototype flow rate where, at a given flow rate, a higher g level increases the 
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this figure are the back-calculated flow heights as they are found to be a more 

reasonable estimate of flow heights, as mentioned previously. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.46: Relationship of prototype flow velocity and prototype flow 

rate for Series 3 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.47: Relationship of prototype flow height and prototype flow 

rate for Series 3 
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These three graphs consistently show that Series 1, where the flow 

rates are scaled at various g levels, gives a relatively similar prototype flow 

height, flow velocity as well as the change in pore pressure. This can be seen 

from the data points of Series 1 closely plotted together in these three graphs, 

indicating that the prototype scale is correctly modelled for the tests at various 

g levels. 

 

Series 2 and Series 3 indicate that the relationship of g level, prototype 

flow rate, prototype flow velocity and prototype flow height are consistent 

with the findings between the two series of tests. Accordingly, higher g levels 

increase the prototype flow velocities and height at a given flow rate, while at 

a given constant g level (30g) the flow rate increases with the prototype flow 

velocity and height. It can be observed that there is a leap from Series 2 to 3. 

However, it is uncertain if this leap is the behaviour of the flow or subjected to 

other experimental subtle changes such as different clay bathes used in each 

series. Unfortunately, there are no data points in the transition from Series 2 to 

3 to understand the leap. The measured change in pore pressure for these two 

series is also coherent with the increase in prototype flow height and velocity 

due to the increase in g levels and flow rates, as shown in Figure 4.50. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.48: Relationship of prototype flow velocity and prototype flow 
rate for Series 1, 2 & 3 
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Figure 4.49: Relationship of prototype back-calculated flow height and 

prototype flow rate for Series 1, 2 & 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.50: Relationship of measured change in pore pressure and 

prototype flow rate for Series 1, 2 & 3 
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4.6.4 Series 4: Experiments at various g levels with a large flow rate 
in the dry condition 

 
 

This series of experiments was performed at various g levels with the 

large flow rate and in non-submerged conditions (dry condition). The purpose 

of these experiments was to understand the influence of drag forces towards 

the flow resulting from the friction of the surrounding fluid and the slurry 

flow. Table 4.11 shows the details of the experiments at various g levels with 

their corresponding flow rate and funnel opening diameter.  

 

Table 4.11: Experimental details of flow rates and funnel opening 

diameter for experiments in the dry condition 

g 

levels 

 

Funnel 

opening, 

diameter 

(mm) 

Average 

flow rate, Q 

(m3/s)*10-3 

Average flow 

rate per unit 

length, Qul 

(m3/s/m)*10-3 

Average 

prototype flow 

rate per unit 

length, QPul 

(m3/s/m) 

30 46 1.09 10.9 9.8 

40 46 1.09 10.9 17.4 

50 46 1.09 10.9 27.3 

60 46 1.09 10.9 39.2 

 

Figure 4.51 shows the change in pore pressure measured beneath the 

dry landslide flows along the slope at various locations for the experiments at 

various g levels, with the large flow rate. It can be seen that the change in pore 

pressure increases steadily with higher g levels except for the experiment at 

60g. This may be due to the problems encountered with the instrumentation 

for the particular experiment, in which the PPT may not have been fully 

saturated prior to the test. 
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Figure 4.51: The change in pore pressure for various g levels with the 
large flow rate at various locations along the slope in the dry condition 

 
 
 

Figures 4.52 (a) to 4.52 (d) show the side view of the dry landslide 

flows from Camera 1 for 30 g, 40 g, 50 g, and 60 g respectively at the opening 

of the head tank where PPT1 was located. The darker image in Figure 4.52 (a) 

is due to the LED push light above Camera 1 which was accidently switched 

off during the experiment.  

 

Similarly, Figures 4.53 to 4.54 show the side view of the dry landslide 

flows from Camera 2 (0.17 m from opening of head tank) and Camera 3 (0.36 

m from opening of head tank) respectively for the experiments at various g 

levels. 
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Figure 4.52: Side view of the dry landslide flows for various g levels from 

Camera 1 (0 m from opening of head tank) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.53: Side view of the dry landslide flows for various g levels from 

Camera 2 (0.17 m from opening of head tank) 

(a) 30 g (b) 40 g 

(c) 50 g (d) 60 g 

1 cm 

(a) 30 g (b) 40 g 

(c) 50 g (d) 60 g 

1 cm 
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Figure 4.54: Side view of the dry landslide flows for various g levels from 

Camera 3 (0.36 m from opening of head tank) 

 
 

It should be mentioned that the position of Cameras 3 and 4 were 

rotated from a horizontal to a vertical position. This was because a larger flow 

thickness was anticipated, since a large flow rate was used in this series of 

experiment. However, the flow thickness turned out to be very small. The 

large thickness in the previous series of experiments (in section 4.6.3) using 

the same large flow rate in the submerged conditions are most likely due to the 

suspension from the surrounding fluid.    

 

(a) 30 g (b) 40 g 

(c) 50 g (d) 60 g 

1 cm 
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Since the position of Camera 4 was rotated to the vertical position and 

the actual flow thickness was small, no valuable videos were recorded as the 

flow thickness was out of the recording range. Therefore, it was not presented 

here. 

   

The plan view of the flow from Camera 5 is presented in Figures 4.55 

to 4.58 for the experiments at 30 g, 40 g, 50 g and 60 g respectively. The 

interval of these pictures is at 0.033 s.  

 

It can be seen that the frontal flows from the non-submerged condition 

in this Series (Series 4) were not as uniform as from the submerged condition 

in Series 1. This was possibly due to the lack of flow resistance from the 

surrounding fluid, since there was no surrounding fluid above the flow as 

Series 4 was carried out in the non-submerged condition. This is contrary to 

Series 1, where the surrounding fluid implied a greater flow resistance, which 

gave a more uniform frontal flow.  

 

In addition, since the flow rate used in Series 4 was much larger than 

Series 1, the impact from the pouring process of the slurry onto the slope was 

much larger in Series 4 compared to Series 1. This may also have contributed 

to the non-uniformity of the frontal flows in this series. 

 

Furthermore, the location of the wirings from the instruments in the 

non-submerged condition may have amplified the situation on the non-

uniformity of the frontal flows. As can be seen from Figures 4.55 to 4.58, the 

flows on the right side of the slope were relatively slower compared to the left 

side of the slope, corresponding to the location of the wirings of the 

instruments, which were located on the right side of the slope at a few 

locations throughout the slope.   
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Figure 4.55: Plan view of the dry landslide flows from Camera 5 at 30 g 

(picture interval at 0.033 s) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.56: Plan view of the dry landslide flows from Camera 5 at 40 g 

(picture interval at 0.033 s) 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.57: Plan view of the dry landslide flows from Camera 5 at 50 g 

(picture interval at 0.033 s) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.58: Plan view of the dry landslide flows from Camera 5 at 60 g 

(picture interval at 0.033 s) 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.59 shows the flow distance against time for the experiments in 

the dry condition at various g levels. As mentioned in the previous section, the 

range of flow velocities (upper and lower bounds) for each experiment is 

established after 0.1 s. The averaged flow velocities for each experiment, are 

shown in Table 4.12.  

 

From Table 4.12, it can be seen that the flow velocity increases with g 

levels at a given flow rate in the dry condition. Table 4.13 shows the summary 

of the measured and back-calculated flow heights from the experiments at 

various g levels with a large flow rate in the dry condition. 

 

 The range of the upper and lower bounds of the flow heights measured 

from the four side cameras are given in Table 4.13. The average flow heights 

are the average of the upper and lower bound. The back-calculated flow 

heights are also given in Table 4.13.   

 

It is interesting to note that the back-calculated flow heights are 

slightly higher than the measured flow heights. This differs from all the 

previous series, where the back-calculated flow heights are always slightly 

lower than the measured flow heights. In the dry condition, the flow may have 

flattened out (thinned) under the g levels as the slurry is not in suspension.   

 

Although the same flow rate was used as in section 4.6.3 (in the 

submerged condition), the flow velocities in the dry condition are significantly 

higher than the flow velocities in the submerged condition. The gravitational 

density effect of the flow slurry plays an important role in this, where the 

gravitational effect for the non-submerged series (total weight of the flow 

slurry) is larger compared to the gravity effect for the submerged series 

(buoyant weight of the flow slurry), which is smaller. In addition, the lower 

flow velocities in the submerged condition may have been due to the drag 

forces from the surrounding fluid acting on the flow slurry. 
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Figure 4.59: Flow distance against time at various g levels with a large 

flow rate in the dry condition 

 

Table 4.12: Summary of the measured flow velocities at various g levels 

with the large flow rate in the dry condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g 

levels 

 

Average 

prototype 

flow rate per 

unit length, 

QPul (m
3/s/m) 

Average flow velocity,   

v  (m/s) 

Average prototype flow 

velocity, pv = N* v  (m/s) 

30 9.8 1.45 43.5 

40 17.4 1.80 72.0 

50 27.3 1.83 91.5 

60 39.2 1.94 116.4 
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Table 4.13: Summary of the measured and back-calculated flow heights 

for various g levels with a large flow rate in the dry condition 

 

 

The relationship of flow velocity and g level is shown in Figure 4.60. 

Similar to the series of experiments with the large flow rate in the submerged 

condition, the flow velocity in the dry condition increases with g levels at a 

given flow rate. This again tends to indicate that additional forces from the 

higher g level drive the slurry to a faster flow. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.60: Relationship of flow velocity and g levels for various g levels 
with a large flow rate in the dry condition 
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40 17.4 0.0034 0.0064 0.0049 0.0061 0.20 0.24 

50 27.3 0.0035 0.0051 0.0043 0.0060 0.22 0.30 

60 39.2 0.0039 0.0051 0.0045 0.0056 0.27 0.34 
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From Figure 4.60, it can be seen that the velocity from the experiment 

at 40 g is relatively higher compared to the trend of flow velocities in this 

series of experiments. The difference between the flow velocities is most 

likely due to the difficulty in having a good control over the large flow rate, as 

mentioned in the previous section. 

 

Figure 4.61 shows the relationship between prototype flow velocity 

and prototype flow rate for Series 4 (non-submerged condition). Also included 

in this figure are the data from Series 3 (submerged condition). This 

demonstrates that the prototype flow velocity for the non-submerged condition 

is much faster than the submerged condition, indicating that the larger the 

effective density the larger the flow velocity. The density of the flow slurry for 

Series 3 (submerged condition) is the buoyant density, while the density of the 

flow slurry for Series 4 (non-submerged condition) is the total density. Note 

that the ratio of density (submerged and non-submerged) is approximately 4; 

increasing the g level by a factor of 2 led to an increase in the prototype flow 

velocity by a factor of 3 and by extrapolating with a factor of 4 would led to 

increase in the prototype flow velocity by a factor of 3. 

 

Figure 4.62 shows the relationship of prototype back-calculated flow 

height and prototype flow rate for Series 3 and 4. The data from Series 4 

agrees with the findings from the previous series, in which the prototype flow 

height increases with the prototype flow rate; however, the prototype flow 

heights from the non-submerged condition are smaller than the submerged 

condition. This indicates that, for the submerged condition, the flow slurry is 

suspended, hence inducing a larger flow height.  

 

Figure 4.63 shows the relationship of the measured change in pore 

pressure and prototype flow rate for Series 3 and 4. It can be seen that the 

measured change in pore pressure generally increases with the prototype flow 

rate, except for the test at 60 g due to the instrumentation problems 

encountered for this particular test, as mentioned earlier. Though the prototype 

flow height is smaller for the non-submerged condition, the measured change 

in pore pressure in the non-submerged condition is higher compared to the 
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submerged condition. This is due to the gravitational density effect as 

mentioned earlier, where the total density in Series 4 (non-submerged 

condition) is larger than the buoyant density in Series 3 (submerged 

condition). 

 

 

 

 

 

 
 

 

 

 

 

 
 
 

Figure 4.61: Relationship of prototype flow velocity and prototype flow 
rate for Series 3 & 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.62: Relationship of prototype back-calculated flow height and 
prototype flow rate for Series 3 & 4 
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Figure 4.63: Relationship of the averaged measured change in pore 
pressure and prototype flow rate for Series 3 & 4 

 
 
 

4.7 Repeatability of the Centrifuge Experiments 

 
As mentioned earlier in section 4.6.2, there were similar experiments 

where the repeatability of the experiments could be evaluated. One was from 

the experiments at various g levels and scaled flow rates (30 g a), while one was 

from the experiments at only 30 g at various flow rates (30 g b). Both 

experiments were conducted at 30 g with the flow rate of 3.5*10-4 m3/s.  Figure 

4.64 shows the measured change in pore pressure during the similar 

experiments.  

 

An additional result from a trial experiment at 30 g (30 g c) with the 

similar flow rate of 3.5*10-4 m3/s is also included in this figure. This trial 

experiment is not reported in this thesis as it was carried out during an earlier 

stage of this research without any video recordings of the flow. The sole 

purpose of this trial experiment was to find out the performance of the PPTs 

under the submerged slurry and g level. Since the change of pore pressures 
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were measured in this experiment, it is useful in describing the repeatability of 

the experiments. It can be seen that all three experiments with the same g level 

and flow rate show similar responses in the measured change in pore pressure. 

This indicates that the measurements of the change in pore pressure are correct 

and repeatable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.64: The change in pore pressure for three experiments at 30 g 

with flow rate of 3.5*10-4 m3/s at various locations along the slope 

 

Figure 4.65 shows the flow distance from the two experiments at 30 g  

(30 g a and 30 g b) with the same flow rate of 3.5*10-4 m3/s. The trial 

experiment at 30 g c was carried out without any video recording; therefore, 

the flow distance cannot be obtained and it is not included in this figure.  

 

It should be noted that the flow distance from the two experiments at 

30 g were only relative to its own time measured at each experiment. 

Therefore, the flow distance against time does not overlay each other in Figure 

4.65. However, the slope of the flow distance against time, which gives the 

average velocity of the flow, was shown to be similar. As mentioned earlier, 

the average flow velocity for each flow was established after 0.3 s. It can be 
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seen that the two lines in Figure 4.65 give a similar average flow velocity, 

where the average velocity from 30 g a and b is approximately 60 cm/s.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.65: Flow distance against time for the two experiments at 30 g 

with flow rate of 3.5*10-4 m3/s 

 

The results from Figures 4.64 to 4.65 indicate that the centrifuge 

experiments are repeatable. This gives a higher confidence towards the results 

obtained from the centrifuge experiments.    

 

4.8 Summary 

 

A new centrifuge apparatus was developed for use in a mini-drum 

centrifuge, which allowed the modelling of submarine landslide flows as well 

as the ability to investigate the proposed centrifuge scaling laws. It is 

appealing to note that the centrifuge experimental results appear to follow the 

proposed scaling laws.  

 

From one of the trial experiments at 10 g, it was found that there was a 

1 g effect from the natural earth’s gravity towards the flow where the flow 
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tends to be one sided due to the 1 g effect. This effect was found to be minimal 

from 30 g onwards.   

 

Based on the centrifuge experiments in the submerged conditions, the 

measured flow heights based on visual inspection from the videos might not 

reflect the actual flow height and tended to over-estimate the actual flow 

height. This might be due to the suspension of the flow slurry in the 

submerged condition. With the centrifuge experiments in the non-submerged 

condition, the back-calculated flow heights were found to be smaller than the 

measured flow heights. This might be due to the flattening or thinning of the 

slurry flow under the g levels in the dry condition. 

 

The flow velocities were significantly higher in the non-submerged 

condition compared to the submerged condition, in which the flow rates in 

both series were the same. This was due to the gravitational density effect, 

where the larger the effective density the larger the flow velocity. The density 

of the flow slurry for Series 3 (submerged condition) is the buoyant density, 

while the density of the flow slurry for Series 4 (non-submerged condition) is 

the total density. In addition, the drag forces from the surrounding fluid might 

have been acting on the flow slurry in the submerged condition, which might 

have reduced the flow velocity for the submerged condition. 

 

The data from Series 1 to 4 demonstrated well that the relationship of 

prototype flow velocity increases with the prototype input flow rate. Results 

from Series 1, in which the input flow rates were scaled, proved that the 

prototype flow velocity were relatively similar, indicating the tests at various g 

levels were modelled correctly. Series 3 and 4 showed that, at a given constant 

input flow rate, the prototype flow velocity increased with g level. Similarly, 

Series 1 to 4 consistently demonstrated that the prototype flow height 

increased with the prototype input flow rate. The prototype flow heights were 

found to be relatively similar in Series 1 where the input flow rates were 

scaled. At the same time, at a given constant input flow rate, the prototype 

flow height increased with g level as shown in Series 3 and 4. 
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As indicated in the comparison of Series 3 and 4, the prototype flow 

height was smaller in the non-submerged condition compared to the 

submerged condition; however, the measured change in pore pressure in the 

non-submerged condition was higher compared to the submerged condition. 

This is due to the gravitational density effect as mentioned earlier, where the 

total density in Series 4 (non-submerged condition) is larger than the buoyant 

density in Series 3 (submerged condition). This is discussed in more detail in 

Chapter 6. 

 

It was shown that the results from the centrifuge experiments were 

reasonably repeatable, demonstrating that the flow rate could be controlled 

properly. From the current centrifuge experiments, large flow rates were more 

difficult to control compared to the smaller flow rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter V – Numerical Simulations and Parametric Studies  

 165

CHAPTER V 

5.0 NUMERICAL SIMULATIONS AND PARAMETRIC 

STUDIES 

 

5.1 Introduction 

 
Following from the previous chapter, numerical simulations were 

carried out to simulate the centrifuge experiments as well as to investigate the 

proposed centrifuge scaling laws. The Depth Average Material Point Method 

(DAMPM) was used in the numerical simulations. This chapter discusses the 

DAMPM, results from the numerical simulations and the sensitivity of the 

model.  

 

5.2 Depth Average Material Point Method (DAMPM) 

 

The Material Point Method (MPM) is categorised as one of the mess-

less methods formulated in an arbitrary Lagrangian-Eulerian description of 

motion. In MPM, a body is to be analysed as a cluster of material points, in 

which a material point has information of physical properties on a particular 

position and stress. The material points, which carry all Lagrangian 

parameters, can move freely across cell boundaries of a stationary Eulerian 

lattice and the information is distributed to each node of belonging cells 

(Numada and Konagai, 2009).  

 

The MPM proposed by Sulsky et al. (1994) states that the material 

points are followed so that interpolation for history dependent variables is not 

required and the parameters assigned to the material points are updated at each 

step. One of the main advantages of MPM is its ability to deal with large 

deformation without mesh distortion, which is the limitation of conventional 

finite element methods.  



Chapter V – Numerical Simulations and Parametric Studies  

 166

The depth-averaged concept is based on Hungr (1995) and is a model 

for runout analysis of a debris mass where the debris mass is modelled as a 

group of material columns. Figure 5.1 shows the Hungr (1995) depth-averaged 

concept. The concept of modelling a flow slide in a homogeneous “apparent 

fluid” replaces the slide mass as shown in Figure 5.1 (a). The moving mass, 

which may in reality be heterogeneous and complex, is replaced by an 

equivalent fluid whose bulk properties approximate the behaviour of the 

prototype. Figure 5.1 (b) shows the forces on a block, which are responsible 

for the flow along a slope.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Hungr’s depth-averaged concept (modified after Hungr, 1995) 

 

The Depth Averaged Material Point Method (DAMPM) is the 

combination of the MPM and the depth-averaged concept. It is a numerical 

method for runout analysis of material with a complicated constitutive law, 

such as for debris flows. The algorithm for this method is based on the 

discretisation of St. Venant’s depth averaged-equation of shallow open 

channel fluid flow (Abe, 2008).  DAMPM has been successfully used in recent 

(a) (b) 


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pA

research such as Abe et al. (2007, 2008) in predicting long run-out debris 

flows. This study utilises the code originally developed by Abe et al. (2007). 

 

Figure 5.2 shows the concept of DAMPM, where the material body 

consists of a group of Lagrangian particles that carry the physical variables of 

the body on the Eulerian background meshes. At the nodes of the background 

meshes, the Newtonian equation of motion is solved with nodal variables, 

which are introduced from the physical variables carried by the particles. All 

the Lagrangian parameters assigned to the particles are updated at each step. 

The depth integration is performed normal to bed, with the z axis of Cartesian 

coordinate shown in Figure 5.2.  

 

    
 

 

 

 

 

 

 

Figure 5.2: Illustration of DAMPM (after Abe, 2008) 

 

5.2.1 Governing equations 
 

 

The governing equations used in the DAMPM for soil flows are 

derived using classical shallow water theory and Iverson and Denlinger’s 

depth-averaged theory on the flow of variably fluidised granular masses with 

the incorporation of effective stress theory.  

 

Chow (1959) proposed the following assumptions for the classical 

shallow water theory: 
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 The flow depth varies gradually and is small compared with the area of 

debris mass 

 Flow surface is stress-free 

 

It should be noted that the centrifuge experiments have been carried 

out in two different conditions, one in a submerged condition and the other in 

the non-submerged condition. Therefore, two different sets of governing 

equations need to be used for these two conditions. 

 

5.2.1.1 Governing equations for submerged condition 
 

The depth-averaged equations governing mass balance of a column of 

moving material are as follows, (note that x is the horizontal direction parallel 

to the flow, y is the horizontal direction perpendicular to the flow and z is the 

vertical direction to the flow): 
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where v , h  and t  are the depth-averaged flow velocity, flow height and time 

respectively. The momentum balance in the x and y directions are as follow: 
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where '  is the effective stress,   is the density of the flow material, g  is 

the gravity and wp  is the pore water pressure. The wp  is divided into an 

excess pore water pressure, wep  and a static pore water pressure, wsp . Hence, 

the equations (5.2a and 5.2b) are turned into the following equations:  
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Suppose a condition as shown in Figure.5.3; the static pore water pressures at 

both sides of a unit of a mass are represented by the following equations: 
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Hence, Equations (5.3a) and (5.3b) are turned into the following 

equations: 
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Then Equations (5.6a) and (5.6b) are turned into the following equations: 
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 where  
0zxz
 
and 

0zyz  are the basal frictional stresses. 
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The stress components are calculated by the following equations, 

assuming that the distribution of stress and pore pressure are triangular. The 

depth-averaged normal total stress zz  is separated into depth-averaged 

effective normal stress zz 
 
and the excess pore water pressure wep

 
by a pore 

pressure coefficient (ratio of pore pressure to the total normal stress at the 

base), λ as follows: 
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The parameter λ is similar to the parameter ru used in earthquake engineering. 

 

The other stress components are computed from the constitutive 

equation of the fluidised material using the following equation. 

 

klijklij T                                                                (5.10) 

 

where ij   is the local depth-averaged stress tensor, ijklT  is the local stiffness 

and kl  is the local depth-averaged strain tensor. 

  

The basal frictional stresses
0zxz
 
and 

0zyz  are important in driving 

the soil body to move along a slope. In this study, it is assumed that 

Newtonian flow (for the fluid phase) as well as a Coulomb frictional law (for 

the solid phase) are applied as the basal frictional force as follows: 
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where ac is the centrifugal acceleration (dependent on the curvature radius of 

the flow path),  is the basal frictional angle, vf is the fluid volume fraction, 

and μ is the fluid viscosity. The first term on the right-hand side comes from 

the soil’s frictional resistance, whereas the second term comes from the 

viscosity of the pore fluid inside the moving soil-fluid mixture. 

 

 

 

 

 

 

 

 

 

Figure 5.3: Condition of a unit of a mass in submerged case      

 

5.2.1.2 Governing equations for non-submerged condition 
 

The governing equations for a non-submerged condition are relatively 

similar to the governing equations with the submerged condition, with a few 

exceptions to the calculation of the stresses and pore water pressure. 

 

The depth-averaged equations governing mass and momentum balance 

of a column of material moving are the same in equations 5.1 to 5.2b. 

Equations 5.2a and 5.2b are turned into the following equations: 
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The stress components are calculated by the following equations. The 

depth-averaged normal total stress zz  is separated into depth-averaged 
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effective normal stress zz 
 
and the pore water pressure wp by a pore pressure 

coefficient λ as follows: 

     1
2

1
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klijklij T                                                                  (5.16) 

 

The basal frictional stresses
0zxz
 
and 

0zyz  are the same as in the 

submerged conditions, in equations 5.11a and b. 

 

5.3 Model Details 

 

The schematic for the numerical simulation is shown in Figure 5.4. 

The geometry of the simulation is mainly based on the centrifuge experiments. 

The boundary of the simulation consists of a confined channel of a 6o slope, 

with a runout slope length of 2 m. It should be noted that the slope length in 

the numerical simulation is longer than the actual centrifuge experiments (1 

m). The reason for having a longer runout is to provide a better understanding 

of the submarine landslide flows and to avoid the particles hitting the end of 

the slope too early; the particles may build up or bounce back at the end of the 

slope, thus affecting the flow mechanism. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Schematic of the numerical simulation 
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The initial conditions are, however, slightly different from the 

centrifuge experiments due to the complexity of simulating the pouring 

process, as in the centrifuge experiments. The slurry is represented by a group 

of particles from the initial area at the top of the slope (the yellow section in 

Figure 5.4), with a prefixed initial velocity and height. The initial area is set as 

a frictionless base without setting any gravity. This means that the particles in 

the initial area do not have any forces. In other areas, a frictional base and 

gravity are assigned.  

 

The simulation starts with releasing of the particles from the initial 

area, in which the movements of the particles in the yellow section down the 

slope are driven by the initial velocity. Once the particles come out from the 

yellow section, the movement and the changes in flow velocity and height of 

the particles can be tracked while moving along the slope.  

 

For the simulations of this study, the averaged flow height and velocity 

are based on the average of a group of particles at 0.3 m from the movement 

front, represented by a red line as shown in Figure 5.4. The reason for 

choosing the group of particles at 0.3 m instead of the front of the flow is that 

the flow height is more constant, starting at 0.3 m from the movement front to 

the back of the flow, which is more representative of the overall flow. The 

immediate front of the flow is oscillated due to numerical error and is not 

representative to the overall flow; this is further discussed in the later part of 

this chapter.  

  

The background mesh size, or the grid spacing used in the simulations 

of this study, is 0.01 x 0.01 m. A smaller background mesh size was also 

investigated, which is again discussed in the later part of this chapter. 

 

The simulation can be repeated with different gravity levels as in the 

centrifuge experiments. The other basic parameters for the numerical 

simulations are shown in Table 5.1. The density of the slurry, fluid volume 

fraction and viscosity are based on the actual measurements from the slurry 



Chapter V – Numerical Simulations and Parametric Studies  

 174

used in the centrifuge experiments. The other parameters are assumed based 

on the typical values of a soil under a given effective stress condition.  

 

The basal friction angle, internal friction angle and side wall friction 

angle are determined after rigorous parametric studies, as well as correlation 

with the results from the centrifuge experiments. This will be discussed in the 

later part of this chapter regarding the sensitivity of the model. 

 

Table 5.1: Basic parameters for the numerical simulations 

 

 

 

 

 

 

 

 

 

 

 

5.4 Simulations of Experiments at Various g Levels with 

Scaled Flow Velocity and Height 

 

This series of numerical simulations are performed based on the 

centrifuge experiments which were carried out at various g levels (30 g, 40 g, 

50 g and 60 g) with the scaled flow velocities and heights according to the 

proposed scaling laws. The purpose of this series of numerical simulations was 

to try to match the centrifuge experiments as well as to check on the validity 

of the proposed scaling laws (e.g. whether any initial and boundary conditions 

have an effect on the proposed scaling laws).  

 

Density of flow slurry 1350 kg/m3 

Density of water 1000 kg/m3 

Basal friction angle 12.5o 

Internal friction angle 25o 

Side wall friction angle 5o 

Pore pressure ratio,  1 

Fluid volume fraction (Porosity) 0.76 

Viscosity of flow slurry 0.4 Pa.s 

Number of particles in a simulation 3528 
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The basic parameters for the four simulations in this series are shown 

in Table 5.1. The input for the simulations of the initial flow velocities and 

heights with their corresponding g levels is shown in Table 5.2. The initial 

flow velocities are based on the centrifuge experiments, while the initial flow 

heights are back-calculated based on the input flow rates used in the centrifuge 

experiments, as described in Chapter IV. 

 

Table 5.2: Initial details for the numerical simulations of experiments at 

various g levels with scaled flow velocity and height 

 

 

 

 

 

 

 

 

 

Note: The unit length is the width of the channel, which is 0.1 m. The initial flow velocity, vi 

times the initial flow height, hi equals the input flow rate per unit length, Qul. (v x h = Qul) 

 

Figures 5.5 to 5.8 show the developments of the flow from initiation up 

to 1.8 s of the flow time for simulations at 30 g, 40 g, 50 g and 60 g 

respectively. It can be seen that the flow developments are relatively similar to 

those from the centrifuge experiments (Figures 4.23 – 4.27).  

 

Numerical oscillation at the front can be seen on Figures 5.5 to 5.8. It 

can be seen that the oscillation increases with time. The numerical oscillation 

is caused by the frontal movement. 

 

 

 

 

 

g 

levels 

Initial 

flow 

velocity,  

vi (m/s) 

Initial 

flow 

height, 

hi (m) 

Input flow 

rate per unit 

length, Qul 

(m3/s/m)*10-4 

Prototype input flow 

rate per unit length, 

QPul (m
3/s/m) 

(QPul=N2Qul) 

30 0.60 0.0058 35.0 3.2 

40 0.45 0.0044 19.7 3.2 

50 0.37 0.0034 12.6 3.2 

60 0.32 0.0028 8.8 3.2 
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Figure 5.5: Flow developments at 30 g 
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               Figure 5.6: Flow developments at 40 g 
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            Figure 5.7: Flow developments at 50 g 
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           Figure 5.8: Flow developments at 60 g 

Flow height 
(m) 

Flow height 
(m) 

Flow height 
(m) 

Flow height 
(m) 

Flow height 
(m) 

t = 0.2 s 

t = 0.6 s 

t = 1.0 s 

t = 1.4 s 

t = 1.8 s 



Chapter V – Numerical Simulations and Parametric Studies  

 180

Figure 5.9 shows the averaged flow velocity against time along the 

monitored front line (0.3 m from the movement front) for the simulations at 

various g levels. Slight numerical oscillations can be seen to increase with 

time in Figure 5.9, similar to those reflected in Figures 5.5 to 5.8. In general, 

the averaged flow velocities from each simulation as shown in Figures 5.9 

demonstrate that the flow velocities are fairly constant throughout the flow. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Averaged flow velocity against time for various g levels 
 

Figure 5.10 shows the averaged flow height against time along the 

monitored front line (0.3 m from the movement front) for the simulations at 

various g levels. The slight changes in the flow heights here are due to the 

oscillations as seen in Figure 5.9. Similar to the averaged flow velocities in 

Figure 5.9, the averaged flow heights from each simulation are found to be 

fairly constant throughout the flow. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Averaged flow height against time for various g levels 
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Figure 5.11 (a to d) shows the development of flow height against the 

slope distance at various time intervals for simulations at 30 g, 40 g, 50 g and 

60 g, respectively. The initial flow height represented by the grey line (t = 0 s) 

in Figure 5.11 (a to d) is at slope distance from 0 to 1 m. It can be seen in 

Figure 5.11 (a to d) that the flow height profiles are relatively constant 

throughout the flow except at the flow fronts, which are due to the numerical 

oscillations. Both Figures 5.10 and 5.11 indicate that the averaged flow height 

profiles throughout the flow are relatively constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Flow height developments against slope distance at 

various time intervals 
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Figure 5.11 (cont.): Flow height developments against slope 

distance at various time intervals 
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scaling law for flow distance, they follow well with the proposed scaling law 

for flow distance, where the flow distance is scaled at N3 times of the model.  

 

Table 5.3 shows the summary results from the numerical simulations. 

It can be seen that the average prototype flow velocities and flow heights from 

each experiments are relatively constant and similar with the results from 

centrifuge experiments (Tables 4.3 & 4.4). The comparison of results from 

numerical simulations and centrifuge experiments will be discussed in the next 

chapter.  

 

Based on the above results, it can be seen that the numerical 

simulations show the validity of the proposed scaling laws for the 

experimental conditions given and demonstrate that the soil movements in the 

centrifuge tests were close to the steady-state condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: Flow distance against time for various g levels 
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Figure 5.13: Prototype flow distance for various g levels 
 

 

Table 5.3: Summary of results from numerical simulations 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that this chapter only presents the numerical 

simulation results from the scaled series (Series 1 of the centrifuge tests). The 

numerical simulations from the other series are presented and discussed in 

Chapter VI. 
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5.5 Sensitivity of the Model 

 
The sensitivity of the model was investigated through a series of 

parametric studies. Parameters such as the background mesh, number of 

particles, time step, side friction, basal friction and pore pressure ratio,  were 

investigated.  

 

It should be noted that the simulations shown below were carried out at 

the submerged condition at 30 g, in which the initial flow velocity of 0.6 m/s 

and the initial flow height of 0.007 m were used. The basic parameters used 

herein are those as shown in Table 5.1, unless otherwise stated. 

 

5.5.1 Background mesh 
 

Two different background meshes were investigated. The background 

mesh that was used in all the presented results in the previous subsections is 

denoted as the “normal mesh”. A finer background mesh was generated 

denoted as the “finer mesh” for comparison purposes. The mesh size of the 

“normal mesh” was 0.01 x 0.01 m, while the “finer mesh” size was 0.005 x 

0.005 m. Figures 5.14 and 5.15 show the effects of background mesh on the 

averaged flow velocity and averaged flow height respectively, both with the 

same number of particles.  

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Effects of background mesh on the averaged flow velocity 
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Figure 5.15: Effects of background mesh on the averaged flow height 

 

It can be seen that the simulations with the “finer mesh” gave a slightly 

more consistent averaged flow velocity and flow height. This indicated that 
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simulations yielded relatively similar results, where both the flow velocity and 
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“finer mesh”, the “normal mesh” was therefore chosen in order to reduce the 

computation time.  
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Figure 5.16: Effects of number of particles on the averaged flow velocity 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Effects of number of particles on the averaged flow height 
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5.5.3 Time step 
 
 

The code uses the explicit time integration scheme. It is known that a 

larger time step in a simulation will reduce the computational time, but a 

larger time step may affect the accuracy of a simulation. It is therefore 

essential to find an optimum time step for a time-effective and accurate 

simulation. 

 

Based on the experience from Abe (2009), the time step of dt = 1.0 x 

10-5 seconds is known to be the optimum time step for simulating runout from 

a typical landslide. An attempt was made to reduce the computation time for 

the simulations in this research, where a larger time step of dt = 1.0 x 10-4 

seconds was used and compared with. 

 

Figures 5.18 and 5.19 show the effects of different time steps on the 

averaged flow velocity and averaged flow height respectively. The red line in 

the figures represents the larger time step of dt = 1.0 x 10-4 seconds, while the 

black line represents the time step of dt = 1.0 x 10-5 seconds. The smaller time 

step of dt = 1.0 E-6 seconds is also included in both Figures 5.18 and 5.19 for 

comparison.  

 

The results show that the time steps of dt = 1.0 x 10-5 seconds and dt = 

1.0 x 10-6 seconds are relatively similar. It can be seen that the time steps of dt 

= 1.0 x 10-6 seconds and dt = 1.0 x 10-5 seconds tend to have a more constant 

flow where the flow velocity and height are more constant throughout the 

flow; in this case the results are similar to the centrifuge tests, where the flow 

velocity and height are relatively constant throughout the flow.  

 

This indicates that the larger time step (dt = 1.0 x 10-4 seconds) is not 

as accurate as the smaller time step. Therefore, the time step of dt = 1.0 x 10-5 

seconds was chosen for all the simulations in this study. 
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Figure 5.18: Effects of time step on the averaged flow velocity 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Effects of time step on the averaged flow height 
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range of side wall frictions is investigated in order to match the flow 

developments, as in the centrifuge tests which also gives the similar averaged 

flow velocity and flow height. It can be seen that increasing the side wall 

friction induces slightly more fluctuations in the averaged flow velocity and 

flow height. In high side wall friction (i.e. = 10o) case, the flow velocity is 

slightly slower by approximately 3% compared to the flow velocity of the case 

without side friction (i.e. = 0o). Therefore, the side wall friction can be 

considered to be negligible in the centrifuge experiments. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.20: Effects of various side wall frictions on the averaged flow 

velocity 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Effects of various side wall frictions on the averaged flow height 
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Figure 5.22 shows the velocity profile (0.3 m from the front line) of 

various side wall frictions (at 1.6 s into the flow process). It can be seen that 

the side wall friction is more pronounced at  = 10o, as the flow velocity at 

both side walls are lower compared to the middle of the flow. The figure also 

shows that the effects on the flow velocity are minimal for side wall frictions 

lower than 10o. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Velocity profile at various side wall frictions 
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Figure 5.23: Effects of various side wall frictions on the flow 

developments 
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Figure 5.23 (cont.): Effects of various side wall frictions on the flow 

developments 
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5.5.5 Basal friction and pore pressure ratio () 
 

The basal friction angle and pore pressure ratio, directly influences 

the basal stresses that are important in driving the soil body to move along a 

slope, as shown in equations 5.11 a and b. Therefore, the basal friction angle 

and  are considered as significant parameters. Various  values and two 

different basal friction angles have been investigated, one without basal 

friction angle = 0o and one at basal friction angle = 12.5o.  

 

Figures 5.24 and 5.25 show the effects of various  on the averaged 

flow velocity at basal friction angles, 0o and 12.5o respectively. Figures 5.26 

and 5.27 show the effects of various  on the averaged flow height at basal 

friction angles, 0o and 12.5o respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Effects of various  on flow velocity at basal friction = 0o 

 

 

 

 

 

 

 

 

 

Figure 5.25: Effects of various  on flow velocity at basal friction = 12.5o 
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Figure 5.26: Effects of various  on flow height at basal friction = 0o 

 

 

 

 

 

 

 

 

 

Figure 5.27: Effects of various  on flow height at basal friction = 12.5o 
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At basal friction angle = 12.5o, the averaged flow velocity increases 

with  while the averaged flow height reduces with . This indicates that the 

flow movements are faster at higher  where the apparent effective stress of 

the soil body is less.  Since the volume input rate is the same, the flow height 

will be smaller. It should be noted that the averaged flow velocities and flow 

heights in Figures 5.25 and 5.57 are the averaged of 0.2 to 0.4 m from the 

front. Having an average of a bigger range (0.2 to 0.4 m from the front) is to 

reduce numerical oscillations. It can be seen that the numerical oscillations are 

more obvious for the smaller  value as shown in Figure 5.25. 

 

Based on the results from these simulation, the flow with  = 1 at basal 

friction angle = 12.5o corresponded well with the results from the centrifuge 

experiments. A comparison of results from the centrifuge experiments and 

numerical simulations will be discussed in more detail in the next chapter. 

 

5.6 Summary 

 

Numerical simulations using the DAMPM have successfully simulated 

the submarine landslide flows and closely modelled the centrifuge 

experiments to examine the proposed centrifuge scaling laws. The results from 

the numerical simulations show that the scaling laws follow the findings from 

the centrifuge experiments. 

 

The sensitivity of the model was investigated and it was found that the 

model was relatively stable even at the “finer mesh” and “larger number of 

particles”. Comparisons have been made between the “normal mesh” and the 

“finer mesh” as well as “smaller number of particles” and “larger number of 

particles”. The results from all these variants show similar results, indicating 

that the model is acceptable for the purpose of this study, even though some 

numerical oscillations were noticed. 
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Parametric studies on various soil properties have been made to fine 

tune the numerical model. It is found that the pore pressure ratio,  is a very 

important parameter in determining the submarine landslide flow progress, in 

particular for determining the apparent effective stress of a soil body. Further 

comparison and discussions of the results from the centrifuge experiments and 

numerical simulations are presented in the next chapter. 
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CHAPTER VI 

6.0 DISCUSSION AND COMPARISONS OF RESULTS 

 

6.1 Introduction 

 
Both chapters IV and V have demonstrated the results from the 

centrifuge experiments and the numerical simulations following the proposed 

scaling laws. This chapter aims to compare the two methods and the details of 

both methods will be investigated more thoroughly. This chapter also presents 

and discusses the additional results from the numerical simulations that 

simulate the series of centrifuge tests other than the scaled cases.   

 

6.2 Comparisons of Results with the Developed Scaling 

Laws 

 

As described in Chapter III, the proposed scaling laws for soil flow 

differ from the conventional scaling laws for soil mechanics problems. The 

conventional scaling law for length is related to strain increment; however, if 

straining is so large that the stress state is not a function of strain anymore, 

then the scaling for length (flow distance) may not be a conventional one, 

which originates from the fact that stress increment (i.e. satisfying the stress 

equilibrium condition) is related to strain increment (giving the length scaling 

law of Lprototype = NLmodel).  

 

Phenomena such as submarine landslide flows in this study involve 

very large movements of a soil-fluid mixture, where the soil in contact at the 

base boundary is extensively sheared. The soil at this stage can be understood 

to be at failure (critical state) where the effective stress state of the soil 

becomes independent of strain, which results in the length scaling law being 

indeterminate. Assuming that the soil flowing along the slope is at critical 
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state and the fluid component of the soil is giving a viscous resistance to the 

flowing soil, the following scaling laws can be deduced; h prototype = N h model, 

v prototype = N v model and Lprototype = N3Lmodel (as in equations 3.6, 3.7 and 3.11). 

The scaling law in height (i.e. perpendicular to the slope) comes from the fact 

that the stress state is governed by the weight of the soil (which gives the basal 

and side frictions). This means that the variation in the change in height is 

considered to be small compared to the movement in the direction parallel to 

the slope, hence the depth average technique can be adopted. Therefore, the 

scaling laws for velocity and length in parallel to the slope come from (i) the 

equation of motion, (ii) the effective stress state to be independent from strain 

(i.e. critical or residual state) and (iii) the viscous resistance of pore fluid. 

 

According to the proposed scaling laws, the scaled series in which the 

prototype input flow rates were the same for the various g levels gave a similar 

prototype flow velocity and height at the various g levels. Table 6.1 shows the 

summary results from the centrifuge experiments and the numerical 

simulations for the scaled series. It can be seen that the averaged flow velocity 

and height were relatively similar at various g levels for both centrifuge 

experiments and numerical simulations. This indicated that the centrifuge 

experiments and numerical simulations from various g levels scaled 

reasonably well to the proposed scaling laws. 
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 Table 6.1: Summary of results from centrifuge experiments and numerical 

simulations 

 

Note: 

v =Average flow velocity 

h = Average flow height 
pv = Average prototype flow velocity     

ph = Average prototype flow height    
 

 

Figure 6.1 shows the averaged flow height against the averaged flow 

velocity from the centrifuge experiments and the numerical simulations, 

demonstrating the results from centrifuge experiments and numerical 

simulations are relatively similar. Figures 6.2 and 6.3 show the relationship of 

averaged prototype flow height and averaged prototype flow velocity against 

the g level respectively for the results from both the centrifuge experiments 

and the numerical simulations. It can be seen that both consistently show that 

the averaged prototype flow height and flow velocity were relatively similar at 

various g levels for both centrifuge experiments and numerical simulations. 

This again indicates that the centrifuge experiments and numerical simulations 

are modelled and scaled correctly according to the proposed scaling laws. 

 

 

 

 

 

g 

levels 

Input 

flow rate 

per unit 

length, 

Qul 

(m3/s/m)

*10-4 

Prototype 

input flow 

rate per unit 

length, QPul 

(m3/s/m) 

(QPul=N2Qul) 

Centrifuge experiments Numerical simulations 

v     

(m/s) 

h         

(m) 

pv  

=N* v  

(m/s) 

ph   

=N* h  

(m) 

v  

(m/s) 

h         

(m) 

pv  

=N* v  

(m/s) 

ph  

=N* h  

(m) 

30 35.0 3.2 0.60 0.0058 18.0 0.18 0.60 0.0058 18.1 0.17 

40 19.7 3.2 0.45 0.0044 18.0 0.18 0.45 0.0044 18.1 0.18 

50 12.6 3.2 0.37 0.0034 18.5 0.17 0.37 0.0034 18.4 0.17 

60 8.8 3.2 0.32 0.0028 19.2 0.17 0.31 0.0028 18.6 0.17 
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Figure 6.1: Averaged flow height against averaged flow velocity from 

centrifuge experiments and numerical simulations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Comparisons of averaged prototype flow height between 

centrifuge experiments and numerical simulations 
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Figure 6.3: Comparisons of averaged prototype flow velocity between 

centrifuge experiments and numerical simulations 

 

6.3 Comparisons of Centrifuge Experiments with 

Numerical Simulations (All series) 

 

The results from the numerical simulations in Chapter V presented 

only the scaled series, while in Chapter VI the results of the centrifuge 

experiments were given for the other non-scaled series. This section compares 

the results of centrifuge experiments and numerical simulations from the non-

scaled series, in particular the series with a large flow rate. 

 

6.3.1 Flow velocity and flow height 
 

Figures 6.4 and 6.5 show the relationship of averaged prototype flow 

height and averaged prototype flow velocity against the prototype input flow 

rate, respectively. The results are from both the centrifuge experiments and 

numerical simulations of the series with a large flow rate (Series 3).  

10 20 30 40 50 60 70

g level

0

5

10

15

20

25

30

A
ve

ra
g

ed
p

ro
to

ty
p

e
fl

o
w

ve
lo

ci
ty

,
V

P
(m

/s
)

Series 1

30g

40g

50g

60g

Centrifuge

Numerical

A
ve

ra
g

e 
p

ro
to

ty
p

e 
fl

o
w

 v
el

o
ci

ty
, 

v p
 (

m
/s

) 



Chapter VI – Discussion and Comparisons of Results  

 203

Unlike the results for the scaled series (Series 1), the results from the 

numerical simulations do not match the results from centrifuge experiments 

for this series (Series 3). It can be seen that the averaged prototype flow 

heights from the numerical simulations are lower compared to the centrifuge 

experiments, while the averaged prototype flow velocities are higher from the 

numerical simulations compared to the centrifuge experiments.  

 

This leads to a number of investigations on why the numerical 

simulations for this series do not match the centrifuge results. The parameters 

used in the numerical simulation for this series were the same for the scaled 

series (Series 1). All the basic soil parameters should remain the same, as the 

flow materials used were the same, except the input flow rates in this series 

(Series 3) were larger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Comparisons of averaged prototype flow height between 

centrifuge experiments and numerical simulations (Series 3) 
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Figure 6.5: Comparisons of averaged prototype flow velocity between 

centrifuge experiments and numerical simulations (Series 3) 

 

Based on all the input parameters for the numerical simulations (refer 

to Table 5.1 in Chapter V), the only parameter that could be different between 

each series is the pore pressure ratio, which could be affected by the large 

input flow rate. Therefore, various values have been used to match the 

results from the centrifuge experiments.  

 

Figures 6.6 and 6.7 show the contours of  values on the averaged 

prototype flow height and flow velocity, respectively, for Series 3. It can be 

seen that the  value that best represents the results in the centrifuge 

experiment for this series (Series 3) is 0.7. It should be noted that, for the 

scaled series (Series 1), the  value is 1, in which the flow slurry is considered 

to be completely liquefied and there is no effective stress at the base boundary. 

This is because the prototype input flow rate in Series 1 is small, which results 

in shallow flows. When the prototype input flow rate increases, the thickness 

of the prototype flow increases and hence there is more resistance at the base. 

Here, with a thicker flow in Series 3, the  value is 0.7 indicating that the flow 

slurry is not completely liquefied.  
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Figure 6.6 shows that the averaged prototype flow height increases by 

decreasing the  value, while Figure 6.7 shows that the averaged prototype 

flow velocity decreases by decreasing the  value. By decreasing the  value, 

larger shear resistance is created by the increasing effective stress of the soil 

and hence the soil flows slower. A smaller flow height produces a smaller 

effective stress at the base boundary, resulting in a larger pore pressure ratio, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Contours of  values on the averaged prototype flow height 

(Series 3) 

 

The relationship of  values and their corresponding flow height and 

velocity in Figures 6.6 and 6.7 is unique for the materials used in the 

centrifuge experiments. However, such a relationship is only useful in 

predicting the averaged flow height and velocity of an actual submarine 

landslide flow in the field when the numerical model is calibrated to the site-

specific soil parameters.   
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Figure 6.7: Contours of  values on the averaged prototype flow velocity 

(Series 3) 

 

Figures 6.8 and 6.9 show the contours of  values on the averaged 

prototype flow height and flow velocity respectively for the non-submerged 

series (Series 4). Similar to the results from Series 3, Figure 6.8 shows that the 

averaged prototype flow height increases by decreasing the  value, while 

Figure 6.9 shows that the averaged prototype flow velocity decreases by 

decreasing the  value. It can be seen that the  value that best represents the 

results in the centrifuge experiments for this series (Series 4) is 0.5. For the 

range of prototype input flow rate considered here, the results indicate that the 

effective stress state of soil is much greater in the non-submerged series 

compared to the submerged series. Hence, less excess pore pressure is 

generated at the base for the non-submerged series due to the fact that the 

effective stress level is much greater than the submerged series. 
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Figure 6.8: Contours of  values on the averaged prototype flow height 

(Series 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Contours of  values on the averaged prototype flow velocity 

(Series 4) 
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The relationship of prototype flow height and prototype flow velocity 

with the prototype input flow rate for all four series are summarised in Figures 

6.10 and 6.11 respectively. It can be seen that the results from numerical 

simulations match the results from centrifuge experiments reasonably well for 

all four series. The  values for Series 1 and 2 is 1.0, while for Series 3 and 4, 

the  values are 0.7 and 0.5 respectively.  

 

With the same input flow rates for Series 3 and 4, the dry or non-

submerged series (Series 4) has a smaller prototype flow height and a larger 

prototype flow velocity compared to Series 3, as shown in Figures 6.10 and 

6.11. This is because the gravity effect for the non-submerged series (total 

weight of the flow slurry) is larger compared to the gravity effect for the 

submerged series (buoyant weight of the flow slurry) which is smaller. This is 

also reflected on the numerical simulations, where a smaller  value ( = 0.5) 

for the non-submerged series is used to match the centrifuge experiments 

compared to the submerged series ( = 0.7). This again indicates that the 

effective stress level is much greater for the non-submerged series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Comparisons of averaged prototype flow height between 

centrifuge experiments and numerical simulations (All series) 
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Figure 6.11: Comparisons of averaged prototype flow velocity between 

centrifuge experiments and numerical simulations (All series) 

 

Furthermore, it can be seen that the  values are smaller for the larger 

prototype input flow rates (Series 3 & 4) as compared to Series 1 and 2. This 

indicates that the effective stresses are larger at larger prototype input flow 

rates, in which the prototype flow heights are larger in Series 3 compared to 

Series 1 & 2.  

 

The dotted lines in Figure 6.10 show the relationship between flow 

height versus input flow rate for the slurry tested in this study (E-grade Kaolin 

clay with water content of 122 %). This demonstrates that charts such as 

Figures 6.10 and 6.11 can be developed experimentally by conducting various 

input flow rates for different types of soils (or actual field materials) in a 

centrifuge. These charts can then be used to assess the flow velocity and flow 

height for a given input flow rate scenario. 

 

As mentioned in Chapter IV, there is a leap from Series 2 to 3. 
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other experimental subtle changes such as different clay bathes used in each 

series. Unfortunately, there are no data points in the transition from Series 2 to 

3 in order to understand the leap. 

 

6.3.2 Relationship of flow height, flow velocity and change in pore 
pressure   

 

The results from the numerical simulations, in particular the flow 

heights and  values, can be used to back-calculate the change in pore pressure 

and compare with the measured change in pore pressure (measured at the base 

of the flow slurry) obtained from the centrifuge experiments. It should be 

noted that the numerical simulations are unable to provide direct results of the 

change in pore pressure due to the flow slurry. However, back calculation can 

be made based on the information such as flow heights and  values. The pore 

pressure ratio,  is the ratio of change in pore pressure, U and the total 

incremental stress, .  

 








U

    (6.1) 

 

Based on the results from the numerical simulations,  can be 

calculated as the prototype flow height multiplied by the slurry density. It 

should be noted that, in order to compute , the effective slurry density was 

used for the submerged series to compensate the buoyancy effect as the slope 

was submerged with water before the flow slurry. For the non-submerged 

series (dry), the total incremental stress was solely due to the flow slurry; 

therefore, the total slurry density was used instead of the effective density. 

 

Figure 6.12 shows the change in pore pressure versus prototype input 

flow rate for all the series. The solid symbols are the actual measured change 

in pore pressure at the base of the flow slurry from the centrifuge experiments, 

while the open symbols are the back-calculated changes in pore pressure based 

on the results of flow heights and  values from the numerical simulations. It 



Chapter VI – Discussion and Comparisons of Results  

 211

can be seen that the back-calculated change in pore pressure is much lower 

than the measured change in pore pressure. This indicates that the measured 

change in pore pressure from the centrifuge experiments may not be correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Comparison of the measured change in pore pressure and 

the back-calculated change in pore pressure 

 

It can be seen in Figure 6.12 that the back calculated change in pore 

pressures for Series 4 (non-submerged) are still slightly larger than Series 3 

(submerged), even though the flow heights in Series 4 are smaller than Series 

3. However, the total incremental stress,  is larger in Series 4 compared to 

Series 3. It should be noted that the total incremental stress,  is higher in 

Series 4 even with a smaller flow height; this is due to the fact that the  in 

Series 4 is solely due to the total density of flow slurry, while the  in Series 

3 has to take into account of the buoyancy effect. It is, therefore, reasonable 

for  to be smaller in Series 3 even with a larger flow height, hence resulting 

in a larger  value compared to Series 4. 

 

0 10 20 30 40 50

Prototype input flow rate/width, QPul (m3/s/m)

0

1

2

3

4

5

6

7

8

9

10

C
h

a
n

g
e

in
p

o
re

p
re

s
s

u
re

,


U
(k

P
a

)

Series 3

30g

40g

50g

60g

Series 2
QPul (m3/s/m)

0.7

1.1

1.8

3.2

Series 1

30g

40g

50g

60g

Series 4

30g

40g

50g

60g

Measured

Back calculated

.

Series 1: Various flow rates and g levels
Series 2: Various flow rates at 30g only
Series 3: Various g levels at 1 large flow rate
Series 4: Various g levels ar 1 large flow rate (Dry)

Instrumentation problem



Chapter VI – Discussion and Comparisons of Results  

 212

With the understanding of the relationships of total incremental stress, 

flow height,  value and change in pore pressure lead to a preliminary 

conclusion that the measured change in pore pressure from the centrifuge 

experiments are somewhat not correct, though the trend is correct. A few 

possibilities for the variation in the measured and the back-calculated change 

in pore pressure due to the flow events are examined here. 

 

 Hypothesis 1: Error in water depth 

 

This leads to the question of the reliability of the PPTs in measuring 

the change in pore pressure. In order to check the reliability of the measured 

change in pore pressure from the PPTs, the designed water depths in the 

centrifuge model are compared with the back-calculated water depths from the 

measurements of PPTs before the flow slurry.  

 

Figure 6.13 shows the back-calculated water depths from 

measurements of change in pore pressure from the PPTs along the slope 

moments before introducing the flow slurry, as well as the designed water 

depth based on the actual PPTs location (depth) along the slope. It should be 

noted that the water level in the model moments before the flow slurry was 

actually at the top of the model, while water was fed continuously to maintain 

a constant water level in the channel and the overflow water was drained off 

from the ring channel as described in Chapter IV. Therefore, the designed 

water depths relative to the PPTs can be calculated since the water depth in the 

model was constant at that moment. 

 

It can be seen that, in Figure 6.13, the designed water depths are 

consistently higher than the back-calculated water depths obtained from the 

PPTs measurements in the centrifuge experiments at various g levels (data 

obtained from Series 1).  
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Figure 6.13: Designed and back-calculated water depths along the slope 

 

 

It can be seen that the difference between the designed and measured 

change in pore pressure is larger at higher g level as well as at the further end 

of the slope (PPT4 at 0.57 m from opening). This is in fact due to the uplifting 

of the foam slope in which the higher the g level, the higher the uplifting 

force. Although struts were installed to prevent the foam slope from uplifting, 

as mentioned in Chapter IV, uplifting of the foam slope was not fully 

prevented. The uplifting of the foam slope resulted in elevation of the PPTs 

relative to the model and hence resulted in shallower water depths. This 

resulted in a smaller measured change in pore pressure compared to the 

designed water depths as shown in Figure 6.13. The smaller water depths and 

measured change in pore pressure are further exaggerated towards the end of 

the slope, such as in PPT 4, due to the thickness of the foam slope being 

thinner at the end of the slope, hence more uplifting at this location. 

 

To further illustrate the uplift of the foam slope, Figure 6.14 a) shows 

the foam slope without uplifting and b) shows the foam slope with uplifting 
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due to the higher water pressure. Note that the uplifting of the foam slope in 

Figure 6.14 is exaggerated for illustration purposes. 

 

Evidence of uplifting of foam slope at the location near to PPT 4 from 

the centrifuge experiments are shown in Figure 6.15. Figure 6.15 a) shows the 

foam slope when not submerged in water and before uplifting, while Figure 

6.15 b) shows the uplifting of the foam slope when submerged in water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Uplifting of foam slope 

 

 

 

 

 

 

 

 

Figure 6.15: Evidence of uplifting of foam slope in the centrifuge 

experiment 
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Since the data acquisition in the experiments were logged before the 

centrifuge was spun, it would be useful to show the data of the measured 

change in pore pressure while the centrifuge progressed from stationary to the 

appropriate g level to check if the PPTs were giving the correct measurements. 

However, the water was only introduced gradually into the centrifuge after the 

centrifuge had achieved 10 g. While increasing the g level of the centrifuge 

progressively to the desired g level, the water was still being introduced 

gradually into the centrifuge and the water level was yet to achieve the 

maximum level at the top of the model. Therefore, the water levels were 

unknown before reaching the maximum level. Once the water level rises to the 

top of the model (maximum level), feeding of water continues and the 

additional water overflows from the top of the model thus creating a constant 

water level. This resulted in unknown water levels in the centrifuge during the 

period between stationary and up to the desired g level; the only way to 

correctly determine the water level was when the water level was at the top of 

the model. 

 

Hypothesis 2: Impact force on the PPT 

 

As mentioned in Chapter IV section 4.2.3.1, the PPTs were embedded 

in a groove within the foam slope, as shown in Figure 4.9 b. When the flow 

slurry approached near the PPTs, the PPTs experienced a sudden surge of 

acceleration. This sudden acceleration of slurry around the PPTs might have 

exerted an impact force (Impact force = acceleration of slurry x mass of 

slurry) on the PPTs, which might increase the measured change in pore 

pressure. The orientation of the PPTs might have also influenced the impact 

force as there was a gap between the groove and the PPTs, in which the flow 

slurry in the groove around the PPTs might have increased the impact force. 

The larger the slurry flow velocity was, the larger the sudden acceleration 

around the PPTs became; hence, a larger impact force was applied on the 

PPTs. This impact force might have contributed to the error in the measured 

change in pore pressure. 
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In an alternative method of understanding the “error” due to the impact 

force, the difference in the measured and back-calculated change in pore 

pressures are plotted with the flow velocity to quantify the “error”. Figure 6.16 

shows the relationship of the “error” with the averaged flow velocity. The 

“error” here is defined as the back-calculated change in pore pressure, UBC 

minus the measured change in pore pressure from the centrifuge experiments, 

U. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: Relationship of error in measured  

change in pore pressure and the averaged flow velocity 

 

Figure 6.16 clearly shows the trend of increasing difference from the 

measured change in pore pressure and the back-calculated change in pore 

pressure with larger flow velocity. This indicated that the acceleration of 

slurry around the PPTs was larger at larger flow velocity in which larger 

impact forces might have acted on the PPTs. Hence, the "error" on the 

measured change in pore pressure was larger at larger flow velocity. Further 

work is needed to understand the mechanisms of this result. 
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6.4 Summary 

 

The results from centrifuge experiments and the numerical simulations 

for the scaled series (Series 1) show that they follow the proposed centrifuge 

scaling laws. In addition, the results from the numerical simulations accord 

with the centrifuge experiments when it is assumed that = 1. 

 

Variations of results between centrifuge experiments and numerical 

simulations, in particular for Series 3 and 4, are found to be due to the 

difference in the pore pressure ratio, . With the proper  values for each 

series, the results from the numerical simulations can match well with the 

centrifuge experiments. The results from numerical simulations show that by 

decreasing the  value, the prototype flow height increases while the prototype 

flow velocity decreases. This indicates that a larger input flow rate produces a 

thicker flow (larger flow height), which results in increasing of soil shear 

resistance by the increase in effective stress and decrease in value. This also 

suggests that a small scale 1g model may produce a condition close to 

liquefaction and hence hydroplaning is likely to form as seen in the literature  

(Ilstad et al., 2004a) as mentioned in Chapter 2. The higher g condition as in 

the centrifuge, will give thicker deposits and the data show that effective stress 

increases. Hence, hydroplaning may not develop fully like the one observed in 

a small scale 1g model.  

 

Based on the findings from Series 3 and 4, where the prototype input 

flow rates are the same for both series, show that the non submerged series has 

a smaller prototype flow height and a larger prototype flow velocity compared 

to the submerged series. This is because the gravity effect for the non 

submerged series (total weight of the flow slurry) is larger compared to the 

gravity effect for the submerged series (buoyant weight of the flow slurry) 

which is smaller. Considering the density of the material, the effective stress 

level is greater for the non submerged series compared to the submerged 

series. For the numerical simulations, a smaller  value was needed for the 

non submerged series to match the centrifuge experiments compared to the 
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submerged series which needed a larger  value. Thus, indicating smaller  

values yield larger effective stresses. 

 

The causes for the discrepancy in the measured and back calculated 

change in pore pressure have been explored. It is found that the higher 

measured change in pore pressure from the PPTs compared to the back 

calculated change in pore pressure maybe due to the following; (i) error in 

water depths and (ii) impact force on PPTs. The uplifting of the foam slope 

resulting in different water depths also contributes to the difference in the 

measured and back calculated change in pore pressure. In addition, the "error" 

on the measured change in pore pressure is larger at larger flow velocity due to 

the sudden acceleration of flow slurry around the PPTs. This might have 

produced an impact force on the PPTs and thus increases the measured change 

in pore pressure. Further work is needed to understand the mechanisms 

involved in this. 
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CHAPTER VII 

7.0 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

7.1 Introduction 

 
This dissertation was concerned with developing centrifuge scaling 

laws for submarine landslide flows through the study of modelling submarine 

landslide flows in a mini-drum centrifuge. Numerical simulations using the 

DAMPM were carried out to further examine the proposed centrifuge scaling 

laws as well as to evaluate the results from the centrifuge experiments. From 

the literature it can be seen that most submarine landslide flows were 

investigated through 1 g experiments, while this study served as a pilot study 

on submarine landslide flows through centrifuge modelling. A new centrifuge 

apparatus was specifically developed for this research study. The findings 

presented in this dissertation were intended to contribute towards a more 

realistic and complex future research on submarine landslide flows through 

centrifuge modelling as well as through numerical simulations. 

Recommendations for possible future research work are also suggested in this 

chapter. 

 

7.2 Summary and Conclusions 

 

Through the available literatures, it was evident that the studies on 

submarine landslides were concentrated on 1 g experiments, while the studies 

through centrifuge experiments in this field were very limited.  

 

Centrifuge scaling laws for submarine landslide flows were developed 

in this study. The proposed centrifuge scaling laws for submarine landslide 

flows differ from the conventional centrifuge scaling laws, in particular the 



Chapter VII – Conclusions and Recommendations for Future Work   

 220

scaling law for flow distance, where the flow distance of a prototype is scaled 

at N3 times that of the model. Based on the conventional centrifuge scaling 

law of a soil body, the movement in the flow direction would be scaled at N 

times that of the model. 

 

It is noted that the conventional scaling law for length comes from the 

fact that the stress increment of a body is related to strain increment (Lprototype 

= NLmodel), in which the stress equilibrium condition is satisfied. However, in 

this study, the movement of the submarine landslide flow (soil-fluid mixture) 

is considered very large and the soil, particularly that in contact at the base 

boundary, is extensively sheared. Therefore, if the soil is at failure (critical 

state) and the effective stress state of the soil becomes independent of strain, 

then the scaling law for length (or flow distance) is indeterminate. However, 

by assuming the shear resistance of a moving soil-fluid mixture has some 

viscous effect (strain rate dependent), a new scaling law can be derived as 

mentioned earlier, based on the assumption or simplification that the 

movement of the soil perpendicular to the slope is negligible compared to that 

which is parallel to the slope. 

 

In order to investigate the proposed centrifuge scaling law, a new 

centrifuge apparatus has been successfully developed for use in a mini-drum 

centrifuge, which allows the modelling of submarine landslide flows. The 

development of the centrifuge apparatus included transferring the geometry of 

the slope into a circular mini-drum centrifuge, getting the right cameras and 

compartments of the model, instrumentation, providing sufficient lighting in 

the mini-drum centrifuge, and choosing appropriate slurry for the experiments. 

 

Centrifuge experiments were successfully carried out at various g 

levels with scaled flow heights and velocities, in order to give the same 

magnitude of basal friction to resist the flow movement, as well as the soil 

stress field, to drive the soil body to move along the slope. The results showed 

that they achieved the same stress field in both the model and the prototype. 

Therefore, the results from the centrifuge experiments appeared to follow the 

proposed centrifuge scaling laws.  
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In addition, it was found that the measured flow heights from the 

centrifuge experiments based on visual inspection of the video recordings may 

not reflect the actual flow height. The flow slurry was under suspension in the 

submerged condition, resulting in an over-estimation of the actual flow height. 

The back-calculated flow height based on the flow velocity and the known 

input flow rate seems to be a better approach by which to estimate the flow 

height.  

 

The submarine landslide flow centrifuge experiments were found to be 

reasonably repeatable, provided that the input flow rate could be controlled 

properly. It was found that the larger input flow rates were more difficult to 

control compared to the smaller input flow rates.  

 

Further complementing the centrifuge results, numerical simulations 

through DAMPM have been successful in simulating submarine landslide 

flows, which closely modelled the centrifuge experiments and agreed well 

with the proposed centrifuge scaling laws.  

 

The DAMPM is a relatively new method; therefore, the sensitivity of 

the model was investigated and it was found that the model was relatively 

stable even at different number of particles, as well as different background 

mesh sizes. Parametric studies on various soil properties were carried out 

using the DAMPM. It was found that the pore pressure ratio, , was a very 

important parameter in determining the progress of submarine landslide flows, 

in particular for determining the apparent effective stress of a soil body.  

 

The issues on the variations of results between centrifuge experiments 

and numerical simulations, in particular for the series of non-scaled larger 

input flow rates (Series 3 and 4), were found to be due to the difference in the 

pore pressure ratio, . The results from numerical simulations show that, by 

decreasing the  value, the prototype flow height increases while the prototype 

flow velocity decreases. This indicates that a larger input flow rate produces a 
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thicker flow (larger flow height), which results in an increase of soil shear 

resistance by the increase in effective stress and decrease in value.  

 

Furthermore, the causes for the discrepancy in the measured and back-

calculated change in pore pressure were explored using the results from both 

the numerical simulations and the centrifuge experiments.  

 

Despite the above short-comings, the results from centrifuge 

experiments and the numerical simulations show that they follow the proposed 

centrifuge scaling laws and both methods were valuable for research studies 

on submarine landslide flows. The proposed centrifuge scaling laws for 

submarine landslide flows may be used to extrapolate centrifuge results to the 

field event when centrifuge experiments are carried out with various input 

flow rates for the specific type of soil (or actual field materials). Once the soil 

parameters are calibrated through the centrifuge modelling, the numerical 

simulation method can be used to study more complex submarine landslide 

problems that represent field events. 

 

7.3 Recommendation for Future Research Work 

 

The centrifuge experiments and the numerical simulations in this study 

were limited to the specific flow slurry used, which was a mixture of E-grade 

Kaolin clay and water (water content of 122%). This material does not 

resemble, and neither is it trying to replicate, an actual field material or field 

event; however, the results and findings from this study provide some insights 

into centrifuge modelling of submarine landslide flows. Therefore, further 

research work is required to model and to study more complex and field-

related events of submarine landslide flows with the aid of the findings in this 

study. Below is a list of recommended future research work to further advance 

and supplement the knowledge in this field: 
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 Modelling of the submarine landslide from the initiation of failure 

progressing to the flow run-out; as this study only involved 

submarine landslide flows. 

 The initiation of failure can be triggered either by a rapid 

sedimentation process to build up the excess pore pressure to 

initiate the failure or by increasing the pore pressure from the base 

of an existing soil layer in a centrifuge. 

 Improvement on the centrifuge experimental process such as 

having an automated system (mechanical) of feeding the slurry 

material or more advanced actuators to initiate the failure. 

 Further exploration on the methods and apparatus to measure the 

change in pore pressure is essential.  

 The material used as the base of the slope shall be a denser material 

to avoid uplifting when subjected to high g level in the submerged 

condition.  

 The centrifuge experiments shall be carried out at a smaller g level, 

preferably less than 60 g to avoid the camera being out of focus 

due to the shifting of camera lens in high g levels. If higher g levels 

are required to simulate an event, the proposed centrifuge scaling 

laws in this study can be used to extrapolate the results.  

 It will be useful to investigate the impact forces due to the 

submarine landslide flows, such as the impact of the flow on 

offshore platforms and pipelines. This will benefit in the design 

process of offshore platforms and pipelines. 

 Using realistic soil samples from the field is an add-on advantage 

as this will give site specific and yet more relevant results. 

 Comparisons of results on either the centrifuge experiments or the 

numerical simulations to a large scaled experimental study or an 

actual field event would be valuable.  

 The numerical simulations through DAMPM can be used to 

investigate more complex situations when the investigated 

problems are beyond the time and financial limits of a centrifuge 

experiment. 
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These suggested recommendations for future research work can be 

investigated using the same methodology from this study. Both centrifuge 

experiments and numerical simulations should supplement each other in order 

to carry out the abovementioned recommendations for future research work. 

Undoubtedly, this will further contribute towards the knowledge in the area of 

submarine landslide flows.  
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Appendix 1 



Summary of the characteristics of selected submarine landslides 

Slide 
Max. 

Length 
(m) 

Max. 
Height 

(m) 

Volume 
(m3) 

Lmax/Hmax
Slope 
Angle

Triggering 
Mechanism 

Soil 
Type 

Reference

Bassein 215000 2200 8.00E+11 98 N/A  Sed & EQ  N/A  

Edgers 
and 

Karlsrud 
(1982) 

Storegga 160000 1700 8.00E+11 94 1 N/A    N/A  

Edgers 
and 

Karlsrud 
(1982) 

Grand Banks 750000 5000 7.60E+11 150 3.5 EQ 
Sand / 

Silt 

Edgers 
and 

Karlsrud 
(1982) 

Spanish 
Sahara 

700000 3100 6.00E+11 226 N/A   Sed 
Gravelly 
clayey 
sand 

Edgers 
and 

Karlsrud 
(1982) 

Rockall 135000 700 2.96E+11 193  N/A  Sed N/A   

Edgers 
and 

Karlsrud 
(1982) 

Walvis Bay 
S.W. Africa 

250000 2100 9.00E+10 119 N/A    N/A  N/A   

Edgers 
and 

Karlsrud 
(1982) 

Messina 220000 3200 1.00E+06 69 N/A   EQ 
Sand / 

Silt 

Edgers 
and 

Karlsrud 
(1982) 

Orleansville 100000 2600 1.00E+06 38  N/A  EQ N/A   

Edgers 
and 

Karlsrud 
(1982) 

Icy Bay / 
Malaspina 

12000 80 3.20E+10 150 N/A   EQ 
Clayey 

silt 

Edgers 
and 

Karlsrud 
(1982) 

Copper River 8000 85 2.40E+10 94  N/A  Sed 
Sand / 

Silt 

Edgers 
and 

Karlsrud 
(1982) 

Ranger 37000 800 2.00E+10 46 N/A   Sed & EQ 

Clayey 
and 

sandy 
silt 

Edgers 
and 

Karlsrud 
(1982) 

Mid. Alb. 
Bank 

5E+06 600 1.90E+10 8833  N/A  EQ & Sed 
Silty 
clay 

Edgers 
and 

Karlsrud 
(1982) 



Slide 
Max. 

Length 
(m) 

Max. 
Height 

(m) 

Volume 
(m3) 

Lmax/Hmax
Slope 
Angle

Triggering 
Mechanism 

Soil 
Type 

Reference

Wil. Canyon 60000 2800 1.10E+10 21  N/A  Sed 
Silty 
clay 

and silt 

Edgers 
and 

Karlsrud 
(1982) 

Kidnappers 11000 200 8.00E+09 55 2.5 EQ ? 
Sandy 
silt and 

clay 

Edgers 
and 

Karlsrud 
(1982) 

Kayak Trough 18000 150 5.90E+12 120  N/A  Sed & EQ 
Clayey 

silt 

Edgers 
and 

Karlsrud 
(1982) 

Paoanui 7000 200 1.00E+09 35  N/A  EQ ? 
Silt / 
Sand 

Edgers 
and 

Karlsrud 
(1982) 

Mid. Alb. 
Cont. Slope 

4E+06 300 4.00E+08 11667  N/A  Sed 
Silty 
clay 

Edgers 
and 

Karlsrud 
(1982) 

Magdalena R. 24000 1400 3.00E+07 17 2 Sed N/A   

Edgers 
and 

Karlsrud 
(1982) 

California 35000 150 2.50E+11 233 N/A   EQ ? 

Clayey 
and 

sandy 
silt 

Edgers 
and 

Karlsrud 
(1982) 

Suva, Fiji 110000 1800 1.50E+11 61 3 EQ Sand 

Edgers 
and 

Karlsrud 
(1982) 

Valdez 1E+06 168 7.50E+10 7619 6 EQ 
Gravelly 

silty 
sand 

Edgers 
and 

Karlsrud 
(1982) 

Orkdalsfjord 22500 500 2.50E+10 45 N/A   Man Made 
Sand / 

Silt 

Edgers 
and 

Karlsrud 
(1982) 

Sokkelvik 5000 100 1.00E+06 50 N/A   N/A 
Quick 
clay + 
sand? 

Edgers 
and 

Karlsrud 
(1982) 

Sandnessjoen 1E+06 180 1.00E+05 6667 N/A   Man Made N/A 

Edgers 
and 

Karlsrud 
(1982) 



Slide 
Max. 

Length 
(m) 

Max. 
Height 

(m) 

Volume 
(m3) 

Lmax/Hmax
Slope 
Angle

Triggering 
Mechanism 

Soil 
Type 

Reference

Helsinki 
Harbour 

400000 11 6.00E+03 36364  N/A  Man Made 
Sand / 

Silt 

Edgers 
and 

Karlsrud 
(1982) 

Grand Banks 110000 365 7.60E+10 301 3.5 N/A N/A 
Hampton 

et al. 
(1996) 

Hawaii 160000 2000  N/A  80 6 N/A N/A 
Hampton 

et al. 
(1996) 

Bay of Biscay 21000 250 N/A   84  N/A  N/A N/A 
Hampton 

et al. 
(1996) 

Rockall 160000 330 3.00E+11 485 2 N/A N/A 
Hampton 

et al. 
(1996) 

Bassein 37000 360 N/A   103 6 N/A N/A 
Hampton 

et al. 
(1996) 

Agulhas 106000 375  N/A  283 N/A   N/A N/A 
Hampton 

et al. 
(1996) 

Copper River 
delta 

18000 115 N/A   157 1 N/A N/A 
Hampton 

et al. 
(1996) 

Albatross 
Bank 

5300 300 N/A   18 7 N/A N/A 
Hampton 

et al. 
(1996) 

Portlock Bank 6500 200 N/A   33 4 N/A N/A 
Hampton 

et al. 
(1996) 

Kayak Trough 15000 115 N/A   130 1 N/A N/A 
Hampton 

et al. 
(1996) 

Atlantic Coast 
1 

3400 30 N/A   113 3.8 N/A N/A 
Hampton 

et al. 
(1996) 

Atlantic Coast 
2 

4800 80  N/A  60 5.7 N/A N/A 
Hampton 

et al. 
(1996) 

Atlantic Coast 
3 

2300 18 N/A   128 6.8 N/A N/A 
Hampton 

et al. 
(1996) 

Mississippi 
River Delta 

 N/A  20 4.00E+07 N/A 0.5 N/A N/A 
Hampton 

et al. 
(1996) 



Slide 
Max. 

Length 
(m) 

Max. 
Height 

(m) 

Volume 
(m3) 

Lmax/Hmax
Slope 
Angle

Triggering 
Mechanism 

Soil 
Type 

Reference

Typical 
Atlantic 
Ocean 

4000 1200 N/A   3 4 N/A N/A 
Hampton 

et al. 
(1996) 

Cape Fear 30000 700  N/A  43 4.2 N/A N/A 
Hampton 

et al. 
(1996) 

Blake 
Escarpment 

42000 3600 6.00E+11 12 8.6 N/A N/A 
Hampton 

et al. 
(1996) 

East Break 
East 

70000 1150 1.30E+10 61 1.5 N/A N/A 
Hampton 

et al. 
(1996) 

East Break 
West 

110000 1100 1.60E+11 100 1.5 N/A N/A 
Hampton 

et al. 
(1996) 

Navarin 
Canyon 

6000 175 5.00E+09 34 3 N/A N/A 
Hampton 

et al. 
(1996) 

Seward 3000 200 2.70E+06 15 25 N/A N/A 
Hampton 

et al. 
(1996) 

Alsek 2000 20  N/A  100 1.3 N/A N/A 
Hampton 

et al. 
(1996) 

Sur 70000 750 1.00E+10 93 0.5 N/A N/A 
Hampton 

et al. 
(1996) 

Santa 
Barbara 

2300 120 2.00E+07 19 4.8 N/A N/A 
Hampton 

et al. 
(1996) 

Alika-2 95000 4800 3.00E+11 20 N/A   N/A N/A 
Hampton 

et al. 
(1996) 

Nuuanu 230000 5000 5.00E+12 46 N/A   N/A N/A 
Hampton 

et al. 
(1996) 

Tristan de 
Cunha 

50000 3750 1.50E+11 13 N/A N/A N/A 
Hampton 

et al. 
(1996) 

Kitimat Slide 6000 200 2.00E+08 30 N/A N/A N/A 
Legros 
(2002) 

A1 370000 1700 2.50E+11 218 N/A N/A N/A 
Legros 
(2002) 

A2 160000 1500 2.20E+10 107 N/A N/A N/A 
Legros 
(2002) 

A3 140000 1400 8.50E+09 100 N/A N/A N/A 
Legros 
(2002) 

A4A 130000 1300 2.70E+10 100 N/A N/A N/A 
Legros 
(2002) 



 
*N/A : Not Available 

 

Slide 
Max. 

Length 
(m) 

Max. 
Height 

(m) 

Volume 
(m3) 

Lmax/Hmax
Slope 
Angle

Triggering 
Mechanism 

Soil 
Type 

Reference

A4B 400000 2000 3.20E+11 200 N/A N/A N/A 
Legros 
(2002) 

Kae Lae slide 60000 5000 4.00E+10 12 N/A Volcanic N/A 
Legros 
(2002) 

Molokai slide 130000 5200 1.10E+12 25 N/A Volcanic N/A 
Legros 
(2002) 

Oahu slide 180000 5500 1.80E+12 33 N/A Volcanic N/A 
Legros 
(2002) 

Alika slide 105000 5300 1.80E+12 20 N/A Volcanic N/A 
Legros 
(2002) 

CSG
Typewritten Text
EQ: 	Earthquake
Sed:	Sedimentation

CSG
Typewritten Text
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Appendix 2
Weight balancing in the Mini-Drum Centrifuge

Item Description 
Weight 

(kg)
Radius 

(m)

Weight x 
Radius 
(kgm)

Item Description 
Weight 

(kg)
Radius 

(m)

Weight x 
Radius 
(kgm)

1 Model 12,4 0,224 2,778 1 Water 17,97 0,227 4,078

2 Water 5,06 0,232 1,174 2 Counter weight 2,540 0,310 0,787

3 Slurry 4 0,230 0,920

Before adding water Total = 2,778 kgm Before adding water Total = 0,787 Out of balance = 1,990 kgm Counter weight = 8,960 kg

After adding water Total = 3,952 kgm After adding water Total = 4,866 Out of balance = -0,914 kgm Counter weight = -0,409 kg

After adding water & slurry Total = 4,872 kgm After adding water & Total = 4,866 Out of balance = 0,006 kgm Counter weight = 2,559 kg
slurry

Counter weightWeight from model

C
ou

nt
er

w
ei

gh
t

M
od

el

Actual counter weight used = 2.54 kg

Water displaced due to counter weight = 0.114 kg

Original water weight at counter weight side = 18.08 kg

Original model weight = 12.4 kg

*Radius is from centriod of mass to the centre of centrifuge
* ' - ' indicates counterweight is greater than the weight of model

Drawing units in mm

Counter weight

Assumed counter weight 
water

Slurry

Foam slope
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APPENDIX 3 

Calculation of bending moments against Perspex window 

 

Maximum water depth at Perspex = 0.1 m  

Water pressure at 0.1 m = 0.1 x 10 = 1 kN/m2 

 

Assume soil = 20 kN/m3 and 0.02 m above the foam 

Soil pressure = 20 x 0.02 = 0.4 kN/m2 

 

 Total pressure against the Perspex at 0.1m = 1.4 kN/m2 

 

At 100 g, total pressure against the Perspex at 0.1m = 140 kN/m2 

 
Size of Perspex 0.1 x 0.06 m 
 
 
 
 
 
 
 
 
 
 
Assume uniform distributed load on the 0.1 m length of Perspex =140 x 0.06 = 8.4 kN/m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.1 m 

0.06 m 

kN 

kN 
kNm 

8.4 kN/m 

m 



 
Thickness of Perspex 10mm @ 0.01 m 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y
I

M
     000005.0

12

1.006.0

12

33





bh

I  m4 

 
 

 5.10005.0
000005.0

0105.0
  kN/m2 

 
 
 
The tensile strength of Perspex = 49 MPa  
 
The compressive strength of Perspex = 73 MPa  
 
 
T & C  = 10.5 kPa  <<<<< 49 @ 73 MPa 
 
 The applied pressure is safe for the Perspex. 

 
 
 
 
 
 
 
 

0.01 m M = 0.0105 kNm 

T 

C 

0.01 m

Perspex 

Water & soil pressure 



 
Mechanical properties of Perspex - Polymethyl methacrylate (PMMA) 
 
 

Mechanical Properties Conditions 
State 1 State 2 ASTM 

Elastic Modulus (MPa) 
  2553 - 3174  compressive   D638 

  2243 - 3243  tensile   D638 

Flexural Modulus (MPa)   2243 - 3174   23 ºC   D790 

Tensile Strength (MPa) 
  49 - 73 at break   D638 

  54 - 74 at yield   D638 

Compressive Strength (MPa) 
at yield or break   73 - 125     D695 

Flexural Strength (MPa) 
at yield or break   73 - 132     D790 

Elongation at break (%)   2 - 6     D638 

Hardness   68 - 105  Rockwell M   D638 

Izod Impact (J/cm of notch) 
1/8" thick specimen unless noted   0.1 - 0.2     D256A 

Ref: www.efunda.com 
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Revision : 0
Date: 20 Nov 2006

No. Checklist Items Remarks 

1
Prior to adjusting the mini-drum to its horizontal or 
vertical axis; please check the safety bolts !

2
Ensure the clutch is on  if the turntable and face 
plate is to spin together.

3
While adjusting the mini-drum, ensure wirings and 
cables  around the mini-drum are not obstructing 
the movement.

4
Cover the top of the mini-drum with the safety 
cover .

5 Switch on the main supply.
6 Ensure the compressor  in the laboratory is on.

7
Adjust the standpipe up or down depending on the 
type of test.

8
At the mini-drum power supply, turn on the control 
(Control ON ).

9
Turn on the turntable (TURNTABLE ON ) and face 

Checklist for operating the mini-drum centrifuge

9
( )

plate (FACE PLATE ON ).

10
Press F4  on key pad (ON ), check if there is a OK 
sign a the power supply.

11 To start spining, press F3 motion key.
12 Press F1  for face plate. 
13 Set the speed by entering the rpm .
14 Press Enter .

15
Double check  on the entered rpm, press YES  if it 
is correct.

16 Increase or decrease speed gradually.

17
After test, check the safety bolts again before 
adjusting  the mini-drum.

18
Switch off  the TURNTABLE, FACE PLATE  
control, and the main supply.

Notes:
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