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Abstract

This study concerns the decentralised prediction and reconstruction problems in a
network.

First of all, we propose a decentralised prediction algorithm in the framework of net-
work consensus problem. It allows any individual to compute the consensus value
of the whole network in finite time using only the minimal number of successive
values of its own history. We further prove that the minimal number of steps can be
characterised using other algebraic and graph theoretical notions: minimal external
equitable partition (mEEP) that can be directly computed from the Laplacian ma-
trix of the graph and from the underlying network structure. Later, we consider a
number of possible theoretical extensions of the proposed algorithm to issues arising
from practical applications, e.g., time-delays, noise, external inputs, nonlinearities
in the network, and analyse how the proposed algorithm should be changed to in-
corporate such constraints.

For the decentralised reconstruction problem, we firstly define a new presenta-
tion: dynamical structure functions encoding structural information and explore
the properties of such a representation for the purpose of solving the reconstruction
problem. We have studied a number of theoretical problems: identification, realisa-
tion, reduction, etc. for dynamical structure functions and showed that how these
theoretical can be used in solving decentralised network reconstruction problems.
We later illustrate the results on a number of in-silico examples.

We conclude the thesis with some ideas and future perspectives to continue based

on the research of decentralised prediction and reconstruction problems.



Chapter 1

Introduction

“To see a world in a grain of sand,

And a heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.”

This is the first four lines of a beautiful poem, “Auguries of Innocence” by William

Blake. From the angle of a scientist, the first two lines have the illusion that every form

of life is in a harmonious and designed order in nature, and even the smallest grain codes

the whole of the universe. This stimulates that, even in studying the simplest object we

have the chance to decode the information of the whole universe. The last two lines

indicate that every hour in our life contains enough information about the past, present,

and future. Sometimes, we can predict the future from observations of the past.

Inspired by this brilliant four lines, the first part of my Ph.D. research is to illustrate

the idea how to predict the future using past observations (Chapter 2) and the second

part is to illustrate the idea how to use local information to infer global properties (Chap-

ter 3).

1.1 Networks

Networks are everywhere. We watch TV through the television network; we interact

with each other in a closely connected social network; our body itself is a highly compli-

cated biological network.

What is a network? It is in general hard to give a precise definition. Mathematically,

a network can be thought as a collection of nodes that represent some physical quantities

and edges that interconnect different nodes. As a simple example, a social network is

1



CHAPTER 1. INTRODUCTION

FIGURE 1.1: Underlying network structure of the considered graph consisted of 14 nodes.

a social structure made up of individuals called nodes, which are tied by one or more

specific types of interdependency, such as friendship. Such ties can be also viewed as

edges in the graphical representation.

We use graph-theoretical notations to model mathematical networks. Let G = (V ,E ,W),

where V = {ν1, . . . ,νn} is the set of nodes, E ⊂ V ×V is the set of edges, and W = {W[i, j]}i, j=1,...,n

is the corresponding n by n adjacency matrix, with W[i, j] = 1 when there is a link from

j to i, and W[i, j] = 0 when there is no link from j to i. We can define the correspond-

ing Laplacian matrix, L ∈Rn×n as L[i, i]=∑n
l 6=i W[i, l], ∀i = 1, . . . ,n and L[i, j]=−W[i, j],

∀i 6= j.

For example, from the network structure in Fig. 1.1, we can see that the correspond-
ing adjacency matrix (assuming unweighted) is

2



1.2. CONTROL THEORY

W=



0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0 0 1 1 0
1 0 1 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0 0 1
0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0 1 0 0 0



,

We can then obtain the following Laplacian matrix

L =



3 0 −1 0 0 0 −1 0 0 −1 0 0 0 0
0 3 0 0 0 0 0 0 −1 0 0 −1 0 −1
−1 0 4 0 −1 0 0 0 0 0 −1 0 0 −1
0 0 0 4 0 0 0 −1 −1 0 0 −1 −1 0
−1 0 −1 0 −1 0 0 0 0 −1 −1 0 −1 0
0 0 0 −1 0 2 0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 4 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 4 −1 0 −1 0 −1 0
0 −1 0 −1 0 0 0 −1 4 0 0 −1 0 0
−1 0 0 0 −1 0 0 0 0 3 0 0 −1 0
0 0 0 0 −1 0 0 −1 −1 0 4 0 0 −1
0 −1 0 −1 0 −1 0 0 0 0 0 3 0 0
0 0 0 −1 −1 −1 0 −1 0 −1 0 0 5 0
0 −1 −1 0 0 0 −1 0 0 0 −1 0 0 4



.

From the above example, we can see that there is a strong link between the graph-

theoretical notation of a network and an algebraic notation, i.e. the adjacency and Lapla-

cian matrices. This link opens the gate for mathematical analysis of networks.

1.2 Control theory

Control theory mainly deals with the behaviour of dynamic systems. Block diagrams as

in Fig 1.2 are typically used to describe the control problem as a feedback system. It

3



CHAPTER 1. INTRODUCTION

contains three elements: a plant, a feedback element and a control element.

FIGURE 1.2: Block diagram to illustrate the framework of control theory.

Two of the most important problems in control theory are the following.

Firstly, identification1, i.e. to understand and obtain a mathematical characteri-

sation of the plant. System identification theory [51] uses statistical methods to build

mathematical models of dynamic systems from measured data. This identification pro-

cess is normally the first and the most important step, since it provides a mathematical

model to characterise the behaviour of the plant in question for the later use, control.

Secondly, control2, i.e. to set up the control element in Fig. 1.2 to manipulate the

input(s) of a system and obtain the desired effect on the output(s) of the system. This

control process aims to have the feedback system achieve specific goals or objectives, e.g.,

stability.

A key concept and mechanism in control is feedback, i.e. a causal path that leads

from the initial generation of the feedback signal to the subsequent modification of the

input signal. There are several advantages using feedback; among which the most im-

portant one is to reduce the effect from unknown disturbance to the output.

1.3 Networked identification/control problems

Given the network structure, one may consider the node in network as the controller/plant

in Fig. 1.2 and such feedback links to be the interconnections of different nodes. We then

ask how we identify and control over such network. In this thesis, most efforts have

been concentrated on the identification part in the network setting, but we shall point

interested readers to [76, 65] for results on networked control systems.

1sometimes called learning or prediction in different communities
2or equivalently, optimisation
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In networked identification/control systems, there are mainly two types of different

algorithms. One is the centralised algorithm; by which we try to monitor and control

a networked system with all the information in the network. The other is the decen-

tralised algorithm, by which we try to use local information to infer/achieve global prop-

erties. Local information is defined as of the information or measurement of a sub-set

of nodes; global as the information of the whole set of nodes. Decentralisation is helpful

in many ways, for instance, it helps control systems operate over a larger geographical

area, it simplifies the complexity in controllers (algorithms) and leads to more efficient

computations.

In real world, events take place via the interaction of individuals, organisations, and

countries each pursuing their own interest. Control and optimisation can be viewed as

special cases of the algorithm that we mentioned, which reflects the fundamental goal,

to improve. However, most of control and optimisation can only be conducted locally due

to the available information.

Unfortunately, the decentralised control problem is hard. The famous Witsenhausen

problem [90] is a very good example to clearly state the difficulty in a decentralised deci-

sion and control problem [39]. In general, decentralised control problems are challenging

due to

- Lack of global information. In most decentralised identification/control problems

local information may not be able to infer/achieve some global properties. And the

problem complicates if communication channels have limited capacity and signals

are noisy, sampled and quantised. One should learn from “the blind men and ele-

phant” fable (Fig. 1.3) and be careful about what global information can exactly be

inferred from the local information and further how to carefully design algorithms

to obtain some inferable information.

- Lack of global control strategy. Control law can only be implemented locally, the

global stability and performance measure might not be satisfied and optimised

based only on local information. There are a number of interesting attempts to

design local controller to have global stability in the literature: a decentralised

stability criteria for heterogeneous networks provided that the network structures

are bipartite [48].

In this thesis we shall focus on decentralised algorithms for network prediction and

reconstruction which can be viewed as sub-tasks in the framework of decentralised iden-

tification problem in the network setting. We shall proposed two types of decentralised

algorithms that use local information in the network to infer some global properties.

5



CHAPTER 1. INTRODUCTION

FIGURE 1.3: The blind men and elephant: A group of blind men touch an elephant to learn what
it is like. They conclude that the elephant is like a wall, snake, spear, tree, fan or
rope, depending upon where they touch. They have a heated debate and the conflict
is never resolved.

In chapter 2 we assume that only one node in the considered network is measured,

and we try to compute the consensus value of the network under the assumption that

this network reaches consensus. However, this does not tell us how the network is con-

nected. In Chapter 3 we drop the consensus assumption and look at a more basic ques-

tion for general networks. Here, we measure more than one node (but not all) and ask

the question how do measured states relate (causally) to each other.

1.4 Contributions

Here are the main technical contributions of this thesis.

1.4.1 Chapter 2

♦ we formulate and propose the network prediction algorithm in the network con-

sensus problem.

♦ we present a fully decentralised algorithm that allows any individual to compute

the consensus value of the whole network in finite time using only the minimal

number of successive values of its own history.

♦ we prove that the minimal number of steps can be characterised using other alge-

6
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braic and graph theoretical notions: minimal external equitable partition (mEEP)

that can be directly computed from the Laplacian matrix of the graph and from the

underlying network structure.

♦ we consider a number of possible theoretical extensions of the proposed algorithm

to issues arising from practical applications, e.g., time-delays, noise, external in-

puts, nonlinearities in the network, and analyse how the previous algorithm should

be changed to incorporate such constraints.

1.4.2 Chapter 3

♦ for the purpose of encoding structural information into the representation of a lin-

ear time-invariant (LTI) system we define a new presentation: dynamical structure

functions. We explore the properties of such representations.

♦ similar to a well-studied representation of LTI system, transfer function, we have

studied a number of theoretical problems: identification, realisation, reduction,

etc. for the dynamical structure functions.

♦ we apply the results to the biological network reconstruction problem that has been

intensively studied in the literature and compare our reconstruction algorithm

performance with the existing methods.

1.5 Notations

The thesis is self-contained and only requires some very basic preliminaries in graph

theory and system theory; good references might be [33, 107]. The notation in this thesis

is also fairly standard. For a matrix A ∈ RM×N , A[i, j] ∈ R denotes the element in the

ith row and jth column, A[i, :] ∈ R1×N denotes its ith row, A[:, j] ∈ RM×1 denotes its jth

column, and A[i1 : i2, j1 : j2] denotes the submatrix of A defined by the rows i1 to i2 and

the columns j1 to j2. For a column vector α ∈ RN×1, α[i] denotes its ith element. We

denote by eT
r = [0, . . . ,0,1rth ,0, . . . ,0] ∈R1×N . Furthermore, IN denotes the identity matrix

of size N.

7
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Chapter 2

Decentralised network prediction

In this chapter, we shall propose a decentralised network prediction algorithm in the

network consensus problem framework to demonstrate the second two-line of Blake’s

poem “Hold infinity in the palm of your hand, And eternity in an hour.”

2.1 Introduction

Generally speaking, the network consensus problem, which originates from a social deci-

sion making problem, is as follows: consider a group of individuals who act together as a

team and suppose that each individual has its own subjective opinion or understanding

of the unknown value of some parameter. A model is used to describe how the group

might reach agreement on a common subjective opinion by pooling their individual opin-

ions.

Well-known results give conditions to ensure that the opinion of each individual

reaches the consensus value asymptotically [43, 62, 72]. However, it is unsatisfactory

in practice since it requires an arbitrarily long time for individuals in this group to know

the consensus value. A lot of efforts have been made to study and increase the con-

vergence speed. For example, Olshevsky and Tsitsiklis [63, 64] stated the fundamental

limitation on the convergence speed of such consensus-type dynamics. In Zhang et al

[106], model predictive control is used to speed up the consensus process, while a new

model for finite-time consensus is designed by Cortes [17] and Wang and Xiao [88]. Sun-

daram and Hadjicostis [82] proposed an algorithm that computed the asymptotic final

consensus value of the network in finite-time.

Built on these state-of-the-art results, this chapter proposes a decentralised consen-

sus computation algorithm that computes the consensus value of a network in finite

9
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and minimal time using only the information observed by one individual in the group.

Moreover, the information used for that purpose is solely based on the accumulation

of successive values of the individual under consideration, and consequently, the corre-

sponding algorithm is truly decentralised. Thus, the predicted future value of a network

is computed by merely using observations at the node level, which coincides with Blake’s

vision in the second two-line.

Using networks to represent individuals and their connections, the consensus prob-

lem has broad implications beyond the analysis and design of group collective behaviour.

Various applications can be cast in this framework, including swarming and flocking [83],

distributed computing [5], agreement in social networks [60, 89] or synchronisation of

coupled oscillators [68, 3, 81]. Regarding applications of the proposed algorithm, the

consensus algorithm can be embedded as a sub-algorithm in a number of distributed

algorithms such as distributed Kalman filtering, distributed computation, etc.. The con-

sensus algorithm proposed in this Chapter is much faster than any other algorithm in

the literature since it computes the final consensus value in a minimal number of steps.

The organisation of this chapter is as follows: After introducing the problem formu-

lation of the consensus problem, we introduce an algorithm that allows any individual

in a consensus-guaranteed network to compute the consensus value using a minimal

number of steps. This algorithm relies on the analysis of the rank of a Hankel matrix

constructed from local observations at any chosen node. Furthermore, we show that the

minimal number of steps is linked to a global property of the network: the degree of a

specific matrix polynomial. This provides us with an algebraic characterisation of the lo-

cal convergence to consensus in terms of properties of the Laplacian matrix of the graph.

Later, we show that the minimal number of steps required to compute the consensus

value from local observations of any chosen node can also be characterised in terms of

a combinatorial graph theoretical property: the minimal external equitable partition of

the graph with respect to that node. We also consider some extensions of proposed al-

gorithm to incorporate observations with uncertainties. Finally, we discuss some other

issues raised by imperfect observations and briefly introduce some potential applications

of the proposed algorithm.

10
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2.2 Consensus dynamics: formulation and previous results

2.2.1 Formulation of the problem

Consider a directed unweighted graph denoted by G = (V ,E ,W), where V = {ν1, . . . ,νn}

is the set of nodes, E ⊂ V × V is the set of edges, and W = {W[i, j]}i, j=1,...,n is the corre-

sponding n by n adjacency matrix, with W[i, j] = 1 when there is a link from j to i, and

W[i, j]= 0 when there is no link from j to i.

Let x[i] ∈R denote the state of node i, which might represent the subjective opinion of

individual i. The classical consensus problem on a network of continuous-time integrator

individuals is defined by the following dynamics [62]:

ẋ(t)=−Lx(t),

where L ∈ Rn×n is the Laplacian matrix induced by the topology G . L is defined as

L[i, i]=∑n
l 6=i W[i, l], ∀i = 1, . . . ,n and L[i, j]=−W[i, j], ∀i 6= j.

Here we consider the associated discrete-time consensus dynamics on a network:

xk+1 = (In −εL) xk, A xk

yk = eT
r xk = xk[r], (2.1)

where xk ∈ Rn and ε is the sampling time. Without loss of generality, we concentrate

on the case where the measurable output yk ∈ R corresponds to the local state of an

arbitrarily chosen individual labelled r.

2.2.2 Global asymptotic convergence to distributed consensus (see [43,
62]):

Let dmax =maxi L[i, i] denote the maximal node in-degree of the graph G . If the network

has a rooted directed spanning tree (or is connected in the case of an undirected graph)

over time [43, 72], and the sampling time ε is such that 0< ε< 1/dmax
1, then the discrete-

time version of the classical consensus protocol given in (2.1) ensures global asymptotic

convergence to consensus in the sense that

lim
k→∞

xk =
(
cT x0

)
1n×1

1the choice of sampling time for each node needs global knowledge about dmax

11
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where 1n×1 is a column vector with all components equal to 1, and cT is a constant row

vector. In other words, the values of all nodes converge asymptotically to the same linear

combination of the initial node values x0.

Algebraic characterisation of distributed asymptotic consensus [91]:

When cT1= 1, the iteration given by (2.1) achieves distributed consensus if and only if:

A.1 A has a simple eigenvalue at 1, and all other eigenvalues have a magnitude strictly

less than 1.

A.2 The left and right eigenvectors of A corresponding to the eigenvalue 1 are cT and

1, respectively.

2.2.3 Finite-time computation of the final consensus value [82]

Recent work by Sundaram and Hadjicostis [82] has shown that it is possible to obtain

the final value of the consensus dynamics in a finite number of steps. Their result hinges

on the use of the minimal polynomial associated with the consensus dynamics (2.1) in

conjunction with the final value theorem.

Definition 2.2.1 (Minimal polynomial of a matrix). The minimal polynomial of matrix

A ∈ Rn×n is the monic polynomial q(t), tD+1 +∑D
i=0αi ti with minimal degree D +1 that

satisfies q(A)= 0.

Given the explicit solution of the linear system in (2.1) with initial state x0, it follows

from the definition of the minimal polynomial that the dynamics in (2.1) satisfy the

linear regression equation:

xk+D+1 +αD xk+D + . . .+α1xk+1 +α0xk = 0, ∀k ∈N. (2.2)

Similarly, the regression equation for yk = xk[r], the measurable output at node r,

is determined by the minimal polynomial of the corresponding matrix observability pair

[A, eT
r ].

Definition 2.2.2 (Minimal polynomial of a matrix pair). The minimal polynomial as-

sociated with the matrix pair [A, eT
r ] denoted by qr(t) , tDr+1 +∑Dr

i=0α
(r)
i ti is the monic

polynomial of minimal degree Dr +1≤ D+1 that satisfies eT
r qr(A)= 0.

Remark 2.2.1. The minimal polynomial of a matrix and the minimal polynomial of a

matrix pair are unique due to the monic property.

12
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Again, it is straightforward to show that:

yk+Dr+1 +α(r)
Dr

yk+Dr + . . .+α(r)
1 yk+1 +α(r)

0 yk = 0, ∀k ∈N. (2.3)

Therefore each node r will be associated with a particular length of the regression (Dr+1)

which is upper bounded by the degree of the minimal polynomial of the dynamical matrix

A.

Consider now the Z-transform of yk
2: (α(r)

Dr+1 = 1)

Y (z)=
∑Dr+1

i=1 α(r)
i

∑i−1
`=0 y`zi−`

qr(z)
,

H(z)
qr(z)

. (2.4)

Parameters α(r)
i s differ with the choice of rs, we shall drop the superscript (r) for nota-

tional simplicity.

On the assumptions specified in Section 2.2.2, the minimal polynomial qr(t) does

not possess any unstable root apart from one at 1. We can then define the following

polynomial:

pr(z),
qr(z)
z−1

,
Dr∑
i=0

βi zi. (2.5)

The application of the final value theorem [32] then gives the consensus value

φ= lim
z→1

(z−1)Y (z)= H(1)
pr(1)

=
yT

Dr
β

1Tβ
(2.6)

where yT
Dr

=
[

y0 y1 . . . yDr

]
and β(Dr+1)×1 is the vector of coefficients of the polyno-

mial pr(z) defined in eq. (2.5).

Based on these results, an algorithm to obtain the consensus value was proposed

in [82]. The proposed algorithm was distributed but not entirely local, in the sense

that a local calculation is repeated over n independent iterations (where n is the total

number of nodes of the network) and at each iteration it requires each node to store its

own values for n+1 steps. Hence a total of n(n+1) successive values of x[r] is required

for the calculation of φ.

2This follows from the time-shift property of the Z-transform: Z (xk+n) = zn X (z)−∑n−1
l=0 zn−l xl where

X (z)=Z (xk).
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2.2.4 Minimal-time, decentralised computation of the final consensus
value

The main purpose of this chapter is to characterise the computation of the final con-

sensus value φ using only the output observations yk = xk[r] of the node r in minimal

time. We formalise and improve here our previous results [99] and show that, for a

general arbitrary initial condition, except for a set of initial conditions with Lebesgue

measure zero [7], the consensus value can be obtained from local observations in a mini-

mal number of steps that does not depend explicitly on the total size of the graph. In our

framework the minimal number of steps is computed in a truly decentralised manner by

checking a rank condition of a Hankel matrix constructed exclusively from local output

observations. We also provide a graph theoretical characterisation of this local property

in terms of the minimal external equitable partition of the graph. This characterisation

provides understanding into which properties of the graph contribute to the disparity

in the ability of the different nodes to compute the global consensus value from local

information.

2.3 Minimal time consensus and the Jordan block decom-
position of the consensus dynamics

Given the linear system in (2.1) and an initial state x0, it follows from the above that

there always exist scalars d, d(r, x0) ∈N and a0, ...,ad ∈R such that the following linear

regression equation is satisfied ∀k ∈N

xk+d+1[r]+ad xk+d[r]+ . . .+a1xk+1[r]+a0xk[r]= 0. (2.7)

From the definitions above it is clear that Dr +1 is the minimal length of recursion:

Dr +1=min
d∈N

max
x0∈Rn

{d(r, x0)+1: eq. (2.7) holds ∀k} .

Remark 2.3.1. Among the many recursions of length d that are not necessarily minimal,

(Dr+1) appears as a min-max over the space of (d, x0). When d+1= Dr+1, the coefficients

ai in (2.7) correspond to α(r)
i , the coefficients of the minimal polynomial of the matrix pair

[A, eT
r ] in (2.3).

In this section,we give an algebraic characterisation of the minimal number of steps

Dr +1 based on the projection of the Jordan block decomposition of Ak on eT
r . Our aim
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is to obtain the coefficients α(r)
i in (2.3) from data so that we can compute future outputs

recursively. Consider the standard Jordan decomposition:

A = SJS−1 where (2.8)

S =
[
s1 s2 . . . sn

]
(2.9)

J = diag {J1(λ1), J2(λ2), . . . , Jl(λl)} (2.10)

where

Ji(λi)=



λi 1

λi 1
. . . . . .

λi 1

λi


ni×ni

, (2.11)

and si, the columns of the non singular matrix S, are the generalised eigenvectors of

A [107]. The matrix A has l eigenvalues λi
3, each of them associated with a Jordan

block of size ni, such that
∑l

i=1 ni = n. Without loss of generality, we assume that the

blocks are ordered in decreasing size: n1 ≥ n2 ≥ . . .≥ nl .

Using eq. (2.8), the linear dynamics (2.1) can be rewritten as follows:

xk[r]= eT
r Akx0 =

(
eT

r S
)

Jk (
S−1x0

)
,σT Jkχ, (2.12)

where the vectors

σT =
[
σT

1 σT
2 . . . σT

l

]
1×n

(2.13)

χT =
[
χT

1 χT
2 . . . χT

l

]
1×n

(2.14)

are partitioned according to the Jordan blocks in (2.8), e.g., σT
1 =

[
σ11 . . .σ1ni

]
and χT

1 =[
χ11 . . .χ1ni

]
. Here,

Jk = diag
{

Jk
1 (λ1), Jk

2 (λ2), . . . , Jk
l (λl)

}
has the well-known structure [42]:

Jk
i (λi)=

k−1∑
m=0

(
k
m

)
λk−m

i Jm
i (0), (2.15)

3For i 6= j, λi might equal to λ j
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where Jm
i (0) is the m-th power of a Jordan block, as defined in (2.11).

The output dynamics (2.12) then becomes:

xk[r]=
l∑

i=1

k−1∑
m=0

(
k
m

)
λk−m

i

[
σT

i Jm
i (0)χi

]
. (2.16)

Note that because of its Jordan block structure the matrix Jm
i (0) induces a strict m-shift

on the vector χi for m ≤ ni. Therefore if k ≥maxi{ni}, we have:

xk[r]=
l∑

i=1

ni−1∑
m=0

(
k
m

)
λk−m

i

[
ni−m∑

j=1
σi jχi j+m

]
,

l∑
i=1

ni−1∑
m=0

(
k
m

)
λk−m

i g im (2.17)

However, some of the g im might be zero (we might even have situations in which all

the coefficients associated with a particular eigenvalue are zero) so that the dynamics of

node r can be written as:

xk[r]=
lr∑

i=1

nr
i−1∑

m=0

(
k
m

)
λk−m

i g im (2.18)

where nr
i ≤ ni and lr ≤ l. Here, {λ1, . . . ,λlr } is an ordered subset of distinct eigenvalues

from the original Jordan block decomposition. In consequence, the degree of the charac-

teristic polynomial that underlies the length of the recursion for node r is:

lr∑
i=1

nr
i = Dr +1.

Eq. (2.18) can be rewritten as a dot product:

xk[r]= vr(k)T gr ,
[
vT

1 (k) vT
2 (k) . . . vT

lr
(k)

]


g1

g2
...

glr


where

vT
i (k),

[(k
0
)
λk

i
(k
1
)
λk−1

i . . .
( k
nr

i−1
)
λ

k−nr
i+1

i

]
1×nr

i

gT
i ,

[
g i0 . . . g i(nr

i−1)

]
.

Based upon the decomposition of confluent Vandermonde matrices introduced in [10],
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it is easy to see that

vT
i (k)= ēT

i J k
i (λi)

where Ji(λi) is a Jordan block of size nr
i as defined in (2.11) and ēT

i =
[
1 0 . . . 0

]
1×nr

i
is the unit vector of the same length. The dynamics (2.12) can thus be rewritten in terms

of a Jordan decomposition of reduced dimensionality as follows:

xk[r]= Er
T Jk

r gr, ∀ k, (2.19)

where

Er
T ,

[
ēT

1 . . . ēT
lr

]
1×(Dr+1)

and

Jr , diag
{
J1(λ1),J2(λ2), . . . ,Jlr (λlr )

}
(2.20)

are partitioned according to the lr blocks.

From the above analysis we have the following lemma.

Lemma 2.3.1. Consider the discrete-time LTI system (2.1). The minimal polynomial

associated with x[r], as given in Definition 2.2.2, is the characteristic polynomial of the

matrix Jr in eq. (2.19) which has order Dr +1=∑lr
i=1 nr

i . The final consensus value φ can

be computed from eq. (2.6) based on the coefficients of the minimal polynomial of the pair

[A, eT
r ] and the successive values of x[r].

Proof. The Jordan matrix Jr in eq. (2.19) has the property that each of its Jordan block

has distinct eigenvalues. Hence the minimal polynomial of [A, eT
r ] is the same as the

characteristic polynomial of [Jr, eT
r ] (see [42]): eT

r qr(A) = eT
r qr(Jr). Therefore the min-

imal polynomial possesses the following explicit form: det(Jr − tI) = ∏lr
i=1(t − λi)nr

i =
tDr+1 +αDr tDr + . . .+α1t+α0, and has degree Dr +1. This latter relationship also shows

that Dr +1=∑lr
i=1 nr

i .

Remark 2.3.2. Lemma 2.3.1 states that instead of an n-dimensional Jordan block form

J of xk[r], as in eq. (2.12), the general expression of xk[r] can be written in terms of a

smaller Dr +1-dimensional Jordan matrix Jr, as in eq. (2.19).

Remark 2.3.3. The minimal integer value Dr+1 necessary for the recursion (2.7) to hold

for almost any initial condition x0 is given by the degree of the minimal polynomial of the

observability pair [A, eT
r ] (see [99]). In other words, eq. (2.7) holds for a randomly chosen

initial state x0, except for a set of initial conditions of Lebesgue measure zero [7].
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2.4 Decentralised minimal-time consensus computation al-
gorithm

In the decentralised problem we assume that node r does not have access to any external

information such as the total number of individuals n in the network, the local commu-

nication links around node r or the state values or number of its neighbours. In [99], we

showed that for the general discrete-time LTI system (2.1), 2Dr +3 successive discrete-

time steps are needed by individual r to compute the final value in a fully decentralised

manner (Algorithm 1). This is a general result for all linear systems, if the communica-

tion network is well-designed for consensus (i.e. Assumptions A.1 and A.2 are satisfied

and asymptotic convergence to consensus is guaranteed), we can here propose an algo-

rithm (Algorithm 2) that computes the final value using 2Dr+2 successive discrete-time

steps, i.e. one step fewer than Algorithm 1 [99].

Problem 2.4.1 (Decentralised problem). Consider the discrete-time LTI dynamics in

eq. (2.1) where an arbitrarily chosen state x[r] is observed and assume that the conditions

for consensus (Assumptions A.1 and A.2) are satisfied. The decentralised problem is to

compute the asymptotic value of this state φ= limk→∞ xk[r] using only its own previously

observed values yk = xk[r].

Consider the vector of successive discrete-time values at node r, X0,1,...,2k[r]= {x0[r], x1[r], . . . , x2k[r]},

and its associated Hankel matrix:

Γ{X0,1,...,2k[r]},


x0[r] x1[r] . . . xk[r]

x1[r] x2[r] . . . xk+1[r]
...

...
. . .

...

xk[r] xk+1[r] . . . x2k[r]

 k ∈Z. (2.21)

Based on the linear iteration in eq. (2.3), we can then propose the following algorithm

using 2Dr +3 steps to compute the final value of the rth node. Due to the assumption

that the network will reach consensus, then the final value any node should be the same.

As a result, the computed final value is the consensus value.

Notice that, the assumption of consensus also implies the Z-transform of regression

in eq.(2.3), i.e. eq. (2.5) has a root at 1. Can one use this prior information to reduce the

number of steps in computing the final consensus value? Algorithm 2 then allows us to

compute the final consensus value in 2Dr +2 steps.
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Algorithm 1 Decentralised final value computation

Data: Successive observations of xi[r], i = 0,1, . . ..
Result: Final consensus value: φ.

Step 2.4.1. Increase the dimension k of the square Hankel matrix Γ{X0,1,...,2k[r]} until it
loses rank and store the first defective Hankel matrix.

Step 2.4.2. The kernel α = [
α0 . . . αDr 1

]T of the first defective Hankel matrix gives
the coefficients of eq. (2.3).

Step 2.4.3. Solve for vector β ∈RDr+1 from equation [βT 0]+ [0 βT ]=αT .

Step 2.4.4. Compute the final consensus value φ using eq. (2.6).

We also define the vector of differences between successive values of x[r]:

X̄0,1,...,2k[r]= {x1[r]− x0[r], . . . , x2k+1[r]− x2k[r]}.

Algorithm 2 Decentralised minimal-time consensus value computation

Data: Successive observations of xi[r], i = 0,1, . . ..
Result: Final consensus value: φ.

Step 2.4.1. Compute the vector of differences X̄0,1,...,2k and increase the dimension k of
the square Hankel matrix Γ{X̄0,1,...,2k[r]} until it loses rank and store the first defective
Hankel matrix.

Step 2.4.2. The kernel β= [
β0 . . . βDr−1 1

]T of the first defective Hankel matrix gives
the coefficients of eq. (2.6).

Step 2.4.3. Compute the final consensus value φ using eq. (2.6).

To understand Algorithm 2, consider a Vandermonde factorisation [10] of the Hankel

matrix (2.21):

Γ{X0,1,...,2k[r]}=V (0,k)TrV T (0,k), (2.22)
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in which we have defined the confluent Vandermonde matrix

V (0,k)(k+1)×(Dr+1) =


ET

r

ET
r Jr
...

ET
r Jk

r

 , (2.23)

in terms of the elements defined in eq. (2.20). As shown in [10], the (Dr +1)× (Dr +1)

block diagonal matrix

Tr = diag{Tr,1, . . . ,Tr,lr }, Tr,i ∈Rnr
i×nr

i ,

has the following symmetric upper anti-diagonal form:

Tr,i =



∗ ∗ ∗ ∗ ti

∗ ∗ ∗ ti

∗ ∗ . . .

∗ ti 0

ti

 ,

where ti and ∗ are determined from the values of xk[r].

Without loss of generality, consider λ1 = 1 so that Tr,1 ∈R. We then have

Γ{X̄0,1,...,2k[r]}

=Γ{X1,2,...,2k+1[r]}−Γ{X0,1,...,2k[r]}

=V Trdiag{λ1, . . . ,λlr }V
T −V TrV T

=V Trdiag{0,λ2 −1, . . . ,λlr −1}V T

=Vdiag{0,(λ2 −1)Tr,2, . . . , (λlr −1)Tr,lr }V
T

=V ′diag{(λ2 −1)Tr,2, . . . , (λlr −1)Tr,lr }V
′T ,

where V ′ = V [2 : k + 1,2 : Dr + 1]. From the last equation, it is easy to see that for

Γ{X̄0,1,...,2k[r]} to be defective, one must have k ≥ Dr +1.

Theorem 2.4.1. Consider the system in (2.1) and assume that the conditions for con-

sensus (Assumptions A.1 and A.2) are satisfied. Then the minimal number of succes-

sive discrete-time values, starting from step i, for the arbitrarily chosen state x[r], is

2(Dr +1)−δr −min{i,δr}, where δr is the number of zero roots in qr(t)= 0.
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Proof. Combining the above derivations and performing a proof similar to the one pre-

sented in [Corollary 1, [99]] (by taking zk, xk+1[r]− xk[r] as yk in that Corollary) yields

the result.

We hereafter provide a counter-example showing that the computation of these coef-

ficients is not possible if one only uses 2Dr +1 consecutive values of xk[r].

We consider a general question, given a linear regression of yi with length Dr +2

yk+Dr+1 +aDr yk+Dr + . . .+a0 yk = 0. (2.24)

Then, we shall show that to fully reconstruct this regression using successive outputs of

yi, i = 1, . . ., it requires at least 2Dr +3 steps.

We show this by contradiction: we shall show that we can not reconstruct eq. (2.24)

using 2Dr +2 outputs. Assume there exists a matrix



b0 c0

b1 c1
...

...

bDr−1 cDr−1

bDr cDr


such that

Γ{y0, y1, . . . , y2Dr }



b0 c0

b1 c1
...

...

bDr−1 cDr−1

bDr cDr


=



yDr+1 0

yDr+2 0
...

...

y2Dr+1 0

0 1


(2.25)

Since Γ{y0, y1, . . . , y2Dr } has full rank and thus invertible, eq. (2.25) can always be solved

for bi and ci, ∀i = 0, . . . ,Dr. Based on eq. (2.25), we can define two polynomials:

b(z)= zDr+1 −bDr zDr − . . .−b0

c(z)=−cDr zDr − . . .− c0.

The minimal polynomial of a(z),= zDr+1+aDr zDr + . . .+a0 = b(z)+ y2Dr+2c(z) [10]. If we

only use the first 2Dr +2 successive values of y, i.e. y0, y1, . . . , y2Dr+1, then we can choose

different y2Dr+2 to obtain different a(z), contradiction!

At present, we only focus on the ideal model in eq. (2.1). For simplicity of exposition,

we further make the following assumption in the rest of this chapter:4

4When A has some eigenvalues at 0, the expression of the minimal number of steps for node r to compute
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FIGURE 2.1: Underlying topology for Example 2.4.1 with sampling time ε= 1/6.

A.3 The matrix A in eq. (2.1) does not possess any eigenvalue at 0.

Under Assumption A.3, Theorem 2.4.1 establishes that the minimal number of steps for

node r to compute the final consensus value is 2Dr +2.

Example 2.4.1. Consider the network topology in Fig. 2.1 under dynamics (2.1) with

A , In − εL and a sampling time ε = 1/6. The topology is undirected and connected

and A satisfies assumptions A.1, A.2, and A.3. Therefore the final value of each node

is the average of the initial state values. For the randomly chosen initial state x0 =[
1.3389 2.0227 1.9872 6.0379 2.7219 1.9881

]T
, the final consensus value is thus

2.6828. We now apply Algorithm 2 to node r = 1.

Step 2.4.1. We increase the dimension k of the square Hankel matrix Γ{X̄0,1,...,2k[1]} until

it loses rank. This happens for k = 4. We then store the first defective Hankel matrix:

Γ{X̄0,1,...,8[1]}=


1.2358 0.2050 0.0367 0.0047

0.2050 0.0367 0.0047 −0.0037

0.0367 0.0047 −0.0037 −0.0067

0.0047 −0.0037 −0.0067 −0.0079

 .

Step 2.4.2. The normalised kernel of the first defective Hankel matrix is

β=
[
−0.0833 0.7778 −1.6667 1

]T
.

This gives the coefficients of eq. (2.6).

Step 2.4.3. We compute the final consensus value φ= 2.6828 using eq. (2.6).

the final consensus value takes a more complicated form, see [99].
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As shown here for node r = 1, the value of φ obtained in a decentralised manner is

equal to the average of the initial states.

Repeating this procedure for each of the six nodes gives the same value φ. However,

the number of steps required by each node to compute the final consensus value φ differs.

This is summarised in Table 2.1.

Ref. [82] Our result
Node 1 6×7= 42 2×4= 8
Node 2 6×7= 42 2×4= 8
Node 3 6×7= 42 2×4= 8
Node 4 6×7= 42 2×5= 10
Node 5 6×7= 42 2×6= 12
Node 6 6×7= 42 2×6= 12

TABLE 2.1: Comparison of the minimal number of successive values needed by each node to
compute the final consensus value of the network in Fig. 2.1 with n = 6 nodes.

While the method proposed in [82] requires a total of n(n+1) successive values of x[r],

our algorithm shows that the minimal number of successive values of x[r] is just 2(Dr+1)

for almost all initial conditions. Furthermore, our algorithm is completely decentralised,

i.e. our result does not require that the arbitrarily chosen state x[r] has any knowledge

of the total number of nodes in the network, n, or any other kind of global (centralised)

information about the network (contrary to what is assumed in [82, Section V]).

As can be noted in Table 2.1, some nodes need fewer successive observations of their

own state to compute the final consensus value of the whole network. In what follows

we call such nodes dominant nodes. An important question arises at this point: given a

consensus-guaranteed network, can we identify the dominant nodes? Below, we answer

this question using an algebraic characterisation of the minimal number of steps which

we then link to a specific graph partition of the consensus network around the chosen

node.

2.5 Characterisation on the minimal number of steps

We now provide an answer to the question raised at the end of the last section from two

perspectives. Firstly, in Section 2.5.1 we provide an algebraic characterisation of the

minimal recursion length Dr +1 for node r by performing an analysis of the Laplacian

of the graph. Secondly, in Section 2.5.2 we can directly compute this minimal recur-

sion length Dr +1 graph-theoretically from Mason’s rule [54] and also link Dr +1 to the
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number of cells in a special partition of the graph called the minimal external equitable

partition with respect to node r.

For simplicity of exposition, we only consider undirected graphs in the following sec-

tions, i.e. we assume:

A.4 The matrices W , L, A in eq. (2.1) are symmetric.

2.5.1 Algebraic characterisation

An algebraic characterisation of the degree of the minimal polynomial of [A, eT
r ] can be

obtained using the Jordan block decomposition described in Section 2.3. The symmetry

of the Laplacian matrix in undirected graphs simplifies the analysis since the Jordan

matrix in Eq. (2.12) becomes diagonal. The following Corollary provides a link between

the minimal number of successive values required by a node to compute the final con-

sensus value of the network and algebraic properties of the underlying graph. Before

presenting the main result, we introduce the following notation, which will be used ex-

tensively in the remainder of the chapter.

Definition 2.5.1 (D-cardinality of a set). Let Λ be a finite set, potentially containing re-

peated elements, with cardinality card{Λ}. The d-cardinality of the set, denoted dcard{Λ},

is defined as the number of distinct elements in the set.

Example 2.5.1. Let Λ= {1,2,3,1,3,5}. Then card{Λ}= 6 and dcard{Λ}= 4.

Our first algebraic characterisation of the minimal recursion length at node r relates

Dr +1 to the number of distinct eigenvalues of the Laplacian matrix whose eigenvectors

have non-zero components for node r, as given by the following Corollary.

Corollary 2.5.1. Consider the dynamics (2.1) where A is associated with an unweighted

and undirected graph. Denote the eigenvalues of the symmetric matrix A by λi (i =
1, . . . ,n) (allowing repeated eigenvalues) and their corresponding right eigenvector by ui.

Let Λ= {λi(A) | i = 1, . . . ,n} and Ψr = {λi(A) |ui[r]= 0}. Then

Dr +1= dcard{Λ/Ψr},

where Λ/Ψr is the relative complement of Ψr in Λ.

Proof. Since A is symmetric, all eigenvalues of A are real. The proof then follows from

Lemma 2.3.1 and the PBH-test [107].
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Our second algebraic characterisation relates Dr +1 with the number of eigenvalues

shared by the Laplacian matrix and the r-grounded Laplacian matrix.

Theorem 2.5.1. Consider the system in Eq. (2.1) satisfying Assumptions A.1–A.4 and A

has no repeated eigenvalues. The rank of the observability matrix for the pair [A, eT
r ] is

equal to n−µr, i.e.

Dr +1= n−µr,

where µr is the number of eigenvalues shared between A and Ar, where Ar is the r-

grounded matrix, i.e. the submatrix of A obtained by deleting the rth row and the rth

column.

Proof. Without loss of generality, we let r = 1.Since A1 = [0 In−1]A[0 In−1]T , if λ j(A) =
λ j(A1) for j = 1, . . . ,µ1, we claim that if vi (for any i ∈ {1, . . . ,µ1}) is an eigenvector for A1

corresponding to λi(A1), then [0 vT
i ]T is an eigenvector of A associated with eigenvalue

λi(A) for i = 1, . . . ,µ1.

To shown this claim, we shall show that if there exists v1
i ,v2

i ,v3
i satisfying the follow-

ing equations, then v1
i = 0 (given i).

[
A[1,1] A[1,2 : n]

A[2 : n,1] A1

][
v1

i

v2
i

]
=λi

[
v1

i

v2
i

]
,

A1v3
i =λiv3

i .

This is equivalent to

A[1,1]v1
i + A[1,2 : n]v2

i =λiv1
i (2.27)

A[2 : n,1]v1
i + A1v2

i =λiv2
i (2.28)

A1v3
i =λiv3

i . (2.29)

Left multiply eq. (2.29) with v3,T
i , the following equality due to the symmetry of A1.

v3,T
i A[2 : n,1]v1

i = 0

If v1
i 6= 0, then v3,T

i A[2 : n,1]= 0. Or in other words,

A[1,2 : n]v3
i = 0 (2.30)
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Furthermore we have the following equation obtained from eq. (2.30)[
A[1,1] A[1,2 : n]

A[2 : n,1] A1

][
0

v3
i

]
=λi

[
0

v3
i

]
,

we then find two eigenvectors of A correspond to λi, contradiction.

We have proven that if λ j(A)= λ j(A1) for j = 1, . . . ,µ1, we claim that if vi (for any i ∈
{1, . . . ,µ1}) is an eigenvector for A1 corresponding to λi(A1), then [0 vT

i ]T is an eigenvector

of A associated with eigenvalue λi(A) for i = 1, . . . ,µ1.

In the rest of the proof, we shall show firstly that Dr +1≥ n−µr and then show that

Dr +1≤ n−µr and finally we can conclude that Dr +1= n−µr.

From the definition of an eigenvalue, we then have the following equation:[
A[1,1] A[1,2 : n]

A[2 : n,1] A1

][
0

vi

]
=λi(A1)

[
0

vi

]
, (2.31)

for i = 1, . . . ,µ1.

Now, consider the observability matrix [A, eT
1 ] (see [107]):

Ω=


eT

1

eT
1 A

. . .

eT
1 An−1

 . (2.32)

It is easy to see that

Ω

[
0 0 . . . 0

v1 v2 . . . vµ1

]
= 0.

Therefore the dimension of the kernel of Ω is at least µ1.

We now prove the necessity. If a vector v satisfies eq. (2.33):

Ωv =


eT

1

eT
1 A

. . .

eT
1 An−1

v = 0, (2.33)

then we know that [A, eT
1 ] is unobservable. Therefore there exists a λ ∈ C such that

Av = λv and eT
1 v = v[1] = 0 from the PBH rank test [107]. Now, let v = [0,u]T . We then
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2

1

3

FIGURE 2.2: Example illustrating algebraic interpretation of minimal number of steps.

have: [
A[1,1] A[1,2 : n]

A[2 : n,1] A1

][
0

u

]
=λ

[
0

u

]
,

or equivalently, A1u =λu. This shows that λ is a common eigenvalue of A and A1.

We can finally conclude that rank(Ω)= n−dim(Kernel(Ω))= n−µ1.

Example 2.5.2. Consider the dynamics governed by the matrix in Fig. 2.2

L =


2 −1 −1

−1 1 0

−1 0 1

 , A = I − 1
3

L =


1
3

1
3

1
3

1
3

2
3 0

1
3 0 2

3

 .

The observability pair relative to node r = 1 is [A, [1 0 0]]. Therefore the corresponding

minimal polynomial is q1(t)= t2− t and D1+1= 2 since the order of this polynomial is 2.

On the other hand, the observability matrix Ω is such that

rank(Ω)= rank




1 0 0
1
3

1
3

1
3

1
3

1
3

1
3


= 2.

Since Λ= {1, 2
3 ,0} and Ψ1 = {2

3 }, we have from Corollary 2.5.1 that

dcard{Λ/Ψ1}= 2.

To illustrate Theorem 2.5.1, note that A and A1 share an eigenvalue at 2
3 , therefore D1 +

1= 2.
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2.5.2 Graph-theoretical characterisation

Mason’s rule

Consider the system in eq. (2.1), and a virtually built graph [33] G = (V ,E , A/z), where

V ,E denotes the vertex/edge set, A is the state-space matrix of the considered discrete-

time LTI system in eq. (2.1) and z is the Z-Transform operator. In the following, we show

that the degree of the minimal polynomial of [A, eT
r ] can be determined using Mason’s

rule [54].

Let Φ = (I − A/z)−1. If we build the signal-flow network for A/z , then from Mason’s

rule we can obtain the gain from node i to node j directly from the graph as follows:

Φ[i, j]= 1
∆

∑
path p∈G

Tp∆p, (2.34)

where ∆ is the determinant of the graph, which can be computed by

∆= 1−∑
L i +

∑
L iL j + . . .+ (−1)m ∑

. . .

Tp is the gain of the pth forward path from node i to node j, L i is the loop gain of

each closed loop in the graph, and L iL j is the product of the loop gains of any two non-

touching loops (i.e. loops with no common nodes). ∆p is the cofactor value of ∆ for the pth

forward path, with the loops touching the pth forward path removed (i.e. the remaining

graph when you have removed those parts of the graph that form loops while retaining

the parts on the forward path).

The McMillan degree of eT
r Φ can be directly computed from the network using Ma-

son’s rule in eq. (2.34). Furthermore, it can be seen that the McMillan degree of eT
r Φ

[107], i.e. the number of poles, is the same as degree of the minimal polynomial of [A, eT
r ]

obtained from method in Section 2.2 .

Sometimes the graph is rather complicated and therefore it is hard to compute the

formula (2.34) from Mason’s rule. In this case one might resort to some basic graphical

information [33], e.g., the diameter of the graph, the number of nodes in the graph,

etc., to obtain a rough estimate of the minimal number of steps. Based on this idea, we

propose the following upper and lower bounds.

Proposition 2.5.1. Consider the system in eq. (2.1). The degree of the minimal polyno-

mial of [A, eT
r ], namely Dr +1, is lower bounded by dr +1, where dr is the longest path

from node r to all other nodes, and upper bounded by n.

Proof. The upper bound can be obtained directly using the Cayley-Hamilton theorem,
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i.e. Dr +1≤ n. Therefore we only need to show the lower bound.

Suppose the minimal polynomial for [A, eT
r ] is qr(t) = tDr+1 +αDr tDr + . . .+α1t+α0.

Since eT
r qr(A)= 0, we have:

[
α0 α1 . . . αDr 1

]


eT
r

eT
r A
...

eT
r ADr+1

= 0. (2.35)

From a graph-theoretical perspective, element Ak[i, j] being 0 means there is no path

from i to j with length k [33]. Meanwhile, note that the consensus is guaranteed if and

only if the digraph is strongly connected (see [72]). Strong connectedness implies that

there always exists an edge-following path from node r to any other node in the graph.

Therefore we can pick the longest path, say from node r to node s with length dr. Given

these two facts, if Adr [r, s] is nonzero, then eq. (2.35) implies that Dr +1≥ dr +1.

Remark 2.5.1. Proposition 2.5.1 proposes a fundamental limitation on the minimal

number of steps (successive values of a node) needed to compute the final value based

on the graphical definition of a network; though if the graph contains quite a number of

feedback loops, the Mason’s formula is hard to compute.

External equitable partition

In this section, we shall further consider the following question: given an undirected

network, can we directly identify the dominant node(s) from the graph without any al-

gebraic computation?

We adopt definitions and notations from [23]. A partition of a graph G = (V ,E ) is

defined as a mapping from vertices to subsets of vertices called cells: π : V → {C1, . . . ,CK }

where Ci ⊆ V , ∀i. Let Im(π) denote the image of π, i.e. Im(π) = {C1, . . . ,CK } and

degπ(i,C j) denote the node-to-cell degree. degπ(i,C j) characterises the number of nodes

in cell C j that share an edge with node vi under partition π:

degπ(i,C j)= card
{
k ∈ V |π(k)= C j and (i,k) ∈ E

}
.

We define π−1(Ci)= { j ∈ V |π( j)= Ci}, i.e. the set of nodes that are mapped to cell Ci.5

5Note that π is not a one-to-one mapping but a one-to-many mapping. However, we can still define a new
function to map back from C j to V . We adopt this notation from [23].
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C1

C2

C3

FIGURE 2.3: An example to illustrate EEP.

In what follows we use the concept of external equitable partition (EEP) [23]. As

we shall show below, EEPs partition the graph into cells while neglecting the internal

interconnection structure inside a cell. We shall show that the EEP with respect to

a node is directly related to the minimal number of steps necessary for this node to

calculate the final consensus value.

Definition 2.5.2 (External equitable partition (EEP) [23]). A partition π∗ of the set of

nodes V consisting of s > 1 cells {C1, . . . ,Cs} is external equitable if the number of neigh-

bours in C j of a vertex v ∈ Ci depends only on the choice of Ci and C j (i 6= j), i.e.

degπ∗(l,C j)= degπ∗(k,C j),∀k, l ∈π∗−1
(Ci).

Definition 2.5.3 (Minimal EEP with respect to a node). A partition πr of V consisting

of cells {C1, . . . ,Cs} is external equitable with respect to node r if the partition is external

equitable and the node r is in a cell alone, i.e. π(vr) = vr. The minimal EEP of a graph

with respect to node r, π∗
r , is such that card{Im(π∗

r ))} is minimal.

Example 2.5.3. We here use a simple example to illustrate the above definitions. The

partition on the graph in Fig. 2.3 is external equitable since different nodes in the same

cell have the same degree to other cells. The partition is also an external partition with

respect to the node in C1.

Theorem 2.5.2. Consider the system in (2.1). Solely based on observations of node r, the

minimal length of recursion necessary to obtain the final consensus value is equal to the
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number of cells sr in π∗
r , the minimal external equitable partition with respect to node r,

i.e.

Dr +1= card
{
Im

(
π∗

r
)}
, sr. (2.36)

Proof. Without loss of generality, let r = 1. We use a Breadth-First-Search (BFS) algo-

rithm to label the cells, as follows. We start from node 1 (i.e. cell 1) and explore all the

neighbouring cells. For each of those nearest cells, we consider their own neighbouring

cells and so on, until we have labelled all the cells in the minimal EEP with respect to

cell 1 (see the Appendix for an illustrative example of this BFS algorithm).

Consider now the block matrix obtained by permuting and partitioning A according

to π∗
1 , a minimal EEP with respect to node 1:

Aπ∗
1
=


A11 A12 . . . A1s1

A21 A22 . . . A2s1

...
...

. . .
...

As11 As12 . . . As1s1

 .

Here, A ii ∈ Rl i×l i contains the interconnections between any two nodes in cell C∗
i and l i

denotes the number of nodes in cell C∗
i . Hence, l1 = 1 and

∑s
i=1 l i = n. The off-diagonal

submatrices A i j ∈ Rl i×l j contain the interconnections between nodes in C∗
i and C∗

j . In

particular, we shall consider the following submatrices:

A1, Aπ∗
1
[2 : n,2 : n]

f T
1 , Aπ∗

1
[1,2 : n]=

[
A12 . . . A1 j 0 . . . 0

]
.

Note that there are only j neighbouring cells to cell 1, i.e. A1( j+1), . . . , A1s1 = 0 for some

j > 1.

The observability matrix (2.32) associated with the pair [Aπ∗
1
, eT

1 ] is:

Ω=


1 0 . . . 0

A11 A12 . . . A1s1

...
...

. . .
...

∗ ∗ . . . ∗

 , (2.37)

where ∗ is a placeholder representing a real value.

Let Ξ be the observability matrix associated with the pair [A1, f T
1 ]. According to

[53, 23], the rank of the observability matrix is equal to the dimension of the following
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span

rank(Ξ)= dim-span





1r2

0

0
...

0


,



0

1r3

0
...

0


, . . . ,



0

0

0
...

1rs1




, (2.38)

with r i = card
{
C∗

i
}
. Hence,

rank(Ξ)= s1 −1,

from where it follows that

D1 +1= rank(Ω)= rank


1 0 . . . 0

∗
... Ξ

∗


= rank(Ξ)+1= card

{
Im

(
π∗

1
)}

.

Remark 2.5.2. Definition 2.5.3 implies that the number of cells in π∗
r , sr, is greater or

equal than the longest distance from node r to all other nodes in the graph G , dr + 1.

Therefore

Dr +1≥ dr +1.

Remark 2.5.3. Theorem 2.5.2 provides a link between local observations, i.e. the mini-

mal number of successive values that a node r needs to accumulate to compute the final

consensus value of the network) and a global property, i.e. the underlying minimal EEP

of the network with respect to node r. Using this theorem, one can directly identify the

dominant nodes in the network without resorting to algebraic numerical manipulations.

Example 2.5.4. As shown numerically in Example 2.4.1, nodes 1, 2 and 3 are the domi-

nant nodes since they only require 8 steps, i.e. Dr+1= 4 for r = 1,2,3. It is easy to check in

Fig. 2.4(a) that the minimal external equitable partition with respect to these nodes has 4

cells. Similarly, Figs. 2.4(b) and 2.4(c) show the minimal EEPs for node 4 and for nodes 5

and 6, respectively. The number of cells in the corresponding minimal EEPs is consistent

with the numerical results in Example 2.4.1 which consistently indicates that these nodes
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require respectively 10 and 12 successive values of their own state to compute the final

consensus value of the network according to Algorithm 2.

6

24 1

5

3

4/64/6

5/6 5/62/6 4/6

1/6

1/6

1/6

1/61/6

1/6

(a) 4-cell based minimal external equitable parti-
tion with respect to nodes 1,2,3. As illustrated in
Example 2.4.1, nodes 1,2,3 require 2×4= 8 steps
to compute the final consensus value.
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(b) 5-cell based minimal external equitable parti-
tion with respect to node 4. As illustrated in Ex-
ample 2.4.1, node 4 requires 2× 5 = 10 steps to
compute the final consensus value.
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5/6 5/62/6 4/6
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1/6

1/61/6
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(c) 6-cell based minimal external equitable par-
tition with respect to nodes 5,6. As shown in Ex-
ample 2.4.1, nodes 5,6 require 2×6= 12 steps to
compute the final consensus value.

FIGURE 2.4: Minimal EEP with respect to the different nodes in Example 2.4.1. Different
colours correspond to different cells (colour online).

2.6 Minimal-time consensus on special networks

In this section we apply the results of the previous section to characterise the mEEP of

different types of node in special network topologies, e.g., star, line, and cycles, wheels,

Mobius ladders, small world networks, regular graphs, scale-free networks in order to

uncover what properties of the nodes make them “optimal” in terms of the minimal

number of steps needed locally to compute the consensus value. This can serve as an

indication of the design principles that need to be considered if one wants optimally to

build a minimal-time consensus network.
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2.6.1 Star and line graphs

We shall firstly show how the results can be applied to a star graph with n nodes. First

of all, we see that the number of cells in the minimal EEP with respect to the centre

node is 2, while it is 3 for the other nodes. Therefore the node in the centre of the star

only requires 4 steps to compute the consensus value while all the other nodes at the

periphery of the network require precisely 6 steps. It is worth mentioning that this is

true irrespective of the number of nodes in the star-configured network. The reason for

a generally small minimal number of steps is that the diameter of a star graph is small,

3.

6

2
4

1

7

3

5

(a) minimal EEP with respect to the centre
node

6

2
4

1

7

3

5

(b) minimal EEP with respect to a node at
the boundary

FIGURE 2.5: minimal EEP with respect to different nodes in the star configuration, different
colours are used to represent different cells.

In the case of a line graph with n nodes, Dr+1= d n−1
2 e+1 for the centre node r = d n−1

2 e
and Dr +1= n−1 when r = 1,n, i.e. a non-centre node. Again, the reason for a generally

higher number of steps than for the star graph is that the diameter of a line graph is

typically larger than that of a star graph. The nodes at the boundary need to wait more

steps for the information to reach them than the centre node.

Remark 2.6.1. Star graph seems to be an optimal topology in the sense that every node in

such a network needs a small number of steps to compute the consensus value. However, it

is not a robust network, because, any communication edge failure will lead to some node’s

failure to compute the consensus value.

This raises a question, how to give a mathematical definition and solution of design-

ing a robust consensus network. This will be done in the near future. We can define a
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2143 5

(a) minimal EEP with with respect to the centre node

2143 5

(b) minimal EEP with respect to a node at the boundary

FIGURE 2.6: minimal EEP with respect to different nodes in the line configuration, different
colours are used to represent different cells.

p-robust network, i.e. the failure of any p edges will not lead the isolation of any node

and the analysis follows by this definition.

2.6.2 Cycle graphs

For cycle graphs every node needs the same number of steps of compute the final value

due to graphical symmetry. The minimal EEP with respect to any nodes in the cycle

graphs Dr +1 = d n−1
2 e+1. Comparing with the line graph, with one additional link, it

has shortened the number of steps requiring for boundary nodes to compute the final

consensus value.

2

1

4

3 5

6

FIGURE 2.7: Minimal EEP with respect to different nodes in the cycle configuration, different
colours are used to represent different cells.
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2.6.3 Wheel graphs

For wheel graphs, which are a combination of star graphs and cycle graphs, there are

two types of node. The mEEP with respect to the centre node is the same as in the

star graph Dr +1 = 2. The minimal EEP with respect to any nodes in the wheel graph

Dr +1= d n−1
2 e+1.

2

1

4

3 5

6

7

(a) minimal EEP with with re-
spect to the centre node

2

1

4

3 5

6

7

(b) minimal EEP with respect to a
node at the boundary

FIGURE 2.8: minimal EEP with respect to different nodes in the wheel configuration, different
colours are used to distinguish and represent different cells.

2.6.4 Möbius ladder

For Möbius ladder every node needs the same number of steps of compute the final

value due to symmetry. The minimal EEP with respect to any nodes in the graph in

Dr+1= d n−1
2 e+1. This problem can be cast as a special case of regular graph in the next

section.

2.6.5 Small-world networks

Random graph theory was pioneered by Erdos-Renyi (ER) [24] and Gilbert [29]. Later,

Watts and Strogatz introduced small-world networks [89] as a model that allows to inter-

polate between a regular lattice and a random graph based on only one parameter, the

rewiring probability p [3, 60]. Almost at the same time, Barabasi and Albert proposed

another model for complex networks called the scale-free network model [2]. Consen-

sus within a network requires the underlying graph to be connected. Thus general ER
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2

1

4

3 5

6

FIGURE 2.9: minimal EEP with respect to different nodes in the ladder configuration, different
colours are used to represent different cells.

graphs and Gilbert graphs are not suitable for our analysis. We therefore focus on small-

world networks and scale-free networks.

Recall that the minimal number of steps for node r to compute the final value is equal

to 2 times the degree of the minimal polynomial of [A, eT
r ]: Dr+1, so we shall focus on the

quantity Dr +1. A detailed simulation study of random graphs, small-world and scale-

free networks [2] will be addressed in a future paper. Here we consider the following

question for small-world networks: in a small-world network, can we characterise how

the minimal number of steps varies as a function of the rewiring probability p? In

particular, we focus on the worst-case scenario and consider the node with the maximal

number of steps.

Definition 2.6.1. We define the maximal value of the minimal number of steps needed in

a given network over all nodes as 2D̂+2= 2maxr{Dr}+2.

Remark 2.6.2. Numerically, from Corollary 2.5.1, we can approximate D̂+1≈ dcard{Λ}=
dcard{λi(L) : i = 1 : n} (the Laplacian spectrum). This approximation links the eigenspec-

trum of the Laplacian matrix and the decentralised characterisation in terms of overall

minimal number of steps in a considered network.

The following simulation study was conducted using MATLAB 2009b. The small-

world network code was generated on [84]. Small-world networks [89] can usually be

parameterised by G sw(n,k = 2d, p), where n is the number of nodes in the network, k

is the degree of each node in the initial graph, and p is the probability of rewiring an

edge. Random rewiring procedure is as follows [89] we start with a ring of n vertices,

each connected to its k nearest neighbours by undirected edges. We choose a vertex and

37



CHAPTER 2. DECENTRALISED NETWORK PREDICTION

the edge that connects it to its nearest neighbour in a clockwise sense. With probability

p, we reconnect this edge to a vertex chosen uniformly at random over the entire ring,

with duplicate edges forbidden; otherwise we leave the edge in place. We repeat this

process by moving clockwise around the ring, considering each vertex in turn until one

lap is completed. Next, we consider the edges that connect vertices to their second-

nearest neighbours clockwise. As before, we randomly rewire each of these edges with

probability p, and continue this process, circulating around the ring and proceeding

outward to more distant neighbours after each lap, until each edge in the original lattice

has been considered once.

One effect of increasing p is an increase of the algebraic connectivity of the Lapla-

cian, as shown in the synchronisation literature [3] and in the consensus literature [60].

However, other dynamical properties of network dynamics are more involved [3].

(a) p=0 (b) p=0.5 (c) p=1

FIGURE 2.10: Small world Gsw(20,4, p) for p = 0, 0.5, 1. For p = 0, Gsw(20,2,0) is a regular
network; for p = 1, Gsw(20,2,1) becomes a random network.

Watts and Strogatz showed that the characteristic length l(p) of a small-world net-

work considerably reduces over the range 0.0001 ≤ p ≤ 0.01 and remains almost un-

changed for p > 0.01. This indicates that random rewiring with a small value of p creates

a small-world network out of a regular network that originally has a large diameter.

We now present some numerical simulation results. For these simulations we con-

sider regular networks (p = 0) small-world networks (0 < p < 1) and random networks

(p = 1). In particular, we are interested in the following question: how does the maximal

minimal number of steps 2D̂+2 (we consider the worst case scenario) vary with respect

to the probability p of rewiring an edge?

1. We fix d = 2 and let n = 100,110,120,150,200,250. For each n, we compute the

average worst case D̂ +1 at different p over 10000 instances of the small-world

model to see how D̂+1 varies with p (Fig. 2.11)

2. We fix n = 100 and let d = 1,2,3,4,5,6. For each d, we compute the average worst

38



2.6. MINIMAL-TIME CONSENSUS ON SPECIAL NETWORKS

case D̂+1 over 10000 random realisations for

p = [0,0.0001,0.0002,0.001,0.002,0.01,0.02,0.1,0.2,0.5,0.9,1].

(Fig. 2.12)

Our simulation results show that for fixed n in the network and k = O(log(n)) the

average maximal (worst-case) minimal number of steps of D̂ +1 is a monotonically in-

creasing function of p. Fig. 2.11 and Fig. 2.12 also show that the more regular the graph,

the lower the minimal number of steps needed for a randomly picked node.
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FIGURE 2.11: Small-world network. Average D̂ + 1 from 10000 runs (y-axis) for n =
100,110,120,150,200,250 versus the probability of rewiring, p (x-axis). Different
curves correspond to different n.

More detailed analysis and simulations are currently under investigation.
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FIGURE 2.12: Small-world network. Average D̂ +1 from 10000 runs (y-axis) for n = 100 versus
the probability of rewiring, p (x-axis). Different curves correspond to different k.

39



CHAPTER 2. DECENTRALISED NETWORK PREDICTION

2.6.6 Regular graphs

In this section we explicitly characterise the minimal number of steps of a randomly

picked node in a regular graph. A G sw(n,k = 2d, p = 0) regular graph is defined as a

n-node graph within which each node is connected to k = 2d neighbours according to the

adjacency matrix

W =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
...

...
. . .

...

c1 c2 . . . c0

 . (2.39)

Similarly to [61], we define c−l = cn−l for l > 0; c±l = 1, ∀0< l ≤ d; cl = 0, ∀ d < l < n−d;

and c0 = 0. Since for this topology the Laplacian is L = kIn −W , it is easy to show that

∀i, λi(L) = k−λi(W) and furthermore, L and W share the same eigenvectors for λi(L)

and k−λi(W). Given this property, instead of considering the rank of the observability

matrix of the pair [A, I−εL, eT
r ], we can consider that of [W , eT

r ]. It is worth mentioning

that for a regular graph, due to graphical symmetry, the minimal number of steps for all

nodes is the same.

Theorem 2.6.1 (Minimal steps in k-regular graph). Consider the system in eq. (2.1)

where the adjacency matrix W is given in (2.39). The minimal number of steps for any

node in the network is 2dcard{Φ}+2, i.e. Dr +1= dcard{Φ}+1, ∀r where

Φ=
 sin

(
(k+1)πm

n

)
sin(πm

n )

∣∣∣∣∣∣m = 1, . . . ,n−1

 .

Proof. Firstly we characterise the rank of observability matrixΩ= [er, Wer, , . . . , Wn−1er]T .

Since W is symmetric, W is diagonalisable and has a Jordan canonical from W = SJS−1.

In consequence, the observability matrix has the following decomposition

Ω=


S[r, :]

S[r, :]J
. . .

S[r, :]Jn−1

S−1. (2.40)
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Recall that S−1 is full rank and from [35]

rank(Ω)= rank


S[r, :]

S[r, :]J
. . .

S[r, :]Jn−1

= rank


1 1 . . . 1

J[1,1]=φ0 J[2,2]=φ1 . . . J[n,n]=φn−1
...

...
. . .

...

J[1,1]n−1 J[2,2]n−1 . . . J[n,n]n−1

 .

It is easy to verify that φ0 = d. For m 6= 0,

φm = sin(πm
n )

sin(πm
n )

d∑
t=1

cos(
2πtm

n
)=

sin
(

(k+1)πm
n

)
sin(πm

n )
−1,λm −1,

where second equality results from sin(α+β)− sin(α−β) = 2sinαcosβ. We therefore

obtain

rank


1 1 . . . 1

d λ1 −1 . . . λn−1 −1
...

...
. . .

...

dn−1 (λ1 −1)n−1 . . . (λn−1 −1)n−1

= rank


1 1 . . . 1

λ1 λ2 . . . λn−1
...

...
. . .

...

λn−1
1 λn−1

2 . . . λn−1
n−1

+1.

The rank of this Vandermonde matrix is equal to the number of different values of λi

for i = 1, . . . ,n−1, which, in turns, is equal to the d-cardinality of Φ. Therefore Dr +1 =
dcard{Φ}+1.

It is easy to see that for all m, the following equality holds

sin
(

(k+1)πm
n

)
sin(πm

n )
=

sin
(

(k+1)π(n−m)
n

)
sin(π(n−m)

n )
.

Which implies that 2dcard{Φ}+2≤ 2d n−1
2 e+2.

If n,k+1 are not coprime, i.e. (n,k+1) = a > 1, then when m = sn/a,
sin

(
(k+1)πm

n

)
sin( πm

n ) =
sin

(
(k+1)πs

a

)
sin( πs

a ) = 0 for s = 1,2, . . . ,d. This implies that

2dcard{Φ}+2≤ 2
⌈

n−d
2

⌉
+2. (2.41)

Remark 2.6.3. We failed to show that 2dcard{Φ}+2 = 2
⌈

n−d
2

⌉
+2 but conjectured the

equality held based on a large number of examples. We are still trying to show this
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eq. (2.41) using Chebyshev polynomials.

For the cycle graphs and Möbius ladder in the previous sections, we can apply the

theorem we had in this Section by letting d = 1 for the cycle case and d = 2k for the

Möbius ladder case.

2.6.7 Scale-free network

In scale-free networks [2], a mechanism called “preferential attachment” is proposed to

explain the appearance of the power-law distribution. We are starting from the following

seed matrix and at each step a new node is added to the network with connections to d

nodes in the network. The new node links to an existing node with a probability that is

proportional to the current degree of that node. We choose d = 2 and

Seed=



0 1 0 0 1

1 0 0 1 0

0 0 0 1 0

0 1 1 0 0

1 0 0 0 0

 .

We denote the final graph G s f (n,d, seed).

One observation from Fig. 2.13(a) is that it has much smaller Dr+1 than the number

of nodes in the network, i.e. n. And it is natural to ask whether the hub nodes would

need fewer steps. From the above simulations we have Conjecture 2.6.1. In the mean-

time, we also have some observations for constructing counter-examples. From Fig. 2.14

and Fig. 2.15, we can easily see that the node (circled in yellow) that needs the smallest

number of steps to compute the consensus value is not the hub node. A further interest-

ing finding is that the number of cells in mEEP with respect to node r is independent of

the number of connections of node r but somehow links to the social “role” of the node r.

We the have the situation represented in Fig. 2.16!

Conjecture 2.6.1. Given a scale-free network G s f (n,d, seed), for a hub node i and a

non-hub node j, i.e. the degree of node i is much larger than that of node j, then

D i +1≤ D j +1 with high probability.
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(a) Scale-free network with 600 nodes

FIGURE 2.13: Scale-free network, degree of minimal polynomial for [A, eT
i ] (y-axis) versus the

degree of node i(x-axis).

FIGURE 2.14: A example of scale-free network, the red circled node is the hub node in such
network.

2.7 Application to dynamic consensus

From this section on, we shall consider extensions of proposed algorithm to deal with

issues arising in practical applications.

Motivated by applications such as mobile networks and distributed Kalman filtering,

we consider the scenario when the system has input signals instead of the standard

static stimulus x0 as in the previous sections. In this case, every node could receive a

signal, e.g. ramp, sinusoid with possibly different amplitudes and frequencies. The goal

of this consensus network is to reach a weighted average of these input signals for all
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FIGURE 2.15: A example of scale-free network, the red circled node is the hub node in such
network. However, by using mEEP with respect to different nodes, we found that
the one that needs the smallest number of steps to compute the consensus value
is not the hub nodes but the one circled in yellow.

FIGURE 2.16: A joke to illustrate how the social role determines the time that one needs to know
the consensus value of the network. When top level guys look down, they see only
shit heads; When bottom level guys look up, they see only assholes...
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nodes [80]. Hence, in contrast to the static consensus problem, consensus is reached in a

dynamic sense. More specifically, assume that each individual i has an associated signal

S[i] with value sk[i] at different discrete-time step k. We define the vector sk, which

contains the individual sk[i] as its components. Dynamic consensus can be viewed as

a situation in which all agents asymptotically track the evolution of some aggregate

network quantity. In addition to the input signals S[i], each agent maintains a local

variable xk[i], which is a time-varying estimate of the instantaneous average value for

node i at time k.

Definition 2.7.1 (Asymptotic dynamic consensus). System (2.1) is said to asymptotically

achieve dynamic consensus with input signal S = [S[1], S[2], . . . ,S[n]]T if for any i, j

lim
k→∞

|xk[i]− xk[ j]| = 0. (2.42)

Under the consensus protocol that ensures tracking of the consensus signal (see next

section), we focus on an arbitrarily chosen node r and compute the consensus signal

using a minimal number of its own observations. Note that additional assumptions

on the input signals are needed to guarantee discrete-time consensus [108] since, for

certain input signals, there may exist steady-state errors due to the poles introduced by

the input signals. Fig. 1 in [80] shows a non-zero steady-state error for ramp inputs. We

shall then derive such conditions in the next section.

2.7.1 System model for dynamic consensus

Consider the discrete time LTI dynamics in eq. (2.1) where an arbitrarily chosen state

x[r] is observed. The decentralised problem is to compute the dynamic consensus signal

of the network φk at time step k using only its own previously observed values yk = xk[r].

We consider the extended model of eq. (2.1) instead of the standard static consensus prob-

lem. The dynamic consensus will track the weighted average signal Φ asymptotically.

This section proposes a dynamic version of decentralised consensus computation al-

gorithm, i.e. it computes the final consensus signal using a minimal number of succes-

sive discrete-time observations of any node, say node r, in the network. In particular,

we assume that node r in the network does not have access to any other external in-

formation about the input signals and the network, such as, the type of signals, total

number of agents n in the network (2.1), its local communication links or even the state

values/number of its neighbours.
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Similar to static consensus protocol, consider the following decentralised protocol

xk+1 = Axk +uk,

yk = eT
r xk = xk[r], (2.43)

where x0 = 0 and uk is the unknown input/disturbance. In most cases, uk = sk; for certain

applications, we let uk = sk − sk−1 to guarantee the consensus of some signals with pole

at 1, for example, ramp.

xk+1 = Axk + sk − sk−1,

yk = eT
r xk = xk[r]. (2.44)

Let Ek+1, xk+1 − 1
n 11T sk, we have

Ek+1 = AEk + (I − 1
n

11T )(sk − sk−1).

Take the Z-transform,

E(z)= (zI − A)−1(I − 1
n

11T )(1− z−1)S(z). (2.45)

Let E(z), X (z)− 11T

n (z) and assume the matrix A can be decomposed as

A =
n∑

i=1
λi(A)vivT

i .

From the eigenvalue relation that λi(A) = 1− ελi(L) and the eigenvector corresponding

to 0 is 1.

Let H(z) = (zI − A)−1(I − 1
n 11T ), and following a similar analysis as in [80], we know

that the pole 1 of (zI−A)−1 will be cancelled by multiplying (I− 1
n 11T ). Then we use final

value theorem to find out the final error

e∞ = lim
z→1

(z−1)E(z). (2.46)

e∞ = 0 if E(z) has no pole at 1.

This system is reaching consensus asymptotically under various conditions on sam-

pling time, underlying topology which are developed in [108]. In the following part of

this section, we are assuming that these conditions for guaranteeing consensus are all

satisfied. The goal of this section is not to develop new theory or condition for consensus,
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but to focus on developing an algorithm that computes such dynamic consensus signal

using minimal number of successive outputs.

Remark 2.7.1. The information used in the proposed algorithm was solely based on

the accumulation of successive state values of the agent under consideration. No further

information about the network and signal is used.

Remark 2.7.2. More importantly, there does not exist criteria for any node in the network

to check whether dynamic consensus is reached or not using merely its own observations.

In other word, unlike static consensus problems, the node does not know whether dy-

namic consensus is reached or not. Hence, the proposed algorithm also provides a purely

decentralised way to check dynamic consensus.

For the purpose of main algorithm in Section 2.7.2, we need to impose the following

assumption for the input signals, we will later consider when the assumption does not

hold in [97].

Assumption 2.7.1. The Z-transform of such input signal at each node must have a finite

number of poles.

Remark 2.7.3. In engineered systems, there is a set of signals, e.g., step, ramp, sinusoid,

that are commonly used. They all satisfy the above assumption. Alternatively, one may

think of the scenario that these signals are the estimations of the same linear process by

different nodes. Again, the assumption is still satisfied.

Taking the Z-transform on both sides of eq. (2.44), zX (z)= AX (z)+(1−z−1)S(z) leads

to

Y (z)= eT
r X (z)= eT

r (zI − A)−1(1− z−1)S(z)

, y0 + y1z−1 +·· · .

Let Φ(z),φ0 +φ1z−1 +·· · , where φk = 1
n 1T xk. Y (z) is usually different from the consen-

sus signal, but it has the property for consensus in that

lim
K→∞

‖yK −φK‖ = 0 (2.47)

2.7.2 Main algorithm for minimal-time dynamic consensus

From eq. (2.44) and [100], we have the following regression for the observations.
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Proposition 2.7.1. Given a linear system (2.1) and an input signal vector S satisfying

Assumption 1, there exist a d ∈ N and scalars α0, ...,αd such that the following linear

regression equation must be satisfied ∀k ∈N≥ 0,

yk+d+1 +αd yk+d + . . .+α1 yk+1 +α0 yk = 0. (2.48)

Proof. Taking the Z-transform on both sides of equation zX (z) = AX (z)+ (1− z−1)S(z)

leads to Y (z)= eT
r X (z)= eT

r (zI−A)−1(1−z−1)S(z). By assuming that the number of poles

of S(z) is finite and noticing that eT
r (zI−A)−1 has finite poles [99], then the multiplication

has finite poles and therefore it can be written in the form of eq. (2.48). The rest of proof

is similar to the one to Theorem 2.4.1.

Remark 2.7.4. An algebraic characterisation of d for static consensus is given in [99]

derived from the Jordan block decomposition. In the dynamic case, d is a function of

input signal S and the matrix A.

Remark 2.7.5. If we can obtain the unknown coefficients in eq. (2.48) from data, then we

can compute future outputs recursively from eq. (2.48) and past outputs. If we let Dr,s +1

be the length of the regression in eq. (2.48) then Proposition 2.7.1 also indicates that some

scalars α0, ...,αDr,s , the following equation always holds:

yk+Dr,s+1 +αDr,s yk+Dr,s + . . .+α1 yk+1 +α0 yk = 0. (2.49)

To obtain such coefficients α0, ...,αDr,s , we again resort to the Hankel matrix using

successive outputs. A nice property of such a Hankel matrix is the following Kronecker

Theorem.

Theorem 2.7.1. [Kronecker Theorem][67] The Hankel matrix Γ{Y0,1,···} has finite rank if

and only if f (z), x0[r]+ x1[r]/z+·· · is a rational function with respect to z. The rank of

the Hankel matrix Γ{Y0,1,···} is equal to the number of poles of f (z).

Remark 2.7.6. This theorem links the rank of a specially constructed matrix to the num-

ber of poles of a rational transfer function.

We now present the main procedure for reconstructing the coefficients. Without loss

of generality, assume that the outputs start from discrete-time step 0. It is easy to

remove these assumptions, e.g. see [99]. From Proposition 2.7.1 and Kronecker Theorem,

when increasing the dimension of this Hankel matrix it will eventually lose rank. When

it does, at discrete-time step k = 2Dr,s +2, where Dr,s is defined in eq. (2.7), compute its
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normalised kernel:

Γ(y0, y1, , · · · , y2Dr,s+2)
[
α0 α1 . . . αDr,s 1

]T = 0. (2.50)

It can be shown that the normalised kernel obtained from eq. (2.50) corresponds to the

coefficients in eq. (2.49) [99].

Define d(z)= zDr,s+1 +∑Dr,s
i=1 αi zi and let

n(z), d(z)(y0 + y1/z+ y2/z2 +·· · ).

Then by multiplication, we have n(z),
∑Dr,s

i=1 ni zi.

From eq. (2.49), the coefficients from eq. (2.50) and past outputs we can predict future

values of yk, for all k ≥ 2Dr,s +3. In addition, the explicit expression of Y (z) = eT
r (zI −

A)−1(1− z−1)S(z) can be obtained by taking the Z-transform of eq. (2.48).

To predict the future outputs of the observation at time K (it is actually the aver-

aged signal under the assumption that the network reached consensus), we can use the

expansion of a SISO transfer function and check the coefficient of z−K .

We first define a reversion map R which takes z−m to zm, i.e., if Y (z)= y0+y1z−1+·· · ,
then R{Y (z)}= y0 + y1z+·· · . It is not hard to show that

R

{
n(z)
d(z)

}
= n(z−1)

d(z−1)
.

Then yK can be computed by the following equality

yK = 1
K !

dKR
{

n(z)
d(z)

}
dzK


z=0

, (2.51)

when Y (z) has a complicated form to take the K th derivative, we could first use partial

fraction expansion to decompose it to a summation of simple expressions, i.e., Y = Y 1 +
·· ·+Y l , where Y is have only one or two poles. We can apply eq. (2.51) to Y i to get yi

K

and then sum them up to get yK

yK = y1
K +·· ·+ yl

K .

Or alternatively, yK can be computed iteratively using eq. (2.49).

The whole algorithm can be written as follows:
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Algorithm 3 Decentralised minimal-time dynamic consensus value computation with
input signal constraints
Data: Successive observations of yi = xi[r], i = 0,1, · · · .
Result: Final consensus signal at time K : φK .

Step 2.7.1. Increase the dimension k of the square Hankel matrix Γ{Y0,1,··· ,2k} until it
loses rank and store the first defective Hankel matrix.

Step 2.7.2. The kernel S = [
α0 . . . αDr,s 1

]T of the first defective Hankel matrix gives
the coefficients of eq. (2.48).

Step 2.7.3. Compute Y (z)= y0+ y1/z+·· · and from then, we can compute φK ≈ yK (when
K is large) using eq. (2.51).

Example 2.7.1. Let Y0,1,2,3,··· = (1, p, p2, p3, · · · ), then

Γ(Y0,1,··· ,2k)=


1 p · · ·
p p2 · · ·
...

...
. . .

 .

The Hankel matrix loses rank when k = 1. The normalised kernel of this Hankel matrix is

[−p, 1]T . Let Y (z)= 1+ p/z+·· · and d(z)= z− p, then n(z)=Y (z)d(z)= z, so Y (z) writes

Y (z)= n(z)
d(z)

= z
z− p

.

For example, let K = 3, then

yK = 1
K !

dKR
{

n(z)
d(z)

}
dzK


z=0

= p3,

which is consistent.

2.7.3 Examples

In this section we use examples to illustrate the results stated in the previous sections.

Example 2.7.2. First we consider a simply connected 4-node network in [80] in Fig. 2.17(a).

We then stimulate the network with ramp inputs of different magnitude. Consensus is

reached in a dynamic and unstable sense in Fig. 2.17(c). Next we apply more complicated

input signals and illustrate the above algorithm. Without loss of generality we assume
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we can access the observations of a node. Let β0 =
[
3.5784 2.7694 −1.3499 3.0349

]T

and α0 =
[
1/2 −1/2 1/2 −1/2

]T
, then for any input signal i, sk[i] = kβ0[i]α0[i]k. We

stimulate the system with signals and use the local update protocol in eq. (2.44). The

trajectory of every nodes are plotted in blue whereas the consensus signal is plotted in red

in Fig. 2.17(d). By applying the algorithm listed above step by step, we can obtain the

consensus signal in eq. (2.52) using 19 successive observations.

Step 2.7.1. We start to increase the dimension k of the square Hankel matrix Γ{Y0,1,...,2k}
until it loses rank and store the first defective Hankel matrix.

Step 2.7.2. We found that when k = 9 the Hankel matrix loses its rank and then we can
compute its kernel

S = [
0 0.0069 −0.0069 −0.1181 0.1181 0.6111 −0.6111 −1.0000 1.0000

]T .

Step 2.7.3. Compute Y (z) = y0 + y1/z + . . . and from then we can compute yK using
eq. (2.51) and finally approximate the final consensus signal at large time step K, i.e.
φK as yK .

Y (z)= −2.952z6 +1.257z5 +1.647z4 +0.2067z3 −0.7575z2 −0.01911z+0.01492
z7 − z6 −0.6111z5 +0.6111z4 +0.1181z3 −0.1181z2 −0.006944z+0.006944

.
(2.52)

Example 2.7.3. We then consider a more complicated 10-node random directed network

(small-world network) [89] with G sw(n,2d, p), where n is the number of nodes in the

network, 2d is the degree of each node in the initial graph, and p is the probability of

rewiring an edge. We choose here n = 10,d = 1, p = 0.1, see Fig. 2.17(b). For input signals

chosen as zk[i]=α0[i]∗k
1
5 , with randomly chosen x0, we can obtain the consensus signal

using 23 successive observations.

2.8 Consensus value computation with imperfect observa-
tions

In the previous sections we proposed decentralised static and dynamic consensus com-

putation algorithms on the assumption that local observations are perfect, i.e. without

noise or quantisation or numerical error. In this section, we focus on generating a robust

algorithm that incorporates uncertain observations. More specifically, assuming that
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(a) 4-node ring. (b) 10-node small-world network.
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(c) Trajectory of each node in Exam-
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FIGURE 2.17: Networks and node trajectories in Example 2.7.2 and Example 2.7.3 with 4-node
ring and 10-node small world configuration respectively.
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the conditions for consensus are satisfied, an agent observes its own state with uncer-

tainty and tries, on successive uncertain observations of its own state, to compute the

final consensus value of the network. At each time step, an agent may either propose

an estimated final value computed from its own algorithm or wait to get more data from

the next time-step. Generally, when uncertainties, i.e. unmodelled dynamics, noise or

quantisation errors on observations, are taken into account the minimal number of steps

cannot be found with certainty. This is due to the output measurement, being corrupted

by uncertainties.

Consider a discrete-time LTI system with uncertainty

xk+1 = Axk,

hk = eT
r xk +nk = yk +nk.

(2.53)

Here, hk represents the observation with uncertainty at discrete-time k of an arbitrarily

chosen particular state xk[r] ∈ R and nk denotes a zero-mean white noise for the ran-

domly chosen state xk[r] at time k. Uncertainty might also lead to instability of the

identified regression model (2.7), and therefore the estimated final value based on this

identified model might be infinite. In this latter case no information about the final value

can be inferred.

Consider system (2.53). At each discrete-time step the only information available

is the output hk which is the sum of the observed state xk[r] and of a zero-mean but

statistically unknown Gaussian uncertainty. How can one quantify the error on the final

value based on the data set with uncertainty and the data set without uncertainty?

Standard system identification techniques [51] require an infinite number of obser-

vations to have asymptotic performance, i.e. when the number of observations is infinite,

it can guarantee a solution of the above problem. However, when the number of observa-

tions is limited and finite, there is no guarantee on the optimality of the identified model

using a classic system identification procedure, e.g., subspace system identification.

The way we tackle this problem differs from the literature. A decentralised algorithm

will be proposed in which at each time-step k, the successive observations h0, h1, . . . ,hk

are used to compute an estimated consensus value of the whole network if a criterion

on the quality of the data set is satisfied. On such criterion, some hard bounds on such

an estimate can also be computed to show the confidence of such estimation of such

predicted final consensus value.
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2.8.1 Final consensus value estimation

The idea is to recover the length of the linear regression Dr +1 and corresponding coef-

ficients in eq. (2.3) from uncertain observations.

yk+Dr+1 +αDr yk+Dr + . . .+α1 yk+1 +α0 yk = 0, ∀k ∈N.

Technically, due to the effect of uncertainty, the identified model might have different

lengths of recursion (usually much longer), different coefficients in the recursion, might

not process a root at 1 exactly and even be unstable. Generally, the idea would be to put

all the requirements in the constraints. This however would make optimisation hard.

The challenging part of the problem is that the underlying regression has a number of

constraints, e.g., the corresponding polynomial has a root at 1 and all other roots within

the unit disk. The first idea comes to reduce the number of constraints and to make as

optimisation problem solvable.

2.8.2 Averaging

In general, if X i ∼ N(µi,σ2
i ) for i = 1, . . . ,n and they are independent, then

n∑
i=1

ai X i ∼ N

(
n∑

i=1
aiµi,

n∑
i=1

(aiσi)2

)
.

If all σis are equal, it is easy to show that variance of a weighted sum of indepen-

dent variables is less than any of them. If we introduce a new variable as a function of

outputs in eq. (2.53), let qi = 1/k
∑i+k

j=i h j, then qi also satisfies the same regression in

eq. (2.3). This also means that the consensus value for this qi is exactly the same as φ.

By changing variables we now have a series of observations having the same consensus

value and satisfying the same regression but with much smaller variances. With the

above properties that we derived, we now use the successive observations of a new data

set {qi} to predict the final consensus which ought to be the same.

2.8.3 Root 1 constraint

One of the constraints is that the z-transform of the following linear regression has a

root at 1. This constraint is hard to incorporate in the identification process. In this

section, we shall use mathematical manipulation to avoid this constraint.

qk+Dr+1 +αDr qk+Dr + . . .+α1qk+1 +α0qk = 0, ∀k ∈N.
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The idea is simple: we can factorize the (t−1) term out of the minimal polynomial and

then the remaining part will not have a root at 1, i.e. (tDr +βDr−1tDr−1+ . . .+β1t+β0)(t−
1) = tDr+1 +αDr tDr + . . .+α1t+α0. To reconstruct the coefficients βis, we introduce a

new variable z and reduce the number of constraints by identifying the new data set

Z2k = {z0, q1[r]−q0[r], z1, . . . , z2k}. The only constraint is that the identified recursion

must be stable. Then

zk+Dr +βDr−1zk+Dr−1 + . . .+β1zk+1 +β0zk = 0. (2.54)

So far we have successfully relaxed the root 1 constraint.

2.8.4 Rank relaxation

Similarly, we want to construct a Hankel matrix using zis. Such a Hankel matrix

however will not lose rank at any finite dimension because of the uncertainties. Let

Z0,1,...,2k, {z0 = q1 − q0, z1 = q2 − q1, . . . , z2k = q2k+1 − q2k}(k ∈Z) ,

Γ(Z0,1,...,2k)=


z0 z1 z2 . . .

z1 z2 z3 . . .

z2 z3
. . .

...
... z2k

 .

In this case, the idea is to find a Hankel matrix Γ(Ẑ0,1,...,2k) to approximate (close

enough in some measure) Γ(Z0,1,...,2k). Γ(Ẑ0,1,...,2k) has finite rank and can therefore be

used to estimate the final consensus signal. We formulate it as the following optimisation

problem.

Γ(Ẑ0,1,...,2k)= argmin‖Γ(Z0,1,...,2k)−Γ(Ẑ0,1,...,2k)‖, (2.55)

s.t.:detΓ(Ẑ0,1,...,2k)= 0,Γ(Ẑ0,1,...,2k) is Hankel

here ‖ ·‖ can be any norm, from the fact that

E{(Γ(Z0,1,...,2k)−Γ(Ẑ0,1,...,2k))T (Γ(Z0,1,...,2k)−Γ(Ẑ0,1,...,2k))}

=Γ(Z0,1,...,2k)TΓ(Z0,1,...,2k)+Noise Cov. Matrix,

where E{·} is the expected value, this means that the matrix 2-norm can be a good candi-

date measure for solving the problem. To solve the above problem we resort the following
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lemma.

Lemma 2.8.1. [74] Let x ∈Rn, then there exists a Hankel matrix D ∈Rn×n, such that

Dx = x and ‖D‖2 ≤ 1.

Proposition 2.8.1. [38] Assume that the Hankel matrix Γ(Z0,1,...,2k) has full rank, then

min‖Γ(Z0,1,...,2k)−H(k,k)‖2 =σ(Γ(Z0,1,...,2k)) (2.56)

s.t.: detH(k,k)= 0,H(k,k) is Hankel.

where H(k,k) can be obtained by the following Algorithm 4.

Proof. Before referring to the algorithm we first define the hvec operator mapping from

square Hankel matrix Rn×n to a vector R(2n+1)×1. For example, hvec(Γ(Z0,1,...,2k))=
[
z0 z1 . . . z2k

]T
.

We now propose the algorithm for computing the nearest defective Hankel matrix with

respect to Γ(Z0,1,...,2k). From Algorithm 4, we can see that H(k,k) satisfies the constraints

Algorithm 4 Computing the nearest defective Hankel matrix

Step 2.8.1. Form the observations as a square Hankel matrix, take a singular value
decomposition of Γ(Z0,1,...,2k) and find the smallest singular value σ(Γ(Z0,1,...,2k)) and cor-
responding singular vector v(Γ(Z0,1,...,2k));

Step 2.8.2. Compute the Hankel vector

hvec(D)= C+
x CT

x e1,

where C+
x is the Moore-Pensore pseudoinverse of Cx, e1 = [1, 0, . . . , 0]T has length of 2k+1

and

Cx =



v[1] . . . v[k] v[k+1]
. . . . . . . . .

v[1] . . . v[k] v[k+1]
v[k+1] v[1] . . . v[k]

...
. . . . . .

...
v[2] . . . v[k+1] v[1]


.

Step 2.8.3. Let Γ(Ẑ0,1,...,2k)=Γ(Z0,1,...,2k)−σ(Γ(Z0,1,...,2k))D.

in the optimisation (2.55), because

1. by construction, H(k,k) is Hankel;
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2. it is easy to verify that the constructed Hankel matrix D satisfying Dv(Γ(Z0,1,...,2k)=
v(Γ(Z0,1,...,2k)), then

H(k,k)v(Γ(Z0,1,...,2k))=Γ(Z0,1,...,2k)v(Γ(Z0,1,...,2k))

−σ(Γ(Z0,1,...,2k))Dv(Γ(Z0,1,...,2k))

= 0.

In consequence, H(k,k) does not have full rank;

3. since H(k,k)−Γ(Z0,1,...,2k)=−σ(Γ(Z0,1,...,2k))D and ‖D‖2 ≤ 1, then

‖H(k,k)−Γ(Z0,1,...,2k)‖2 ≤σ(Γ(Z0,1,...,2k)).

Therefore we can choose Γ(Ẑ0,1,...,2k)= H(k,k) as the solution of optimisation (2.55).

Remark 2.8.1. σ(Γ(Y0,1,...,2k)) measures how good the approximation is. If it is large,

then we probably need more observations to increase the dimension of the Hankel matrix

for the purpose of a better approximation.

Remark 2.8.2. Due to the noise effect we can not show that σ(Γ(Z0,1,...,2k)) is a monotonic

function with respect to the number of the observations.

2.8.5 Stability constraint

In the above section we found a close-to-defective Hankel. We can then follow similar

steps in Algorithm 2 to compute the corresponding kernel of this Hankel matrix in ques-

tion. However, the computed kernel (coefficients in regression (2.54)) might not map to

a stable polynomial due to the noise effect. This leads to the invalidity of final value

theorem.

In consequence it remains to consider this stability constraint for the computed ker-

nel. In the literature, there are a number of attempts to impose the stability condition in

the identification, [56] uses the Small-Gain Theorem [107] and L1 measure of distance

[20] while a recent paper [15] imposes the Jury’s stability criteria for the identified pa-

rameters. However, these conditions are hard to impose or computationally intractable.

Here we shall solve the problem using Nehari’s theorem[107].

Assume that Γ(Ẑ0,1,...,2k) satisfies the condition that its minimal singular value is

less than a pre-determined small number at discrete time step k = d. By approximating

Γ(Z0,1,...,2d) by Γ(Ẑ0,1,...,2d), we can then compute the kernel [γ0, γ1, . . . , γd, 1]T of the

latter matrix and map the coefficients to a polynomial. Furthermore, we compute the
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roots of obtained polynomial mapping from the kernel td+1 +γd td + . . .+γ0 = 0, namely,

λ1, . . . ,λd+1. From the obtained roots we construct a Vandermonde matrix (assuming the

roots are distinct, otherwise we can construct a confluent Vandermonde matrix)

V (0,d)=


1 1 . . . 1

λ1 λ2 . . . λd+1
...

. . . . . .
...

λd
1 λd

2 . . . λd
d+1

 .

Without loss of generality, we rearrange the columns of V such that {|λi| ≤ 1 : i = 2, . . . ,k}

and {|λi| > 1 : i = k+1, . . . ,d+1}.

The next step is to compute the diagonal matrix T, the defective property guarantees

the diagonal property of T.

T , diag
{
(V (0,d))−1Γ(Ẑ0,...,2d)(V (0,d)T )−1

}
=

[
T1 0

0 T2

]
,

where T1 ∈Rk×k and T2 ∈R(d+1−k)×(d+1−k). We denote Γ(Ẑ0,...,2d)=V (0,d)TV (0,d)T .

We then need to find a stable approximation of Γ(Ẑ0,...,2d), i.e. another Hankel ma-

trix H′(d+1,d+1) = V ′(0,d)T ′V ′(0,d)T such that the Vandermonde matrix V ′ does not

contain any λis greater or equal to 1 and also ‖Γ(Ẑ0,...,2d)−H′(d+1,d+1)‖ is minimal,

where ‖ ·‖ is some norm.

Assuming H′(d+1,d+1)=V ′
1T ′

1V ′T
1 +V ′

2T ′
2V ′T

2 , after some manipulation we have

‖Γ(Ẑ0,...,2d)−H′(d+1,d+1)‖ = ‖V1T1V T
1 +V2T2V T

2 −V ′
1T ′

1V ′T
1 −V ′

2T ′
2V ′T

2 ‖.

For the stable part, we choose V ′
1 =V1 and T ′

1 = T1.

For the unstable part, we shall find a “stable” Hankel matrix6 to approximate V2T2V T
2 .

If we choose the norm to be the Hankel norm [67], we can map the Hankel matrix to a

transfer function and use well-established Nehari’s theorem (see for example Section 8

in [107]) to find the closest stable approximation of this unstable transfer function in

terms of the L∞ norm.

Given a Hankel matrix H(d+1,d+1),V2T2V T
2 , we consider a one-to-one mapping

from this Hankel matrix to a time-series data {g0, g1, . . . , g2d, . . .}. From Kronecker’s

Theorem 2.7.1 [67], this Hankel matrix has finite rank d− k+17; let G(z), g0 + g1z+
6the polynomial mapped from its kernel is stable.
7since it contains d−k+1 unstable roots
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. . .+ g2d z2d, then G(z) is a rational function of z with degree d−k+1.

Since G(z) is unstable, we are interested in finding a stable polynomial L(z) such

that L(z) = argminL∈RH ∞‖L(z)−G(z)‖∞. We turn the original problem into a standard

model-matching problem in [22].

The algorithm to obtain L(z) can be done using Nerahi’s extension theorem [107], the

procedure to obtain the coefficients of L: l i is done iteratively.

Theorem 2.8.1. [107] The minimal value of the above infinite norm can be computed by

the largest singular value of

min
L∈RH ∞

‖L(z)−G(z)‖∞ = ‖Γ̂G(z)‖∞ = σ̄




g2d g2d−1 . . . g0

g2d−1 g2d−2 . . . 0
...

...
. . .

...

g0 0 . . . 0




. (2.57)

The next question is how to obtain the coefficients in L. First choose l0 to minimise

lo = argmin

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∗ ∗ ∗ ∗∗
∗ ∗ ∗ ∗∗
g3 g4 g5 ∗∗
g2 g3 g4 ∗∗
g1 g2 g3 ∗∗

g0 − l0 g1 g2 ∗∗



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
This can be viewed as a matrix dilation problem solved by Parrott’s Theorem [107]. More

specifically, we refer to the following lemma.

Lemma 2.8.2. [Parrott’s Theorem] The solution to the following problem:

γ0 =min
X

∥∥∥∥∥
[

X B

C A

]∥∥∥∥∥
is given by

γ0 =max

{∥∥∥[
C A

]∥∥∥ ,

∥∥∥∥∥
[

B

A

]∥∥∥∥∥
}

.

59



CHAPTER 2. DECENTRALISED NETWORK PREDICTION

From above Lemma we can further write

min

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∗ ∗ ∗ ∗∗
∗ ∗ ∗ ∗∗
g3 g4 g5 ∗∗
g2 g3 g4 ∗∗
g1 g2 g3 ∗∗

g0 − l0 g1 g2 ∗∗



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥



∗ ∗ ∗ ∗∗
∗ ∗ ∗ ∗∗
g3 g4 g5 ∗∗
g2 g3 g4 ∗∗
g1 g2 g3 ∗∗



∥∥∥∥∥∥∥∥∥∥∥∥∥
by properly choosing l0 from a constructive proof of Parrotts’ Theorem.

Once l0 has been solved, we then solve l1 similarly

l1 = argmin



∗ ∗ ∗ ∗∗
g3 g4 g5 ∗∗
g2 g3 g4 ∗∗
g1 g2 g3 ∗∗

g0 − l0 g1 g2 ∗∗
−l1 g0 − l0 g1 ∗∗


.

Once l1 is solved, we can substitute it in and solve for l2 and so on. In this way, we

can solve for all l is iteratively, and we also put all the computed l is as a Hankel matrix

Γ(l0, l1, . . . , l2k)=


l0 l1 l2 . . .

l1 l2 l3 . . .

l2 l3
. . .

...
... l2k

 . (2.58)

From Proposition 2.7.1, when increasing the dimension of this Hankel matrix it will

eventually lose rank. When it does, we compute its normalised kernel to get the regres-

sion for l is. In addition, the explicit expression of L(z) can be obtained by taking the

Z-transform of the obtained regression.

The explain of the above analysis is as follows: Let V (z)= v0 +v1z+ . . . represent the

stable part, we actually approximate for all discrete-time step k, we decompose the noisy

signal yk = vk + gk +O(ε)≈ ŷk = vk + lk where the approximation holds because

‖G(z)−L(z)‖L∞ ≤ ε. (2.59)

This means that, where we allow a ε neighbourhood of every observation, we can find
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another sequence of observations (data set) that satisfies all the conditions. We can thus

compute the final value of this obtained data set of ŷ (since it satisfies every conditions)

φ̂ from eq. (2.6) and take this value as an approximation for φ= limk xk[r]≈ φ̂.

Remark 2.8.3. We are trying to meet the requirements step by step under the constraint

that we only make small changes to the data set guided by the measurement of some

norm. The distance from the original data set to the estimated stable data set is bounded

by O(ε).

2.8.6 Compute bounds for final consensus value estimation

In Section 2.8.4 and 2.8.5, we proposed an algorithm that firstly computes a defective

Hankel matrix Γ(Ẑ0,1,...,2k) close to Γ(Z0,1,...,2k). And it then computes a stable Hankel

matrix Γ(Z̄0,1,...,2k) close to Γ(Ẑ0,1,...,2k). Finally it uses Γ(Z̄0,1,...,2k) to compute the esti-

mated final consensus value. By applying Theorem 2 in [98] we can show that when

there is some change (by noise) in the root of obtained polynomial (e.g. from λ j to λ′
j),

the final consensus value estimation error is at most O(λ j−λ′
j). This implies that a small

error in the root will lead to a small error in the estimation. However, it remains to show

the guarantee of estimated final consensus value. More specifically, how far it is away

for the true consensus value.

In this section, we shall briefly list the idea of computing optimal bounds for the final

consensus value estimation. Here the word “optimal” means that given the identified

model and the available noisy observations his, the bounds for the final consensus value

is the tightest using the algorithm for linear system in [105]. From the identified regres-

sion model identified from Section 2.8.1 to Section 2.8.5, we then determine how precise

the identified consensus value is. After obtaining α0, ...,αd ∈ R such that the following

linear regression equation is satisfied ∀k ∈N≥0

ŷk+d+1 + cd ŷk+d + . . .+ c1 ŷk+1 + c0 ŷk = 0. (2.60)

Write this in a matrix form

κk+1 = Mκk,

ŷk = κk[r],

hk = ŷk +dk (2.61)
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where κk =
[

ŷk+d ŷk+d−1 . . . ŷk

]T
and M has the following canonical form

M =



−cd −cd−1 cd−2 . . . −c0

0 1 0 . . . 0

0 0 1 0
...

...
...

. . .

0 0 . . . 0 1


.

We shall apply the algorithms in [105] to compute the optimal bounds for the final

value of this iteration (2.60). As a final remark of this section, we are working on an

expanded version of the result in this section in which we shall illustrate every step in

the proposed algorithm [104].

2.9 Discussion

We recently found that some steps in Algorithm 3 in this Chapter have some links to

the realisation theory of SISO transfer functions in the 1960s, namely, the Kalman-Ho’s

algorithm [40] and the Silverman’s algorithm [77]. However, the differences are subtle

and will be explained as follows:

Kalman-Ho’s algorithm, Silverman’s algorithm Some steps in our proposed de-

centralised consensus value computation Algorithm 2 is very similar to the Kalman’s

work in [45]8. This is due to the fact that fundamentally, we are solving for the param-

eters in a set of linear equations. We are interested in finding out what is the mini-

mal number of successive impulse responses that suffices to compute the corresponding

transfer function and therefore the future impulse responses. However Kalman-Ho’s

and Silverman’s algorithms in [40, 77] focused on obtaining the minimal realisation (a

realisation that is both controllable and observable) using infinite number of impulse

responses and Hankel matrix decomposition.

However, Kalman-Ho’s algorithm is hard to implement in practice due to numerical

error. More specifically, when trying to factor a large Hankel matrix using singular

value decomposition, it is hard to select a threshold to do truncation on the singular

values. Our algorithm starts from low dimension matrices and of course, standard rank

computation algorithm performs.

Later, Silverman continued pursuing this idea and in a paper with Glover [31] they

8I declare that the results in Algorithm 2 is my original work (preliminary results and more detailed
derivations can be found in [95]) and therefore independent of previous algorithm as we mentioned here
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studied the structural controllability (observability) problem, i.e. given the network

structure and the structure of inputs, whether the structured controllability Grammian

has full rank over almost all possible nonzero real parameters. This can be checked using

graph-theoretical notions without resorting to complicated algebraic computations.

We have shown that

Dr +1= rank


eT

r

eT
r A
...

eT
r An−1

≤ n,

assuming that n is the dimension of A. Basically, the structural controllability can be

re-interpreted as given the network structure of A and the structure of observation, i.e.

eT
r and use the result in [31], we can check whether the following equality holds graph-

theoretically 
eT

r

eT
r A
...

eT
r An−1

= n.

In this thesis, we also related the minimal number of steps that needed to compute

the transfer function to the rank of Grammian and further a graphical quantity, i.e.

mEEP. In our case, we wish to minimise the rank of observability Grammian. Given

the network structure of A and the structure of observation, i.e. eT
r , there exists at

least a set of parameters such that the rank of observability Grammian is equal to Dr +
1 ≤ n. However, how to minimise Dr + 1 over all possible nonzero real parameters is

still puzzling. This actually links a open problem in linear algebra and graph theory

communities, i.e. the minimal rank problem [41].

Kung’s algorithm When the impulse response is corrupted with noise, [46] pro-

posed a solution to this problem using singular value decomposition and truncate the

smallest singular value(s) if it is close to 0. The standard impulse to state-space func-

tion in Matlab imp2ss uses this result. However, it is easy to know that the singular

value decomposition will not preserve the Hankel matrix structure, i.e. the matrix after

truncation will no longer be Hankel. Comparing with eq. (2.55), [46] basically did the

following optimisation

Γ(Ẑ0,1,...,2k)= argmin‖Γ(Z0,1,...,2k)−Γ(Ẑ0,1,...,2k)‖, (2.62)

s.t.:detΓ(Ẑ0,1,...,2k)= 0,
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but loosed the constraint that Γ(Ẑ0,1,...,2k) is Hankel.

Though the minimal value of the distance function in eq. (2.62) and eq. (2.55) are the

same (smallest singular value of Γ(Z0,1,...,2k)), the solutions Γ(Ẑ0,1,...,2k) in eq. (2.62) and

eq. (2.55) are very different. However, the solution in Kung’s algorithm could not map

the truncated matrix back to the impulse response and see how much one changed at

each steps.

Comparison Chen, Ohlsson and Ljung recently published a paper about how to esti-

mate transfer function from finite number of noisy impulse responses using regularised

least squares [16]. Future work lies in the comparison between proposed algorithm in

Section 2.8 and [16].

2.10 Conclusion, and future works

This chapter formulates and analyses the decentralised minimal time consensus prob-

lem. Unlike other tools in the literature, our algorithm computes consensus from the

history of any node in a completely decentralised, local manner. The necessary infor-

mation for any node is its own history and is therefore exclusively local. The proposed

algorithm does not require global knowledge, such as the total number of nodes in the

system, information about the neighbourhood of the node, or specific edge weights. After

characterising the minimal number of steps required for any given node to compute the

final consensus value, we provide algebraic, graph-theoretical and local informative in-

terpretations of the minimal number of steps. Furthermore, we examine the mEEP with

different nodes in a variety of network structures. We also consider the extensions of the

proposed algorithm to other practical problems.

Beyond the directions mentioned in the chapter and previous section, there are still

a large number of interesting directions for future research.

1 Theoretical:

1.1 Optimal network structure design for minimal minimal-time consensus. It

is important to mention that the EEP-based results provided here for undi-

rected graphs can be extended to directed graphs at the price of a more elab-

orate exposition. Therefore, we ask: Given a constraint on the number of

edges in the network, what are the network structures that minimise the

d-cardinality of the Laplacian spectrum?

1.2 Extension to nonlinear dynamics, time-varying dynamics, in the consensus
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model (2.1). Extension to nonsuccessive observations yis in eq. (2.1) caused

by packet-drop in a communication channel.

1.3 Robustness. How can we take into account robustness issues such as node or

edge failures in a consensus network?

2 Computational:

2.1 There are a number of interesting directions for studying complex social net-

works. For example, based on the polynomial-time algorithm [58] to find a

mEEP with respect to a node in a given network, we can now study the real

networks, for example citation network [47], cellphone network [78], or social

network to search for “social leaders”.

2.2 We are implementing the proposed algorithm in the rendezvous problem in

multi-robot systems. For example, most robots only have a single-chip mi-

crocomputer for computations and limited memory to store the observations.

How to incorporate such limitations to improve numerical algorithms for

Hankel matrices is currently under investigation.

3 Application: In general, the proposed minimal-time consensus computation al-

gorithm can be embedded in the distributed optimisation/ Kalman filtering/ com-

putation to improve performance, i.e. the time needed to know the global consen-

sus value. For application and commercialisation, we are currently working on

embedding our minimal-time consensus computation algorithm in the following

algorithms: distributed Kalman filtering [59] in sensor networks, rendezvous in

multi-robot systems, Google Pagerank algorithm9 [11], load balancing algorithm

of a huge number of computers (Amazon for example) [18] to dramatically increase

the performance in the these algorithms. Preliminary results showed that our al-

gorithm outperforms the best distributed Kalman filtering which is widely used in

the sensor network by Olfati-Saber [59] and at the same time relaxing some key

assumptions, e.g. the restriction on the sampling time.

9Preliminary result shows that variations of algorithms proposed in this Chapter improve the speed of
obtaining Pagerank vector dramatically.
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FIGURE 2.18: Step by step labelling of the cells using the BFS algorithm.

2.11 Appendix

2.11.1 BFS algorithm

We hereby give an example of the application of the Breadth-First-Search (BFS) algo-

rithm that we mentioned in the proof of Theorem 2.5.2.

Consider the unlabelled network described in Fig. 2.18. We arbitrarily choose node

1 to be the top node on this topology. The BFS algorithm can now be used to label all

the other nodes in the graph. To do so, we start to label the nodes which are direct

neighbours of node 1, and therefore place labels 2 and 3 as in Fig. 2.18 (a). Then we

continue to search for the unlabelled neighbouring nodes of nodes 2 and 3 and label them

nodes 4 and 5 respectively (see Fig. 2.18 (b)). Finally, we add label 6 to the remaining

unlabelled neighbour of node 4 (see Fig. 2.18 (c)).
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Chapter 3

Network reconstruction

In the previous chapter we considered how to predict the final consensus value of a

network based on the successive observations of a single node. In this chapter, assuming

that the available information are the observations of a number of nodes (a subset of

nodes) in the network, what can we get in addition to predicting the final consensus value

[96]? An important question is how to use such observations to infer the interconnections

between the measured nodes. Later we consider an even more ambitious one: Can we

obtain any global information about the network (e.g., number of nodes in the network,

how nodes interconnect) from such local measurements as motivated by Blake’s lines “To

see a world in a grain of send, And a heaven in a wild flower”.

3.1 Introduction

In this chapter we shall pursue these questions in the framework of network reconstruc-

tion, more specifically, biological network reconstruction. It is one of the fundamental

interests in systems biology [1, 4]; since these mechanisms (unknown networks) are

composed of complex networks of reactions between various chemical species. Most biol-

ogists believe that there is a strong link between the structure and the functionality of a

biological system [1]. On the other hand, detailing the species and interactions forming

this network can be an overwhelming task.

The biological network reconstruction problem challenges come from the necessity to

deal with noisy and partial measurements (in particular, the number of hidden/unobservable

nodes and their location and connections in the network are unknown) taken from a non-

linear and stochastic network. Even in the ideal situation where the underlying network

is assumed to be linear time-invariant (LTI) and the measurements are assumed to be
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non-noisy, it can be shown that, due to partial observability, this problem is unsolvable

using classical system identification techniques [34]. In particular, identification of the

system transfer function (obtained, for example, using classic system identification ap-

proaches) is useless to solve the network structure reconstruction problem since transfer

functions do not contain sufficient information for that purpose.

There are a number of different representations of an LTI dynamical system. Each

representation reveals different information about the system [93], and thus each also

requires different amounts of data, possibly different kinds of data, as well as different

computational procedures to be specified from these data. Here we discuss transfer

functions, state space realisations, and dynamical structure and use them to contrast

the identification, realisation, and reconstruction problems.

The transfer function of a LTI system is a description of the input-output behaviour

of the system. It provides a model capable of simulation. Knowing the transfer function

allows one to predict the response of the system to a new input. System identification

[51] uses time-series data characterising stimulus and response to determine the input-

output dynamics of the system. Developing reliable algorithms capable of operating on

real (i.e. noisy and finite) data is a research topic in its own right. The system identifica-

tion process reads time series data to produce a mathematical expression characterising

the dynamic input-output behaviour of the system; in linear time-invariant systems this

expression is the transfer function. For a system with m inputs and p outputs, this

input-output map is a p×m matrix of transfer functions that we also call the transfer

function, allowing any ambiguity to be resolved by context. In this work we denote this

transfer function matrix as G(s) and note that each individual element of G is a proper

rational function of the Laplace variable s, a function of a complex variable.

In contrast to a transfer function, which describes only the input-output behaviour

of an LTI system, a state space model of the system describes the precise network archi-

tecture used to realise a particular input-output behaviour. This representation of the

system is a set of coupled ordinary differential equations of the form

ẋ(t)= Ax(t)+Bu(t)1

for an n×n matrix A, an n×m matrix B, a vector of m inputs, u,and in which the dot

notation indicates a derivative with respect to time, t. In this work, we assume that

p < n states are measured, leading to the additional output equation y(t) = Cx, where

C =
[
I 0

]
x and in which I is the p× p identity matrix, and 0 is the p× (n− p) matrix of

1The notations in this Chapter are independent of those in the previous Chapter.
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zeros. This output equation thus indicates that the first p elements of the state vector x

are exactly the measured variables in the system; the remaining (n− p) state variables

are unmeasured “hidden" states. The zero structure of the A and B matrices exactly

describe the Boolean structure of the network, and the values of these matrices encode

the dynamics of the system.

In general there are many state space realisations that generate the same input-

output behaviour, or transfer function. The process of finding a state space model that

produces a given transfer function is called realisation, and a state space model derived

from a given transfer function is called a realisation of the transfer function. There is

a well-developed realisation theory for linear systems that answers questions such as

the minimum number states, n, needed to describe a given transfer function, G(s); how

to find state space realisations of particular canonical forms; and how to relate (A, B,

C) to G(s). This theory helps us understand that generally more information, beyond

the input-output data used to generate a transfer function, is needed to prefer one state

space realisation over another as a description of a particular system.

Even with just one hidden state, the realisation problem becomes ill posed; a trans-

fer function will have many state space realisations, and each of these may suggest an

entirely different network structure for the system. This is true even if it is known that

the true system is, in fact, a minimal realisation of the identified transfer function. As a

result, failure to explicitly acknowledge the presence of hidden states, and the ambigu-

ity in network structure that results, can lead to a deceptive and erroneous process for

network discovery.

Based on this latter observation, a new representation for LTI systems, called dy-

namical structure functions was introduced in [34]. Dynamical structure functions cap-

ture information at an intermediate level between transfer function and state space

representation (see Figure 3.1). Specifically, dynamical structure functions not only en-

code structural information at the measurement level, but also contain some information

about hidden states. Based on the theoretical results presented in [34], we proposed an

experimental guideline for the design of an experimental data-acquisition protocol which

allows the collection of data containing sufficient information for the network structure

reconstruction problem to become solvable. In particular, we have shown that if nothing

is known about the network, then the data-collection experiments must be performed as

follows:

1. for a network composed of p measured species, the same number of experiments p

must be performed;
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S.S. Rep.
(A, B, [I,0])

(2)

(1)

(B)

(A)

Dyn. Struct. Fun.
(Q, P)

Transf. Function
G

Amount of
information
 captured

by the considered
data representation

Noise

I/O data (Sys. Id.)

I/O data (C)

I/O data (impossible)

FIGURE 3.1: Mathematical structure of the network reconstruction problem using dynamical
structure functions. Red arrows mean “uniquely determine”, blue arrows indicate
our work.

2. each experiment must independently control a measured species, i.e. control input

i must first affect measured species i.

If the experiments are not performed in this way the network cannot be reconstructed,

and any network structure fits the data equally well (e.g. a fully decoupled network or a

fully connected network). If biologists have already some information about the network,

as is usually the case, then these conditions can be relaxed as explained in [34].

Using dynamical structure functions as a mean to solve the network reconstruction

problem, the following aspects need to be considered (see Figure 3.1):

Firstly (see (A) in Figure 3.1), the properties of a dynamical structure function and

its relationship to the transfer function associated with the same system need to be

precisely established [34]. We shall show that if experiments are performed as explained

above: 1) we can not only obtain the network between the measured states but also

the “self-loop” gain for each measured state; 2) we can still recover the true network

structure even if the exact value of control inputs is unknown.

Secondly (see (B) in Figure 3.1), an algorithm for constructing a minimal order state-

space representation consistent with an obtained dynamical structure function needs

to be developed [101]. Using this last set of results, an estimate of the minimal num-

ber of hidden nodes that needs to be considered in the state space realisation can be

obtained. In the context of biology, this helps understand the minimal number of un-

measured molecules in a particular pathway: a low number means that most molecules
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in that pathway have been identified and measured, showing a good understanding of

the system; while a large number shows that there are still many unmeasured vari-

ables, suggesting that new experiments should be carried out to better characterise that

pathway.

Thirdly (see (C) in Figure 3.1), an efficient algorithm for reconstructing the dynam-

ical structure function best fitting noisy input-output data needs to be developed. In

particular, we focus in this Chapter on developing an efficient method of reconstructing

networks in the presence of noise and nonlinearities. We assume that the conditions for

network reconstruction presented above in (1) and (2) have been met. In our approach,

we use the same information as traditional system identification methods, i.e. input-

output data. However, with our method, steady-state (resp. time-series data) can be

used to reconstruct the Boolean (resp. dynamical network) structure of the system.

The structure of this chapter is as follows. In Section 3.1.1, we give a simple ex-

ample showing that direct system identification from input-output data does not allow

the reconstruction of the network without full measurements. In Section 3.2, dynamical

structure functions are defined and fundamental results concerning their usefulness in

the network reconstruction problem are stated. Based on this new presentation of LTI

systems, Section 3.3 introduces a number of open questions that could lead to new the-

ories in the control society. Section 3.4 presents the main results on robust network re-

construction from input-output data in the presence of noise and nonlinearities. Further,

we illustrate our algorithm on biologically-inspired network reconstruction examples in

Section 3.5. We propose a minimal realisation algorithm based on state-space realisa-

tions and pole-zero analysis in Section 3.6 and model reduction algorithms in Section 3.7.

Finally discussions on future work are presented in Section 3.8.

3.1.1 Motivating example

Consider a linear time-invariant system from which partial, non-noisy input-output

measurements are obtained. Using system identification, a transfer function describ-

ing the input-output behaviour of this system can be obtained. However, in the partial

observation case, network reconstruction is not possible without further information.

To illustrate this, assume that the obtained transfer function from input-output data is

given by:

G = 1
s+3

[
1

s+1
1

s+2

]
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FIGURE 3.2: The same transfer function yields two minimal realisations with very different net-
work structures: decoupled internal structure (left) and coupled internal structure
(right). Measured species are shown by red circles while hidden species correspond
to blue circles. The complete biochemical network, reflected in each state space real-
isation, is shown on top; on the bottom are the networks between measured species
only. Blue and red arrows represent transfer functions and include the dynamics
corresponding to hidden states.

It can be shown that this transfer function is consistent with two state-space realisations

ẋ = Ax+Bu, y= Cx with very different internal structures, i.e.

A1 =


−1 0 1

0 −2 1

0 0 −3

 , A2 =


−2 −1 1

−1 −3 1

0 −1 −1

 ,

B1 = B2 = [0 0 1]T , and C1 = C2 = [I 0] ∈ R2×3 (i.e. the third state is hidden/non-

observable). The networks in Figure 3.2 correspond to each of the indicated realisations

of G. Note that both realisations are minimal. This demonstrates that even in the

idealised setting (LTI dynamics, non noisy data), network reconstruction is not possible

without additional information about the system. This also demonstrates exactly what

additional information is necessary for the transfer function uniquely to determine the

structure.
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3.2 Dynamical structure functions and network reconstruc-
tion

Consider a nonlinear system ˙̄x = f (x̄,u,w), ȳ = h(x̄,w) with p measured states ȳ, hidden

states z̄ (potentially a large number of them), m inputs u, and noise w. The system

is linearised around an equilibrium point (a point such that f (x̄∗,0,0) = 0), and it is

assumed that inputs and noise do not move the states too far from the equilibrium point

so that the linearised system is a valid approximation of the original nonlinear system.

The linearised system can be written as ẋ = Ax+Bu, y = Cx, where x = x̄− x̄∗ and y =
h(x̄,0)−h(x̄∗,0). The transfer function associated with this linearised system is given by

G(s) = C(sI − A)−1B. Typically, we can use standard system identification tools [51] to

identify a transfer function G(s) from input-output data.

Like system realisation, network reconstruction begins with the identification of a

transfer function, but it additionally attempts to determine the network structure be-

tween measured states without imposing any additional structure on the hidden states.

As we have shown in [34], this requires a new representation of linear time-invariant

systems. This new representation is obtained as follows: First we transform [A,B,C] to[
Ao,Bo,

[
Ip 0

]]
(it is easy to show that this can always be done) and then partition the

linear system dynamics as[
ẏ

ż

]
=

[
Ao

11 Ao
12

Ao
21 Ao

22

][
y

z

]
+

[
Bo

1

Bo
2

]
u

y =
[

Ip 0
][

y

z

] (3.1)

where x = (y, z) ∈Rno
is the full state vector, y ∈Rp is a partial measurement of the state,

z are the no − p “hidden” states, and u ∈Rm is the control input. In this work we restrict

our attention to situations where output measurements constitute partial state informa-

tion, i.e. p < no. We consider only systems with full rank transfer functions that do not

have entire rows or columns of zeros, since such “disconnected” systems are somewhat

pathological and only serve to complicate the exposition without fundamentally altering

our conclusions.

Taking Laplace transforms of the signals in (3.1) yields[
sY

sZ

]
=

[
Ao

11 Ao
12

Ao
21 Ao

22

][
Y

Z

]
+

[
Bo

1

Bo
2

]
U (3.2)
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where Y , Z, and U are the Laplace transforms of y, z, and u, respectively. Solving for Z

gives

Z = (
sI − Ao

22
)−1 Ao

21Y + (
sI − Ao

22
)−1 Bo

2U

Substituting this last expression of Z into (3.2) then yields

sY =W oY +V oU (3.3)

where W o = Ao
11 + Ao

12
(
sI − Ao

22
)−1 Ao

21 and V o = Ao
12

(
sI − Ao

22
)−1 Bo

2 +Bo
1. Let Do be a

diagonal matrix with the diagonal term of W o on its diagonal, i.e. Do = diag{W o} =
diag(W o

11,W o
22, ...,W o

pp). We thus obtain:

(
sI −Do)Y = (

W o −Do)Y +V oU

Note that W o −Do is a matrix with zeros on its diagonal. We then have

Y =QY +PU (3.4)

where

Q = (
sI −Do)−1 (

W o −Do) (3.5)

and

P = (
sI −Do)−1 V o (3.6)

Note that Q is zero on the diagonal.

Definition 3.2.1. Given the system (3.1), we define the dynamical structure function of

the system to be (Q,P), where Q and P are the internal structure and control structure,

respectively, as defined in (3.5) and (3.6).

Consider the system matrix Ao in eq. (3.1) as the original information flow graph

with interconnection structure represented by a weighted directed graph (digraph for

short). In this representation of the network, the n nodes of the digraph represent the n

states of the system and a weighted edge ai j from node j to node i indicates the existence

of a causal dependence from from state j to state i in the network. The digraph is denoted

by G = (V ,E , A), where V = {ν1, . . . ,νn} is the set of nodes, V , Vm
⋃

Vh, E ⊂ V ×V is the

set of edges. Vm = {
ν1, . . . ,νp

}
is the set of measured nodes and Vh = {

νp+1, . . . ,νn
}

is the

set of hidden nodes. We shall give the graph theoretical interpretation of the intuition

of dynamical structure function. As illustrated in Fig. 3.3, we condense the graph by

deleting all the hidden states.
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24
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U2

U1 1 3

2

U2

U1

(a) (b)

FIGURE 3.3: (a) An example system with two inputs, three measured states and two hidden
states. (b) The corresponding condensed graph with measured states.

Let Φ= (I − Ao/s)−1, if we build the signal-flow network for Ao/s , then from Mason’s

rule we can obtain the gain from node i to node j directly from the graph as follows:

Φ[i, j]= 1
∆

∑
path p∈G

Tp∆p, (3.7)

where ∆ is the determinant of the graph, which can be computed by

∆= 1−∑
L i +

∑
L iL j + . . .+ (−1)m ∑

. . .

Tp is the gain of the pth forward path from node i to node j, L i is the loop gain of

each closed loop in the graph, and L iL j is the product of the loop gains of any two non-

touching loops (i.e. loops with no common nodes). ∆p is the cofactor value of ∆ for the pth

forward path, with the loops touching the pth forward path removed (i.e. the remaining

graph when you have removed those parts of the graph that form loops while retaining

the parts on the forward path).

From the matrix inversion formula, it is easy to check that I − W o(s)
s lies in the upper

left part of Φ representing the information flow between the measured states.

Example 3.2.1. Consider a system with the structure depicted in Fig. 3.3. A linear
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system’s representation is

ẋ =



a11 0 a13 0 0

0 a22 0 a24 0

0 a32 a33 0 a35

a41 0 0 a44 0

0 a52 0 0 a55

x+



b11 0

0 b22

0 0

0 0

0 0

u

y =
[
I3 0

]
x

where I3 is the 3×3 identity matrix. Following the above definitions of [W o, V o] we have

W o =


a11 0 a13

a24a41
s−a44

a22 0

0 a32 + a35a52
s−a55

a33

 , and V o =


b11 0

0 b22

0 0

 .

Q =


0 0 a13

s−a11
a24a41

(s−a22)(s−a44) 0 0

0 a35a52+a32(s−a55)
(s−a33)(s−a55) 0

 (3.8)

P =


b11

s−a11
0

0 b22
s−a22

0 0

 (3.9)

Note that the links between measured states and the complexity of hidden states are en-

coded in the expression of W o and V o.

[W o V o]= [Ao
11 Bo

1]+ Ao
12(sI − Ao

22)−1[Ao
21 Bo

2]

=


a11 0 a13 b11 0

0 a22 0 0 b22

0 a32 a33 0 0

+


0 0 0 0 0

a24a41
s−a44

0 0 0 0

0 a35a52
s−a55

0 0 0

 .

This structure may be particularly useful in describing the relationships between

measured variables, for example, in biochemical or social systems. In these more “fluid"

systems, not only might it be unreasonable to assume knowledge of an explicit non-trivial

partition on all system states into distinct subsystems, but such a partition might not

even exist. In this setting, it is natural to describe the structure of the complex system

graphically by associating each measured output and input with a node of the graph.
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Edges are then identified with each non-zero entry in [W o, V o].

Definition 3.2.2. Consider a system characterised by a transfer function G. The dynam-

ical structure of the system can be reconstructed, if there is only one admissible dynamical

structure function, (Q,P), that is consistent with G. A realisation of the dynamical struc-

ture function is defined as reconstruction. Likewise, the Boolean structure of the system

can be reconstructed if all admissible dynamical structure functions that are consistent

with G have the same Boolean structure.

Definition 3.2.3. We say that a realisation is G minimal if this realisation corresponds

to a minimal realisation of G [107]. We say that a realisation is (Q,P) minimal if this

realisation has the smallest order and is consistent with (Q,P).

The underlying principle to find a (Q,P) minimal realisation is to search for a reali-

sation with the minimal number of hidden states.

It can be shown that G = (I −Q)−1 P. Thus the dynamical structure function of a

system contains more information than the transfer function, and less information than

the state-space representation. In [34] they conclude that, with no other information

about the system, dynamical or Boolean reconstruction is not possible. Moreover, for any

internal structure Q there is a dynamical structure function (Q,P) that is consistent with

G. In particular, this shows that the use of criteria such as sparsity or decoupledness

to guide our selection of a proposal network structure can be misleading. If one were to

optimise for decoupledness, for example, a dynamical structure (0,G) could and would

always be found, regardless of the true underlying structure. Thus, if we are to use these

kinds of criteria, they must be firmly justified a priori.

Proposition 3.2.1. [34] Given a p×m transfer function G, dynamical structure recon-

struction is possible from partial structure information if and only if p−1 elements in

each column of
[
Q P

]T
are known that uniquely specify the component of (Q,P) in the

nullspace of
[
GT I

]
.

The importance of this result is that it identifies exactly what information about a

system’s structure, beyond knowledge of its transfer function, must be obtained to be

able to recover the structure without appeal to a priori assumptions, such as sparsity,

or parsimony, etc. This enables the design of experiments targeting precisely the extra

information needed for reconstruction. In particular when p = m and G is full rank, we

observe that imposing that P is diagonal, i.e. that each input controls a measured state

independently, is sufficient for reconstruction.
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Corollary 3.2.1. [34] If m = p, G is full rank, and there is no information about the

internal structure of the system, Q, then the dynamical structure can be reconstructed if

each input controls a measured state independently, i.e. without loss of generality, the

inputs can be numbered such that P is diagonal. Moreover, H = G−1 characterises the

dynamical structure as follows

Q i j =−Hi j

Hii
and Pii = 1

Hii
. (3.10)

For a given p, there are 2p2−p possible Boolean networks (remember that Q has zeros

on the diagonal), which can be ordered k = 1, ...,2p2−p.

Definition 3.2.4. A Boolean structure Bk corresponding to a Boolean network k is de-

fined as follows: if Q(s) ∈ Bk then Q i j(s) = 0 for all (i, j) for which the Boolean network

has zero entries and when i = j, and all other Q i j(s) are free variables.

3.2.1 Extension of Corollary 3.2.1

Corollary 3.2.1 requires the following to exactly reconstruct p-node network:

a. p different inputs/experiments;

b. each input controls a measured state independently.

The second requirement is obviously not scalable and hard for biologists to implement

especially when p is large. Can one reduce the number of required experiments at the

expense of reconstruction accuracy? Or more specifically, can one propose a method for

analysing the tradeoff between the number of correctly obtained links and number of

required experiments. We remain the second requirement. We shall pursue this idea in

more details in this section. We adopt the definitions of polynomial matrix, normal rank

and etc. (Chapter 3.11 in [107]).

We start from the following equality

GT (I −Q)T = PT , (3.11)

where GT ,PT are m× p transfer matrices and m is the number of experiments. We can

decompose eq. (3.11) to the following p equations since solving eq. (3.11) is equivalent to

solving the following equations (for i = 1 : m)

GT (eT
i −Q[i, :])T = P[i, :]T , (3.12)
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where P[i, :]T is the ith row of P, eT
i is the ith row of identify matrix I and Q[i, :] is the

ith row of Q.

Let A i ,G[1 : i−1 i+1 : p,1 : i−1 i+1 : m]T qi =Q[i,1 : i−1 i+1 : p]T and g i =G[i,1 :

i−1 i+1 : m]T then we have

A i qi = g i. (3.13)

where A i is a known (m−1)×(p−1) transfer matrix, g i is a known (m−1)×1 vector with

entries transfer functions and qi is a (p−1)×1 transfer matrix.

To solve eq. (3.13) for a given i, when m = p and A i = Ni(s)/di(s) where Ni is a

polynomial matrix and has full normal rank [107], then we can directly solve above

eq. (3.13). However, when m < p, there are infinite number of solutions. We are trying

to find a sparsest solution qi and therefore formulate the following problem.

Problem 3.2.1.

q∗
i = argminqi∈S p−1‖qi‖0

s.t.: A i qi = g i.

‖ ·‖0 is the L0 norm counting the nonzero entries.

The cost function is optimised over a set S p−1 containing all (p−1)×1 vector with

its elements strictly proper transfer functions.

There are several issues regarding the above problem formulation, for example, when

does this problem have an unique solution. In this case, how does this unique solution

relate to the true solution. Note that answers to above questions are related to the

number of experiments m, we now have the following proposition.

Proposition 3.2.2. For a known m× p (m ≤ p) transfer matrix A , N/d (where N is a

polynomial matrix) has full normal row rank [107] and a known m×1 transfer matrix b,

when m ≥ 2S, then any transfer matrix x with at most S non-zero transfer functions, i.e.,

‖x‖0 ≤ S can be reconstructed uniquely from

Ax = b. (3.14)

Proof. This can be shown by contradiction.

If there exists at least two different solutions x1 and x2 satisfying eq. (3.14), then

from Ax1 = b and Ax2 = b we can obtain A(x1 − x2) = 0. Let z, x1 − x2 6= 0, then ‖z‖0 ≤
‖x1‖0 +‖x2‖0 = 2S. However, from Az = 0 and let z = nz/dz where nz is a polynomial
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matrix, we have Nnz = 0. Since N has full normal row rank m ≥ 2S, contradiction to the

definition of normal rank!

Remark 3.2.1. Proposition 3.2.2 states that if the true solution is sparse then we can

indeed reduce the number of required experiments. This Proposition links the number of

required experiments to find the ith row of Q to the number of in-degree of node i rather

than the total number of measured node, i.e. p. In other words, the number of required

experiments to find Q is therefore linked to the maximal number of in-degree of any node

in the network.

However, the sparsity of the true solution is unknown, how can one determine whether

a solution from Problem 3.2.1 is the true solution? We now propose the following iterative

algorithm to solve this. The idea is that when we increase the number of experiments,

the obtained result from optimisation preserves then we claim that the obtained solution

is the true solution.

Let G i be the transfer function obtained from the ith experiment, i.e. perturb the ith

node.

Algorithm 5 Network reconstruction for node i
Gc = []
for j = 1 : p do

Gc = [Gc;G j]
Solve q j

i from Problem 3.2.1
if q j

i = q j−1
i then

Stop and return q j
i

end if
end for

Remark 3.2.2. Most of social and biological networks are scale-free networks [2], only

few nodes have high degrees of connections and most of nodes only have very few connec-

tions. By using Proposition 3.2.2, we can perform a few experiments and obtain most of

connections in such networks.

Does it matter which experiments are performed? Or more specifically, how does

the performance of algorithm change with respect to chosen perturbed nodes. A quick

answer is no when the underlying graph is strongly connected.

Iterative algorithm also proposes a question for future research, i.e. the computa-

tional complexity issue. It is still open to give an effective algorithm to solve above

Problem 3.2.1. One may try L1 approximation or l1 approximation in discrete-time case
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[20, 56], but it is still under investigation how the solution to this approximation to the

true one.

3.3 Impact on systems theory

The introduction of dynamical structure functions introduces new problems in systems

theory. In [93], it proposes a number of interesting and fundamental problems which

explores the relationships between different representations of the same system. For

example, classical realisation theory considers the situation where a system is specified

by a given transfer function, and it explores how to construct a consistent state space

description. Many important ideas emerge from the analysis:

1. State-space realisations are generally more informative than a transfer function

representation of a system, as there are typically many state-space realisations

consistent with the same transfer function.

2. The order of the state realisation is a sensible measure of complexity of the state

representation, and there is a well-defined minimal order of any realisation con-

sistent with a given transfer function; this minimal order is equal to the Smith-

McMillian degree of the transfer function.

3. Ideas of controllability and observability of a state realisation characterise impor-

tant properties of the realisation, and any minimal realisation is both controllable

and observable.

In a similar way, introducing dynamical structure function influences a variety of con-

cepts in systems theory, including realisation, minimality, and model reduction.

3.3.1 Realisation

The definition of dynamical structure functions enriches the kinds of realisation ques-

tions one may consider. Two classes of representation question emerge: reconstruction

problems and structure realisation problems (Figure 3.4).

Reconstruction problems consider the construction of a dynamical structure func-

tion of a system given its transfer function. Because such structure representations are

generally more informative than a transfer function, these problems are ill-posed. In

particular, we may consider the following reconstruction problem:
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Informativity State 
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G = (I − Q)−1P G = C(sI − A)−1B + D

FIGURE 3.4: Dynamical structure functions introduce new classes of realisation problems: re-
construction and structure realisation. These problems are distinct from identifica-
tion. [93]

Given a transfer function G(s), find a dynamical structure function (Q,P) such that

G = (I −Q)−1P. Dynamical structure structure reconstruction is also called network re-

construction, particularly in systems biology where it plays a central role. There, the

objective is to measure fluctuations of various proteins, or other chemical species, in

response to particular perturbations of a biochemical system, and then infer causal de-

pendencies among these species.

Structure realisation problems then consider the construction of a state space model,

possibly generalised to include auxiliary variables as necessary, consistent with a given

dynamical structure function of a system. Like the classical realisation problem or re-

construction problems, these problems are also ill-posed since there are typically many

state realisations of a given partial structure representation of a system.

Dynamical structure function realisation: Given a system G associated dynam-

ical structure function (Q,P), find a state space model (A,B,C,D) consistent with (Q,P),

Dynamical structure function realisation may sometimes be called network realisa-

tion, consistent with the nomenclature for dynamical structure structure reconstruction.

Note that all the reconstruction and structure realisation problems here are differ-

ent from identification problems, just as classical realisation differs from identification.

For the systems considered here identification refers to the use of input-output data

(and no other information about a system) by which to choose a representation that

best describes the data in some sense. Because input-output data only characterises the

input-output map of a system, identification can at best characterise the system’s trans-

fer function; no information about structure, beyond the sparsity structure, is available

in such data. In spite of this distinction, however, it is not uncommon for reconstruction

problems to be called structure identification problems.
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3.3.2 Minimality

Just as partial structure representations enrich the classical realisation problem, they

also influence the way we think about minimality.

Minimal dynamical structure realisation: In this situation one needs to con-

sider how to measure the complexity of a system’s state realisation, from which signal

structure is derived. The obvious choice would be to use the order of the realisation as a

natural measure of complexity, and the problem would then be to find the minimal order

state realisation [101, 102] consistent with its associated dynamical structure function,

(Q,P). Note that this minimal order is guaranteed to be finite (for the systems consid-

ered here) and can easily be shown to be greater than or equal to the Smith-McMillian

degree of the transfer function specified by the signal structure; we call this number the

structural degree of the dynamical structure functions [92].

These various problems demand new ideas for thinking about the complexity of a

system’s representation, especially that of a dynamical structure function. These new

ideas about complexity, in turn, introduce opportunities for characterising minimality

of a representation that add insight to our understanding of the relationship between a

system’s behaviour and its structure, much like controllability and observability charac-

terise classical notions of minimality in a system’s state realisation. Besides suggesting

the need for a characterisation of minimality, however, these ideas also impact notions

of approximation and how we think about model reduction.

3.3.3 Model Reduction

Each of the reconstruction and structure realisation problems described above has asso-

ciated with it not only a minimal but also an approximate-representation version of the

problem. The minimal-representation versions of these problems, as described above,

seek to construct a representation of minimal complexity in the targeted class that is

nevertheless consistent with the system description provided. Similarly, approximate-

representation versions of these problems seek to construct a representation in the tar-

geted class that has a lower complexity than the minimal complexity necessary to deliver

consistency with the system description provided. As a result, consistency with the given

system description can not be achieved, so measures of approximation become necessary

to sensibly discuss a “best" representation of the specified complexity.

For example, associated with the classical realisation problem is the standard model

reduction problem. In this situation, a transfer function is specified, and one would

like to construct a state realisation with a complexity that is lower than that which

83



CHAPTER 3. NETWORK RECONSTRUCTION

is necessary (for such a realisation to be consistent with the given transfer function)

that nevertheless “best” approximates it. Likewise, note that the appropriate notion of

approximation depends on the type of system representation that is initially provided;

here, a transfer function is provided, so an appropriate measure of approximation could

be an induced norm, such as H∞. Thus, one could measure the quality of an approxi-

mation by measuring the induced norm of the error between the given transfer function

and that specified by the approximate state realisation. In any event, because the spec-

ified system description is a transfer function, the resulting measure of approximation

is typically one that either directly or indirectly measures the difference in input-output

dynamic behaviour between the approximate model and the given system description;

the focus is on dynamics, not system structure, when considering notions of approxima-

tion in the standard model reduction problem.

Approximate dynamical structure functions realisation: In this situation one

would like to find a state space realisation with a model complexity that is lower than

the minimal complexity necessary to specify a given dynamical structure function.

The introduction of dynamical structure functions representations suggests a num-

ber of new problems in systems theory. These problems include new classes of realisation

problem, called reconstruction and structural realisation problems, as well as a number

of new reduction problems. The overview offered here is merely meant to give a per-

spective of the landscape of problems that emerges with the introduction of dynamical

structure functions.

3.4 Robust network structure reconstruction

In this section we consider the problem of robustly reconstructing dynamical network

structures. Data are obtained from input-output measurements of a noisy nonlinear

system. From this type of data we aim to find the internal network structure Q associ-

ated with the linearised system (3.1).

For simplicity of exposition we assume that there is no a priori information on the

internal network structure Q. The results still follow if some a priori information about

Q is available, and such information can typically be used to relax the experimental

protocol according to Proposition 3.2.1. Thus, data are collected according to the mea-

surement protocol described in the introduction:

(1) the number of distinct data-collection experiments is the same as that of measured

species. This in particular implies that u(t), y(t) ∈Rp ;

(2) each input ui controls first the measured state yi so that P is a diagonal matrix
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(p× p). To average out the noise, data-collection experiments are repeated N times.

In the following sections, we propose two approaches for estimating the dynamical

structure function (Q,P) from measured input-output data. The first approach is indi-

rect and involves estimating the transfer function G while the second approach relies

on the solution of a direct optimisation problem. More precisely, in the first approach

(see Figure 3.5 (a)), for each experiment i we first estimate G i(s) (i.e. the ith column

of G(s)) using standard system identification tools [51]. In a second step, the dynami-

cal structure function (Q(s),P(s)) is computed from the estimated transfer function G(s).

Since information is lost in the process of estimating G(s), we later consider the case

where (Q(s),P(s)) is directly estimated from data (without estimating first G(s), see Fig-

ure 3.5 (b)).

Dynamical 
Struct. Fun. 

(Q,P)

I/O data 

(a)

(b)

System 
Identification

Transfer 
Function GI/O data 

Direct 
Optimisation

Dynamical 
Struct. Fun. 

(Q,P)

FIGURE 3.5: Two approaches to obtain dynamical structure functions.

Concerning the type of input-output data collected, we first assume the case of time-

series input-output data. We then consider the special case where only steady-state data

are available.

3.4.1 Dynamical network reconstruction from identified transfer func-
tions

In this section, we describe the first method relying on system identification. This

method allows us to obtain dynamical structure functions from a transfer function iden-

tified using measured time-series data (see Figure 3.5 (a)).

Consider a transfer matrix G(s) estimated from noisy data. According to Corollary

3.2.1, if G is full rank there is a unique Q and diagonal P satisfying (I−Q)G = P. Since G

is an approximation of the actual system, Q and P will typically be mere approximations

of the actual Q and P. Moreover, due to noise and unmodelled dynamics, it is likely that

Q does not even have the correct Boolean structure. Typically, the internal structure

function Q obtained from such a procedure will be fully connected, i.e. all non-diagonal

elements of Q will be non-zero.
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The main idea in the solution of the network reconstruction problem from noisy data

is the following. For p measured states, Q has p2−p unknowns. We want to quantify the

distance from G (or directly from the measured data) to all possible Boolean structures

(and there are 2p2−p of them). Some of such distances will be large revealing that the

corresponding Boolean structures are likely to be incorrect while others will be small,

making them candidates for the correct structure.

To make the notion of distance rigorous, consider a Boolean mapping from a transfer

matrix to a Boolean matrix in Definition 3.4.1 and a particular Boolean structure Bk in

Definition 3.2.4.

Definition 3.4.1. A Boolean mapping from a transfer matrix to a Boolean matrix Q(s)→
B(Q), where B(Q) is a Boolean matrix with the same dimension as transfer matrix Q

and {B(Q)}i, j = 0 ∀i, j if and only if Q i j(s)= 0 for all s, otherwise, {B(Q)}i, j = 1.

For a given p, there are 2p2−p possible Boolean networks Bk (remember that Q(s)

has zeros on the diagonal and therefore B(Q) will always have zeros on the diagonal)

which can be ordered using the index k = 1, ...,2p2−p.

Definition 3.4.2. A Boolean structure Bk corresponding to a Boolean network Bk is

defined as follows: {Q(s) : B(Q)= Bk}.

The distance from G to the Boolean structure Bk is defined as the smallest perturba-

tion ∆ to G (measured in some norm) so that the perturbed system G∆ belongs to the set

of transfer functions G̃ such that Q ∈ Bk, where Q is obtained from (I −Q)G̃ = P. Find-

ing the distance from G to a Boolean structure Bk, gives us a quantitative information

about how much we would need to perturb G (or the data) to obtain a new system trans-

fer function for which the associated Q corresponds to the considered Boolean structure,

i.e. for which Q ∈Bk.

There are many possible approaches defining such “smallest perturbations”, includ-

ing several uncertainty models and norms to choose from. This choice is vital to obtain

a convex minimisation problem. For example, additive, multiplicative or uncertainty in

the coprime factors all lead to non-convex minimisation problems. In order to obtain

a convex minimisation problem, we consider the output (could also be input) feedback

uncertainty model. In this framework, the “true” system is given by (I+∆)−1G, where ∆

represents unmodelled dynamics, including nonlinearities, and noise.

Given this choice of dynamic uncertainty, the problem is defined as follows. Given a

particular Boolean structure Bk, the objective is to minimise ‖∆‖, in some norm, such

that Q obtained from (I +∆)−1G = (I −Q)−1P has the desired Boolean structure, i.e.

Q ∈Bk. All Pii are also free (remember that, by assumption, P is diagonal).
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We can rewrite the above equation as ∆=GP−1(I−Q)− I. So, we intend to minimise

‖GP−1(I −Q)− I‖ over Q ∈ Bk and P diagonal. Since P is diagonal, its inverse P−1 is

also diagonal.

Define a new matrix X = P−1(I −Q) whose diagonal is the diagonal of P−1 and for

which the off diagonal elements are given by P−1
ii Q i j. Since Q ∈ Bk this imposes struc-

tural constraints on X , i.e. some off-diagonal X i j = 0. These zero X i j correspond to those

Q i j which are equal to zero (since X i j = P−1
ii Q i j for i 6= j).

Definition 3.4.3. For all k, define Xk , {X (s) : B(X ) = Bk + Ip}, where Ip is identity

matrix of dimension p.

Remark 3.4.1. Definition 3.4.3 implies the following facts:

(i) when i 6= j, X i j(s) = 0 for all the Boolean structures Bk in Definition 3.2.4 which

are such that Bk[i, j]= 0; all other X i j(s) are free variables;

(ii) when i = j, X ii(s) is a free variable.

Using Defintion 3.4.3, the distance from G to a particular Boolean structure Bk can

be written as

αk = inf
X∈Xk

‖GX − I‖2

which is a convex minimisation problem by choosing some norm.

Remark 3.4.2. In this optimisation problem, X (s) ∈ Xk approximates the inverse of G

as “close” as possible. If Xk corresponds to the fully connected Boolean network, then the

solution to this optimisation is exactly X =G−1.

Next we show that this problem can be cast as a least squares optimisation problem.

If we use the norm defined by ‖∆‖2 = sum of all ‖∆i j‖2
2, where ‖·‖2 stands as the L2-norm

over s = jω, then using the projection theorem [94] the problem reduces to

αk = inf
X∈Xk

‖GX − I‖2 = inf
X∈Xk

∑
i

‖GX i − e i‖2
2

= ∑
i

inf
Yi

‖A iYi − e i‖2
2

= ∑
i

‖A i(A∗
i A i)−1 A∗

i e i − e i‖2
2,

where X i is the ith column of X ∈ Xk, Yi is a column vector composed by the free (i.e.

nonzero) elements of X i, A i is obtained by deleting the jth column of G when the corre-

sponding element X i( j) is 0 for all j, and (·)∗ denotes transpose conjugate. The infimum
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is achieved by choosing X i = (A∗
i A i)−1 A∗

i e i, and A∗
i A i is always invertible since G is full

rank in Corollary 3.2.1. After obtaining all the αk for all k, the optimal distance

α=min
k
αk.

If experiments are repeated N times (as they should be) and we obtain a transfer

function G i for each experiment, then the above analysis still follows simply by forming

a higher dimensional matrix G = [GT
1 . . . GT

N ]T .

Remark 3.4.3. The optimal distance αk can be seen as a measure of robustness for the

network structure in question given the input-output data.

3.4.2 Dynamical network reconstruction directly from time-series data

The previous sections used a two-step approach in which system identification was first

used to estimate a transfer function from measured input-output data and then, in a

second step, the identified transfer function was used to obtain a dynamical structure

function representation of the system which is optimal in terms of a particular metric.

This section proposes a method which allows identification of the optimal dynamical

structure function representation directly from the measured input output data (see

Figure 3.5 (b)). The advantage of this direct network structure reconstruction from data

is that no information is lost during the initial transfer function identification stage.

Due to the equivalence between dynamical uncertainty perturbations, we are free to

choose, without loss of generality, the type of uncertainty perturbation that best suits our

needs. For the direct method, instead of a feedback uncertainty as was considered in the

previous section, the uncertainty perturbation we are considering here is the additive

dynamic uncertainty on the output, i.e. Y = G∆(U +∆). In this case we think of the

“distance” in terms of how much we need to change the input (data) to fit a particular

Boolean structure. Since G∆ = (I −Q)−1P = X−1, the equality Y = G∆(U +∆) can be

written as

∆= XY −U ,

where X ∈Xk, for some particular Boolean network k. Recall that structural constraints

in Q can be imposed directly on X from the equality X = P−1(I −Q). The difficulty of

identifying a non-causal transfer matrix X with structural constraints arises, therefore

standard system identification tools can not be applied and new tools need be introduced.
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3.4.3 Penalising connections

The above method suffers from a crucial weakness: there are several Boolean structures

with distances smaller than or equal to the distance to the “true” network. Indeed,

the extra degrees of freedom of the fully-connected network allow the corresponding

distance αk to be the smallest of all. This is similar to the noisy data over-fitting problem

encountered in system identification where the higher the order of the transfer function,

the better the fit. Obviously, if we only focus on noisy data best fit, eventually we end

up fitting noise and so a large system order is not typically a good choice. Accordingly a

compromise has to be struck.

If the true network has l non-existent connections (l off-diagonal elements in Q are

zero) and the data are non-noisy, then there are 2l − 1 different networks that have

a smaller or equal distance (due to the additional degrees of freedom provided by the

extra connections). When noise is present, the “true” network will typically have an

optimal distance similar to these other l networks. The question of how to find the

“true” network thus arises. With repeated experiments, small enough noise (i.e. large

enough signal-to-noise ratio) and negligible nonlinearities, the optimal distances of those

l networks become comparable, and they are typically much smaller than those of the

other networks. To try to reveal the “true” network, one can strike a compromise between

network complexity (in terms of number of connections) and data fitness by penalising

extra connections. The are several methods by which to strike this compromise. Here

we introduce methods known as Akaike’s information criterion (AIC) [37], or some of

its variants such as AICc (which is AIC with a second order correction for small sample

sizes), and the Bayesian information criterion (BIC).

The AIC-type approach is a test between models - a tool for model selection. Given

a data set, several competing models may be ranked according to their AIC value, that

having the lowest AIC being the best. From the AIC value one may typically infer that

the best models are in a tie and the rest are far worse, but it would be arbitrary to assign

a value above which a given model is rejected [12]. The AIC value in our case for a

particular Boolean network Bk is defined as:

AICk = 2Lk −2lnαk, (3.15)

where Lk is number of (non-zero) connections in the Boolean network Bk and αk is the

optimal distance based on this parameter constraint.

Although finding the optimal distance in the second term of eq. (3.15) can be done

efficiently, the number of Boolean networks 2p2−p grows very fast with the number of
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measured states p. To find the network with the smallest distance it is thus not desirable

to compute the optimal distance for each possible Boolean network. Fortunately, there

are ways to reduce the number of networks that need to be considered. As we saw in

the previous section infX∈Xk ‖GX − I‖2 =∑
i infYi ‖A iYi − e i‖2

2 meaning that we can solve

each optimisation problem separately. Since each Yi corresponds to p−1 unknowns in

the ith row of Q, this reduces the problem to solving p2p−1 optimal distances. Finding

a polynomial-time algorithm to compute the optimal distance through this method is a

subject of current investigation.

Reconstruction with the zero norm

Another way of taking the number of connections into account is to formulate the opti-

misation problem as follows:

inf
X∈Xk

(
αk +β‖X‖0

)
, (3.16)

where β is a parameter balancing data-fitting and model complexity (i.e. the number of

non-zero connections). In (3.16), ‖X‖0 denotes the number of nonzero elements in the

matrix X , and it is known as the zero norm. Note that this minimisation problem (e.g.,

direct optimisation) can be equivalently written as:

inf
X∈Xk

(‖XY −U‖2 +β‖X‖0
)=∑

i
inf
X i

(
‖X T

i Y −UT
i ‖2

2 +β‖X T
i ‖0

)
, (3.17)

where X T
i is the ith row of X ∈ Xk and UT

i is the ith row of U . Directly solving this

problem is in general NP-hard. A frequently discussed approximation is to relax this

problem in the same way as [44]. Moreover, since there are p independent optimisations

in eq. (3.17), we can choose different βi for each i. Alas, there is no clear rule for selecting

βi to optimally balance the two terms in eq. (3.17) [44]. The choice of βi is currently

under investigation.

3.4.4 Boolean network reconstruction from steady-state data

So far we have assumed that time-series data are available. Frequently, however, ex-

perimentation costs and limited resources only permit steady-state measurements. In

addition, with steady-state measurements it is typically possible to perform a larger

number of experiments for the same time, effort and cost. As shown below, most of

the connectivity of the network together with the associated steady-state gains (and the

associated positive or negative sign) can still be reconstructed from steady-state data.
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However, no dynamical information will be obtainable. In other words in most cases we

can still recover the Boolean network from steady-state data.

Assume that after some time of maintaining the control input concentrations at a

constant value, the measured outputs y have converged to a steady-state value. This is

equivalent (if the system is stable or quasi-stable [79]) to assuming that we can obtain

G0 = G(0), i.e. G(s) evaluated at s = 0. If Q0 = Q(0) and P0 = P(0), then (I −Q(s))G(s) =
P(s) evaluated at s = 0 becomes (I −Q0)G0 = P0. From this equation all of the results

given in Section 3.4.1 and 3.4.2 follow provided that no element of G(s) has a system zero

[107] at 0. In that case a nonzero element in the obtained Boolean network indicates the

existence of a causal relationship between the corresponding pair of nodes while a zero

element indicates the absence of such relationship.

In the literature, there are indeed a number of methods [79, 26] using steady-state

data to reconstruct Boolean network. Sontag [79] takes the inverse of the constructed

square matrix G (similar to G0 above which is formed by outputs from different pertur-

bations) and that claim that the nonzero entries in X = G−1 correspond to the edges in

the network and the zero entries of X [i, j] correspond to non-relation from node j to i in

the network.

However, for most cases, X = G−1 has no element as 0 due to noise effect. Then

truncation step is needed to find the true X . Can one claim that the small element in X ,

i.e., element close to 0 corresponds to a non-relation from j to i as claimed in the paper?

What is the proper threshold for truncation?

This claim is not sound for certain cases and what we shall illustrate that the small

change in X [i, j] to 0 might lead to large change in G.

Lemma 3.4.1. For invertible matrices A, B, we have the following equality

A−1 −B−1 = A−1(B− A)B−1.

We now consider the difference of the data matrix when we delete a element of X

which is close to 0 but not equal to 0. If we directly write down the difference

(X − X [i, j]e i eT
j )−1 − X−1 = (X − X [i, j]e i eT

j )−1X [i, j]e i eT
j X−1

=Ge i(X [i, j]−1 − eT
j Ge i)−1eT

j G

=G[:, i](X [i, j]−1 −G[ j, i])−1G[ j, :]

= (X [i, j]−1 −G[ j, i])−1G[:, i]G[ j, :].

The second equality is from Woodbury matrix identity. If we take the matrix norm (for
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example, 2-norm) of the above error

δi j , ‖(X − X [i, j]e i eT
j )−1 − X−1‖ = ‖(X [i, j]−1 −G[ j, i])−1G[:, i]G[ j, :]‖

= ∥∥(X [i, j]−1 −G[ j, i])−1G[ j, :]G[:, i]
∥∥ . (3.18)

If G[ j, i] is small, we can then approximate eq. (3.18) to ‖X [i, j]G[ j, :]G[:, i]‖ and δi j

might be small. However, if G[ j, i] is large and is similar to X [i, j] then δi j might be

large.

Remark 3.4.4. The above analysis indicates that the distance δi j is related to G and not

necessarily small. This also means that the solution with matrix inverse is not robust

with respect to noise comparing with the AIC optimisation.

3.5 Biologically-inspired examples

This section illustrates with two examples the theoretical results presented in the pre-

vious section. The corresponding sets of ordinary differential equation describing the

dynamics of the networks considered are used to generate noisy data, which are then

fed to our reconstruction algorithm in order to assess its ability to recover the correct

network structure.

3.5.1 Example 1

In this first example, we consider the following nonlinear system:

ẏ1 = −y1 + Vmax

Km + z3
3
+u1 (3.19)

ẏ2 = −2y2 +1.5z1 +u2 (3.20)

ẏ3 = −1.5y3 +0.5z2 +u3 (3.21)

ż1 = 0.8y1 −0.5z1 (3.22)

ż2 = 1.2y2 −0.8z2 (3.23)

ż3 = 1.1y3 −1.3z3 (3.24)

where Vmax = 0.5 and Km = 0.1. Equation (3.19) includes a nonlinear function of z3

known as a Hill equation. It represents a negative regulation of the rate of reaction of

y1 by z3. For simplicity, all other terms are linear. In this example, p = 3, i.e. there are

three measured states (y1, y2 and y3) while the other 3 states are hidden (z1, z2 and z3).

The corresponding network is given in Figure 3.6(a).
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FIGURE 3.6: (a) Complete network with all the states. The red circles represent the measured

states while the blue circles correspond to hidden states. (b) Network of the mea-
sured states only.

On this model we generate noisy data by numerically integrating the differential

equations in (3.19)-(3.24) and adding independent Gaussian noise with zero mean and

standard deviation 0.1. Three experiments are performed where one input is a step while

the others are set to zero and data are collected for each of the measured species. These

experiments are repeated 3 times to average out the noise. In this example only steady-

state data (approximated as the final value reached over the considered time interval)

are used. Since the true network has 3 elements in Q equal to zero, we expect that

there are 23 = 8 networks with a better or equal optimal cost. The results are presented

in Table 3.1. Computing the corresponding distances and AICc values for all possible

networks between the three measured species we observe that the distance decreases by

an order of magnitude when we arrive at the true network. In addition, AIC, BIC and in

particular AICc are able to pick the correct network.

3.5.2 Example 2

In this section we consider the application of our method to the reconstruction of the un-

derlying dynamic network responsible for chemotaxis in Rhodobacter sphaeroides. The

complete network as per today knowledge is represented in Figure 3.7(a) (see [73] for

a detailed explanation of this model and its biological interpretation). It involves 10

species dynamically interacting through a complex set of interconnections. As an illus-

trative example of the application of our method, we consider the case where steady-

state data are collected from 3 species only: Y p
3 , Y p

6 and the “motor” (circled in red in

Figure 3.7(a)). As a proof of concept of the type of results that our method allows to ob-

tain, we generate data for these 3 species based on simulations of the nonlinear ordinary
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Boolean structure αk AIC AICc BIC
[0 0 0 0 0 0] 6.94 11 11 2.51

...
[1 1 1 0 1 0] 0.836 12.7 22.7 0.562
[1 1 1 0 1 1] 0.836 14.7 34.7 1.66
[1 0 0 1 1 0] 0.088 3.93 8.73 -7.29
[1 0 0 1 1 1] 0.0879 5.92 15.9 -6.19
[1 1 0 1 1 0] 0.0871 5.9 15.9 -6.22
[1 1 0 1 1 1] 0.0871 7.9 27.9 -5.12
[1 0 1 1 1 0] 0.0866 5.88 15.9 -6.24
[1 0 1 1 1 1] 0.0866 7.88 27.9 -5.14
[1 1 1 1 1 0] 0.0858 7.85 27.8 -5.17
[1 1 1 1 1 1] 0.0858 9.85 51.8 -4.07

TABLE 3.1: The binary values in the table are arranged according to the following order
[Q12 Q13 Q21 Q23 Q31 Q32]. These binary values indicate the presence or absence
of a causal relationship (i.e. an edge) between the corresponding elements of the
considered Boolean network. The red row indicates the “true” Boolean network we
obtain as a result of our reconstruction method.

differential equation model proposed by [73]. Gaussian noise is added to the collected

data to simulate measurement noise in the data set.

We follow our prescribed experimental protocol where data are collected for each

measured species when a step is imposed on the corresponding input while the other

inputs are zero. Again, for simplification, only steady-state data (approximated as the

final value reached over the considered time interval) are used. Based on the complete

network given in Figure 3.7(a), the correct network that we should aim to recover is

presented in Figure 3.7(b).

Computing the corresponding distances and AICc values for all the 26 = 64 possible

Boolean networks (Table 3.2), we observe that the network with the smallest AICc (Fig-

ure 3.9(e)) is not the correct network in Figure 3.7(b). This is not because the method

failed but because of the very low signal to noise ratio observed in the measurements

when a step is imposed on u2 (see Figure 3.8). Y p
6 has a very small influence on Y p

3 since

the pathway from Y p
6 to Y p

3 includes a reversible reaction with very small rate constant.

The next set of smallest values of AICc in Table 3.2 consists of 4 networks, including

the true one. The corresponding candidate networks for the reconstruction are repre-

sented in Figure 3.9. These five candidate networks can then be further distinguished by

performing additional and more precise experiments, with reduced noise and increased

amplitude (if possible) in some of the connections to help differentiate them.
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MCP

Ligand (L)

R2

A2
A2

R2

Tlp
A4
A3

B1 B1

B2 B2

Y3 Y3

Y4 Y4

Y6 Y6

P

P

P

P

P

PP

(a) (b)

Y3-P

motor

Y6-P

Q21

u2

Q32

Q12

P33

u2

P22

u1

P11

FIGURE 3.7: (a) Network representing the dynamical interaction between the 10 species believed
to be responsible for the chemotactic response of Rhodobacter sphaeroides. We as-
sume that only species Y p

3 , Y p
6 and “motor” are measured (circled in red). (b) Net-

work connecting the measured states only.

Boolean structure αk AICc
[0 0 0 0 0 0] 1.93 7.18

...
[0 1 1 1 1 1] 0.157 29.7
[1 0 0 1 0 0] 0.0309 0.786
[1 1 0 1 0 0] 0.0306 5.56
[1 0 0 1 0 1] 0.0303 5.52
[1 1 0 1 0 1] 0.03 12.7
[1 0 0 1 1 0] 0.0293 5.43
[1 0 0 1 1 1] 0.029 12.6
[1 1 0 1 1 1] 0.0287 24.6
[1 0 1 1 0 0] 0.0274 5.22
[1 1 1 1 0 0] 0.0271 12.4

...
[1 1 1 1 1 1] 0.0252 48.2

TABLE 3.2: The binary values in the table are arranged according to the following order
[Q12 Q13 Q21 Q23 Q31 Q32]. These binary values indicate the presence or absence
of a causal relationship (i.e. an edge) between the corresponding elements of the
considered Boolean network. The red row indicates the Boolean network obtained
as a result of our reconstruction method, while the blue row indicates the true one.
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FIGURE 3.8: Above and below are the deterministic and stochastic concentrations of Y p
3 , respec-

tively, in response to a step input in u2. Note that the amplitude without noise (top)
is much weaker than with noise (bottom), and so the signal information is lost.
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FIGURE 3.9: Candidate networks. Pink arrows represent spurious connections.
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3.5.3 Application to real data

We are currently using our algorithm in the exploration of the unknown network struc-

ture in circadian clocks [36] and also in proteins in WNT pathway. WNT pathway is

one of the key signal transduction pathways with its role in embryogenesis and cancer

we are using data obtained from the van Oudenaarden systems biology Lab at MIT to

obtain the network of important genes. The available data is knock-out data (as we shall

explain more later) by which we could not directly apply our algorithm based on the

assumption of perturbation. We here assume that the underlying dynamics is linear,

if the system is nonlinear then knockout will potentially change the equilibrium of the

system and make the reconstruction impossible. The data we obtain is by knocking out

each of the genes in the reconstructed network. Here we only consider the case using

steady-state data to reconstruct Boolean networks for simplicity, the result can be easily

extended to time-series data.

Assuming that the experiment is performed in the following way for a p-node net-

work: We firstly measure the wild-type data without knocking out/ removing any node

in such network, denoting y0. Secondly, for the ith experiment, we knock out node i and

measure the other nodes. And y0 ∈ Rp is the raw wild-type data with the ith element

equals to the value of the ith node. Similarly, yd
i are the raw data for the ith mutant. We

also assume that yd
i 6= 0 for any i.

It can be verified that

y0 =Q y0 +Pu. (3.25)

When we knockout gene 1, it is equivalent to remove the state of node 1 from the above

eq. (3.25), i.e. yd
1 ,

[
0

y1

]

[
0

y1

]
=

[
0 0

Q21 Q22

][
0

y1

]
+

[
0

P2

]
u (3.26)

We can similarly write down the equation for other mutant, if we write down the matrix

form. Let v1,Q12 y1 +P1u, we can then write[
v1

y1

]
=

[
Q11 Q12

Q21 Q22

][
0

y1

]
+

[
P1

P2

]
u (3.27)
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Notice that for wild-type data, we have y0 =Q y0+Pu. Take the difference, we obtain[
y0[1]−v1

y0[2 : p]− y1

]
=

[
Q11 Q12

Q21 Q22

][
y0[1]

y0[2 : p]− y1

]

Similarly, we can define vi for the ith mutant data and write the above in the follow-

ing matrix form

Gd −diag{v1, v2, . . . , vp}=QGd (3.28)

where

Gd ,


y0[1] y0[1]− y2[1] . . . y0[1]− yp[1]

y0[2]− y1[2] y0[2] . . . y0[2]− yp[2]
...

...
. . .

...

y0[p]− y1[p] y0[p]− y2[p] . . . y0[p]

 .

From eq. (3.28), (I −Q)Gd = diag{v1, v2, . . . , vp} and it further writes (Hd , (Gd)−1)

I −Q = diag{v1, v2, . . . , vp}Hd. (3.29)

Corollary 3.5.1. If Gd is full rank, and there is no information about the internal struc-

ture of the system, Q, then the dynamical structure can be reconstructed as follows

Q[i, j]=−Hd[i, j]
Hd[i, i]

and vi = 1
Hd[i, i]

. (3.30)

Proof. Without loss of generality, we look at the first rows of both sides of eq. (3.29).

On the left part, we have 1, −Q[1,2], . . . ,−Q[1, p], compare with the terms on the

right part, v1Hd[1,1], v1Hd[1,2], . . . , v1Hd[1, p]. This implies

1= v1Hd[1,1]⇒ v1 = 1
Hd[1,1]

−Q[1,2]= v1Hd[1,2]⇒Q[1,2]=−Hd[1,2]
Hd[1,1]

...

−Q[1, p]= v1Hd[1, p]⇒Q[1, p]=−Hd[1, p]
Hd[1,1]

.

We can also look at the other rows of eq. (3.29) and this proves eq. (3.30).

Here is the proposed algorithm:
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Algorithm 6 Network reconstruction using mutant data

Gd = []
for i = 1 : p do

Gd = [Gd; y0 − yd
i ]

end for
H = (Gd)−1

Q[i, j]=−Hd[i, j]
Hd[i,i]

We have now obtained the dynamic structure function Q which gives the intercon-

nection information from mutant data.

Remark 3.5.1. Again, we can extend our above results to in Section 3.2.1 for a scalable

algorithm at the expense of reconstruction accuracy.

3.5.4 Discussion and summary of this section

There are several tools in the literature which enable us to to infer causal network struc-

tures. These tools are mainly rooted in three fields: Bayesian inference, information

theory and ODE methods. The vast majority of network reconstruction methods produce

estimates of network structure regardless of the informativity of the underlying data.

In particular, most methods produce estimates of network structure even in cases with

data from only a few experiments. Such data may not contain enough information to

enable the accurate reconstruction of the actual network; thus the obtained network es-

timates can differ arbitrarily from the true network structure. To compensate for lack

of information in data, most methods have heuristics that try to “guess” the remain-

ing information, either by specifying prior distributions or by appealing to beliefs about

the nature of real biological networks, such as looking for the sparsest network. Never-

theless, these heuristics bias the results and lead to incorrect estimates of the network

structure.

By contrast, our approach has been to identify the conditions that obtain when data

are sufficiently informative to enable accurate network reconstruction. The results in-

dicate that even in an ideal situation, when the underlying network is linear and time-

invariant (LTI) and the measurements are noise-free, network reconstruction is impos-

sible without additional information [34]. Surprisingly, this information gap is not due

to a lack of data, nor a deficiency in the number of experiments, but rather it occurs

because system states are only partially observed; the information gap is present in all

data sets except those that satisfy certain experimental conditions.
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3.6 Algorithm to find a (Q,P) minimal realisation

After obtaining the dynamical structure function from input-output data (Step (C)), we

start to consider Step (B) in Fig. 3.1, to find out the minimal realisation consistent with

the obtained dynamical structure function. There are, of course, a large number of such

state-space realisations; we are only interested in those with the lowest complexity, i.e.

those with a minimal number of states. The underlying principle in finding a (Q,P) min-

imal realisation is to search for a realisation with the minimal number of hidden states.

Such a realisation is characterised by the minimal number of pole-zero cancellations in

the transfer functions Q and P.

Proposition 3.6.1. Given a dynamical system (3.1) and the associated dynamical struc-

ture functions (Q,P) with Do constructed as explained above (see (3.1)-(3.6)), the following

conditions must hold

diag{Ao
11}= lim

s→∞Do(s); (3.31)

Ao
11 −diag{Ao

11}= lim
s→∞ sQ(s); (3.32)

Bo
1 = lim

s→∞ sP(s). (3.33)

Proof. Eq. (3.31) is directly obtained from the definition of Do(s):

lim
s→∞Do(s)= lim

s→∞diag{W o(s)}

= diag{ lim
s→∞W o(s)}= diag{Ao

11}

Since the proofs for eq. (3.32) and (3.33) are very similar, we focus on eq. (3.32) only.

Using the fact that for any square matrix M, if Mn → 0 when n →+∞, then (I −M)−1 =∑∞
i=0 M i, we obtain, from the definition of Q given in (3.5), Q(s)=∑∞

i=1 s−iDo i−1(W o−Do)

and W o = Ao
11+

∑∞
i=1 s−i Ao

12 Ao i−1
22 Ao

21, when s →+∞. Hence, Q(s)= (Ao
11−Do(s))s−1+r(s),

in which r(s) is a matrix polynomial of s, whose largest degree is −2. Finally, multiplying

by s on both sides and taking the limit as s goes to ∞ results in eq. (3.32). A similar

argument can be used to prove eq. (3.33).

Remark 3.6.1. Proposition 3.6.1 concludes that all the realisations consistent with (Q,P)

share the same matrices Ao
11 (minus its diagonal) and Bo

1 in eq. (3.1). Hence consistency

with (Q,P) imposes constraints on the realisations that need to be considered.

There are many realisations consistent with (Q,P). In the following section, we focus
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on finding a (Q,P) minimal realisation, i.e. a realisation which is consistent with (Q,P)

and which has minimal order (and hence the lowest possible complexity).

From a dynamical structure function (Q,P) we cannot reconstruct (W o,V o) since

there is no information regarding the diagonal transfer function matrix Do. We now

discuss properties of realisations obtained from transfer matrices (W ,V ) consistent with

(Q,P). We start with an arbitrarily chosen D, and then use a state-space realisation

approach to find a D which minimises the order of a minimal realisation of [W V ].

Given (Q,P) and a diagonal proper transfer function matrix D, consider a minimal

realisation of [W V ] = [(sI −D)Q +D (sI −D)P]. On the other hand, [W , V ] has the

following minimal realisation

[W V ]= [A11 B1]+ A12(sI − A22)−1[A21 B2] (3.34)

Lemma 3.6.1. Given a dynamical structure function (Q,P) and a diagonal proper trans-

fer matrix D, the realisation (A,B) obtained from eq. (3.34) is consistent with (Q,P) and

the pair (A,
[
Ip 0

]
) is observable.

Proof. The consistency of the realisation with (Q,P) follows from the definition of (Q,P).

From the Popov-Belevitch-Hautus (PBH) rank test [107], a matrix pair (A ∈ Rl×l ,C) is

observable iff

rank

[
sI − A

C

]
= l, (3.35)

for all s ∈C. A minimal realisation of
[
W V

]
implies that the pair (A22, A12) is observ-

able, i.e.

rank

[
sI l−p − A22

A12

]
= l− p,

Hence

rank


sI − A11 −A12

−A21 sI l−p − A22

Ip 0p×(l−p)

= l,

which concludes the proof.

Remark 3.6.2. Given matrices A and B obtained in eq. (3.34), the dimension of A is

equal to the dimension of a minimal realisation of G iff the pair (A,B) is controllable.

Given a dynamical structure function (Q,P), a random choice of a proper diagonal

transfer function matrix D will lead to additional zeros in G which are associated with

uncontrollable eigenvalues of the considered realisation [19].
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At this stage the following question arises: how can we find a proper diagonal trans-

fer function matrix D such that a minimal realisation of [W V ] is a (Q,P) minimal

realisation? Note that, since there are many choices for D that minimise the order of

minimal realisations of [W V ], a chosen D may be different from Do.

To answer this question, first note that for all D, [W V ] can be written as

[W V ]= (sI −D)s−1[sQ sP]+ [D 0]. (3.36)

Assume that all elements in [Q P] have only simple poles. This assumption can be

relaxed but we adopt it here for simplicity. Also we assume that [Q P] does not possess

any poles at 0 (otherwise we can change eq. (3.36) to (sI−D)(s−a)−1[(s−a)Q (s−a)P]+
[D 0], where a ∈ R is not a pole of [Q P]). In this case we shall show that a minimal

order realisation of [W V ] can always be found using a constant diagonal matrix D.

Proposition 3.6.2. Assume [I −Q P] only has simple poles and does not have any zeros2.

A minimal order realisation of [W V ] in (3.34) can be achieved using a constant diagonal

matrix D.

Proof. Assume D has at least one term on the diagonal with the degree of the numerator

greater or equal to 1, e.g., suppose the ith term in (sI−D)s−1 = (s+b)εi(s)
sφi(s) with any b ∈R and

deg(εi(s)) = deg(φi(s)) ≥ 1, where deg(·) returns the degree of a polynomial. Hence, the

product (sI−D)s−1[sQ sP] will introduce deg(φi(s)) new poles and, due the assumption

of simple poles, can at most eliminate deg(εi(s)) = deg(φi(s)) poles since [I −Q P] does

not have any zeros. As a consequence, we can change the ith term from (s+b)εi(s)
sφi(s) to s+a

s

without increasing the order. Doing this along all the elements of D proves the result.

If D is a constant matrix, the term [D 0] in eq. (3.36) is also a constant matrix.

Therefore the order of a minimal realisation is only determined by (sI−D)s−1[sQ sP],

N[sQ sP]. Thus, finding the “optimal” D which leads to the minimal order in eq. (3.36) is

equivalent to finding a diagonal proper transfer matrix N (with corresponding minimal

realisation (A2,B2,C2,D2)) such that it cancels as many poles of [sQ sP] as possible.

Based on this idea, the following algorithm is proposed:

Step 1: Find a Gilbert’s realisation of the dynamical structure function.

First we find a minimal realisation (A1,B1,C1,D1) of [sQ sP]. When [sQ sP] has l

simple poles, using Gilbert’s realisation [30] gives

[sQ sP]=
l∑

i=1

K i

s−λi
+ lim

s→∞[sQ sP], (3.37)

2These assumption can be relaxed as discussed in the later sections
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where K i = lims→λi (s−λi)[sQ sP] and has rank 1 since we are assuming that [Q P] has

simple poles.

Consider a matrix decomposition of K i in the following form:

K i = E iFi, ∀i, (3.38)

where E i ∈Rl and Fi = (ET
i E i)−1ET

i K i. Then A1 = diag{λi} ∈Rl×l , B1 =
[
FT

1 FT
2 . . . FT

l

]T
,

C1 =
[
E1 E2 . . . E l

]
and D1 = lims→∞[sQ sP].

Step 2: Find the maximal number of cancelled poles.

We define Φ as a largest subset of {B(E1), . . . ,B(E l)} such that all the elements in Φ are

mutually orthogonal. We also define φ as the cardinality of Φ. Computationally, φ can

be obtained using the algorithm presented in the Appendix. We claim that φ is equal to

the maximum number of poles we can eliminate (the proof is in Appendix). Therefore

the minimal order of [W V ] is

l−φ.

In consequence, the order of the minimal reconstruction is the dimension of A11 (con-

stant p) plus the minimal dimension of A22 (obtained above): p+ l−φ.

Step 3: Construct D to obtain the minimal reconstruction.

Once we have Φ, using eq. (3.69) and D = sI − sN, we know that N(λi)[ j, j] = 0 implies

D[ j, j]=λi. Consequently, each element in the set Φ will determine at least one element

in D. This last fact can be used to construct D element by element. Once D is found, we

can obtain A, B using eq. (3.34).

Example 3.6.1. Consider the dynamical structure function (Q,P):

[Q | P]=


0 1

s+2
1

s+3 | 1
s+4

1
s+1 0 1

s+3 | 1
s+4

1
s+1

1
s+2 0 | 1

s+4

 .

The different steps of the algorithm proposed in the previous section successively yield the

following:

Step 1: A minimal Gilbert realisation of s[Q,P] is

A1 = diag{−1,−2,−3,−4}, B1 = diag{2,2,2,4},

C1 =


0 −1 −1.5 −1

−0.5 0 −1.5 −1

−0.5 −1 0 −1

 , D1 =


0 1 1 1

1 0 1 1

1 1 0 1

 .
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Step 2: By definition, E i = C1vi where vi ∈R4 has 1 in its ith position and zero other-

wise. Thus,

{B(E1), . . . ,B(E4)}=




0

1

1

 ,


1

0

1

 ,


1

1

0

 ,


1

1

1


 .

Furthermore, φ is 1 and the order of a minimal realisation of the given dynamical struc-

ture function is p+ l−φ= 3+4−1 = 6. Hence, the system must contain at least 3 hidden

states.

Step 3: D can be chosen as diag{a,−1,−1}, diag{−2,a,−2}, diag{−3,−3,a}, or diag{−4,−4,−4}

for any a ∈R.

From a biological perspective this indicates that there are at least 3 unmeasured

species interacting with the measured species. Of course, the “true” biological system

might be even more complicated, i.e. it might have more than 6 states. Yet when more

states are measured the dynamical structure functions can be easily updated and a new

search for a minimal realisation of the updated system can be performed to reveal the

corresponding minimum number of hidden states.

3.6.1 Discussion on assumptions

In this section, we shall discuss how strong the assumption that [I −Q,P] has zeros is.

Definition 3.6.1. [107] Let G(s) be a p×m proper transfer matrix with full row normal

rank(defined in [107]). Then zo ∈C is a transmission zero of G(s) if and only if there exists

a 0 6= η0 ∈Cp such that ηT
0 G(z0)= 0.

We also have the following Proposition.

Proposition 3.6.3. Let ZI−Q be the set of zeros of I −Q and ZP be that of P, then the set

of zeros of [I −Q, P], i.e., Z[I−Q,P] is contained in the set of intersection of ZI−Q and ZP .

Proof. This can be easily shown using definition 3.6.1.

Remark 3.6.3. Not all the zeros in ZI−Q ∩ZP are zeros of Z[I−Q,P].

3.6.2 Specific result

With respect to whether [I −Q, P] might have zeros, the above argument works for

random P and Q. Based on a large number of numerical experiments and because of the

way Q and P are generated it seems that generically over random A,B,C,D there will

be zeros.
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This is because

(I −Q, P)= (sI −Do)−1(sI −W o, V o), (3.39)

since sI −Do is a diagonal transfer matrix, then every zeros of square diagonal matrix

(sI −Do)−1 (poles of sI −Do).

Proposition 3.6.4. If a zero z0 of the ith element of (sI−Do)−1, i.e. (sI−Do)−1[i, i] is not

a pole of every (sI −W o, V o)[i, j] j 6= i, then z0 is a zero of (I −Q, P).

Proof. This can be easily shown by definition.

Remark 3.6.4. Proposition 3.6.4 is equivalent to say, [I −Q, P] has zeros if and only

if there exist i, j ∈ {1, 2, . . . , p} such that a pole p0 of (sI −W o)[i, i] is not a pole of

(sI −W o,V o)[i, j].

By looking at the definitions of

Do = diag{W o}= diag(W o
11,W o

22, ...,W o
pp)

[W o V o]= [Ao
11 Bo

1]+ Ao
12(sI − Ao

22)−1[Ao
21 Bo

2], (3.40)

and since the poles of sI −W o are the same as W o, we then have

W o[i, i]= eT
i

(
Ao

11 + Ao
12(sI − Ao

22)−1 Ao
21

)
e i

= Ao
11[i, i]+ Ao

12[i, :](sI − Ao
22)−1 Ao

21[:, i]

W o[i, j]= Ao
11[i, i]+ Ao

12[i, :](sI − Ao
22)−1 Ao

21[:, j]

V [i,k]= Ao
11[i, i]+ Ao

12[i, :](sI − Ao
22)−1Bo

2[:,k]

For simplicity, let Ao
22 diagonalisable, i.e., Ao

22 = U JU−1 where J is a diagonal ma-

trix. We can substitute this to the above equations and then we have

Proposition 3.6.5. [I −Q, P] does not have zeros if and only if for all i, j,k

B{U Ao
21[:, j]}−B{U Ao

21[:, i]}≥ 0 (3.41)

B{UBo
2[:,k]}−B{U Ao

21[:, i]}≥ 0 (3.42)

Here a vector v ≥ 0 means, all the elements in v are greater or equal to 0.
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Proof. From above, we have that

W o[i, i]= Ao
11[i, i]+ Ao

12[i, :]U−1(sI − J)−1U Ao
21[:, i]

W o[i, j]= Ao
11[i, i]+ Ao

12[i, :]U−1(sI − J)−1U Ao
21[:, j]

V [i,k]= Ao
11[i, i]+ Ao

12[i, :]U−1(sI − J)−1UBo
2[:,k].

From Proposition 3.6.4, [I −Q, P] has zeros if and only if there exist i, j ∈ {1, 2, . . . , p}

such that a pole p0 of (sI −W o)[i, i] is not a pole of (sI −W o,V o)[i, j].

Given i, since J is diagonal, [I −Q, P] has zeros can only be happened if a nonzero

element in the rth position of U Ao
21[:, i], there exists a l such that either (U Ao

21[:, l])[r]= 0

or (UBo
2[:, l])[r]= 0.

In the next Section 3.6.3, we shall propose an algorithm that finds a minimal struc-

tural realisation of (Q, P).

3.6.3 Scenario that is not included in the Proposition

We found that for random choice of (A, B, C, D), the probability of [I−Q, P] has zero was

high. This indicates that due to the special construction of [I −Q, P], the assumption in

Proposition 3.6.2 is actually strong. We shall now consider the scenario when [I −Q, P]

has zeros.

To simplify the analysis, we have the following observation

[I −W /s, V /s]= (I −D/s)[I −Q, P], (3.43)

when Q, P does not posses any poles at 0 (otherwise can change eq. (3.43) to [s/(s−a)I−
W /(s−a), V /(s−a)]= (sI −D)(s−a)−1[I −Q P], where a ∈R is not a pole of [I −Q P]), we

can see that

deg[W , V ]= deg[I −W /s, V /s]− p,

therefore

D∗ = argminD deg[I −W /s,V /s]= argminD deg {(I −D/s)[I −Q, P]} . (3.44)

We define N(s)= (sI −D)s−1.

Remark 3.6.5. Eq. (3.44) reduces the complexity in determining D∗ as seen from Fig. 3.10

and Fig. 3.11.
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[D, 0]

[sQ, sP ] I − D/s

FIGURE 3.10: Cascaded and paralleled expression for [W , V ] in eq. (3.34).

[I − Q, P ] I − D/s

FIGURE 3.11: Cascaded expression for [I −W /s, V /s] in eq. (3.44).

The difference from Proposition 3.6.2 ([I −Q, P] does not have zeros) is that it now

allows to have poles for I −D/s, that is to say, the solution D∗ in eq. (3.44) will no longer

be a constant matrix.

Assume that a minimal realisation of [I −Q, P]: C1(A1 − sI)−1B1 + [I, 0]. If a zero

of [I −Q, P], say λi, is cancelled by cascading another system N(s) = (sI − D∗)s−1 ,

C2(A2−sI)−1B2+I, then the realisation of the cascaded system (sI−D∗)s−1[I−Q P] loses

controllability. In this case, it follows that there exists a nonzero vector zT
i = [zT

1,i, zT
2,i]

such that [
zT

1,i zT
2,i

][
A1 −λi I 0 B1

B2C1 A2 −λi I B2[I, 0]

]
= 0.

This shows that z2,i is an eigenvector of A2 corresponding to λi. Since A2 is diagonal,

we can directly compute zT
2,i =

[
0 . . . 0 1ith 0 . . . 0

]
∈R1×l . Therefore we have

[
zT

1,i zT
2,iB2

][
A1 −λi I B1

C1 [I, 0]

]
= 0.

[
A1 − sI B1

C1 [I, 0]

][
I −(A1 − sI)−1B1

0 I

]
=

[
A1 − sI 0

C1 [I −Q(s), P(s)]

]
,

We obtain, since λi 6= 0 is not a pole of N(s),

zT
2,iB2[I −Q(λi), P(λi)]= 0 (3.45)

By comparing the definition of zeros of [I −Q(λi), P(λi)], we can see that zT
2,iB2 is a vec-

tor that predetermined by the zero direction of [I −Q(λi), P(λi)]. Recall that a minimal
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realisation of diagonal transfer matrix can also be obtained by Gilbert realisation with

A2 = diag[a1, a2, . . . , ak], B2 = diag
[
b1 b2 . . . bk

]
, C2 = BT

2 ,

where (am ∈ Rkm×km ,bm ∈ Rkm×1,bT
m) is the minimal realisation of the the mth transfer

function on the diagonal.

From eq. (3.45), we have the following equality (let B(·) be the Boolean operator

which maps a matrix/vector to a Boolean one)

B(zT
2,iB2)=B(vT

i ), (3.46)

where vT
i is the corresponding zero direction of [I−Q(λi), P(λi)]. This imposes constraint

on cancelling the zeros of [I −Q, P]. To cancel zero λi with direction vT
i with nonzero

elements i1, i2, . . . , i j, then we should have the i1, i2, . . . , ith
j elements of N(s) have λi as

a pole.

Based on the analysis above, we now propose the principle of designing zeros for

I −D∗/s. If a pole of [I −Q, P], say λi, is cancelled by N(s) = (sI −D∗)s−1 , C2(A2 −
sI)−1B2 + I, then the realisation of the cascade (sI −D)s−1[I −Q P] loses observability.

In this case, it follows that there exists a nonzero vector wi = [wT
1,i,w

T
2,i]

T such that


A1 −λi I 0

B2C1 A2 −λi I

C1 C2


[

w1,i

w2,i

]
= 0.

The first equation shows that w1,i is an eigenvector of A1 corresponding to λi. Since A1

is diagonal, we can directly compute wT
1,i =

[
0 . . . 0 1ith 0 . . . 0

]
∈R1×l . Therefore

we have [
A2 −λi I B2

C2 I

][
w2,i

C1w1,i

]
= 0.

Noticing that C1w1,i = E i and that

[
I 0

−C2(A2 − sI)−1 I

][
A2 − sI B2

C2 I

]
=

[
A2 − sI B2

0 N(s)

]
,

we obtain, since λi 6= 0 is not a pole of N(s),

N(λi)E i = 0. (3.47)
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In summary, designing D∗ to cancel any pole λi of [I−Q P] is equivalent to imposing that

eq. (3.47) holds. The next question is: given [I −Q P], what is the maximal number of

poles that can be cancelled by left multiplication of N(s), i.e. what is the largest number

of poles for which eq. (3.47) is satisfied?

Remark 3.6.6. The Boolean structure of E i, B(E i) imposes constraints on the diagonal

terms in N(s) for cancelling the poles of [I −Q, P].

We are aiming to have all zeros of [I −Q, P] as poles of (I −D/s), in this case, we can

then have more poles of [I −Q, P] cancelled without introducing new poles. We know

that there are elements on the diagonal can have a pole/poles. For those elements, we

have more degrees of freedom to choose a larger number of zeros of N(s) to cancel the

poles of [I −Q, P].

To maximise the the number of poles in [I −Q, P] that can be cancelled, we use

the following table. Table 3.3 is a table generated by the poles of [I −Q, P] and the

Poles Place 1 Place 2 . . . Place p−1 Place p
p0

1 1 0 . . . 1 0
p0

2 1 0 . . . 0 1
p0

3 1 0 . . . 0 1
...

...
...

. . .
...

...
p0

l−1 0 0 . . . 0 1
p0

l 0 0 . . . 1 1

TABLE 3.3: Table for computing pole cancellation, the 1/0 is illustrative but does not have any
meaning. po

i are labelled in the following way as they appeared in vec([I −Q, P])
(from top to down).

requirement to cancel each of them from eq. (3.47). More specifically, the rows are the

poles of [I −Q, P] in any order and we then try to maximise the largest number of rows

that can be chosen such that for any column, the summation of the elements on selected

rows is less or equal to some constraint; or in other word, how to cancel the largest

number of poles without introducing more poles in the cascaded system in Fig. 3.11.

Mathematically, let s[ j] be the number of zeros that allowed for the jth diagonal

element in N(s) and let Ti, j ∈ {0,1} be the binary element in the ith row and jth column
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of Table 3.3, then

max k (3.48)

s.t.,
k∑

h=1
Tih, j ≤ s[ j], ∀ j.

{i1, . . . , ik}⊆ {1, . . . , l}.

When the number of poles is small, the problem is easy to solve, we can use the ex-

haustive attack method to go through all the possible cases and find the largest k. But

in general, it is an integer optimisation problem and can be viewed as a n-dimensional

Knapsack problem and therefore NP-hard.

The solution to the above optimisation problem goes beyond the scope of this thesis.

Once we have determine the {i1, . . . , ik} and the we can compute the corresponding

zeros and poles of N(s). Similarly as in the main context, once N(s) is fixed, we can then

determine D∗.

From above analysis, we have the following algorithm when [I−Q, P] has a zero/zeros.

Algorithm 7 Minimal [Q, P] realisation when [I −Q, P] has a zero/zeros

Step 3.6.1. Compute the zeros z0
i of [I−Q, P] and the corresponding directions vT

i . Take
the Boolean structure B(vT

i ), and define a vector that s =∑
B(vT

i )+1T ;

Step 3.6.2. Find a Gilbert realisation of [I −Q, P] and find the conditions in eq. (3.47)
for cancelling the poles p0

i ;

Step 3.6.3. Build a table for the cancelling conditions from Step 2 and compute the
maximum number of poles that can be cancelled from eq. (3.48) and [W , V ];

Step 3.6.4. Compute D∗ based on the determined positions and values of zeros/poles.

We shall illustrate the Algorithm 7 on this example.

Example 3.6.2.

Q =


0 0 0

s+1
(s+1)3+1 0 0

0 1
(s+1)(s+2) 0

 ,P =


1

s+3 0

0 (s+1)2

(s+1)3+1

0 0


Step 3.6.1. Compute the zeros and corresponding zero directions of [I−Q, P]. It has one
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zero at −1 and a corresponding zero direction at [0, 1, 0]. From eq. (3.46) we can see that

s = [1, 2, 1].

Step 3.6.2. Gilbert realisation of [I −Q, P]

A1 =



−1 0 0 0 0 0

0 −2 0 0 0 0

0 0 −2 0 0 0

0 0 0 −.5+0.866i 0 0

0 0 0 0 −.5−0.866i 0

0 0 0 0 0 −3


,D1 =


1 0 0 0

0 1 0 0

0 0 1 0

 , (3.49)

B1 =



0 1.41 0 0 0

0 2.24 0 0 0

0.408 0 0 0 0.408

0.488−0.423i 0 0 0 −0.61−0.211i

0.488+0.423i 0 0 0 −0.61+0.211i

0 0 0 1 0


, (3.50)

C1 =


0 0 0 0 0 1

0 0 0.816 −0.488+0.169i −0.488−0.169i 0

−0.707 0.447 0 0 0 0

 . (3.51)

Based on the above analysis, we can draw the following Table 3.5. From Table 3.5, we

see that to cancel pole p0
1, we need have a constraint on the first diagonal element of N(s),

similarly for other poles.

Poles Place 1 Place 2 Place 3
p0

1 =−3 1 0 0
p0

2 =−2 0 1 0
p0

3 =−.5+0.866i 0 1 0
p0

4 =−.5−0.866i 0 1 0
p0

5 =−1 0 0 1
p0

6 =−2 0 0 1

TABLE 3.4: Table for computing maximum cancelled poles by choosing N.

Step 3.6.3. To solve the following optimisation problem, Ti, j ∈ {0,1} be the binary element
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in the ith row and jth column of Table 3.5

max k

s.t.,
k∑

h=1
Tih, j ≤ 1, ∀ j = 1,3.

k∑
h=1

Tih, j ≤ 2, ∀ j = 2.

{i1, . . . , ik}⊆ {1, . . . , l}.

We know that the optimal solution is k = 4, then the dimension of A is p+l−k = 3+6−4= 5.

We can choose the solution to be either {i1, . . . , ik}= {1,3,4,5} or {i1, . . . , ik}= {1,3,4,6}3 and

N1(s)= diag
[
k1

s+3
s

, k2
s2 + s+1

s2 + s
, k3

s+1
s

]
or

N2(s)= diag
[
k1

s+3
s

, k2
s2 + s+1

s2 + s
, k3

s+1
s

]
,

where kis are nonzero parameters. Let ki = 1, then

[I −W1/s, V1/s]= N1[I −Q, P]=


s+3

s 0 0 1
s 0

−1
s(s+2)

(s+1)2

s(s+2) 0 0 s+1
s2+2s

0 −1
s2+2s

s+1
s 0 0

 ,

further we have

[W1, V1]=


−3 0 0 1 0

1
s+2

−1
s+2 0 0 s+1

s+2

0 −1
s+2 −1 0 0

 .

Similarly, we can obtain [W2, V2].

Step 3.6.4. We finally obtain

D∗
1 = sI−sN1 = diag

[
s−k1(s+3), s−k2

s2 + s+1
s+1

, s−k3(s+1)
]
= 4diag

[
−3,

1
s+1

, −1
]

.

3since [W , V ] requires to have real coefficients
4since D is required to be proper
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or

D∗
2 = sI−sN2 = diag

[
s−k1(s+3), s−k2

s2 + s+1
s+1

, s−k3(s+2)
]
= 5diag

[
−3,

1
s+1

, −2
]

.

Remark 3.6.7. The obtained Wi,Vi differs from W o, V o, but they are with the same

degree. I will continue pursue whether I could parameterise all the possible [W , V ] with

order p+ l−k = 5.

Example 3.6.3. Assume

Q =
[

0 − 7(s+2)
s2+s+1

− s+5
s2+2 0

]
, P =

[
s−4

s2+s+1 0

0 s−4
s2+2

]
.

Step 3.6.1. Compute the zeros and corresponding zero directions of [I−Q, P]. It has one

zero at 4 and a corresponding zero direction at [1, 2]. From eq. (3.46) we can see that

s = [2, 2].

Step 3.6.2. Gilbert realisation of [I −Q, P]

A1 =


−0.5+0.866i 0 0 0

0 −0.5−0.866i 0 0

0 0 1.4142i 0

0 0 0 −1.4142i

 ,D1 =
[

1 0 0 0

0 1 0 0

]
, (3.52)

B1 =


0 2.4749 −0.7071+0.6124i 0

0 2.4749 −0.7071−0.6124i 0

0.7655+0.2165i 0 0 −0.6124+0.2165i

0.7655−0.2165i 0 0 −0.6124−0.2165i

 , (3.53)

C1 =
[

1.4142−2.4495i 1.4142+2.4495i 0 0

0 0 0−2.3094i 0+2.3094i

]
. (3.54)

Based on the above analysis, we can draw the following Table 3.5. From Table 3.5, we

see that to cancel pole p0
1, we need have a constraint on the first diagonal element of N(s),

similarly for other poles.

5since D is required to be proper
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Poles Place 1 Place 2
p0

1 =−0.5+0.866i 1 0
p0

2 =−0.5−0.866i 1 0
p0

3 = 1.4142i 0 1
p0

4 =−1.4142i 0 1

TABLE 3.5: Table for computing maximum cancelled poles by choosing N.

Step 3.6.3. To solve the following optimisation problem

max k

s.t.,
k∑

h=1
Tih, j ≤ 2, ∀ j = 1,2.

{i1, . . . , ik}⊆ {1, . . . , l}.

We know that the optimal solution is k = 4 and {i1, . . . , ik}= {1,2,3,4} and

N(s)= diag
[

s2 + s+1
s−4

,
s2 +2
s−4

]
.

Step 3.6.4. We finally obtain

D∗ = sI − sN = diag
[
sI − s2 + s+1

s−4
, sI − s2 +2

s−4

]
= diag

[−5s+1
s−4

,
−4s+2

s−4

]
.

3.7 Structure-preserving model reduction

In previous Sections and in [103] an efficient method is developed to reconstruct net-

works in the presence of noise and nonlinearities. This method relies on the assumption

that the conditions for network reconstruction presented in [34] have been met. In our

approach, we use the same information as traditional system identification methods, i.e.

input-output data. However, time-series data can be used to reconstruct the dynamical

network structure of the system. Once the dynamical structure function is obtained, an

algorithm for constructing a minimal order state-space representation consistent with

such function is developed. In an application, this provides a way to estimate the com-

plexity of the system by determining the minimal number of hidden states in the system.

However, when the dynamical structure function is obtained by experiment data, the or-

der of obtained dynamical structure function might possibly have a higher McMillan de-

gree than the true one due to the noisy and nonlinear effect. We shall need to use model
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reduction to cancel some noisy effect or to have a simpler system for further analysis.

Problem 3.7.1. Given a stable system G with dynamical structure function (Q, P) and

structural degree6 n, and a non-negative integer ñ < n, find an approximate system G̃

with dynamical structure function (Q̃, P̃) and structural degree ñ such that

1. B(Q̃, P̃)=B(Q,P), and

2. G̃(s)= argmin‖G− G̃‖∞.

Note that even without the structural requirements, the optimisation problem given

by the second point is well known to be non-convex and hard. In this study we aim to

propose a solution to this problem. Noting from eq. (3.5) and eq. (3.6), we have

W = (sI −D)Q+D and V = (sI −D)P,

since D is a diagonal matrix, the multiplication of (sI−D) would not change the Boolean

structure of Q ,P. In consequence,

B(W)=B(Q)⊕B(D) and B(V )=B(P).

We can then transform the Problem 3.7.1 into the following problem:

Problem 3.7.2. Given a stable system G with dynamical structure function (Q, P) and

structural degree n and known corresponding (W , V ), and a non-negative integer ñ < n,

find an approximate system G̃ with (W̃ , Ṽ ) and structural degree ñ such that

1. B(W̃ , Ṽ )=B(W ,V ), and

2. G̃(s)= argmin‖G− G̃‖∞.

For any stable system G1, G2 with the same V

‖G1 −G2‖∞ = ‖(sI −W1)−1(W1 −W2)(sI −W2)−1V‖∞ = ‖(sI −W1)−1(W1 −W2)G2‖∞ (3.55)

An intuitive but naive idea is to do the term-wise model reduction on W , this will largely

affect the dynamics of the system, i.e. G [75]. We shall then develop new theory for

zero-pattern preserving model reduction or transform it to a problem that is solvable.

6the order of minimal state-space realisations that consistent with (Q, P)
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3.7.1 Model reduction through Gilbert realisation

Problem 3.7.3. Given a stable transfer matrix G(s) ∈RH ∞ with certain Boolean struc-

ture B(G) and given a pre-defined small constant ε ∈ R+, we are interested in find any

low-order stable approximation that is “close” in terms of infinite norm, i.e.

‖G− Ĝ‖∞ ≤ ε, (3.56)

and the zero pattern in G perserves, i.e.

B(G)=B(Ĝ). (3.57)

Solution: Let us start from the Gilbert realisation of G [107] gives

G(s)=
l∑

i=1

K i

s−λi
+G(∞) (3.58)

where K i = lims→λi (s−λi)G(s) and has rank 1 since we are assuming that G(s) has simple

real poles. Consider a matrix decomposition of K i in the following form:

K i = E iFi, ∀i, (3.59)

where E i ∈Rp and Fi = (ET
i E i)−1ET

i K i. Then A = diag{λi} ∈Rl×l , B =
[
FT

1 FT
2 . . . FT

l

]T
,

C =
[
E1 E2 . . . E l

]
and D =G(∞).

Proposition 3.7.1. For any i = 1, . . . , l, if there exists a subset Γi of {1, . . . , l}/{i}, such that

B(K i)⊕
(⊕ j∈ΓiB(K j)

)=B(K i), then we call the eigenvalue λi in eq. (3.58) reducible mode

and set

Λ= {i|λi is reducible mode. ∀i}.

Let Ĝ =G− K i
s+λi

, then B(Ĝ)=B(G).

Proof. From the definition of Gilbert realisation, a truncation of terms in eq. (3.58) leads

to a one-order lower realisation of G. We then characterise the gap between Ĝ and G.

By direct calculation

‖G− Ĝ‖∞ =
∥∥∥∥ K i

s+λi

∥∥∥∥∞ = trace(K i)
|λi|

,
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the last equality holds because knowing that (K i is a rank-1 matrix)

σmax(K i)
|λi|

= λmax(KT
i K i)

|λi|
= trace(K i)

|λi|
.

When trace(K i)
|λi | ≤ ε, then the Problem 3.7.3 is solvable; we can construct Ĝ satisfying

all three requirements in Problem 3.7.3.

Remark 3.7.1. This method here only provides a sufficient solution to Problem 3.7.3.

3.7.2 Balanced truncation on hidden variables

This section will propose a solution to Problem 3.7.2 by mathematically transforming it

to a solvable problem.

Problem 3.7.4. Given a stable system G with dynamical structure function (W ,V ) and

structural degree n, and a non-negative integer ñ < n, find an approximate system G̃ with

dynamical structure function (W̃ , Ṽ ) and structural degree ñ, for any prescribed positive

real number ε, we are searching for G̃ such that

1. B(W̃ , Ṽ )=B(W ,V ), and

2. ‖I − G̃−1G‖∞ ≤ ε.

Assumption 3.7.1. Assume that the principle sub-matrix of A, A22 is stable.

A minimal realisation of [W V ] can be obtained as follows:

[W V ]= [A11 B1]+ A12(sI − A22)−1[A21 B2] (3.60)

Therefore we consider a “virtual” system from the above realisation

ż = A22z+ A21 y

h = A12z+ A11 y, (3.61)

where z is the hidden states and y is the measured states in eq. (3.1).

Lemma 3.7.1. Consider a linear transformation mapping (A,B, [I 0]) to (T−1 AT,T−1B, [I 0]T)

by selecting

T =
[

I 0

0 T−1
2

]
,
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for any nonsingular matrix T2. The transformed system is([
A11 T2 A12

A21T−1
2 T2 A22T−1

2

]
,

[
B1

T2B2

]
, [I 0]

)
.

Such linear transformations do not change (W , V ) and G.

Proof. This can be shown from eq. (3.60).

Remark 3.7.2. Lemma 3.7.1 states the fundamental limitation of network reconstruction

problem: one can not obtain the “true” connections between hidden and measured states

and connections between hidden states themselves, which is natural.

Since A22 is assumed to be stable from Assumption 3.7.1 and (A22, A12) is control-

lable and (A21, A22) is observable, then we can compute the unique solution [107] for

Controllability Gramians Σc and Observability Gramiams Σo satisfying

A22Σc +Σc A∗
22 + A12 A∗

12 = 0 (3.62)

A∗
22Σo +Σo A22 + A∗

21 A21 = 0. (3.63)

A physical interpretation of such Gramians can be found in [85, 75]. Essential properties

of Gramians are as follows, by changing the coordinate of the hidden states z, z′ = Uz,

the corresponding new Gramians are

Σ′
c =U−1ΣcU−T and Σ′

o =UTΣoU .

Notice that Σo,Σc Â 0, so we can select U such that Σ′
c =Σ′

0 = (ΣcΣ0)1/2, we call the system

after such transform balanced.

Lemma 3.7.2. Suppose W, A22 and A are defined as in eq. (3.60), if A is Hurwitz, then

(sI −W)−1 is a stable transfer function.

Proof. Since sI −W is the Schur complement of sI − A22 in sI − A, then

det(sI −W)−1 = det(sI − A22)
det(sI − A)

. (3.64)

From the above equation, since A is Hurwitz, then (sI−W)−1 is a stable transfer function.

Remark 3.7.3. Frequency-weighted model reduction can only be applied when the fre-

quency weight is stable.
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W − W̃ (sI − W )−1

FIGURE 3.12: Cascade interconnected systems.

Since

‖I −GG̃−1‖∞ = ‖I − (sI −W)−1(sI −W̃)‖∞ = ‖(sI −W)−1(W −W̃)‖∞,

we can view (sI − W̃)−1(W − W̃) as a cascade system of a known system (sI −W)−1 ∈
RH ∞ and a to-be-determined system (W−W̃) and form it as a frequency weighted model

reduction problem.

Assume the corresponding state-space realisation of (sI−W)−1 = C′(sI−A′)−1B′, and

recall that W = A11+A21(sI−A22)−1 A12, then the cascaded system can be written in the

form

H(z)=


A22 0 A21

B′A12 A′ B′A11

0 C′ 0

,
[

Ā B̄

C̄ 0

]
(3.65)

Let Σ̄c, Σ̄o be solutions to the following Lyapunov equations

ĀΣ̄c + Σ̄c Ā∗+ B̄B̄∗ = 0 (3.66)

Σ̄o Ā+ Ā∗Σ̄o + C̄∗C̄ = 0. (3.67)

Then the input weighted Gramian

Σc =
[
I 0

]
Σ̄c

[
I

0

]
and Σo =

[
I 0

]
Σ̄o

[
I

0

]
.

Assuming that Σ̄c, Σ̄o have the following general forms

Σ̄c =
[
Σc X12

X21 X22

]
and Σ̄c =

[
Σo Y12

Y21 Y22

]
.

Definition 3.7.1. A realisation is hidden balanced if its controllability and observability

Gramians with corresponding block structure partition,

X c =
[

X c11 X c12

X c21 X c22

]
, Yo =

[
Yo11 Yo12

Yo21 Yo22

]
,
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satisfy X c11 =Yo11 =Σ,ΣcΣo, were Σ> 0 is diagonal.

We now transform the unsolvable problem to a standard frequency-weighted model

reduction problem, which can be approached using methods in [107]. We omit the rest

routine procedures here but only list Algorithm 2 for unweighted truncations on hidden

state. We shall finalise this idea and expand this section with more details and examples.

3.8 Conclusion

In this Chapter, we aim to introduce/define dynamical structure functions to solve the

network reconstruction problem.

We firstly proposed a new network reconstruction method in the presence of noise

and nonlinearities based on dynamical structure functions. The key idea is to find mini-

mal distances between existing data and the data required to obtain particular Boolean

networks. The method was illustrated with two biologically-oriented examples. They

showed that even in the presence of nonlinearities and considerable noise network re-

construction was possible. Eventually, when the signal to noise ratio was too small,

reconstruction was no longer possible, and that is true irrespective of the method used.

We have also presented a method for obtaining a minimal order realisation consis-

tent with a given dynamical structure function. We showed that the minimal order

realisation of a given dynamical structure function can be achieved by choosing a con-

stant diagonal matrix D. This provides a way to estimate the complexity of the system

by determining the minimum number of hidden states that needs to be considered in

the reconstructed network. For example, in the context of reconstruction of biological

networks from data, it helps understand the number of unmeasured molecules in a par-

ticular pathway.

Obviously, the proposed network reconstruction method has limitations with respect

to nonlinearities. With stronger nonlinear terms the method eventually fails. Currently

we are investigating a method that deals with nonlinearities. For example, network

reconstruction for oscillatory systems is still an open problem. However, when applied

to the reconstruction of various equilibrium point models given in the literature, we

observed that reconstruction was always possible when the signal-to-noise ratio of the

measured data was not too small (far less than 1).

Ongoing research on network reconstruction:

Time-reversal anti-causal system identification: when the experiments are con-

ducted as the way indicated in the report, we found that the network structure informa-

tion is encoded in the inverse of transfer function, i.e. X =G−1. Recall that a very small
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Algorithm 8 Direct balanced truncation on realisation of [W , V ]

Step 3.7.1. Find a balanced realisation [107] of A through linear transformation U, from
Lemma 3.7.1, we can see that it has the same (Q, P) and G as the original system before
transformation.

G̃ =
([

A11 U A12
A21U−1 U A22U−1

]
, Ã, [I 0]T , [I 0]

)
.

(sub-algorithm to find U is similar to balance realisation in [107] by solving Lyapunov
equations)

Step 3.7.2. We can re-partition Ã to

Ã =
Ã11 Ã12 Ã13

Ã21 Ã22 Ã23
Ã31 Ã32 Ã33

 ,

where
Ã11 = A11, [Ã12 Ã13]=U A12,[

Ã22 Ã23
Ã32 Ã33

]
=U A22U−1,

[
Ã21
Ã31

]
= A21U−1.

Step 3.7.3. Here we need to solve Lyapunov equations in eq. (3.66) and (3.67) [107] and
find the corresponding Σ= diag(σs1 Is1 , σsk Isk ), where σs1 > . . . >σsk . If σsk ≤ ε or σsk <<
σsk−1 , then we can do balanced truncation on G̃ = (

Ã, [0 I]T , [0 I]
)

to have

Ĝ =
(
Â =

[
Ã11 Ã12
Ã21 Ã22

]
∈Rn×n, B =

[
Ip
0

]
,C = [

Ip 0
])

.

Step 3.7.4. By choosing

Â =
([

I 0
0 U−1

]
A

[
I 0
0 U

])
[1 : n−1,1 : n−1]

=
[

I 0
0 U−1[1 : t,1 : (t+1)]

]
A

[
I 0
0 U[1 : (t+1),1 : t]

]
,

where t = n−p−1, A[1 : t,1 : t] for any matrix A denotes the submatrix of A defined by the
rows 1 to t and columns 1 to t.
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perturbation might lead to totally different network structure, i.e. given any positive

real number ε ∈R+, there always exists ‖∆‖ ≤ ε, such that

B(X ) 6=B(G+∆)−1.

Therefore we wish to use direct optimisation to obtain X from input-output data in

Section 3.4.2 to avoid the uncertainty propagation in the inverse operator. However,

the inverse of a transfer matrix might be a non-causal system and thus hard to analyse.

Georgiou and Smith in a recent paper [28] pointed out that the role of time-asymmetry of

stability plays in feedback control. Currently, a reversed time-axis system identification

algorithm is under investigation to tackle this difficulty.

Integrate Bayesian analysis: the machine learning community has strong arabil-

ity of handling noisy and missing data and there are a number of sophisticated tools in

this field. Our further analysis can be done to embed such algorithms, e.g. [69] into our

framework7.

7Some preliminary research has been conducted in [66].
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3.9 Appendix

3.9.1 Proof of the claim in Step 2 of the proposed algorithm:

Proof. Using results from [19], if a pole of [sQ sP], say λi, is cancelled by N = (sI−D)s−1,

then the realisation of the cascade (sI−D)s−1[sQ sP] loses observability. In this case, it

follows that there exists a nonzero vector w = [wT
1 ,wT

2 ]T such that


A1 −λi I 0

B2C1 A2 −λi I

D2C1 C2


[

w1

w2

]
= 0.

The first equation shows that w1 is an eigenvector of A1 corresponding to λi. Since A1

is diagonal, w1 =
[
0 . . . 0 1ith 0 . . . 0

]
∈R1×l . Therefore we have

[
A2 −λi I B2

C2 D2

][
w2

C1vi

]
= 0.

Noticing that C1wi = E i and that[
I 0

−C2(A2 − sI)−1 I

][
A2 − sI B2

C2 D2

]
=

[
A2 − sI B2

0 N

]
, (3.68)

we therefore obtain

N(λi)E i = 0. (3.69)

In summary, designing D to cancel any pole λi of [sQ sP] is equivalent to imposing

that eq. (3.69) holds. The next question is: given [sQ sP] what is the maximal number

of poles that can be cancelled by N, i.e. what is the largest number of poles for which

eq. (3.69) is satisfied? To answer this, recall that to cancel a pole λi, eq. (3.69) must

be satisfied. Furthermore, E i[ j] being nonzero, for some j, implies that there exists at

least one nonzero element in the jth row of E i. In this case, satisfying eq. (3.69) imposes

that the jth diagonal element of N(λi) is 0, i.e. the jth diagonal element of D is λi. In

other words, a nonzero element in E i corresponds to a fixed value in the corresponding

diagonal position in D. Since D is a constant diagonal matrix then any pair of orthogonal

vectors in {B(E1), . . . ,B(E l)} do not intervene in the choice of an element on the diagonal

of D.

123



CHAPTER 3. NETWORK RECONSTRUCTION

3.9.2 Algorithm to find φ and Φ:

As is presented in [33], an undirected graph is denoted by G = (V ,E ) where V = {ν1, . . . ,νl}

is the set of nodes and E ⊂ V ×V is the set of edges.

For our purposes, we construct an undirected graph Ga using the following rules:

• A node is associated with each vector in the set {B(E1), . . . ,B(E l)}. There are thus

l nodes in the considered graph.

• An undirected edge (i, j) is drawn between node i and node j if the equality B(E i)TB(E j)=
0 is satisfied.

It is easy to see that the maximum cardinality of the set Φ corresponds to the maxi-

mum number of nodes in a complete subgraph Kn of the graph Ga.

Although the problem of finding a largest complete subgraph in an undirected graph

is a NP-hard problem, methods to this have been proposed in computer science and some

corresponding MATLAB code can be downloaded8. Therefore we can use these methods

to obtain a largest complete subgraph and consequently compute the corresponding set

Φ and its corresponding cardinality φ.

8http://www.mathworks.com/matlabcentral/fileexchange/19889.
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Chapter 4

The Path Ahead

The conclusions and future work related to this thesis are included in Chapter 2 and

Chapter 3 respectively, and I would like to take this opportunity to reflect on research

opportunities in the field more widely.

I studied control theory at the time when people thought that control theory is ma-

ture. Prof. Y. C. Ho, a Control Field Award winner in his sequential blogs1 claimed that

“control is dead“ based on the fact that NSF would not support any research on classic

control theories.

Hence, the control and systems societies are trying to find new directions: Profes-

sor Richard Murray from Caltech summarised some findings and recommendations of

a panel on “Future Directions in Control, Dynamics, and Systems” in 2003. A set of

grand challenges that illustrate some of the recommendations and opportunities are

also provided in [55]. A conference was held in LIDS, MIT in 2009 discussing the “path

ahead”2. Thus, control as a field is clearly not dead, it just needs to refocus its attention

in "non-classical" applications of extreme importance such as systems and synthetic bi-

ology, power systems, internet, networks, etc.. For the future directions, here are some

of my thoughts:

4.1 Solving existing open problems

There are a large number of interesting open problems in control theory [9, 8]. Prof.

David Hilbert proposed 23 unsolved problems known as “the Hilbert’s problems”. These

problem were very influential for 20th century mathematics. For the similar reason, I

1http://blog.sciencenet.cn/home.php?mod=space&uid=1565&do=blog&id=329153,
http://blog.sciencenet.cn/home.php?mod=space&uid=1565&do=blog&id=344686

2http://paths.lids.mit.edu/
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believe the solutions to some of the open problems in [9, 8] will be influential and will

transform the field.

4.2 Motivation from promising applications

Like robust control theory [107] motivated by the aerospace engineering in the 1990s,

nowadays there are a number of interesting applications of control theory, e.g., biology

and power systems. This application-driven research may lead to ask a large number

of fundamental problems that cannot be solved with current available methods. This

motivates the development of new theory. In this thesis we have identified two such

problems and we have provided answers for them.

4.3 Encounter with other techniques

In Professor Lennart Ljung’s plenary talk at IEEE Conference on Decision and Control

2011, he mentioned two new encounters (sparsity and compressive sensing, and ma-

chine learning) where system identification meets and tries to absorb the essence of new

techniques to push the identification methodology forward. This coincides with what I

mentioned above. To keep the control theory young and dynamic, we need to encounter

advanced techniques in other fields, e.g., information theory, machine learning. I shall

briefly list some of my ideas as simple first attempts.

4.3.1 Encounter with information theory

Here, more specifically, we shall not only focus on sparsity and compressive sensing but

also point the readers to a paper by Lestas, Vinnicombe and Paulsson [49], which studied

the fundamental limitations given the information channel.

Before going through the technical details of compressive sensing, what it can bring

to our study of network reconstruction problem is a relaxation in the experimental re-

quirements in Corollary 3.2.1 in Chapter 3 by knowing the network is a-priori sparse. It

also can provide possibility for network reconstruction with nonlinear dynamics [66].

Mathematically, a signal x is k-sparse when it has at most k nonzeros, i.e. ‖x‖0 ≤ k.

We let ∑
k = {x : ‖x‖0 ≤ k}

denote the set of all k-sparse signals. Typically, we shall be dealing with signals that

are not themselves sparse, but which admit a sparse representation in some basis Ψ. In
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this case we shall still refer to x as being k-sparse, with the understanding that we can

express x as x = Ψc where ‖c‖0 ≤ k.

Compressive sensing is a technique that encodes a signal x of dimension N by com-

puting a measurement vector y of dimension of m ¿ N via linear projections, i.e.

y=Φx,

where Φ ∈ Rm×N is referred to as the measurement matrix. In general, it is not pos-

sible to uniquely recover the unknown signal x using measurements y with reduced-

dimensionality. Nevertheless, if the input signal is sufficiently sparse, exact reconstruc-

tion is possible. In this context, suppose that the unknown signal x ∈ RN is at most

K-sparse, i.e. that there are at most K nonzero entries in x.

A naive reconstruction method is to search among all possible signals and find the

sparsest on which is consistent the linear measurements. This requires only m = 2K

random linear measurements, but finding the sparsest signal representation is an NP-

hard problem. On the other hand, [13] demonstrated that reconstruction of x from y is

a polynomial time problem if more measurements are taken. This is achieved by casting

the reconstruction problem as an l1-minimisation problem, i.e.

min‖x‖1 subject to y=Φx, (4.1)

where ‖x‖1 = ∑n
i=1 |xi| denotes the l1-norm of the vector x. It is a convex optimisation

problem and can be solved efficiently by linear programming (LP) techniques.

When Shannon meets Bode

This progress in information theory will definitely accelerate the development of control

theory. In particular, beyond the implication of compressive sensing to network recon-

struction, one may immediately ask the question: “how this affects the observability

theory?”

In control theory observability is a measure for how well internal states of a system

can be inferred by knowledge of its external outputs [107]. Recall that the proof to the

observability is equivalent to solving linear equations, if we assume that the initial state

x0 is known a-priori sparse or admit a sparse representation in some basis Ψ, we can

then relax the requirement for observability using the l1 decoding algorithm above.
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More specifically, assume that for standard DTLTI system,

xk+1 = Axk +Buk

yk = Cxk,

where x ∈RN . Without loss of generality, we assume C ∈R1×N . It then follows
y0

y1
...

yN−1

=


C

CA
...

CAN−1

x0. (4.2)

There are two scenarios, by which the compressive sensing technique might be use-

ful. First, when the system is not observable but with a-priori information that the initial

state is sparse. Then the solution of x0 in eq. (4.2) can be found using the l1 optimisation

in eq. (4.1). Second, if N is very large, the number of observations, i.e. {yi} is less than

N but satisfies the condition that the number of observations is large than 2×Sparsity

of x0, then the solution of x0 in eq. (4.2) again can be found using the l1 optimisation in

eq. (4.1).

These ideas can be used to re-think about the relaxation in the observability as-

sumption in control theory when there exists a-priori knowledge about sparsity of the

considered signal or system, e.g., in model-predictive control [50], fault-detection theory

[105], etc..

4.3.2 Encounter with machine learning

Machine learning is a discipline concerned with the design and development of algo-

rithms that allow computers to evolve behaviours based on empirical data [70, 6].

In control theory, system identification methods are based on the fact that when the

number of samples in data goes to infinity, such method will be unbiased. However,

there is no such guarantee for finite samples, i.e., given the amount of data and the prior

knowledge of the system, the results obtained by system identification may not be the

optimal solution. And normally, the identification and control processes are separated.

It is easy to understand that the use of identification is for control, we shall emphasis

here that control is also for identification. It would be more natural to think in the

machine learning way that the data is used to generate a posterior knowledge of the

model. Once such model is obtained, we may then ask: How to develop algorithms that

128



4.3. ENCOUNTER WITH OTHER TECHNIQUES

FIGURE 4.1: Machine control diagram.

allow computers to control?

Machine control?

This section illustrates the proposed machine control problem using the control diagram

in Fig 4.1. In Fig. 4.1, P is a nominal plant where its dynamics is known, D is the

uncertainty in the plant and K is the controller to be designed.

As a simple example of illustration, let us consider the simplest case, a SISO transfer

function G as the model of P in Fig. 4.1. The unmodelled dynamics (uncertainty) D

(might be structured or unstructured) in Fig. 4.1 has some probabilistic distribution, e.g.,

uniform or Gaussian distribution if we have some knowledge about D. In the machine

learning literature, there are lots of results that can generate a posterior distribution of

D based on the learning of model from empirical data.

If D is bounded, then we can directly apply Small Gain Theorem [22] to design a

stabilised controller K . However, this does not take the prior distribution into account.

The system is stable but not “optimal”.

If the distribution of D is unbounded and not symmetric with respect to 0, the Small

Gain Theorem [22] does not hold. And of course, there is no absolute stability for such

system for unbounded distribution D. A question to ask is that given the plant P, a

positive real value p ∈ (0,1) and a distribution on D, how to design controller K such that

the whole system is stable with probability p. Secondly, even if we adopt the probabilistic

version of Small Gain Theorem as just mentioned, it is too conservative. How to design

controller using the information on the posterior distribution in the model?
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In general, how to provide a practical machine control approach to tackle such ques-

tions for general systems remains open. It is currently under investigation using random

matrix theory, e.g. [21].

4.4 Ending

“Oh! There are still other 128 lines in ‘Auguries of Innocence‘!”
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