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Abstract 25 

This paper is concerned with the comparison of two numerical viscoelastic strategies 26 

for predicting the fast filament stretching, relaxation and break up of low viscosity, 27 

weakly elastic polymeric fluids. Experimental data on stretch, relaxation and breakup 28 

was obtained using a Cambridge Trimaster for a Newtonian solvent (DEP) and three 29 

monodisperse polystyrene polymer solutions. Two numerical codes were tested to 30 

simulate the flow numerically. One code used a 1D approximation coupled with the 31 

Arbitrary Lagrangian Eulerian (ALE) approach and the other a 2D axisymmetric 32 

approximation for the flow. In both cases the same constitutive equations and mono 33 

and multimode  parameter  fitting  was  used;  thereby  enabling  a  direct  comparison  on  34 

both codes and their respective fit to the experimental data. Both simulations fitted the 35 

experimental data well and surprisingly the 1D code closely matched that of the 2D. 36 

In both cases it was found necessary to utilise a multimode approach to obtain a 37 

realistic match to the experimental data. The sensitivity of the simulation to the choice 38 

of constitutive equation (Oldroyd-B and FENE-CR) and the magnitude of non linear 39 

parameters were also investigated. The results are of particular relevance to ink jet 40 

processing and demonstrate that high shear rate, low viscosity viscoelastic polymeric 41 

flows can be simulated with reasonable accuracy. 42 

1.Introduction 43 

The way in which viscoelastic fluids stretch, thin and break up is of relevance to a 44 

number of technologies and these three phases of the flow have in the past received 45 

extensive scientific attention; although generally as three different individual topics. 46 

The stretching of polymeric fluids in particular has received detailed experimental and 47 

modeling attention in the last decade from amongst others (Anna and McKinley 48 
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(2001), McKinley and Sridhar (2002), Bach et al. (2002), Clasen et al. (2006)) where 49 

the work has concentrated on determining the transient extensional viscosity of fluids. 50 

The thinning of prestretched polymeric fluids has also been investigated 51 

experimentally following pioneering experimental work by (Bazilevsky et al., 1997) 52 

which was subsequently modelled by (Entov and Hinch (1997)). A review by 53 

McKinley (2005a) gives an authoritative account of factors that influence filament 54 

thinning behaviour. Filament breakup is a delicate process and is the least well 55 

characterized and modelled of the three topics amongst stretching, relaxation and 56 

breakup covered by this paper. 57 

Ink jet printing can involve all three elements mentioned above during filament 58 

formation and droplet breakup (Dong et al. (2006), Hoath et al. (2009), Jang et al. 59 

(2009)). Although filament thinning experiment cannot reach filament stretching 60 

strain rate anywhere near inkjet printing processing, it enables measuring very short 61 

extensional relaxation time with timescale comparable with inkjet droplet formation 62 

(Vadillo et al., 2012).  It also gives access to the elasto-capillary times controlling 63 

filament behavior and break-up process (Tembely et al. 2011). As such, filament 64 

thinning simulations is therefore a way to test different constitutive equations with 65 

well controlled boundary conditions which may eventually lead to a better 66 

understanding of the inkjet process which is much more challenging by itself.  In 67 

order to mimic elements of this complex deformation process a “Cambridge 68 

Trimaster” geometry apparatus was developed specifically as a device to capture 69 

aspects of the process with well-defined boundary conditions (Vadillo et al. (2010a)). 70 

The Cambridge Trimaster has strong similarity to the single piston Rozhkov filament 71 

thinning device (Bazilevsky et al. (1990) and the Haake Caber filament thinning 72 

apparatus (http://www.thermo.com/com/cda/product/detail/). The twin piston 73 
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Trimaster was developed specifically for low viscosity fluids with a fast, controlled 74 

initial displacement and for use with high speed photography [Vadillo et al.(2010a)]. 75 

Characterisation of low viscosity, linear viscoelasticity with short relaxation times is a 76 

challenging  area  of  rheology,  however  the  Pechold,  Piezo  Axial  Vibrator  (PAV)  77 

(Groß et al. (2002), Kirschenmann (2003), Crassous et al. (2005), and Vadillo et al. 78 

(2010b)) is an apparatus that can probe fluid within the range of millisecond 79 

relaxation  times.  Thus  by  using  a  combination  of  the  Cambridge  Trimaster  and  the  80 

PAV it was possible to probe both the extensional filament break up behaviour of 81 

viscoelastic fluids that are well characterized, at least in the Linear Viscoelastic 82 

(LVE) regime using the PAV. 83 

In a recent work, some authors of this paper have published the matching of 84 

experimental and simulation filament stretching and thinning data using the single 85 

mode Maxwell  description  for  the  viscoelastic  contribution  of  the  fluid  (Tembely  et  86 

al. (2012). The results were promising, although all the elements of the Trimaster data 87 

with a single mode 1D simulation of the process of thinning and break up could not be 88 

fully captured. A direct comparison between 1D and 2D models may be found in the 89 

work of Yildirim and Basaran (2001) and more recently by Furlani and Hanchak 90 

(2011). The latter authors have used the slender jet 1D approximation and solved the 91 

arising nonlinear partial differential equations using the method-of lines wherein the 92 

PDEs  are  transformed  to  a  system  of  ordinary  differential  equations  for  the  nodal  93 

values of the jet variables on a uniform staggered grid. The results are impressive with 94 

the key advantages being the ease of implementation and the speed of computation 95 

albeit in a different configuration than the problem considered in this paper. In the 96 

present paper, Trimaster data for polymer solutions are matched to single and 97 

multimode viscoelastic simulation data, using both a computationally time efficient 98 
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1D simulation and a potentially more rigorous 2D simulation. The paper represents a 99 

“state of art” position in matching extensional time dependent results with high level 100 

numerical simulation, thereby enabling the effects of constitutive equation and 101 

constitutive parameters to be tested.  102 

2.Test fluids, rheological characterisation and Trimaster experimental protocols. 103 

2a Test fluid preparation and characterisation. 104 

The fluids used were a series of mono-disperse polystyrene dissolved in diethyl 105 

phthalate (DEP) solvent as previously described in [Vadillo et al., 2010]. Near mono 106 

disperse Polystyrene polymer was manufactured specially by Dow, and gel 107 

permeation chromatography (GPC) with THF as the solvent enabled determination of 108 

mass and number average molecular weights Mw and  Mn as 110 kg/mol and 109 

105kg/mol respectively. A stock solution of PS dilution series was prepared by adding 110 

10wt% of PS to the DEP at ambient temperature.  The resulting solution was heated to 111 

180°C  and  stirred  for  several  hours  until  the  polymer  was  fully  dissolved.   The  112 

dilution series were prepared by subsequent dilution of the respective stock solutions. 113 

Sample surface tension remained constant at 37mN/m up to 10wt% PS110 114 

concentration and with a critical polymer overlap concentration c* of 2.40wt% 115 

[Clasen et al. (2006a)].  The zero shear viscosities 0 of the solutions were determined 116 

from PAV low frequency complex viscosity * data within the terminal relaxation 117 

regime and the measured viscosities are given in Table I.   118 

Table I: Zero shear rate complex viscosity of the different polymer solutions at 25°C 119 

2b. Rheological characterisation. 120 
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The Piezo Axial Vibrator (PAV) has been used to characterise the linear viscoelastic 121 

behaviour of samples with viscosity has low as 1mPa.s on a frequency range 122 

comprised between 0.1Hz and 10000Hz [Groß et al. (2002); Kirschenmann (2003); 123 

Crassous et al. (2005); Vadillo et al. (2010b  The PAV measures the complex 124 

modulus G* of the test fluid with G* = G’ + iG’’ and where G’ is the storage modulus 125 

and  G’’ is  the  loss  modulus.   The  complex  viscosity  * is related to the complex 126 

modulus by * = G*/  where  is the angular frequency.  Experimental LVE results 127 

are presented in Fig. 1.  Loss modulus G’’ and elastic modulus G’ have been found to 128 

increase with the frequency and to vertically shift with the polymer addition. Note, the 129 

pure DEP solvent does not show any G’.  Both moduli approach at lower frequencies 130 

the terminal relaxation regime with the expected scaling with a power of 1 for the loss 131 

modulus (Fig. 1.a), and a power of 2 for the storage modulus (Fig. 1.b), and a constant 132 

complex viscosity * in this regime as shown in Fig. 1.c (except for 5wt% PS110 after 133 

2000Hz).  The experimental results are displayed between 102 and 104Hz, the range 134 

on which the storage modulus has been captured.  At lower frequency, the fluids have 135 

been found essentially to behave as a Newtonian fluid with the presence of a loss 136 

modulus only.  137 

2c. Cambridge Trimaster experimental protocol 138 

The Cambridge Trimaster (CTM) is a Capillary Breakup Extensional Rheometer that 139 

has been specifically designed to probe the extensional rheology of weakly 140 

viscoelastic fluids.  This apparatus performs a fast stretch of a cylinder of fluid 141 

initially located between two identical pistons over a short distance.  This apparatus 142 

and its limitation have been presented in details in [Vadillo et al. 2010a]. In the 143 

present study, the piston diameters are 1.2mm and the experimental filament 144 
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stretching conditions are an initial gap size L0 of 0.6mm and a stretching distance Lf 145 

of 0.8mm at a relative piston speed 2Vp of 150mm/s.  This corresponds to a filament 146 

strain rate 2Vp/L0 =  250  s-1 and  a  filament  aspect  ratio  Lf/L0 of  2.3.   The  piston  147 

velocity and stretching distance have been chosen to ensure that pistons stop their 148 

motions before the critical time scale for inertio-capillary break up for the sample 149 

with  the  lower  viscosity,  here  the  DEP.   For  such  a  fluid,  this  time  scale  has  been  150 

estimated around 5ms [Tembely et al., 2012].    These conditions will be conserved in 151 

the following for both experiments and simulations. 152 

The transient filament profiles have been captured using a Photron Fastcam 153 

(http://www.photron.com/index.php?cmd=product_general&product_id=1) 1024 PCI 154 

high speed camera at 6000 fps, for a picture size of 128 x 256 with a shutter time of 155 

3µs.  The filament thinning measurement, as well as the filament breakup behaviour, 156 

was obtained using automatic image processing based of greyscale variation 157 

throughout image for edge detection and the minimum diameter that can be resolved 158 

was about 6 m.   159 

2d Relaxation time and moduli determination. 160 

Relaxation spectrum determination from LVE measurements is an ill-posed problem 161 

and has been studied extensively in the literature [see for example Baumgaertel and 162 

Winter (1989); Kamath et al. (1990), Stadler and Bailly (2009)] and different 163 

techniques from linear to non-linear regression have been developed to obtain 164 

relaxation spectra from oscillatory LVE data. In the modelling carried out here, a 165 

series of equidistant relaxation times spaced on the logarithmic scale was chosen with 166 

one mode per decade. This was motivated by the fact that, in experiments, low visco-167 

elastic fluids have shown significant differences between relaxation times in shear and 168 
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in extension [Clasen et al. (2006)] and recent simulations have shown that using a 169 

single mode Maxwell description of the fluid was not sufficient [Tembely et al. 170 

(2012)] to capture those differences. The minimization program for both G’ and G’’ 171 

data was solved using Matlab®. The solution involved the use of SQP (Sequential 172 

quadratic programming) [Jorge and Wright (2006)] methods which may be considered 173 

as a state of the art nonlinear programming optimization technique. This method has 174 

been shown to outperform other methods in terms of accuracy, efficiency, and 175 

adaptability over a large number of problems [Schittkowski (1985)] and it  is  an  176 

effective method for non-linear optimization with constraints. In each iteration the 177 

non-linear problem was approximated using a quadratic which is easy to solve (hence 178 

the name SQP). 179 

The conversion of the experimental data (G'm, G"m, j) into a relaxation function was 180 

performed by expressing G(t) as a discrete relaxation spectrum (gi, i). The Maxwell 181 

model relates the real and imaginary parts of the complex modulus determined in 182 

LVE measurement to the discrete relaxation spectrum of N relaxation times i and a 183 

relaxation strengths gi through: 184 
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with   being  the  angular  frequency  of  the  experiment,  and  N  is  the  number  of  187 

relaxation modes. As indicated in (2), G” accounts for the solvent viscosity. 188 

Generally the spectra can be computed by minimizing the “least mean square error” 189 

as follows [Bird et al. (1987); Stadler and Bailly (2009)]: 190 
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where M is the number of measurements. 192 

The model is initialized by choosing the relaxation times to be equidistantly spaced on 193 

a logarithmic scale such that pii /1/log 1 . Setting p = 1, i.e, one mode per 194 

decade, has been found to provide sufficient accuracy to accurately describe the LVE 195 

behavior (Fig. 1). In the numerical simulation, the Maxwell component of the model 196 

was  fitted  with  5  modes.  The  relaxation  times  are  chosen  such  that  G’  and  G”  197 

measured over the frequency range min< max recover all the information 198 

regarding the relaxation spectrum over the range 1/ max i<  1/  min, however the 199 

correct range is given by e /2/  max< i < e /2
min  [Davies and Anderssen (1997)]. 200 

This spectrum is a generalized form of the Maxwellian dynamics [Ferry (1980)] and 201 

shown in Table II.  202 

3. General equations and numerical simulations. 203 

Numerical simulations of the Trimaster deformation were performed using both a 204 

one-dimensional model and a 2D axisymmetric model. In the following sub-sections 205 

the general equations and the numerical techniques used in both cases are detailed.  206 

3a. Flow geometry. 207 

To model the experimental conditions, an initial cylindrical column of fluid was 208 

considered bounded by two rigid circular pistons of diameter D0.   The fluid and the 209 

pistons were initially at rest; subsequently the pistons moved vertically outwards with 210 

time-dependent velocities Vp(t)  (top  piston)  and  -Vp(t)  (bottom  piston),  which  are  211 

prescribed functions based on fitting a smooth tanh curves through measurements of 212 
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the Trimaster piston motion in the experiments. As described in Tembely et al 2011, 213 

the  form  of  tanh  has  been  chosen  to  fit  the  symmetrical  “S”  shape  experimentally  214 

observed for the piston motion with time.  In they work, the authors have shown that 215 

the use of an accurate representation of the piston dynamic response is of importance 216 

in the simulation of fast transient dynamic of low viscosity and/or low viscoelasticity 217 

fluids. 218 

Using a cylindrical coordinate system {r, , z}, the flow was constrained to be 219 

axisymmetric so that all flow fields are independent of the angular coordinate , and 220 

the simulation may be restricted to the rz-plane.  The coordinate origin is at the axis of 221 

the jet, midway between the initial positions of the two pistons.  Fig. 2 shows a 222 

schematic diagram of the computational domain at an intermediate stage of the piston 223 

motion. 224 

Symmetric boundary conditions are required along the z-axis to maintain 225 

axisymmetry, and conditions of no-slip were applied at each piston surface.  The 226 

boundary conditions at the free surface are those of zero shear stress and the 227 

interfacial pressure discontinuity due to the surface curvature 228 

fluid
air. . 0 and . , [ ]t T n T n                                          (3) 229 

where  T  is the total stress tensor, n is  the  unit  vector  normal  to  the  free  surface  230 

(directed outward from the fluid), t is the unit tangent vector to the free surface in the 231 

rz-plane,  is the coefficient of surface tension, and  is the curvature of the interface.  232 

It is assumed that the external air pressure is a negligible constant. 233 

The location of the free surface at each time-step was determined implicitly via a 234 

kinematic condition.  In the axisymmetric simulations, this was realized 235 
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automatically, since the mesh is Lagrangian and the mesh nodes are advected with the 236 

local fluid velocity.  The contact lines between the free surface and the pistons were 237 

held pinned at the piston edges throughout. 238 

The initial conditions are that the fluid is at rest (v=0) and the polymer is at 239 

unstretched equilibrium (Ai=I). 240 

3b. Governing equations 241 

The governing equations for incompressible isothermal flow of a viscoelastic fluid are 242 

the classical Navier-Stokes equations for Newtonian fluids together with an additional 243 

viscoelastic term coming from the extra stress tensor . The momentum conservation 244 

then may be expressed as follows in which the 3rd term on right-hand-side accounts 245 

for viscoelasticity: 246 

2( . ) .s
d p g
dt
v v v v z                                     (4) 247 

and the continuity equation reads: 248 

. 0v                                                                               (5) 249 

where p is the fluid pressure,  is the fluid density, s is the solvent viscosity, and g is 250 

the acceleration due to gravity. 251 

3c. Constitutive equations 252 

For the viscoelastic fluid models, the polymer contribution was described by a 253 

Finitely Extensible Nonlinear Elastic (FENE) dumbbell model which makes use of 254 

the conformation tensor A, and the stress tensor reads [see for example, Chilcott and 255 

Rallison (1988)]: 256 
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( )( )Gf R A I                                                  (6) 257 

whereG  is the elastic modulus, )(Rf is the finite extensibility factor related to the 258 

finite extensibility parameter L , representing the ratio of a fully extended polymer 259 

(dumbbell) to its equilibrium length and R = Tr(A).  L can be described in terms of 260 

molecular parameters as: 261 
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In this expression,  corresponds to the C-C bond angle and is equal to 109.5°, j 263 

corresponds to the number of bonds (2 in the case of PS) of a monomer of molar mass 264 

Mu = 104g/mol, C  is the characteristic ratio for a given polymer equal to 9.6, Mw is 265 

the molecular weight of the polymer and  is the excluded volume exponent equals to 266 

0.57 for PS110 [Clasen et al. (2006b)].  In the case where the dumbbells are infinitely 267 

extensible, ( ) 1f R  and the constitutive equation is that of an Oldroyd-B fluid.  For 268 

PS110, L has been estimated at 15. 269 

For a multimode model, the extra stress may be expressed as a sum of contributions 270 

from each mode. For the generalized multimode problem with N modes, each mode 271 

(i) with partial viscosity ( i) and relaxation time ( i), and the extra-stress tensor of the 272 

FENE-CR expresses: 273 

 1

( )( ) ,
N

i i i i
i

g f R A I
 

(8) 274 

where 2( ) 1/ 1 /i i i if R R L  with Tri iR A .  For simplicity, it is assumed that the 275 

extensibility Li=L is constant, but other approaches may be used [Lielens et al. 276 

(1998)]. The dimensionless evolution equation for the thi  mode is 277 
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Where .Ti
i i i i i

d
dt
AA v .A A v  is the Oldroyd upper-convected time derivative of 279 

Ai, and Dei is the Deborah number for the thi  mode defined as follow 280 

 De /i i  (11) 281 

gi and i are the modulii and relaxation times described by the multimode 282 

optimization see sub-section (2d) and where  is the characteristic inertio-capillary 283 

time scale of the system defined by 3
0 /R . 284 

Scaling was performed using the piston radius R0 as a length scale, and a 285 

characteristic speed U as a velocity scale , where U is the average piston speed in the 286 

2D case, and U=R0  in the 1D case.  The time was scaled by R0/U and ,  in the 2D 287 

and 1D cases respectively; whereas pressures and stresses were scaled by U2. The 288 

scalings yielded the dimensionless governing equations: 289 

2
2

1

1 1 , · 0 ,
Re F

(v. )
r

N

ii
i

p c Ad
dt
v v v z v (10) 290 

where t , v , and p  are  now  the  dimensionless  time,  velocity,  and  pressure  291 

respectively. For each viscoelastic mode an additional parameter ci = gi i/ s has been 292 

introduced: it may be interpreted as a measure of the concentration (volume fraction) 293 

of dumbbell molecules corresponding to the thi  mode. With the particular scalings 294 

used here, the flow is characterized by the dimensionless groups Re We, and Fr, 295 

which are respectively the Reynolds, Weber, and Froude numbers 296 
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in addition to the Deborah number Dei for each mode, defined earlier.  The Reynolds 298 

number represents the competition between inertia and viscosity, the Weber number 299 

the competition between the inertia and the surface tension while the Froude number 300 

represents the competition between inertia and gravity effects. 301 

Another important dimensionless number is that of Ohnesorge, 0Oh /S R .With 302 

the scalings used here, the Ohnesorge number can be expressed in terms of the Weber 303 

and Reynolds numbers: Oh We / Re . Alternative choices of scaling may result in 304 

other different dimensionless groupings [Eggers and Villermaux, (2008)] as for 305 

example, the Capillary number (ratio between viscous forces and surface tension) and 306 

the Bond number (ratio between gravitational forces and surface tension).  The Bond 307 

number and the Capillary number have been estimated at ~0.11 and between 0.04 and 308 

0.28 respectively indicating that surface tension is the dominating force and the 309 

gravitational effects negligible. An extensive discussion of dimensionless number of 310 

the problem can be found in [McKinley, 2005b].   311 

3d. Computational methods 312 

1D simulation 313 

The previous equations (4), (5), (6) can be further simplified to retrieve the lubrication 314 

equation. The 1D simulation method follows the same approach than in the recently 315 

presented published work by Tembely et al. (2012) namely considering the radial 316 

expansions and taking the lower order results in r lead to the nonlinear one-317 

dimensional equations describing the filament dynamics [Eggers and Dupont (1994); 318 

Shi et al. (1994)]. The result is a system of equations for the local radius h(z, t) of the 319 

fluid neck, and the average velocity v(z, t) in the axial direction:  320 
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 0=
2
hvhvht  (14) 321 

where prime (') denotes the derivative with respect to z coordinates and  322 

 

2
2

, ,2 2

( ) 1= 3 ( ) 't s p zz p rr
v hv vv h
h h  (15)

 323 

For the multimode one-dimensional model in dimensionless form, the axial and radial 324 

stress may be expressed as: 325 
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 327 

As previously, the full expression of the curvature given in equation (18) was used to 328 

avoid instability in the solution and to provide the capability to represent a rounded 329 

drop:  330 

 
3/221/22 )'(1)'(1

1=
h
h

hh
 (11) 331 

To close the one-dimensional model, the following boundary conditions are imposed, 332 

the no-slip conditions at the piston surfaces, 333 

0)2,/()2,/( RtLzhtLzh                                                (12) 334 

pp VtLzvVtLzv )2,/(,)2,/(                                              (13) 335 

and a kinematic condition for the radius h(z,t) of the jet may be expressed as 336 
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 = = ( = , )z r
dh h hv v r h t
dt t z

                                       (14) 337 

The governing equations in 1D simulation were solved with COMSOL, 338 

(http://www.uk.comsol.com/) using the Arbitrary Lagrangian-Eulerian (ALE) 339 

technique. The ALE technique is such that the computational mesh can move 340 

arbitrarily to optimize the shape of the elements, whilst the mesh on the boundaries 341 

follows  the  pistons  motion.  This  ALE  capacity  implemented  in  the  Comsol  code  342 

combined with the choice of very fine meshes enables to track the relevant physics as 343 

shown in (Tembely et al. 2012).  Due to the piston motion the computational domain 344 

changes  with  time  (see  Fig.  3).  With  the  ALE  approach,  the  time  derivative  of  any  345 

quantity is defined as ( ).m
d v v
dt t

 346 

 347 

where mv  is the mesh velocity imposed by the piston velocity.  348 

It is worth mentioning that the stress boundaries are ignored in the 1D approach due 349 

to the weakly viscoelastic character of the samples and the initial filament aspect ratio 350 

being close to 1 [Yao and McKinley, 1998]. The 2D axisymmetric approach includes 351 

per se that effect. 352 

Fig. 4 presents the evolution of the simulated mid-filament as a function of time for 353 

1D and 2D simulation using different number of mesh elements.  The 1D numerical 354 

results with between 240 and 3840 mesh elements do not show any difference. The 355 

results thus seem to be insensitive to mesh size as shown in the figure below.  Similar 356 

observation is made for the 2D simulation results regardless of the initial number of 357 

mesh elements. The 2D simulation approach mesh is adaptive and evolves with time 358 

throughout the simulation resulting a very large number of elements (see insert in Fig. 359 

4.a). 360 
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    361 
2D simulation 362 

An extended version of the split Lagrangian-Eulerian method of Harlen et al [Harlen 363 

et al. (1995)] was used. The nature of the extension was twofold: in the problems for 364 

which the method was originally developed there were no free surface boundaries, 365 

and the inertial terms were neglected (Re = 0). The method has since been adapted 366 

and extended to deal with inertial flows and has been used to model the breakup of 367 

Newtonian and viscoelastic jets [Morrison and Harlen (2010); Castrejon-Pita et al. 368 

(2011)]. 369 

The velocity and pressure fields are discretized over an irregular triangular mesh of 370 

P1--P1 Galerkin elements; each component of the conformation tensor A  is assigned 371 

a value for each element. An artificial stabilization was employed in order to prevent 372 

spurious numerical pressure oscillations [Brezzi and Pitkaranta (1984)]. The value of 373 

the stabilization parameter was optimized with respect to the spectral properties of the 374 

discrete coefficient matrix [Wathen and Silvester (1993)]. A theta-scheme was used 375 

for the discrete time-stepping, and the discrete governing equations were linearized 376 

via Picard iteration. For each iteration, the linear system was solved numerically using 377 

the minimal residual (MINRES) method [Paige and Saunders (1975)]. Adaptive time-378 

stepping was controlled by a CFL [Courant et al. (1928)] condition. The position of 379 

each mesh node was updated after each time-step using the converged velocity 380 

solution. 381 

The numerical integration of the evolution equation for the conformation tensor was 382 

conducted separately for each element between time-steps, by transforming to a co-383 

deforming frame with local coordinates in each triangle. In such a frame, the upper 384 

convected derivative A  becomes the ordinary time derivative dA/dt. Similarly the 385 
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Lagrangian derivative Du/Dt  becomes  du/dt. The interfacial boundary condition is 386 

handled similarly to the treatment by [Westborg and Hassager (1989)]. 387 

To maintain element shape quality throughout the simulations, local mesh 388 

reconnections were made between time-steps in regions where significant element 389 

distortion had occurred. The criteria for reconnection were based on the geometric 390 

optimality of the Delaunay triangulation [Edelsbrunner (2000)]. The local mesh 391 

resolution was also maintained by the addition of new nodes in depleted regions, and 392 

the removal of nodes in congested regions. 393 

In order to represent the capillary breakup of thin fluid filaments, the fluid domain 394 

was subdivided artificially when the filament radius falls below a certain threshold. 395 

This threshold has been taken as 0.5%  of the piston diameter to match the smallest 396 

diameter that can be experimentally resolved (~6 m).  Below this value, the filament 397 

is not experimentally visible and is therefore considered broken.  A more detailed 398 

discussion  of  the  capability  of  the  simulations  to  capture  pinch-off  dynamics  on  a  399 

finer scale is given in [Castrejon-Pita et al. (2011)]. 400 

 401 

4. Results and discussion 402 

4.a Experimental results 403 

Examples  of  the  base  experimental  data  are  shown  in  Fig.  5  where  photographs  of  404 

Trimaster experiments for different polymer loading are shown as a function of time. 405 

The pure DEP solvent, shown as series 5a, indicates a filament stretch followed by 406 

end pinching during relaxation to give a single central drop. The other extreme is 407 

shown by series 5d for the 5% polymer loading, where stretching is followed by a 408 

progressive filament thinning with a very much longer break up time.  The whole time 409 
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evolution of the full profile along the thread is of general interest and importance; 410 

however the detailed behaviour of the centre line diameter will be considered 411 

beforehand. 412 

4.b Numerical results 413 

Mid filament evolution 414 

The experimental time evolution of the mid-point of the filament is given in Fig. 6 415 

and the figure displays the characteristic feature of an increased filament life time 416 

with a progressive increase of polymer loading. It is this experimental mid filament 417 

time  evolution  that  has  been  used  as  the  basis  for  comparison  with  the  1D  and  2D  418 

numerical simulations.  Fig. 7 shows that both the 1D and 2D numerical simulations 419 

are in close agreement with the base case Newtonian experimental results. Both the 420 

decay profile and final 7.5 ms break point are accurately described by the simulations.  421 

Figures 7 to 15 present the evolution of the mid-filament and not the minimum 422 

filament or the breakup point which position might vary from one case to another. 423 

The simulation breakup diameter has been set at 6 m but might occur at the top and 424 

bottom of the filament, as experimentally observed in the case of DEP.  In such case, 425 

a droplet is formed in the middle of the filament explaining the large diameter 426 

observed experimentally and in simulations at breakup time (Fig. 5 and 7). 427 

Single mode simulations are shown in Fig. 8, 9 and 10 for 1, 2.5 and 5% 428 

concentration  solutions  respectively.  The  simulations  were  carried  out  using  the  429 

FENE-CR constitutive equation with the extensibility parameter L = 30.  The 430 

extensibility value of L = 30 adopted in this paper has been found to provide a better 431 

match with the experimental results than the theoretic value of 15.  The possible 432 

existence of higher molecular mass chains, albeit in small quantities, may justify this 433 



 21

choice. Moreover, for an indication of the choice of L, the comparative plot depicted 434 

in Fig 13.b of the squared extensibility 2L  and Tri iR A , which represents the 435 

average length per mode i.e. of the polymer chain, shows that an extensibility value of  436 

around 30 is an appropriate  choice. The 5th mode seems to capture the polymer global 437 

chain unravelling mechanism which takes place at larger length scales. On the other 438 

hand, the others modes (1, 2, 3) with negligible values of iR involves local changes of 439 

the molecular conformation. It’s worth noting as well that the iR  axial evolution 440 

confirms that higher stretching occurs in the middle of the filament.  441 

The capillary thinning of viscoelastic fluid is controlled by the longest relaxation time 442 

with a mid-filament diameter decreasing in the form of D(t) ~ .exp(-t/3 ) 443 

[Bazilevsky et al. (1990)). Fitting this exponential decay to the experimental data 444 

presented in Fig. 6 yields extensional relaxation times ext of 0.425ms, 1.19ms and 445 

3.2ms for 1, 2.5 and 5wt% respectively. The extensional relaxation ext increased with 446 

polymer loading as expected. Whilst both the 1D and 2D simulations match the 1% 447 

solution data shown in Fig. 8, there is a progressive mismatch in both decay and pinch 448 

off with increasing concentration shown in Fig. 9 and 10. In particular the decay 449 

immediately after piston cessation is over predicted by both 1D and 2D simulations. 450 

Perhaps surprisingly, both the 1D and 2D simulations give a similar response.  It was 451 

speculated that differences may appear between single mode and multimode models 452 

because of the existence of shorter and longer modes and of their interactions close to 453 

capillary pinch-off in the vicinity of both pistons [Matallah et al. (2007)]. 454 

In the 1D paper, (Tembely et al., JOR 2012) single mode modelling only was used; 455 

however both a short mode obtained from the PAV data and a long mode obtained 456 

from matching with experiment were used. In that paper it was shown that the 457 



 22

smallest relaxation time as input in a non-linear model was unable to correctly predict 458 

filament thinning whilst the longest relaxation time gave reasonable filament thinning 459 

results  but  a  large  discrepancy  with  the  experimental  G’  and  G” data.  In  this  paper,  460 

incorporation of multi modes has been carried out in order to fit with greater accuracy 461 

the filament thinning experimental results whilst also capturing the PAV data too. We 462 

have chosen 5 modes in order to have one mode per decade over the range of interest 463 

covered experimentally.  The exact choice of the number of modes is a matter of 464 

details to be emphasized. Two would be too few and eight probably too many.  465 

In this paper, our objective is to predict, using the same non-linear constitutive 466 

equation as in the previous paper, the results for extension solely from experimental 467 

data measured in the linear viscoelastic regime. For that purpose, the oscillatory linear 468 

viscoelastic data was then fitted to a multimode model with five modes spaced by a 469 

decade between modes and the fitted parameters are given in Table II. These 470 

multimode parameters were then used in both the 1D and 2D simulations using the 471 

multimode FENE-CR constitutive equation (eq. 9 and 10). The results are shown in 472 

Fig. 11, 12 and 14 for the 1, 2.5 and 5% solutions respectively.  The fit at all 473 

concentrations is now greatly improved from the single mode simulations over the 474 

whole decay and again there appears to be little difference between the 1D and 2D 475 

simulations.  476 

Using a multimode Maxwell model approach allows better accounting for the 477 

transition between visco-capillary thinning and elasto-capillary thinning as shown by 478 

the large reduction of the swelling at time between 7 and 10ms. This constituted the 479 

main  limitation  of  the  single  mode  Maxwell  approach  as  shown  in  the  previous  480 

section  and  recently  reported  results  by  some  authors  of  this  paper  (Tembely  et  al.  481 

(2012)). The results appear to show clearly that a multimode description of the fluid is 482 
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necessary  and  that,  perhaps  surprisingly,  the  1D simulation  appears  to  give  a  closer  483 

match to the experimental results. It is also to be emphasized that the multimode 484 

approach allows retrieving the results for non-linear elongation solely with the help of 485 

the linear time spectrum and the use of a constitutive equation. It is worth mentioning 486 

that mathematically the fitting of the time constant is correct but often leads to poor 487 

results, since the relaxation spectrum time are no longer well distributed, and the 488 

longest time spectrum  may become small. The choice we made by imposing the 489 

relaxation time is well accepted and adopted in the literature when dealing with 490 

multimode formulation of constitutive equations (see Bird et al…). 491 

The sensitivity of the filament thinning and breakup to constitutive equation and non 492 

linear parameters is shown in Fig. 14 and 15.  In Fig. 14 it can be seen that using the 493 

1D simulation, there is little difference between the multimode FENE-CR and 494 

Oldroyd model predictions.  Any differences that may appear were essentially masked 495 

by the use of multi modes.  Simulation using the theoretically predicted value for the 496 

limiting extensibility L of PS110 (L = 15), the “best fit” obtained (L = 30) and a 497 

significantly larger value, here L = 100, have been chosen to investigate the effect L 498 

of the FENE-CR model.   Fig.  14 shows that L does effect  the simulation slightly in 499 

the transition zone for the short time modes and particularly in the final stages of 500 

decay  with  a  pinch  off  time  that  decreases  with  decreasing  limiting  extensibility  501 

parameter L. 502 

Transient profiles 503 

Figure 16 and 17 present the1D and 2D multi modes FENE-CR and Oldroyd-B full 504 

simulated transient profiles for the case of 5wt% PS110 diluted in DEP.  A generally 505 

good match between simulations is observed with differences only appearing towards 506 
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the end of the filament thinning mechanism, ie, near to break up.  Figure 16 shows 507 

that the 1D simulation predicts a final thread like decay, whereas the 2D simulation 508 

still has a pinch off component. The multi mode Oldroyd-B simulations shown in 509 

Figure 17 also show a similar trend, with the 1D having a more thread like final 510 

decay.  Despite the improvement provided by the use of multi modes approach instead 511 

of the single mode approach, these results clearly highlight the need for investigating 512 

other constitutive equations for the modelling of fast stretching and filament thinning 513 

of low viscoelastic fluids.   514 

Detailed full profile comparison between experimental transient profiles of PS110 at 515 

5wt% in DEP with FENE-CR multi modes 1D and 2D simulation transient profiles is 516 

presented in Fig. 18.  Both simulation approaches provide a good match with the 517 

experimental profiles for the overall mechanism with again the main discrepancies 518 

appearing at the late stage of the filament thinning mechanism.  Close examination of 519 

the experimental and simulated profiles show that the fluid regions attached to the top 520 

and bottom pistons are smaller experimentally than for both simulations. This results 521 

in a larger length of the thinning filament in the experimental case and may explain 522 

the differences observed between 1D and 2D simulations.  The filament aspect ratio is 523 

usually defined by the variation between initial and final position of the piston but it 524 

can be seen here that despite using similar piston motions for the simulations and the 525 

experiments, differences in the filament length arise.  Such filament length variations 526 

are expected to significantly affect the filament break up profile especially in the case 527 

of low viscosity low viscoelastic fluids.  The investigation of the full velocity field, in 528 

terms of simulation and using Particle Image Velocimetry (PIV) experiments, within 529 

both  the  filament  and  the  piston  region  would  help  the  understanding  of  the  530 

differences observed in the filament shape especially toward the break up time. 531 
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 532 

Weissenberg number Wi and apparent extensional viscosity e,app 533 

Figure 19 presents the evolution of the Weissenberg number Wi as a function of the 534 

filament thinning Hencky strain  in the case of multi mode FENE-CR simulations. 535 

Weissenberg number and filament thinning Hencky strain may be defined as follows: 536 

W  (22) 537 

= 2 ln 
( )

 (23) 538 

)
) (24) 539 

The simulated data of the mid filament evolution have been used to estimate the 540 

longest extensional relaxation time and value of 2.98ms and 5.1ms were obtained for 541 

the 1D approach and the 2D simulation respectively, in the case of PS110 at 5wt% in 542 

DEP. 543 

In the case of the multimode FENE-CR approach, the 1D simulation approach 544 

predicts reasonably well the overall mechanism with; in particular the double curved 545 

behaviour experimentally observed in the transition between visco-capillary and 546 

elasto-capillary regimes (Wi = 0.5) whereas the 2D approach provides a good match 547 

on the long time scale but does not capture the double curvature.  The behaviour at 548 

high Hencky strain is correctly represented for both types of simulations.  549 

The use of the multimode approach does significantly improve the match with 550 

experimental  data  in  comparison  to  that  of  the  single  mode  and,  even  if  all  the  551 

subtleties of the complex filament thinning mechanism seem not to be fully 552 

represented, it provides good agreement with experimental data. The description of a 553 
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Weissenberg number, when using a multimode approach, has difficulties in relation to 554 

a suitable choice of relaxation time used in the definition of the Weissenberg number.  555 

It is also very sensitive to noise (simulation or experimental) due to the fact that it is 556 

based on the derivative of the mid filament evolution.   557 

Finally, Fig. 20 presents the transient apparent extensional viscosity e,app, with 558 

 
)
, as a function of Hencky strain for multimode FENE-CR.  The 559 

comparison is particularly good in view of the approximations which have been made 560 

for the calculation of the phenomenological Maxwell times. Notably, the complex 561 

behaviour of the extensional viscosity is qualitatively correctly predicted at 562 

intermediate times by both the 1D and 2D simulations with the prediction of the 563 

sudden increase in ext after the pistons have stopped.  Close attention shows that the 564 

1D simulation approach produces a surprisingly good agreement with experimental 565 

results, while the 2D simulation approach fails to represent the long term extensional 566 

viscosity behaviour.  567 

The relative better accuracy of the 1-D model may be due to the combined effect of 568 

the ALE technique, for free surface tracking, together with the expression of the full 569 

curvature providing means for representing a fully rounded drop. These features 570 

together with the low stretching speed, used in this work, enables the 1D model to 571 

exhibit  quite good  results compared to the 2D as previously pointed out by [Yildirim 572 

and Basaran, 2001].  Indeed, finding stable discretisation schemes for 2D models 573 

prove to be most challenging for free surface problems and are computationally more 574 

intensive, (almost 2 to 3 orders of magnitude compared to 1D models). Finally the 575 

treatment of the tri-junction line (contact between solid/liquid/air) which plays a non-576 

negligible role in the vicinity of pistons is not well-resolved, and this may have a 577 



 27

larger effect for the 2D model compared to the 1D model therefore affecting its 578 

overall performance. 579 

 580 

5. Conclusions 581 

Results described in this paper have shown that a multimode constitutive equation 582 

approach greatly improves the detailed prediction of viscoelastic extensional flow 583 

behaviour of dilute or semi dilute polymer solutions. The result is consistent with the 584 

findings  of  Entov  and  Hinch  (1997)  who  also  found  it  necessary  to  resort  to  a  585 

multimode mode approach for higher viscosity viscoelastic polymer solutions. 586 

However, simulations for different polymer concentrations indicate that the 587 

improvement due to the use of multimodes instead of single mode is reduced with the 588 

increase of the solution concentration.  589 

The FENE-CR constitutive equation appears to be an effective suitable constitutive 590 

equation to use for the fluids examined in this paper, although the Oldroyd model was 591 

found to give an equivalent response when used with multimodes. It appears that 592 

multimode modelling can disguise certain limiting features of different constitutive 593 

models, but however remains necessary even for the monodisperse polymer systems 594 

which have been tested.  The fitting of numerical simulation to the experimental 595 

results was not perfect and this can be attributed to both experimental factors and also 596 

weaknesses in the choice of constitutive equations used. This highlight that more 597 

physics,  or  a  new  set  of  constitutive  equations,  needs  to  be  incorporated  in  the  598 

simulations for them to quantitatively match the experimental data.  599 
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To be specific on this aspect, more sophisticated models such as the one with 600 

elaborate closure relationships for FENE models (Lielens et al. 1998) or the multi-601 

mode Pom Pom model taking into account molecular topology (McLeish & Larson, 602 

1998) need to be tested. Additional experiments are also needed in order not to have 603 

too many adjustable parameters.  604 

An initially surprising result of the paper is the fact that the 1D modelling gives better 605 

results than 2D modelling in some limited cases described above. This indicates that 606 

the 1D approximation is valid enough for the initial and boundary conditions used and 607 

in particular for the mid filament diameter evolution. It is possible (probable?) that 608 

when details of highly non-linear behaviour, i.e. pinch off position, number of beads, 609 

etc. are considered differences may emerge from the two techniques.  The pinch off 610 

position  and  the  number  of  small  drops  is  an  essential  parameter  in  ink-jet  printing  611 

since the satellite drops may merge or not following the type of detachment.   612 

 613 

Further comparison would be to follow the filament transients following breakup. 614 

Such a work has been done for Newtonian liquid (Castrejon Pita et al. 2012) but this 615 

work does not include non-Newtonian fluids. The non-linear evolution of main drop 616 

and satellites do influence printability criterion taking into account the Ohnesorge and 617 

the Deborah numbers as described in preliminary work by Tembely et al. 2011. 618 

 619 
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Solvent Mw (g/mol) C (wt%) * (mPa.s) 

DEP 110000 0 10 

DEP 110000 1 15.2 

DEP 110000 2.5 31.5 

DEP 110000 5 69 

Table I: Zero shear rate complex viscosity of the different polymer solutions at 25°C 742 

 743 

 744 

 1%PS 2.5%PS 5%PS 10%PS 

li(µs) gi(Pa) gi(Pa) gi(Pa) gi(Pa) 

1 7.789 83.8229 397.9015 1086.4419 

10 428.76 1450.8952 4680.9517 9126.8723 

100 1.6435 10.5177 93.1172 2012.6511 

1000 0 0 0 16.4133 

10000 0.0342 0.1855 0.4288 0.4291 

Table II: Relaxation time and shear modulus obtained from Maxwell model fit of the 745 

PAV data for the different samples 746 
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 751 

Figure 1: Evolution of (a) Loss modulus G’’, (b) elastic modulus G’ and (c) complex 752 

viscosity h* as a function frequency for DEP-PS 110 000 solutions at different 753 

concentrations. ( ) DEP, ( )DEP-1wt% PS110, ( ) DEP-2.5wt% PS110, and ( ) 754 

DEP-5wt% PS110. Solid line represents the multimode optimization results while the 755 

dashed line on G’ graph corresponds to a power law function of index 2. 756 

  757 
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 758 

 759 

Figure 2: Diagram of filament stretch and thinning geometry  and the computational 760 

domain, shown midway through the stretching phase as the pistons move outwards 761 

and the fluid column necks in the middle.  Initially the fluid column is cylindrical. 762 

Extracted from [Tembely et al., 2012] 763 

 764 
  765 



 41

 766 

 767 

Figure 3:  mesh evolution of the ALE method for the 1D simulation 768 
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 771 
 772 
Figure  4: Evolution of the simulated mid-filament for different number of mesh 773 

elements for (a) 1D simulation approach with the transient profile at t = ms in insert 774 



 43

and (b) 2D simulation approach with the mesh example in the 35570 triangles case in 775 

insert. In the 2D simulation, the number of triangles is the one at t = 7.2ms. 776 

  777 
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 778 

 779 

Figure 5: Photograph of the filament stretch, thinning and break up captured with the 780 

Trimaster for (a) DEP, (b) DEP + 1wt% PS110, (c) DEP + 2.5wt% PS110, (d) DEP + 781 

5wt%  PS110.  The  first  picture  of  each  series  (t  =  5.3ms)  corresponds  to  the  piston  782 

cessation of motion 783 

  784 
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 785 

Figure  6: Time evolution of mid-filament taken from photographs of figure 2. ( ) 786 

DEP, ( ) DEP-1wt% PS110, ( ) DEP-2.5wt% PS110, and ( ) DEP-5wt% PS110, (---787 

) piston cessation of motion.  788 

 789 
  790 
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 791 

Figure 7: Newtonian base case. Plot of the mid filament diameter evolution as a 792 

function of time. Vertical line (---) corresponds to piston cessation of motion. 793 

  794 
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 795 
 796 

Figure 8: Single mode, 1wt% PS110 in DEP solution. Plot of the mid filament 797 

diameter evolution as a function of time.  Constitutive equation: Fene-CR, relaxation 798 

time  = 0.425ms, shear modulus g = 11.25Pa and polymer extensibility L = 30.  799 

Initial gap size: 0.6mm, final gap size: 1.4mm, pistons relative velocity: 150mm/s. 800 

Vertical line (---) corresponds to piston cessation of motion (aspect ratio 2.3).  801 

  802 



 48

 803 

 804 

Figure 9: Single mode, 2.5wt% PS110 in DEP solution. Plot of the mid filament 805 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 806 

time  = 1.19ms, shear modulus g = 15Pa and polymer extensibility L = 30. time (---) 807 

corresponds to piston cessation of motion.   808 

 809 
  810 
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 811 

Figure 10: Single mode, 5wt% PS110 in DEP solution. Plot of the mid filament 812 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 813 

time  = 3.2 ms, shear modulus g = 17Pa and polymer extensibility L = 30.   Vertical 814 

Line (---) corresponds to piston cessation of motion.   815 

  816 
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 817 
 818 
 819 

Figure 11: Multi mode, 1wt% PS110 in DEP solution. Plot of the mid filament 820 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 821 

times i and shear modulus gi for  the  different  modes  i  are  given  in  Table  II  and  822 

polymer  extensibility  L  =  30.   Vertical  line  (---)  corresponds  to  piston  cessation  of  823 

motion.   824 

  825 
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 826 
 827 

Figure 12: Multi mode, 2.5wt% PS110 in DEP solution. Plot of the mid filament 828 

diameter evolution as a function of time. Constitutive equation: Fene-CR, relaxation 829 

times i and shear modulus gi for  the  different  modes  i  are  given  in  Table  II  and  830 

polymer  extensibility  L  =  30.   Vertical  line  (---)  corresponds  to  piston  cessation  of  831 

motion.   832 

 833 

  834 
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 835 

 836 

Figure 13: (a) Multi mode, 5% solution. Plot of the mid filament diameter evolution 837 

as a function of time. Constitutive equation: Fene-CR, relaxation times i and shear 838 

modulus gi for the different modes i are given in Table II and polymer extensibility L 839 
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= 30.  Vertical line (---) corresponds to piston cessation of motion.  (b) Evolution of 840 

the Ri as a function of time 841 

 842 

  843 
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 844 

Figure 14: Multi modes, 5wt% PS110 in DEP solution. Plot of the mid filament 845 

diameter evolution as a function of time. Constitutive equation: Oldroyd-B, relaxation 846 

times i and shear modulus gi for the different modes i are given in Table II.  Vertical 847 

line (---) corresponds to piston cessation of motion.   848 

  849 
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 850 

 851 

Figure 15: Effect of extensibility parameter L. Symbols represent the experimental 852 

data  of  the  evolution  of  the  mid-filament  as  a  function  time  and  lines  represent  1D  853 

multi-mode numerical simulations for different polymer chain extensibilities L. 854 

Constitutive equation: Fene-CR , relaxation times i and  shear  mdulus  gi for the 855 

different modes i are given in Table II..  Vertical line (---) corresponds to piston 856 

cessation of motion.  857 
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 859 

 860 

Figure 16: Comparison between the 1D numerical FENE-CR multimode transient 861 

profiles (left), and the corresponding 2D simulations (right) for the DEP+5%PS. The 862 

prescribed times are 5.3ms, 12ms, 18.5ms, 25.5 ms, 38ms. 863 
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  865 



 57

 866 

Figure 17: A comparison between the 1D numerical Oldroyd-B multimode transient 867 

profiles (left), and the corresponding 2D simulations (right).  The prescribed times are 868 

5.3ms, 12ms, 18ms, 25ms, 32ms and 44ms for 1D simulation and 5.3ms, 12ms, 18ms, 869 

25ms, 28ms, 32.5ms for 2D simulation 870 

 871 
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 873 

Figure 18: Comparison between the experimental transient profiles for the 874 

DEP+5wt%PS110 and  the  simulations  of  (a)  the  1D and  (b)  the  2D cases  using  the  875 

FENE-CR multimode constitutive equations. 876 

 877 
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 879 

 880 

Figure 19: Evolution of the Weissenberg number as a function of the Hencky strain.  881 

Transient Weissenberg numbers were calculated using  = 3.2ms for experimental 882 

data,  = 2.89ms and =5.1ms for 1D simulation and 2D simulation data using multi 883 

modes FENE-CR as constitutive equation. 884 
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 886 

Figure 20: Evolution of the transient apparent extensional viscosity e,app as a 887 

function of the Hencky strain  for computed from the mid filament evolution shown 888 

in Fig. 12.  889 

 890 
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