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Summary 

 
It is known theoretically that infinitely long fluid loaded plates in mean flow exhibit 
a range of unusual phenomena in the 'long time' limit. These include convective 
instability, absolute instability and negative energy waves which are destabilized by 
dissipation. However, structures are necessarily of finite length and may have 
discontinuities. We have undertaken an analytical and computational study to 
investigate the response of finite plates, and of plates with local inhomogeneities, to 
ascertain if these unusual effects might be realized in practice. Analytically, we adopt 
Crighton & Oswell’s (1991) structural acoustics approach and take a "wave 
scattering" --as opposed to a "modal superposition"-- view of the fluttering plate 
problem. First, we derive the energy balance relations for the extended plate (i.e., 
plate with two sided flow, spring foundation and plate pretension) and define a 
generalized wave impedance valid for both positive energy waves (PEW) and 
negative energy waves (NEW). Next, we solve for the scattering coefficients of 
localized plate discontinuities using a multipole source approach. Our solutions are 
exact and include the nearfields due to fluid-loading effects. We introduce the 
concept of power normalized scattering coefficients, and show that overall power is 
conserved during the scattering process if the sign of the wave energy is preserved. 
We argue that energy conservation, combined with the presence of NEWs on the 
plate, are responsible for the phenomenon of over-scattering, or of amplified 
reflection/transmission. These are scattering processes that draw energy from the 
mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the 
scattering coefficients of a variety of plate leading and trailing edge conditions -- 
including the flag like configuration of a free trailing edge with wake. We find that 
the edges are over-reflective in the frequency range where NEWs are present. The 
exception is a free trailing edge with wake where, remarkably, the wake is found to 
absorb almost all of the incident wave energy. We use combinations of these 
upstream and downstream edge reflection matrices to solve for the complex resonance 
frequencies of long, finite plates immersed in mean flow. Finally, we construct the 
response of a finite plate by a superposition of infinite plate propagating waves 
continuously scattering off the plate ends. We solve for the unstable resonance 
frequencies and temporal growth rates for long plates. We derive upper and lower 
bounds on the unstable growth rates of finite plates with given edge conditions. We 
find that a flag-like configuration of a clamped leading edge and a free trailing edge 
with wake is destabilized for sub-critical flow speeds only for very long plate lengths 
and only in the presence of convectively unstable waves. We present a comparison 
between direct computational results and the infinite plate theory. In particular, the 
resonance response of a moderately sized plate is shown to be in excellent agreement 
with the long plate analytical predictions. 
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Chapter 1

Introduction

Heavy fluid loading on elastic structures can have a profound effect on the nature

and properties of the structural waves that are present (Crighton, 1989). This effect

is particularly pronounced at low frequencies and when the fluid is in bulk motion

over the structure. Plates and membranes in contact with a uniformly flowing fluid

are known to possess a range of parameters over which downstream travelling waves

are so overwhelmed by the flow that they lose their character as structural waves and

propagate at roughly the mean flow speed. This is accompanied by unusual effects

such as convective instability and negative energy waves (Crighton & Oswell, 1991).

The unstable response of elastic structures in contact with a fluid in bulk motion

is a fundamental problem in fluid-structure interactions. It is intimately involved in a

range of phenomena, from panel flutter, to the flapping of flags, to the biomechanics of

snoring and has preoccupied researchers in fluid-mechanics and aero/hydroelasticity

since the early 1960s. The stability properties of large scale underwater engineering

structures are also of considerable concern. Of particular interest are the effects of

structural discontinuities such as ribs, rivets and gaps and their possible role in creating

a strong coupling mechanism between the plate and the fluid, leading to significant

radiation of sound into the water or to potentially catastrophic instabilities.

In this dissertation, we focus on the unstable response of fluid loaded plates in

mean flow. Three distinct theoretical treatments of this linear, fluid-elastic problem

can be found in the literature. (Here we generally follow the classification given in

1



2 1. Introduction

Abrahams & Wickham (2001). A more comprehensive introduction to the general

problem can be found in Paidoussis (2004)).

1) In traditional hydrodynamic stability theory (Benjamin 1960, Kramer 1960, Lan-

dahl 1962, Kornecki 1978), one is interested in the effects of wall compliance on the

generation of instabilities (e.g., of the Tollmien—Schlichting type) at the fluid-structure

interface. This approach is often based on the local properties of the dispersion equa-

tion, where one typically prescribes a travelling wave disturbance and solves for the

ensuing evolution of wave trains. Commonly, the instabilities are a priori assumed

to be spatial or temporal, since a simple analysis of the dispersion equation does not

provide that information. This ‘fluid-centric’ approach, intended for solving initial

boundary value type problems, is perhaps best suited for studying wave instabilities

in infinite domains —spatially and temporally— where there are no physical disconti-

nuities, external forcing agent or impulsive starts. It is only relatively recently that

the hydrodynamic stability community has begun considering ‘receptivity’ problems

where some localized source switched on at  = 0 drives the flow instability (e.g.,

Huerre & Monkewitz (1990) and Schmid & Henningson (2001) in contrast to Drazin

& Reid (1981)).

2) Traditional Aero/Hydroelasticity theory takes a more ‘structure-centric’ ap-

proach to the study of panel flutter. In this approach, the Galerkin method (Ellen

1973, Kornecki 1974, Dowell 1975) is commonly used to express the vibrations of a

necessarily finite fluid-loaded structure in terms of a modal expansion of the equiv-

alent in-vacuo modes. These fluid-less modes are chosen as basis functions because

they comprise a complete and orthogonal set that automatically satisfy the structural

edge conditions. In this approach one fixes the panel length, prescribes the edge condi-

tions and then solves for the critical flow velocity thresholds for the onset of temporal

instability caused by the unsteady hydrodynamic forcing. There is no natural way of

incorporating external sources or structural inhomogeneities. This approach is per-

haps best suited for relatively short panels with moderate levels of fluid loading. It is

not altogether clear if it can provide useful physical insights for problems where the

flow entirely ‘disarms’ the structure, as in convective instability.
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3) The theory of structural acoustics (Brazier-Smith & Scott 1984, Crighton &

Oswell 1991) is specially equipped for dealing with scenarios where there is strong fluid-

structure coupling and where localized structural discontinuities and inhomogeneities

are present. In this theory, one is typically concerned with the response of the fluid-

elastic system to localized forcing at a single frequency switched on at  = 0. Since

it is possible to find more than one solution to this problem, the need to obtain the

unique ‘causal’ solution requires one to carry out a global analysis of the dispersion

relation in the entire complex - plane. This involves allowing both  and  to

be simultaneously complex and evaluating the dispersion relation not only at the

prescribed real frequency, but over a wide range of positive imaginary frequencies as

well. This type of analysis is not only required to properly identify the convective

and absolute instabilities present in the system but, just as crucially, to properly

characterize the spatial location of the waves upstream or downstream of the driver, or

of any structural discontinuity or edge. This approach is specially suited for studying

the interaction of waves with structural discontinuities, including the exchange of

energy between the fluid and the elastic structure. It is best characterized as a ‘wave-

centric’ approach because it inherently captures the strong coupling between the fluid

and the structure.

The aim of this dissertation is to use the wave-based theory of Crighton & Oswell

(1991) to solve for the linear response and stability properties of finite, flow-loaded

structures. We undertake a systematic study of the scattering properties of waves

from local plate discontinuities and from the edges of long plates. We derive limits

on the unstable growth rates of finite plates based on the scattering and propagation

properties of these waves and solve for the complex eigenfrequencies as a function

of plate length and edge conditions. Finally, as a means of validating our overall

approach, we build a computational model for the direct integration of the fluid—plate

equations to which we compare our wave based predictions.



4 1. Introduction

1.1 Immediate Precursors to Current Work

The application of the structural acoustics approach to the basic problem of an infinite

elastic plate in uniform flow can be traced back to Brazier-Smith & Scott (1984), who

were the first to adapt the method of Briggs & Bers, initially developed in the context

of spatial instabilities in plasma physics, for this fluid-elastic problem. Solving for

the causal response, Brazier-Smith & Scott correctly identified the spatial location,

with respect to an external driving force, of the propagating and convectively unstable

waves and were the first to predict the existence of a critical velocity  for absolute

instability as well the existence of a neutral wave with group velocity pointed towards

the driver.

Crighton & Oswell (1991) provided an analytical framework for the results of

Brazier-Smith & Scott (1984) and uncovered additional unusual phenomena. They

undertook a systematic study of the ‘basic problem of structural acoustics,’ or the

response to a single frequency line drive, for a plate in mean flow and found a range of

frequencies over which the real part of the drive admittance was negative indicating

that the driver was in fact absorbing energy from the system. They identified the pres-

ence of negative energy waves (NEW) and confirmed the existence of an anomalous

neutral wave whose group velocity is directed towards the driver (in apparent viola-

tion of the Lighthill radiation condition). They provided asymptotic expressions for

the convectively unstable, anomalous neutral and conventional propagating waves as

well as for the turning point frequencies that delimit the stable and unstable regimes.

Perhaps their greatest contribution, however, was their detailed study of the energy

flow and power balance in the coupled fluid-plate system including their derivation of

an exact expression for the wave energy flux. As we will see in later chapters of this

thesis, Crighton & Oswell’s formulation for the wave flux will prove indispensable in

our own understanding of the scattering process from plate discontinuities and edges.

Subsequent to the publication of these two pioneering works, many studies that

consisted of variations of this basic problem have been published. Much of this work

has involved adding complexity to the original configuration of a thin beam in ideal

flow to see if the unusual phenomena observed in this simple system may be found in
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more realistic configurations.

The effect of transverse plate curvature was examined by Peake (1997) who found

that it acted to first order as an added spring foundation and that it had a generally

stabilizing effect on the flow. One notable result was that the introduction of infinites-

imally small transverse curvature pushed the absolute instability boundary so high

that it entered into a parameter regime that was physically unrealizable. In contrast,

convectively unstable waves and NEWs were found to be more robust under the effect

of transverse plate curvature.

Lucey (1998) performed a direct numerical simulation of Crighton & Oswell’s single

frequency, line driven problem for a finite plate and found broad qualitative agreement

with the infinite plate theory at early response times. Most notably, he observed a

convectively unstable wave downstream of the driver accompanied by negative power

injected into the plate at the driver over the range of frequencies predicted by the

infinite theory. He observed that, a short time following startup, the finiteness of

the plate played a major role in the subsequent evolution of the plate response. In

particular, energy continuously scattered from the upstream and downstream edges

was found to introduce disturbances at frequencies other than the drive frequency.

The frequency-wavenumber content of these waves that appeared for large time were

seen to fall on or near the dispersion curve of the infinite plate, but concentrated in

the immediate vicinity of the pinch point ( ). Lucey also observed the presence

of absolute instability on the plate, in the form of a slowly travelling disturbance with

frequency-wavenumber content at the expected ( ), but at flow speeds well below

the critical speed . These disturbances did not appear to depend on the amount of

structural damping/dissipation in the system and were quickly overwhelmed by the

convectively unstable disturbances introduced by the plate edges.

The stability of fluid-loaded plates with inviscid shear layer profiles was considered

by Lingwood & Peake (1999). They found that for a simple broken line profile, the

absolute instability and anomalous mode results are qualitatively unchanged including

in the limit of infinitesimally small shear layer thickness. For a more realistic Blasius

profile, they found that the anomalous modes did likewise persist over a wide range of
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shear layer thicknesses. The results for absolute instability, however, were significantly

different from the mean flow case as the presence of the critical layer pushed the critical

flow speed to unrealizably high values. More crucially, it was found that in the limit of

a disappearing shear layer, the critical velocity for uniform flow is not regained leading

the authors to conclude that the mean flow idealized problem was an ‘unattainable

singular limit.’

Abrahams &Wickham (2001) considered the effects of finite plate thickness (Timoshenko-

Midlin plate theory) and fluid compressibility. They found that, in the limit of small

fluid-to-plate density ratio, these effects do not introduce qualitatively different be-

haviour. In contrast, the addition of structural dissipation was found to make the

system absolutely unstable for all flow velocities. Green & Crighton (2000) examined

the three dimensional problem of a point force on an infinite two dimensional plate

in contact with a three dimensional fluid in mean flow. The boundary for absolute

instability was found to be identical to that of a line driven plate. However, the pa-

rameter regimes for the existence of convectively unstable and negative energy waves

were found to shrink with increased transverse wavenumber in a way that was qualita-

tively similar to the effect of increasing the foundation spring constant discovered by

Peake (1997). This resulted in the convective growth being confined to within a wedge

shaped region downstream of the driver. De Langre (2000) examined the effects of

plate pre-tension and showed that it raised the critical speed for the onset of absolute

instability. He also showed that in the limit of large plate tension, the results for a

membrane in mean flow are recovered.

Peake (2001) considered the nonlinear evolution, in a plate of infinite extent, of the

marginally convectively unstable waves and showed that they can exhibit solitary-wave

solutions with the potential to achieve large deflection amplitudes. He also considered

the evolution of NEWs destabilized by structural damping and found that they become

saturated at weakly nonlinear amplitudes and, in the most realistic case in which non-

linear tension is the controlling force, the fluid-loaded plate system approaches a state

of static deflection. Metcalfe (2005) studied the problem of a ribbed membrane in

mean flow and observed behavior that was comparable to that found for quiescent fluid
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loaded plates. For regularly spaced point discontinuities he observed the expected pass

and stop band structure and for disordered structures he observed the phenomenon of

Anderson localization.

Finally, Peake (2004) used the Wiener-Hopf technique to solve for the reflection

matrices at the leading and trailing edges of an asymptotically long baffled plate

clamped at both ends. These reflection coefficients were then used to solve for the

complex eigenfrequencies (including the unstable temporal growth rates) of a finite

baffled plate. He found that the plate is temporally unstable both for parameter

values where the infinite plate is convectively unstable and for values where it is stable

but supports NEWs. When non-linear tension effects are added, the finite plate system

was shown to possess points of minimum action at non-zero frequencies suggesting the

possibility of nonlinear dynamic flutter.

1.2 Remainder of Thesis

The problem of the fluid-loaded plate in an infinite domain studied by Crighton &

Oswell (1991) is introduced in chapter 2 where we extend some of their analytical

results to include double sided flow and the effects of plate pre-tension. These in-

clude an approximate expression for the onset of absolute instability as a function of

plate tension. In chapter 3 we derive the energy balance relations for a fluid-loaded

plate with two sided flow, spring foundation and plate pretension. We introduce the

‘wave impedance’ and generalize its definition to include negative energy waves. This

will prove to be instrumental in later chapters where energy arguments are used to

demonstrate the key role of negative energy waves in the amplification of waves as

they interact with plate discontinuities and edges.

In chapter 4 we undertake a rigorous study of the scattering problem from local

discontinuities using the ‘multipole source’ approach developed by Howe (1994). We

solve for the reflection and transmission coefficients of a large number of local scatter-

ers and discuss the physics behind each. We apply the concept of a generalized ‘wave

impedance’ to solve for the power normalized scattering coefficients, and show that

overall power is indeed conserved during the scattering process if the sign of the wave
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energy is maintained. We argue that the presence of negative energy waves alone is

responsible for the phenomenon of over-scattering or amplified reflection and trans-

mission. These are scattering processes that draw energy from the mean flow into

the plate. In chapter 5 we develop a framework for analyzing the response of plate

segments formed by two local scatterers on an otherwise infinite fluid-loaded plate. We

solve for the complex eigenfrequencies of these quasi-finite segments exactly, thanks

to our ability to include all the scattered nearfields associated with fluid loading.

In chapters 6 and 7 we use the Weiner Hopf technique to solve for the scattered field

from the upstream and downstream edges of semi-infinite plates immersed in mean

flow. We find that, with the exception of a free trailing edge with wake, the edges

are ‘over-reflective’ in the frequency range where negative energy waves are present.

In chapter 8, we combine pairs of upstream and downstream reflection coefficients

obtained in chapters 6 and 7, to solve for the resonant response of very long plates.

We derive bounds on the unstable growth rates of these plates based on the edge

conditions and plate parameters.

In chapter 9 we introduce a computational model of a finite plate in an infinitely

long rigid baffle. We solve for the response to an impulsive load and compare the

spectral content of disturbances to the dispersion equation of the corresponding infinite

plate and find that there’s a great deal of overlap. For large time, we find that the

plate response is dominated by a single frequency and temporal growth rate and show

that this coincides exactly with the dominant complex eigenfrequency identified by

the method of chapter 8.



Chapter 2

The Infinite Flow-Loaded Plate

The linearized equations for a line driven fluid-loaded plate, shown in figure 2.1 with

pre-tension and spring foundation in mean (inviscid, irrotational, incompressible) flow

are (Crighton and Oswell 1991, Peake 2004)∙ e 4

e4 − e 2

e2 + e+ e 2

e2
¸e ¡ee¢ = −e ¡e 0e¢+ e0 (e− e)  (2.1a)



e e ¡e 0e¢ =
∙


e + e 

e
¸e ¡ee¢  (2.1b)

e ¡e ee¢ = −e ∙ 
e + e 

e
¸ e ¡e ee¢  (2.1c)∙

2

e2 + 2

e2
¸ e ¡e ee¢ = 0 (2.1d)

Here, e is the plate displacement, e the fluid pressure, e the fluid potential. A tilda is
used throughout this thesis to denote dimensional quantities. Additionally, e is the
fluid density, e = ee is the linear density of the plate (with e the plate bulk density
and e the plate thickness), e = ee3 ¡12 ¡1− 2

¢¢
is the plate bending stiffness (where

Fluid
U

y

x
( ),x tη

Figure 2.1: Infinite fluid loaded plate configuration.

9
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e is the plate’s Young’s modulus and  its Poisson’s ratio), e is the plate pre-tension,e is the foundation spring constant, e is the location of the applied drive and e0 is
the amplitude of the load. The parameter  equals 1 or 2 for one-sided or two-sided

fluid loading, respectively.

We follow Crighton & Oswell (1991) and non-dimensionalize lengths by ee and
time by e52e2 e12 to obtain the following scalings

 =
eee  =

e3

e3 e e  =
e12e12 e

 =
e32

e e12 e  =
e2

e2 e e   =
e4

e4 ee
0 =

e2

e2 e e0  () =
ee  (e)  (2.2)

With this choice of a non-dimensionalization scheme, the flow-loaded plate equations

(2.1) become∙
4

4
− 

2

2
+ +

2

2

¸
 ( ) = − ( 0 ) + 0 (− )  (2.3a)




 ( 0 ) =

∙



+ 





¸
 ( )  (2.3b)

 (  ) = −
∙



+ 





¸
 (  )  (2.3c)∙

2

2
+

2

2

¸
 (  ) = 0 (2.3d)

For the case where  =  = 0 and the bending stiffness is the only restoring force in

the plate, the non-dimensional speed  is the sole parameter governing this system of

equations. We note here that the re-dimensionalization of  (or any other velocity of

the system) is independent of the plate thickness, i.e.,

e = e12p
12 (1− 2)

ee32



This set of coupled fluid-plate equations are transformed in time and space, solved

in the frequency-wavenumber (-) domain, and transformed back to yield

 ( ) =
1

42

Z +∞+

−∞+
Ψ ( ) () − (2.4)

Ψ ( ) =

Z
Γ



 ( )
 (2.5)
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where

 ( ) =
£
4 + 2 + − 2

¤−  ( − )2

 ()
(2.6)

is the dispersion function and  () ≡
√
2 is defined as positive on the real  axis.

The quantity  ≥ 0 is chosen such that the inverse frequency transform is convergent

and the choice of Γ is described in the next section. The dimensional counterparts

for the radian frequency and wavenumber are

e =
e12p

12 (1− 2)

e2e2 e2e =
ee e

By defining a pair of branch cuts up the imaginary  axis, from ±0 to ±∞, we
can re-express (Crighton & Oswell 1991) the dispersion equation in terms a pair of

quintic polynomials each valid in either the left or the right half of the complex  plane

for  6= 0

± ( ) ≡  ( ) = 5+3∓22−¡2 ∓ 2 + 
¢
∓2 Re {} ≷ 0

(2.7)

2.1 Causal Solution and Location of Poles

The causal behaviour of a line driven infinite plate in the long time ( → ∞) limit is
determined using what has become known as the Briggs-Berrs technique (Briggs 1964;

Bers 1983). For a full description of this method as it is applied to fluid-structure

interaction problems the reader is referred to the comprehensive treatments in Brazier-

Smith & Scott (1984) and in Crighton & Oswell (1991). Only a brief description of

the method will be provided here.

Initially, the temporal contour in (2.4) is defined with the imaginary part of the

frequency,  = Im(), very large such that the contour lies above all singularities in

the complex  plane. This guarantees convergence in the limit of →∞ even in the

presence of instabilities. As the temporal contour is decreased towards the real  axis,

or as  is gradually reduced to zero, the -plane poles (2.5) —which correspond to the

roots of the dispersion function (2.6)  ( ) = 0— move towards the real  axis. In
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order to retain a causal solution, the -contour Γ initially positioned along the real

 axis, must be deformed to avoid any pole crossings. If  can be brought to zero

without any such pole crossing, then the system is at worst convectively unstable. The

spatial location of a response associated with a pole is determined by the half-plane

from which the pole originated. Poles originating in the upper half plane (Im ()  0),

are found downstream from the drive point, and poles originating in the lower half

plane (Im ()  0) exist upstream from the drive point.

‘Neutral’ modes are those that come to rest on the real  axis for  = 0 These

are the conventional ‘free’ waves of structural acoustics that propagate unattenuated

to the far field. Poles that do not reach the real  axis for  = 0 are conventional

‘evanescent’ waves that are exponentially attenuated away from the drive point. Fi-

nally, ‘convectively unstable’ modes are those that cross the real  axis and come to

rest for  = 0 outside the half-plane from which they originated These modes grow

exponentially away from the drive point, upstream or downstream from the driver as

determined by the half plane from which they originated.

If two -plane poles originating from different half planes collide for   0 the

descent of the temporal contour towards Im () = 0 must be halted at the given finite,

positive value of  leading to unstable temporal growth everywhere on the plate.

The response is said to be ‘absolutely unstable’ and Crighton & Oswell (1991) show

that this happens for flow speeds exceeding a critical value,    Unless otherwise

noted, we will assume in this thesis that  does not exceed this absolute instability

threshold and that we can therefore plot spatial dispersion plots of complex  vs. real

 as shown in figure 2.2.

2.1.1 General Solution

For    and  =  = 0 Crighton & Oswell (1991) show that the causal response

can have three distinct frequency regimes (figure 2.2):

1)   : Absolute stability. Two conventional propagating waves (
+
1 and −1 ),

and two conventional evanescent waves, (+2 and −2 ), as shown in figure 2.3d. In

this thesis, the superfixes + and − refer to waves found downstream and upstream,
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Figure 2.2: Dispersion diagram for prescribed (real) frequency for the following non-

dimensional fluid/plate parameters:  = 005  = 2 &  =  = 0

respectively, of a point scatterer or drive point.

2)     : Neutral stability. Four propagating waves, two of which are

positive energy waves (PEWs: +1 and 
−
1 ) and two are negative energy waves ( NEWs:

+2 and 
−
2 ), as shown in figure 2.3c. Wave energy, which will be defined more formally

in the next chapter, is the amount of work done to build up a wave from rest. Positive

energy waves (PEWs) have positive ‘activation energy’ and behave conventionally.

Negative energy waves (NEWs) have negative ‘activation energy’ and are destabilized

by damping. NEWs are responsible for the phenomenon of ‘over-scattering.’

3)   : Convective instability. One exponentially increasing wave (
+
1 ) and one

exponentially decaying wave (+2 ), and two propagating waves, one of which is a PEW

(−1 ) and one, a NEW (−2 ), as shown in figure 2.3b (where  = 0 for  = 0). The two

downstream travelling wavenumbers are complex conjugate pairs with an associated

phase speed of  to leading order in .

2.1.2 The Effect of Finite  and 

Positive spring foundation and tension have a generally stabilizing effect. Increasing

 and  reduces, or in some instances entirely eliminates, the regimes over which the

various types of instabilities occur. Quantitative details of the influence of non-zero 

and  will be provided in later sections of this chapter and in chapter 3. Therefore,

only a brief qualitative sketch will be provided here. Peake (1997) has investigated
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the effect of non-zero  whereas de Langre (2002) and subsequently Peake (2004) have

examined the effect of non-zero 

1) Increasing  or  increases the boundary for absolute instability. De Langre

(2002) has shown that in the limit of large  , one recovers the result for a membrane

in mean flow given in Kelbert & Sazanov (1996).

2) Increasing  or  shrinks and eventually eliminates the - range over which

convective instability occurs. However, there are qualitative differences between the

two. For  small, two distinct looping branches of neutral waves appear as shown

in figure 2.4a. The turning point ( ) moves lower and a third turning point

( ) grows out of the origin, limiting the frequency range of convective instability to

    . The -plane pole for  6= 0 are plotted in figure 2.3a. As  is increased,
 and  approach each other (roughly) along the  =  line and eventually fuse

with each other thereby eliminating the convective regime. In contrast, increasing 

only generates the loopy branch associated with ( ) as shown in figure 2.4b. As 

is increased,  approaches and eventually fuses with the origin again (roughly) along

the  =  line (figure 2.4c).

3) For a sufficiently large value of  the pinch point ( ) crosses the -axis,

eliminating the second branch of the dispersion equation from the first quadrant to-

gether with the existence of NEWs. Increasing  likewise shrinks the range over which

NEWs may exist but there is no finite value of  that eliminates them entirely. Details

are given in chapter 3.

2.2 Plate Response

The Greens function of the fluid loaded plate is

± (− ) = ±
±
1 (−)



¡
±1
¢ ± 

±
2 (−)



¡
±2
¢ +

1

2

+∞Z
0

∓(−)

 (±)  +
1

2

+∞Z
0

∓(−)

 (∓) 

(2.8)

where

 () ≡  ()  = 43 + 2 +

¡
2 − 22

¢
 ()

 (2.9)



16 2. The Infinite Flow-Loaded Plate

-0.01 -0.005 0 0.005 0.01

0.5

1

1.5

2

2.5

3
x 10

-3

dr
iv

e 
ω

Im(k)
0 0.02 0.04 0.06 0.08

0.5

1

1.5

2

2.5

3
x 10

-3

de
riv

e 
ω

Re(k)

U=0.05, λ=2U5, T=0

0 0.02 0.04 0.06 0.08

0.5

1

1.5

2

2.5

3
x 10

-3

de
riv

e 
ω

Re(k)

U=0.05, λ=0, T=0.5U2

-0.01 -0.005 0 0.005 0.01

0.5

1

1.5

2

2.5

3
x 10

-3
dr

iv
e 

ω

Im(k)

-0.02 0 0.02

0.5

1

1.5

2

2.5

3
x 10

-3

dr
iv

e 
ω

Im(k)
0 0.02 0.04 0.06 0.08

0.5

1

1.5

2

2.5

3
x 10

-3

de
riv

e 
ω

Re(k)

U=0.05, λ=0, T=U2

 

 

a)

b)

c)

ω
p

ω
p

ω
a

ω
a

ω
s

ω
s

ω
s

ω
s

ω
p

ω
p

ω
p

ω
p

Figure 2.4: Detail of dispersion diagram showing the influence of non-zero  and  on
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2. The Infinite Flow-Loaded Plate 17

and  () is the dispersion function given in (2.6). The ± signs correspond to response
to the right or left, respectively, of the drive. The Green’s function is composed of far

field propagation terms generated by the system poles which are zeros of the dispersion

equation and of near-field terms generated by the branch line integrals which decay

algebraically away from the drive.

The plate response is simply the Green’s function multiplied by the load amplitude

 ( ≷ ) = 0± (− )  (2.10)

2.2.1 Far Field Response

In the far field, the causal solution consists of two upstream and two downstream

waves and can be written in terms of the ‘far field’ Green’s function,

 (|| À ||) = 0± (∞) 

where,

±∞ () ≡
2X

=1

±± (−)


³
±
´ (2.11)

is defined as the Green’s function composed of only the pole contributions to (2.8).

The far field amplitude for the individual waves ± is given by

± =
±0



³
±
´  (2.12)

where the ± signs correspond to the propagation direction of the ‘’ wave.

2.2.2 Drive Point Admittance & Power into Plate

The drive point admittance is the time rate of change of the response at the drive

location  =  per unit force. In terms of the Green’s function it is

 = − (0)  (2.13)

The real part of  represents power per unit force injected into the plate by the

drive.
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Given that the Greens function is continuous at the source, either + (0) or − (0)

can be used to evaluate . However it is advantageous to use the averaged quantity

− (+ (0) +− (0)) 2 because the real part of the drive point admittance can then

be expressed in terms of the pole contributions alone, the contributions from the branch

line integrals averaging out to zero.

To see this, expand and combine the terms under the integral in (2.8) (evaluated

at −  = 0) to find the following expression for the branch line integral ()

± (0) =
1

2

+∞Z
0

2
£
4 − 2 + 

¤ ∓ − 

 2 +  2
 (2.14)

where  = 2
£
4 − 2 + 

¤2
+2

£
4 − 2222 + 244¤ and  = 2

£
433 − 43¤

are real quantities that do not contain any ± factors. Taking the average

− (+ (0) +− (0)) 2 results in the cancellation of the term involving the

± factor and yields




+∞Z
0


£
4 − 2 + 

¤ ¡
 2 +  2

¢
which is pure imaginary.

The time averaged power injected into the plate at the drive is therefore given by

12Re
©− (0) 0ª :

Π =
1

4
Re

(
4X

=1

±


¡
±
¢) |0|2  (2.15)

where  represents the four waves in sequential order with the right going waves as

 = 1 2 accompanied by the upper (+) sign followed by the two left going waves as

 = 3 4 accompanied by the lower (−) sign.

2.3 Pinch Parameters and Absolute Instability

Crighton & Oswell (1991) show that the pinch point ( ), which corresponds to

the merging between the two Re {}  0 roots +1 and −2 that originate in opposite

half planes, is a saddle point of the dispersion equation (2.6), i.e.

+ ()



¯̄̄̄
=

= 0
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The pinch can occur for real  or for complex  If Im {}  0 then Absolute

Instability exists. There is a critical flow velocity  below which Im {} = 0 and

given that one of the pinching roots, +1  always occurs with its complex conjugate

pair +2  it follows that the transition between    and    must correspond

to a triple root of the dispersion function + ()

+ () = 5 + 3 − 22 − ¡2 − 2 + 
¢
 − 2 = 0 (2.16a)

 0+ () = 54 + 32 − 22 − ¡2 − 2 + 
¢
= 0 (2.16b)

 00+ () = 203 + 6 − 22 = 0 (2.16c)

Our aim is to solve this system of equations for the critical velocity  ( ) 

First, we combine (2.16a) with (2.16b) and eliminate the  terms to obtain an

equation for the pinch point as a function of  that does not include the parameter 

45 + 2
3
 − 22 + 2 = 0 (2.17)

Next, we solve (2.16c) for the critical velocity

2 = 10
3
 + 3 (2.18)

and combine this with (2.17) to obtain an equation relating the frequency and wavenum-

ber at the critical point

65 + 3 − 2 = 0 (2.19)

2.3.1 For  = 0

For the case where the pre-tension is zero, it is possible to obtain an exact expression

for the critical velocity as a function of  Simply set  = 0 in (2.18) and solve for the

critical wavenumber (choosing the real, positive root) as a function of 

 =

µ
2
10

¶ 1
3

 (2.20)

Use this, together with (2.19), to eliminate  and  from (2.17) and obtain an equation

for  as a function of the plate parameters alone

83

h
23 − 

23
0

i
−  = 0 (2.21)
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where

 ≡ 323

553223
≈ 012923 (2.22)

and

0 = 
212554

334

"
2− 15

12

2

#32
≈ 0074 (2.23)

is the critical velocity for  =  = 0 derived previously in Crighton & Oswell (1991)

for the case of one-sided loading,  = 1 It is clear from the form of the equation that

a non-zero, positive spring constant increases the threshold of absolute instability, 

and therefore has a stabilizing effect.

By making the change of variable  = 23 (2.21) is transformed into a 5 order

polynomial equation in the velocity variable

5 − 40 −  = 0 (2.24)

Here, 0 = 
23
0  No known closed form solutions exist for this type of quintic. How-

ever, a numerical solution is easy to obtain using standard polynomial root finding

routines, and the results are plotted in figure (2.5b). In addition, approximate solu-

tions for  can be obtained in the asymptotic limit of small and large 

For small  the first order term is  − 0 ≈ 
¡
40

¢
 We therefore seek an

expansion of the form  ≈ 0 + 1 + 22 + · · · and find to second order in 

 ≈ 0 +


40
+
42

290
+ 0

¡
3
¢


⇒  ≈
"
0 +




103
0

+
42

260
+ · · ·

# 3
2

 ¿ 
103
0  (2.25)

For large  the leading order term is  ≈ ()15  We seek solutions of the form
 ≈ 1

15 + 2 + 3
−15 + · · · and obtain to second order

 ≈ 15

15
+

0

5
+ 0

³
−15

´
⇒  ≈

"
15

15
+


23
0

5
+ · · ·

# 3
2

 À 
103
0

55
 (2.26)

These asymptotic solutions are overlaid on the exact numerical result in figure (2.5b).
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Figure 2.5: Critical velocity for Absolute Instability as a function of plate parameters

for  = 1 a)  as a function of non-dimensional plate tension  , b)  as a function

of non-dimensional plate spring foundation constant 
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2.3.2 For  6= 0

For non-zero tension, it has not proved possible to obtain the equivalent of (2.21),

an exact equation for  as a function of the plate parameters alone. The stumbling

block is our inability to obtain a compact enough expression for the critical wavenum-

ber  (  ) from the cubic equation (2.18). We therefore attempt an approximate

solution for small  .

We expand  in powers of 
23 and choose the distinguished scaling  ∼ 2 to

obtain

 ≈
³ 

10

´13
23 +

1

102313



23


+
³
103

´
 (2.27)

We substitute (2.27) into (2.19) and retain the leading order terms in  to obtain

2 ≈
323

10235
103 − 1

5
2 +

³
143

´
 (2.28a)

 ≈ 31213

5121013
53 − 1013

512312213
13 +

³
93

´
 (2.28b)

Substituting these first order accurate expressions for  
2
 and  into 

0
+ () (i.e.,

(2.27) and (2.28) into (2.16b)) we obtain an order 
¡
4
¢
accurate equation for

 ( )

83

h
23 − 

23
0

i
− 43 − 

5
2 −  ≈ 0 (2.29)

where

 ≡ 23
332512 − 10
3125121023

≈ 0090123 (2.30)

and  is as given in (2.22). We note that the approximation in (2.29) only involves the

tension terms. This equation is exact as far as the spring support is concerned and in

fact reduces to (2.21) for  = 0 It is also clear from the form of (2.29) (including the

sign of the  terms) that positive plate pre-tension increases the critical velocity 

for the onset of absolute instability and therefore has a stabilizing effect.

By making the change of variable  = 23 as before, (2.29) reduces to a quintic

in  ( )  For the special case of  = 0 (2.29) reduces to a cubic in  ( )

3 − 20 −


5
 −  ≈ 0 (2.31)

This small  solution for  ( ) is compared with the exact solution obtained by direct

numerical solution of equations (2.16) in figure (2.5a).
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Although closed form solutions for the cubic in (2.31) are available, the resulting

expressions are too unwieldy to be of any practical use. Instead, a small  solution

for (2.31) is obtained. We expand  in full powers of  and find, to first order,

 ≈ 0 +

µ


20
+

1

50

¶
 + 0

¡
 2
¢


⇒  ≈
"

23
0 +

Ã



43
0

+
1

5
23
0

!
 + · · ·

# 3
2

  ¿ 1 (2.32)

Figure (2.5a) compares this asymptotic solution with the direct numerical solution of

the approximate cubic of (2.31) as well as with the exact solution of equations (2.16).

2.4 Convective Instability

With  assumed real and positive, we solve + () = 0 for the  roots and obtain the

following two branches of the ‘temporal’ dispersion equation

 () =
 ± £(+ )

¡
5 + 3 + 

¢− 23
¤ 1
2

+ 
 (2.33)

The branch points are given by the zeros of the radical in (2.33) and consist of the

real, positive  roots of

5 + 4 + 3 + 
¡
 − 2

¢
2 +  +  = 0 (2.34)

We note that, in addition to the  roots given above, the origin is also a branch point

for all values of   and .

Peake (1997) has examined the effect of a spring foundation (or equivalently, adding

a small amount of transverse curvature to a flat plate) in the absence of plate pre-

tension ( = 0 &  6= 0) and shown that a positive spring constant limits/reduces the
regime for convective instability and therefore has a stabilizing effect. He shows that

for values of the spring constant smaller than

1 =
4

4
 (2.35)

there are two branch points  and  which bound the - range over which convective

instability can occur. Increasing  causes  and  to approach each other until their
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merger at precisely  = 1 eliminates the convective range. Equation (2.35) was

obtained from equation (4.5) in Peake (1997) after making the transformation

→ 12
¡
1− 2

¢
22

 (2.36)

where  is the plate transverse radius (assumed large),  is a the density ratio between

the plate and fluid and  is Poisson’s ratio.

In this section, we focus on the case  = 0 and  6= 0. Without a spring foundation,
the branch point equation (2.34) reduces to 3 +2 ++

¡
 − 2

¢
= 0 and can

be factored as

( + )
¡
2 + 

¢− 2 = 0 (2.37)

For small  , we follow Crighton & Oswell (1991) and use the scaling  ∼  for  ≤ 

to approximate the term in the first parentheses as  +  ≈  (this is equivalent

to ignoring the plate inertia w.r.t. to the fluid inertia) and obtain an approximate

expression for the branch point as a function of plate tension

 ≈
¡
2 − 

¢ 1
2   ≈ 

¡
2 − 

¢ 1
2   ¿ 1 (2.38)

We note that, unlike for the case of non-zero spring foundation, there is only one non-

zero branch point for  6= 0 Equation (2.38) does show, however, that plate tension
has a comparable stabilizing effect; increasing  reduces  and shrinks the range

0     over which convective instability may exist. It also follows from (2.38) that

values of plate tension greater than   1 where 1 ≈ 2 to leading order, lead to

the merger of  with the branch point at the origin and hence to the disappearance

of the convectively unstable range.

More rigorously, we expand  in powers of  and choose the distinguished scaling

 ∼ 2 to obtain the asymptotic expansion

 ≈
¡
2 − 

¢ 1
2 − 2

2
+ 0

¡
3
¢
  ¿ 1 (2.39)

We set  = 0 and solve for  to obtain a second order accurate expression for the

cut-off tension

1 ≈ 2 − 4

42
  ¿ 1 (2.40)
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Now that we have an expression for  we can write the radical in (2.33) in the vicinity

of the branch point (with  = 0) as

£
( + )

¡
2 + 

¢− 2
¤12 ≈ 1232 [( + ) ( − )]

12 

The only approximation involved in this step and in what follows is + ≈  The two

branches of the dispersion equation become  () ≈ ±32−12 [( + ) ( − )]
12 

which, in terms of the separation variable from the branch point  ≡  −  can be

rewritten as

 () ≈  ± 2
122

12

µ
1− 

2

¶12
()12   ¿ 

In the immediate vicinity of the branch point, this simplifies further to

 () ≈  ± 2
122

12
()12   ¿   ¿ 1 (2.41)

and reveals that the branches of the dispersion equation are split evenly about 

by ∼ ±√ . For points lying above the branch point (i.e.,   ) this split is

between the pair of purely real branches that define +1 and 
−
1  For points within the

convectively unstable range (i.e.,   ) this split manifests itself in the imaginary

parts of +1 and −1 . This can be observed in figures 2.4b and 2.4c.

Finally, if we combine the expression for 1 in (2.35) with the leading order term

for 1 in (2.40) we can write down the condition, valid for small  , for the elimination

of the convective range

 + 2
√
  2 (2.42)

This condition is identical to equation (3.2) of Peake (2004).



Chapter 3

Energy Balance

In this chapter, we derive the energy balance equation for the line driven plate. The

derivation parallels that given by Crighton and Oswell (1991) and is extended to

include the augmented plate equation and two sided flow.

3.1 Energy Equations for Plate and Fluid

Multiplying both sides of the plate equation (2.3a) by the plate velocity  and

integrating over an interval 1 to 2 containing the line drive gives an energy equation

for the plate. The individual terms on the left hand side can be manipulated (by

repeated use of the chain rule) to yield

2Z
1

4

2



 =

3

3




¯̄̄̄2

1

− 2

2
2



¯̄̄̄2

1

+
1

2





2Z
1

µ
2

2

¶2


−
2Z

1


2

2



 = − 









¯̄̄̄2

1

+
1

2





2Z
1



µ




¶2


+

2Z
1





 = +

1

2





2Z
1

2

+

2Z
1

2

2



 = +

1

2





2Z
1

µ




¶2

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Collecting these terms back into the equation, the plate energy equation can be ex-

pressed as




[ + ] +  (2)−  (1) =

1

2
|0|2Re {}+Π (3.1)

where

 =
1

2

2Z
1

µ




¶2
 (3.2)

is the structural kinetic energy,

 =
1

2

2Z
1

(µ
2

2

¶2
+ 

µ




¶2
+ 2

)
 (3.3)

is the structural potential energy,

 =  −  −  (3.4)

is the structural energy flux,

1

2
| |2Re {} =

2Z
1

 ()



 (3.5)

is the power injected into the plate at the drive expressed in terms of the drive point

admittance  (2.13) and

Π = −
2Z

1





 (3.6)

is the rate of working of the fluid on the plate.

The gradient of the momentum equation (2.3c) multiplied by the fluid fluctuating

velocity ∇ can be manipulated in the following ‘conservation’ form




∙
1

2
(∇)2

¸
+∇ ·

∙µ
+ 





¶
∇
¸
= 0 (3.7)

where the first term represents the rate of change of fluid kinetic energy and the

second is the divergence of the fluid flux. Integrating (3.7) over a control volume

 =  + +  − spanning the plate segment as shown in figure 3.1 and applying the

divergence theorem, we obtain





Z


1

2
(∇)2  = −

Z


µ
+ 





¶
∇ · b (3.8)
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Figure 3.1: Control volume and integration surfaces for evaluation of energy balance

equation.

where b is the unit outward normal to the surface  = +1 +
−
1 +

+
2 +

−
2 bounding the

control volume. Equation (3.8) represents a balance between the time rate of change

of kinetic energy in the control volume and the fluid fluxes into the volume.

The integral along the upstream vertical control surfaces ±1 at 1 where the

suffixes +− connote ‘above’/‘below’ plate, is (taking b · b1 = −1)

−
Z
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−
1

µ
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

¶
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
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−

⎧⎪⎨⎪⎩
+∞Z
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Ã

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
+ 

µ




¶2!¯̄̄̄¯
1
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−∞Z
(1)

Ã




+ 

µ




¶2!¯̄̄̄¯
1

(−)

⎫⎪⎬⎪⎭
≈ −

+∞Z
0

Ã




+ 

µ




¶2!¯̄̄̄¯
1


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for  small. Similarly, the vertical surface integral at 2 yields (with b · b2 = +1)Z
+2 +

−
2

µ
+ 





¶



 ≈ 

+∞Z
0

Ã




+ 

µ




¶2!¯̄̄̄¯
2

 (3.9)

If, in addition to the anti-symmetry properties of the pressure and tangential velocity,

we invoke (through the continuity condition) the symmetry property of the normal

velocity given by





¯̄̄̄
=+

=



+ 




=





¯̄̄̄
=−

 → 0

the integrals along the top and bottom surface of the plate (with b · b+ = −1 andb ·b− = +1 respectively) can be expressed in terms of the integral along the top surface
only to yieldZ

+

µ
+ 





¶µ
−


¶¯̄̄̄
=+

 +

Z
−

µ
+ 





¶µ
+




¶¯̄̄̄
=−



≈ −
2Z

1

µ
+ 





¶




¯̄̄̄
=+0

  ¿ 1

The quantities  and  and their derivatives decay exponentially with , so there is

no contribution from the integrals along the surfaces at infinity. Finally, summing all

the surface integral contributions, the right hand side of (3.8) becomesZ


µ
+ 





¶
∇ · b ≈ − +∞Z

0

Ã




+ 

µ




¶2!¯̄̄̄¯
1



+

+∞Z
0

Ã




+ 

µ




¶2!¯̄̄̄¯
2

 − 

2Z
1

µ
+ 





¶




¯̄̄̄
=+0

 (3.10)

We turn next to evaluating the volume integral of the fluid kinetic energy in (3.8).

If we take  to be the full potential and subtract off any terms not contributing to the

fluctuating kinetic energy (i.e., terms involving the mean flow alone that will cause

the fluid energy integral to diverge), we obtain

 =
1

2

Z
 ++ −

h
( + )

2 +  − 2
i


=
1

2

Z
 ++ −

£
2 + 2 + 2

¤

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First, we rewrite the integral involving the volume  +above the physical plate at  = 

by taking  = +0 as the lower limit, being careful to subtract off the surplus volume

spanning 0     not contained in  + This gives

 (  ) =
1

2

+∞Z
()



2Z
1

£
2 + 2 + 2

¤
 (3.11)

≈ 1

2

+∞Z
0



2Z
1

£
2 + 2 + 2

¤
−

()Z
0



2Z
1



where the approximation in the final step consists of retaining only quadratic terms

in the fluctuating variables, consistent with our linear approximation. Expanding 

in a Taylor series about  = +0, we evaluate the
()R
0

 integral in (3.11) to find

Z
0

 ()  ≈  (+0) +
1

2

2


(+0) + · · · 

Retaining the quadratic terms only, (3.11) becomes

 (  ) ≈
+∞Z
0



2Z
1

∙
1

2
(∇)2 + 

¸
−

2Z
1

 (+0)  (3.12)

A similar set of arguments yields the following expression for the energy integral below

the plate surface

 (  ) ≈
0Z

−∞


2Z
1

∙
1

2
(∇)2 + 

¸
+

2Z
1

 (−0) 

This can be re-expressed in terms of the fluctuating quantities above the plate by

making use of the anti-symmetry properties of the potential about the plate surface,

 (−0) = − (+0)  to give

 (  ) ≈
+∞Z
0



2Z
1

½
1

2
(∇)2 − 

¾
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2Z
1

 (+0)  (3.13)

Summing the upper and lower contributions, (3.12) and (3.13), to the energy integral

and expressing the result in terms of upper variables only as in

 =  (  ) +  (  ) ≈ 

+∞Z
0



2Z
1

1

2
(∇)2 − 

2Z
1

 (+0) 
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allows us to write the linear approximation to the left hand side of (3.8) as




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

1

2
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
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1

∙



 (+0) + 

 (+0)



¸
 (3.14)

We are now ready to combine (3.14) with (3.10) to form the conservation equation

(3.7) for the fluid


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2Z
1

( + )|=+0  (3.15)

The first two terms on the right of (3.15) are already flux-like quantities that do not

involve integrals along the plate segment. The last two terms, both integrals over ,

can be combined to yield an integrand that is a full differential with respect to . This

is accomplished by using the continuity equation (2.3b) to express the fluid velocity

normal to the plate in terms of the plate deflection, leading to the cancellation of terms

involving  and yielding the intermediate result

+

2Z
1

+ 
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£
2 +  − 

¤


We then use the momentum equation (2.3c) to express  inside the brackets (i.e., the

 multiplying ) in terms of  and obtain the cancellation of the 2 term. The

expression inside the brackets is now a full differential in  and can be evaluated to

reveal a flux-like term as follows:
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−  [|2
1





32 3. Energy Balance

Substituting these results back into (3.15), we obtain the power conservation equa-

tion for the fluid




[ ] = +
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+ 

2Z
1

 (3.16)

The fluid and plate conservation equations (3.1 and 3.16) have a common term consist-

ing of the integral of the pressure and plate velocity over the plate surface. Eliminating

this term between the two gives a single power conservation equation for the fluid-plate

system




[ +  + ] =

1

2
|0|2Re {}− [ +  +  |2

1
 (3.17)

where
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+∞Z
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(∇)2 − 

2Z
1

 (+0)  (3.18)

is the kinetic energy of the fluid,

 () = 

+∞Z
0

¡
 + 2

¢¯̄

 (3.19)

is the fluid flux, and

 =  (3.20)

is the plate-fluid ‘interface’ flux that only arises in the presence of non-zero  . Crighton

and Oswell (1991) name this last term the ‘plate-fluid’ or ‘coupling’ flux. We prefer the

label ‘interface’ because this quantity does not pre-suppose the presence of an elastic

plate. It only requires a finite jump in potential across an interface with non-zero

deflection from the horizontal. The interface flux also appears in the context of a

trailing edge wake as we will see in chapter 7.

3.2 Wave Flux, Wave Energy and Wave Impedance

In this section we evaluate the fluxes for propagating waves in the far field of any source

and identify a wave impedance associated with each travelling wave. Far from any
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sources or plate boundaries and discontinuities, the time harmonic response variables

are

 ( ) = −

 (  ) = −( − )2

 ()
−()||−

 (  ) = 
( − )

 ()
−()||−

where  is the far field wave amplitude defined in (2.12). Substituting these into the

expressions for the fluxes derived in section 3 and evaluating the  and  differentials

and the  integrals, and taking the time average over a period, we find
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2
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³
2 + ||2 + 

´
(−)

o
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
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¡

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)
||2  (3.21b)

 () =
1

2
Re

½
 ( − )

 ()
(−)

¾
||2  (3.21c)

The total wave flux is obtained by summing the individual fluxes,  =  +  + 

After some simplification, including enforcing of the identity


¡

¢−  () = ± ||2 ∓ ||2 = 0 Re {} ≷ 0

we find

 () =
1

2
Re
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¡
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¢
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¡
 () + 

¡

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³
2 + ||2 + 

´#
(−)

)
||2  (3.22)

These expressions hold for all wave types, including evanescent and convectively un-

stable waves. For neutral waves,  = , and the expression for the total flux reduces

to

 () =


2

"

¡
2 − 22

¢
2 ()

+ 23 + 

#
||2  →∞ (3.23)

We identify the expression in the brackets as  from (2.9) and rewrite the wave flux

as

 =
1

4
 ||2  (3.24)
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Using the expression for the far field wave amplitude  given in (2.12), we find another

way of expressing the wave flux,

 =
1

4





|0|2  (3.25)

as a function of the driving force that sustains the steady state wave.

By writing  = × we obtain a further variant of the total wave

flux,

 =
1

4
 ||2  (3.26)

now expressed in terms of the group velocity  given by

 ≡ 


=
54 + 32 + − 2 ± 2 ( − )

2 ± 2 ( − )
 Re {} ≷ 0 (3.27)

and in terms of the  differential of the dispersion function

 =
 ( )


= −

∙
2 +

2 ( − )

 ()

¸
 (3.28)

We identify the terms multiplying  in (3.26) as the wave energy (up to a sign differ-

ence) as defined by Cairns (1979)

E = −
4




||2 

=
2

4

∙
1 +

 ( − )

 ()

¸
||2  (3.29)

where the dispersion function  ( ) is as defined in (2.6). Our equation for the

wave energy (3.29) differs from the one given in Cairns (1979) by a minus sign. This is

due entirely to a sign difference in our respective definitions of the dispersion function.

Cairns defines his  ( ) so that the term corresponding to the plate inertial forces

is positive.

The wave energy, first defined by Landahl (1962) and Benjamin (1963) in the

context of fluid loaded plates, is the amount of work done to build up a wave from

rest. Positive energy waves (PEWs) have positive ‘activation energy’ (i.e., net energy

required from an external agency to create a steady state wave from rest) and be-

have conventionally. Negative energy waves (NEWs) have negative ‘activation energy’

and their generation results in a net decrease in the energy of the fluid loaded plate
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system. NEWs are destabilized by damping and, more crucially, are responsible for

the phenomenon of ‘over-scattering’ from plate discontinuities discussed in the next

chapter.

From (3.28) it is easy to see that all neutral waves with phase speeds opposite in

direction to the flow speed (in our case, negative phase speeds corresponding to   0)

are POWs. We also observe that all waves with phase speeds exceeding the flow speed

and that satisfy    are also POWs. Solving the dispersion equation for the two 

roots (with  assumed real and positive), we obtain equation (2.33) and can proceed

to show that all waves lying on the lower branch of the dispersion curve, and for which

  0 are NEWs. Crighton & Oswell (1991) prove this for  =  = 0. Numerically,

one can show that this also holds true for all  ,  and  .

We note that, in line with the conventional understanding of the flux as the wave

energy carried at the group velocity, the expression for the wave flux given in (3.26)

can be rewritten as

 = E (3.30)

using (3.27) and (3.29). The wave flux is a vector quantity and carries information

about the direction of power flow given by the relative signs of E and .

The generalized wave impedance, defined as the ‘power per unit velocity amplitude

carried by a neutral wave,’ is in contrast a scalar quantity. The wave impedance does

not carry information regarding the direction of propagation but instead carries the

sign of the wave energy.

The expression for wave impedance follows directly from the expression for the

wave flux given in (3.30) with  replaced by its modulus and is given by

 =
E ||
2 ||2 

=
1

4

∙
1 +

 ( − )

 ()

¸
||  (3.31)

3.3 Existence of Negative Energy Waves

As we’ve just seen, the existence of NEWs is bound up with the presence of the lower

branch of the dispersion equation in the first quadrant of the real - plane. These
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consist of the solutions to the dispersion equation which correspond to the lower sign in

(2.33) for  and  real and positive. Peake (1997) has shown that increasing the spring

constant  (or, equivalently, adding some transverse curvature) limits the presence of

this branch in the first quadrant and reduces the range of frequencies and wavenumber

over which NEWs can exist. Peake (1997) also finds that for spring constants above a

threshold value,  = 2 (see (3.33) below) the lower branch disappears entirely from

the first quadrant. He finds this threshold by solving for the value of  that causes the

pinch frequency to go negative. We will solve for this same threshold in a somewhat

different but entirely equivalent way.

First, we identify the crossing point  of the lower branch into the fourth quadrant

by setting the numerator of (2.33) with the lower (−) sign to zero, squaring the radical
and dividing through by the common factors  and (+ ) to find

4 + 2 − 2 +  = 0 (3.32)

We note that for  =  = 0 the crossing point is given exactly by

|==0 =
¡
2

¢ 1
3 

Next, we solve for the value of  = 2 which causes the merging of  and the pinch

point  by combining (3.32) and the pinch equation (2.17) with  = 0 while setting

 = 0 in both and find

2 =
34383

283
 (3.33)

This is an exact solution and is identical to equation (4.10) in Peake (1997) after one

makes the transformation given in (2.36).

To determine the effect of plate pre-tension  on the presence of NEWs, we first

undertake a purely numerical study. We set  = 0 and find that increasing  uniformly

from zero reduces the range of frequencies and wavenumbers over which the lower

branch of the temporal dispersion equation (2.33) remains in the first quadrant but

does not succeed in eliminating this range entirely as seen in figure 3.2. We find that

both the pinch point ( ) and the crossing point ( 0) approach the origin as 

is increased but never reach it.



3. Energy Balance 37

0 0.1 0.2
-2

-1

0

1

2

3

4
x 10

-3

k

R
e(

ω
)

T=0

0 0.1 0.2
-2

-1

0

1

2

3

4
x 10

-3

k

T=0.005

0 0.1 0.2
-2

-1

0

1

2

3

4
x 10

-3

k

T=0.05

0 0.1 0.2
-2

-1

0

1

2

3

4
x 10

-3

k

T=0.25

 

 

lower branch
upper branch

Figure 3.2: Temporal dispersion diagrams for four representative values of  for  =
005  = 0  = 2
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To confirm this analytically, we focus on the equation for the crossing point (3.32)

and determine the trajectory of the relevant positive, real root as a function of  .

Setting  = 0 in (3.32), we obtain the reduced cubic

3 +  − 2 = 0  = 0 (3.34)

The existence of a real and positive root indicates that a crossing point, and hence a

range over which NEWs are present, exists. Equation (3.34) is of the form 3++ =

0 and its radical is given by

∆ ≡ 2

4
+

3

27
=

24

4
+

 3

27
 (3.35)

which is clearly positive for all   0. This implies that there will always be one real

root (and two complex conjugate roots) for all  . The real root is given by the exact

expression

 =

µ
2

2
+∆

1
2

¶ 1
3

+

µ
2

2
−∆ 1

2

¶ 1
3

 (3.36)

which can be re-written as
¡
22

¢13 n
( + 1)13 − ( − 1)13

o
where

 ≡ ¡
1 + 4 3

¡
2724

¢¢12
 0 and is clearly positive for all possible values of

 i.e., 1   ∞

To evaluate  in the limit  →∞ we perform large  asymptotics on (3.34) and

find that to second order, the crossing point behaves as

 ≈ 2


− 36

 4
+ · · ·   À 34 (3.37)

This asymptotic result is overlaid on top of the exact solution of (3.36) in figure 3.3.
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Chapter 4

Scattering from Local

Discontinuities

In this chapter we investigate the reflection and transmission of plate waves from point

or ‘local’ discontinuities and inhomogeneities on an otherwise uniform, infinite, flow-

loaded plate. Our approach is based on the technique described by M.S. Howe (Howe,

1994) for Euler plates in a quiescent fluid, adapted here to fluid loaded plates in mean

flow with pre-tension and spring foundation. The method is extended to fluid-loaded

plates for which the symmetry between left and right going waves is broken, and

to plates that can sustain negative energy waves and support convectively unstable

waves. Another key difference with quiescent fluid loading includes the possibility of

a net exchange of energy between the plate and incompressible fluid at a discontinuity

and the closely related phenomenon of ‘over-scattering,’ whereby individual scattered

waves carry more power to the far field than that brought in by the incident wave.

4.1 Plate Equation with Multipole Loads

Consider an infinitely long fluid-loaded plate with pre-tension  , spring foundation

constant  and mean flow speed  that is uniform everywhere except for a structural

discontinuity at  =  (figure 4.1). A variety of structural conditions may be imposed

at the abutting edges, from free to clamped to constrained by a combination of lumped

40
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U

Z −

Z +

cZ

y

x

Figure 4.1: Scattering by local plate discontinuities. ∓ are the lumped parameter
impedances constraining the edges.  is a coupling impedance connecting the edges.

parameter springs, masses and dashpots with transverse and/or rotational degrees of

freedom, attached to each edge independently or coupling one edge to the other, etc...

The fluid loaded plate equation (4.1) is valid everywhere except at the structural

inhomogeneity where one of more derivatives of  may be discontinuous

4

4
 − 

2

2
 +  +

2

2
 = − (4.1)

The pressure and potential obey the linearized Bernoulli equation (2.3c) and the con-

tinuity equation (2.3b) as before. In order to extend the domain of validity of the

plate equation to include the discontinuity at  = 0, we introduce the infinitesimally

small parameter  following Howe (1994) and write

 () =  () (||− )  → 0

By repeated application of the chain rule, one can express the derivatives of a discon-

tinuous function in terms of the delta function and the ‘one-sided’ derivatives of the

function at a discontinuity as follows




[ () (||− )] =  (||− )




 () +  ()




 (||− )

=  (||− )



 () + [ (+ ||)−  (− ||)]  () 

2

2
[ () (||− )] =  (||− )

2

2
 () +

∙



 (+ ||)− 


 (− ||)

¸
 ()

+ [ (+ ||)−  (− ||)] (1) () 
...




[ () (||− )] =  (||− )




 () +

X
=1

∆

"
(−)

(−)
 (0)

#
(−1) () 

 → 0
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where ∆ [ ()] ≡  ( + ||)−  ( − ||) is the ‘jump’ in the value of  at  = .

For a discontinuity located at  = , we proceed by multiplying the plate equation

by  (|− |− ), applying the identity

 (|− |− )



 () =




[ () (|− |− )]

−
X

=0

∆

"
(−)

(−)
 ()

#
(−1) (− )  → 0

and moving all the jump quantities to the r.h.s. to obtain

4

4
− 2

2
++

2

2
 = −+

4X
=0

∆
() (− )  −∞    +∞ (4.2)

where the jump functions ∆ are

∆0 = ∆

∙
3 ()

3

¸
− ∆

∙
 ()



¸
 ∆1 = ∆

∙
2 ()

2

¸
− ∆ [ ()] 

∆2 = ∆

∙
 ()



¸
 ∆3 = ∆ [ ()]  (4.3)

Local discontinuities in the plate are therefore equivalent to applying multipole

loads to the structure (at the point of discontinuity). The multi-pole strengths are

determined by enforcing the structural edge conditions at the discontinuity. As a

result, the amplitude of a monopole source is given by the jump in the transverse

(shear) force ∆0, a jump in the bending moment ∆1 constitutes a dipole load, the

strength of a quadrupole load ∆2 is given by the jump in slope, and the jump in

displacement ∆3 constitutes the strength of an octupole source.

Four structural conditions (two per edge) are required for a unique solution. Equiv-

alently, four multipole strengths are needed to fully characterize the discontinuity.

This is all a consequence of the highest spatial derivative in the plate equation being

of fourth order.

4.2 Scattered Field: the Green’s Function Matrix

The plate equation driven by multipole loads applied at a single location ‘begs’ for a

Green’s function approach. The scattered field is thereby expressed as a sum over the
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multi-pole Green’s functions of the fluid loaded plate

± () = ∆0± (− ) +∆1
(1)
± (− ) +∆2

(2)
± (− ) +∆3

(3)
± (− )

(4.4)

where the one sided Green’s functions are

± (− ) = ±
±
1 (−)



¡
±1
¢ ± 

±
2 (−)



¡
±2
¢ +

1

2

+∞Z
0

∓(−)

 (±)  +
1

2

+∞Z
0

∓(−)

 (∓) 

(4.5a)


()
± (− ) =




± (− )  (4.5b)

Here,  () =  ()  where  () is the dispersion function given in (2.6). In our

notation for the one-sided Green’s functions, 
()
+ signifies the  differential with

respect to the source variable  for response locations to the right of the discontinuity,

i.e., for positive (+)  − . The one-sided Green’s functions are composed of both

far field propagation terms generated by the roots of the dispersion equation and by

near-field terms generated by the branch line integrals representing fluid loading.

To solve for the unknown multipole amplitudes corresponding to a given discon-

tinuity, (4.4) is substituted into the relevant structural edge conditions. In general,

we will need to evaluate derivatives of response up to the third order. This suggests

that we will require the elements of a 4 × 4 Green’s function matrix whose ()
components are given by


()
± (− ) ≡ 


± (− ) =

±
¡
±1

¢ ¡−±1 ¢ 
±
1 (−)



¡
±1
¢ ± 

¡
±2

¢ ¡−±2 ¢ 
±
2 (−)



¡
±2
¢ (4.6)

+
1

2

+∞Z
0

(∓) (±) ∓(−)

 (±)  +
1

2

+∞Z
0

(∓) (±) ∓(−)

 (∓)  + ≤ 3

We note that the denominator of the branch line integrals in (4.6) is of order (±) ∼
4 as  →∞. As a result, the near field integrals will be non-convergent at  =  for

+  3. We overcome this difficulty by implementing a ‘denominator augmentation’

procedure inspired by a comparable technique described in Howe (1994), but different

in its implementation here.
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4.2.1 Evaluating the Nearfield Integrals

Our aim is to find an expression for the inverse transform of the Green’s function,

 (− ) =
R +∞
−∞ (−) ( ) , that converges at  =  for all required

orders of the derivative w.r.t. the source and receiver variables, or up to third order

w.r.t.  and  combined. The denominator ‘augmentation procedure’ consists of

using the identity

 () =
 () ( ) +  ( − )2

4 + 2 + − 2
(4.7)

to rewrite

1

 ( )
=

1

 () ( )
[ ()]

=
1

 () ( )

"
 () ( ) +  ( − )2

4 + 2 + − 2

#

=
 ( − )2

 () ( ) [4 + 2 + − 2]
+

1

[4 + 2 + − 2]
 (4.8)

The transform integral can now be divided into two parts,  (− ) = 1 + 2

consisting of

1 =
1

2

Z
Γ

 ( − )2

 () ( ) [4 + 2 + − 2]
(−) (4.9a)

2 =
1

2

Z
Γ

1

[4 + 2 + − 2]
(−) (4.9b)

The advantage of recasting the Green’s function transform in this form is that

the integral 1 containing the branch cut has now been augmented by 
¡
3
¢
in the

denominator. This gives an integrand that behaves like 17 for  → ∞, allowing
differentiation under the integral sign up to six times, as required. The denominator

of the second integral, 2, has the same order in  as the original integral. However, it

does not contain a branch cut and can be easily evaluated using a residue approach,

then differentiated as many times as required.

In addition to the branch cut contributions, 1 has residue contributions from

four poles per each half plane. These consist of the roots of the dispersion equation

 ( ) = 0, the two system poles per half plane ±1 and 
±
2 as before, and additionally,

the zeros of the plate operator,
£
4 + 2 + − 2

¤
= 0 i.e., the two in-vacuo poles



4. Scattering from Local Discontinuities 45

per half plane± and± given in (6.12). It turns out that the residue contributions
from the latter cancel out exactly by the in-vacuo pole contributions to the second

integral 2. This is because, at the in-vacuo roots, the dispersion function reduces

to  ( ) = − ( − )
2  () and the residue contribution for 1 is simply

+
£
43 + 2

¤−1
, which is clearly −1× the residue contribution from 2 This was to

be expected because the in-vacuo roots are spurious roots introduced by our procedure

and are not physical system roots that can be expected to propagate to the far field.

We now turn to evaluating the branch cut integral in 1 Given that the two evanes-

cent in-vacuo roots sit on or near the imaginary axis, it would appear that our branch

cut integral along this same axis would have to contend with these poles. It turns

out that these poles are removed by zeros in the numerator when the contributions

from the up and down legs of the branch cut integral are combined. To see this, we

express the term  () ( ) in 1 containing the branch cuts in terms of the quintic

polynomials ± () introduced by Crighton and Oswell (1991) (defined here with a

sign difference)

 () ( ) ≡ ± () = ±
£
4 + 2 + − 2

¤−  ( − )2 Re {} ≷ 0
(4.10)

Setting  = ± for the branch line evaluations in the upper and lower half planes
respectively, the sum of the up and down legs of the branch line integrals can be

written as

± =
1

2

+∞Z
0

½
1

+ (±) −
1

− (±)
¾

 ( ∓ )2

[4 − 2 + − 2]
∓(−) (4.11)

where the ± here refer to the sign of (− )  The term in the curly brackets simplifies

to

1

+ (±) −
1

− (±) =
−2 (±) ( ∓ )2

£
4 − 2 + − 2

¤
2 [4 − 2 + − 2]2 + 2 ( ∓ )4

(4.12)

and reveals the plate operator (in square brackets) in the numerator, which cancels out

with an identical term in the denominator of the branch line integral (4.11), thereby

removing the spurious in-vacuo poles.

Having implemented the above mentioned simplifications, the branch line integral

in (4.11) is subtracted from the residue contributions to yield an expression for the
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Green’s function with greatly improved convergence properties

± (− ) = ±
±
1 (−)



¡
±1
¢ ± 

±
2 (−)



¡
±2
¢ (4.13)

± 



+∞Z
0

 ( ∓ )2

2 [4 − 2 + − 2]2 + 2 ( ∓ )4
∓(−)

The above equation can now be differentiated under the integral sign as many times

as required for all  in order to fully populate the 4× 4 Green’s function matrix. The
fully and rapidly convergent () terms of the Greens function matrix are therefore

given by


()
± (− ) ≡ 


± (− )

= ±
¡
±1

¢ ¡−±1 ¢ 
±
1 (−)



¡
±1
¢ ± 

¡
±2

¢ ¡−±2 ¢ 
±
2 (−)



¡
±2
¢

± 



+∞Z
0

 ( ∓ )2 (∓) (±)
2 [4 − 2 + − 2]2 + 2 ( ∓ )4

∓(−) + ≤ 6 (4.14)

Properties of the Green’s Function Matrix

All Green’s functions have the expected reciprocity properties that result from inter-

changing source and receiver


()
± (− ) = (−1)(+) ()± (− )  (4.15)

The Green’s function matrices are therefore symmetric for + even and skew sym-

metric for + odd. The terms along the diagonal (which correspond to even +

and are therefore non-zero) represent drive and response pairs possessing the same

degree of freedom and their imaginary parts represent the work done by the applied

load on the plate.

The ‘jump’ in the Green’s function, or the difference between the positive and

negative one-sided Green’s functions at the discontinuity  −  = 0, also has some
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special properties. It can be shown that the ‘jump’ matrix is given by


()
+ (0)− 

()
− (0) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 −1
0 0 +1 0

0 −1 0 −
+1 0 + 0

⎤⎥⎥⎥⎥⎥⎥⎦  (4.16)

The derivation is provided in Appendix A.

4.3 Response to Multipole Loads

Prior to deriving the scattering coefficients for specific types of discontinuities, we

briefly analyze the response of the flow-loaded plate to excitation by multipole loads.

The analysis parallels that given for a monopole load in chapter 2.

The solution to

4

4
 − 

2

2
 +  +

2

2
 = −+ 

() (− )  (4.17)

or equivalently the deflection response to the  order load of amplitude  is given

by the  order Green’s function given in (4.14) with  = 0. The spatial response

for unit load  = 1 and drive frequency  = 0002 is plotted in figure 4.2 for a

representative set of plate parameters.

4.3.1 Far Field Response

In the far field, the causal solution consists of two upstream and two downstream

waves and can be written in terms of the far field Green’s function,

 (|| À ||) = 
()
± (∞) 

where


()
±∞ () ≡

2X
=1

±
³
−±

´


±
 (−)



³
±
´ (4.18)

is defined as the pole contributions alone of (4.14). The far field amplitude for an

individual wave ± is given by


()
± = ±

³
−±

´


³
±
´  (4.19)



48 4. Scattering from Local Discontinuities

-200 -150 -100 -50 0 50 100 150 200
-2000

0

2000

η (
x)

Unit Monopole Load δ(0)

-200 -150 -100 -50 0 50 100 150 200
-100

0

100

η (
x)

Unit Dipole Load δ(1)

-200 -150 -100 -50 0 50 100 150 200
-10

0

10

η (
x)

Unit Quadrupole Load δ(2)

-200 -150 -100 -50 0 50 100 150 200
-1

0

1

η (
x)

x

Unit Octupole Load δ(3)

Figure 4.2: Spatial deflection response (pole and branch cut contributions) for unit

multipole loads applied at  = 0 for  = 0002 and  = 005  = 2  = 0 Dashed
lines represent the near-field response alone.
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Figure 4.3: Far field wave amplitudes per unit multipole load as a function of drive

frequency for  = 005  = 2  = 0 and  = 2The corresponding dispersion plot
is given in figure 2.4c.

The amplitudes given in (4.19) are plotted as a function of drive frequency in figure

4.3, per unit load.

We can proceed to write down expressions for the wave energy fluxes generated

by these multipole loads. In terms of far field amplitude, the expression is of course

identical to that given for a monopole source (or indeed any type of compact source

as long as we are in its far-field) and is given by


()
± =

1

4
Re
n


³
±
´o ¯̄̄


()
±
¯̄̄2
 (4.20)

The difference, in the form of a factor
¯̄̄
±
¯̄̄2

 arises when we express the far-field

wave flux (using (4.19)) as a function of applied load amplitudes


()
± =

1

4
Re

⎧⎨⎩ 



³
±
´
⎫⎬⎭ ¯̄̄± ¯̄̄2 ||2  (4.21)
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A feature that stands out from figures 4.2 and 4.3 is that higher order multipoles

appear to impart more power to the upstream than to the downstream travelling

waves. This is a direct consequence of the
³
−±

´
factor in the far-field amplitude of

equation (4.19) and the fact that upstream travelling waves (or waves travelling against

the flow) have relatively larger wavenumbers. This is the mathematical explanation for

why discontinuities that can be modelled as higher order multipoles scatter relatively

more energy into the upstream travelling waves irrespective of the direction and type

of the incident wave. These types of discontinuities allow the downstream travelling

waves to be transmitted relatively unimpeded, whereas upstream travelling waves are

more likely to experience over-scattering.

4.3.2 Drive Point Admittance & Power into Plate

The drive point admittance is the ratio of the time rate of change of plate response to

applied load at the drive location  = . In our Green’s function notation, it is given

by

 = − b() (0)  (4.22)

where the over-hat denotes the arithmetic mean between the + and − components,
or  b() ≡ ³()+ + 

()
−
´
2. The elements of the 4× 4 matrix of drive point

admittances are plotted in figure 4.4 as a function of frequency. The diagonal terms

represent ratios of response to load for the same mechanical degree of freedom (i.e.,

translational velocity and vertical force, rotational velocity and moment, etc...), and

therefore have particular significance in terms of power exchange between the driver

and the plate. In particular, the real part of a diagonal term represents power per unit

drive injected into, or extracted from, the plate for a given drive type.

Negative values of the real part indicate that the drive is absorbing power from

the plate to maintain the prescribed motion and is one indicator of the existence of

instability. Crighton & Oswell (1991) discuss this phenomenon in great detail for

the case of a monopole load (i.e., the term  [1 1] in our admittance matrix) and

show that Re {}  0 is not limited to the convectively unstable range but extends
all the way up to the pinch frequency  and coincides with the range over which
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Negative Energy Waves (NEWs) exist. At  =  Re {} jumps from −∞ to a

finite positive value. This singularity in  is due to the  zero at of the  term in

the denominator of the Green’s function.

Examining the diagonal terms in figure 4.4, we note that negative values of Re {}
are also present over the range    for a dipole as well as a quadrupole load but

not so for an octupole load. In fact, closer analysis reveals that the octupole  [4 4]

also descends to −∞ in the immediate vicinity of  just like all the other multipoles

and that, for the parameters chosen in figure 4.4, the quadrupole  [3 3] possesses a

range of frequencies less than  over which its real part ventures into positive territory.

Therefore, one cannot in general associate the phenomenon of Re {}  0 too firmly
with one multipole load over another The sign of Re {} at a given frequency is
an expression of the balance of total negative energy vs. the total positive energy

imparted to the plate by a given multipole and as a results also depends on the plate

parameters. It is, however, possible to make one generalization: the higher the order of

the source, the more positive (or less negative) the value of Re {} for a given set of
plate parameters. This property is, once again, a direct consequence of the

³
−±

´
factor discussed above.

As discussed in chapter 3, energy balance dictates that the power injected into (or

extracted from) the plate at the drive is equal to the sum of the wave powers in the

far field. A negative Re {} is simply an indication that more power was injected
into the negative rather than the positive energy waves. Given that the wave with the

largest wavenumber, −1  is always a PEW ensures that Re {} becomes progressively
more positive with multipole source order  through the

³
−±

´
weighting term in

the far field wave amplitude equation (4.19).

Given that all Green’s functions along the diagonal are continuous at the source,

either 
()
+ (0) or 

()
− (0) can be used to evaluate  []. The advantage of

using the averaged quantity −
³


()
+ (0) + 

()
− (0)

´
2 was illustrated for a

monopole load in section 2.2.2: the contributions from the branch line integrals average

out to zero and the real part of the drive admittance can be expressed in terms of the

pole contributions alone. The power into the plate per multipole order  is therefore
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Figure 4.4: Real (solid) and imaginary (dashed) parts of the multi-pole drive point

admittance matrix for  = 005  = 2  = 0 &  = 2 (dispersion plot of figure
2.4c)
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given by

Π() =
1

4
Re

⎧⎨⎩
2X

=1


³
+ 

+


´


³
+

´ +
2X

=1


³
− 

−


´


³
−
´
⎫⎬⎭ ||2  (4.23)

Using the equation for the wave flux as a function of far field wave amplitude given in

(4.20) and substituting in the multipole far-field amplitudes from (4.19), it is easy to

show that the one dimensional power balance equation is satisfied for all orders :

2X
=1

+ +
2X

=1

− =
1

4

2X
=1

Re
n


³
+

´o ¯̄̄̄¯̄ 
³
−+

´




³
+

´
¯̄̄̄
¯̄
2

+
1

4

2X
=1

Re
n


³
−
´o ¯̄̄̄¯̄−

³
−−

´




³
−
´

¯̄̄̄
¯̄
2

=
1

4
Re

⎧⎪⎨⎪⎩
2X

=1


¯̄̄
+

¯̄̄2 ||2


³
+

´ +
2X

=1


¯̄̄
−
¯̄̄2 ||2



³
−
´

⎫⎪⎬⎪⎭
= Π()

4.3.3 Pressure and Potential Response

The pressure response to a multipole load  is obtained through the inverse transform

of e ( ) = −e () ( − )2  () −()|| and its higher order derivatives w.r.t. to

the source variable




 ( ) ≡ () ( ) =

1

2

Z
Γ

− ( − )2 (−) 

 () ( )
(−)−()|| 0 ≤  ≤ 2

(4.24)

where Γ is the causal integral contour introduced in chapter 2. We note that  = 2

is the highest order multipole source that can be evaluated by taking the differential

under the integral sign at  =  due to the fact that the denominator is of order

 () ( ) ∼ 5 and the entire integrand is ∼ −3 for  → ∞. We proceed as
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before and separate the contour integral into pole and branch line contributions,


()
± ( ) =

2X
=1

∓
³
 − ±

´2 ³−± ´ 
± (−)


³
±
´


³
±
´ −(

±
 )||

+
1

2

+∞Z
0

 ( ∓ )2 (±)−1 ∓(−)±||
 (±) 

+
1

2

+∞Z
0

 ( ± )2 (∓)−1 ∓(−)∓||
 (∓)  0 ≤  ≤ 2 (4.25)

where the upper and lower signs ± again refer to the upper and lower inequalities

 ≷  or to the response upstream or downstream of the the drive point, respectively.

The branch line integrals are only fully convergent for   3 and, in contrast to

the inverse deflection transform, the additional branch cut term  () prevents the

denominator augmentation technique from working in this instance. And for good

reason! The pressure is in fact discontinuous for  = 3 at the source, as can be seen

from figure 4.5, in which a finite difference based approach (see below) has been used

to evaluate the  = 3 pressures close to the source.

In figure 4.5, we use the integral expression in (4.25) to evaluate 
(3)
± () for response

points sufficiently far from the drive point. In practice, we have found that |− |  1
provides sufficient decay in the −|−| term for fast convergence as  → ∞ For

points closer to the source, or for |− | ≤ 1 including  = , we use the second

order accurate one-sided finite difference formula

±3 ()
3

≈ ±(−1)3(−5 () + 18 ( () +∆)− 24 ( () + 2∆)

+ 14 ( () + 3∆)− 3 ( () + 4∆))(2∆3)

where

 () ≡ + 1

2

+∞Z
0

 ( ∓ )2 
∓(−)±||

(±) (±) 

+
1

2

+∞Z
0

 ( ± )2 
∓(−)∓||

(∓) (∓) 
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Figure 4.5: Spatial pressure response (pole and branch cut contributions) at  = 0 for
unit multipole loads applied at  = 0 for  = 0002 and  = 005  = 2  = 0
Dashed lines represent the pressure near-field (branch cut contributions) alone.
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Figure 4.6: Two dimensional pressure response (pole and branch cut contributions)

for unit multipole loads applied at  = 0 for  = 0002 and  = 005  = 2  = 0
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to evaluate the third order derivative of the branch line contribution, having used

(4.25) to evaluate the ‘zero’ order integrals in  () above.

Figure 4.6 has the two dimensional pressure response for the same response pa-

rameters and shows the decay away from the plate surface into the fluid. Figures 4.5

and 4.6 highlight a very important property of the pressure response: the downstream

travelling waves carry significantly less pressure than the upstream travelling waves.

This is due entirely to the fact that in the frequency range of interest, downstream

travelling disturbances are convected at nearly the flow speed  and therefore repre-

sent a pressure release boundary for the fluid. Mathematically, this is embodied in

the ( − )2 factor in the pressure equation (4.25) which is exceedingly small for all

downstream propagating waves whose phase velocities are  to leading order.

In similar fashion, the potential response to a multipole load  is obtained through

the inverse transform of e ( ) = e () ( − )  () −()|| and its higher order

derivatives. However, the numerator is now of lower order in  and the entire integrand

varies as ∼ −4 for  → ∞. Separating the contour integral into pole and branch
line contributions, we obtain an expression that converges for all multipole orders of

interest:


()
± ( ) =

2X
=1

∓
³
 − ±

´³
−±

´


± (−)


³
±
´


³
±
´ −(

±
 )||

+
1

2

+∞Z
0

( ∓ ) (±)−1 ∓(−)±||
 (±) 

+
1

2

+∞Z
0

( ± ) (∓)−1 ∓(−)∓||
 (∓)  0 ≤  ≤ 3

4.4 Scattering from Representative Discontinuities

A scattering coefficient is defined as the ratio of the scattered far-field wave amplitude

to the incident wave amplitude. A scattering matrix S operates on a vector of incident
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wave amplitudes to produce a vector of transmitted and reflected wave amplitudes, or⎡⎢⎢⎢⎢⎢⎢⎣

+1


+2

−1
−2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

11 12 · · · 14

21
. . .

...

41 44

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

+1


+2

−1
−2

⎤⎥⎥⎥⎥⎥⎥⎦  (4.26)

where the suffixes on the wave amplitudes refer to the type of wave, characterized by its

wavenumber, that is incident or scattered. For instance, the scattering coefficient 12 =


+1 

+2 represents the ratio of wave amplitudes for a scattered wave 
+
1 due to an

incident wave +2  Since both waves are downstream travelling, 12 is a transmission

coefficient. The scattering matrix can therefore be divided into transmission and

reflection sub-matrices as follows

S =

⎡⎣  

 

⎤⎦  (4.27)

where,  is a 2 × 2 ‘trailing edge’ transmission matrix that operates on a vector of
wave amplitudes incident from the upstream to produce a vector of the same waves

transmitted downstream,  is a 2× 2 ‘leading edge’ reflection matrix that operates
on a vector of upstream travelling waves to generate a vector of downstream travelling

waves, etc...

We will present our results in terms of the power-normalized scattering coefficients

 instead of the raw scattering coefficients defined in (4.27). The raw coefficients

represent ratios of plate deflection amplitude for waves that may have widely differing

wavenumbers and as a result carry significantly differing amounts of wave power per

unit amplitude at a given frequency. The power normalized coefficients, on the other

hand, represent ratios of scattered to incident wave-powers (Stokes, et al. 2004). The

two sets of coefficients are connected by means of the wave impedances defined in

equation (3.31) through the following relation

 =



| |2  (4.28)

where,  and  are the wave impedances of the incident and scattered waves respec-

tively. We note that the transformation (4.28) reduces to just the ‘magnitude squared’
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for the diagonal terms of S. These coefficient represent scattering between the same

wave-type and are already in power normalized form.

There are several advantages to working with a power normalized scattering matrix

(4.28).

1) It provides a means of determining if over-scattering is taking place. Raw scatter-

ing coefficients that are greater than unity do not necessarily indicate over-scattering,

but power-normalized coefficients that exceed unity indicate that the scattered power

exceeds the incident power since incident and total scattered power must balance.

2) It provides the ultimate ‘check on algebra,’ whether in the derivation of ex-

pressions for the scattering coefficients or in their numerical evaluation. As shown

in section 4.5 below, conservation of energy requires that the net power scattered is

equal to the incident power. This in turn requires that the sum of all power normal-

ized coefficients down each column of the matrix P given in (4.28) is unity. This must

hold at all frequencies for neutral waves, as long as the proper sign of the wave energy

is retained in the wave impedance while normalizing the scattering coefficients. Any

deviation from unity indicates that something is amiss.

Of course, the phenomenon of over-scattering is closely related to the property of

energy conservation and follows from the existence of negative energy waves (Acheson

1979). An incident positive energy wave may ‘over-scatter’ into another positive energy

wave with more power if one or more negative energy waves are also generated during

the scattering process.

There is a three step process for obtaining scattering coefficients for a given plate

discontinuity:

1) Apply the structural boundary conditions at the discontinuity to the total dis-

placement  =  +  via (4.4) and solve for the unknown multipole strengths in

terms of the incident wave amplitudes.

2) Combine the multipole load amplitudes to obtain the far field scattered response

through (4.19).

3) Assemble the scattering matrix by dividing each scattered wave amplitude by

the incident wave amplitude and adding ‘1’ to each self scattering term, i.e., to the
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transmitted terms along the diagonal of (4.28) because transmission is defined as the

sum of the scattered and incident waves.

In what follows we will present results for a series of different plate discontinuities.

4.4.1 Break in Plate

A break or a ‘closed crack’ in the plate at  = 0 is produced by imposing a zero

moment and zero transverse force condition at both edges, or

2

2
 = 0  = ±0 (4.29a)

3

3
 − 




 = 0  = ±0 (4.29b)

respectively. We note that the tension does not contribute linear terms to the moment.

The transverse forces at both edges are zero, and so is the ‘jump’ in the transverse

force across the edge. Therefore the coefficient of the monopole load in (4.4) is zero. For

 = 0, the moment edge condition (4.29a) would have implied that the dipole source

strength in (4.4) is also zero. However, with non-zero tension, the dipole strength is

finite and given by ∆ [ (0)], as shown below .

We set∆1 = 0 in (4.4) and write the scattered field as a superposition of responses

due to dipole, quadrupole and octupole sources on the equivalent infinite plate

± () = ∆1
(1)
± () +∆2

(2)
± () +∆3

(3)
± ()  (4.30)

Assuming an incident displacement field of the form  =  and writing the

‘total’ displacement field as  =  + , the edge conditions yield the following

pair of equations per edge

∆1
3

(1)
± (0) +∆2

3
(2)
± (0) +∆3

3
(3)
± (0) = 2

∆1

h
3

(1)
± (0)− 

(1)
± (0)

i
+∆2

h
3

(2)
± (0)− 

(2)
± (0)

i
+∆3

h
3

(3)
± (0)− 

(3)
± (0)

i
= 

¡
2 + 

¢


These constitute four equations, but only three are linearly independent due to the

special relationships between the one-sided Green’s functions given in (4.15) and (4.16).
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The three independent equations are

∆1 + ∆3 = 0

∆1
2

(1)
− (0) +∆2

2 b(2) (0) +∆32(3)− (0) = 2 

∆1
h
3 b(1) (0)−  b(1) (0)i+∆2 h3(2)− (0)− 

(2)
− (0)

i
+∆3

h
3 b(3) (0)−  b(3) (0)i = 

¡
2 + 

¢


As noted earlier, the dipole source ∆1 only exists for non-zero tension  and its

strength is proportional to the octupole source ∆3. Eliminating ∆1 from the other

two equations, we can solve for the quadrupole and octupole source strengths. After

some simplifications, we find the following expressions for the multipole strengths due

to a break in the plate:

∆3 =
−
h
3

(2)
− − 

(2)
−
i
2 + 2 b(2) ³2 + 

´




∆2 =

h
3 b(3) − 22 b(3) +  2 b(1)i 2 + h3(2)− − 

(2)
−
i


³
2 + 

´




∆1 = −∆3 ∆0 = 0 (4.31)

where

 = 2 b(2) h3 b(3) − 22 b(3) +  2 b(1)i+ h3(2)− − 
(2)
−
i


and all Green’s functions are understood to be evaluated at  = 0.

The reflection and transmission coefficients are obtained by substituting the mul-

tipole strengths solved in (4.31) back into the equivalent of (4.30) with the Green’s

functions replaced by their corresponding multipole far-field amplitude functions given

in (4.19). The power normalized scattering coefficients as a function of frequency are

plotted in figure (4.7) for all four incident waves. The spatial response upstream and

downstream of the scatterer is plotted in figure (4.8) for a fixed frequency of  = 0002.

As can be seen in figures 4.7a and 4.7c, this type of discontinuity is highly trans-

missive for waves incident from the upstream; the power-normalized transmission co-

efficient for +1 and +2 are very close to unity, while those for the other waves are

at least 10 dB lower. This can also be seen directly in the spatial response of figure
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Figure 4.7: Power normalized scattering coefficients for a ‘free-free’ joint for  =
005  = 2  = 0 (dispersion plot of figure 2.4c) Dashed lines represent power
scattered between incident and scattered waves of different energy sign.
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Figure 4.8: Spatial response for scattering by a ‘free-free’ joint at  = 0002 and for
 = 005  = 2  = 0 Dashed line represents a wave of unit amplitude incident
from upstream or downstream.
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4.8a where the incident wave (dashed, black) is transmitted across the discontinuity

virtually unaltered, while the total deflection in   0 is only slightly distorted by the

small-amplitude reflected waves. The wave impedance of a downstream propagating

wave is dominated by the fluid based fluxes in the frequency range under consideration.

As a result, the structural break in the plate does not present a significant impedance

change and the incident wave is transmitted virtually intact.

In contrast, waves incident from downstream are over-transmitted and propagate

upstream (e.g. wavenumber −1 ) at significantly amplified levels over the range of

frequencies that support negative energy waves (   ). This can be seen by the

significantly larger wave amplitudes in the transmitted region   0 (figure 4.8b). This

corresponds to the power-normalized reflection and transmission coefficients in the

corresponding figure 4.7b; for the frequency considered (  = 0002) the transmitted

waves −1 and −2 have amplitudes greater than unity. A similarly set of observations

hold for figures 4.7d and 4.8d.

The power sum of all the waves scattered is represented by the dashed line in the

figure 4.7 and is identically equal to 1 (0 dB). The generation of negative energy waves

during the scattering process has therefore resulted in ‘over-scattering.’

4.4.2 Clamped Constraint

A clamped joint constrains the plate translationally and rotationally. The structural

conditions at both edges are

 = 0  = ±0



 = 0  = ±0

This type of constraint is therefore equivalent to applying monopole and dipole loads

with the following strengths

∆0 =
− b(1) +  b(1)h
 bi2 + b  b(1) 

∆1 =
 b+  bh
 bi2 + b  b(1)  (4.32)
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The power normalized scattering coefficients are given in figure 4.9 and the spa-

tial response for a fixed frequency is plotted in figure 4.10. As can be clearly seen

from these figures, a clamped constraint is highly reflective for both upstream and

downstream incident waves. Reflections are amplified (i.e., over-reflection) for both

upstream (figures 4.9-4.10 a & c) and downstream (figures 4.9-4.10 b & d) incident

waves for frequencies over which negative energy waves exist (   ). Travelling

waves incident from upstream are over-transmitted through the junction and propa-

gate downstream at significantly amplified levels (figures 4.9-4.10 a & c). The power

sum of all the waves scattered is represented by the dashed line in the figure and is

once again identically equal to 1 (0 dB). The generation of waves with relatively large

amplitudes and with opposite sign of the wave energy during the scattering process

has resulted in both significant ‘over-reflection’ and ‘over-transmission.’

4.4.3 Free-Clamped Discontinuity

A discontinuity in the plate that is free at the upstream edge  = −0 and clamped at
the downstream edge  = +0 obeys the structural edge conditions

2

2
 = 0  = −0 (4.33a)

3

3
 − 




 = 0  = −0 (4.33b)

 = 0  = +0 (4.33c)




 = 0  = +0 (4.33d)

The scattered field in this case must be written in terms of all four multipole loads in

(4.4), yielding four equations in four unknowns, most conveniently expressed in matrix

form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 
(1)
+ 

(2)
+ 

(3)
+

+ 
(1)
+ 

(2)
+ 

(3)
+

2− 2
(1)
− 2

(2)
− 2

(3)
−

2−

−−
2

(1)
−

−(1)−
2

(2)
−

−(2)−
2

(3)
−

−(3)−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
∆0

∆1

∆2

∆3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

−
−
2



³
2 + 

´

⎤⎥⎥⎥⎥⎥⎥⎦ 

(4.34)
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Figure 4.9: Power normalized scattering coefficients for a ‘clamped’ constraint for

 = 005  = 2  = 0 (dispersion plot of figure 2.4c) Dashed lines represent power
scattered between incident and scattered waves of different energy sign.
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Figure 4.10: Spatial response for scattering by a ‘clamped’ constraint at  = 0002
and for  = 005  = 2  = 0 Dashed line represents a wave of unit amplitude
incident from upstream or downstream.



68 4. Scattering from Local Discontinuities

The power normalized scattering coefficients are given in figure (4.11) and the

spatial response for a fixed frequency is plotted in figure (4.12). The scattering prop-

erties for this type of discontinuity are similar to those for the ‘clamped-clamped’

constraint. The levels of over-transmission experienced by upstream and downstream

incident waves are almost identical for both. The amount of over-reflection, however,

exceeds that for a clamped-clamped constraint.

4.4.4 Free-Hinged Discontinuity

If, instead of a clamped edge, the downstream plate has a hinged edge while the

upstream edge remains free, the structural edge conditions become

2

2
 = 0  = −0 (4.35a)

3

3
 − 




 = 0  = −0 (4.35b)

 = 0  = +0 (4.35c)

2

2
 = 0  = +0 (4.35d)

We consider this particular configuration because it may represent a good idealization

for flags in tandem.

For the general case of non-zero tension, the scattered field must still be written

in terms of all four multipole loads on the corresponding infinite plate (4.4). However,

for  = 0 the coefficient of the quadrupole load reduces to the jump in the bending

moment at the edge, which is identically zero. For the more general case  6= 0,

the multipole strengths in terms of the incident wave amplitude and wavenumber are

obtained by solving the following 4× 4 matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 
(1)
+ 

(2)
+ 

(3)
+

2+ 2
(1)
+ 2

(2)
+ 2

(3)
+

2− 2
(1)
− 2

(2)
− 2

(3)
−

2−

−−
2

(1)
−

−(1)−
2

(2)
−

−(2)−
2

(3)
−

−(3)−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
∆0

∆1

∆2

∆3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

−
−
2



³
2 + 

´

⎤⎥⎥⎥⎥⎥⎥⎦ 

(4.36)



4. Scattering from Local Discontinuities 69

0 1 2 3 4

x 10
-3

-30

-20

-10

0

10

20

30

40

50
Incident Wave: k

1
+

P
ow

er
 N

or
m

al
iz

ed
 S

 (d
B

)

0 1 2 3 4

x 10
-3

-30

-20

-10

0

10

20

30

40

50
Incident Wave: k

2
+

P
ow

er
 N

or
m

al
iz

ed
 S

 (d
B

)

ω

0 1 2 3 4

x 10
-3

-30

-20

-10

0

10

20

30

40

50
Incident Wave: k

1
-

0 1 2 3 4

x 10
-3

-30

-20

-10

0

10

20

30

40

50
Incident Wave: k

2
-

ω

 

 

k
1
+

k
2
+

k
1
-

k
2
-

Sum

Figure 4.11: Power normalized scattering coefficients for a ‘free-clamped’ joint for

 = 005  = 2  = 0 (dispersion plot of figure 2.4c) Dashed lines represent power
scattered between incident and scattered waves of different energy sign.
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Figure 4.12: Spatial response for scattering by a ‘free-clamped’ joint at  = 0002 and
for  = 005  = 2  = 0 Dashed line represents a wave of unit amplitude incident
from upstream or downstream.
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The scattering coefficients and spatial response are documented in figures 4.13 and

4.14.

A ‘free-hinged’ discontinuity is in almost all respects qualitatively equivalent to

a ‘free-clamped’ constraint. The ‘free-hinged’ constraint appears to be only slightly

more over-reflective and over-transmissive than the ‘free-clamped’ constraint and these

differences, on the order of 1-2 dB, are only manifest above  = 0001.

4.4.5 Rotational Crack

A ‘rotational crack’ is idealized as a massless rotational spring with dimensionless

spring constant  connecting the plate edges. The joint is assumed to have zero

translational compliance (i.e., it is assumed to be infinitely rigid for transverse motions)

and as a result there is continuity of displacement at the interface. The rotational

spring does not carry any inertia, as a result there is continuity of transverse force

and moment across  = ±0 (although the local value of the moment changes with the
rotational stiffness). It follows that only the slope  is discontinuous at  = 0.

In summary, the structural conditions at the joint are

 (−0) =  (+0)  (4.37a)



∙



 (+0)− 


 (−0)

¸
=

2

2
 (0)  (4.37b)

2

2
 (−0) =

2

2
 (+0)  (4.37c)

3

3
 (−0)− 




 (−0) =

3

3
 (+0)− 




 (+0)  (4.37d)

Conditions (4.37d) and (4.37a) eliminate the monopole and octupole sources, respec-

tively (∆0 = ∆3 = 0). Condition (4.37c) combined with (4.37a) gives ∆1 =

∆
£
2 () 

2
¤ − ∆ [ ()] = 0 eliminating the dipole component for all  .

We therefore solve for a quadrupole load alone and find (after invoking the identity


(2)
+ − 

(2)
− = 1)

∆2 = −
2

 − 2 b(2) 
In the limit  → ∞ ∆2 = 0 and there is no discontinuity. In the limit  → 0

∆2 = 2
2 b(2) and the two edges are fully decoupled rotationally. The scattering
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Figure 4.13: Power normalized scattering coefficients for a ‘free-hinged’ joint for  =
005  = 2  = 0 (dispersion plot of figure 2.4c) Dashed lines represent power
scattered between incident and scattered waves of different energy sign.
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Figure 4.14: Spatial response for scattering by a ‘free-hinged’ joint at  = 0002 and
for  = 005  = 2  = 0 Dashed line represents a wave of unit amplitude incident
from upstream or downstream.
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coefficients and spatial response for the case  = 0 are plotted in figures 4.15 and

4.16.

This type of discontinuity is highly transmissive for upstream incident waves (fig-

ures 4.15- 4.16 a & b) and is reflective for waves incident from the downstream (figures

4.15- 4.16 c & d). It over-transmits waves incident from downstream in the frequency

range over which negative energy waves are present.

4.4.6 Translational Crack

A ‘translational crack’ consists of a massless translational spring with non-dimensional

stiffness. It is infinitely rigid rotationally. Similar to the case of the rotational crack,

there is continuity of transverse force and moment. However, instead of a discontinuity

in slope, a translational crack introduces a discontinuity in deflection. The structural

conditions at the joint are

− [ (+0)−  (−0)] =
3

3
 (0)− 




 (0) (4.38a)




 (−0) =




 (+0) (4.38b)

2

2
 (−0) =

2

2
 (+0) (4.38c)

3

3
 (−0)− 




 (−0) =

3

3
 (+0)− 




 (+0)  (4.38d)

Conditions (4.38d) and (4.38b) eliminate the monopole and quadrupole sources, re-

spectively (∆0 = ∆2 = 0). Condition (4.38c) eliminates the dipole source ∆1 =

∆
£
2 (0) 2

¤−∆ [ (0)] for the special case where the pre-tension is zero. For the
more general case where  6= 0, we solve for both a dipole and quadrupole source and
find

∆1 = −∆3 (4.39a)

∆3 =


³
2 + 

´
 +

h
3 b(3) +  2 b(1)i (4.39b)

Note that as  →∞ ∆1 = ∆3 = 0 as expected.

This type of discontinuity is the most transmissive of all the ones tested for up-

stream incident waves even in the limit  = 0 as shown in figures 4.17 and 4.18.
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Figure 4.15: Power normalized scattering coefficients for a ‘rotational crack’ of infinite

rotational compliance ( = 0) for  = 005  = 2  = 0 (dispersion plot of figure
2.4c) Dashed lines represent power scattered between incident and scattered waves of

different energy sign.
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Figure 4.16: Spatial response for scattering by a ‘rotational crack’ of infinite rotational

compliance ( = 0) at  = 0002 and for  = 005  = 2  = 0 Dashed line
represents a wave of unit amplitude incident from upstream or downstream.
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Figure 4.17: Power normalized scattering coefficients for a ‘translational crack’ of

infinite translational compliance ( = 0) for  = 005  = 2  = 0 (dispersion plot
of figure 2.4c) Dashed lines represent power scattered between incident and scattered

waves of different energy sign.
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Figure 4.18: Spatial response for scattering by a ‘translational crack’ of infinite trans-

lational compliance ( = 0) at  = 0002 and for  = 005  = 2  = 0 Dashed
line represents a wave of unit amplitude incident from upstream or downstream.
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4.4.7 Pinned Constraint

A pinned or hinged joint constrains the plate only translationally. The structural

boundary conditions at both edges are zero displacement, zero bending moment and

continuity of slope (since we don’t permit buckling of the plate at the constraint)

 = 0  = ±0 (4.40a)




 (−0) =




 (+0)  (4.40b)

2

2
 = 0  = ±0 (4.40c)

Conditions (4.40a) and (4.40b) ensure that the octupole and quadrupole source strengths

are zero. Condition (4.40c) combined with (4.40a) ensures that the dipole strength

∆1 = ∆
£
2 (0) 2

¤− ∆ [ (0)] is zero. We therefore seek a solution involving a

monopole load only and find

∆0 =
−b  (4.41)

We note that the load strength is independent of the incident wavenumber  . The

results are plotted in figures 4.19 and 4.20.

It is worth comparing the scattering properties of a hinged constraint with that of a

clamped constraint given earlier in figures 4.9-4.10. Although a sweeping generalization

that is valid over all frequencies and wavetypes is hard to make, we can say that a

hinged support is generally less over-reflective and over-transmissive than a clamped

support. The differences are on the order of 10 dB at low frequencies and less so

around  = . This could have been expected. A hinged support constrains the plate

only translationally whereas a clamped support constrains it both translationally and

rotationally thereby providing a larger impedance discontinuity to an incident wave

resulting in a more powerful scattering process.

What may have been less obvious is that a hinged constraint generally scatters

relatively more wave power downstream compared with a clamped constraint. This

can be explained as follows. A hinged constraint is a pure monopole scatterer whereas

a clamped constraint is a combination of a monopole and a dipole. Given that higher

order multipoles scatter comparatively more power into upstream waves (see section

4.3.1 above), the dipole component of the clamped support provides it with relatively
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more scattered power into upstream travelling waves compared with the pure monopole

of a hinged constraint.

4.5 Power Balance

Power balance or energy conservation during the scattering process requires that the

total wave power scattered is equal to the power carried by the incident wave minus

any mechanical energy injected into, or removed from, the plate-fluid system at the

discontinuity. This may be due to dissipation at the joint or power loss to an attached

dashpot. For a lossless or ‘conservative’ scattering process, the total power scattered,

including the total transmitted wave-field, must equal the incident wave power.

For an incident wave  = 
, the total power including the incident power

can be written in terms of the far-field wave amplitudes (using (4.20)) as

 =
4X

=1

1

4
Re { ()} ||2+1

4
Re { ()} | |2+1

4
Re { ()}Re

©
2

ª


(4.42)

The final term arises from the interaction (i.e., amplitude sum) between the incident

wave and the scattered wave having the same wavenumber  =  on the transmitted

side of the discontinuity. In terms of the applied multipole loads, the total wave flux

can be written as (using (4.21))

 =
1

4

4X
=1

3X
=0

Re

½


 ()

¾
||2 |∆|2 + 1

4
Re { ()} | |2

+
1

4

3X
=0

Re
©
 (−) 2∆

ª
 (4.43)

Interchanging the order of summation in the leading term, and observing that the

summation over the four scattered waves involved can be written in terms of the real

part of the drive point admittance as

4X
=1

1

2
Re

½


 ()

¾
||2 = −Re

n
− b()o  (4.44)

the power balance equation,  −  = 0 that must hold for a conservative
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Figure 4.19: Power normalized scattering coefficients for a ‘hinged’ joint for  =
005  = 2  = 0 (dispersion plot of figure 2.4c) Dashed lines represent power
scattered between incident and scattered waves of different energy sign.
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Figure 4.20: Spatial response for scattering by a ‘hinged’ constraint at  = 0002 and
for  = 005  = 2  = 0 Dashed line represents a wave of unit amplitude incident
from upstream or downstream.



4. Scattering from Local Discontinuities 83

scattering process becomes

3X
=0

Re
n
− b()o |∆|2 + 3X

=0

Re
©
 (−)∆

ª
= 0 (4.45)

For a dissipative scattering process, the 0 on the right hand side of (4.45) must be

replaced by the power flowing out of the system. This could consist of power absorbed

into a dashpot or power lost into shed vorticity at the discontinuity.

We note that the power balance identity of (4.45) holds for the sum over all relevant

multipoles orders , and does not in general hold for each order  taken individually.

This is because the structural boundary conditions are satisfied for a very specific

combination of multipole loads and not for the loads taken individually.

4.5.1 Example: Clamped Constraint

Substituting the monopole and dipole loads given in (4.32) into (4.45), we have for

 = 0

Re {−}
¯̄
(1)

¯̄2
+ | |2

¯̄
(1)

¯̄2
||4 + ||2 ¯̄(1)¯̄2 | |2+Re

⎧⎨⎩
¡−(1) + 

(1)
¢ ³¡


¢2
+(1)

´
||4 + ||2 ¯̄(1)¯̄2

⎫⎬⎭ | |2 
and for  = 1

Re
n
−(1)

o ||2 + | |2 ||2
||4 + ||2 ¯̄(1)¯̄2 | |2+Re

⎧⎨⎩
³


(1) + 2
(1)
´³¡


¢2
+(1)

´
||4 + ||2 ¯̄(1)¯̄2

⎫⎬⎭ | |2 
Clearly, the individual equations do not equal zero. But their addition, together with

the manipulation of terms using the reciprocal properties of the Green’s function (4.15)

yields

Re {−}
µ¯̄̄
(1)

¯̄̄2
+ | |2

¯̄̄
(1)

¯̄̄2¶
+Re

n
−(1)

o³
||2 + | |2 ||2

´
+Re

½
− ||2

³
(1) − 2

´
− 
¯̄̄


(1)
¯̄̄2
+  ||2 2(1)

¾
= 0

which is identically zero for real   or for an incident neutral wave.

For complex   or for an incident convectively unstable wave that carries zero

power, one can show that the self transmission and wave interaction terms carry zero

power. The power balance in this case results from both the incident and total scat-

tered powers being nil.
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4.6 Summary

In this chapter we solved the problem of scattering from local discontinuities using a

multipole source approach. We obtained the reflection and transmission coefficients

of a large number of local scatterers and discussed the physical significance of each.

Our solutions are exact and include the deflection, pressure and potential nearfields

due to fluid-loading effects. We introduced the concept of power normalized scattering

coefficients, and showed that overall power is conserved during the scattering process if

the sign of the wave energy is preserved. We have argued that this property, combined

with the presence of NEWs on the plate, is responsible for the phenomenon of over-

scattering.



Chapter 5

Resonance of Quasi Finite Plate

Segments

In this chapter we study the resonant growth of segments of plates bounded by two

local scatterers on an otherwise uniform, infinite plate with one or two sided flow.

We will make use of the reflection coefficients of the scatterers at the upstream and

downstream ends of these segments together with the propagation properties of waves

on the infinite plate to solve for the response within the finite segment. We will

generally not consider the transmission coefficients of the scatterers as well as the

response of the plate outside the boundaries of the segment. (Although it will not be

explicitly solved for, the response of the plate outside these boundaries is, of course,

implicitly included in our solution through the reflection coefficients.)

There are two major motivations for undertaking this type of study. Local reso-

nance of panels formed by compact scatterers such as ribs, stiffeners or bulkheads on

much larger structures such as ship or submarine hulls are of interest in themselves.

These local scatterers provide mechanisms by which energy becomes trapped, leading

to local amplification of response. In addition to being worthy of study in their own

right, these types of quasi-finite systems are easier to study than the response of fully

finite systems such as plates in a baffle or flags immersed in fluid and may provide

insights into the latter. Not only are the reflection coefficients easier to obtain (the

others require use of the Wiener-Hopf technique, as will be described in later chap-

85
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ters) but, more crucially, the fluid nearfields are available in closed form and the entire

system can be solved exactly.

One of the key lines of inquiry in this chapter will be the influence of the fluid

nearfields on the eigenmodes of these quasi-finite systems. Since we can easily turn

the nearfields on or off at will, we can gain insight into the limits of accuracy of the

long plate asymptotic (i.e., far-field) theories applied in the context of a finite flag later

in this thesis.

5.1 Condition for Resonance

Since we will be comparing the resonance frequencies obtained with and without the

acoustic nearfields, we will introduce the eigenvalue equation for the simpler, approx-

imate case for which all nearfields effects have been excluded. We will then generalize

our approach to the exact case where all nearfield effects are included. We will refer to

the former as including propagating waves only. By ‘propagating’ we understand waves

corresponding to the four distinct poles of the dispersion equation, or waves whose

propagation properties can be described by a simple spatial exponential function with

real, complex or pure imaginary wavenumber. Our definition of a ‘propagating wave’

therefore includes evanescent waves associated with the structural nearfields, exponen-

tially growing and decaying waves associated with the convectively unstable ranges as

well as travelling or neutral waves (POW and NEW). By ‘nearfield,’ we understand

the branch cut contributions only to the response.

5.1.1 Propagating Waves Only: Large  Asymptotics

Consider a plate segment of length  bounded by two scatterers described in terms

of the leading and trailing edge reflection matrices  and  , respectively. Further,

assume that the separation between the scatterers is large compared with the longest

wavelength at the frequency of interest such that all nearfields can be neglected, i.e.,

that the scatterers are ‘in each other’s far-field.’

Define the two-dimensional right and left going wave amplitude vectors + and

− such that they are phased at the leading and trailing edges respectively. Invoking
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the definition of the reflection coefficient, we can write down the (scalar) relationship

between an incident and a reflected wave at the trailing edge − = 


+ + . The

exponential term is a propagation phase factor that ‘adjusts’ the phase (or propagation

growth) of the incident waves so that it is ‘referenced’ at the trailing edge. In matrix

form, this relationship between two incident and two reflected waves can be written as⎡⎣ −1
−2

⎤⎦ =
⎡⎣ 

11 
12


21 

22

⎤⎦⎡⎣ 
+
1  0

0 
+
2 

⎤⎦⎡⎣ +1

+2

⎤⎦  (5.1)

or in abbreviated form

− =
£

¤ £
Φ+
¤
+ (5.2)

where [Φ+] is a 2 × 2 diagonal right-going propagation matrix. At the leading edge,
we can write

+ =
£

¤ £
Φ−
¤
− (5.3)

where

Φ− ≡
⎡⎣ 

−
1  0

0 
−
2 

⎤⎦
is the 2× 2 diagonal left-going propagation matrix.

The ‘gain’ in wave amplitude at the leading edge after one round trip  →  + 1

is obtained by substituting the equation for − (5.2) into (5.3)

+ (+ 1) =
£

¤ £
Φ−
¤ £

¤ £
Φ+
¤
+ ()

=
£G+¤+ ()  (5.4)

where [G+] ≡ £
¤
[Φ−]

£

¤
[Φ+] is defined as the gain matrix that operates on right

(+) going waves. We can similarly derive a gain matrix that operates on left going

waves: [G−] ≡ £
¤
[Φ+]

£

¤
[Φ−]  G+ and G− are in general not equal, except when

the condition for resonance is satisfied.

For real , the eigenvalues of G± determine the stability of the system. If all

eigenvalues are inside the unit circle, the system is stable or damped. If one or more

eigenvalues lie outside the unit circle, then the system is susceptible to unstable growth.

If we now allow complex frequencies so that the temporal growth or decay rate is
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captured in the sign and size of the imaginary part of frequency, we can state the most

universal condition for resonance

± (+ 1) = ± ()  (5.5)

i.e., that round trip performing wave vectors are equal in magnitude and phase at any

fixed location on the finite plate. This is the same as stating that ± is an eigenvector

of G± £±¤± = [G±]±, with eigenvalue ± = 1. This condition can be written as
the system of homogeneous equations

£
 − G±¤± = 0 (5.6)

where  is the identity matrix. The eigenvectors ± are non-trivial solutions of this

equation only for


¡
 − G±¢ = 0 (5.7)

For this simple case where propagating waves only are included, one can multiply

through the 2× 2 matrices and solve for the individual terms of the gain matrix

G± =
h





i £
Φ∓
¤ h





i £
Φ±
¤

(5.8)

to obtain, say for the right-going matrix,

G+ =
⎡⎣ 

11

11

(+1 +
−
1 ) +

12

21

(+2 +
−
1 ) 

11

12

(+1 +
−
2 ) +

12

22

(+2 +
−
2 )


21


11

(+1 +
−
2 ) +

22

21

(+2 +
−
1 ) 

21

12

(+1 +
−
2 ) +

22

22

(+2 +
−
2 )

⎤⎦ 
(5.9)

A key property is that the  terms along the diagonal (products of reflection

coefficients) are in fact power normalized quantities, whereas the off-diagonal terms

are not. More on this in chapter 8.

5.1.2 Including Nearfields: Exact Solution for all 

In this section, we expand the approach of section 5.1.1 to include all nearfield contri-

butions to the response of the finite segment. The formulation is exact and makes no

assumptions about the separation distance between scatterers and is therefore valid

for any arbitrary segment length and frequency, including the limiting cases of → 0
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and  → 0. Our derivation will entail generalizing the definitions of the reflection and

propagation matrices to fully incorporate the nearfields.

Unlike propagating waves, whose propagation properties are captured by their com-

plex wavenumbers alone, the nearfields are disturbances that are unique to each type

of scatterer given that they are a function of the individual combination of multipole

strengths that define the scatterer. This suggests that a truly universal propagation

matrix that is independent of the edge conditions must have a separate entry for

each multipole order. Essentially, we must treat the nearfield emanating from each

of the four multipole loads as a separate, individual ‘wave-type,’ with its own unique

propagation properties.

The propagation factor for a multipole of order, located at  =  and normalized

by its amplitude at the source is


()
± (− ) =


()
± (− )


()
± (0)

 (5.10)

where


()
± (− ) = ± 1



+∞Z
0

 ( ∓ )2 (±)
2 [4 − 2 + − 2]2 + 2 ( ∓ )4

∓(−) (5.11)

are the branch cut contributions to the multipole Greens function given in (4.14). Nor-

malization by 
()
± (0) is required in (5.10) because the propagation matrix operates

on wave amplitudes defined in terms of plate deflection whereas the expression given

in (4.14) is per unit applied load. The expanded propagation matrix now has four

additional terms on its diagonal and is given by

Φ± ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


±
1  0 0 0 0 0

0 
±
2  0 0 0 0

0 0 
(0)
± () 0 0 0

0 0 0 
(1)
± () 0 0

0 0 0 0 
(2)
± () 0

0 0 0 0 0 
(3)
± ()

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (5.12)

The expanded reflection matrices must reflect the structure of the propagation

matrix we’ve just defined in (5.12) above. We therefore require 6×6 reflection matrices
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with three types of new terms: reflection coefficients for 1) nearfields generated by

incident propagating waves, 2) propagating waves generated by incident nearfields

and 3) nearfields generated by incident nearfields.

The propagating to nearfield reflection coefficient is



 [2 +  ] = ∆

³
∓
´

(−1)
± (0) 1 ≤  ≤ 4 1 ≤  ≤ 2 (5.13)

where ∆
³
∓
´
are the multipole source strengths of order  due to a unit incident

propagating wave of wavenumber  computed by imposing the structural boundary

conditions as described in chapter 4, and 
()
± (0) is the nearfield component of the

Green’s function of order  evaluated at the source −  = 0 given in (5.11).

The nearfield to propagating reflection coefficient requires knowledge of the source

(location, type) of the incident nearfield, and is given by



 [ 2 + ] =

3X
=0

∆
³

(−1)
∓  

´

()
±∞

¡
±
¢

1 ≤  ≤ 2 1 ≤  ≤ 4 (5.14)

where ∆
³

()
∓  

´
are the multipole strengths corresponding to the structural con-

ditions at the reflecting end due to a unit incident nearfield of order  generated at

the other end of the segment, and


()
±∞

¡
±
¢ ≡ ±¡−± ¢



¡
±
¢

is the ‘farfield Green’s function’ of order  for the reflected wave ± . To compute

the ∆
³

()
∓  

´
one has to, in general, solve a system of equations that satisfy

the structural boundary conditions for a given incident nearfield. The procedure is

comparable to that described in the chapter 4, with the sole difference arising in the

evaluation of the incident wave terms. If we take as an example the matrix equation

for a clamped-free discontinuity given in (4.34), only the right hand side vector —

which carries information about the deflection, slope, and so forth of the incident

disturbance— has to be altered to display the equivalent quantities for the incident
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nearfield. Equation (4.34) therefore becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 
(1)
+ 

(2)
+ 

(3)
+

+ 
(1)
+ 

(2)
+ 

(3)
+

2− 2
(1)
− 2

(2)
− 2

(3)
−

2−

−−
2

(1)
−

−(1)−
2

(2)
−

−(2)−
2

(3)
−

−(3)−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
∆0

∆1

∆2

∆3

⎤⎥⎥⎥⎥⎥⎥⎦

=
1


()
∓ ()

⎡⎢⎢⎢⎢⎢⎢⎣
−()∓ ()

−()∓ ()

−2()∓ ()

−3()∓ () + 
()
∓ ()

⎤⎥⎥⎥⎥⎥⎥⎦  (5.15)

where


()
± () = ±





+∞Z
0

 ( ∓ )2 (±) (∓)
2 [4 − 2 + − 2]2 + 2 ( ∓ )4

−|| (5.16)

are the various spatial derivatives (w.r.t. response location) of the nearfield Green’s

function (5.11).

The nearfield to nearfield reflection coefficient also requires solving for the multi-

pole load strength ∆
³

()
∓  

´
as above, but instead of summing over all multipole

orders to generate a far field response, each individual load is combined with the cor-

responding nearfield Green’s function of a given order to produce a separate coefficient



 [2 +  2 + ] = ∆

³

(−1)
∓  

´

(−1)
± (0) 1 ≤  ≤ 4 1 ≤  ≤ 4 (5.17)

The Augmented Reflection and Gain Matrices

The augmented 6× 6 reflection matrix operates on a vector of six incident wave am-
plitudes, two propagating and four nearfield, to produce a reflected vector of the same

dimension and type. All wave amplitudes are referenced, in terms of magnitude and

phase, at the scattering discontinuity. The reflection matrix is composed of four sub-

matrices

 [6× 6] =
⎡⎣  [2× 2]  [2× 4]

 [4× 2]  [4× 4]

⎤⎦  (5.18)
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where  is the conventional propagating to propagating reflection matrix discussed

in chapter 4,  is the incident propagating to reflected nearfield submatrix defined

in (5.13),  is the incident nearfield to reflected propagating submatrix defined in

(5.14) and  is the incident nearfield to reflected nearfield submatrix defined in

(5.17).

The reflection matrices at the upstream and downstream boundaries can be com-

bined with the augmented propagation matrices (5.12) as in (5.8) to give an augmented

gain matrix that now operates on a vector of six wave amplitudes instead of just two.

The condition for resonance is given once again by (5.7) and solution of this equation

now yields the exact eigenfrequencies of the system. These are the discrete set of com-

plex resonance frequencies at which it is possible to combine the six upstream travelling

and six downstream travelling disturbances (2 propagating waves & 4 nearfields) that

satisfy the structural edge conditions at both ends. That unique combination of wave

amplitudes is given by the eigenvector of the gain matrix corresponding to the unit

eigenvalue  = 1

G++ = +  = 1

G−− = −  = 1

Once the right and left going eigenvectors have been solved for, the displacement

mode shapes can be obtained by building the weighted sum of propagation factors,

also evaluated at the complex eigenfrequency, as follows

 () =
h


+
1  · · ·   (3)

+ ()
i
+ +

h


−
1  · · ·   (3)

− ()
i
− (5.19)

where the row vectors are simply the diagonals of the propagation matrix (5.12).

Pressure Mode Shapes

We can define propagation factors for the pressure that act on the same eigenvectors

to give us the pressure mode shapes corresponding to the deflection mode shapes given

above. Given that the eigenvectors are in terms of plate deflection, the six pressure

propagation factors must have the following form

± ( ) =
h¡
 − ±1

¢2


±
1 −(

±
1 )||

¡
±1
¢
 · · ·   (3)

± ( )
i
 (5.20)
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where,


()
± ( ) =

1

2
()
± (0)

⎧⎨⎩
+∞Z
0

 ( ∓ )2 (±)−1 ∓±||
 (±) 

+

+∞Z
0

 ( ± )2 (∓)−1 ∓∓||
 (∓) 

⎫⎬⎭  0 ≤  ≤ 2

is the pressure nearfield from (4.25), normalized by the displacement nearfield at the

boundary. For  = 3, the above expression can still be used except in the immediate

vicinity of  = 0 where a finite difference based solution, such as the one described

in section 4.3.3 may be employed. In terms of these propagation factors, the pressure

mode shapes are

 ( ) =
£
+ ( )

¤
+ +

£
− ( )

¤
− (5.21)

=
h¡
 − +1

¢2


+
1 −(

+
1 )||

¡
+1
¢
 · · ·   (3)

+ ( )
i
+

+
h¡
 − −1

¢2


−
1 −(

−
1 )||

¡
±1
¢
 · · ·   (3)

− ( )
i
−

5.2 Structural Energy Balance for Resonant Segment

We are now in a position to write down the structural balance equation, given in (3.1),

for the finite segment at resonance using the displacement and pressure eigenmodes

of the previous section. The time averaged power exchange between the flow and the

structure (at the plate-fluid interface) is

hΠi = −
2

Z
0

Re
n
 (  = 0) ()

o
 (5.22)

The time averaged structural flux out of the segment at the edges is

h ()−  (0)i = 

2
Re
n
3 () ()− 2 ()  ()−  () ()

o¸
0



(5.23)

where 0 and  are just inside the finite region. The structural energy balance equation

states that the time rate of change of structural kinetic and potential energy,  and

 is equal to power injected into the plate by the fluid minus the structural flux
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exiting the plate at the edges, or¿



[ + ]

À
= hΠi− h ()−  (0)i  (5.24)

Hence, if the quantity on the right hand side of (5.24) is positive, the segment will

experience unstable resonant growth, otherwise the resonance will be neutrally stable

or damped. For upstream and downstream edge conditions that give a net outward

structural flux of zero, h ()−  (0)i = 0, the stability of the system is determined

entirely by the sign and magnitude of hΠi.
The structural flux at the edge is identically zero for two canonical edge condi-

tions: free and clamped. As a result, the stability of finite segments made up of any

combination of free or clamped edge conditions, such as all three examples considered

below, is determined solely by the sign and magnitude of the power exchange between

the structure and the fluid. We note, however, that hΠi  0 is neither a necessary

nor a sufficient condition for instability.

There are two general scenarios that can lead to unstable resonance:

1) h ()−  (0)i ≥ 0 and hΠi  0 with hΠi  h ()−  (0)i  The out-
ward structural flux is either zero or positive but less than the power injected by

the fluid into the plate, leading to unstable growth. This includes the special case

of h ()−  (0)i = 0 corresponding to clamped or free edge conditions discussed

above.

2) h ()−  (0)i  0 and hΠi  h ()−  (0)i  The fluid may be absorbing
power from the plate but the net structural flux into the segment is positive and

greater than this loss, resulting in unstable growth.

5.3 Finite Segment Configurations

In this section we present results for the complex eigenfrequencies and mode shapes

for a number of finite segment configurations. The examples offered here are by no

means an exhaustive set. They are chosen simply to illustrate some of the recurring

features of response that were observed from studying a larger set of finite segments

constructed by pairing a large number of local scatterers described in chapter 4. We
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limit our analysis to a set of relatively short plates with the primary aim of examining

the effects of turning the nearfields ‘on’ and ‘off.’

We shall see that the nearfields do have an effect on the complex eigenvalues of

finite segments, but that this effect is limited to short segment lengths and to low

frequencies. They provide an adjustment to the eigenfrequencies, but do not alter the

modal structure or introduce new resonances. In addition, their effect on the stability

of the system is not consistent. Although we’ve observed that the inclusion of nearfield

effects often reduces the imaginary parts of the eigenfrequencies (as shown in all the

examples below), this is not universally true for all finite segment configurations.

5.3.1 Clamped Leading Edge, Clamped Trailing Edge

L = 140

The power normalized leading and trailing edge reflection coefficients for a clamped-

clamped finite segment are plotted in figure 5.1. The infinite plate supporting this

pair of scatterers has one-sided fluid flow ( = 1) and enough tension ( = 2) to

eliminate local convective instability.

We note that, although the combined reflection and transmission processes at each

edge do conserve power as discussed in chapter 4, the total power reflected is not

necessarily equal to the incident wave power. This can be seen in the dashed-dotted

lines of figure 5.1 which deviate substantially from 0dB. However, this quantity (the

total reflected power) has very little significance in terms of the stability of a finite

segment. For    it is the amount of over-reflection of the individual coefficients

that matters. For instance, a total reflected power of zero (corresponding to a descent

to −∞ dB in the figures below) simply indicates that the pair of positive and negative

energy waves that are reflected have the exact same magnitude (but opposite sign of

the wave energy). However, in the range   , where only positive energy waves

exist, a power sum curve that dips below 0 dB indicates that the edge is effectively

dissipative (through transmission to infinity) and will cause the neutral resonances

falling within that frequency range to be damped. We will observe this phenomenon

in this and in one other example configuration considered later in this section.
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Figure 5.1: Power normalized reflection coefficients for a clamped-clamped upstream

edge (figures in left column) and a clamped-clamped trailing edge (figures in right

column) with one sided flow,  = 1 and for plate parameters  = 005  = 2 and

 = 0
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We consider a segment with separation distance  between scatterers of 140 and

form the two gain matrices defined in section 5.1: the 6× 6 ‘full’ gain matrix which

contains all nearfield and propagating terms, and the 2× 2 ‘propagating only’ matrix.
The eigenvalues for both sets of matrices, evaluated for real frequency, are plotted in

figure 5.2. The solid lines are the real part of the eigenvalues and the dashed lines,

the imaginary parts. The figure for the ‘full’ gain matrix has six eigenvalues but

only one, the ‘maximum eigenvalue,’ is of order unity and shows up in the plot. The

other eigenvalues are significantly smaller in magnitude and do not show up in the

figure. The same holds for the two eigenvalues of the ‘propagation only’ gain matrix.

The presence of one dominant eigenvalue was a common feature of all finite segment

configurations we examined. The exception is in the immediate vicinity of  = 

where more than one eingenvalue may become comparable to unity.

A consequence of all this is that the trace of the gain matrix (i.e., the sum of all

the eigenvalues) and the maximum eigenvalue are often equivalent and can be used

interchangeably to estimate the relevant eigenfrequencies of a finite system. We note

that the maximum eigenvalues for both sets of matrices, as shown in figure 5.2, are

nearly identical except at very low frequencies where the nearfields introduce a very

slight perturbation in both the real and imaginary parts.

We obtain initial guesses for the complex eigenvalues by looking for the zero cross-

ings of the imaginary parts of the maximum eigenvalue. We chose the zero crossings

that coincide approximately with the local maxima of the real part of the eigenvalue,

as shown by the circles in figure 5.2. A gain rate per resonance frequency is obtained

based on this local maximum of the real part and converted to an approximate tem-

poral growth rate using an expression for the round trip time across the plate derived

in section 8.1.2. An initial estimate for the complex eigenfrequency is thus formed and

fed into a solver for the exact roots of the system determinant given in (5.7).

The results for the first three complex eigenfrequencies for a clamped-clamped

segment of length  = 140 are given in figure 5.3, for both sets of gain matrices.

We observe that the slight difference in the initial estimate of the first eigenfrequency

between the two cases is also reflected in the exact solutions which are off by 1.2% and
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Figure 5.2: Real (solid) and imaginary (dashed) parts of eigenvalues of the ‘full’ and

‘propagating only’ gain matrices, for a finite segment clamped-clamped at the upstream

edge and clamped-clamped at the downstream edge. Plate parameters:  = 005
 = 2,  = 0 and  = 1
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Figure 5.3: Complex eigenfrequencies for a finite segment clamped-clamped at the

upstream edge and clamped-clamped at the downstream edge. Plate parameters:

 = 005  = 2,  = 0 and  = 1
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Figure 5.4: Modeshapes and power exchange between plate and fluid for lowest fre-

quency eigenmode of a finite segment clamped-clamped at the upstream edge and

clamped-clamped at the downstream edge. Plate parameters:  = 005  = 2,

 = 0 and  = 1

7.4% in their real and imaginary parts respectively. The higher order eigenfrequencies

are off by less than 1%.

We also note that the initial guesses appear to overestimate the temporal growth

rate for the unstable eigenfrequencies. This was a consistent feature across all finite

segment configurations examined, and indeed of many finite flag configurations dis-

cussed in chapter 8. (However, we have made no effort to ascertain if this is a general

rule or simply a trend.) For a detailed discussion of why there is a discrepancy between

the initial estimates based on the gain matrix evaluated at real frequencies and the

actual complex eigenfrequency roots of (5.7), the reader is encouraged to read ahead

to section 8.1. In a nutshell, it has to do with the reflection coefficients and propa-

gation paths in the gain matrix being evaluated at real frequencies instead of at the

complex frequencies that capture the temporal growth rates of the incident, reflected

and propagating waves on the resonant segment.

Figures 5.4 through 5.6 plot the mode shapes associated with the three lowest

eigenfrequencies in figure 5.3. They consist of snapshots for ten equally spaced time
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Figure 5.5: Modeshapes and power from the fluid into the plate for second lowest

eigenmode of a finite segment clamped-clamped at the upstream edge and clamped-

clamped at the downstream edge. Plate parameters:  = 005  = 2,  = 0 and
 = 1 Legend same as in figure 5.4.

intervals per half cycle. The pressure mode shapes represent the pressure field associ-

ated with the normalized deflection mode shapes shown in the same figure. The solid

lines represent the total response field, which include all propagating and nearfield

components, and the dashed lines represent the nearfield contribution alone. They are

provided to illustrate the relative importance of the nearfield for a given eigenmode.

Each figure also contains plots of the power injected by the fluid into the finite

segment for that eigenmode. The relevant expression for the power from the fluid

into the plate was derived in (5.22) and is presented in two forms: the integrand as

a function of space (top right hand sub-figure), and the integral evaluated over the

segment length and displayed as a constant line over the plate length (bottom right-

hand sub-figure). As discussed in section 5.2, finite segment configurations, such as

clamped-clamped, that result in zero net structural flux at the edges have the special

property that the sign of this power quantity, i.e., the rate of working of the fluid on

the finite plate, uniquely determines the stability properties of the segment. This is

confirmed by the positive sign of the net power into the plate for the first two unstable
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Figure 5.6: Modeshapes and power from the fluid into the plate for third lowest

eigenmode of a finite segment clamped-clamped at the upstream edge and clamped-

clamped at the downstream edge. Plate parameters:  = 005  = 2,  = 0 and
 = 1Legend same as in figure 5.4.

modes (figures 5.4 & 5.5) and the negative sign for the third mode which was earlier

determined (from figure 5.6) to be stable and damped.

The power into the plate is further subdivided into three constitutive components,

each representing the pairing between a deflection mode shape and a pressure mode

shape. The solid line represents the actual power when the full field deflection and

pressure mode shapes are used and is equal to the sum of the three individual com-

ponents. This subdivision is necessary for determining the relative significance of the

nearfields in evaluating the power exchanged between the fluid and the plate.

The lowest eigenmode (figure 5.4) shows a prominent presence of the nearfields

which explains the 7.4% shift in Im {} observed in figure 5.3. The prominence of
the nearfield should be determined not only by its relative magnitude at the edges — for

a clamped edge, this is bound to be a good percentage of the maximum propagating

amplitude at any frequency — but in terms of how quickly it decays away from the

edge (or how far it travels within the span of the plate). This prominence is reflected

in the contribution of the nearfields to the net power into the plate. This can be
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seen from the critical role played by the ‘nearfield and nearfield’ and ‘propagating and

nearfield’ components in determining not only the magnitude, but more crucially, the

proper sign of the net power. Using the propagating only mode shapes we would have

erroneously concluded that this eigenmode was stable and damped instead of unstable

(doesn’t change conclusion based on the sign of Im {}, though). Also, note how
the net power differs from the propagating only power everywhere on the plate, not

just in the immediate vicinity of the edges.

The second unstable eigenmode occurs at twice the frequency of the first and

therefore shows a less prominent, but nevertheless important, role for the nearfields.

Although the nearfields are evidently not needed for determining the real and imag-

inary parts of the eigenfrequencies to within 1% accuracy, they are still required for

accounting for the power exchange between the fluid and the plate as can be seen

from the right hand side plots of figure 5.5 which show that their contribution to the

total power is of the same order as that of the propagating field alone. One noticeable

difference with the lower frequency eigenmode is that the effect of the nearfield is lim-

ited to the immediate area around the edges which none the less still contribute the

bulk of the net power, the spatially varying field due to the propagating waves alone

having integrated out, through cancellations between positive and negative regions, to

a comparable value.

The net power into the plate is negative for the third mode (figure 5.6), confirming

that it is stable and damped. We note that the effect of the nearfield is at least as

pronounced as it was for the second mode, even though this third eigenmode occurs at

a much higher frequency. It is worth saying a few words about the node-less shape of

the pressure eigenmode in figure 5.6. This resonance occurs above the pinch frequency

(  ) so there are only two conventional propagating waves, one travelling

downstream at a phase speeds 19% faster than the flow speed  , and the other trav-

elling upstream. The phase speed of the downstream going wave is still close enough

to the convective speed  that it entrains relatively little pressure (as a consequence

of the ( − )2 factor in the term relating deflection and pressure). Therefore the

contribution to the pressure field comes almost entirely from the upstream travelling
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wave and with little interference from the downstream going pressure, looks much like

a pressure disturbance that is propagating to the left. The deflection amplitudes for

the upstream and downstream going waves are still comparable, hence the substantial

nodal structure in the deflection mode shape.

The upstream travelling waves dominate the pressure response even more dramati-

cally for mode shapes corresponding to eigenfrequencies lower that the pinch frequency,

   The phase speeds of the downstream propagating waves are even closer to

the convective speed  at these frequencies. However, the interference pattern created

by the presence of two neutral waves propagating upstream generates a much more

pronounced nodal structure —at the shorter wavelengths corresponding to these same

waves— as seen in figures 5.4 & 5.5.

5.3.2 Free-Clamped Leading Edge, Free-Clamped Trailing Edge

L = 60

The power normalized reflection coefficients for identical ‘free-clamped’ conditions at

the leading and trailing edge are plotted in figure 5.7. The infinite plate has two-sided

fluid flow ( = 2) and enough pre-tension ( = 2) to eliminate convectively unstable

waves. This configuration may serve as a suitable model for flags in tandem.

The first two eigenfrequency solutions for a segment of length  = 60 are plotted

in figure 5.8. It turns out that the higher frequency solution — an apparently neutral

eigenfrequency at precisely  =  — is in fact a spurious root of the system determi-

nant. The ‘eigenmode’ associated with this root does not satisfy the structural edge

conditions, and the entire solution must therefore be discarded. The spurious ‘eigen-

mode’ that corresponds to this root is plotted for reference in figure 5.9 and clearly

shows the violation of the ‘clamped’ condition at the leading edge.

The lower frequency root, by contrast, is genuine as evinced by the mode shapes of

figure 5.10. We observe the significant influence of the nearfields in the mode shapes

and the power balance plots. This is reflected in the sizeable shift (by about 16% for

Re {})in the complex eigenfrequency seen in 5.8.
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Figure 5.7: Power normalized reflection coefficients for a free-clamped upstream edge

and a free-clamped trailing edge for plate with two sided flow and parameters:  =
005  = 2,  = 0 and  = 2 Legend same as for figure 5.1.
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Figure 5.8: Complex eigenfrequencies for a finite segment of length  = 60 with free-
clamped conditions at the upstream edge and free-clamped conditions at the down-

stream edge. Plate parameters:  = 005  = 2,  = 0 and  = 2
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Figure 5.9: Erroneous modeshape for spurious eigenfrequency at  = 
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Figure 5.10: Modeshapes and power exchange between plate and fluid for lowest eigen-

frequency of a finite segment of length  = 60 with free-clamped conditions at the up-
stream edge and free-clamped conditions at the downstream edge. Plate parameters:

 = 005  = 2,  = 0 and  = 2 Legend same as in figure 5.4.



106 5. Resonance of Quasi Finite Plate Segments

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

-5

0

5

10
x 10

-4 L=70

Re(ω)

Im
(ω

)

 

 
guess w/near
guess no/near
ω

eig
 w/near

ω
eig

 no/near

Figure 5.11: Complex eigenfrequencies for a finite segment of length  = 70 with free-
clamped conditions at the upstream edge and free-clamped conditions at the down-

stream edge. Plate parameters:  = 005  = 2,  = 0 and  = 2

L = 70

The eigenfrequencies and mode shapes for a slightly longer segment for the same edge

conditions and plate parameters are plotted in figures 5.11 and 5.12. The frequency

of the lowest eigenmode is substantially higher for this case and this is reflected in the

relatively less pronounced effect of the nearfields.

We note that the pressure diverges at both the upstream and downstream edges

for this type of edge condition. All edge conditions that involve a discontinuity in the

plate deflection (such as a free edge) have an octupole load component which results

in divergent pressures at the discontinuity, as discussed in section 4.3.3. The integral

of the product between pressure and plate velocity, however, is finite, as seen in the

bottom right plot of figure 5.12.

5.3.3 Clamped Leading Edge, Free Trailing Edge

L = 100

As a final example, we briefly consider the flag-like combination of a clamped-clamped

leading edge and free-free trailing edge for  = 100. The power normalized reflection

coefficients are plotted in figure 5.13. The infinite plate has two-sided fluid flow and

enough pre-tension ( = 2) to eliminate convectively unstable waves.



5. Resonance of Quasi Finite Plate Segments 107

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1

x

Mode Shape for L=70 at ω=1.9310 -3 +i 3.1510 -4
D

ef
le

ct
io

n

0 10 20 30 40 50 60 70
-4

-2

0

2

4
x 10

-4

x

P
re

ss
ur

e

0 10 20 30 40 50 60 70
-4

-2

0

2

4
x 10

-7

x

Power into Plate

Po
w

er
0 10 20 30 40 50 60 70

-2

0

2

4
x 10

-7

xIn
te

gr
al

 o
f P

ow
er

 o
ve

r P
la

te
 L

en
gt

h

 

 

Figure 5.12: Modeshapes and power exchange between plate and fluid for lowest eigen-

frequency of a finite segment of length  = 70 with free-clamped conditions at the up-
stream edge and free-clamped conditions at the downstream edge. Plate parameters:

 = 005  = 2,  = 0 and  = 2 Legend same as in figure 5.4.

The lowest (single unstable) eigenfrequency is shown in figure 5.14. We observe

that the nearfields have a minimal effect (less than 1%) on the value of the complex

eigenfrequency.

The deflection and pressure mode shapes corresponding to this eigenfrequency are

plotted in figure 5.15. We note that the nearfields are insignificant in determining the

displacement mode shape at the free-free trailing edge but that they are a significant

component of the total pressure at the same edge.

5.4 Summary

In this chapter we investigated the unstable resonances of quasi-finite plate segments

formed by two local constraints or discontinuities. We develop a framework for the

inclusion of all nearfields involved in the scattering process (including the mutual in-

teraction between the nearfields emanating from the upstream and downstream edges)

and succeed in solving for the complex resonance frequencies of these segments exactly.
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Figure 5.13: Power normalized reflection coefficients for clamped-clamped conditions

at the upstream edge and free-free conditions at the downstream edge. Plate param-

eters:  = 005  = 2,  = 0 and  = 2
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Figure 5.14: Complex eigenfrequencies for a finite segment of length  = 100 with
clamped-clamped conditions at the upstream edge and free-free at the downstream

edge. Plate parameters:  = 005  = 2,  = 0 and  = 2



5. Resonance of Quasi Finite Plate Segments 109

0 20 40 60 80 100
-1

-0.5

0

0.5

1

x

Mode Shape for L=100 at ω=1.710 -3 +i 0.7710 -4

D
ef

le
ct

io
n

0 20 40 60 80 100
-2

-1

0

1

2
x 10

-4

x

P
re

ss
ur

e

Figure 5.15: Deflection and pressure modeshapes for lowest eigenfrequency of a finite

segment of length  = 100 with clamped-clamped conditions at the upstream edge and
free-free conditions at the downstream edge. Plate parameters:  = 005  = 2,

 = 0 and  = 2Legend same as in figure 5.4.

Our solutions are valid for arbitrarily small segment lengths. We find that the exclu-

sion of the nearfields does not appreciably alter the complex eigenfrequencies even for

very short plates, but that it affects the energy balance calculations. We conclude that

the nearfields may safely be ignored in most configurations if all that’s required are

approximate values of the resonance frequencies and temporal growth rates.



Chapter 6

Scattering from Leading Edge

In this chapter we solve for the reflection coefficients for waves scattering from the

leading edge of a submerged semi-infinite fluid-loaded plate in mean flow. The scat-

tering problem we wish to solve is shown in figure 6.1. An upstream propagating wave

 = −
−
 , with amplitude  and free wavenumber − , is incident on the leading

edge. It is assumed that the excitation or plate discontinuity that excited the incident

wave is well in the far field of the leading edge so that there are no near-fields as part

of the incident field.

This two-part boundary value problem will be solved using the Wiener-Hopf tech-

nique. The structural conditions at the leading edge need not be specified at the

outset, since our Wiener-Hopf solution is valid for arbitrary edge conditions. Evalua-

tion of the scattered field, however, requires that we specialize to a given set of edge

conditions. This is accomplished for a representative set of edge conditions, including

the condition of an externally applied driver at the free edge.

Oswell (1992) has solved the free-edge problem using a Wiener-Hopf based ap-

y

x

U
jik xIe
−−

1 2
1 2

ik x ik xLead Lead
j jR Ie R Ie

+ +

+

Figure 6.1: Scattering of plate waves from the upstream edge of a semi-infinite plate.
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proach and offered solutions that are valid in the asymptotic limit of very low frequen-

cies. The method of solution described in this chapter uses a different Wiener-Hopf

equation then that employed by Oswell (1992), and the solution itself has a simpler

form compared to the solution achieved by Oswell (1992). Our method follows more

closely the approach of Peake (2004), who solved the equivalent edge scattering prob-

lem for a clamped plate in an infinite rigid baffle. In particular, we adopt Peake’s

(2004) approach of numerically splitting the Wiener-Hopf kernel. Our solution is not

limited to a free edge and is valid throughout the frequency range where compressibility

effects can be neglected.

6.1 System Equations Using Half-Range Transforms

The first step in applying the Wiener-Hopf technique is to express the field quantities

in terms of half-range Fourier transforms which are analytic in either the upper or

the lower halves of the complex- plane, or + and −. The precise definition of the

boundaries of + and − depends on the plate parameters  and  as well as the

relevant frequency range, and is further determined by the requirements of causality

(figure 6.2).

For large Im {}  the poles and branch points in the complex -plane are far away
from the real  axis and + is defined as the half space extending from +∞ down

to, but not including, the pole with the smallest negative imaginary part in the lower

half plane. Likewise, − is defined as extending from −∞ up to but not including

the pole closest to the real  axis in the upper half plane. +and − therefore span a

well established strip of overlap . As the limit Im {}→ 0 is taken, the overlap strip

 shrinks to the causal contour Γ defined in Chapter 2 and whose path is deformed

to avoid any poles crossing the real  axis according to the Briggs-Bers technique. For

Im {} = 0 + is therefore defined as the half-space above Γ plus the infinitesimally
narrow overlap strip , and − is the half-space below Γ plus .

The half-range transforms for the potential, Φ+ () = + ( ()) and Φ− () =
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Figure 6.2: The upper and lower halves of the complex- plane, + & −, and the
strip of overlap .
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− ( ())  are defined as

Φ+ () =

0Z
−∞

 () − (6.1)

Φ− () =

+∞Z
0

 () − (6.2)

Here, Φ± () are analytic in the upper and lower half planes, respectively. The inverse

transform is obtained by operating on the full range transform of the potential Φ () =

Φ+ () +Φ− () and is given by

 () =
1

2

+∞Z
−∞

£
Φ+ () +Φ− ()

¤
+ (6.3)

The half-range transforms of axial derivatives of the field variables can be obtained

by repeatedly applying the chain rule in a straight forward manner. The transform of

the  order derivative of the plate deflection is given by

−
µ
 ()



¶
= () e− ()− X

=1

()(−1)
(−) (+0)

(−)
 (6.4)

where e− () ≡ +∞R
0

 () − is the half-range transform of the plate deflection.

The derivatives evaluated at the edge are a by product of taking  = +0 as the lower

integration limit in (6.2).

In terms of the half-range transforms just defined, the fluid-plate system of equa-

tions are expressed as follows. Laplace’s equation is satisfied throughout the entire

domain and yields, after satisfying the boundedness condition at ||→∞,

Φ ( ) = Φ+ ( ) +Φ− ( ) (6.5)

=  () −()||

where  () is an unknown function of the axial wavenumber. Taking the  of

(6.5), we obtain a relation for the vertical component of the fluid velocity that must

also hold throughout the entire domain

Φ


= − ()Φ

Φ+


+

Φ−


= − () ¡Φ+ +Φ−¢  (6.6)
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In the spatial half-plane containing the plate (for  ≥ 0) we obtain the following
expressions for the linearized Bernoulli equation, the continuity condition and the plate

equation,

e− =  ( − )Φ− +  (+0)  (6.7a)

Φ−


= − ( − )e− −  (+0)  (6.7b)

−e− = £4 + 2 + − 2
¤ e− −  ()  (6.7c)

respectively, where

 () ≡ 000 (+0) + 00 (+0)− ¡2 + 
¢
0 (+0)− 

¡
2 + 

¢
 (+0) (6.8)

is obtained by application of (6.4) to the plate stiffness and tension operators.  ()

has four unknown constants consisting of the edge deflection  (+0) and its higher

order derivatives. Two of these constants will be specified by the particular choice of

edge conditions, and the other two are to be determined as part of the solution.

Symmetry dictates that the total potential is an odd function of . This implies

that, in the absence of a wake or an elastic structure that can create a jump or

discontinuity in  along  = 0 the total potential  =  + , defined as

the sum of the incident and scattered fields, must be identically zero. We therefore

conclude that  = − on  = 0. For an incident potential field  ( ) =³
 − −

´

³
−
´
 () 

−()|| the scattered potential upstream of the edge is

simply

 = −()

³
 − −

´

³
−
´ 

−
   ≤ 0  = 0 (6.9)

We take the half-range transform of  given above and obtain

Φ+ = −

³
 − −

´

³
−
´³

 − −
´  − ∈ − (6.10)

in terms of the incident field quantities alone. Φ+ is therefore a ‘known’ function,

whereas Φ+ Φ− and Φ− are the unknown functions that we would like to

solve.
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6.2 Wiener-Hopf Equation

Eliminating e− and e− from (6.7), we obtain an expression relating the plate potential
and the transverse fluid velocity

 ( − )2Φ− = −P () Φ
−


(6.11)

+  ( − ) ( (+0)−  ())−  (+0)P () 

where

P () ≡ 4 + 2 + − 2

is the plate operator term. P () is a 4 order polynomial in  that can also be written
in terms of the in-vacuo plate wavenumbers P () = ¡2 − 2

¢ ¡
2 − 2

¢
, where

 =
+1√
2

h
− + ¡ 2 + 42 − 4¢ 12 i 12  (6.12a)

 =
+√
2

h
+ +

¡
 2 + 42 − 4¢ 12 i 12  (6.12b)

are the + roots of 4 + 2 +  − 2 = 0 The − in-vacuo plate roots are simply

− and − For  =  = 0  and  reduce to the + Euler beam roots, 12

and 12 respectively.

We now combine (6.5) and (6.11) to obtain a single equation relating + and −

quantities. Start by joining (6.10) with (6.5) to obtain

Φ− − 

³
 − −

´

³
−
´³

 − −
´ = − 1

 ()

Φ+


− 1

 ()

Φ−


(6.13)

and use it to eliminate Φ− from (6.11). This yields an equation relating Φ+ and

Φ− (
P ()−  ( − )2

 ()

)
Φ−


(6.14)

=
 ( − )2

 ()

Φ+


− 


³
 − −

´
 ( − )2


³
−
´³

 − −
´

+  ( − ) ( (+0)−  ())−  (+0)P () 
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We can proceed with the above equation and recast it into Wiener-Hopf form. In fact,

this is the solution path that Oswell (1992) takes. However, a more convenient form

of the Wiener-Hopf equation is obtained by instead relating Φ+ and Φ− We use

(6.13) to eliminate Φ− in (6.11) and obtain

n
 ()P ()−  ( − )2

o
Φ− (6.15)

=− P () Φ
+


−  ()P ()


³
 − −

´

³
−
´³

 − −
´

−  ( − ) ( (+0)−  ()) +  (+0)P () 

We define the quantity in the brackets as our Wiener-Hopf kernel

 ≡  ()P ()−  ( − )2  (6.16)

and use this definition to replace all explicit occurrences of the branch cut with  () =³
 +  ( − )2

´
P () to obtain

Φ− +

³
 − −

´

³
−
´³

 − −
´ (6.17)

=− P () Φ
+


−  ( − )2


³
 − −

´

³
−
´³

 − −
´

−  ( − ) ( (+0)−  ()) +  (+0)P () 

The key operation in the Wiener-Hopf method is the multiplicative factorization

of the kernel into factors that are regular, non-zero and have algebraic behaviour at

infinity in + and −,

 = +− (6.18)

followed by re-organization of (6.17) into an equation with all terms analytic in +

pulled to one side of the equality sign and all those analytic in − to the other. This
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is accomplished in the following equation:

−Φ− +

³
 − −

´

³
−
´³

 − −
´ h− −−

³
−
´i

=−
£
4 − 4

¤
+

Φ+


−  ( − )2

+


³
 − −

´

³
−
´³

 − −
´

−  ( − )

+
( (+0)−  ()) +

 (+0)

+

£
4 − 4

¤
−


³
 − −

´

³
−
´³

 − −
´−

³
−
´
 (6.19)

(6.19) is the equation for leading edge scattering in ‘Wiener-Hopf’ form. In addition to

dividing through by + the step from (6.17) to (6.19) involves removing the simple

lower half plane pole − ∈ − from the − side of the equation and balancing with

the corresponding term on the + side.

The multiplicative factorization of the kernel defined in (6.18) is in general the most

challenging step in the procedure. It is not possible to perform this factorization in

closed form for our kernel (6.16). Oswell (1992) performs the asymptotic factorization

of  for small  and  whereas Peake (2004) uses a numerical approach to factorize

the kernel. We closely follow the method outlined by Peake (2004) and factorize 

numerically. The details are provided in Appendix B. In what follows we shall assume

that the kernel  has been successfully factored into + and − components, and

that the latter are available for numerical evaluation for any input parameter.

6.3 Solution for Arbitrary Edge Conditions

We are now in a position to invoke the main argument of the Wiener-Hopf technique.

The Wiener-Hopf equation(6.19) consists of an equality between a left hand side that

is analytic in − including the overlap region , and a right hand side that is analytic

+ also including . By Louiville’s theorem both sides must therefore be equal to

an entire function  () which is analytic in all   () must be a polynomial in ,

and to ascertain the order of the polynomial we need to determine the leading order

behaviour of (6.19) as  →∞
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In Appendix B, we determine that the split kernels vary as ± ∼ 52 for large .

It may appear that the leading order term on the r.h.s. of (6.19) is  (+0) 4+ ∼
32 However, it turns out that this term cancels with an identical term contained in

the factor  ( − ) () +. The largest term on the r.h.s. is in fact Φ+P () +

Allowing the standard weak singularity in the fluid velocity at the leading edge, i.e.,

 ∼ 1 ||12 as  → 0 we deduce from the Abelian theorem that Φ+ ∼
112 as  →∞ The highest order term on the r.h.s. therefore behaves as

P ()
+

Φ+


∼   →∞

This suggests that the entire function is at most of order  ()  and so we set

 () = 0 +1 (6.20)

where 0 and 1 are unknown constants. Each side of equation (6.19) must equal this

entire function, generating the following pair of equations (one per half plane):

Φ− = −

³
 − −

´

³
−
´³

 − −
´
⎡⎣1− −

³
−
´

−

⎤⎦+ 0

− +
1

−  (6.21)

P () Φ
+


= −


³
 − −

´

³
−
´³

 − −
´ h ( − )2 ++−

³
−
´i

− ( − ) ( (+0)−  ()) +  (+0)P ()
+0

+ +1
+ (6.22)

Let us examine the number of unknown constants in equations (6.21) and (6.22).

In addition to the two unknown constants 0 and 1 introduced by the entire function,

the factor  () contains four edge displacement constants  0 00 000 at  = +0 given

in (6.8). Two of these can be eliminated by application of the structural boundary

conditions, leaving two that need to be determined as part of the solution. The edge

potential  (+0) can actually be determined independently of the structural boundary

conditions. This can be accomplished by two fully equivalent ways.

The first is a physical argument and consists of invoking the continuity of the

potential function across  = 0 or  (+0) =  (−0)  and evaluating  (−0) using (6.9)
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at  = +0 and  = −0 to obtain

 (+0) = −

³
 − −

´

³
−
´  (6.23)

Recalling that (6.9) arises from imposing a  = 0 condition on  = 0 for   0,

(6.23) is seen to be merely a restatement that  (±0) = 0
The second way of determining  (+0) is a purely mathematical argument, and con-

sists of asymptotically expanding Φ− ()  for large  and using Watson’s Lemma

in reverse fashion to determine  ()  and subsequently  ()  for  → +0. No

assumptions about the continuity of the potential at  = 0 is made. The deriva-

tion is given in full in Appendix B, and the end result is exactly as in (6.23). The

mathematical derivation also shows that (6.23) holds for all structural edge conditions.

Either one of equations (6.21) and (6.22) can be used to solve the scattering prob-

lem. Equation (6.21) has only two unknown constants and is more compact than

equation (6.22) which has four unknowns and a greater number of terms. It would

appear then that the best approach is to solve (6.21). It turns out, however, that it is

not possible to find two equations to solve for the two unknowns while working with

(6.21). Equation (6.22), although more cumbersome, provides us with four equations

for the four unknowns through the factor P () multiplying Φ+
First we ensure that Φ+ is indeed analytic in + We divide (6.22) through

by P () and note that the expression for Φ+ appears to contain two simple poles
corresponding to the + in-vacuo plate roots This would violate the condition that

Φ+ is analytic in + unless we require that the entire r.h.s. of (6.22) is zero for

 = + || and  = + || . This gives us two of the four equations we’re seeking.
There are two equivalent ways of obtaining the additional pair of equations.

1) We start from (6.21) and use (6.11) to obtain an equation for Φ−

P () Φ
−


=  ( − )2


³
 − −

´

³
−
´³

 − −
´
⎡⎣1− −

³
−
´

−

⎤⎦
+ ( − ) ( (+0)−  ())−  (+0)P ()  (6.24)

Φ− appears in the above equation to have poles at the two in-vacuo roots in −

This of course violates the analyticity of Φ− in − and we therefore require that
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the r.h.s. of (6.24) is zero for  = −and  = − giving us an additional two
equations.

2) Alternatively, we can ensure that there are no propagating waves at the in-

vacuo roots in the far field solution of  (À 1 0)  which is obtained by inverse

transforming the r.h.s. of (6.22) divided by P ()  The far field solution is dominated
by the residue contributions as we close the contour in the upper half plane and pick

up all the poles in − In additional to the pair of poles tied up with the zeros of +

which are system roots, there are also the two poles corresponding to the in-vacuo

plate roots in − The first provide us with a pair of downstream propagating waves

that satisfy the fluid-loaded plate equations, whereas the latter are spurious poles

thrown up by our method. They are in fact tied up with the nearfields at the edge

and cannot propagate to the far field. The r.h.s. of (6.22) must therefore be zero for

 = − and  = −
It is fairly straightforward to show that the solution given by the mathematical

approach in 1) and that given by the physical argument in 2) are entirely equivalent.

One can use the following special identity between the split kernels evaluated at the

in-vacuo roots 0

− (0) = − ( − 0)
2

+ (0)
 (6.25)

to show that the right hand sides of (6.22) and (6.24) are equal to each other at 0 =

{−−}, or indeed also at the + roots 0 = { }.
It is convenient to work with one single equation, say (6.22), evaluated at the four

in-vacuo roots. Consolidating and rearranging terms, our four equations in the four

unknown constants become

+0
+ (0) +10

+ (0) +  ( − 0) (0) = (6.26)


³
 − −

´

³
−
´

⎡⎣ ( − 0)
2³

0 − −
´ +

+ (0)
−
³
−
´

³
0 − −

´ +  ( − 0)

⎤⎦ 
for 0 = { −−} 

Having determined all the unknown constants in the system, we are ready to solve for

the scattered field. We combine (6.21) and (6.10) to obtain the full range transform
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of the potential

Φ () = Φ− +Φ+ =
0

− ()
+

1

− ()
(6.27)

−

³
 − −

´

³
−
´³

 − −
´
⎡⎣1 + −

−
³
−
´

− ()

⎤⎦ 
For solutions downstream from the edge, we inverse transform (6.27) by closing the

contour in the upper half plane being careful to pass below any poles that may have

crossed over into the 4 quadrant. The far field solution is given by the residue

contributions. Since − ∈ − the only poles that contribute are the zeros of − () 

By writing − = +, and noting that + is analytic and free of zeros in +, we

see that the zeros of − () are simply the zeros of  in + which are in turn the

dispersion roots of the infinite plate because  = . The scattered far-field potential

is therefore

 (+0) =
2X

=1

+
¡
+
¢



¡
+
¢
⎡⎣0 +1

+
 +


³
 − −

´
−

³
−
´


³
−
´³

+ − −
´

⎤⎦ +  À 1

(6.28)

where + are the 
+ roots of the dispersion function 

¡
+
¢
= 0 and  is given by

 ≡ 


=
55 + 33 +

¡
− 2

¢


 ()
+ 2 ( − )  (6.29)

In the far field, the deflection and potential for each wave are related through the

continuity equation by  () =  ()  ()  ( − )  Applying this transformation

to each wave component in (6.28) gives the far field deflection

 () = −
2X

=1


¡
+
¢¡

 − +
¢+

¡
+
¢



¡
+
¢
⎡⎣0 +1

+
 +


³
 − −

´
−

³
−
´


³
−
´³

+ − −
´

⎤⎦ +  À 1

(6.30)

The reflection coefficients are defined in the usual way as the ratio of the scattered and

incident deflection wave amplitudes, and therefore consist of each wave component in

(6.30) with  = 1 giving


 = − 

¡
+
¢¡

 − +
¢+

¡
+
¢



¡
+
¢
⎡⎣0 +1

+
 +

³
 − −

´
−

³
−
´


³
−
´³

+ − −
´
⎤⎦  (6.31)
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To obtain the reflected nearfields, one must evaluate the branch cut integral along

the  () cut in the upper half plane which results in the following integral for the

scattered deflection

 () = −
1



+∞Z
0

+ ()

 () ( − )

⎡⎣0 + 1 +

³
 − −

´
−

³
−
´


³
−
´³

 − −
´

⎤⎦ −
(6.32)

The total reflected field is simply  () =  () +  () 

6.4 Reflection Coefficients for Representative Edge Con-

ditions

There is a three step process for obtaining reflection coefficients for specific edge con-

ditions:

1) Apply the structural boundary conditions at the edge to eliminate two of the

four unknown plate deflection constants from within  () (given in (6.8)).

2) Incorporate the reduced  () into (6.26) and solve the four equations for the

four unknowns. The four constants will now be specific to the edge condition as well

as to the incident wave parameters.

3) Insert the values of 0 and 1 obtained from step 2) above into (6.31) and solve

for the reflection coefficients. Note that even though we solve for all four constants,

only the two associated with the entire function are needed in the final solution.

6.4.1 Free Edge

The structural boundary conditions for a free edge are given by 00 (0) = 0 (zero

total moment) and 000 (0) − 0 (0) = 0 (zero total transverse force). For an

incident wave  = − the equivalent scattered quantities are 00 (0) = 2  and

000 (0)− 0 (0) = 3  +  Substituting these into (6.8), we eliminate two of the

four deflection variables to obtain a function  () that is specific to a free edge

 () = − ¡2 + 
¢
 (0)− 20 (+0) +

¡
3 +  + 2

¢

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The four equations in the four unknown constants 0 1  (0) and 0 (0) are

0
£
+ (0)

¤
+1

£
0

+ (0)
¤
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
(6.33)

+0 (0)
£− ( − 0) 

2
0

¤
= ( − 0)

¡
3 +  + 20

¢
 + I (0 ) 

for 0 = { −−}

where

I (0 ) ≡  ( − )

 ()

"
 ( − 0)

2

(0 − )
+

+ (0)
− ()

(0 − )
+  ( − 0)

#
(6.34)

is a term common to all edge conditions and contains parameters solely related to the

incident wave.The magnitude and phase of the reflection coefficient for a free leading

edge are given in figure 6.3. The power normalized reflection coefficients are given in

figure 6.4. Power normalization consists of weighting the wave amplitudes by the wave

impedance and is performed as described previously in equation (4.28). We observe

that there is a significant amount of over-reflection at the free edge and that this

apparent amplification of the reflected waves is accomplished while conserving power.

This is to be expected because a free edge is a conservative scatterer as discussed in

Chapter (4). The total power reflected is equal to the incident power as long as the

sign of the wave energies is maintained in adding the power of the reflected waves.

As a direct consequence of these power conservation requirements, it can be seen

that the mere presence of negative energy waves at the scattering frequency guarantees

over-reflection. This is in contrast to the power arithmetic in the scattering process

from a local plate discontinuity, which allows for the possibility that the incident wave

energy is fully transmitted preventing the occurrence of over-reflection.

6.4.2 Clamped Edge

A clamped edge imposes zero total displacement and zero total slope. The scattered

deflection and slope at the edge are therefore  (0) = − and 0 (0) = − Elimi-
nating these quantities from  ()  the equations for the four unknown constants 0
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Figure 6.3: Magnitude and phase of the reflection coefficients for a free leading edge

for  = 005  = 22 and  = 0
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Figure 6.4: Power normalized reflection coefficients for a free leading edge for  = 005
 = 22 and  = 0

1 
00 (0)  and 000 (0) become

0
£
+ (0)

¤
+1

£
0

+ (0)
¤
+ 00 (0) [−0 ( − 0)] (6.35)

+000 (0) [ ( − 0)] = ( − 0) ( + 0)
¡
20 + 

¢
 + I (0 ) 

for 0 = { −−} 

The magnitude and phase of the raw coefficients are given in figure 6.5 and the power

normalized coefficients are given in 6.6. We observe that a clamped leading edge is

significantly less over-reflective than the free edge.

6.4.3 Constraint at Edge

Next, we consider a translational constraint such as an attached spring, lumped mass,

dashpot or any other point constraint attached to the leading edge that can be de-

scribed through a local complex impedance . For the combination of lumped pa-

rameters shown in figure (FigZcLead0), the complex impedance is given by

 = − + +



 (6.36)
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Figure 6.5: Magnitude and phase of the reflection coefficients for a clamped leading

edge for  = 005  = 22 and  = 0
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Figure 6.6: Power normalized reflection coefficients for a clamped leading edge for

 = 005  = 22 and  = 0

The vertical reaction force applied to the plate is simply  (0) while the mo-

ment is zero (by our definition of  as a translational constraint). (We could easily

incorporate rotational effects into our analysis but would then have to be defined

through a 2 × 2 matrix.) The structural boundary conditions in terms of the scat-
tered quantities are therefore 000 (0)−0 (0)−  (0) = 3  +  +  and

00 (0) = 2 . We choose to eliminate 000 (0) from  () and so the equations for the

four remaining constants 0 1  (0)  and 0 (0) are

0
£
+ (0)

¤
+1

£
0

+ (0)
¤
+  (0)

£
( − 0)

¡
0
¡
20 + 

¢− 

¢¤
(6.37)

+0 (0)
£− ( − 0) 

2
0

¤
= ( − 0)

¡
3 +  + 20 + 

¢
 + I (0 ) 

for 0 = { −−} 

As expected, this is a slightly modified version of the system of the equations for a

free edge condition (6.33) which can be recovered by setting  = 0 in (6.37).

Figure 6.7 plots the power normalized reflection coefficients for the case where 

is a pure dashpot. The dashpot provides a dissipative mechanism by which power

is removed from the system. We therefore need to add the power absorbed by the

dashpot into our power balance relations. The time averaged power into the dashpot
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Figure 6.7: Scattering and power absorption at a free leading edge with an attached
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sorbed for  = 0375 (dashpot constant),  = 005  = 2
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is given by the product of the force and in phase velocity at the edge, or using the

definition of the mechanical impedance, by

Π =
1

2
Re {} | (0)|2 

=


2
| (0) + |2 

where  (0) is one of the unknowns solved in (6.37). The wave impedance  () of

the incident wave can be used to recast the power extracted from the plate in the form

of a power normalized coefficient. The power extracted per unit incident wave power

is therefore

Π
Π

=
 | (0) + |2 2

 () ||2
 (6.38)

(Note that the power into the dashpot is a positive energy quantity, and that the sign

of the coefficient above is wholly dependent on the wave energy of the incident wave.)

We note that, with the proper normalization of the power absorbed by the dashpot,

the total scattered power is once again conserved.

The results in figure 6.7 are for a value of the non-dimensional dashpot constant,

 = 0375 chosen to maximize the overall power absorbed per unit incident wave

power for the −1 incident wave.

In the limit  → ∞ we approach the solution for a hinged edge and the power

absorbed into the dashpot tends to 0. In this limit, the boundary condition for the

vertical force yields  (0) = − . We would then have to eliminate  (0)

instead of 000 (0) (in addition to 00 (0)) from  () and so we end up with a significantly

modified system of equations which is given in the next subsection.

6.4.4 Hinged Edge

For a hinged condition, the total displacement and moment are zero, giving  (0) = −
and 0 (0) = − and yielding the system of equations

0
£
+ (0)

¤
+1

£
0

+ (0)
¤
+ 0 (0)

£− ( − 0)
¡
20 + 

¢¤
(6.39)

+000 (0) [ ( − 0)] = ( − 0) 0
¡
20 +  + 2

¢
 + I (0 ) 

for 0 = { −−} 



130 6. Scattering from Leading Edge

The magnitude and phase of the raw coefficients are given in figure 6.8 and the power

normalized coefficients are given in figure 6.9. We observe that the hinged and clamped

reflection coefficients differ mostly in phase and that their magnitudes are almost

identical. Closer inspection by means of overlaying the power normalized coefficients

shows that the hinged leading edge is slightly more over-reflective than the clamped

edge.

6.5 Response for Leading Edge Drive

The same approach as in section 6.4 can be used to solve for the response to a ex-

ternally applied load at an otherwise free leading edge. We simply set the incident

wave amplitude to zero and include the applied loads as part of the structural edge

conditions.

For a transverse load 0, the equations for the unknown constants resemble those

for a translational constraint with  = 0 and  (0) replaced by 0

0
£
+ (0)

¤
+1

£
0

+ (0)
¤
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
+0 (0)

£− ( − 0) 
2
0

¤
= − ( − 0)0 (6.40)

for 0 = { −−} 

For a prescribed moment 0 we just replace 0 with 00 in the above equation.

The far field response is obtained by setting  = 0 in (6.28),

 () =
2X

=1

− ¡+ ¢¡
 − +

¢+
¡
+
¢



¡
+
¢ £0 +1

+


¤


+
  À 1 (6.41)

Two of the constants solved in equations (6.40) are the drive point deflection  (0) and

slope 0 (0)  These can be used directly to form the drive point admittances of the

semi-infinite plate driven at the leading edge

 =
− (0)

0
 

(1)
 =

−0 (0)
0

 (6.42)

where  is translational velocity per unit force and 
(1)
 is rotational velocity per

unit moment. The real parts of these admittances represent the power injected into

the semi-infinite plate by a unit amplitude drive.
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Figure 6.8: Magnitude and phase of the reflection coefficients for a hinged leading edge

for  = 005  = 22 and  = 0
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Figure 6.9: Power normalized reflection coefficients for a hinged leading edge for  =
005  = 22 and  = 0

The results for  are presented in figure 6.10. We observe that the total power

transmitted to the far field balances with that injected into the plate. It is worth

comparing these results to the more familiar case of a line drive on an infinite plate

(top left corner plot in figure 4.4). The most striking difference is that the real part

of the admittance is positive throughout the frequency range, including the range

   where negative energy waves are present indicating that the driver is injecting

power into the semi-infinite plate. This is in contrast to the infinite plate, where

the admittances were negative for    Another feature is the absence of any

singularities in either the far field or the drive point responses at  = 

The second feature is in fact easier to explain. The singularities in the solution

for the line driven infinite plate arose from the coalescence of two roots from separate

half planes. In the case of a semi-infinite plate, only two waves travelling in the same

direction are generated and the pinch singularity does not arise.

The mathematical explanation for the first phenomenon is also clear. For    a

semi-infinite plate driven at the leading edge generates two waves, one positive energy

and one negative energy. The relative magnitudes (in the power normalized sense)
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Figure 6.10: Response of semi-imfinite plate driven by transverse load at leading edge

for  = 005  = 22 and  = 0
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of these two waves determines whether the real part of  is positive or negative.

As can be seen from figure 6.10, the positive energy wave has the greater magnitude

throughout this range and ends up determining the sign of the real part of . For

the case of the line-driven infinite plate, the wave power associated with the negative

energy waves was greater than the power associated with the positive energy waves,

resulting in a net negative for Re {}  In the convectively unstable range, energy flux
results for the coupling between the exponentially increasing and decreasing waves and

the direction of the energy flux is determined by the relative phase between the two

waves. For a line driven infinite plate, the two waves are in phase resulting in energy

directed towards the drive and a negative Re {}  In contrast, for a semi-infinite
plate driven at the leading edge, the two waves are out of phase, resulting in a net

energy flux away from the drive and a positive Re {}.

6.6 Summary

In this chapter we used the Weiner-Hopf technique to derive the reflection coefficients

for the upstream edge of a semi-infinite plate. We perform the multiplicative fac-

torization of the Weiner-Hopf kernel numerically, and our results for the scattering

coefficients are exact. We obtain the scattering matrices for a free edge, a clamped

edge and a hinged edge and find that they are all over-reflective for    Similarly,

we find that a constraint, in the form of a dashpot, absorbs several times the power

of an incident wave for    when properly tuned. Finally, we solve for the semi-

infinite plate drive admittances at the leading edge and find that, in contrast to the

line driven infinite plate, Re {} is positive throughout the frequency range.



Chapter 7

Scattering from Trailing Edge

In this chapter scattering from the trailing edge of a semi-infinite fluid-loaded plate

will be solved using the same Weiner-Hopf based approach employed for the leading

edge problem. The main difference here is that we will allow a wake to be shed from

the trailing edge providing a mechanism by which wave energy may exit the plate

The configuration for the trailing edge scattering problem is shown in figure 7.1. A

downstream propagating wave  = −
+
  with amplitude  and free wavenumber

+ , is incident on the trailing edge of a submerged plate which occupies the half space

−∞    0. A wake of amplitude  = ∆2 where ∆ is the jump in potential

across  = 0, and convective wavenumber  occupies 0    +∞

A Wiener-Hopf based method of solution, valid in the asymptotic limit of small 

and  was used by Oswell (1992) to solve the problem of a free trailing edge with and

without wake. The method described in this chapter uses a different set of Wiener-

Hopf equations then those employed by Oswell (1992) to achieve a simpler solution

that is valid over all frequencies and flow speeds and for nonzero plate tension and

spring support.

7.1 System Equations Using Half-Range Transforms

The half range transforms of the fluid potential are as defined in chapter 6 and are

given by equations (6.2) and (6.1). The half-range transform of the plate displacement,

135
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Figure 7.1: Scattering of plate waves from the downstream edge of a semi-infinite plate

with wake.

now over −∞    0 is

e+ () ≡ 0Z
−∞

 () −

and the formula for obtaining higher order axial derivatives is now given by

+
µ
 ()



¶
= () e+ () + X

=1

()(−1)
(−) (−0)

(−)
 (7.1)

In terms of the half-range transforms just defined, the system equations for the trailing

edge problem are as follows.

The equations relating transformed quantities upstream of the edge, or on the side

occupied by the plate, are

e+ =  ( − )Φ+ −  (−0)  (7.2a)

Φ+


= − ( − )e+ +  (−0)  (7.2b)

−e− = £4 + 2 + − 2
¤ e− +  ()  (7.2c)

where

 () ≡ 000 (−0) + 00 (−0)− ¡2 + 
¢
0 (−0)− 

¡
2 + 

¢
 (−0)  (7.3)

 () is obtained, as before, by applying (7.1) and contains four unknown constants

related to the structural edge conditions, two of which can be eliminated using the

structural edge conditions and the remaining two determined as part of our solution.

Downstream from the edge, symmetry once again dictates that the total potential is

an odd function of  But now, the presence of a wake creates a finite jump, ∆ ( 0) =

 (  = +0)− (  = −0)  in the potential at  = 0 If we identify = ∆ ( 0) 2
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(or in terms of  = +0 quantities as = ∆ ( 0 = +0)) as the wake amplitude, the

total potential must therefore equal the wake potential on  = 0 or  = + =

() The scattered field downstream of the edge is now given by

 =() − ()

³
 − +

´

³
+

´ 
+
   ≥ 0  = 0 (7.4)

and its half range transform is

Φ− ( 0) = − 

( − )
− 


³
 − +

´

³
+

´³
 − +

´   ∈ + (7.5)

where the pole associated with the convective wavenumber  is also in + If we

set  = 0 we recover the case for scattering with no wake which corresponds to

 ( 0) = 0 The latter may better represent the scattering process from a blunt

trailing edge.

Finally, the equation relating + and − quantities through the transformed po-

tential and its vertical derivative remains unchanged and is given by

Φ+


+

Φ−


= − () ¡Φ+ +Φ−¢  (7.6)

7.2 Wiener-Hopf Equation

Eliminating e+ and e+ from (7.2), we obtain an expression relating the plate-side

quantities

 ( − )2Φ+ = −P () Φ
+


(7.7)

+  ( − ) ( (−0)−  ())−  (−0)P () 

where P () ≡ £
4 + 2 + − 2

¤
is the augmented plate operator as before. We

combine (7.5) and (7.6) to obtain

Φ+ − 


( − )
− 


³
 − +

´

³
+

´³
 − +

´ = − 1

 ()

Φ+


− 1

 ()

Φ−


(7.8)
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and use it to eliminate Φ+ from (7.7) to generate an equation relating the vertical

fluid velocities on both sides Φ+ and Φ−

(
P ()−  ( − )2

 ()

)
Φ+


=

 ( − )2

 ()

Φ−



− 
 ( − )2

( − )
− 


³
 − +

´
 ( − )2


³
+

´³
 − +

´ (7.9)

+  ( − ) ( (−0)−  ())−  (−0)P () 

Oswell (1992) proceeds to recast this equation in Wiener-Hopf form. However, as we

saw for the leading-edge problem, it is more convenient to work with the equation

relating Φ− and Φ+ Using (7.8) to eliminate Φ+ in (7.7) and rearranging

terms, we obtain

Φ− +

³
 − +

´

³
+

´³
 − +

´ (7.10)

= −P () Φ
+


−  ( − )2


³
 − +

´

³
+

´³
 − +

´
−  ( − ) ( (+0)−  ()) +  (+0)P () 

where ≡  ()P ()− ( − )2 is the same Wiener-Hopf kernel defined in chapter

6.

With the multiplicative factorization of the kernel  = +− as described in

Appendix (WH), followed by normalization of the terms containing the two (upper

half plane) poles  ∈ + and + ∈ + on the − side of the equation, (7.10) can
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be recast in Wiener-Hopf form

+Φ+ +


( − )

h
+ −+

³


´i
+


³
 − +

´

³
+

´³
 − +

´ h+ −+
³
+

´i

= −P ()
−

Φ−


−  ( − )2

−

³
 − +

´
 ()

³
 − +

´
−  ( − )

− ( (−0)−  ()) +
 (−0)
− P ()

− 

( − )
+

³


´
−  ( − )


³
+

´³
 − +

´+
³
+

´
 (7.11)

Once again, setting  = 0 in this equation gives the Wiener-Hopf equation for no

wake.

7.3 Upstream Solution

We determine the leading order behavior of the r.h.s. of (7.11) as  → ∞ We find

that for the trailing edge problem, the (Φ−)P () − is again the leading order

term. However, the presence of a wake alters its  dependence. By prescribing a

wake downstream of the edge we are effectively imposing a Kutta condition which

requires that the fluid velocity be finite at the edge. The velocity at the trailing edge

is therefore  ∼ 0 as  → 0 and its transform Φ− ∼ 1 as  → ∞ And

with − ∼ 52 from Appendix B, we find that the highest order term on the r.h.s.

behaves as

P ()
−

Φ−


∼ 

1
2   →∞ (7.12)

Next, we invoke Louiville’s Theorem which states that both sides of the Wiener-Hopf

equation (7.11) must be equal to an entire function  () which is analytic throughout

 The order of the polynomial  () must be chosen to balance with the largest term

on the lowest order side of (7.11). We therefore conclude that for  6= 0 the entire
function is a constant, or

 () = 0 (7.13)

Setting each side of (7.11) equal to this entire function, we obtain the pair of
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independent equations

Φ+ = −

³
 − +

´

³
+

´³
 − +

´
⎡⎣1− +

³
+

´
+

⎤⎦ (7.14)

+
0

+
− 

( − )

∙
1− + ()

+

¸


P () Φ
−


= −


³
 − +

´

³
+

´³
 − +

´ h ( − )2 ++
³
+

´
−

i
− ( − ) ( (−0)−  ()) +  (−0)P ()
+0

− − 

( − )
+ ()− (7.15)

The edge potential  (−0) can once again be determined independently of the edge
conditions. We can invoke continuity of the potential function across  = 0  (−0) =
 (+0)  or pursue the more rigorous derivation almost identical to that outlined for

the leading edge in Appendix B to find

 (−0) = − 

³
 − +

´

³
+

´  (7.16)

There are four unknown constants in (7.15) that have to be determined before

we can write down the final solution. These are the wake amplitude  , the entire

function constant 0 and two plate deflection constants contained in the factor  () 

Two additional unknown constants in  () can be eliminated by application of the

structural conditions at the edge.

The need to neutralize the in-vacuo plate roots associated with the P () factor
multiplying Φ− in (7.15) again provides us with the four equations required to

solve for the four unknown constants, and the trailing edge version of equations (6.26)

are found to be

0
− (0) + 

+ ()− (0)
( − )

+  ( − 0) (0) =


³
 − +

´

³
+

´
⎡⎣ ( − 0)

2³
0 − +

´ +
− (0)+

³
+

´
³
0 − +

´ +  ( − 0)

⎤⎦ 
for 0 = { −−} 
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We are now ready to solve for the scattered field. We combine (7.14) and (7.5) to

obtain an expression for the full range potential

Φ () =
0

+ ()
− 

( − )

∙
+ 1− + ()

+ ()

¸
(7.17)

−

³
 − +

´

³
+

´³
 − +

´
⎡⎣+ 1− +

³
+

´
+ ()

⎤⎦ 
For solutions upstream from the edge, we close the contour in the lower half plane

avoiding any poles that may have crossed over from the first quadrant when taking the

inverse transform of (7.17). The far field solution is given by the residue contributions.

The two poles at + and  are both in the upper half plane, hence the only poles

that contribute are the zeros of + ()  which are just the zeros of  = +− in

− (given that − is analytic and free of zeros in −) and simply correspond to the

upstream travelling roots of the dispersion equation.

The scattered far-field potential and deflection upstream of the edge are therefore

 (+0) =
2X

=1

− ¡− ¢


¡
−
¢ "0 + 

+ ()¡
− − 

¢
+


³
 − +

´
+

³
+

´

³
+

´³
− − +

´
⎤⎦ −  ¿ −1 (7.18)

 () = −
2X

=1


¡
−
¢¡

 − −
¢− ¡− ¢


¡
−
¢ "0 + 

+ ()¡
− − 

¢
+

 ( − )
+
³
+

´
 ()

³
− − +

´
⎤⎦ −  ¿ −1 (7.19)

where − are the 
− roots of the dispersion function 

¡
−
¢
= 0 and  ≡  is

given in (6.29). The reflection coefficients, defined in terms of far field deflection wave

amplitudes, are therefore:
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 = − 

¡
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¢¡
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¡
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− − 
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³
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´
+

³
+

´
 ()

³
− − +

´
⎤⎦ 

(7.20)
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with  = 1 in the solution for 0 and  The reflected near field is obtained by

evaluating the branch cut integral along the  () cut (contained in  ()) in the

lower half plane and is given by

 () = −
1



+∞Z
0

− (−)
 (−) ( + )

∙
0 − 

+ ()

( + )

−

³
 − +

´
−

³
+

´

³
+

´³
 + +

´
⎤⎦ +  ≤ 0 (7.21)

The scattered deflection is given by the sum of the pole contributions and the near

field contribution,  =  + 

In the absence of a wake, a situation that might more accurately model scattering

from a blunt trailing edge, the Kutta condition is no longer satisfied and a weak

singularity in the fluid velocity is allowed to exist. The behavior of the dominant

term (7.12) now becomes ∼ 1 for large  and the entire function (7.13) has to be

augmented by one order to become  () = 0 + 1 This Wiener-Hopf problem

is almost identical to the leading edge problem solved in chapter 6 save for a few

sign differences and with the roles of the upstream and downstream travelling waves

swapped. The derivation follows along identical lines and will not be presented here.

The solution consists of replacing all the wake terms in (7.3), (7.18), (7.19) and (7.20)

with the additional 1 term from the entire, or


+ ()

( − )
←→ 1 (7.22)

7.4 Downstream Solution

The solution downstream from the trailing edge is obtained by closing the contour in

the upper half plane when inverting (7.17). There are two pole contributions,  and

+ , corresponding respectively to the wake propagating at the convective wavenumber

and a term that cancels exactly with the incident wave. The solution is

 () =() − 
 ( − )

 ()


+
   ≥ 0

which corresponds exactly to (7.4), as expected. We note that the range of  over

which the downstream solution is valid extends all the way down to  = 0. This is
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because the function (7.17) is meromorphic, or free of branch cuts, in + and hence

does not have a nearfield for  ≥ 0

7.4.1 The Wake Impedance

In order to account for the total power scattered at the trailing edge, we need to solve

for the wave power carried by a wake of amplitude  . We pursue the approach of

chapter 3 that led to the identification of the wave flux for plate waves. Figure (W1)

has the configuration for a wake of infinite extent, displaced from the horizontal by 

and propagating at the convective wavenumber  The potential field carried by a

wake of amplitude  is

 (  ) = ()()−()||− (7.23)

The pressure field induced by this wake is identically zero everywhere by Bernoulli’s

equation. The displacement of the wake from the horizontal is given by  = ()−

where  does not necessarily have a simple relationship with the wake amplitude 

and will be assumed by us to be prescribed separately.

With reference to the analysis of section 3.1 of chapter 3, the time averaged fluid

flux as given by (3.19) becomes

h i = 

+∞Z
0

­
 + 2

®


=


2

+∞Z
0

Re {} 

=
1

4
 | |2  (7.24)

The interface flux, given in (3.20), arrises from an interface with non-zero vorticity

being displaced from the horizontal and is given by

hi =  hi
= −1

2
Re
©


ª
 (7.25)

In contrast to an elastic plate, all structural inertia and restoring forces are zero for

the wake together with any fluxes associated with them. Therefore the total wake flux
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is simply the sum of the fluid and interface fluxes

hi = 1

4
 | |2 − 1

2
Re
©


ª
 (7.26)

The maximum contribution from  comes when the wake amplitude and displacement

are exactly out of phase, and there is no contribution when they are in phase.

7.5 Reflection Coefficients for Representative Edge Con-

ditions

The same three step process for obtaining reflection coefficients introduced in chapter

6 also applies to the trailing edge.

1) Apply the structural boundary conditions at the edge to eliminate two of the

four unknown plate deflection constants from within  () (given in (7.3)).

2) Incorporate the reduced  () into (7.3) and solve the four equations for the four

unknowns. The four constants will now be specific to the edge condition as well as to

the incident wave parameters.

3) Insert the values of 0 and  (wake) or 1 (no wake) obtained from step 2)

above into (7.20) and solve for the reflection coefficients.

7.5.1 Free Edge with Wake

Application of the zero total moment and zero total transverse force edge conditions

in the presence of an incident wave  = − yields the scattered quantities

00 (0) = 2  and 000 (0) − 0 (0) = 3  +  at  = −0. Substituting these into
 () (7.3) we eliminate two of the four deflection variables to obtain the four equations

in the four unknown constants 0   (0) and 0 (0) for a free trailing edge with wake

0
£
− (0)

¤
+ 

∙
+ ()− (0)

(0 − )

¸
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
(7.27)

+0 (0)
£− ( − 0) 

2
0

¤
= ( − 0)

¡
3 +  + 20

¢
 + I (0 ) 

for 0 = { −−} 

Here, I (0 ) is the same factor common to all edge conditions given in (6.34).
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Figure 7.2: Magnitude and phase of reflection coefficients and wake amplitude for a

free trailing edge with wake for  = 005  = 22 and  = 0
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Figure 7.3: Power normalized reflection coefficients and wake amplitude for a free

trailing edge with wake for  = 005  = 22 and  = 0

The magnitude and phase of the reflection coefficients, together with the wake

amplitude  for a unit incident wave, are given in figure 7.2. The power normalized

reflection coefficients and wake amplitude are given in figure 7.3. The reflected wave

amplitudes are power normalization in the usual way (as described previously in equa-

tion (4.28)), whereas the wake amplitude is power normalized using the expression for

the wake flux given in (7.26) by setting  =  (0) for the deflection amplitude of the

wake, where  (0) is the deflection at the free edge solved in (7.27).

We observe that the incident wave energy is almost entirely absorbed in the wake,

especially at very low frequencies, where the power normalized reflection coefficients

tend to zero. This can clearly be seen in each of the three sub-plots of figure 7.4 which

show the spatial response to an incident propagating wave +1 at the fixed frequency

 = 15× 10−3 for three sets of plate parameters.
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Figure 7.4: Spatial response for trailing edge with wake to unit incident wave +1 at

 = 15 × 10−3 and for plate parameters:  = 005; a)  = 0,  = 0; b)  = 22,
 = 0; c)  = 0,  = 55
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7.5.2 Free Edge without Wake

For the corresponding condition of a free trailing edge without wake, we set  = 0

and solve for the four unknown constants 0 1  (0) and 0 (0) in

0
£
− (0)

¤
+1

£
0

− (0)
¤
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
(7.28)

+0 (0)
£− ( − 0) 

2
0

¤
= ( − 0)

¡
3 +  + 20

¢
 + I (0 ) 

for 0 = { −−} 

The magnitude and phase of the reflection coefficients are given in figure 7.5. The

power normalized reflection coefficients are given in 7.6, and show a sizeable over-

reflection process much like the one observed for a free leading edge.

7.5.3 Constraint at Edge without Wake

Next, we consider a translational constraint described through a local complex impedance

 attached to a blunt trailing edge with no wake. The vertical reaction force applied

to the plate is  (0) while the moment is zero. With these edge conditions,

the equations for the four remaining constants 0 1  (0)  and 0 (0) are

0
£
− (0)

¤
+1

£
0

− (0)
¤
+  (0)

£
( − 0)

¡
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¡
20 + 

¢− 

¢¤
(7.29)

+0 (0)
£− ( − 0) 

2
0

¤
= ( − 0)

¡
3 +  + 20 + 

¢
 + I (0 ) 

for 0 = { −−} 

We again specialize to the case where the constraint is a pure dashpot,  = 

where  is the dashpot constant. Figure 7.7 is the counterpart of 6.7 for the leading

edge dashpot and plots the power normalized reflection coefficients for the a dashpot

constant that achieves the maximum amount of incident wave power absorbed for the

+1 incident wave. The extracted power is expressed in the form of a power normalized

coefficient using (6.38) and we see from the the dashed black line at 0dB that the

total power scattered and absorbed is once again equal to the incident wave power.

We note that the maximum power absorption is achieved with a comparable value of

the dashpot constant but that the amount of power harvested as a proportion of the
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Figure 7.5: Magnitude and phase of reflection coefficients for a free trailing edge

without wake for  = 005  = 22 and  = 0
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Figure 7.6: Power normalized reflection coefficients and power balance for a free trailing

edge without wake for  = 005  = 22 and  = 0

incident wave power is significantly less than that achieved by a well-tuned dashpot

at the leading edge.

7.5.4 Hinged Edge without Wake

For completion, we also include the results for a hinged trailing edge without wake

0
£
− (0)

¤
+1

£
0

− (0)
¤
+ 0 (0)

£− ( − 0)
¡
20 + 

¢¤
(7.30)

+000 (0) [ ( − 0)] = ( − 0) 0
¡
20 +  + 2

¢
 + I (0 ) 

for 0 = { −−} 

The magnitude and phase of the reflection coefficients are given in figure 7.8 and the

power normalized reflection coefficients are given in 7.9. We note that, even though

the raw reflection coefficients have much smaller magnitudes than the coefficients for a

hinged leading edge, the power normalized coefficients are almost identical indicating

that a hinged edge is equally over-reflective at either end.
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Figure 7.7: Scattering and power absorption at a free trailing edge (no wake) with

an attached dashpot  =  Power normalized reflection coefficients and normalized

power absorbed for  = 0335 (dashpot constant),  = 005  = 2
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Figure 7.8: Magnitude and phase of reflection coefficients for a hinged trailing edge

without wake for  = 005  = 22 and  = 0
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Figure 7.9: Power normalized reflection coefficients for a hinged trailing edge without

wake for  = 005  = 22 and  = 0

7.6 Response for Trailing Edge Drive

7.6.1 Without Wake

For the response to an externally applied load at a free and wakeless trailing edge, we

set the incident wave amplitude to zero and incorporate the applied loads through the

structural edge conditions.

For a transverse load 0, the equations for the unknown constants with no wake

present are

0
£
− (0)

¤
+1

£
0

− (0)
¤
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
+0 (0)

£− ( − 0) 
2
0

¤
= − ( − 0)0 (7.31)

for 0 = { −−} 

The response to a prescribed moment 0 can be obtained by making the substitution

0 → 00 in equations (7.31) above. The far field response is obtained by making

the substitution (7.22) and setting  = 0 in (7.19)

 () =
2X

=1

− ¡− ¢¡
 − −

¢− ¡− ¢


¡
−
¢ £0 +1

−


¤


−
  ¿ −1 (7.32)
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The drive point deflection  (0) and slope 0 (0) obtained from solving equations (7.31)

are used to form the drive point admittances

 =
− (0)

0
 

(1)
 =

−0 (0)
0

 (7.33)

where  is translational velocity per unit force and 
(1)
 is rotational velocity per

unit moment. The power injected into the semi-infinite plate at the trailing edge by a

unit amplitude drive is given by the real parts of these admittances.

The results for  are plotted in figure 7.10. We observe that the total power

transmitted to the far field balances with that injected into the plate. Comparing

these results with the equivalent results for a leading edge drive given in figure 6.10

we find that, remarkably, the real and imaginary parts of  are equal. Although the

trailing edge driver imparts more power than the leading edge driver to the individual

waves it generates, the total power imparted is the same whether the driver is at the

upstream or downstream edge (the latter is implied by the equality between the real

parts of ).

We also note that  becomes purely resistive as  → 0 for the choice of plate

parameters used in figure 7.10. This is in fact a feature of the response only for  6= 0
when, at low enough frequencies, the tension restoring forces dominate the bending

forces and the plate acts much like a string in tension which is purely resistive at the

drive instead of as a bending beam which has both resistive and reactive components

at the drive.

7.6.2 With Wake

If we further assume that, together with an applied external load, the Kutta condition

is satisfied at the trailing edge the results above need to be modified as follows.

A wake of (potential) amplitude () now occupies the space   0. The

equations for the unknown constants for an applied transverse load 0 become

0
£
− (0)

¤
+

∙
+ ()

(0 − )
− (0)

¸
+  (0)

£
( − 0) 0

¡
20 + 

¢¤
+0 (0)

£− ( − 0) 
2
0

¤
= − ( − 0)0 (7.34)

for 0 = { −−} 
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Figure 7.10: Response of semi-imfinite plate driven by transverse load at trailing edge

without wake for  = 005  = 22 and  = 0



156 7. Scattering from Trailing Edge

The far field response is now given by setting  = 0 in (7.19) and substituting in 

and 0 from (7.34) above. The drive point admittances are still given by (7.33) with

deflection  (0) and slope 0 (0) provided by (7.34).

The problem of the trailing edge drive with wake has now been solved. However,

we need one additional piece of information to be able to evaluate the power entrained

in the wake. That is the deflection of the wake vortex sheet from the horizontal given

by () The natural choice is to take  =  (0) where  (0) is a solution of (7.34).

The power entrained in the wake can then be calculate using the expression for wake

flux given in (7.26).

Figure 7.11 plots the drive point and far field responses for a driver at the trailing

edge with wake. The choice of wake displacement amplitude discussed above is only

needed to power normalize the wake coefficient. The wave amplitudes are of course

power normalized independently of this choice. The drive point  also does not

depend on this choice.

7.7 Summary

In this chapter we used the Weiner-Hopf technique to derive the reflection coefficients

for the downstream edge of a semi-infinite plate. As for the leading edge, the multi-

plicative factorization of the Weiner-Hopf kernel is evaluated numerically and exactly,

and so our results for the scattering coefficients are exact. We obtain the scattering

matrices for a free edge, a clamped edge and a hinged edge and find that they are all

over-reflective for    The exception is the free trailing edge with wake which,

incredibly, is found to absorb almost all of the incident wave energy. We also discover

that in order to properly account for the power in the wake, a term proportional to

the wake deflection amplitude must be included. Finally, we solve for the semi-infinite

drive admittances at the trailing edge and find that when there is no wake, Re {}
is positive throughout the frequency range just like at the leading edge. When a trail-

ing edge wake is present, Re {} is significantly smaller in magnitude and negative
throughout   .
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Figure 7.11: Response of semi-imfinite plate driven by transverse load at trailing edge

with wake for  = 005  = 22 and  = 0



Chapter 8

Global Modes of Long, Finite

Plates

In this chapter we study the self-sustaining, unstable resonances of plates immersed

in a moving fluid. We will use the reflection coefficients derived by the Weiner-Hopf

method in chapters 6 and 7 to solve for the global modes of a finite plate. We limit our

analysis to ‘long plates’ out of necessity; our Weiner-Hopf based reflection coefficients

are for incident propagating waves only and do not account for reflections from incident

nearfields. Our analysis is therefore valid for plates whose edges are far enough, for

the longest wavelength and lowest frequency of interest, such that the nearfield from

one edge does not significantly effect the other edge.

8.1 Global Modes for Large 

We consider a ‘long’ plate of length  with 2×2 reflection matrices  and  at the

leading and trailing edges respectively. The derivation of the condition for resonance

is identical to that presented in section 5.1.1 and will not be repeated here. We will

only restate the main result: the eigenfrequencies are complex roots of the system

determinant  ( − G) = 0 (5.7), where  is the identity matrix, and G is the 2 × 2
‘propagating waves only’ gain matrix defined in (5.8) and whose terms are given in

(5.9).

158
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The results for the global modes of specific finite plates presented in this chapter

are all obtained by numerically sweeping the complex- and  planes for zeros of the

system determinant. The procedure adopted here is described in great detail in Peake

(2004) and entails evaluating all components comprising the gain matrix for complex .

These include the exponential propagation factors as well as the Weiner-Hopf obtained

reflection coefficients.

The need to evaluate the reflection coefficients for complex frequencies has a clear

physical rationale. At resonance, all waves incident on a plate edge are vibrating at

the same frequency. If the system is unstable, the incident waves will in addition be

accompanied by a temporal growth rate embodied by the (positive) imaginary part

of the eigenfrequency. For a given edge condition, the reflection coefficient for an

incident wave which is growing in time differs by a small but important amount from

the reflection coefficient for an incident wave with real frequency. The difference in

magnitude and phase between the two scattering processes is captured precisely by

evaluating the reflection coefficient at the complex eigenfrequency in question.

8.1.1 Estimates of Maximum Growth Rate

In general, the unstable resonance growth in a finite plate is due to a combination

of over-reflection at the edges and amplification during propagation caused by con-

vectively unstable waves. Doaré & de Langre (2006) have proposed a method for

separating the respective contributions to unstable growth due to the reflections and

the propagation path. It is based on the inequality°°G+°° ≤ °°
°°°°Φ−°°°°

°°°°Φ+°°  (8.1)

where kk is the 2-norm of matrix  which is found by computing the square root

of the largest eigenvalue of† Since |max| ≤ kGk  where max is the largest eigen-
value of G, the product of the four scalar terms on the right hand side of (8.1) provides
an upper bound on the gain of the finite system. The upper bound on the contri-

bution from the reflections alone is given by the product of the two scalar quantities

R2 =
°°

°°°°
°° and that for the propagation alone is given by P = kΦ−k kΦ+k 

Since Φ− and Φ+ are diagonal matrices, the upper bound on the propagation gain is
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simply the product of the magnitudes of the most amplified upstream and downstream

travelling waves. Using the naming scheme for waves that we’ve adopted, the upper

bound for propagation is simply

P =
¯̄̄


+
1 
¯̄̄ ¯̄̄


−
1 
¯̄̄
 (8.2)

As mentioned in section 5.1.1, the terms 



 that appear along the diagonal of

the gain matrix are power normalized quantities. They consist of products of reflection

coefficients for the same pair of upstream and downstream travelling waves and have

the property that





 =

⎛⎜⎝ 
1
2


¡
−
¢


1
2


³
+

´


⎞⎟⎠
⎛⎜⎝

1
2


³
+

´


1
2


¡
−
¢ 



⎞⎟⎠
≡

q




 

where  are the power normalized reflection coefficients defined in (4.28). Each term





 therefore represents the total power exchanged at the edges between a given

pair of upstream and downstream propagating waves (in our example − and + )

Retaining the phase of 
 and 

 while evaluating their complex product implicitly

limits us to the power exchanged for the specific case of  = 0

If we instead strip the phase out of each coefficient and evaluate the products of

their magnitudes, one can argue that we have captured the upper bound of this power

exchange for all separation distances . Summing the contributions from all four such

combinations of upstream and downstream travelling waves must therefore provide an

upper bound on the net power scattered at the edges. This quantity is simply the trace

of the product between the ‘phase-less’ upstream and downstream reflection matrices,

or

R =
¯̄

11

¯̄ ¯̄

11

¯̄
+
¯̄

12

¯̄ ¯̄

21

¯̄
+
¯̄

21

¯̄ ¯̄

12

¯̄
+
¯̄

22

¯̄ ¯̄

22

¯̄
 (8.3)

We will see shortly that R provides a lower and tighter estimate than R2 on

the upper bound of the reflection gain.

If the individual terms of R or the products of reflection coefficient given in

(8.3), are to represent power exchange at a plate edge then we need to discard all
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terms involving the two structural evanescent waves −2 and +2 for    Although

these waves do not carry power to the far field (the real parts of their wave impedances

are zero), the terms containing reflection coefficients associated with these waves in

(8.3) do not yield zero. This is because for very short plate lengths, the two struc-

tural evanescent fields can interact to generate a net flux of energy much like in the

phenomenon of optical tunneling. However, this can only happen when the upstream

and downstream edges are so close that they are in each other’s nearfields, which is of

course in contradiction with our ‘long plate’ assumption. We therefore need to omit

these terms from (8.3) for    if our understanding of R as the net exchange of

energy at the edges of a long plate is to remain consistent over all frequencies, giving

R =
¯̄

11

¯̄ ¯̄

11

¯̄
    (8.4)

We note here that in the convectively unstable regime, there also exists a pair

of downstream travelling waves, +1 and +2  that do not carry any flux when taken

individually. However, as discussed by Crighton & Oswell (1991), a net non-zero flux

does arise from their interaction, and the magnitude of this flux is independent of

the separation distance between the plate ends because both waves emanate from the

same upstream edge. Therefore, the terms involving reflection coefficients associated

with these waves must be retained in (8.3).

Finally, we note that the predictions for maximum growth involved in both R2
and R are necessarily made for real  and do not capture the small differences in

the magnitude of the reflection coefficient that result from introducing small positive

imaginary parts into  to account for the non-zero temporal growth rates. Fortunately,

these appear to generally reduce the magnitude of  and hence do not alter the upper

limit of our estimates.

8.1.2 From Maximum Gain to Temporal Growth Rate

We will be using the local maxima of Re {max} (evaluated for real ) to obtain an
initial estimate for the complex resonance frequencies. This will serve as the initial

guess for our root solver, which solves for the actual complex eigenfrequencies by

sweeping the entire complex  plane for the zeros of the system determinant  ( − G)
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(5.7). To convert from gain to temporal growth rates we set

Im {} ≈ ln (Re {max})


 (8.5)

where  is the fastest round trip time across the plate. Our estimate for the shortest

round trip time is based on the largest group velocities for downstream and upstream

travelling waves and is given by

 ≈ 

Re
©

¡
+1
¢ª − 


¡
−1
¢  (8.6)

It is necessary to take the real part of 
¡
+1
¢
over the range of frequencies where

convective instabilities exist and the minus sign in (8.6) is necessary because 
¡
−1
¢

is negative

8.1.3 The Kulikovskĭı Condition

There is one additional bound on the temporal growth rate that we must introduce.

The Kulikovskĭı criterion determines the limiting value of Im {} when the plate length
tends to infinity, and is given by

min
=12
=12

³
Im
n
+ − −

o´
= 0 (8.7)

where the minimum of Im {} over the four combination of waves must be chosen.
The criterion was first introduced by Kulikovskĭı in 1966 in the context of electron

beam instability and cited in Volume 10 of the Course for Theoretical Physics, Physical

Kinetics, pg 283, by Lifshitz and Pitaevskĭı’s (1981). More recently, it has been used in

the context fluid-elastic instabilities by Doare & de Langre (2002) and Peake (2004). It

represents a balance between the most amplified wave travelling downstream and the

least attenuated wave travelling upstream. In our context, the two waves in question

are always +1 and −1  therefore the condition in (8.7) can be written more succinctly

as

Im
©
+1 − −1

ª
= 0 (8.8)

For the frequency range where convectively unstable waves are present, this balance

is achieved for finite positive values of Im {}  Outside this frequency range, only
Im {} = 0 satisfies equation (8.8).
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8.1.4 An Explicit Kulikovskĭı Condition?

If we substitute our upper bound on gain from (8.3) into (8.5), we obtain

Im {} ≈ ln (R)


+
ln (P)


=

µ
ln (R)


+
ln (P)


¶
k  (8.9)

where  is the shortest round trip time given by (8.6) and

k ≡
Ã

1

Re
©

¡
+1
¢ª − 1


¡
−1
¢!−1 (8.10)

is the parallel sum of the fastest upstream and downstream going group velocities

involved in the expression for 

The term involving the propagation factors yields

ln (P)


=
ln
³¯̄̄


+
1 
¯̄̄´
+ ln

³¯̄̄


−
1 
¯̄̄´



=
− Im©+1 ª+ Im©−1 ª



= − Im©+1 ª+ Im©−1 ª 
As we take the limit →∞ the term involving the reflection coefficients in (8.9) goes

to zero because R is independent of plate length, giving

Im {} ≈ £− Im©+1 ª+ Im©−1 ª¤ k  →∞ (8.11)

This is an approximate version of the Kulikovskii condition, in which the Im {} is
now given explicitly. The approximation again comes from evaluating the imaginary

part of the wavenumbers +1 and 
−
1 for Re {}  whereas the implicit solution involved

in (8.8) inherently incorporates the temporal growth rate.

8.2 Finite Flag Configurations

8.2.1 Clamped Leading Edge, Free Trailing Edge (No Wake)

T = U2

We will first consider a clamped-free plate which has just enough tension ( = 2) to

eliminate convectively unstable waves, but retains a wide enough frequency range for
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Figure 8.1: Power normalized reflection coefficients for a clamped upstream edge (fig-

ures in left column) and a free trailing edge with no wake (figures on right) for plate

parameters  = 005  = 2 and  = 0

which negative energy waves exist to enable over-scattering at the edges (dispersion

plot of figure 2.4c). The power normalized reflection coefficients for both edges are

plotted in a single figure (figure 8.1) with the left column representing scattering at

the upstream edge and the right column, scattering at the downstream edge.

Both edges are clearly over-reflective for    and upper bounds on the gain

due to the reflection process alone are given by the two estimates R2 and R

discussed in the previous section. Those two quantities are plotted in figure 8.2 and

show that R provides a consistently lower bound than R2, with R = 1 (i.e., a
gain of unity) comprising the boundary between stable and unstable resonance. The

difference between the two estimates is particularly striking for frequencies   

where R2 appears to predict the possibility of gains around 8. This is purely a

result of our having omitted the structural evanescent waves from the  matrices when
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Figure 8.2: Estimates for upper bounds on gain due to the reflection processes alone

for a plate clamped at the upstream edge and free (with no wake) at the downstream

edge. Plate parameters:  = 005  = 2 and  = 0 (dispersion plot of figure 2.4c)

computing R The same large- arguments can be used to omit those same terms

prior to evaluating the 2-norm of the reflection matrices (now reduced to two scalars).

In that case, R2 collapses to the lower line given by R in our figure. However,

we have retained all terms of  when evaluating R2 primarily to highlight this

contrast.

The two estimates, however, provide comparable values for the gain for frequencies

   and predict that the lower resonance frequencies will experience the largest

gains. This is of course due entirely to all eight individual power normalized reflection

coefficients tending to ∞ as  → 0

The maximum eigenvalue of the gain matrix (evaluated for real ) is plotted in

figure 8.3 for four representative plate lengths. The local maxima of the real part of the

maximum eigenvalue (which also coincide with the frequencies at which the imaginary

part crosses zero) provide us with an initial estimate of the resonance frequencies and

temporal growth rates of the finite system. Overlaid on top of the maximum eigenvalue

are our estimates for the upper bound on the gain given by PR In our case, the

propagation path does not provide a contribution to the gain (for real ) due to the

total absence of convectively unstable waves Therefore, P = 1 and an upper bound on
the gain is provided solely by R which is independent of plate length. The upper

bound is therefore the same in all four sub-figures. We observe that in no instance does

max cross this upper bound and that PR provides a particularly tight bound for
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Figure 8.3: Real part of the maximum eigenvalue of the gain matrix, Re {max}, vs.
estimates for the upper bounds on gain, PR for a plate clamped at the upstream

edge and free (with no wake) at the downstream edge. Plate parameters:  = 005
 = 2 and  = 0

small .

As described in section 8.1.2, the maxima of Re {max} are converted into temporal
growth rates Im {} through the transformation formula given in (8.5) and used as
an initial guess in our exact root solver for (5.7). These initial guesses, together with

the exact complex eigenvalues, are plotted in figure 8.4. Also overlaid are the upper

bounds on the gain from figure 8.3 transformed into temporal growth rates again using

(8.5). Given that the round trip time is a function of plate length, the estimates for the

upper bound of Im {} now vary with  even though they are based on contributions

from the over-reflecting edges only.

We observe that there are generally fewer actual eigenfrequencies than initial

guesses. This is because not all local maxima of Re {max} are able to achieve the
resonance condition, Re {} = 1 and Im {} = 0 as the imaginary part of frequency
is increased (or decreased) from 0. We also observe that the initial guesses appear to

almost always overestimate the temporal growth rate. This is reassuring because our

estimates for the upper bound are also based on the Re {} evaluation of the reflec-
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Figure 8.4: Real and imaginary parts of eigenfrequencies, and bounds for temporal

gowth rates, for a plate clamped at the upstream edge and free (with no wake) at the

downstream edge. Plate parameters:  = 005  = 2 and  = 0
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tion coefficients. The reason for this is probably due to the fact (observed numerically

but not proved) that the magnitudes of reflection coefficients tend to decrease with

increasing, positive Im {}.
We note that the Kulikovskii condition for the set of plate parameters chosen in

this example is Im {} = 0We therefore expect the imaginary parts of the finite plate
eigenfrequencies to tend to 0 as  → ∞ This trend is clearly seen in figure 8.4. In

fact, it is easy to show that our own upper bound also tends to 0 in this limit. As we’ve

seen, the upper bound for the gain is independent of plate length whereas the round

trip time grows linearly with , giving Im {} = ln (PR)  → 0 for →∞

Figure 8.5 plots slices through the Re {} and  planes of the system determinant

 ( − G) for four, fixed, values of the Im {}  The zero of the determinant (or in
this case the minima of the log magnitude) show up as deep blue dots. The presence

of these dark patches indicates that the unique combination of Re {}  Im {} and
 is very close to a global mode of the finite plate. The dark ridges in the figure for

Im {} = 0 for instance, trace out the neutral or stable resonances of the system. And
the absence of dark hues in the upper right hand of the figure for Im {} = 00045

indicates that the resonances with the largest unstable growth rates are limited to low

frequencies consistent with our analysis above.

T = 0

We conclude this subsection with a short discussion of results for a clamped-free plate

with no pre-tension ( = 0) so that convectively unstable waves exist on the equivalent

infinite plate over the lower range of frequencies 0     (dispersion plot of

figure 2.4a). The gain R due to the reflection coefficients alone, shown in figure

8.6, is somewhat larger but has the same qualitative behavior. The fundamental

difference, however, is that the propagation gain is now greater than unity and given

by P =
¯̄̄


+
1 
¯̄̄
 This does not affect the maximum temporal growth rates of the

system for small  but dominates the upper limit for large  as shown in figure 8.7.

The Kulikovskii condition is now non-zero over 0     and acts as a lower limit

on the unstable growth rates preventing them from tending to zero as →∞
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edge wake and  = 005  = 0 and  = 0 (dispersion plot of figure 2.4a)

8.2.2 Clamped Leading Edge, Free Trailing Edge (With Wake)

T = 0

The upper bound on the net power reflected at the boundaries of a clamped-free

plate with trailing edge wake is given in figure 8.8 (dispersion plot of figure 2.4a).

The amount of over-reflection at the upstream edge is not enough to compensate for

the power lost to the wake at the trailing edge, creating a net power deficit at low

frequencies. There is only a narrow range of frequencies around  =  that can

sustain unstable resonance growth through the scattering process alone. This flag-like

configuration is therefore one where the propagation path, and hence the plate length,

plays a crucial role in determining system global stability. For  = 0 the frequency

range 0     sustains convectively unstable waves. We can therefore expect that

the propagation gain will compensate for the power loss through the edges for very

long plates.

Figure 8.9 plots the temporal growth rates and global eigenmodes for four different

plate lengths. We observe that the most unstable eigenmodes are found around  =

0002 where Im
©
+1
ª
has a maximum. In the limit of very long plate lengths, the

upper bound on the temporal growth rate approaches the Kulikovskii condition from

below.
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Figure 8.9: Complex eigenfrequencies and upper bounds on temporal growth rates for

a clamped-free plate with trailing edge wake for  = 005  = 0 and  = 0 Caption
as in figure 8.4.
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Figure 8.10: Upper bounds on gain through reflection alone for a clamped-free plate

with trailing edge wake for two values of the pretension,  = 2 and  = 52 for
 = 005  = 0

T ≥ U2

For large enough values of pre-tension, the convective instabilities are eliminated and

the propagation path no longer contributes to plate instability. Figure 8.10 plots the

reflection only upper bounds on gain for two values of the pre-tension  ≥ 2. It can

be seen that the net reflected power, as predicted by the tighter upper bound R

is less than unity over all frequencies. Therefore, the clamped-free flag with trailing

edge wake is globally and locally stable for  ≥ 2.

We note that the R2 based upper bound does not rule out the presence of

global instabilities at higher frequencies for  ≥ 2 Here is a case where the choice

of estimate, R vs. R2 makes a significant qualitative difference in our overall
evaluation of the global stability of a given finite plate configuration. The accuracy

of the R as a tighter, more representative, upper bound is again demonstrated in

figures 8.11 and 8.12 which confirm that there are no unstable global modes for this

flag configuration.
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Figure 8.11: Real parts of the maximum eigenvalue of gain matrix for a clamped-free

plate with trailing edge wake for  = 005  = 2 and  = 0 Caption as in figure
8.3.



8. Global Modes of Long, Finite Plates 175

1 2 3 4

x 10
-3

-10

-8

-6

-4

-2

0

x 10
-5

Re(ω)

Im
(ω

)

L=500

1 2 3 4

x 10
-3

-10

-8

-6

-4

-2

0

x 10
-5

Re(ω)

Im
(ω

)

L=250

1 2 3 4

x 10
-3

-10

-8

-6

-4

-2

0

x 10
-5

Re(ω)

Im
(ω

)

L=1000

1 2 3 4

x 10
-3

-10

-8

-6

-4

-2

0

x 10
-5

Re(ω)

Im
(ω

)

L=2000

Figure 8.12: Complex eigenfrequencies and upper bounds on temporal growth rates

for a clamped-free plate with trailing edge wake for  = 005  = 2 and  = 0
Caption as in figure 8.4.



176 8. Global Modes of Long, Finite Plates

8.2.3 Free Leading Edge, Free Trailing Edge (With Wake)

T = U2

Estimates for the upper bound on the net power reflected at the edges of a free-free

plate with trailing edge wake are given in figure 8.13, and predict unstable global modes

at low frequencies (dispersion plot given in figure 2.4c). The results are for  = 2

which provides just enough pre-tension to eliminate all convectively unstable waves

and as a result, the propagation path does not contribute to the unstable gain. It is

instructive to compare this case with the identical configuration of a flag with clamped

instead of a free leading edge just discussed in section 8.2.2. There, we concluded that

the flag with a clamped leading edge is stable for all lengths. We discovered in chapter 6

that a free leading edge is more over-reflective than a clamped leading edge. Evidently,

a flag with a free leading edge provides enough amplification through over-reflection

to counteract the significant loss of wave energy into the wake at the trailing edge

thereby creating a system that is globally unstable at low frequencies.

This is another case where the two estimates for maximum gain give qualitatively

different predictions. Although they provide identical results for  → 0 they diverge

quite substantially for  close to  The estimate based on R predicts that the

unstable growth rates diminish to zero as  →  whereas R2 predicts that

they somewhat increase in the same limit. Overlays of the R prediction over the

Re {max} for four different plate lengths in figure 8.14 clearly show that R indeed

provides a tighter and more accurate bound on the greatest possible gain. We note

that the upper bound is particularly tight for    where R just skirts the

maxima of Re {max} 
This flag configuration provides another instance where the differences between

R and R2 are not merely academic; they provide different insights into the

nature of the unstable global modes. R2 suggests that the unstable modes would

be fairly evenly distributed through    whereas R suggests that the most

unstable eigenmodes are concentrated at the very low frequency end of the spectrum.

The growth rates of the actual complex eigenfrequencies are plotted in figure 8.15 and

confirm the story-line advanced by the R prediction.
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trailing edge wake for  = 005  = 2 and  = 0 (dispersion plot of figure 2.4c)
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Figure 8.14: Real parts of the maximum eigenvalue of gain matrix for a free-free plate

with trailing edge wake for  = 005  = 2 and  = 0 Caption as in figure 8.3.
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for a free-free plate with trailing edge wake for  = 005  = 2 and  = 0 Caption
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8.3 Summary

In this chapter we solved for the complex resonance frequencies of long, finite plates

immersed in mean flow for combinations of upstream and downstream edge conditions

derived in the previous two chapters. We derived upper and lower bounds on the

unstable growth rates of finite plates with given edge conditions. We found that a

flag-like configuration of a clamped leading edge and a free trailing edge with wake

is destabilized for    only by the presence of convective unstable waves and for

large . The net loss of power through the edges must be compensated by the growth

of downstream propagating disturbances to achieve global instability at sub-critical

speeds. We therefore conclude that, with enough restoring force (e.g., through plate

tension or spring support), a flag clamped at the leading edge is globally stable for all

  . In contrast, a flag with a free leading edge undergoes enough net amplification

at the edges that it is globally unstable for all  .



Chapter 9

Computational Results for Finite

Plate

In this chapter we solve for the response of an impulsively started fluid-loaded plate

through a direct numerical evaluation of the system of differential equations (2.3a-

2.3d). A primary aim is to see if and when the features predicted by the infinite

and ‘very long’ plate theories developed in earlier chapters manifest themselves on the

actual plate. The particular plate configuration we have chosen to study is perhaps the

simplest to model computationally: a baffled plate with clamped edges and one-sided

flow.

There have been numerous computational studies of fluid-loaded panels or baffled

plates. However, only Lucey (1998) has performed a direct numerical study of a linear

plate in the parameter regime that we are interested in and with the explicit aim of

testing the predictions of the Crighton & Oswell (1991) theory.

9.1 Computational Model

The discretization scheme for our computational studies consists of fourth order fi-

nite differences in space for the plate, constant Boundary Elements for the fluid, and

an explicit ‘leapfrog’ time-stepping scheme. We analytically evaluate the convective

derivative terms by ‘transferring’ the differentials from the response functions to the

180
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Figure 9.1: A baffled plate of length  clamped at the edges with one-sided flow.

source function. In addition, we evaluate the singular panels analytically and to a high

order of accuracy. The outcome is a computational model that appears to provide min-

imal amounts of numerical dissipation, phase distortion and group speed delay. This

is attested by the extremely good correlation with analytical predictions documented

in section 9.3 below. Full details of the computational model are given in Appendix

C.

9.2 Results for a Baffled Plate Clamped at Both Edges

We consider a baffled plate of length  = 500 with a zero deflection and zero slope

structural edge condition imposed at both ends, with one sided fluid loading ( = 1)

and with  = 005. The plate has no pretension or spring support ( =  = 0). We

apply an impulse, consisting of a half-sine wave with frequency  =  = 236× 10−3
at the midpoint  = 0 of the plate (figure 9.1).

A sample computational input-output plot is given in figure 9.2. Figure 9.2b plots

the input forcing as a function of time, figure 9.2c plots the trajectory of the maximum

deflection point on the plate and figure 9.2d is the velocity of that point compared with

the mean flow speed. Figure 9.2a is a snapshot of the plate response at the maximum

time mark of figures 9.2c and 9.2d. The evolution of the plate response can be further

observed in figure 9.3 where five snapshots of the plate response are presented. We

observe the following time-domain response features:

• Downstream travelling disturbances grow in amplitude as they propagate and

are convected at just below the flow speed  (see figure 9.2d). In contrast,

upstream travelling disturbances are slower and are highly dispersive.
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• The upstream edge reflects incident disturbances with greatly increased am-

plitudes, whereas the amplitude of reflected waves from the downstream edge

appear to be of the same order as the incident waves.

• For large time, the initial impulse becomes highly dispersed and the plate re-
sponse resembles a standing wave with growing amplitude in the downstream

direction.

9.2.1 Spectral Content

The transition from transient to steady state behavior can be observed in the wavenum-

ber spectrogram of figure 9.4b. It consists of a plot of the magnitude of the spatial

Fourier transform of the plate displacement at discrete time steps. The wavenumber

spectrum at each time step has been normalized by its maximum value at that time

step. The discrete spots in wavenumber at early time represent the scattering of the

initial impulse at the plate boundaries. After about fifteen round-trips, the initial dis-

turbances have sufficiently dispersed to allow for a more continuous, or steady state,

wavenumber signature to emerge.

Immediately following the initial excitation, the disturbances travelling back and

forth on the plate carry a range of wavenumbers and frequencies. However, each

wavenumber-frequency pair falls on the dispersion curve for the equivalent infinite

plate as shown in figure 9.4a. The discrete data points in figure 9.4a correspond to

peaks in the spatial and temporal Fourier transforms of the plate displacement field

taken over the entire plate length and over successive time intervals corresponding to

a single round-trip travel time of the pulse.

Each set of three circles of the same color represents the spectral content of the

response over the same interval. For instance, the three data points in red correspond

to the plate response taken over an interval of time corresponding to the first round

trip performed by the impulse (i.e., for 0    16 × 104), the set of points in blue
correspond to the second round trip, and so forth, culminating in the data points in

magenta which correspond to an interval of response taken around the  = 3 × 105

time mark.
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plot overlaid with the frequency-wavenumber content of finite plate response at discrete
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Within three to four round trips, the linear response asymptotes to a single fre-

quency and single temporal growth rate for all waves. Spatially, this ‘steady state’

resembles a standing wave pattern formed by the +1 , 
−
1 and −2 waves.

9.2.2 Growth Rate

The linear growth rate is computed by fitting an envelope to the time domain signal

at any fixed point (away from the edges) on the plate. The envelope is constructed by

identifying and joining the positive peaks of the time domain response followed by a

‘smoothing’ of the peaks by taking a running average over the output. It was found,

however, that the large exponential growth rates in the raw signal greatly degraded

the quality of the envelope, especially during the final ‘smoothing’ step. Therefore, an

iterative process was implemented whereby the raw signal was first normalized by an

exponential at the estimated growth rate and then fitted with an envelope. An initial

guess at the growth rate is made by taking  = ln ( (0)) 0 of the largest peak in the

original signal. Subsequent adjustments to the growth rate are made while operating

on the normalized signal and requiring that the envelope is ‘flat’ for large time, as

shown in figure 9.5a. Although this final judgment is made visually (by examining

plots such as figure 9.5a) and the adjustment to the growth rate is entered manually

in the code, we were able to achieve an accuracy of at least three significant digits.

Figure 9.5b compares the final estimate of  with the growth rate obtained by

applying  = ln ( ())  to the un-normalized version of the envelope shown in figure

9.5a. It can be seen that the constant temporal growth rates reported here are in

fact asymptotic limits that the plate reaches for large time. At any finite time, the

maximum growth rate recorded on the plate would be slightly less than this maximum.

9.2.3 A Word on Convergence

The left column of figure 9.6 overlays the plate deflection for the numerical simulation

run at three different spatial discretization levels with the ratio ∆∆2 (the Courant

number for an in-vacuo Euler beam) held fixed. The snapshots are provided at five

time marks, as indicated on the figure, and expressed in terms of cycles of the dominant
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Figure 9.5: Computing the temporal growth rate for a clamped, baffled plate with

 = 005,  =  = 0  = 1,  = 500 and mesh size of  = 2000 a) An envelope
is fitted after normalizing the raw deflection signal by an exponential with contant

growth rate show in figure 9.5b. b) The smoothed, time dependent envelope of the

unnormalized deflection signal in figure 9.5a, compared with the final estimate of the

constant growth rate.
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M = 500 M = 1000 M = 2000

Re {} 122× 10−3 122× 10−3 122× 10−3
Im {} 259× 10−4 262× 10−4 263× 10−4
+1 () 00239 00238 00238

−1 () 01511 01508 01507

−2 () 01165 01156 01155

Table 9.1: Convergence of resonance frequencies and wavenumbers as a function of

mesh size M.

frequency on the plate for large time ( = 122×10−3 in this case). The right column of
figure 9.6 plots the corresponding relative error, defined as the ratio of plate deflections

magnitudes, at each time mark with the most densely discretized plate (i.e., = 2000)

used as benchmark. The results indicate that by the 5 cycle, the plate deflections

have begun to diverge (from 8% for = 1000 to 25% for = 500) and that doubling

the mesh size can only be expected to improve the error by a factor of 3.

Divergence in deflection is to be expected in wave propagation models run over

several cycles. What we are most interested in, however, are other metrics of the

response such as its frequency and wavenumber content as well as the temporal growth

rates for large time. Table 9.1 shows that convergence for these quantities is achieved

even for the case with the coarsest mesh

Finally, a few words on the implication of the relative error values in figure 9.6.

We have used 4 order accurate finite difference formulae to evaluate the spatial

derivatives in our scheme. Our expectation is that the error would decrease at least

as ∆4 Instead, halving ∆ appears to reduce the relative error by only a factor of 3,

which is not even a reduction of order ∆2! The discrepancy may be explained by our

use of constant boundary elements, a low order method, to perform the fluid panel

integrations. One might expect that the use of linear or quadratic boundary elements

would improve convergence.

9.3 Comparison with Analytical Predictions

In this section we apply the method of chapter 8 to analytically predict the resonance

frequencies and maximum growth rate of the baffled plate configuration used in our
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Figure 9.7: Magnitude and phase of the leading and trailing edge reflection coefficients

for a baffled plate, clamped at the edges. For  = 005,  =  = 0, and  = 1

computational study. A plate length of  = 500 certainly qualifies as a ‘long plate’

in the context of the long plate asymptotics of chapter 8, and we can therefore safely

ignore the nearfields associated with the plate edges, with the exception of very low

frequencies.

9.3.1 Reflection Coefficients for a Clamped, Baffled Plate

Peake (2004) uses theWiener-Hopf technique to solve for the reflection coefficients from

the leading and trailing edges of a clamped plate in a rigid baffle. These coefficients

(equation (4.8) & (4.13) in Peake 2004) are reproduced below using the notation and
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Wiener-Hopf kernels adopted in this thesis:


 =

+
¡
+
¢
−
¡
+
¢
−

³
−
´



¡
+
¢
−
³
−
´³

+ − −
´  (9.1a)


 =

− ¡− ¢ + ¡− ¢+
³
+

´


¡
−
¢
+
³
+

´³
− − +

´  (9.1b)

Here, + () and − () are the multiplicatively factorized branch cut factors defined

by + () − () ≡  () =
√
2, analytic in + and −, respectively. The magnitude

and phase of these coefficients are plotted in figure 9.7.

We note that in the frequency range over which most of the disturbances on the

plate model were found to exist, i.e., 1 × 10−3    2 × 10−3, these reflection coef-
ficients are qualitatively consistent with edge scattering processes that were observed;

the leading edge reflection coefficients are on the order of 20 whereas the trailing

edge coefficients are on the order of 0. It may appear from these observations that

the upstream edge is ‘over-reflective’ whereas the downstream edge is not. However,

one must remember that these observations of the plate response, as well as the re-

lated reflection coefficients, are based on ratios of wave deflection amplitude and do

not necessarily represent ratios of scattered power.

It in fact turns out that both sets of edges are strongly over-reflective, as can be

seen from the power normalized reflection coefficients plotted in figure 9.8. We find

that the plate over-reflects at both the leading and trailing edges for all frequencies

   = 236× 10−3 over which negative energy waves exist. This is in keeping with
the general rule, dictated by energy conservation, discussed in section 6.4. Namely,

that the existence of negative energy waves is a necessary and sufficient condition for

over-reflection from an important class of plate scatterers, those with zero transmission

or absorption coefficients, such as the clamped condition studied here.

9.3.2 Global Modes for Long Plate

The reflection matrices given in equations (9.1), combined with the round trip propa-

gation matrices of the plate, yield an equation for the linear response of the finite plate.

The condition for resonance follows directly from the roots of the related eigenvalue
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Figure 9.8: Power normalized reflection coefficients for a baffled plate, clamped at the

edges. For  = 005,  =  = 0,  = 1
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equation. The latter is equivalent to solving for the zeros of the determinant of the

system equation,



⎛⎝I−R

⎡⎣ −
−
1  0

0 −
−
2 

⎤⎦R

⎡⎣ 
+
1  0

0 
+
2 

⎤⎦⎞⎠ = 0 (9.2)

where, R and R are the 2× 2 reflection matrices and I is the identity matrix.
The roots of the above equation are found numerically by sweeping the complex-

 and (real)  planes for values that minimize the determinant. The approach is

described in great detail in chapter 8 and will not be repeated here. The image in

figure 9.9 is that of the determinant given in (9.2) as a function of real frequency and

plate length evaluated at a single value of the imaginary frequency,  = 264× 10−4,
chosen to correspond with the maximum growth rate observed on the plate. The

determinant is plotted in decibels and the dark hews correspond to minima of the

magnitude and hence to the locus of the unstable resonances of the finite plate with

growth rates close to  = 264× 10−4.
For a given plate length, there are a discrete set of complex frequencies that have

positive imaginary parts. We find that for our plate length of  = 500 there are

seven resonance frequencies with positive imaginary parts that result in temporally

unstable resonance. These complex resonance frequencies are marked on figure 9.9

and listed in table 9.2. The resonance frequency with the largest positive imaginary

part (D),  = 122 × 10−3 + 264 × 10−4, is expected to dominate the response
of the finite plate for large time. It agrees exceedingly well with our computationally

obtained steady state resonance frequency and growth rate given in the right-hand

most column of table 9.1.

9.4 Conclusion

The near perfect agreement between our analytical predictions based on long plate

asymptotics and the output of our computational model serves as a validation for both

approaches. In particular, we have found that the infinite plate waves predicted by

Crighton & Oswell (1991) manifest themselves on the finite plate almost immediately

following an initial impulse and dominate the linear response thereafter.
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Re () Im ()

A 23648× 10−3 002976× 10−4
B 20239× 10−3 233872× 10−4
C 160898× 10−3 252036× 10−4
D 121697× 10−3 264460× 10−4
E 083951× 10−3 246439× 10−4
F 046395× 10−3 219361× 10−4
G 009226× 10−3 201178× 10−4

Table 9.2: Analytical complex resonance frequencies for a baffled plate of length

L=500, clamped at both edges. The computational predictions, from Table 9.1, is

that Re () = 122× 10−3, Im () = 264× 10−4.
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We have also effectively validated the entire approach, first applied by Peake (2004),

whereby semi-infinite plate scattering theory based on the Wiener-Hopf technique is

used to derive reflection coefficients at the plate edges, and use these in combination

with the infinite plate waves to construct the resonance response of a long, finite plate.

The fact that we are able to so accurately predict the real and imaginary parts of the

dominant resonance frequency attests to the accuracy (in both magnitude and phase)

of the scattering coefficients derived using our approach and also to the validity of the

method used to solve for the complex eigenvalues of a finite plate.

Finally, the fact that wave energy on the vibrating plate falls so neatly on the

theoretical dispersion curve confirms the accuracy of the spatial discretization and

panel integration approach described in Appendix C.



Chapter 10

Conclusions

The primary objective of this dissertation has been to use a wave-based approach to

solve for the response of finite length flow-loaded structures. . Informed and inspired

by the work of Howe (1994), Peake (2004) and Doare & de Langre (2006), we undertook

a systematic study of the scattering properties of waves from local plate discontinuities

and from the edges of long plates. We derived bounds on the unstable growth rates of

finite plates and solved for the complex eigenfrequencies as a function of plate length

and edge conditions. Finally, we developed a computational model for the direct

integration of the fluid-loaded plate equations and favorably compared our analytical

predictions to the latter.

10.1 Summary of Results

In chapter 2 we extended the ‘infinite plate’ results of Crighton & Oswell (1991) to

include the influence of double sided flow and the effects of plate pretension. Most

notably, we derived approximate expressions for the effect of plate tension on the onset

of absolute instability (AI). In chapter 3 we derived the energy balance relations for

the fluid-loaded extended plate (i.e., for a plate with two sided flow, spring foundation

and plate pretension). We defined a generalized wave impedance, , valid for both

positive energy waves (PEW) and negative energy waves (NEW). We showed that,

unlike for the case of increasing the spring support , increasing  does not entirely

196
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eliminate NEWs but severely limits the - range over which they can exist.

In chapter 4 we solve the problem of scattering from local discontinuities using a

multipole source approach. Our solutions are exact and include the deflection, pressure

and potential nearfields due to fluid-loading effects. We introduce the concept of power

normalized scattering coefficients, and show that overall power is indeed conserved

during the scattering process if the sign of the wave energy is preserved. We argue

that this property, combined with the presence of NEWs on the plate, is responsible

for the phenomenon of over-scattering.

In chapter 5 we investigate the unstable resonances of quasi-finite plate segments

formed by two local constraints or discontinuities. We develop a framework for the

inclusion of all nearfields involved in the scattering process (including the mutual inter-

action between the nearfields emanating from the upstream and downstream edges)

and succeed in solving for the complex resonance frequencies of these segments ex-

actly. Our solutions are valid for arbitrarily small segment lengths. We find that the

exclusion of the nearfields does not appreciably alter the eigenfrequencies even for very

short plates and that they may potentially be ignored.

In chapters 6 and 7 we use the Weiner-Hopf technique to derive the reflection

coefficients of semi-infinite plates for a variety of upstream and downstream edge con-

ditions, including the case of a free trailing edge with wake. We find that the edges

are over-reflective in the frequency range where NEWs are present. The exception

is a free trailing edge with wake which, remarkably, is found to absorb almost all of

the incident wave energy. We also discover that in order to properly account for the

power in the wake, a term proportional to the wake deflection amplitude must be

included. We find that a properly tuned dashpot, attached at the leading or trailing

edges (with no wake), is capable of absorbing several times the power of an incident

wave for   . Finally, we solve for the semi-infinite plate drive admittances at the

leading edge and trailing edges (no wake) and find that, in contrast to the line driven

infinite plate, Re {} is positive for both throughout the frequency range.

In chapter 8 we solve for the complex resonance frequencies of long, finite plates

immersed in mean flow for combinations of upstream and downstream edge conditions
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derived in chapters 6 and 7. We derive upper and lower bounds on the unstable growth

rates of finite plates with given edge conditions. We find that a flag-like configuration

of a clamped leading edge and a free trailing edge with wake is destabilized for   

only by the presence of convective unstable waves and for large . The net loss of power

through the edges must be compensated by the growth of downstream propagating

disturbances to achieve global instability at sub-critical speeds. We therefore conclude

that, with enough restoring force (e.g., through plate tension or spring support), a flag

clamped at the leading edge is globally stable for all   . In contrast, a flag with

a free leading edge undergoes enough net amplification at the edges that it is globally

unstable for all  .

In chapter 9 we formulate a computational model of a plate in an infinitely long

rigid baffle. We solve for the time domain response to a point impulsive load and

examine the spectral content of disturbances on the plate and find that, although they

initially contain a range of frequencies and wavenumbers, they all fall on the dispersion

curve of the corresponding infinite plate. For large time, the response asymptotes to

a single frequency and temporal growth rate. We find that this complex frequency

coincides almost exactly with the dominant complex eigenfrequency obtained by the

global mode analysis of chapter 8.

10.2 Outline for Future Work

We have examined the stability of a number of representative finite flag configurations

but have by no means carried out an exhaustive analysis of every possible configuration,

or the rich behavior that results from the interplay between the plate parameters ,

 and . Instead, we have developed a number of rigorous analytical and numerical

tools for the analysis of the global stability of fluid-loaded plates that can be used

for a comprehensive analysis of a wide range of such systems. In this section, we

present a list of items for future research. Some consist of direct application of the

tools developed in this dissertation while others require an extension of these tools.
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10.2.1 Further Work on Local Scatterers

The results of chapter 4 would benefit from a time domain analysis of the impulse

response from a local scatterer. This would consist of evaluating the inverse Fourier

transforms of the scattering coefficients. Combining the deflection and pressure im-

pulse responses may provide greater insight into the process by which energy is ex-

changed between the plate and the fluid at the scatterer than the frequency domain

analysis alone.

The work of chapter 5 would be complemented with an examination of the flux

interactions between two or more local scatterers. Preliminary numerical results in-

dicate that the nearfields from two adjacent scatterers interact to produce a net flux,

even though the flux associated with each individual nearfield disturbance is zero. This

constitutes a mechanism by which energy can enter or exit the finite segment formed

by two scatterers and may have some important implications in terms of stability.

Studying the propagation of wave energy outside the quasi-finite segments at res-

onance is also of some value. Does the structural flux outside [−2 2] increase

with ? Is the total flux still conserved? Finally, we need to determine if the inter-

action between two structural evanescent waves (i.e., +2 and −2 ) emanating from the

upstream and downstream edges of very short segments for    creates the pos-

sibility of unstable growth, as predicted by the   1 values observed in the 2

term encountered in chapter 8? Given that one would also have to include the net

power flux due to the nearfields, it would make more sense to carry out this analysis

within the framework of the quasi-finite segments of chapter 5 where one has access

to the complete scattered field.

10.2.2 Refining the Edge Coefficients

Our results for the reflection matrices (propagating waves only) from the upstream

and downstream edges of immersed plates obtained in chapters 6 and 7 are exact.

However, we were not able to express the coefficient in closed form primarily because

the factorization of the Wiener Hopf kernel  ( ) was performed numerically. We

could follow Oswell’s (1992) lead and attempt an analytical factorization of the ker-
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nel for asymptotically small . This, combined with asymptotic expressions for the

dispersion roots ± (that we’ve already solved for), will give us the leading order

dependence of the reflection coefficients on the drive frequency, , as well as on the

physical parameters  ,  and  .

A significantly more challenging task would be to attempt a Wiener-Hopf type

solution of the edge scattering problem for an incident nearfield. If successful, this

would enable us to extend the analysis of finite plates carried out in chapter 8 to

comparatively short plates. This may entail decomposing the algebraically decaying

incident nearfield disturbance into the equivalent of a multipole expansion over an

infinite number of terms, retaining the first few terms in the expansion, and solving

the Weiner-Hopf problem for each term.

10.2.3 A More Complete Wake Model

In chapter 7 the deflection amplitude, , of the trailing edge wake was assumed to equal

the plate deflection at the edge,  (0). The wake deflection,  = ()− is

needed to properly account for the power carried by the wake. And our estimate for the

latter was found to be inaccurate for instances where there are non-zero loads at the

edge. A more precise way of determining  is therefore needed, together with a ro-

bust explanation of the physical significance of the additional terms, 12 Re
©


ª
,

in the expression for the wake flux (7.26).

10.2.4 Improving the Finite Flag Analytical Model

It would be instructive to compare the analytical predictions for the complex eigenval-

ues obtained in chapter 8 with those obtained by a Galerkin type solution of the same

finite plate configurations. To this end, we would need to generate  vs.  graphs

for the stability boundaries using our approach. Our expectation is that the Galerkin

solution based on the superposition of a finite number of in-vacuo modes would do

best for very ‘short’ plates and that our approach would give a more accurate and

efficient solution for ‘long’ plates.

If it has proved possible to include the nearfield to nearfield terms in the system
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determinant, then an investigation of the shortest possible plate lengths achievable by

our method should be undertaken. One can once again use the computational model

of chapter 9 as the ultimate benchmark. If it has not proved possible to fully account

for all the nearfields in the reflection matrix, it would still be worthwhile to include

the propagating to nearfield scattering terms based on equations (6.32) and (7.21) into

our formulation. This will also enable one to solve for the approximate mode shapes

(deflection and pressure) for very long plates and examine the net exchange of energy

between the plate and the flow near the edges.

We have argued that  provides a tighter and more accurate upper bound for

the maximum growth rate of finite plates compared to 2. However, unlike for

the predictions based on 2, there is no rigorous proof of this. Proving that 

does indeed provide an upper bound for the gain matrix (5.9) should probably be at

the top of any future to do list.

10.2.5 Further Computational Studies

In this thesis we have focused almost exclusively on the subcritical flow regime,  

. The phenomenon of absolute instability in finite domains is perhaps best studied

computationally at first. Therefore, running the existing computational model for

   ought to be our first computational task in any future work. Does plate

length control the absolute instability? Do the propagating modes appear and where

do they fall on the dispersion plot? Do the non-AI instabilities described in this

dissertation dominate for large time?

It should also be straightforward to reformulate our computational model so that

it can handle finite plates immersed in fluid (i.e., in free field). This will allow us

to directly examine the analytical predictions of the many examples given in chapter

8. Adding a trailing edge wake would probably be the most challenging task. Panel

methods have successfully been used to model vortex wakes and that would be the

sensible way to proceed in our case.

Effect of dissipation. Abrahams & Wickham (2001) have shown that the net effect

of even small amounts of structural dissipation is to render the flow-loaded plate
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absolutely unstable at all speeds. However, the temporal growth rates associated with

typical values of the plate structural loss factors are exceedingly small and it is likely

that the instability mechanisms described in this thesis will dominate for large time.

The exception is the flag configuration (with a clamped leading edge, a free trailing

edge with wake and sufficient plate restoring forces) that we predict to be stable. It

would therefore be worthwhile to use this finite plate configuration to computationally

investigate the effects of structural damping.

The ultimate computational task would be to include non-linear terms in the

plate/fluid system and to solve for the fully non-linear response. The ability to turn

certain non-linear effects ‘on’ and ‘off’ would help determine which non-linear effects

are primarily responsible for amplitude saturation and which can be neglected in any

future analytical studies. Peake (2004) has found that non-linear tension is the key

saturating mechanism for baffled plates clamped at the edges. In fact, enabling a non-

linear tension term in our baffled plate model would be very straightforward and we

would be looking for the non-linear attractor behavior predicted by Peake. It is not

clear, however, what the comparable saturating mechanism would be for flag-like con-

figurations where one or more free edges exist. Another key question to be answered

by a non-linear computational model: which, if any, of the linear response features

survive during large amplitude motions?

10.2.6 Validation with Other Published Results

Validation of the theory advanced in this dissertation with published experimental

studies on flapping flags should be undertaken. Initial studies ought to focus on flags

in water —as opposed to flags in air— primarily because the phenomena we describe

in this thesis all occur in the heavy fluid loading regime as described by Crighton

(1989). Two notable experiments documented in the literature are 1) the filament in

a soap film experiments of Zhang et. al. (2000) and 2) the mylar in water experiments

of Vandenbergh & Shelley (2005). Preliminary studies reveal that both experiments

fall within the parameter regime analyzed in this thesis. The non-dimensional flow

speeds are close to or below to the critical flow speed and the frequency-wavenumber
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pairs measured are smaller than the pinch - and therefore within the range where

convectively unstable and negative energy waves may exist.

Once the flags in water experiments have been satisfactorily explained, we may wish

to move on to published experiments of flapping flags in air. Notable experimental

studies include: aluminum foil in air of Huang’s (1995), thin aluminum sheets in air of

Tang & Dowell (2003), ribbon in air of Lemaitre et al (2005) and most recently, mylar

sheets in air of Eloy et al (2007). It is entirely possible, however, that the instabilities

observed in flags immersed in air flows are due to physical mechanism not captured by

our theory. In fact, a preliminary look suggests that the non-dimensional flow speeds

involved in these experiments are significantly higher than  and the -’s measured

are greater than the pinch -.

It would also be valuable to undertake a comparison with published computational

simulations of flapping flags. Notable computational studies conducted at high or

infinitely large Reynolds Numbers include the fully non-linear models of Michelin &

Llewlynn-Smith (2008), Alben & Shelley (2008) and Connell and Yue (2007).
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Appendix A

Derivation of Jump Matrix


()
+ − 

()
−

In this Appendix we derive the components of the ‘jump’ matrix of (4.16). From the

equations for the multipole loads given in (4.3) and from the definition of the Green’s

Function as the response to a unit amplitude load, we can write down the following

identities:

∆0 = ∆
h
3() − ()

i
=

½
+1

0

 = 0

 = 1 2 3
(A.1a)

∆1 = ∆
h
2() − ()

i
=

½−1
0

 = 1

 = 0 2 3
(A.1b)

∆2 = ∆
h
()

i
=

½
+1

0

 = 2

 = 0 1 3
(A.1c)

∆3 = ∆
h
()

i
=

½−1
0

 = 3

 = 0 1 2
(A.1d)

where ∆ [] ≡ + (0)−− (0) is the ‘jump’ in the value of  at  = 0.

The −1 signs in equations (A.1) come from operating on an odd numbered deriva-

tive of the delta function (Lighthill 1958)

+∞Z
−∞

 () () ()  = (−1) 


 () 

The zeros on the second line of each of the equations in (A.1) follow from (4.3) and by

construction. For instance, the identities of equation (A.1a) imply that the monopole
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()
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( = 0) strength of a response due to a dipole ( = 1) load, or a quadrupole ( = 2)

load, or indeed any pure multipole load other than a monopole, is zero.

Every equation in (A.1) imposes a condition along a row of the jump matrix.

Starting from the bottom, equation (A.1d) implies that all terms across the first row

(i.e.,  = 0) are zero, except for the term in the final column ( = 3) which is −1
i.e.,

∆
h
(0)

i
= 0 (A.2a)

∆
h
(1)

i
= 0 (A.2b)

∆
h
(2)

i
= 0 (A.2c)

∆
h
(3)

i
= −1 (A.2d)

Similarly, equation (A.1c) implies that all terms across the second row (i.e.,  = 1)

are zero, except for the term in the third column ( = 2) which is +1, i.e.,

∆
h
(0)

i
= 0 (A.3a)

∆
h
(1)

i
= 0 (A.3b)

∆
h
(2)

i
= +1 (A.3c)

∆
h
(3)

i
= 0 (A.3d)

Along the third row (i.e.,  = 2), equation (A.1b) along with the results of (A.2) imply

that

∆
h
2(0) − (0)

i
= 0⇒ ∆

h
2(0)

i
= 0 (A.4a)

∆
h
2(1) − (1)

i
= −1⇒ ∆

h
2(1)

i
= −1 (A.4b)

∆
h
2(2) − (2)

i
= 0⇒ ∆

h
2(2)

i
= 0 (A.4c)

∆
h
2(3) − (3)

i
= 0⇒ ∆

h
2(3)

i
= − (A.4d)

Finally, along the fourth row (i.e.,  = 3), equation (A.1a) along with the results of
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+ − 

()
−

(A.3) give

∆
h
3(0) − (0)

i
= +1⇒ ∆

h
3(0)

i
= +1 (A.5a)

∆
h
3(1) − (1)

i
= 0⇒ ∆

h
3(1)

i
= 0 (A.5b)

∆
h
3(2) − (2)

i
= 0⇒ ∆

h
3(2)

i
= + (A.5c)

∆
h
3(3) − (3)

i
= 0⇒ ∆

h
3(3)

i
= 0 (A.5d)

Collecting the results of equations (A.2-A.5), we obtain the jump matrix given in

(4.16):

∆
h


()
+

i
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 −1
0 0 +1 0

0 −1 0 −
+1 0 + 0

⎤⎥⎥⎥⎥⎥⎥⎦  (A.6)



Appendix B

Wiener-Hopf Solution Details

In this Appendix we undertake the exact, numerical factorization of the Wiener-Hopf

kernel and determine the edge potential used in chapters 6 & 7.

B.1 Exact Factorization of Kernel  ( )

We use the method outlined in Peake (2004) to numerically (and exactly) factorize

our Wiener-Hopf kernel  ( ). Peake factorizes the closely related kernel D ( ) =
− ( )  () 

First, we define an inner kernel  () which is non-zero along the -plane integra-

tion contour and approaches 1 as  → ±∞ along the real axis so that its logarithm

tends to zero at infinity

 () ≡  ( )
√
2 +2

4Q
=1

( − )

(B.1)

=
 ()P ()−  ( − )2

√
2 +2

4Q
=1

( − )

 (B.2)

where,  are the roots of the dispersion function (2.6). The factor
√
2 +2 (with

 an arbitrary constant of order 1) was has been included to give  () the correct

behaviour at  →∞

We then factorize  () into a product of functions + () and − () that are

analytic and non-zero in the upper and lower half planes + and −, respectively,
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using the Cauchy-integral formula (Noble, 1988)

± () = exp
∙±1
2

Z
ln ( ())

 − 


¸
 (B.3)

The integration contour in (B.3) must lie in the strip of overlap  (see section 6.1)

and is taken as the real axis, indented above or below any poles  −  = 0 according

to the requirements of causality, as discussed in chapter 2. The integrals in (B.3) are

evaluated numerically using standard integration routines. For details, the reader is

referred to the excellent description of the numerical integration process —implemented

to the letter in this thesis— given in Appendix A of Peake (2004).

As a final step, the terms in the denominator of (B.1) are factorized by inspection

(and exactly) to give

± ( ) = ± ()
√
 ± 

2Y
=1

¡
 − ∓

¢
 (B.4)

where the branch cuts
√
 ∓  originate from ± and run along the imaginary axis

through + and − respectively. From the form of equation (B.4), and recalling that

± () ∼  (1) as  →∞ we deduce the following asymptotic behaviour for the split

kernels

± () ∼ 
5
2   →∞ (B.5)

B.2 Determining the Edge Potential  (+0)

We determine the leading edge potential  (+0) by following an approach similar to

that undertaken by Oswell (1992). We expand Φ− ()  for large  then deduce

the behavior of its transform  ()  and subsequently  ()  for  → +0. Our

derivation differs from Oswell’s in so far as we use a different Wiener-Hopf kernel and

we include the effects of plate pre-tension and spring support.

Start from equation (6.24), expand and reorder terms in decreasing powers of  to

find the large  approximation to

Φ−


=

1

P ()

⎧⎨⎩ ( − )2

³
 − −

´

³
−
´³

 − −
´
⎡⎣1− −

³
−
´

− ()

⎤⎦
+ ( − ) ( (+0)−  ())−  (+0)P ()}  (B.6)
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First, combine and simplify the terms involving the structural edge conditions elimi-

nating the 4 order terms to obtain

−  ( − ) ()−  (+0)P ()
= − ( − ) 000 (+0) +

¡
 − 2

¢
00 (+0)

+ 
¡
 −  + 2 − 3

¢
0 (+0)

+
¡
2 − −  − 3

¢
 (+0)  (B.7)

This step does not involve an approximation. Next, expand the term involving the

in-vacuo plate operator

1

P () =
1

4
³
1 + 

2
+ −2

4

´
≈ 1

4
− 

6
− − 2

8
+

¡
−10

¢
  →∞

Recalling that the Wiener-Hopf split kernel behaves as − () ∼ 52 as  → ∞

obtain the leading order terms for the factor involving the incident wave

 ( − )2

³
 − −

´

³
−
´³

 − −
´
⎡⎣1− −

³
−
´

− ()

⎤⎦
≈


³
 − −

´

³
−
´ ³

2 +
³
2− − 2

´
+

¡
−1

¢´
  →∞

Substituting all this into (B.6), and ordering terms in decreasing orders of , we find

that the first three leading order terms are

Φ−


≈ 3


+

2

2
+

1 − 3

3
+ · · ·   →∞

where,

1 = 2

³
 − −

´

³
−
´ − 2 (+0)−  (+0)

−0 (+0) + 00 (+0) + 000 (+0) 

2 = 0 (+0)− 00 (+0) 

3 = − (+0)− 0 (+0) 
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The terms involving the pre-tension  cancel out, leaving

Φ−


≈ − (+0)− 0 (+0)


+

0 (+0)− 00 (+0)
2

(B.8)

+
2

(−− )
(− )

− 2 (+0) + 00 (+0) + 000 (+0)

3
+ · · ·   →∞

We note that the Wiener-Hopf split kernel does not appear at this order.

Watson’s Lemma imposes the following relationship between terms asymptotic in

 and 

1

()
→ −1

(− 1)!   →∞ → 0

We use this to obtain the asymptotic behavior of the transform of (B.8) as → 0

 (  = 0)


≈ £0 (+0)−  (+0)

¤
+
£
00 (+0)− 0 (+0)

¤
 (B.9)

+

⎡⎣−2 
³
 − −

´

³
−
´ − 2 (+0)− 00 (+0) + 000 (+0)

⎤⎦ 2

2!
+

¡
3
¢


Next, we expand the convective derivative of the plate displacement in a Taylor series

about  = 0

 ()


+ 

 ()


≈ − (0) + 0 (0) (B.10)

+
£−0 (+0) + 00 (+0)

¤
+

£
00 (+0) + 000 (+0)

¤ 2
2!
+

¡
3
¢


Finally, we invoke the continuity condition and equate equations (B.9) and (B.10)

term by term. We find that this identity is satisfied identically for orders 0 and 1

and that at order 2 we must satisfy

− 2

³
 − −

´

³
−
´ − 2 (+0)− 00 (+0) + 000 (+0)

≡ 00 (+0) + 000 (+0) 

Solving this yields the following expression for the unknown edge potential

 (+0) = −

³
 − −

´

³
−
´  (B.11)
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which is identical to (6.23).

We note that the structural edge conditions contained in  (+0) and its higher

order spatial derivatives fall out of this expression. As a result, the edge potential

given in (B.11) is universal and valid for all structural conditions at the edge. As

discussed in chapter 6, (B.11) is simply a statement of continuity of potential at the

edge.



Appendix C

Computational Model of Baffled

Plate

In this Appendix we describe the computational model used to directly solve the

system of differential equations for a fluid loaded plate in mean flow embedded in an

infinite, rigid baffle.

C.1 Computational model

The linear, non-dimensional equations for a one dimensional (1-D) thin plate of length

 in a rigid baffle with vacuum on one side and bounded by a two dimensional (2-D)

half plane of (incompressible, inviscid, irrotational) fluid on the other are

∇2 (  ) = 0 (C.1)

 (  ) = −
µ



 (  ) + 




 (  )

¶
(C.2)

 (  )

̂

¯̄̄̄
=

=

µ



 ( ) + 




 ( )

¶
̂ (C.3)

4

4
 ( ) + 

2

2
 ( ) +  ( ) +

2

2
 ( ) = − (  ) +  ( ) (C.4)

with the additional boundary condition of zero normal velocity on the rigid baffle




= 0 &



̂

¯̄̄̄
=

= 0 ||  

2
 (C.5)
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Figure C.1: Baffled plate configuration.

Here,  is the fluid potential,  the fluid pressure,  the plate displacement, ̂ the

normal to the plate surface pointing into the fluid, and  the force per unit length

acting on the plate (figure C.1). The above equations have been linearized for both the

structure and the fluid. However, we shall initially carry out the derivations by allowing

for geometric nonlinearities at the interface between the two. This is accomplished by

evaluating the interface at  = . The fully linear case consists of evaluating this

interface at  = 0.

We begin by solving Laplace’s equation (C.1) in the half plane subject to Neumann

boundary conditions at  =  through a direct boundary integral formulation. The

starting point is Green’s symmetric identity in 2-DZ
Ω

¡
∇2 − ∇2¢ Ω = Z

Γ




̂
Γ−

Z
Γ




̂
Γ (C.6)

where Ω is the fluid half plane, Γ is the boundary enclosing the half plane including

the plate surface, ̂ is the unit normal to Γ pointing into the fluid and  is the
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fundamental solution defined by the following equations (i.e., the Green’s function for

Laplace’s equation in the half plane bounded by a rigid baffle):

∇2 (x) = − (x− xI) &
 (x;xI)



¯̄̄̄
=0

= 0 (C.7)

Since we are interested in the value of the fluid potential at the surface of the plate

ΓJ, we consider the source function point in (C.7) to be positioned on the surface

ΓJ. Here, and in what follows, the vectors I ≡ (I I) and J ≡ (J J) represent

the continuous coordinates of the source and receiver, respectively. Noting that both

̂ = 0 and ̂ = 0 on the baffle beyond the plate domain, and given that

the solution  () decays at least as 1 in the far field so that all surface integrals at

infinity amount to zero, equation (C.6) reduces to

1

2
 (I) +

Z
ΓJ

 (J)
 (IJ)

̂ΓJ
ΓJ =

Z
ΓJ

 (IJ)
 (J)

̂ΓJ
ΓJ (C.8)

where all integrations have been reduced to line integrals restricted to the plate domain

ΓJ. Note that the factor
1
2 above results from evaluating the surface integral in (C.6)

with  at the boundary of the plate. This factor would be 1 for all points away from

the boundaries, located at the interior of the fluid domain (Brebbia & Dominguez,

1998).

C.2 Implementation Including Geometric Nonlinearities

The transition from a boundary integral formulation, (C.8), to a boundary element

(BEM) formulation (see for example, Brebbia & Dominguez, 1998) is achieved by

discretizing the plate surface into uniformly spaced boundary elements. We assume

that  and ̂ are constant inside each element. The continuous boundary integrals

of (C.8) now become discrete summations over the elements subdividing the boundary

1

2
 +

X
=1

 =
X
=1



µ


̂

¶


 (C.9)

Here,

 =

Z
Γ

 (xJ)

̂ΓJ
ΓJ (C.10)
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and

 =

Z
Γ

 (xJ) ΓJ (C.11)

are× influence matrices evaluated using the Green’s function  for the half plane.

The Addendum (section C.4) contains derivations of these fundamental solutions for

the general case of an arbitrarily displaced plate,  =  in an infinite baffle.

The off-diagonal elements of  and  can be evaluated using any numerical

integration procedure, such as four-point Gauss quadrature formula. The diagonal

elements consist of integrals containing the source singularities and are evaluated an-

alytically. This is a straightforward procedure for constant boundary elements (see

Brebbia & Dominguez, 1998).

Once the matrices  and  have been derived for a particular deformation of

the plate surface, the potentials and their normal derivatives at the surface can be

related through the matrix equation (summation over repeated indices implied from

here on)

̄ = 

µ


̂

¶


 (C.12)

Here, ̄ ≡ 1
2 +  where  is the identity matrix, combines the two terms on

the left hand side of (C.9).

In order to evaluate the  terms introduced by a non-zero mean flow, we

require another set of matrix equations. We take I of both sides of (C.8) to

obtain

1

2



I
 (I) +

Z
ΓJ

 (J)


I

 (IJ)

̂ΓJ
ΓJ =

Z
ΓJ



I
 (IJ)

 (J)

̂ΓJ
ΓJ (C.13)

Discretizing (C.13) as above gives

1

2

µ




¶


+
 = 



µ


̂

¶


 (C.14)

where


 =

Z
Γ





Ã
 (xJ)

̂ΓJ

!
ΓJ (C.15)

and


 =

Z
Γ




( (xJ)) ΓJ (C.16)
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are the  differentials of  and  The partial derivatives in (C.13) are carried out

on the source functions  and ̂, since we are only computing the variation in 

around the source point x. The integrands in (C.15) and (C.16) are derived in the

Addendum (section C.4). The off-diagonal terms can once again be computed using

Gauss quadrature, whereas the diagonal terms can be evaluated analytically.

Again, once the matrices 
 and 

 have been obtained, the BEM formulation

gives us the relation

1

2

µ




¶


= 


µ


̂

¶


−
  (C.17)

which can be expressed in terms of the normal derivatives only using (C.12)µ




¶


= 2


µ


̂

¶


− 2
̄

−1
 

µ


̂

¶


(C.18)

= 


µ


̂

¶




where we have defined 
 ≡ 2

 − 2
̄

−1
  

We proceed to the spatial discretization of the plate equation (C.4). We use an 

point mesh identical to the one used for the boundary elements. The nodes are the

mid-points of the boundary elements. We approximate the spatial derivatives through

finite differences. Combining the plate equation with the discretized version of the

unsteady Bernoulli equation (C.2) evaluated at the plate interface  =  we obtain

1

(∆)4
4 [] +

2

2
 =




 + 

µ




¶


+  (C.19)

which after substituting in (C.12) and (C.18) becomes

1

(∆)4
4 [] +

2

2
 =




̄−1
 

Ã


̂

¯̄̄̄
=

!


+ 


Ã


̂

¯̄̄̄
=

!


+  (C.20)

We can eliminate the potential terms from the above equation by substituting the

discretized continuity equation (C.3)Ã


̂

¯̄̄̄
=

!


=



 ̂ +



∆
1
£
 ̂

¤
(C.21)

into (C.20). The finite difference operators, 1 and 4, can be the central differences to

fourth order in ∆ given in (C.34) and (C.36) below. The coupled fluid-plate equation
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can now be expressed in terms of the plate deflection alone:

1

(∆)4
4 [] +

2

2
 =





½
̄−1
 

µ




¡
 ̂

¢
+



∆
1
£
 ̂

¤¶¾
+



µ




¡
 ̂

¢
+



∆
1
£
 ̂

¤¶
+ 

=




½
̄−1
 





¡
 ̂

¢¾
+



∆





n
̄−1
 

1
£
 ̂

¤o
+







¡
 ̂

¢
+

2

∆



1
£
 ̂

¤
+  (C.22)

For the case where the plate surface is taken at  =  no further simplifications are

possible. The influence matrices ̄−1
   and 

 must be rederived for every new

deflection distribution  of the plate. In addition, care must be taken in evaluating

the time derivatives of the bracketed expressions as both the influence matrices and

the displacements are now functions of time. The final step involves discretizing in

time. One can for example use a second order centered difference scheme described in

the context of the fully linear case in section C.3.5 below.

Only a fully linear computational scheme is implemented in this thesis. We will

therefore not pursue the scheme involving geometric nonlinearities further and proceed

directly to the full implementation of the linear scheme.

C.3 Fully Linear Implementation

For the fully linear case where the plate surface is taken at  = 0 the fundamental

solution, now evaluated directly on the rigid baffle, becomes

 (IJ) = − 1

ln (IJ)  (C.23)

 (IJ)

̂ΓJ
= 0 (C.24)

where  (IJ) =
q
(I − J)

2 is the distance between the source and receiver points

along  = 0. The boundary integral formula of (C.8) reduces to

1

2
 (I) =

Z
ΓJ

 (IJ)
 (J)

̂ΓJ
ΓJ (C.25)
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and the unsteady Bernoulli equation (C.2) can now be written as

− (I) = 



Z
ΓJ

2 (IJ)
 (J)

̂ΓJ
ΓJ + 





Z
ΓJ

2 (IJ)
 (J)

̂ΓJ
ΓJ (C.26)

Combining this with the linearized version of the continuity equation (C.3),



̂

¯̄̄̄
=0

=



 + 




 (C.27)

we can write down an equation for the pressure in terms of plate deflection alone

− (I) = 



Z
ΓJ

2 (IJ)



 (J) ΓJ + 





Z
ΓJ

2 (IJ)


J
 (J) ΓJ

+


I

Z
ΓJ

2 (IJ)



 (J) ΓJ + 2



I

Z
ΓJ

2 (IJ)


J
 (J) ΓJ (C.28)

We evaluate the first and third integrals by first bringing the differentials under

the integral sign, as shown below





Z
ΓJ

2 (IJ)



 (J) ΓJ =

Z
ΓJ

2 (IJ)
2

2
 (J) ΓJ (C.29)




I

Z
ΓJ

2 (IJ)



 (J) ΓJ = 

Z
ΓJ

2


I
 (IJ)




 (J) ΓJ (C.30)

The same operations are performed on the second and fourth integrals. However,

the latter contain spatial differentials of the plate deflection, making these integrals

more challenging to evaluate numerically. We therefore apply integration by parts to

‘transfer’ these spatial differentials from the receiver terms to the source terms, as

shown below






Z
ΓJ

2 (IJ)


J
 (J) ΓJ = (−1) (−1)

Z
ΓJ

2


I
 (IJ)




 (J) ΓJ

+ 2 (IJ)



 (J)

¯̄̄̄J=
2

J=−
2

 (C.31)

2


I

Z
ΓJ

2 (IJ)


J
 (J) ΓJ = (−1) (−1)2

Z
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2
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2
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 (C.32)
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Here, a (−1) comes from the integration by parts, and another (−1) from the symmetry
property of the fundamental solution,  (IJ) J = − (IJ) I The benefit
comes from transferring the spatial differentials from an unknown quantity, , to a

known quantity,, thereby allowing for an analytical, and therefore exact, evaluation

of these derivatives. We note that the terms evaluated at the plate end points, J = ±
2 

are identically zero for a plate clamped at both ends. We also note that the expressions

for the second and third integrals, (C.30) and (C.31), are now equal up to the terms

associated with the plate end points.

C.3.1 Singular Panels

All four integrals given in (C.29) through (C.32) contain singularities at the source

location, J = I Therefore, the region around the source will have to be evaluated

separately and with special care.

We expand the term multiplying the source function —call this term  (), where

 () is some function of the plate displacement— in terms of a Taylor series about the

source point and evaluate the principal value integral of each term. For an integral of

the form of equation (C.29), we obtain

∆2Z
−∆2

 ()  ()  ≈
∆2Z

−∆2

ln (||)
∙
 (0) + 




 (0) +

2

2!

2

2
 (0) + · · ·

¸


=

∆2Z
−∆2

ln (||)  (0) +
∆2Z

−∆2

ln (||) 
2

2!

2

2
 (0) + · · ·

≈ ∆ (0) (1− ln (∆2)) 

where terms containing odd powers of  have yielded zero and we have only kept the

leading order term in the solution. For integrals of the form of equation (C.30), the

principal value of the leading order term (as well as all other terms containing even
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power of ) is zero and we therefore retain the second order term to obtain

∆2Z
−∆2




 ()  ()  ≈ −
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2!

2

2
 (0) + · · ·

¸


=

∆2Z
−∆2




 (0) +

∆2Z
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2

3!

3

3
 (0) + · · ·

≈ ∆



 (0)  (C.33)

Applying the same approach to integrals of the form of (C.32) yields a leading order

term of the form  (0) ∆, which is divergent for ∆ → 0 and is a clear indication

that the integral itself is hyper-singular and hence non-integrable.

This suggests that we recast the integral in (C.32) in a form that does not involve

the second derivative of the source function in the immediate vicinity of the source

point. We define a narrow integration domain Γ0 of length ∆ around the source

and exclude from this domain the integration by parts operation, by which the spatial

derivative is transferred from receiver to source, to obtain

2


I

Z
ΓJ

2 (IJ)


J
 (J) ΓJ = 2

Z
ΓJ−Γ0

2
2

2I
 (IJ)  (J) ΓJ

+ 2
Z
Γ0

2


I
 (IJ)



J
 (J) ΓJ + 2

2 

I
 (IJ)  (J)

¯̄̄̄J=I−∆
2

J=−
2

+ 22


I
 (IJ)  (J)

¯̄̄̄J=
2

J=I+∆
2



The integral containing 22 can be evaluated numerically as before whereas the

singular integral now contains a source term of the form  and is evaluated in

the manner of (C.33) to yield

∆2Z
−∆2




 ()




 ()  ≈ ∆ 2

2
 (0) 
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C.3.2 Spatial Discretization

As described in section C.2 above, we discretize the plate surface into  uniformly

spaced elements and assume that  and ̂ are constant inside each element.

The structural nodes are therefore the mid-points of the boundary elements. We

approximate the spatial derivatives through the following fourth order finite central

differences:




 (I) ≈ 1 []

∆
=

1

12∆

¡
−2 − 8−1 + 8+1 − +2

¢
+

¡
∆6

¢
 (C.34)

2

2
 (I) ≈ 2 []

∆2
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¢
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¡
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¢
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(C.35)

4

4
 (I) ≈ 4 []

∆4

=
1

6∆4
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¢
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¡
∆6

¢


(C.36)

The clamped structural edge conditions are satisfied by imposing a zero displace-

ment and zero slope condition at the outermost edges of the end panels. This is

accomplished by defining three ‘phantom’ points beyond each edge and imposing the

zero displacement and zero slope condition at the mid-point between the final plate

node and the first ‘phantom’ node. Approximate expressions for the plate displace-

ment and slope at the halfway point between two nodes are obtained by expanding in

a Taylor series about the nodal point



µ
I±∆

2

¶
≈  (I)± ∆

2

 (I)


± 1

2!

µ
∆

2

¶2
2 (I)

2
± 1

3!

µ
∆

2

¶3
3 (I)

3
+ · · ·

and expressing the differentials in terms of finite differences at the full nodal points to

obtain the following fourth order finite difference formulae:

+ 1
2
≈ 1

128

¡
3−2 − 20−1 + 90 + 60+1 − 5+2

¢
+

¡
∆6

¢
 (C.37a)

− 1
2
≈ 1

128

¡−5−2 + 60−1 + 90 − 20+1 + 3+2¢+
¡
∆6

¢
(C.37b)
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A similar approach can be used to obtain finite difference formulae for the slope at a

halfway point






µ
I±∆

2

¶
≈

1
h
± 1

2

i
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= (C.38)

1
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¡∓3−2 ± 95−1 ∓ 2190 ∓ 95+1 ± 3+2¢+
¡
∆6

¢


Equations (C.37a) and (C.37b) can be added to give an expression for the sum of

equally weighted displacements at the edge of the same panel



µ
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2

¶
+ 

µ
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∆

2

¶
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2
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16
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1

64
+2 +

¡
∆6

¢
 (C.39)

This formula will be used in section C.3.3 below.

C.3.3 Evaluation of Spatial Integrals

With this choice of spatial discretization, the influence coefficients contained in the

boundary integral equation (C.28) become matrices with the following constant ele-

ments:

 =

Z
Γ

 (J) ΓJ = −
Z
Γ

lnJ


ΓJ (C.40)


 =

Z
Γ




( (J)) ΓJ =
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( − J)

2J
ΓJ (C.41)


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2

2
( (J)) ΓJ = −

Z
Γ

1

2J
ΓJ (C.42)

where, J =
q
( − J)

2. These off-diagonal coefficients,  6= , are evaluated nu-

merically using four point Guassian quadrature. The surface integrals, excluding the

source panels, can now be expressed as

− = 2
2
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
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
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+    6=  (C.43)
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The contributions from the source panels are straightforward to compute for the inte-

grals containing the source terms  and . They are

(1− ln (∆2))∆


2

2
 (C.44)

and
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¢
 (C.45)

respectively. The contribution from the 2 integral contains terms that need to be

evaluated at the edges of the source panel and therefore require special care.

First, we use finite differences at halfway points to evaluate the term involving the

second order spatial derivative of the plate displacement. We combine these with the

term to be evaluated at the panel edges, also involving the halfway points. Finally, we

transform the halfway points into full nodal points using the formula derived in (C.39)

to obtain the final expression of (C.46), as shown below:
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We add the results of (C.44), (C.45) and (C.46) to obtain the total contribution from

the source panel integrals

 ≈ (1− ln (∆2))∆


2

2
 +

1

12





¡
−2 − 8−1 + 8+1 − +2

¢
+

2

∆

µ
5

96
−2 −

7

24
−1 +

85

16
 −

7

24
+1 +

5

96
+2

¶
 (C.47)



228 C. Computational Model of Baffled Plate

C.3.4 Combined Plate Equation

The fully linearized fluid-plate equation expressed in terms of plate deflection alone

now becomes

1

∆4
4 [] +
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where 2 [] and 4 [] are the fourth order finite differences given in (C.35) and

(C.36).

C.3.5 Time Stepping

The final step in our computational scheme consists of discretizing in time. We use a

second order central difference scheme, also known as the ‘leapfrog method,’ to write




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By applying this differencing procedure to (C.48) and collecting all +1 terms on the

left hand side, we obtain
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The time stepping procedure using (C.51) consists of solving for the displacements

at time  + 1 with prior knowledge of the displacements for times  and  − 1 The
left hand side of (C.51) can be organized in the form of an  × matrix (call it )

multiplying an  × 1 vector of unknown displacements. Since all  and −1 are

known from previous time steps, the right hand side reduces to an  × 1 vector (call
it  ). The result is a system of equations in unknowns given through the matrix

representation



h
+1

i
= 

¡
 −1

¢
 (C.52)

The solution consists of inverting the matrix C once, and using this inverted matrix to

operate on the right hand side vector at each time step to obtain the new deflections

η+1 = C−1V (C.53)

C.4 Addendum: Derivation of Non-Linear Influence Co-

efficients

C.4.1 Fundamental Solutions

The solution of the fundamental equation in the half-plane for a source at point I

can be represented as the superposition of the free space Green’s functions at the real

source I and its mirror image across the baffle I0
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Here, J is the receiver,  (IJ) is the distance
q
( − )

2 + ( − )
2 between source

and receiver and all primed variables correspond to contributions from the virtual

source at I0 ≡ (0  0) = ( −)  The surface fluxes, normal to Γ at the receiver
point J are given by
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(C.55)
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where cos  = ̂̂+ ̂̂ is a function of the angle between the normal to the plate

surface and the line connecting the source and receiver. The unit vectors corresponding

to the latter are defined as

̂ =
( − )q

( − )
2 + ( − )

2
 (C.56)
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2 + ( − )

2
 (C.57)

Hence, they point from the receiver towards the source.

The -directional fluxes of the fundamental solutions given above are




 =

1

2
̂ +

1

20
̂0

= − ( − )

µ
1

22
+

1

202

¶
(C.58)

and







̂Γ
=





µ
̂̂ + ̂̂

2

¶
+





µ
̂0̂ + ̂0̂

20

¶
= − 1



( − )

4
(( − ) ̂ + ( − ) ̂) +

1

2

̂

2

− 1


( − )

04
(( − ) ̂ + ( + ) ̂) +

1

2

̂

02
 (C.59)

C.4.2 Evaluation of Integrals

The components of    , 

 and 

 consist of integrals of the above four fun-

damental solutions, equations (C.54), (C.55), (C.58) and (C.59) respectively, over

individual boundary elements. All off-diagonal components  6=  are evaluated nu-

merically using four point Guassian quadrature. The formulae given in these four

equations can be readily used for this purpose with the additional expressions for the

surface normals at a boundary element given by

(̂) =

⎛⎝ − ( − )q
( − )

2 + ( − )
2

⎞⎠


(C.60)

and

(̂) =

⎛⎝ ( − )q
( − )

2 + ( − )
2

⎞⎠


 (C.61)
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Here, ( ) and ( ) are the right end and left end coordinates of boundary

element . ‘Right’ and ‘left’ are determined with respect to the normal pointing out

of an element into the fluid domain.




