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Summary
This thesis was motivated by data from the Emerging Risk Factors Collaboration
(ERFC), a large individual participant data (IPD) meta-analysis of risk factors for
coronary heart disease (CHD). Cardiovascular disease is the largest cause of death
in almost all countries in the world, therefore it is important to be able to char-
acterise the shape of risk factor–CHD relationships. Many of the risk factors for
CHD considered by the ERFC are subject to substantial measurement error, and
their relationship with CHD non-linear. We firstly consider issues associated with
modelling the risk factor–disease relationship in a single study, before using meta-
analysis to combine relationships across studies.

It is well known that classical measurement error generally attenuates linear exposure–
disease relationships, however its precise effect on non-linear relationships is less
well understood. We investigate the effect of classical measurement error on the
shape of exposure–disease relationships that are commonly encountered in epi-
demiological studies, and then consider methods for correcting for classical mea-
surement error. We propose the application of a widely used correction method,
regression calibration, to fractional polynomial models. We also consider the ef-
fects of non-classical error on the observed exposure–disease relationship, and the
impact on our correction methods when we erroneously assume classical measure-
ment error.

Analyses performed using categorised continuous exposures are common in epi-
demiology. We show that MacMahon’s method for correcting for measurement
error in analyses that use categorised continuous exposures, although simple, does
not provide the correct shape for non-linear exposure–disease relationships. We
perform a simulation study to compare alternative methods for categorised contin-
uous exposures.

Meta-analysis is the statistical synthesis of results from a number of studies ad-
dressing similar research hypotheses. The use of IPD is the gold standard ap-
proach because it allows for consistent analysis of the exposure–disease relation-
ship across studies. Methods have recently been proposed for combining non-
linear relationships across studies. We discuss these methods, extend them to P-
spline models, and consider alternative methods of combining relationships across
studies.

We apply the methods developed to the relationships of fasting blood glucose and
lipoprotein(a) with CHD, using data from the ERFC.
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Notation

We shall use the following notation throughout this dissertation:

W Observed exposure
X True exposure
U Measurement error
Z Covariates measured without error
Y Outcome
Wij Observed exposure for the ith individual on the jth occasion
h(.) Hazard function
λ Regression dilution ratio
ζ SIMEX parameter
α Parameters of measurement model
β Parameters of regression model
S(., .) Spline basis function
g2(.) Measurement error variance function
τ 2 Between study variance
R(.) Risk set
D(.) Set of failures
τj failure time j
dj |D(τj)| the number of failures at time τj
`(, ; .) Log-likelihood
U(.) Score function
df Degrees of freedom
I(X > C) An indicator variable that takes the value 1 if X > C and 0 otherwise.

This is intended as a reference and the above notation, along with all additional notation, shall
be properly introduced within the main body of the document.



Abbreviations

All abbreviations will be introduced in the text the first time that they are used. However, we
include a summary of abbreviations for reference:

AIC Akaike’s information crtierion
APCSC Asia Pacific Cohort Studies Collaboration
BIC Bayesian information criterion
BMI Body mass index
CHD Coronary heart disease
ERFC Emerging Risk Factors Collaboration
FBG Fasting blood glucose
FFQ Food Frequency Questionnaire
FP1, FP2 Fractional polynomial of degree 1/2
GCV Generalised cross validation
gSIMEX Group-SIMEX
IFG Impaired fasting glucose
IPD Individual participant data
Lp(a) lipoprotein(a)
MCMC Markov chain Monte Carlo
MCSIMEX Misclassification SIMEX for categorised exposures
MI Multiple Imputation
MR Moment reconstruction
MVRS Multivariable regression splines
RDR Regression dilution ratio
REML Restricted maximum likelihood
RFrMSE Reference free root mean squared error
rMSE Root mean squared error
SAT Scholastic aptitude test
SBP Systolic blood pressure
SIMEX Simulation-extrapolation for continuous exposures

Abbreviations for the studies used in the analysis of the ERFC FBG data in chapters 6, 7 and 8
are given in appendix C. Abbreviations for the studies used in the analysis of the ERFC Lp(a)
data in chapter 9 are given in appendix E.



Chapter 1

Introduction

In this brief chapter we discuss the motivation for this thesis; the characterisation of non-
linear exposure–disease relationships in the Emerging Risk Factors Collaboration (ERFC), a
large individual participant data (IPD) meta-analysis of risk factors for coronary heart disease
(CHD). We then give some background on the field of epidemiology and discuss the importance
of accurately characterising the shape of exposure–disease relationships. After this we give
short introductions to two of the major themes investigated in this dissertation: measurement
error and meta-analysis. We finish this chapter with an overview of the material to be covered
in the remainder of this dissertation.

1.1 Motivation

We are in the midst of a global cardiovascular epidemic [3]. Although cardiovascular disease is
typically associated with the Western world, cardiovascular disease is the largest cause of death
in almost all countries in the world. CHD caused approximately 1 out of every 6 deaths in the
United States in 2006; an average of 1 death every 38 seconds [4]. In the United Kingdom
cardiovascular disease is the main cause of mortality, causing almost 200,000 deaths every
year. Amongst the most developed countries in the world, only Ireland and Finland have a
higher rate of CHD than the UK [5]. In recent years death rates from cardiovascular disease
have declined as the result of better management of risk factors, and new medical procedures,
yet the burden of disease remains high [4, 5]. The burden of cardiovascular disease is not just
on the individual but on society through direct increases in healthcare costs, and the indirect
costs of lost productivity due to morbidity and premature mortality [6]. Although great strides
have been made in understanding the aetiology of CHD over the past sixty years, there is still
much that is not known about CHD. An increased understanding of the causes of CHD can
hopefully lead to treatment of risk factors so that populations can enjoy longer healthy lives.

This dissertation is motivated by the ERFC [7], a collaboration of studies contributing IPD
on lipid, inflammatory and other markers of CHD in over 1.1 million, predominantly white
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1. Introduction

Western, participants in over 100 prospective studies of cardiovascular diseases. The first CHD
event (fatal or non-fatal) is the primary event of interest of which there are over 69,000 incidents
within the 11.7 million person years at risk. CHD events include both non-fatal myocardial in-
farctions and CHD related deaths. The ERFC is investigating the risk factor–CHD relationship
for many risk factors including adiposity markers, C-reactive protein [8], fasting blood glucose
(FBG) and diabetes [9, 10], lipoprotein-a (Lp(a)) [11], lipids and apoliproteins [12], and renal
function. We shall focus on two of these risk factors in this thesis, FBG (chapters 6, 7, 8) and
Lp(a) (chapter 9).

The ERFC aims to better characterise risk factor–CHD relationships. It is able to do this be-
cause it has observations from such a large number of studies, and data at the individual par-
ticipant level. This gives us better power to characterise the shape of the risk factor–CHD
relationship than each study individually, and allows us to model the studies in a consistent
way. Many risk factors considered by the ERFC are subject to substantial measurement error
and are known, or are suspected to have, a non-linear relationship with CHD, including FBG
and Lp(a). The ERFC is part of a growing trend within epidemiological research to use the
extra power obtained from combining studies that have tackled similar research hypotheses.
Other examples include the Asia Pacific Cohort Studies Collaboration (APCSC) [13] and the
Collaborative Group on Hormonal Factors In Breast Cancer [14].

An aim of the ERFC is to ‘help advance biostatistical methodology for the analysis of observa-
tional data from multiple studies’ [7], and we hope that this dissertation makes a contribution
towards achieving this. This thesis originated from the observation the ERFC made that ‘char-
acterizing the shape of the underlying exposure–disease relationship, while taking into account
possibly heterogeneous measurement error, is not well studied, especially in the context of
IPD meta-analysis’ [15]. This dissertation aims to tackle the problems of characterising the
exposure–disease relationship; provide suitable methods for correcting for exposure measure-
ment error, considering the possibility of heteroscedastic or non-normal measurement error;
and also provide methods for combining non-linear exposure–disease relationships across stud-
ies.

1.2 Epidemiology

Epidemiology is the study of patterns of health and disease at the population level. Epidemiol-
ogy is used in public health research to identify risk factors for disease which can then be used
to inform policy decisions and evidence-based medicine. Modern day epidemiology started
with John Snow, the ‘father of epidemiology’ [16], who showed the relationship between water
sources and outbreaks of cholera in London in the 1850’s [17]. Since the 19th century there
has been a huge growth in epidemiology and perhaps one of the most notable achievements
of epidemiology was in the 1950’s when the relationship between tobacco smoking and lung
cancer was shown [18–20].

2



Epidemiologists use studies of groups of individuals to investigate relationships between ex-
posure and disease. The two main types of study are case-control studies and cohort studies.
In a case-control study individuals are sampled according to disease status. We therefore have
two groups of individuals, the cases and the controls, which we can compare. In a cohort study
we typically follow a well defined population who are all disease free at the beginning of the
study, until either all individuals become diseased or until the study ends.

Since the early 20th century there have been numerous prospective cohort studies of various
facets of population health. Many of these have focused on cardiovascular disease including the
Framingham Heart Study of the epidemiology of cardiovascular disease in the US [21] which
started in 1948 and is still going today. The Framingham Heart Study was the first to show the
effects of smoking and high cholesterol on heart disease [22, 23]. Since then the relationship of
risk factors such as age, high cholesterol, tobacco smoking and high blood pressure with CHD
has been consistently found. However, high levels of these risk factors are not present in a large
number of CHD cases [24]. In recent years there has been much interest in trying to identify
other risk factors for CHD, and since it seems unlikely that a single risk factor with a large
effect has been overlooked, the focus has been on identifying a number of risk factors, each of
which has a modest effect on CHD risk. To show statistical significance of modest effect sizes
requires large sample sizes and therefore, large meta-analyses which combine evidence from
multiple studies such as the ERFC and APCSC are required.

Many epidemiological studies have considered only a linear relationship between exposure
and disease or have chosen to dichotomise the exposure due to small study size. There are
increasing numbers of large studies and meta-analyses thereof where we have sufficient power
not only to discern whether there is a relationship between exposure and disease, but also to
be able to investigate the shape of this relationship. In epidemiology it is important to be able
to describe the shape of the exposure–disease relationship accurately because this can have
a significant impact on the policy decisions that are made as a result of research, which will
in turn, impact on individuals’ health outcomes. It may be that as a result of understanding
the shape of the relationship we are able to identify sets of individuals who would benefit
from targeted health interventions. For example in occupational epidemiology we may wish
to identify an exposure level beyond which the risk of disease becomes unacceptably high,
so that action may be taken to prevent individuals from being exposed above this level. We
may identify a set of high-risk individuals which clinicians would like to target to reduce their
risk, or we may find that lower exposure at the population level could reduce overall risk, this
being achieved through public health initiatives. As an example, if we consider the relationship
between blood pressure and CHD then there will be a set of high risk individuals with high
blood pressure who will be treated using drugs such as ACE inhibitors, whereas the general
population can be given information on lifestyle changes that will help reduce their blood
pressure such as taking regular exercise; eating a healthy, balanced diet; drinking less alcohol;
and smoking less.
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Misestimation of the exposure–disease relationship can lead to inappropriate interventions. We
need to be concerned with misestimating all levels of risk and not only large risks since a
large number of people exposed to a small risk may generate many more cases than a small
number exposed to a high risk [25]. By underestimating small risks we may, for example,
make it appear uneconomically viable to intervene, which could in turn result in adverse health
outcomes for some individuals. Overestimation of risk can have consequences too; for example
individuals may unnecessarily be given medication to reduce exposure levels, from which some
individuals may suffer from side effects, and the cost of the medication may have been better
spent on modifying other risk factors.

Statistics plays a key role in epidemiology. Firstly, statistics may be used in the design of epi-
demiological studies to inform the required sample size to be able to detect a given effect size.
Once the data have been collected then statistics can be used to analyse the data and quantify
statistically the significance of results, allowing for differences in characteristics between indi-
viduals. Well conducted statistical analysis can help us differentiate between a true exposure–
disease relationship, and chance findings. Case-control studies can be modelled using logistic
regression where the outcome is a binary indicator denoting whether each individual was dis-
eased at the end of the study or not. In cohort studies Cox proportional hazards models [26]
are usually appropriate, because the outcome is a composite of the disease status and censoring
time, although logistic regression is also common, especially when there is little censoring.
Statistical methods can be used to allow for certain deficiencies in the data collection such as
missing data and measurement error. Despite the long relationship between statistics and epi-
demiology, epidemiology constantly provides new statistical challenges, requiring continual
methodological development by statisticians.

1.3 Measurement error

1.3.1 The effects of measurement error

Measurement error is ubiquitous in the measurement of exposures whether it be the measure-
ment of biological exposures such as serum creatinine [27], or blood glucose [28]; environmen-
tal exposures such as radon [29] or air pollution [30]; dietary exposures such as energy intake
[31] or alcohol consumption [32]; or a plethora of other quantities of interest. In fact almost all
measurements of physical quantities will be subject to some degree of measurement error.

If for example a study were interested in investigating the relationship between blood pressure
and a disease, then they may want to estimate an individual’s long term average, or usual, blood
pressure since an individual’s blood pressure is known to vary from day to day. However, if
a single blood pressure measurement were to be taken using a sphygmomanometer then the
reading obtained will differ from the subject’s usual blood pressure in two ways. Firstly, there
will be measurement error due to the measuring device and secondly, day to day variation.
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These two sources of error: measurement error and within-person variation, are similar in that
both prevent us from measuring what we would like to be able to, usual blood pressure, and
in fact they have a similar effect on the observed exposure–disease relationship. Therefore, in
this dissertation we shall use the term measurement error to mean both error arising from the
measurement process and within-person variation.

The effects of measurement error on exposure–disease relationships were neatly summarised
by Carroll et al. [33] as:

• bias in parameter estimation in models,

• loss of power in detecting associations between variables,

• masking of features of the data, hence making it difficult to ascertain the true shape of
the exposure–disease relationship.

In this dissertation we shall see each component of this ‘triple whammy’ of effects numerous
times. The effects of exposure measurement error have been known for a long time; for ex-
ample in 1904 Spearman [34] noticed how random measurement error reduces the correlation
between two variables; he was the first to refer to this as ‘attenuation’ otherwise known as
regression dilution. Over time people have become increasingly aware that when exposure
measurement error is present, the observed exposure–disease relationship is not the same as
the true relationship; usually, but not always, biasing it towards the null.

Many risk factors for CHD are subject to measurement error such as measurements of blood
pressure [35–37] and cholesterol [36–39], as well as the two risk factors we consider in this
dissertation: FBG [28, 40] and Lp(a) [11]. Emberson et al. [41] state that ‘The importance
of risk factors for CHD can be greatly underestimated by using a single baseline measure in
prospective study analyses’, and thereby not taking into account the effects of measurement
error. They go on to say that ‘Studies that wish to estimate associations between disease risk
and usual exposure levels need to take regression dilution effects into account. Failure to do so
can lead to serious misinterpretation of the importance of CHD risk factors’.

1.3.2 Correction for measurement error

Because of the ‘triple whammy’ of measurement error it is essential to correct for its effects in
analyses if we are interested in obtaining the true relationship between exposure and disease. In
order to correct for the effects of measurement error, additional data are required. These addi-
tional data will typically be obtained from a subset of the study’s participants. They may consist
of exposure measurements that contain substantially less measurement error than the original
measurement, this might be the case if this superior measurement is costly; alternatively, as in
the constituent studies of the ERFC, some individuals may be recalled so that another exposure
measurement using the original method can be taken.
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In the case of a linear model with linear predictor there exists a simple and effective approach
to correcting for the effects of exposure measurement error, regression calibration, which we
describe in chapter 4. This method is also approximately correct for Cox and logistic regression
[28, 42]. Because regression calibration is simple and easy to use it has been widely used [43,
44]. However, when the exposure–disease relationship is non-linear there is no simple method
of correcting for measurement error. Numerous methods have been proposed for correcting
for the effects of exposure measurement error when the exposure–disease relationship is non-
linear, and we discuss some of these in chapter 4, however it would be fair to say that no single
method is commonly used in practice.

Correction for measurement error can cause large differences in our conclusions. For example,
Emberson et al. [39] showed that without adjustment for the effects of exposure measurement
error 50% of CHD events in middle aged men can be attributed to serum total cholesterol,
blood pressure and cigarette smoking, however this became 80% on adjustment for the effects
of measurement error. The difference between corrected and uncorrected analyses can have
major implications for public health policy and the direction of future research. Appropriate
correction is essential, otherwise inflated or misleading results may be obtained [45]. What is
an appropriate correction for measurement error is sometimes a contentious issue; for example
there was much debate about the methods used for correcting the relationship between 24-
hour sodium excretion in urine and blood pressure, for measurement error in the Intersalt study
[45–49].

Many books have been written on the topic of measurement error including Fuller’s Mea-

surement Error Models [50], Carroll et al.’s Measurement Error in Nonlinear Models [33],
Gustafson’s Measurement Error and Misclassification in Statistics and Epidemiology [51] and
Buonaccorsi’s Measurement error: models, methods, and applications [52]. Despite the fact
that the effects of exposure measurement error and the necessity of correcting for it have been
known for a long time, research into this area is still very active [1, 53–55].

1.4 Meta-analysis

Meta-analysis is the ‘analysis of analyses’ [56]; it allows us to combine the results of multiple
studies addressing a set of related research hypotheses. Many attribute the first meta-analysis
to Pearson in 1904 [57], where he investigated the effectiveness of enteric fever inoculations.
Meta-analysis has become an increasingly popular research tool; the Cochrane Collaboration
alone has published over 4000 meta-analyses. Apart from the use of meta-analysis for medical
outcomes, it has also been used in the fields of education [58], psychology [59], and economics
[60].

Meta-analysis allows us to make conclusions from the data that we may not have been able
to from any study individually. This is due to the power gained from a larger sample size,
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especially when the effect size of interest is small. Meta analysis is a fast growing research
area with current areas of activity including multivariate and network meta-analysis.

Meta-analyses traditionally have focused on combining the published results (i.e. data at the ag-
gregate level) from previous studies. However, increasingly meta-analyses are being conducted
on the IPD from each study. IPD meta-analysis is the gold standard approach to combining data
across multiple studies because it allows us to analyse the data consistently across studies; we
discuss in detail the advantages and disadvantages of IPD meta-analysis in chapter 8. Stewart
and Parmar [61] state that ‘Whenever possible, a meta-analysis of updated individual patient
data should be done because this provides the least biased and most reliable means of address-
ing questions that have not been satisfactorily resolved’ by individual studies. There has been
a rapid growth in the number of published papers that use IPD meta analysis; Riley et al. [62]
conducted a systematic review of the number of IPD meta-analyses that had been conducted
between 1991 and 2008 which showed half a dozen were being performed per year at the
beginning of the period, increasing to 49 per year between 2005 and 2009.

Meta analysis can be contentious, for example Eysenck [63] described a meta-analysis of the
outcome of psychotherapy [64] as ‘an exercise in mega-silliness’ and Egger, Schneider and
Davey Smith argue that meta-analysis should ‘not be a prominent component of reviews of
observational studies’ [65]. As we discuss in chapter 8, a good meta-analysis should be well
conducted and any deficiencies highlighted [66].

In this dissertation we are concerned with IPD meta-analysis not of point estimates of effect
size as is usually the subject of meta-analyses, but of the shape of non-linear exposure–disease
relationships across the exposure range; a topic that has previously received little attention [67].

1.5 Overview of dissertation

Following an introduction to the analysis of time to event data and measurement error, we look
at the effects of exposure measurement error in a single study, on a range of epidemiologically
plausible shapes for the exposure–disease relationship using simulation. Having seen the ef-
fects, we then go on to consider methods that have been proposed for correcting for exposure
measurement error as well as developing our own, and we assess the performance of these
methods, again by simulation. We then apply the methods to an example dataset looking at the
relationship between FBG and CHD in the ERFC, although we ignore possible heterogeneity
in the shape of association between studies at this point. We then consider the effects of non-
standard error structures, and the implications of erroneously assuming the standard classical
measurement error model on our correction methods. Following this, we return to consider
how heterogeneity in the shape of the risk factor–disease relationship between studies, which
we previously ignored, can be accounted for using the tools of meta-analysis. We then apply
the methods that have been developed throughout the dissertation to another risk factor consid-

7



1. Introduction

ered by the ERFC, Lp(a). Finally, we summarise our conclusions, make suggestions for future
work and offer some recommendations for practice.

1.5.1 Chapter structure

Chapter 2 introduces the Cox proportional hazards model and looks at different forms for
the linear predictor when modelling non-linear exposure–disease relationships focusing on
grouped exposure analyses, fractional polynomials and splines.

Chapter 3 introduces the concept of exposure measurement error. We investigate the effect that
random exposure measurement error has on a range of epidemiologically plausible non-linear
exposure–disease relationships using a simulation study.

Chapter 4 looks at methods for correcting for the effects of exposure measurement error in
non-linear models. We use a common correction method, regression calibration, to develop a
method for correcting fractional polynomial analyses.

Chapter 5 consists of three simulation studies. The first extends the simulation study of chap-
ter 3 to look at the performance of MacMahon’s method for correcting for measurement error
in grouped exposure analyses. The second compares the performance of existing and proposed
methods for correcting for measurement error in categorised continuous exposures. The third
considers the performance of fractional polynomial and P-spline methods, described in chap-
ter 4, at correcting for exposure measurement error, again extending the simulation of chapter 3.

Chapter 6 focuses on applying fractional polynomial and P-spline methods to the FBG–CHD
relationship using ERFC data.

Chapter 7 extends the simulation study of chapter 3 to consider scenarios where the true expo-
sure is subject to non-normal and/or heteroscedastic measurement error, or the true exposure
is non-normal, looking at the effect these scenarios have on the observed exposure–disease re-
lationship, and the corrected relationship when we erroneously assume the standard classical
measurement error model. Secondly, we consider the use of mixture models to robustify our
fractional polynomial and P-spline models.

Chapter 8 starts with an introduction to the basic concepts of meta-analysis. We then consider
approaches to carrying out a 2-stage IPD meta analysis of non-linear exposure–disease rela-
tionships. We conclude by reanalysing the ERFC FBG data from chapter 6 using the methods
developed.

Chapter 9 is an application of the methods that we have developed throughout this dissertation
to another risk factor for CHD from the ERFC, Lp(a).

Chapter 10 gives conclusions, areas for future work, and recommendations for practice.
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Chapter 2

Modelling non-linear exposure–disease
relationships

In this chapter we look at survival analysis and methods for modelling a continuous exposure–
disease relationship when we have time to event data. We consider the Cox proportional haz-
ards model focusing on: grouped exposure, fractional polynomial and spline functions for the
linear predictor. This chapter shall set the foundations for us to consider the effects of exposure
measurement error on the observed exposure–disease relationship, and how we may correct for
these effects, in the rest of this dissertation.

2.1 The Cox model

2.1.1 Introduction to survival analysis

Survival analysis is concerned with modelling the time until an event (or failure) occurs. Events
of interest may be health related outcomes such as death, heart attack or stroke, or cancer; or in
industrial applications failure of a part within a machine. Sometimes we may only be interested
in modelling the rate at which failures occur, but often we want to use a set of explanatory
variables to explain differences in survival between individuals.

The survival function S(t) gives the probability that the observed failure time T is greater than
some specified time t,

S(t) = Pr(T > t).

The survival function can be estimated parametrically, using for example a Weibull or expo-
nential distribution, or using the non-parametric Kaplan–Meier product–limit estimator [68]. If
we let ni be the number of individuals under observation at time ti, and di the number of deaths
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2. Modelling non-linear exposure–disease relationships

at time ti, then the Kaplan–Meier estimator is

Ŝ(t) =
∏
ti<t

ni − di
ni

.

This is a step function where the steps occur at the unique failure times. As the sample size
increases the survival function will approach the true survival curve. The variance of Ŝ(t) can
be calculated using Greenwood’s formula [69].

The hazard function, h(t), gives the instantaneous risk of experiencing an event at time t,
conditional on survival to time t,

h(t) = lim
∆t→0

P [(t ≤ T ≤ t+ ∆t)|T ≥ t]

∆t
= −S

′(t)

S(t)

and can be interpreted as the number of events per population at-risk per unit time. This leads
to the cumulative hazard which is

H(t) =

∫ t

0

h(u)du.

This is the number of events per population at-risk over the time interval [0, t).

Throughout this dissertation we use the proportional hazards model because it allows us to
make no assumptions about the form of the baseline hazard. Under the proportional hazards
model we assume that the hazard for any individual is a constant (over time) proportion of the
hazard for any other individual i.e. for individuals i and j and some constant k,

hi(t)

hj(t)
≡ k ∀ t.

Survival data usually exhibit one or more forms of censoring. Censoring is when we do not
know either the time when an individual joined the risk set or their event time. The different
forms of censoring are:

• Left censoring—When we only know that an individual’s lifetime is less than some value
i.e. T < t.

• Right censoring—When we only know that the event took place after some time, T > t.

• Interval censoring—When we only know that the event took place in some interval t1 <
T < t2.

The likelihood function, and hence parameter estimation, is complicated by having to take
account of the censoring exhibited by the data.

Right censoring and interval censoring are most common in epidemiological studies. Right
censoring will occur due to individuals being lost to follow up, or the study ending, whilst in-
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terval censoring can occur due to the event of interest occurring between follow-up visits. Cen-
soring is usually assumed to be non-informative in epidemiological cohort studies i.e. knowing
that the observation was censored tells us nothing about the expected survival time for that
individual.

2.1.2 Cox proportional hazards model

The Cox model [26] for modelling time to event data has proved highly influential within the
field of statistics and has been widely used in a diverse range of applications. The model was
a particular boon for medical statistics as it allowed a way of combining knowledge of event
data and censoring. This has led to the original 1972 paper [26] receiving almost nearly 20,000
citations (January 2011) on Google Scholar; the second most cited statistics paper of all time
[70]. The paper also introduced the idea of partial likelihood whereby we isolate the component
of the full likelihood that contains the parameters of interest.

We shall be using the Cox proportional hazards model throughout this dissertation to model
exposure–disease relationships. Under this model we assume that the hazard for individual i
with covariate vectorXi(t) at time t, hi(t), is

hi(t|Xi) = h0(t)eβ
TXi .

The Cox model is nonparametric as we do not specify the baseline hazard and only estimate the
parameter vector β. This makes the Cox model robust against misspecification of the baseline
hazard although Cox and Oakes [71] note that by specifying the baseline hazard you tend to
get very similar results.

As we do not specify the baseline hazard we can only make inference about the difference in the
ratio of the hazard between individuals. The hazard ratio for individual i relative to individual
j is given by

hi(t)

hj(t)
=
h0(t)eβ

TXi

h0(t)eβTXj
=
eβ

TXi

eβTXj
= exp

{
βT (Xi −Xj)

}
.

For example, if the estimated coefficient for age in a Cox model was 0.0815 then this would im-
ply an 8.1% increase in the event rate for each 1-year older in age compared with the reference.
So, if our reference was age 50 then a 45 year-old who was identical in their other covariates
would have about 33.5% lower risk of experiencing an event than a 50 year-old, whilst a 55
year-old would have about a 50% higher risk.

The Cox model relies on two assumptions about the underlying process:

• Proportional hazards assumption: the hazard for any individual is a constant (over time)
proportion of the hazard for any other individual.

• The effect of risk factors is multiplicative.
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2. Modelling non-linear exposure–disease relationships

A number of tests for checking the proportional hazards assumption have been suggested—we
shall consider Schoenfeld residuals later in this section.

We now introduce some notation for survival models. For each individual i we observe the
triplet (ti, δi,Xi) where:

• ti is the length of the period of observation.

• δi is an indicator taking the value 1 if individual i experiences an event at time ti and 0
otherwise.

• Xi = (Xi1, ..., Xip) is a vector of explanatory covariates.

If we let:

• τ = (τ1, ..., τk) be the set of unique event times where τi < τj if i < j,

• D(τj) be the set of all individuals experiencing an event at time τj ,

• dj = |D(τj)|, the number of events at time τj ,

• R(τj) be the set of individuals at risk immediately before event time τj ,

then the partial likelihood for the Cox model is given by

`(β) =
k∏
j=1

e
∑
i∈D(τj)

βTXi

(
∑

i∈R(τj)
eβTXi)dj

.

The log partial likelihood is given by

log `(β) =
k∑
j=1

 ∑
i∈D(τj)

βTXi − dj log

 ∑
i∈R(τj)

eβ
TXi


and the differentiated log-partial-likelihood, U(β) (the score function) has elements given by

U(β)l =
∂ log `(β)

∂βl
(2.1)

=
k∑
j=1

 ∑
i∈D(τj)

Xil − djX̄il

 . (2.2)

where X̄il =
∑

i∈R(τj)
wijXil, and wij = exp(βTXi)∑

s∈R(τj)
βTXs

By setting U(β) equal to zero and solving for β we obtain maximum (partial) likelihood esti-
mates of the regression parameters β.
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The information matrix is the p× p matrix with elements given by

Ilm(β) = −∂
2 log `(β)

∂βlβm
(2.3)

=
k∑
j=1

∑
i∈R(τj)

djwij(Xil − X̄jl)(Xim − X̄jm). (2.4)

β̂ is asymptotically distributed N(β, E(I−1(β))). However, to calculate the expectation re-
quires us to know the censoring distribution for all lives, including those that failed. Therefore,
the inverse of the observed information matrix, I−1(β̂), is usually used instead.

The partial likelihood equations can be solved using the Newton-Raphson algorithm, with the
starting value β̂(0) = 0. The update equation is

β̂(n+1) = β̂(n) + I−1(β̂(n))U(β̂(n))

with the algorithm terminating when the difference in the log partial-likelihood is less than a
given tolerance level ε i.e. when

|`(β̂(n+1))− `(β̂(n))| < ε.

The coxph function in the survival [72] package of R uses ε = 10−9. Standard Wald or
likelihood ratio tests can be performed to ascertain the significance of model parameters.

More than one event may occur at the same time e.g. two deaths in the same day. Our formulae
above have used the adjustment for ties given by Peto [73] and Breslow [74]. However, the
adjustment is conservative because the denominator of the partial likelihood will count those
individuals who have experienced an event more than once. Efron proposed an alternative
whereby the terms corresponding to individuals who experienced events are weighted so that
the terms contain an average of the people who experienced an event at time τj . For example
suppose we have five individuals (i = 1 . . . 5) under observation immediately prior to time τj
of which three individuals (i = 1, 2, 3) die at time τj . Let individual i have hazard ratio hi then
the partial-likelihood contribution of the events at time τj will be( 1

3
(h1 + h2 + h3)

h1 + h2 + h3 + h4 + h5

)( 1
3
(h1 + h2 + h3)

2
3
h1 + 2

3
h2 + 2

3
h3 + h4 + h5

)( 1
3
(h1 + h2 + h3)

1
3
h1 + 1

3
h2 + 1

3
h3 + h4 + h5

)
.

This approach is exact when the covariate values of the tied individuals are the same. The
alternative to this is a full likelihood approach which takes into account the possibility that
the dj events could have taken place in any of dj! orders. This is computationally complex to
calculate. R uses Efron’s method as default.
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2. Modelling non-linear exposure–disease relationships

We can allow for possible differences in the baseline hazard between groups of individuals, for
example trial centers in a multi-center trial, by stratification. Under a stratified model we allow
each strata to have a different baseline hazard but we assume that the effect of the explanatory
variables is the same across all strata. For an individual i in strata k the hazard is given by

hi(t) = h0k(t)e
βTXi .

The log-partial likelihood for the stratified model will be the sum of the partial likelihoods of
each strata. Hence, the score and information matrix are similarly the sum of the score, and
information matrices, of each strata respectively.

Cox models are not easy to fit using a Bayesian approach, however it can be achieved. Clayton
[75] uses the counting process formulation of the Cox model to fit frailty models using Markov
chain Monte Carlo. These models can be fit for example in WinBUGS [76]. Bayesian analyses
are computationally expensive because of the need for Gibb’s sampling. A large dataset is used
in this thesis, for which a Bayesian analysis will be impractical, and therefore this approach is
not considered further.

2.1.3 Checking the proportional hazards assumption

Proportionality of hazards is one of the main assumptions of the Cox model. An alternative
model is that the coefficient β(t) is time varying, so that we have the model

h(t|Xi) = h0(t)eβ(t)TXi .

An example of when this model might be appropriate is in a clinical trial when the effectiveness
of a drug decreases the longer the patient has been taking it. We can test whether the coefficients
β are constant over time using the Schoenfeld residuals [77].

Let X(τj) be the covariate vector for the individual failing at time τj . The expected value of
X(τj) is the weighted mean of the covariates over those at risk immediately prior to τj i.e.

x̄(β, τj) =

∑
i∈R(τj)

Xie
βTXi∑

i∈R(τj)
eβTXi

and the Schoenfeld residual,sτj , for the jth failure is

sτj = X(τj) − x̄(β̂, τj).

If we have multiple events at time τj then we get dj residuals. From the definition of β̂ we have
that

n∑
i=1

(X(τj) − x̄(β̂, τj)) = 0.
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Grambsch and Therneau [78] showed that we can use scaled Schoenfeld residuals

s∗τj = V −1(β̂, τj)sτj

where V (β̂, τj) is the conditional weighted variance of the covariate vectors of individuals
alive immediately prior to event time τj ,

V (β̂, τj) =

∑
i∈R(τj)

eβ
TXi(Xi(τj)− x̄(β, τj))

T (Xi(τj)− x̄(β, τj))∑
i∈R(τj)

eβTXi

to approximate the value of the parameter vector at time τj . Let s∗τj l be the element of s∗τj
that corresponds to the the lth parameter, and βl(τj) the lth parameter in the model with time
varying coefficients, then we have

E(s∗τj l) + β̂l ≈ βl(τj).

By plotting s∗τj l against time we can see whether the proportional hazards assumption holds.
If the assumption holds we would expect to see a horizontal line indicating no change in the
parameter value over time. We could also check this by looking for a zero slope in the regres-
sion of the residuals against time. However, the plot allows us to visualise the association and
we can investigate any outlying observations. Within a stratified model the residuals should
be calculated using the variance matrix from within each strata. Methods to get rid of time
dependence include adding an interaction between the covariate and time, and stratification.

For further discussion about checking for non-proportionality in Cox models and methods for
correcting for it, see Therneau and Grambsch [79].

2.1.4 Checking the model fit

In order to check the model fit we can use the Martingale residuals [80], M̂i(t), where

M̂i(t) = δi − Ĥ(t,Xi, β̂),

δi =

{
1 if individual i experiences an event

0 if individual i is right censored

and Ĥ(ti,Xi, β̂i) is the estimated cumulative hazard. The residuals are the difference over
[0, t] between the observed number of events minus the expected number given the model. The
martingale residual for the ith individual is defined as M̂i = M̂i(τi). We have one residual per
observation.

The martingale residuals have the following properties

•
∑

i M̂i = 0

15



2. Modelling non-linear exposure–disease relationships

• Asymptotically E(M̂i) = Cov(M̂i, M̂j) = 0.

Hence we would expect that the residuals be equally distributed about zero if the model was
a good fit to the data, although not normally distributed as under linear regression. We can
plot the Martingale residuals for each covariate against the covariate values to visually assess
this. Any systematic bias in the residuals is a sign that the model is not a good fit to the data
and that the functional form of the relationship should be revisited. It can be helpful to add
a smoother to the plot to aid assessment. Influential observations can be found by plotting i
against βj,(−i), where βj,(−i) is the jth parameter value obtained when observation i is excluded
from the model.

2.1.5 Alternatives to the Cox model

Many approaches have been proposed for modelling survival data other than the Cox propor-
tional hazards model. A logistic model, where we use the event indicator δi as the outcome, is
one of the simplest ways of modelling survival data and produces odds ratios which are the ratio
between the number of events that occur in a given time period between the individual of inter-
est and some reference. However, the problem with the logistic model is that it does not allow
for censoring which may be substantial, especially during long follow up in epidemiological
cohort studies.

Under the Cox model we do not specify the baseline hazard. An alternative approach is to
specify the baseline hazard in a fully parametric model using an exponential or Weibull model.
Under the exponential model we have that h0(t) = ρ i.e. the baseline hazard is constant over
time, whilst under the Weibull model

h0(t) = sρts−1

where ρ, s > 0. Note that this reduces to the exponential model when s = 1.

Another approach is to model the survival times using an accelerated failure time model. Under
this model the effect of covariates is to multiply the time to event, Ti, by a constant such that

log Ti = βTXi + εi

where εi is an error term. Assuming a normal distribution for the error term will give a log-
normal model, another possible choice is the extreme value distribution.

The Cox model assumes proportional hazards; an alternative to this is an additive hazards
model. Under an additive hazards model we assume that [81],

h(t|X) = h0(t) + βTX.
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The hazard of experiencing an event can be interpreted as the hazard that you experience the
event due to the exposure of interest plus the hazard of experiencing the event from all other
sources.

Despite these alternative approaches the Cox proportional hazards model remains the standard
model for survival data.

2.2 Functional forms for the linear predictor

In many situations a simple linear form for the predictor may be appropriate. However, many
exposure–disease relationships are non-linear. In this section we look at different methods for
exploring and modelling a non-linear exposure–disease relationship using the Cox model. All
the models for the exposure–disease relationship considered in this section may also include
additional covariates; however we exclude them here for clearer presentation.

2.2.1 Grouped exposure analysis

Turner, Dobson and Pocock [82] recently carried out a survey of five major epidemiological
journals and found that in the period considered 86% of articles employed categorisation of
a continuous variable in their analyses. Typically the continuous exposure will be partitioned
into K categories and models fit using the categorised exposure instead of the original con-
tinuous exposure. The number of categories will depend on the exposure of interest and the
sample size. Cutpoints may be chosen to be equally spaced, according to quantiles of the ob-
served data, or with respect to clinically relevant cut-points. Turner, Dobson and Pocock [82]
give recommendations for those categorising a continuous exposure. The choice of cutpoints
should be considered carefully with respect to the problem under consideration and alternative
cutpoints should be considered for sensitivity testing.

For defined groups k = 1, ..., K define K indicators as

X
(k)
i =

{
1 if the exposure for individual i is in the kth category

0 otherwise
.

Under the grouped exposure analysis the log-hazard at time t is modelled as

log h(t|X(2), ..., X(K)) = log h0(t) + β1X
(2) + β2X

(3) + . . .+ βK−1X
(K) (2.5)

where the hazard ratios are relative to a baseline hazard of k = 1.

This approach is easy to implement and makes no assumption about the shape of the exposure–
disease relationship. A plot of the log-hazard within each category against the mean exposure
value within that category allows us to explore the shape of the exposure–disease relationship.
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2. Modelling non-linear exposure–disease relationships

Groups also allow us to easily include a zero exposed group which can be difficult to include
under other modelling approaches.

The results obtained from a grouped exposure analysis are usually plotted with confidence
intervals that are relative to a reference group which has zero variance, with the other groups
sharing a common component due to the variation in the reference group. If the choice of
reference group contains few events then this variation can be large and obscure the differences
between the non-reference groups. This can be somewhat alleviated by choosing the reference
group to be that with the greatest number of observations. In practice, however, it may be
desirable to have a different reference value than that with the greatest number of observations.

Floating absolute risks (also known as quasi-variances [83]) developed by Easton, Peto, and
Babiker [84] have been developed to display the uncertainty of the risk within groups with-
out reference to another group. Their use has been controversial, for example Greenland et

al. [85] commented that floating absolute risks do not have the coverage properties of the
confidence intervals from which they are constructed which could lead to misinterpretation by
those unfamiliar with the procedure. Plummer [86] points out that the confidence interval is for
γ = αi − α̂1 where αi is the absolute risk for group i.

Easton et al. proposed two approaches to calculating floating absolute risks. The first method,
augmented likelihood, is specific to conditional logistic regression hence we describe their al-
ternative heuristic method here. The general aim is to find {qk}k=1...K such that for all contrasts,
c [83],

V̂ar(cT β̂) '
K∑
k=1

c2
kqk.

We can achieve this for simple contrasts βj − βk by minimising∑
j<k

p(qj + qk, vjk)

over {qk}, where p(q, v) is a suitable penalty function and vjk = Var(β̂j)+Var(β̂k)−2 Cov(β̂j, β̂k).
Penalty functions include the squared-error penalty [84] which aims to control the absolute er-
ror

(qj + qk, vjk) = (qj + qk − vjk)2.

Controlling the absolute error is not preferable because it can lead to large relative errors for
categories with small variance. The penalties suggested by Ridout [87],

p(qj + qk, vjk) =

(
qj + qk
vjk

)− 1
2

− 1 +
1

2
log

(
qj + qk
vjk

)
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and Firth and Menezes [83],

p(qj + qk, vjk) =

(
log

(
qj + qk
vjk

))2

instead control the relative error.

2.2.2 Polynomials

If the exposure–disease relationship is non-linear then we can add polynomial terms to our
model to try and capture this

log h(t|X) = log h0(t) + β1X + β2X
2 + ...+ βkX

k.

Polynomial terms are often included in an ad hoc fashion without adequate consideration of
alternative powers which may provide a better fit. Polynomials tend to give functions that
extrapolate badly. A more principled approach is to consider a range of transformations from
Tukey’s ladder of powers [88]. Durazo-Arvizu et al. [89] used this approach to choose a
suitable transformation of BMI when looking at the association between BMI and all-cause
mortality.

An alterative to selecting a power from Tukey’s ladder is to use a Box-Tidwell transformation
[90],

X(p) =

{
X(p) if p 6= 0

logX if p = 0
. (2.6)

The logarithmic transformation for the case p = 0 is obtained by setting p0 = 0 in the Taylor
expansion of Xp about p0 = p+ ε for small ε,

Xp = Xp0 + (p− p0)Xp0 logX +O((p− p0)2). (2.7)

The optimal value of p may be found using the following procedure [90]:

1. Let p = 1

2. Fit log h(t|X) = log h0(t) + β1X
p

3. Fit log h(t|X) = log h0(t) + β∗1X
p + β∗2X

p logX

4. Set p← β∗2
β1

+ p

5. Repeat steps 2–4 until convergence.

Although this procedure usually converges within three iterations, it unfortunately does not
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2. Modelling non-linear exposure–disease relationships

always converge.

2.2.3 Fractional polynomials

Fractional polynomials were introduced by Royston and Altman [91] as a method for flexibly
modelling continuous exposure–disease relationships using parametric modelling. They have
become widely used with software for fitting fractional polynomial models available in SAS

[92], STATA [93] and R [94]. For example Baglietto et al. used fractional polynomials to
model the relationship between alcohol consumption and all cause mortality and Abbas et al.

[95] used them to model the relationship between serum 25-hydroxyvitamin D and risk of
post-menopausal breast cancer.

A fractional polynomial of degree m is given by

log h(t|X) = log h0(t) +
m∑
j=1

βjHj(X)

where

Hj(X) =

{
X(pj) if pj 6= pj−1

Hj−1(X) logX if pj = pj−1

(2.8)

and, X(pj) is the Box-Tidwell transformation given in equation 2.6. The definition of Hj(X) is
based on the first order Taylor expansion given in equation 2.7.

It is suggested that p = {p1, ..., pm} only contains members from the set
℘ = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. This set gives a wide-range of epidemiologically plausible
shapes for the exposure–disease relationship whilst keeping the set of powers to be considered
small; and contains many commonly used transformations such as quadratic, square root and
logarithmic as well as the linear model. Usually a fractional polynomial of degree 1 (FP1) or
degree 2 (FP2) is found to provide an adequate fit to the data. Logarithmic transformations are
often applied to exposures, but since the log transformation is considered in the model selec-
tion procedure, it is suggested that the data are not log transformed a priori. If a logarithmic
transformation is preferable then this will be selected by the model selection procedure.

It is necessary to choose between the set of possible fractional polynomial models. There are
a total of 36 models up to FP2 using the set of powers ℘ . Ambler and Royston [96] propose a
closed test procedure for model selection for fixed m and significance level α. For a fractional
polynomial of maximum permissible degree 2 the algorithm proceeds, starting with the best
fitting fractional polynomial of degree 2, through the following steps:

1. Inclusion—For covariate X the best fitting degree 2 fractional polynomial is tested for
possible omission of X from the model. If X is significant (in terms of its likelihood
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ratio statistic) then continue, otherwise X is dropped from the model and we proceed to
the next covariate.

2. Non Linearity—Test the best fitting fractional polynomial of degree 2 against the model
which is linear in X . If this test is non-significant then the model is linear in X and we
can continue to the next covariate, otherwise continue.

3. Simplification—Test the best fitting fractional polynomial of degree 2 against the best
fitting fractional polynomial of degree 1. If the test is significant choose the fractional
polynomial of degree 2, otherwise choose the fractional polynomial of degree 1.

The number of degrees of freedom for each of the above tests is 4 for m = 2 and 2 for
m = 1. That is 1 degree of freedom for each parameter and 1 degree of freedom for each
power, although this is an overstatement since the powers are chosen from the limited set ℘.
Ambler [96] showed that this overstatement of the number of degrees of freedom leads to
underestimated type I error rates when the exposure–disease relationship is truly null or linear.

Covariate values must be positive in a fractional polynomial analysis since the set of power
transformations ℘ contains fractional powers. If a covariate does take negative values then we
must transform the data. One proposal [91] is

X ′ = X −Xmin + γ (2.9)

where γ is chosen to be the smallest difference between successive ordered observations al-
though Royston and Altman [91] comment that the fractional polynomial selected is relatively
insensitive to the exact choice of γ. The choice of origin is important as the selected fractional
polynomial powers can be highly correlated with the choice of origin [91] and can affect the
type I error rate of the procedure [96]. If the distance between the mean of the covariate and
the origin is large then we are increasingly likely to select fractional polynomial functions that
are approximately quadratic. The origin–shift transformation was proposed to deal with this
problem [97],

X∗ = δ + (1− δ) X −Xmin

Xmax −Xmin

where δ is small. The transformation shifts and scales the values so that they lie in the range
[δ, 1). A value of δ = 0.2 is recommended as X∗ needs to be sufficiently bounded away from
zero to ensure that small exposure values do not create extremely large values under negative
power transformations.

2.2.4 Splines

Spline functions are used in many applications such as computer graphics and in numerical
analysis. In statistics their use in regression models has increased markedly in recent years.
Splines can combine a good local fit with desirable global properties such as continuity for a
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2. Modelling non-linear exposure–disease relationships

specified number of derivatives. We shall describe spline bases which are the building blocks of
splines, the two main types of splines that are used in regression analyses — regression splines
and smoothing splines — and the issues regarding knot selection and number of degrees of
freedom of spline models.

A spline on the interval [a, b] is a piecewise polynomial function and the endpoints of the
subintervals on which each of the polynomial functions is defined are called knots. The degree
of a spline is the power of the highest order polynomial term. Hence, a degree 1 spline consists
of linear segments between each knot.

Spline basis functions

A set of spline basis functions =(X) = {S1(X), ..., Sm(X)} on [a, b] are a set of locally
defined polynomial functions (i.e. the functions are zero outside a specified range) which can
be combined in a linear combination to form a spline function

S(X;β) =
∑
j

βjSj(X).

We can fit a spline model by generating a spline basis, =(X), for our covariateX and including
=(X) as covariates in our regression models. There are several different ways of generating
spline bases. We consider the widely used power spline and B-spline bases.

The power spline basis of degree q with knots t0, ..., tK (which may or may not coincide with
the observed xi) is defined using a truncated power function

Sj(X) := (X − tj)q+ =

{
(X − tj)q, X ≥ tj

0, X < tj
(2.10)

and has the following properties:

• It is a spline of degree q,

• At tj the derivatives up to order (q − 1) are zero and continuous,

• The qth derivative does not exist at x = tj .

We can then fit the spline regression model

log h(t|X) = log h0(t) + β1X + ....+ βqX
q +

q∑
j=1

βq+j(X − tq)q+.

Although the power spline basis is easy to generate there are two key problems with using this
basis [98]:
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• If the number of knots, k, is ‘large’ then the value of the spline S(x;β) at x can involve
a lot more than q of the β coefficients. This means that calculations performed using this
basis can be computationally expensive

• If the knots, t0, ..., tk, are very non-uniformly distributed then some of the basis functions
may become nearly linearly dependent on one another. This can lead to ill conditioned
systems of equations for calculating the coefficients.

Basis-spline, or B-spline, bases are the most commonly used because they do not suffer from
the problems mentioned above. They are called basis-splines since every spline function of a
given degree, smoothness, and knots, can be represented as a linear combination of B-splines
of that same degree and smoothness.

For a spline basis on k knots the k − 1 − q basis B-splines of degree q can be obtained using
the Cox-de Boor recursion [98],

bj,0(t) :=

{
1 if tj ≤ t < tj+1

0 otherwise

Sj(t) := bj,q(t) =
t− tj
tj+q − tj

bj,q−1(t) +
tj+q+1 − t
tj+q+1 − tj+1

bj+1,q−1(t).

Each B-spline has the following properties [99]:

• It consists of q + 1 polynomial pieces, each of which is of degree q,

• At the points where the polynomial pieces join the first q − 1 derivatives are continuous,

• The B-spline basis function is positive on a domain spanned by q + 2 knots and zero
elsewhere (which is a major advantage over power splines for large bases),

• Except at the boundaries it overlaps with 2q polynomial pieces of its neighbours.

A B-spline regression model is of the form

log h(t|X) = log h0(t) +

k−q−1∑
j=0

βjbj,q(X).

If the knots are evenly spaced then the basis is described as uniform. Uniform B-spline bases
are computationally advantageous since all the basis functions are simply shifted copies of each
other. At each point the sum of the B-spline basis functions equals 1, hence why one of the
basis functions is omitted from the model. Figure 2.1 shows examples of degree 3 power and
B-spline bases.

Regression spline models are fitted to a set of spline basis functions on k knots (typically
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Figure 2.1: B-spline (with sum of basis functions [grey line]) and power basis functions.

k � n). The advantage of these models is that they can easily be fitted in standard software
packages and will return a small set of parameters. Since a small number of knots are used
to effectively control the roughness of the fitted function we lose some of the flexibility that
spline functions offer. If a very small number of knots are used this will produce models that
are unrealistic for the true underlying exposure–disease relationship. Choosing the number and
location of knots is a nontrivial problem and a lot of the regression spline literature focuses on
this challenge.

Cubic splines

One of the most commonly used forms of regression spline are restricted cubic splines, other-
wise known as natural cubic splines. Restricted cubic splines have continuous first and second
derivatives and are linear outside the first and last knots. The R function ns in the splines
package will produce a B-spline basis for a restricted cubic spline.

Heinzl and Kaider [100] demonstrate the use of a restricted cubic spline in the relationship of
the drug 6-mercaptopurine on remission of acute leukaemia and Desquilbet and Mariotti [101]
the association between cardiovascular disease and cholesterol.

Smoothing splines

Smoothing splines have n knots, one at each of the observed Xi. A penalty is imposed on
the roughness of the fitted function. The penalty is introduced into the estimation of β by
penalising the (partial) log-likelihood of the model. Denote the unpenalised log-likelihood for
the regression spline model by `(x;β) and the penalised log-likelihood by `p(x;β, θ) where θ
is the smoothing parameter which controls the balance between smoothness and adherence to
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the data. Then
`p(x;β, θ) = `(x;β) + θ

∫ xmax

xmin

(S ′′(x;β))
2
dx.

As θ tends to infinity the spline function becomes a line and as θ tends to zero we obtain the
unpenalised likelihood. Amongst all spline functions this penalty function is minimised by the
set of natural cubic splines with knots at the distinct values of x [102]. We can express the

penalty
∫ xmax

xmin

(S ′′(x;β))
2
dx as βTDβ where the (i, j)th element ofD is given by

Di,j :=

∫ xmax

xmin

S ′′i (x)S ′′j (x)dx.

This matrix representation of the penalty is convenient for computational reasons and is used
by Reinsch [103] in his algorithm for fitting smoothing splines.

A problem with smoothing splines is that as n increases so does the size of the basis at the
same rate, and hence the number of parameters that have to be fitted. Even for relatively
modest sample sizes the computation involved in fitting smoothing spline models can be large;
this is especially so for the calculation of standard errors. For example the smooth.spline
function in R does not by default use all the data points as knots if the number of observations
is greater than 49.

P-splines

P-splines are an alternative to smoothing splines and combine the smaller number of knots
of regression splines with the penalty on the roughness of the fitted function of smoothing
splines. They can be fit using the pspline function of the survival package in R, although
implementations do not exist in STATA or SAS. P-splines were used by Eisen et al. [104] to
model the relationship between silica exposure and risk of lung cancer mortality and by Hillege
et al. [105] to model the relationships of urinary albumin excretion with cardiovascular and
non-cardiovascular mortality.

P-splines [99] minimise

`p(x;β, θ) = `(x;β) + θβTDT
2D2β

where `(x;β) is the unpenalised log-likelihood for the regression spline model constructed
from a uniform B-spline basis for X , and D2 is the matrix of second differences which is
explained below. The penalty is such that it penalises non-linearity in the sequence of β co-
efficients. Although this is the penalty used in practice the penalty could be any symmetric,
non-negative definite matrix. P-splines are computationally much easier to fit than smoothing
splines because we have a relatively small number of knots. If the knots are evenly spaced then
the only dependence of the penalty on the underlying data is through the use of the range of X
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2. Modelling non-linear exposure–disease relationships

to generate the spline basis.

The matrix of second differences, D2, is generated using the difference operator, ∇. For an
n× p matrix X , the differencing operator ∇ is defined by

∇Xi,j = Xi+1,j −Xi,j, 1 ≤ i ≤ n− 1

which gives an (n− 1)× p matrix.

Dk, the (n− k)× n matrix of kth differences, is given by∇kIn where In is the n× n identity
matrix and ∇k is the ∇ operator applied k times (i.e. ∇2X = ∇∇X). For example, D2 for
n = 6 is calculated as

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


∇
→


−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


∇
→


1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

 .

Because of the penalisation used with smoothing and P-splines the effective degrees of freedom
of the model is not equal to the number of coefficients estimated in the model. Suppose we have
a Cox model where the exposure of interest is modelled using a penalised spline with r basis
functions and that we have s additional covariates. Let β = (βu,βp) be the parameter vector
of this model where βp is the 1× r vector of coefficients of the penalised spline, and βu is the
1 × s vector of coefficients relating to the additional covariates. We maximise the penalised
partial log likelihood, `p where [79],

`p(β; θ) = `(β)− g(βp; θ)

where g(βp; θ) penalises the appropriate likelihood terms corresponding to the penalised terms.
Then the information matrix,H , for this model is given by

H = I −

(
0 0

0 −g′′

)
= I +G

where I is the information matrix for the unpenalised log likelihood. Gray [106] suggests that
the variance-covariance matrix for the parameter estimates is

V := H−1IH−1
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with the effective degrees of freedom given by trace(HV ),

trace(HV ) = trace(HH−1(H −G)H−1) = (p+ q)− trace(GH−1).

Under the null hypothesis the Wald statistic (βu,βp)
TH−1(βu,βp) will be asymptotically

equivalent to
∑p

i=1 eiZ
2
i where the ei are the eigenvalues of the matrix HV and the Zi are

independent identically distributed standard normal random variables. In unpenalised regres-
sion

∑
ei = dim((βu,βp)) = p + q and the Wald test statistic has a χ2∑

ei
distribution. In

penalised models
∑
ei equals trace(HV ) the effective degrees of freedom of the model. How-

ever, strictly the Wald statistic has a distribution with mean
∑
ei and variance 2

∑
e2
i . Since

2
∑
e2
i < 2

∑
ei the conservative standard Chi-square test can be used in practice with the

effective degrees of freedom above.

There are several methods for trying to find an ‘optimal’ value of the smoothing parameter.
These include [107]:

• Akaike’s Information Criterion (AIC)

AIC(θ) = −2`p(β; θ) + 2 trace(HV ) (2.11)

AIC tends to undersmooth and lead to highly variable choices of smoothing parameter
so Hurvich et al. [108] provide an alternative ‘corrected’ AIC or cAIC

cAIC(θ) = −2`p(β; θ) +
r(trace(HV ) + 1)

r − (trace(HV ) + 2)
(2.12)

Both AIC and cAIC are available within the pspline function.

• Bayesian Information Criterion (BIC)

BIC(θ) = −2`p(β; θ) + trace(HV ) log n (2.13)

• Generalised Cross validation (GCV)

GCV (θ) =
`p(β, θ)

(n− trace(HV ))2
(2.14)

Malloy et al. [107] carried out a simulation study investigating the choice of θ for model selec-
tion in Cox models with penalised splines and found that no method was universally superior.

An alternative to using a model selection procedure is to fix the effective degrees of freedom,
which implies a set value of the smoothing parameter. We can find the value of the smoothing
parameter by adjusting θ until the specified number of degrees of freedom is met. There is no
theoretical justification for fixing the degrees of freedom a priori however a choice of 4 degrees
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2. Modelling non-linear exposure–disease relationships

of freedom seems to work well in practice and is the default choice in the pspline function.
Govindarajulu et al. [109] found that 4 degrees of freedom were preferable to selection by
AIC.

How many knots to choose (i.e. the size of k) and the location of the knots is an issue that needs
to be considered. By reducing the number of knots the aim is to reduce the complexity of the
computation required in fitting the splines but we must maintain the spline’s flexibility to fit
the data adequately well. Gray [106] suggests that the number of knots should be at least twice
the number of degrees of freedom of the model. In R’s [110] pspline function the number
of knots is set to 21

2
times the degrees of freedom. Ruppert [111] notes that the cost associated

with using too few knots is much greater in terms of bias and mean average squared error than
using too many and hence in most practical situations it is not an issue to worry about.

Many methods have also been given for the positioning of the knots including uniform knot
spacing, quantiles and more complicated methods such as that of Friedman and Silverman
[112] which uses a forward stepwise procedure. Uniform knot spacing is computationally
advantageous in forming the B-spline basis whilst sample quantiles have the advantage that
they allow the spline greater flexibility in the regions where there is most data.

Likelihood ratio tests for non-linearity can be performed for P-splines. If we consider the power
basis representation of a P-spline for q = 3,

log h(t|X) = log h0(t) + β1X + β2X
2 + β3X

3 +
9∑
j=1

βj+3(X − tj)3
+

we can clearly see that the linear model is nested within the spline model and occurs when
β2 = β3 = . . . = β12 = 0. Since we can find a power basis and B-spline representation of
the same space we can use a likelihood ratio test (using the unpenalised likelihood) to test for
non-linearity [113].

2.2.5 Other methods for modelling continuous non-linear exposure–disease
relationships

The methods described above are by far the most widely used, although other methods have
been proposed. Change-point models are sometimes used when a threshold is hypothesised.
These models usually involve two linear segments of differing slopes with a knot connecting
them. Much focus is placed on the location of the knot; finding the correct location is a difficult
problem. Change-point models are a special case of regression splines with only one internal
knot.

Binder and Sauerbrei [114] have proposed a procedure which they call FP+L which combines
a fractional polynomial fit with local polynomials that pick-up any local features of the data
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that the FP model missed. Royston and Sauerbrei [115] have also devised a model selection
procedure similar to that for fractional polynomials for choosing an appropriate restricted spline
model; they call this procedure multivariable regression splines (MRVS). Under this approach
instead of finding the optimal powers for the model as in a fractional polynomial analysis, they
find the optimal set of knots from a fixed set.

Royston [116] proposed using the power-exponential transformation exp(kxp) for x > 0 which
produces monotonic exposure–disease relationships and gives the Box-Tidwell family of trans-
formations when p = 0 and when k = 0. This class of model is useful if a true monotonic
relationship is strongly supported by expert subject knowledge.

2.2.6 Discussion on choice of the linear predictor

Figure 2.2 shows an example of each of the main methods described above applied to a sim-
ulated dataset of 50,000 individuals with exposure values generated from a normal distribu-
tion mean 10, variance 1. Survival times were generated for each individual according to the
true quadratic exposure–disease relationship shown by the dot-dashed line, with approximately
10% of individuals experiencing events during 0 < t < 10, when all other observations were
censored.

We can see from figure 2.2 that a grouped exposure analysis does not provide a realistic model
for the exposure–disease relationship which is, in reality, continuous. It is also a poor fit to
the true relationship when compared to many of the other models considered in the figure.
Grouped exposure analyses are sensitive to the choice and number of cutpoints. Grouping can
lead to masking of interesting features of the data such as a threshold or features in the tails of
the exposure distribution because the effect is averaged over all observations in the group. We
can see in figure 2.2 that the location of the nadir of the relationship is unclear. Categorisation
can also lead to a loss of efficiency over parametric analyses [117].

Groups are usually interpreted as representing the average-risk within groups, even though
this is usually not true. Greenland [118] argues that this average-risk interpretation of groups,
within a grouped exposure analysis is questionable and proposes that continuous alternatives
should be considered such as fractional polynomials and splines [119]. Weinberg [120] agrees
that these alternatives should play a larger rôle in epidemiologic investigations but questions
whether Greenland’s harsh view on the inadequacy of grouping data is warranted.

The results of a grouped exposure analysis may not lie on the curve given by the true underlying
exposure-disease relationship if the exposure–disease relationship is non-linear. Suppose that
the underlying continuous exposure–disease relationship is given by

log(h(t|X)) = log h0(t) + βg(X)
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Figure 2.2: Different functional forms for the linear predictor in a Cox proportional hazards
model. Dot-dashed line represents the true exposure–disease relationship

where g(X) is a function of X , and that we fit the grouped exposure analysis of equation 2.5
to this relationship. The true log-hazard ratio at the average exposure within the kth group is
βg(E(Xi|X(k)

i = 1)). However, under the grouped exposure analysis we observe βE(g(Xi)|X(k)
i =

1). The two are only equal if the true exposure–disease relationship is linear, or if the risk is
constant within groups.

For example, consider a true quadratic relationship where log h(t|X) = log h0(t) + βX2 then

E(X2
i |X

(k)
i = 1) = E(Xi|X(k)

i = 1)2 + Var(Xi|X(k)
i = 1)
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so the response for the kth group will lie above the response for the true relationship at the group
mean because of the variance term. The difference in response between the kth group and the
true relationship will be β Var(Xi|X(k)

i = 1) since the true response for E(Xi|X(k)
i = 1) is

βE(Xi|X(k)
i = 1)2. This variance is typically not constant across groups, so the difference

between the plotted response for each group and the true relationship will be the difference
between the variance of that group and that of the group with the smallest variance. This does
not seem to be a widely acknowledged phenomenon.

For a normally distributed exposure the differential in variance between the groups most distant
from the mean compared with those close to the mean can be large. If one were using quintiles
of the data the variance of the top 20% of observations is over 10 times that of those in the
central 20% (i.e. those observations between the 40th and 60th percentiles).

If the cut points are at the quintiles of the standard normal distribution then,

Quintile (−∞,−1.400] (−1.400,−0.532] (−0.532, 0.000] (0, 1.400] (1.400,∞)

Variance of exposure
0.219 0.028 0.021 0.028 0.219within quintile

If instead of using quintiles of the data we cut the data at the 2.75, 27, 73 and 97.25 percentiles
then under the standard normal distribution,

Exposure group (−∞,−2.302] (−2.302,−1.102] (−1.102, 0.000] (0, 1.102] (2.302,∞)

Variance of exposure
0.119 0.119 0.119 0.119 0.119within group

which would eliminate the difference between the response at the means of the grouped expo-
sure analysis, and the true underlying quadratic exposure–disease relationship. However, these
groupings are not practical since 46% of the exposure will lie in the central group. Also, within
small samples you are unlikely to achieve equal variance within groups using these cutpoints
because quantiles in the tails can be highly variable.

Despite these downsides a grouped exposure analysis may be useful for initial exploration of
the exposure–disease relationship in a Cox model. In Cox models we cannot easy visualise the
data, unlike with linear regression where we can use a scatterplot, because the outcome consists
of the event indicator and time.

In panel 2 of figure 2.2, we see the quadratic model accurately picks up the true exposure–
disease relationship. This is not surprising since the true relationship is quadratic but in general
polynomial functions can have undesirable features at the extremes of the exposure distribution
such as turning points and are still quite restrictive in the range of shapes they can produce; for
example they cannot reproduce asymptotic or threshold relationships. Royston et al. [121] give
an example of a quadratic model for the relationship between all-cause mortality and number
of cigarettes smoked per day which gave decreasing risk for those who consumed more than
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about 30 cigarettes per day; a result which is epidemiologically implausible.

A key advantage of polynomials is the ease with which they can be fitted. However, choosing
an appropriate polynomial is not straightforward. Fractional polynomials essentially formalise
and automate the selection of suitable transformations. In panel 3 of figure 2.2 we see that
the FP2 model accurately recreates the true exposure–disease relationship, however it does
so using the powers (−2, 3). The confidence intervals for fractional polynomials do not take
account of the uncertainty in the choice of p nor the wider problem of model uncertainty [121].
This problem has, however, been considered by Faes et al. [122] who apply model averaging
to fractional polynomial models.

Instead of selecting powers from the limited set ℘ we could instead select the optimal Box-
Tidwell transformation. This is essentially a continuous version (in terms of powers) of frac-
tional polynomials. Presumably this would have the correct type I error rate for testing non-
linearity. This type of model can be fit using boxtid in STATA, where a fractional polynomial
model is fitted to give appropriate starting value(s) for the search.

In panels 3 and 4 of figure 2.2 we see that both the restricted cubic splines and P-spline curves
(each with 4 (effective) degrees of freedom) give good fits to the true relationship. The main
drawback of splines is that they cannot be written in a compact mathematical form. This means
that the relationship can typically only be presented in graphical form. Also, it is not clear
which model selection criterion should be used to produce a model that fits the data adequately
but is not too ‘wiggly’ and there are few implementations that allow users to fit and plot the
models easily. We give R code for plotting P-spline functions in appendix F.

Govindarajulu et al. [109] compared the results from restricted cubic splines, fractional poly-
nomials and penalized splines applied to silica exposure and lung cancer mortality. They found
that the two spline methods gave similar curves but that a fractional polynomial gave a very
different shape for the exposure–disease relationship. This is probably because the exposure is
heavily skewed, with the majority of individuals having low exposure values leading to signifi-
cant uncertainty in the tail regions. Govindarajulu et al. [123] then compared the performance
of P-splines, restricted cubic splines and fractional polynomials in a simulation study and found
that model fit was best for P-splines for almost all shapes of the exposure–disease relationship
considered; although fractional polynomials and restricted cubic splines were less biased (in
terms of area between the true and fitted curves), on average.

Traditional goodness of fit tests, such as the likelihood ratio test, are a global measure of fit.
Often in epidemiological studies we are interested in retaining local features of the data such
as features in the tail of the distribution which (fractional) polynomials and grouped exposure
analyses can ignore. Royston [124] suggests comparing a smoothing spline with a relatively
large number of degrees of freedom to the lower-dimensional fitted function chosen to ensure
that important features of the exposure–disease relationship are not missed.
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An advantage to using a grouped exposure analysis is that you can then produce a table of
hazard ratios for individuals within each interval of exposure. Royston et al. [121] give advice
on how to present the results from analyses of continuous exposure–disease relationships in a
similar way. A table combined with a graph of the continuous exposure–disease relationship
and its confidence interval can give more information to readers than that from a grouped
exposure analysis.

2.2.7 Confounding

Above we have considered the functional form for the exposure of interest within our model.
We now consider the role of confounders and why we should control for their effects in our
model.

A confounder is a variable that is correlated with both the outcome and the exposure of interest
but does not lie on the causal pathway between them. Confounding can cause the observed
effect size to be larger or smaller than the true effect size and can even make the observed
effect size go in the opposite direction. For example, alcohol may be found to be associated
with the risk of lung cancer but this may be due to confounding caused by exposure to tobacco
smoke which is associated with alcohol assumption and lung cancer (especially before the ban
on smoking in public places) [125].

It is therefore important to take account of confounding, especially when the exposure effect
is relatively small compared with that of the confounder(s) we are controlling for. In matched
case-control studies we can match individuals based on the levels of confounding variables.
In clinical trials we can control for confounding by randomisation. In unmatched case con-
trol studies and cohort analyses we adjust for confounding by including the confounders in
our regression models. After adjusting for known confounders we may be left with residual
confounding—confounding relating to unknown, unmeasured variables that we have not ad-
justed our analysis for.

There is not always agreement on what set of confounders should be adjusted for in analyses.
This may be due to insufficient evidence showing that a potential confounder is associated
with the disease or because there may be a debate as to whether a potential confounder is
independently associated with the disease rather than on the causal pathway. It is often the case
that sensitivity analyses are produced to show the effect of different levels of adjustment for
confounding.

All of the methods described in this chapter for including exposures in the disease model e.g.
groups, splines, fractional polynomials can be applied to confounding variables. Typically in
practice, however, the most widely used approaches for allowing for confounding variables are
the use of linear terms and groups of the confounding variable, even if more complex terms
(such as polynomials or splines) are used for the exposure of interest. Inappropriate modelling
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2. Modelling non-linear exposure–disease relationships

of confounders can lead to biased parameter estimates for the exposure of interest.

2.3 Conclusion

In this chapter we have considered the Cox model for modelling time to event data and possible
forms for the linear predictor when we have a continuous exposure and a non-linear exposure–
disease relationship. We can discretise the continuous exposure and use indicators of group
membership, polynomial functions, fractional polynomials or spline functions in our linear
predictor.

The grouped exposure method does not provide a realistic model for the exposure–disease re-
lationship and as we have shown introduces parameter bias when the true exposure–disease
relationship is non-linear. It can also be sensitive to the choice and number of cutpoints. Poly-
nomial functions can be useful but can have undesirable features such as turning points at the
end of the exposure range.

Fractional polynomials use polynomial functions chosen from a limited set of powers which
can provide a wide range of plausible exposure–disease relationships.

Spline functions are piecewise polynomial functions that come in many different flavours. The
most commonly used spline functions are restricted cubic splines that use a small number of
knots and are constrained to have continuous first and second derivatives; they can however be
sensitive to the number and placement of knots. P-splines use a greater number of knots than
restricted cubic splines and the smoothness of the fitted function is achieved by penalising the
likelihood function.

Confounding occurs when we have a variable that is correlated with the outcome and the ex-
posure of interest, but does not lie on the causal pathway between them. We need to adjust for
the effects of confounding so that the observed effect size for our exposure is independent of
the other variables in our model.

We introduce exposure measurement error and consider its effects on a range of epidemiolog-
ically plausible shapes for the exposure–disease relationship in chapter 3 before considering
how we may correct for the effects of exposure measurement error in later chapters.
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Chapter 3

The effects of exposure measurement
error

In this chapter we introduce measurement error and consider models for the measurement er-
ror process. We then consider the effects of classical measurement error on the shape of the
observed exposure–disease relationship, and our power to detect non-linearity, using simula-
tion. We simulate true exposure values from a range of epidemiologically plausible shapes for
the exposure–disease relationship (linear, threshold, U-shaped, J-shaped, increasing-quadratic,
asymptotic, non-linear threshold). We use our true exposure to and simulate our observed
exposure by adding random measurement error. We model the observed exposure–disease re-
lationship using three methods that were described in chapter 2: grouped exposure analyses,
fractional polynomials, and P-splines.

3.1 Measurement error and misclassification

Throughout this dissertation we will be interested in mismeasurement [51]: measurement error
in a quantitative variable or misclassification in a categorical variable. Measurement error will
be our primary focus, sometimes also referred to as ‘errors-in-variables’ in older discourse.

Some exposures of interest may be assumed to be free of measurement error, for example age,
height and weight, whilst others we may be able to measure less precisely, such as long term
blood pressure, energy consumption or alcohol intake. Measurement error is the term we use
to describe the difference between our observed exposure measurements and their true values.
Measurement error may occur due to our inability to accurately measure the true exposure of
interest or within-person variation.

The sources of measurement error can be complex. For example in nutritional epidemiology
the food frequency questionnaire (FFQ) is a commonly used method for assessing individuals’
dietary intake. The FFQ asks individuals to report frequency of consumption, and often portion

35



3. The effects of exposure measurement error

size, of a range of different foods over a period of time e.g. the last three months. From this
information an individual’s typical nutrient intake is calculated based on the responses they
have given. This has many potential sources of measurement error including:

• Individuals tend to report exposure values closer to social norms. People are likely to
over report their exposure of healthy foods such as fruit and vegetables whilst under
report their consumption of unhealthy foods such as crisps and sweets;

• Individuals may report no consumption of a food when they do actually consume it—this
is particularly the case for episodically consumed foods such as fish;

• Individuals may respond differently depending on how the question is presented;

• Individuals may report different consumption levels for the same period on different
days;

• Individuals may find it difficult to remember their consumption over a long time frame;

• Certain foods might not be contained within the survey—e.g. foods consumed by differ-
ent ethnic groups;

• It is difficult to translate reported intake into accurate measures of nutrient intake as this
will depend for example on brand and portion size of the actual food consumed.

These different sources of error may have systematic and random components. The observed
exposure measurements will typically be subject to a number of sources of error and within-
person variation. We can not expect to be able to identify nor quantify each aspect of it; in fact
we usually do not need to.

Misclassification is the analogue of measurement error when we are dealing with a categorical
variable. Categorical variables can arise in two ways. Firstly a variable can take a set of discrete
values such as an individual being a current smoker or non-smoker, or secondly, we can create
a categorical variable from a continuous one by saying that an exposure value belongs to the
ith category if the exposure lies in some interval, where the intervals are non-overlapping and
cover the whole exposure range. These two different types of categorical variable tend to
have different misclassification properties. Under the first we often assume that all individuals
within each group are equally likely to be misclassified. In the second situation it is much
more plausible that where the true exposure measurement lies within the category will affect
its probability of being misclassified i.e. those close to the category boundary are more likely
to be misclassified than those in the centre. In the first case we can use a probability matrix to
describe the probability of misclassification, however this cannot be done in the second.

Sometimes our exposure of interest may be subject to misclassification and measurement er-
ror. Take for example the reporting of alcohol consumption—there will be misclassification as
to whether an individual consumes alcohol or not, and then there will be measurement error
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amongst those who do consume alcohol. These type of exposures need specific models that
take into account the non-exposed category.

It may be possible to reduce the error in our exposure measurements, for example by using
more accurate equipment or a different assay procedure. However, in most situations there is
little we can do to reduce the measurement error of our observed exposure. In clinical trials we
may be able to reduce the impact of measurement error by increasing the variance of our true
exposure. We cannot, however, eliminate within-person variability.

There are other sources of error which can lead us to have an inaccurate measure of true expo-
sure, these include:

• only being able to measure an exposure to a given degree of accuracy,

• misrecording of the observed measurement,

• missing data.

We shall not be considering any of these situations in this dissertation.

3.1.1 What is the ‘truth’?

True exposure needs to be carefully defined according to the context; this will often be some-
thing that would be very difficult or impossible to actually observe. Sometimes ‘true’ exposure
will be usual level of exposure, where usual exposure is defined as long-term average of (pos-
sible) observations. What is meant by long-term will depend on the context and usually is not
specifically defined. An advantage of using usual exposure is that the measurement error has
mean zero by definition. Usual exposure is used a lot in epidemiological studies where expo-
sures such as blood pressure or fasting blood glucose can be subject to substantial within-person
variation.

Sometimes there is debate as to what the exposure of interest should be; whether peaks in
exposure are more important than long-term average exposure, or in the case of blood pressure
whether the difference between diastolic and systolic pressure levels [126] is more important
than either of the two individually.

In some situations we may be able to measure true exposure, this is known as a gold standard
measurement. We may not be able to obtain gold standard measurements for all patients in a
study and have to use some imperfect measure of exposure instead. This situation may arise
because:

• of the cost and/or time involved in obtaining the gold standard measure,

• it may not be ethical to obtain a gold standard measure for a large set of individuals.

Sometimes a gold standard measurement may not be available, but an alloyed gold standard
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3. The effects of exposure measurement error

[127] instead. An alloyed gold standard is an exposure measurement that is subject to error,
but substantially less than the commonly used method of exposure measurement. The main
biological alloyed gold standards used in nutritional epidemiology are:

• urinary potassium — measurement of potassium intake,

• doubly labelled water — measurement of energy expenditure,

• urinary nitrogen — measurement of protein intake.

Alloyed gold standard measurements are normally treated as if they are gold standard measure-
ments in practice.

If we are interested in usual exposure, then continuous exposure measurement would allow
us to ascertain usual exposure. In practice continual exposure measurement is rarely feasible,
however repeat measurements on an individual’s exposure can allow us to better estimate true
usual exposure. The average of repeat measurements for an individual will contain consider-
ably less measurement error, than each measurement individually.

When we are able to observe true exposure, or repeat observations, for some individuals we
can investigate the relationship between the true and observed exposures. We shall consider
this further in chapter 4.

3.1.2 Error models

In epidemiology we are interested in ascertaining an estimate of the true exposure–disease
relationship, however we are only able to observe a mismeasured version of the true exposure.
We need to be able to model the relationship between the observed exposure and the truth in
terms of its components: the true exposure and measurement error. Various models have been
proposed which we now discuss. Firstly we shall introduce some notation that we shall use
throughout this dissertation. We use the notation of Carroll et al. [33]. They note that there is
no common notation used in the literature:

• W — observed exposure that is subject to measurement error,

• X — true exposure,

• U — measurement error,

• Z — confounding variable (assumed to be free of measurement error unless specifically
stated).
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Classical model

The classical measurement error model is the simplest and most widely used model of the
measurement error process. The classical measurement error model is given by

W = X + U

where the measurement error is unbiased i.e. E(U |X) = 0. Often the measurement error is
additionally assumed to follow a normal distribution, since if X is also normally distributed
then W will be too.

Berkson Model

An alternative to the Classical model is that of Berkson [128], also sometimes referred to as
the control knob model [129]. The Berkson measurement error model assumes

X = W + U

where E(U |W ) = 0.

Examples of when Berkson error exists are:

• In a clinical trial when a subject is given a pre-specified dose of a drug. The true amount
that the subject receives will be the pre-specified amount plus any error in this amount,
which could come, for example, from inaccuracies in measuring the dosage.

• In radiation epidemiology where the amount of radiation an individual is exposed to is
calculated using an equation based on a number of covariates. The true amount will equal
the calculated amount plus equation error.

• In occupational epidemiology when a job exposure matrix [130] is used. These matrices
assign a single exposure value to all individuals with the same characteristics. Berkson
error is present since the true level of exposure for each individual will vary around the
exposure value assigned to the individual from the matrix [131].

It is possible that an exposure can be subject to both Berkson and classical measurement error.
For example in Table 1 of Heid et al. [29] they list the different sources of measurement
error that may have occurred in measuring residential radon exposure and classify them as
classical or Berkson. Classical and Berkson error have different effects on the exposure–disease
relationship so it is important to try and distinguish between the two sources of error. For
example, Berkson error has no effect on the magnitude of the parameter estimates in a linear
model when the observed exposure–disease relationship is linear whereas, as we shall later in
this chapter, the effect of classical measurement error is to attenuate the relationship.
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3. The effects of exposure measurement error

Multiplicative measurement error

Instead of having an additive effect, measurement error may instead have a multiplicative effect.
In this case our measurement error model is

W = XU

where U is independent of X , and has mean 1 which gives it the property of being unbiased.
Note how this can also be seen as an additive model where the measurement error variance
is proportional to X2. Multiplicative measurement error can lead to observed values that are
very much larger than the true values and hence influential observations in regression analyses.
Often in regression analyses the natural logarithm of the exposure values is taken to reduce the
effect of influential observations. Under multiplicative measurement error taking the logarithm
of the observed data also has the effect of converting the multiplicative errors into additive ones
i.e.

logW = logX + logU.

On the log-scale the measurement error term will be biased since E(logU) < 0 however in sit-
uations where we have no measurement of true exposure available this is of little consequence.

Multiplicative measurement error model has been found to be appropriate for:

• models of radiation exposure e.g. radon epidemiology [132],

• vitamin A in the Nurses Health Study [133],

• anonymising financial data about companies, since it can be effective at disguising par-
ticularly large true measurements [134] and retains structural zeroes in the data.

Other error models

The classical measurement error model places some assumptions on the relationship between
the true and observed exposure which may be violated in a number of ways:

• The observed measurement may not be an unbiased measure of the true exposure. This
could be in the form of an additive or multiplicative bias.

• The measurement error component of the observed measurements may also be dependent
on the value of covariates Z.

• The variance of the measurement error may differ between individuals.
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By allowing for the possibility that each of these violations may occur leads us to consider a
more general form of measurement error model [33],

W = α0 + α1X +αTzZ + U

where E(U |X,Z) = 0 and U is uncorrelated with both X and Z. This model is much more
plausible for modelling many real world exposures where the relationship between true and
observed exposure, and the role of confounders is unknown.

Another model discussed by Carroll et al. [33] is that the observed exposure W has multiple
sources of error: some that have an additive effect and some that have a multiplicative effect.
This leads us to the measurement error model

W = XU1 + U2

where E(U1|X) = 0 and E(U2|X) = 0. The exact choice of measurement error model and the
features it should possess to provide a good fit to the data will depend on the problem at hand.

3.1.3 The effects of measurement error

As mentioned in chapter 1 the three main effects of exposure measurement error are: bias in
parameter estimation in models; loss of power in detecting relationships between variables;
and masking of features of the data [33]. We shall see these effects in action in section 3.4.3.
Because of this ‘triple whammy’ of effects it is essential to quantify and attempt to correct
for the effects of exposure-measurement error if we are trying to ascertain the true exposure–
disease relationship, however it is often overlooked [135].

In general, the effect of exposure measurement error is to bias the observed exposure–disease
relationship towards the null. Evidence of a non-clinically relevant or a null relationship be-
tween the observed exposure and disease may not mean that there is no clinically relevant
relationship between the true exposure and disease. The null relationship may result from bias
and/or a lack of power to detect the relationship due to the effects of measurement error. Also,
confidence intervals for parameter estimates from regressions that use observed exposure mea-
surements will not have the correct coverage of the parameter for the true exposure–disease
relationship. Measurement error may make it difficult to compare the results from studies that
have measured the same exposure if the amount of measurement error in the exposure measure-
ments varies greatly between studies, and the studies have not been corrected for its effects.

We shall talk about methods for quantifying the measurement error in the observed exposure
and methods for correcting for it in chapter 5. However, here we define a common measure
of the amount of measurement error present in the observed exposure assuming that we know
the true value of the variance of our true and observed exposures. The regression dilution ratio
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3. The effects of exposure measurement error

(RDR), λ, is defined as the ratio of the variance of the true exposure to that of the observed
exposure

λ :=
Var(X)

Var(W )
=

Var(X)

Var(X) + Var(U)
.

Under the classical measurement error model the variance of the observed exposure will al-
ways be greater than or equal to that of the true exposure so that the RDR will always lie in
the range (0, 1]. An RDR of 1 corresponds to no measurement error in the exposure and the
RDR decreases towards zero as the proportion of measurement error in the observed exposure
increases. An estimated value of the RDR is often reported in epidemiological studies that
quantify and/or correct for measurement error.

The effects of exposure measurement error in the linear model where we have a linear exposure–
disease relationship are well known. The effect of measurement error is to reduce the slope, or
attenuate, the regression. Assume that we have a simple linear model relating our true exposure
X to some outcome Y ,

Y = α + βX + ε. (3.1)

If instead of fitting the model we are interested in, the model of equation 3.1, we decided to
proceed using our observed exposure W in place of the true exposure X and fit

Y = α∗ + β∗W + ε∗ (3.2)

then under the model of equation 3.1 β =
Cov(X, Y )

Var(X)
, whilst under the model of equation 3.2

β∗ =
Cov(W,Y )

Var(W )
. If the measurement error is independent of the true exposure, and of the

outcome, then Cov(W,Y ) = Cov(X, Y ) and the quantity of interest β is related to the observed
value β∗ via the relationship

β∗ =
Cov(W,Y )

Var(W )
=

Cov(X, Y )

Var(W )
=

Var(X)

Var(W )
β = λβ. (3.3)

Therefore the slope of the regression using the observed exposure β∗, is the slope from the
regression using the true exposure β, multiplied by the RDR. Clearly this hints at a way of
correcting for the effects of exposure measurement error in the linear model if we can estimate
λ; we shall consider this in detail in chapter 4.

The RDR was shown by Rosner, Spiegelman, and Willett [28] to approximately correspond to
the degree of attenuation in the logistic model when the odds ratio is below 3. Hughes [136]
showed that under the Cox proportional hazards model the RDR approximately corresponds
to the true level of attenuation of a linear exposure–disease relationship under the rare disease
assumption (i.e. if the number of observed events is relatively low) and if the risk gradient is
relatively low.
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Although the effect of random exposure measurement error on linear exposure–disease rela-
tionships is well understood, the effect on non-linear relationships is less well known. Measure-
ment error is known in general to attenuate non-linear relationships towards a null exposure–
disease relationship although this is not necessarily always the case, as we shall see later in
this chapter. The fact that we can easily see the attenuation caused by exposure measurement
error when the exposure–disease relationship is linear and can show simply that the RDR corre-
sponds (approximately) to the degree of this attenuation makes it easy to understand. However,
when the exposure–disease relationship is non-linear it is usually difficult to obtain concise
expressions for the precise effect of measurement error on the exposure–disease relationship.

One exception to this is given by Kuha and Temple [137] who studied the effects of exposure
measurement error on quadratic relationships. They show that if the true exposure–disease re-
lationship is quadratic then, under classical measurement error, the observed exposure–disease
relationship will also be quadratic. They also note that the true turning point of a quadratic
relationship will lie between the observed turning point and the mean of the true exposure
distribution.

As concise expressions for the effects of measurement error on non-linear relationships are in
general difficult to obtain, we investigate the effect of classical measurement error on a range
of exposure–disease relationships using simulation. In the next section we consider shapes of
the exposure–disease relationship that are commonly observed in epidemiological studies to
inform our choices for the simulation study of section 3.4.

3.2 Shape of the exposure–disease relationship

There are many difficulties in accurately ascertaining the shape of exposure–disease relation-
ships including model selection and lack of power to detect clinically important features of
the relationship. For example, exposure distributions tend to be skewed with few people at
the extreme ends of the exposure range which can make it harder to accurately estimate the
relationship in the extremes, however it is often the case that these are the areas in which we
are most interested and where the highest risk is to be found.

In this dissertation we mainly focus on non-linear exposure–disease relationships. However,
many relationships are linear such as the relationship between cigarette smoking and the risk
of lung cancer, and between radiation and cancer [25].

The most commonly observed shape of non-linear relationship is the J- or U-shaped relation-
ship. A J-shape or U-shape relationship has been found in the relationship of alcohol con-
sumption and all cause mortality [138–140]. A J-shaped relationship has also been observed
between DBP and risk of cardiovascular and all-cause death, and death from cardiovascular
disease amongst those with hypertension [141].
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Relationships where the risk rises sharply at low exposure levels and levels off at high levels of
exposure have been observed by Cates [142] who describes a convex exponential relationship
between unprotected sex with an infected partner and the risk of contracting an STD. Pope et

al. in their investigation of the relationship between cardiovascular mortality and exposure to
airborne fine particulate matter found a similarly shaped relationship. Polesel et al. [143] found
an S-shape relationship between ethanol intake and risk of cancer of the upper digestive tract.

Relationships that increase in steepness with increasing exposure have been observed in the re-
lationships of: maternal age and risk of Down’s syndrome, osteoporosis and the risk of fracture,
and blood pressure and the risk of cardiovascular disease [25].

Rose’s Theory of Preventive Medicine [25] gives threshold relationships between intraocular
pressure and risk of glaucoma and anaemia and the display of symptoms of anaemia. A study of
the relationship between systolic blood pressure (SBP) and risk of cardiovascular and all-cause
death in the Framingham Heart Study by Port et al. [144] suggested a threshold of SBP below
which the relationship with risk of death is flat and above an increased risk with increasing
SBP. A true threshold relationship is usually epidemiologically implausible and the use of the
term ‘threshold’ is more often used to mean that there is a level of exposure below/above which
the risk gradient is minimal or flat. What is deemed as ‘minimal’ will depend on the context.

We shall therefore include in our simulation a linear relationship (for comparison); two thresh-
old relationships — one that is flat below the threshold and linear above and a second where the
relationship is flat below a threshold, is then quadratic up to a second threshold, after which the
relationship increases linearly; increasing quadratic; J-shaped; U-shaped and asymptotic rela-
tionships as these are some of the most commonly observed shapes for the exposure–disease
relationship.

The labels given to shapes of exposure–disease relationships are not consistent. For example
J- and U-shaped are often used to describe the same shape of relationship, since it is usual
for those termed U-shaped relationships to exhibit at least some asymmetry. Also J-shape and
threshold are often used to describe the same relationship especially if the upturn at low levels
of exposure is small and there is much uncertainty about it, and because a sharp threshold is
usually biologically implausible.

The shape of relationship observed may also be partially dependent on the modelling technique
used. As discussed in chapter 2, polynomial functions can display implausible turning points at
the extremes of the exposure range. Ideally we would prefer to know the shape of the exposure–
disease relationship a priori. Although we may be able to use biological plausibility to give
us some intuition about features of the exposure–disease relationship, such as monotonicity,
we usually have to resort to data driven model selection methods. It is much better to try and
elicit the shape of the exposure–disease relationship from the data than impose a poorly fitting
model.
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Now that we have discussed the shapes of relationship that are observed in practice and have
identified seven shapes for the exposure–disease relationship to include in our simulation, we
look at how we generate data from a Cox proportional hazards model and how we can make our
simulations comparable across the different shapes by controlling the degree of non-linearity.

3.3 Methods for simulation

3.3.1 Generating survival data

In the simulation study that follows we shall simulate data from Cox proportional hazards
models, which were described in detail in chapter 2. Here we show how we may generate
values from a Cox model.

The survival function, S, for the Cox proportional hazard model with a linear predictor f(X;β),
is given by

S(t|X) = exp{−H(t|X)} = exp {−H0(t) exp(f(X;β))} .

So, the distribution function is

F (t|X) = 1− S(t|X)

= 1− exp {−H0(t) exp(f(X;β))} .

The distribution function of any random variable is distributed uniformly on the interval [0, 1].
Hence F (T |X) ∼ U(0, 1) and by symmetry we also have that 1 − F (T |X) ∼ U(0, 1), so
[145],

U := exp (−H0(T ) exp(f(X;β))) ∼ U(0, 1).

By inverting the equation above so that T is the subject of the formula

T = H−1
0 {− log(U) exp(−f(X;β))} .

The baseline hazard function needs to be specified with the exponential, Weibull and Gompertz
distributions being possible choices. In our simulation study we shall be using the exponential
baseline hazard function which implies that the hazard is constant over time.

By choosing an exponential baseline hazard, h0(t) = ρ, then the integrated hazard H0(t) = ρt

and H−1
0 (t) = t

ρ
. Hence we obtain the following formula for the survival time T ,

T = − logU

ρ exp(f(X;β))
.

By choosing suitable values for ρ and β and by generating random uniform numbers U , we can
generate observations from the desired Cox model.
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3.3.2 Determining the degree of non-linearity

In order that we are able to make fair comparisons between different shapes for the exposure–
disease relationship investigated in the simulation study we shall keep the degree of non-
linearity constant across shapes. Here we describe how we achieve this by minimising the
squared difference between the shape of the relationship and the best fitting line to that rela-
tionship averaged over the distribution of the true exposure.

Suppose that we have an exposureX with density function φ(X), and that the model of interest
is a Cox model of the form

log h(t|X) = log h0(t) + β(f(X)− f(X)), (3.4)

where f(X) is the mean of f(X) over the true exposure distribution

f(x) =

∫ ∞
−∞

f(x)φ(x)dx.

We want to find the best fitting model with a linear relationship between exposure and outcome

log h(t|X) = log h∗0(t) + γ(X − µx). (3.5)

For given β we want to find the value of γ that minimises S, the squared difference between
the linear predictors in equations 3.4 and 3.5,

S =

∫ ∞
−∞

(β(f(x)− f(x))− γ(x− µx))2φ(x)dx.

The partial differential of S with respect to γ is

∂S

∂γ
= −2

∫ ∞
−∞

(x− µx)
(
β(f(x)− f(x))− γ(x− µx)

)
φ(x)dx

By setting
∂S

∂γ
= 0 and solving for γ̂,

0 =

∫ ∞
−∞

(x− µx)(β(f(x)− f(x))− γ̂(x− µx))φ(x)dx

γ̂

∫ ∞
−∞

(x− µx)2φ(x)dx = β

∫ ∞
−∞

(
(f(x)− f(x))(x− µx)

)
φ(x)dx

γ̂ = β

∫∞
−∞(f(x)− f(x))(x− µx)φ(x)dx∫∞

−∞(x− µx)2φ(x)dx
.

We can obtain values of β for a set of shapes so that they have the same non-linearity S by:

46



1. Fixing the value of β = β1 for one shape

2. Calculating γ̂ = γ̂1 for this shape

3. Calculating S = S1 using β1 and γ̂1

4. For each of the other shapes calculate γ̂, and search for the value of β that gives the same
value for S = S1.

3.4 Simulation Study

We conducted a simulation study to explore the shape of the observed exposure–disease rela-
tionship when the exposure is subject to measurement error using a grouped exposure analysis,
P-splines and fractional polynomials, which were described in chapter 2.

Although it is known that non-linear exposure–disease relationships are generally attenuated
by exposure measurement error, what has not been previously shown is the precise effect of
measurement error on the most commonly observed shapes of exposure–disease relationships.

3.4.1 Data generation

Data for the true exposure for individual i, Xi, were generated from a normal distribution with
mean 10 and variance 1. The exposure for each individual was assumed to be subject to classi-
cal measurement error such that the observed exposure Wi, was given by Wi = Xi +Ui where
Ui was normally distributed with mean 0 and variance σ2

u. The Ui were generated such that they
were independent of each other, and of the true level of exposure, Xi. In order to investigate
how the shape of the exposure–disease relationship changes with increasing measurement er-
ror under each of the modelling approaches we let the measurement error variance σ2

u take the
values (0, 0.25, 0.5, 1) corresponding to RDRs of 1, 4/5, 2/3, 1/2 respectively. Note that the
case when σ2

u = 0 corresponds to no exposure measurement error and is included to illustrate
the performance of the modelling methods in the absence of measurement error and for com-
parison. An RDR of 0.5 corresponds to when the measurement error variance is as large as the
variance of the true exposure. RDRs in this range are commonly seen in epidemiological inves-
tigations. Lewington et al. [146] found RDRs of 0.51 and 0.56 for systolic blood pressure in
the Glostrup and Framingham studies, respectively; 0.52 and 0.54 for diastolic blood pressure;
and 0.68 and 0.63 for total cholesterol. Whilst the Emerging Risk Factors Collaboration [11]
found regression dilution ratios of log lipoprotein(a) and log triglycerides levels (adjusted for
age and sex) of 0.87 and 0.72 respectively. All data generation and analyses for this simulation
study were carried out in R.

We considered the seven models for the shape of the true exposure–disease relationship on the
logarithmic scale; linear, linear threshold, U-shaped, J-shaped, increasing quadratic, asymp-
totic and non-linear threshold. Equations for the form of the log-hazard ratios for each of these
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Shape Form of log(h(t|X))

Linear log(h0(t)) + β1X

Linear threshold ∗ log(h0(t)) + β2I{X>10}(X − 10)

U-shaped log(h0(t)) + β3(X − 10)2

J-shaped log(h0(t)) + β4(X − 9)2

Increasing quadratic log(h0(t)) + β5(X − 7)2

Asymptotic log(h0(t)) + β6/(4−X)2

Non-linear threshold ∗ log(h0(t)) + β7

(
I{11.75>X>10.75}(X − 10.75)2

+I{X>11.75}(2X − 22.5)
)

∗I{X>a} is an indicator function that equals 1 when the inequality X > a is satisfied and 0 otherwise.

Table 3.1: Models considered for the relationship between true exposure X and log-hazard in
the simulation study.

models are given in table 3.1.

Under the linear threshold relationship the threshold was placed at the mean of the exposure
distribution so that the threshold effect could be clearly identified. Often in practice the thresh-
old value will lie in the tail of data and will be more difficult to identify. The nadir of the
J-shaped relationship was chosen at 9 which is one standard deviation from the mean so that
the upturn at the lowest levels of exposure could be picked up. The increasing quadratic rela-
tionship was chosen such that the nadir did not fall too far outside the range of the exposure
distribution so that the relationship showed sufficient curvature.

β1 = 0.3 was chosen for the linear model which gives an approximate doubling of the risk
between the bottom and top fifths of true exposure. βi, i = 2, ..., 7 were chosen so that the
degree of non-linearity in each of the functions was the same where non-linearity was quantified
as the squared difference, averaged over the distribution ofX , between the true relationship and
that which would be observed if a linear exposure–disease model as described in the previous
section. (Note that we truncated the integral at x = 4 for the asymptotic relationship to avoid
the asymptote.) We set β6 = 10 and calculated βi, i = 2, 3, 4, 5, 7 to have the same degree of
non-linearity for all other models.

For each observation, survival times were generated for each of the seven shapes for the
exposure–disease relationship from a model with constant baseline hazard, h0(t) = ρ, and
observations were censored at time 10 if an event had not occurred. This corresponds to a ten
year follow up which is a realistic follow up time for an epidemiological study. Admittedly the
censoring scheme is likely to be vastly more complicated in practice however we do not believe
that our results will be extremely sensitive to the choice of censoring pattern, however they are
likely to be sensitive to the degree of censoring. ρ = 0.01 was chosen for the linear model
so that approximately 10% of individuals would suffer an event during the follow up period.
This value was chosen because low event rates are typical in epidemiological studies. In order
that our simulations were comparable between shapes for the exposure–disease relationship we
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Shape β ρ

Linear 0.300 0.010

Threshold 0.282 0.009

U-shaped 0.060 0.010

J-shaped 0.060 0.009

Increasing quadratic 0.060 0.005

Asymptotic 10.000 0.056

Non-linear threshold 0.258 0.010

Table 3.2: Parameter values for the true exposure–disease relationships used in the simulation
study.

chose ρ, via simulation of extremely large datasets, such that it gave approximately the same
number of events as in the linear case since for fixed ρ we found that the number of events
varied greatly between shapes. Parameter values for β and ρ used in the simulation study are
given in table 3.2.

For each value of σ2
u and each shape for the exposure–disease relationship we generated 1,000

datasets containing [Wi, ti, ei], for i = 1, ..., 15, 000 where ti is the length of the observation
period for individual i and ei is an indicator that takes the value one if the individual suffered
an event during the observation period and zero otherwise.

A sample size of 15,000 was chosen to give approximately 80% power to reject the null hy-
pothesis of linearity of the exposure–disease relationship at the 5% level when there is no
measurement error under the increasing quadratic relationship using a fractional polynomial
analysis. This was determined by performing a simulation substudy prior to the main study
where we used the same data generating mechanism as in the main study.

3.4.2 Statistical methods evaluated

We considered three methods of modelling the exposure–disease relationship in our simulation
study: grouped exposure analysis, fractional polynomials and P-splines. The best fitting model
with four degrees of freedom was chosen in each simulated data set in order to be able to
compare the three modelling methods. This was achieved by splitting the observed exposure
values into five groups under the grouped exposure analysis, selecting the best fitting FP2 model
for fractional polynomials, and by choosing the smoothing parameter in the P-spline model to
give approximately 4 effective degrees of freedom.

• Grouped exposure analysis — For each simulation we grouped the simulated values ac-
cording to quintiles of the observed exposure values to obtain five equally sized groups.
We then fit the model

log h(t|X) = log h0(t) + β1X
(1) + β2X

(2) + β3X
(4) + β5X

(5) (3.6)
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3. The effects of exposure measurement error

where X(k) is an indicator of group membership as defined in section 2.2.1. The third
group has been chosen as the reference. This choice of reference makes visual compar-
isons easier with the other two methods since the mean of the observations within the
third group will approximately equal the overall mean which is a common choice as the
reference for fractional polynomial and P-spline analyses.

• Fractional polynomials — for each simulation we chose the FP2 model with lowest de-
viance amongst all possible FP2 models

log h(t|X) = log h0(t) +

{
β1X

(p1) + β2X
(p2) ifp1 6= p2

β1X
(p) + β2X

(p) logX ifp1 = p2 = p
(3.7)

where the powers were selected from the restricted set ℘ discussed in section 2.2.3.

• P-Splines — for each simulation we fit a P-spline model on 10 equally sized intervals
(using 13 B-spline basis functions and 17 knots) and chose the smoothing parameter
such that the effective degrees of freedom of the fitted model equals approximately 4,

log h(t|X) = log h0(t) +
12∑
j=1

βjbj+1(X). (3.8)

We also considered the power to detect non-linearity of the three methods at the 5% level of
significance using sample sizes of 15,000, 10,000, 5,000 and 1,000. This was achieved by
performing the following tests:

• For groups we take twice the difference in the log-likelihood between the model

log h(t|XG) = log h0(t) + β1XG

whereXG is formed by assigning each individual the mean exposure value of the quintile
in which the exposure lies, and the model of equation 3.6, testing against the the Chi-
square distribution with three degrees of freedom.

• For fractional polynomials we test twice the difference between the log-likelihoods of
the linear Cox model

log h(t|X) = log h0(t) + β1X (3.9)

and the best fitting FP2 model against the Chi-square distribution with three degrees of
freedom.

• Similarly for P-splines we compare twice the difference in the (unpenalised) log-likelihood
between the linear model (equation 3.9) and the P-spline model with 4 effective degrees
of freedom (equation 3.8) and test against the Chi-square distribution with three degrees
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of freedom.

Note that this is different to the standard test for non-linearity that is produced by the
pspline function in R. The symmetry of the spline basis functions means that an ap-
proximate test for linearity can be achieved by performing a generalised least squares
regression of the spline coefficients from our fitted model on the centre of the spline ba-
sis functions using the variance-covariance matrix as the known variance matrix for the
coefficients [79]. By finding the difference in the two Wald statistics of these models we
can perform an approximate test of non-linearity against a Chi-square distribution with
3 degrees of freedom. This approach does not require fitting of an additional Cox model
which is computationally expensive compared with the generalised least squares fit. With
modern computing power an exact test against the Cox model with linear predictor seems
more appropriate in practice.

3.4.3 Results

We display the results of the simulation graphically. Overall, the P-spline and fractional poly-
nomial models gave very similar results for the shape of the exposure–disease relationships
except for the threshold relationships where there was a significant difference. Hence, we
include the results for fractional polynomials for all shapes (figure 3.2) and only the thresh-
old relationships for the P-spline model (figure 3.3). Under each simulation we may pick a
different fractional polynomial model hence for each simulation we produced fitted values of
log ĥ(t|X)− log ĥ(t|10) over a fine grid of points and averaged them to produce the curves of
figure 3.2. For the P-spline and grouped exposure analyses we saved the parameter values for
each model and averaged them to obtain the models shown in the graphs of figures 3.1 and 3.3.
The approach used for the fractional polynomial analysis would have provided the same results
but requires more storage.

Performance of methods when there is no exposure measurement error

As shown in section 2.2.6 a grouped exposure analysis does not provide unbiased estimates for
the mean exposure within each group unless the true exposure–disease relationship is linear.
We can see, however, in figure 3.1 that the effect of this on the observed exposure–disease rela-
tionship is small when there is no measurement error, although we can see it more clearly when
the relationship shows greater curvature such as under the J- and U-shaped relationships. The
grouped exposure analysis does not perform too badly at picking out the threshold relationship
although the central group is a composite of individuals above and below the threshold and
therefore makes the threshold appear less sharp. This is an example of groups being unable to
pick out local features of the data. The non-linear threshold also picks up the threshold, but
again the threshold appears less sharp with the measurement error is larger. Under the true
J-shaped relationship the hazard ratio of the first group only just lies above that for the sec-
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3. The effects of exposure measurement error

ond and the nadir is essentially lost; the relationship could easily be mislabeled as showing a
threshold relationship. Viewers of this graph may conclude incorrectly that the lowest hazard
occurs at an exposure value of around 9.5 when it actually is located at 9.

Fractional polynomials and P-splines do very well in recreating the true exposure–disease rela-
tionship when there is no measurement error except for the threshold relationships. Fractional
polynomials suffer a lack of ability to pick up the threshold shapes which is to be expected
since sudden changes in gradient are not features of polynomial models (figure 3.2). Instead,
the observed exposure–disease relationship is J-shape in appearance. P-splines, which have
the ability to fit local features of the data, perform much better in terms of picking up the
threshold (figure 3.3). Since P-splines are composed of piecewise polynomial functions it still
has some difficulties around the threshold value as we would expect. We investigated using
P-splines with more degrees of freedom but this did not seem to significantly improve the fit
(not shown).

Table 3.3 shows the estimated power to reject the null hypothesis of a linear exposure–disease
relationship under each of the three analysis methods, seven shapes for the exposure–disease
relationship, and different degrees of measurement error for sample sizes of 15,000, 10,000,
5,000 and 1,000. We can see that both fractional polynomials and P-splines have much greater
ability to detect non-linearity of the exposure–disease relationship than under the grouped ex-
posure method except for under the threshold model where fractional polynomials perform
slightly worse than groups. As the sample size decreases, P-splines continue to outperform the
other methods. We can see from table 3.3 that the type I error under the linear relationships is
much less than the nominal 5% level for the fractional polynomial analyses. This is because,
as noted in section 2.2.3, the powers are selected from the limited set ℘, meaning that the true
number of degrees of freedom in testing the null hypothesis of a linear relationship is less than
the 3 that are used in the test [96].

Effect of exposure measurement error on the shape of the observed exposure–disease
relationship

Measurement error has the effect of increasing the range of the observed exposure, since the
observed exposure will have a larger variance than the true exposure, and it reduces the range
of the hazard across the range by ‘mixing’ up those with low and high true hazard. We can see
this in figure 3.1 as the group means become more dispersed with increasing measurement
error, and the range of the hazard reduced. Under the grouped exposure analysis we saw
that the threshold shaped relationships were relatively sharp when there was no measurement
error. With increasing measurement error we rapidly lose the true threshold shape with the
relationship appearing increasingly J-shaped. This is what we might expect since the effect of
measurement error will be to mix individuals from above and below the threshold. Under the
true J-shaped relationship, using the grouped exposure analysis, the nadir and upturn in risk for
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those with the lowest exposure levels are lost after the addition of even the smallest amount of
measurement error considered, which is much less than is often observed in practice. Both the
increasing quadratic and asymptotic relationships appear increasingly linear as the degree of
measurement error increases.

Under the fractional polynomial analysis (figure 3.2) we see that both of the threshold relation-
ships appear J-shaped for all levels of measurement error except for the most extreme where
we observe an increasing quadratic relationship. The observed shape for the exposure–disease
relationship stems from the inability of fractional polynomials to fit the threshold function well
in the absence of exposure measurement error. P-splines (figure 3.3) perform much better re-
taining some of the feature of the threshold until the most extreme level of measurement error
when the relationship appears to be more of an increasing quadratic. The increasing quadratic
and asymptotic shapes for the exposure–disease relationship appear increasingly linear as the
degree of measurement error increases as was the case with the grouped exposure analysis.
In figure 3.2 we see that under the J-shaped relationship we do not lose the nadir and upturn
in risk as we did under the group based analysis. The nadir can be seen to move away from
the mean value. It is of particular interest to note that both under the J-shaped and threshold
relationships there are ranges of the exposure outcome relationship where the relationship is
biased away from and not towards the null under each of the analysis methods.

As we have seen in figures 3.2 and 3.3 the effect of random measurement error is to make
the exposure–disease relationship appear more linear. This results in an associated loss of
power to detect non-linearity. P-splines continue to have a greater power to detect non-linearity,
over fractional polynomials and grouped exposure analyses when the exposure is subject to
measurement error. When the sample size is small we have low power to detect non-linearity
even if the true exposure had been observed, and in this case the effect of measurement error
on our power to detect non-linearity is small.

From the analytical results of Kuha and Temple [137] we would expect the nadir for the J-
shaped relationship to occur at 9.00, 8.75, 8.50, 8.00 for RDRs of 1, 4/5, 2/3, 1/2 respectively,
and to remain at 10 under the U-shaped relationship. Under the J-shaped relationship not only
does the location of the nadir move, the hazard at the nadir is closer to the null. Often there is
much interest in accurately estimating the nadir, such as in the J-shaped relationship between
alcohol consumption and all cause mortality [32, 147] where the consumption of small quanti-
ties of alcohol appears to reduce the risk of mortality. The nadir will tell us the ‘optimal’ level
of alcohol consumption, and the degree of protection against disease it offers which could be
used to shape public health policy. The effects of exposure measurement error create consid-
erable problems in estimating the location of the nadir, and the degree of protection offered at
this minimum. In the case of the relationship between alcohol consumption and all-cause mor-
tality the assumption of classical measurement error is violated and so the effect of exposure
measurement error on this relationship may differ from that observed in our simulation study.
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3. The effects of exposure measurement error

Measurement error appeared to preserve the shape of the exposure–disease relationship albeit
in a much diluted form, except for in the case of the threshold relationships where the exposure
measurement error distorted the threshold. However, in individual simulations the observed
shape of the exposure–disease relationship may have been different from the truth. It is not
always easy to distinguish the true shape of the exposure–disease relationship from the ob-
served exposure–disease relationship. Some correction techniques, however, as we shall see
in the next chapter, rely on being able to choose the correct form for the exposure–disease re-
lationship from the observed relationship. It may also be difficult to detect non-linearity even
with a relatively large sample size of 15,000 individuals and 1,500 events. Some intuition
can be gained as to what the effect of classical measurement error may be on the shape of an
exposure–disease relationship by imagining the relationship as a piece of string that is simulta-
neously being pulled smoothly away from the mean in the horizontal direction and towards the
x-axis in the vertical direction.

Here we have concerned ourselves purely with a single exposure subject to classical measure-
ment error. The results obtained in the presence of confounders, or under different measure-
ment error structures may be quite different especially if there is correlation of errors between
variables. In most cases, however, the effect of exposure measurement error will be to attenuate
the exposure–outcome relationship and the results above may still provide some indication of
the effects on the observed shape.

3.5 Conclusion

Exposure measurement error can lead to a triple whammy of effects: parameter bias, loss of
power to detect interesting relationships between variables, and loss of features of the data. It
is well known that exposure measurement error attenuates the exposure–disease relationship
when it is linear but the precise effect is less well known for non-linear relationships. We con-
ducted a simulation study to look more closely at the effects of exposure measurement error
on commonly observed exposure–disease relationship shapes (linear, threshold, J-shaped, U-
shaped, increasing quadratic, asymptotic and non-linear threshold) under the Cox model. Frac-
tional polynomials were particularly poor at picking up the threshold relationships even when
there was no measurement error, and all methods performed badly in the presence of measure-
ment error. In the case of the J-shaped relationship we saw the nadir moving away from the
mean and being lost from the grouped exposure analysis. Under the J-shaped and threshold
relationships we also saw ranges in which the shape of the relationship was biased away not
towards the null. Under the increasing quadratic and asymptotic relationships measurement
error made the relationship appear increasingly linear. Fractional polynomials and P-splines
generally increased our ability to detect non-linearity over the grouped exposure method. Mea-
surement error, however, decreases our ability to detect non-linear exposure–disease relation-
ships. Now that we have considered the effects of exposure measurement error on non-linear
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Shape of exposure–disease relationship
Linear Threshold U-shaped J-shaped Increasing Asymptotic Non-linear

Method RDR quadratic threshold
Grouped 15000 1 0.04 0.63 0.47 0.45 0.52 0.23 0.28
Exposure 4/5 0.05 0.40 0.32 0.31 0.34 0.16 0.22

2/3 0.04 0.26 0.23 0.24 0.26 0.12 0.18
1/2 0.04 0.14 0.14 0.15 0.14 0.10 0.11

10000 1 0.05 0.46 0.32 0.30 0.34 0.17 0.19
4/5 0.05 0.26 0.21 0.21 0.23 0.13 0.15
2/3 0.05 0.18 0.16 0.16 0.15 0.10 0.14
1/2 0.05 0.11 0.11 0.10 0.12 0.08 0.10

5000 1 0.04 0.20 0.14 0.14 0.16 0.09 0.10
4/5 0.04 0.12 0.09 0.10 0.10 0.08 0.08

0.46 2/3 0.04 0.09 0.08 0.09 0.08 0.06 0.07
1/2 0.04 0.07 0.07 0.07 0.06 0.06 0.06

1000 1 0.06 0.08 0.07 0.07 0.07 0.07 0.06
4/5 0.06 0.07 0.06 0.07 0.06 0.06 0.05
2/3 0.06 0.06 0.05 0.06 0.07 0.06 0.05
1/2 0.06 0.06 0.05 0.05 0.06 0.06 0.06

Fractional 15000 1 0.01 0.64 0.76 0.77 0.76 0.41 0.70
polynomial 4/5 0.01 0.42 0.54 0.52 0.51 0.24 0.43

2/3 0.01 0.26 0.34 0.34 0.29 0.15 0.25
1/2 0.01 0.10 0.14 0.16 0.12 0.10 0.10

10000 1 0.01 0.41 0.54 0.53 0.52 0.26 0.46
4/5 0.01 0.25 0.33 0.33 0.30 0.15 0.27
2/3 0.01 0.17 0.24 0.21 0.20 0.10 0.18
1/2 0.02 0.09 0.11 0.12 0.11 0.06 0.09

5000 1 0.01 0.18 0.22 0.22 0.21 0.09 0.18
4/5 0.02 0.11 0.14 0.13 0.14 0.06 0.11
2/3 0.02 0.09 0.09 0.09 0.10 0.05 0.08
1/2 0.02 0.05 0.06 0.05 0.05 0.02 0.05

1000 1 0.02 0.03 0.04 0.03 0.03 0.02 0.02
4/5 0.01 0.02 0.03 0.02 0.02 0.03 0.02
2/3 0.01 0.02 0.03 0.03 0.02 0.02 0.02
1/2 0.02 0.02 0.02 0.02 0.02 0.02 0.02

P-spline 15000 1 0.08 0.84 0.86 0.87 0.87 0.62 0.91
4/5 0.08 0.64 0.69 0.68 0.68 0.43 0.76
2/3 0.08 0.47 0.53 0.53 0.48 0.33 0.52
1/2 0.08 0.27 0.30 0.33 0.26 0.22 0.28

10000 1 0.07 0.65 0.70 0.69 0.68 0.44 0.77
4/5 0.08 0.44 0.50 0.48 0.48 0.31 0.53
2/3 0.07 0.33 0.38 0.38 0.36 0.22 0.39
1/2 0.07 0.21 0.24 0.25 0.23 0.15 0.24

5000 1 0.07 0.38 0.40 0.38 0.38 0.23 0.42
4/5 0.08 0.24 0.27 0.28 0.27 0.17 0.28
2/3 0.08 0.20 0.21 0.21 0.21 0.14 0.20
1/2 0.08 0.14 0.15 0.15 0.15 0.11 0.16

1000 1 0.10 0.14 0.15 0.15 0.14 0.12 0.13
4/5 0.09 0.11 0.12 0.12 0.10 0.10 0.11
2/3 0.09 0.11 0.12 0.11 0.09 0.11 0.10
1/2 0.09 0.10 0.09 0.10 0.08 0.10 0.09

Table 3.3: Estimated power to detect non-linearity under each non-linear exposure–disease
relationship shape and estimated type I error in a test of the null hypothesis of linearity when the
true association is linear, using grouped exposure, fractional polynomial, and P-spline analyses.
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Figure 3.1: Grouped exposure analysis showing the effect of random measurement error on the
observed exposure–disease relationship.
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Figure 3.2: Fractional polynomial analysis showing the effect of random measurement error on
the observed exposure–disease relationship.

57



3. The effects of exposure measurement error

exposure–disease relationships, in chapter 4 we look at a range of possible correction methods.
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Figure 3.3: P-spline analyses showing the effect of random measurement error on the observed
threshold and non-linear threshold shaped exposure–disease relationships.
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Chapter 4

Methods of correcting for exposure
measurement error

In this chapter we consider methods that have been proposed for correcting for the effects of
exposure measurement error. We also develop two new correction methods: structural frac-
tional polynomials and group-SIMEX. Much of the literature on measurement error correction
focuses on linear models, and linear exposure–disease relationships. However, in this disser-
tation we are interested in methods for correcting for measurement error in Cox models when
the exposure–disease relationship is non-linear.

In chapter 3 we saw that the effect of measurement error is to bias non-linear exposure–disease
relationships, usually towards a null relationship between exposure and disease. If we wish to
predict the future risk of an individual experiencing an event based on a single mismeasured
exposure measurement then a prediction obtained from the model using the observed exposure
will be unbiased, although measurement error will introduce greater uncertainty. If, however,
our aim is to characterise the true relationship between exposure and disease then it is essential
that we correct for the bias that measurement error introduces.

This chapter does not aim to be exhaustive given the large number of methods that have been
proposed, but to outline some of the methods available, especially those most widely used
in practice. For further reading we point the reader to the books highlighted in chapter 1,
particularly Carroll et al. [33] who give a comprehensive description of methods for correcting
for exposure measurement error, with chapters devoted to regression calibration, SIMEX, score
function methods as well as a chapter dedicated to the Cox model. Schneeweiß and Augustin
[148] gave a review of recent advances in the measurement error literature in 2006; Augustin
and Schwarz [149] give a review of correction methods for Cox models; and Guolo [150]
provides a review of robust measurement error correction methods.
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4. Methods of correcting for exposure measurement error

4.1 An extra piece of information

Although Fuller [50] §1.6.1 gives an example where the effects of measurement error can be
corrected for using the observed exposure alone, we ordinarily require some extra data, addi-
tional to the observed exposure, that allows us to identify the parameters of the measurement
error model. There are three sources of this additional data: (alloyed) gold standard exposure
measurements, replicate exposure measurements, and instrumental variables.

(Alloyed) Gold standard measures were discussed in section 3.1.1 and are where we observe
the true level of exposure, or an exposure with significantly less measurement error than the
observed exposure, in addition to the observed exposure for a subset of individuals.

Replicate measures are additional exposure measurements that are obtained for all, or a sub-
set, of individuals. Replicate measures may be taken at baseline, or on one or more occasions
post baseline. If the repeat measurements are true replicates, then the expected value of the re-
peat exposure, conditional on the observed exposure, is an unbiased measure of true exposure.
Replicate measurements cannot inform us as to whether our mismeasured exposure measure-
ments are subject to systematic measurement error. The timing in obtaining replicate exposure
measurements may be important; for example sufficient time may need to elapse between base-
line and repeat exposure measurements to ensure minimal correlation of measurement errors.
If the time between baseline and repeat exposure measurements is large, however, then the level
of true exposure may have changed. The measurement error in replicate biological measure-
ments may often be assumed to be uncorrelated. Care does have to be taken, because in many
practical situations this assumption may not hold. For example, it has been found that there is
a high correlation in the errors of replicate FFQs [151].

Sometimes we can measure an instrumental variable for all or a subset of individuals—a vari-
able which is correlated with the true exposure, uncorrelated with the measurement error, and
uncorrelated with the outcome given the true exposure and confounders. A second mismea-
sured exposure measurement obtained from an independent measuring technique could be used
as an instrumental variable. For further discussion of the role of instrumental variables in cor-
recting for the effects of exposure measurement error see Carroll et al. [33].

All three sources of additional data can come from data internal to the study or from an ex-
ternal source. Clearly data collected from within the same study are preferable. If data are
obtained from an external source then we have to consider the transportability of any parame-
ter estimates that we estimate from the external data but use in modelling the exposure–disease
relationship of interest. External sources may include previous validation studies of exposure–
disease relationships, or reliability studies. It may be appropriate to make the assumption of
transportability if the current and previous study are similar e.g. they have used the same assay
method. It should be acknowledged that the transported data are subject to extra uncertainty,
and sensitivity analyses can be used to assess the effect of deviations from the transported
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values. The motivating dataset for this thesis, the ERFC, has replicate measurements (often
multiple) available for the exposures of interest within subsets of participants. Therefore, we
shall focus principally on methods that are applicable when replicate measurements are avail-
able.

4.2 Classification of methods

Before we consider methods for correcting for the effects of measurement error, we discuss two
important concepts: the difference between so called differential and non-differential error, and
the classification of correction methods into structural and functional methods.

Non-differential error is when the distribution of the outcome given (X,W,Z) depends only
on (X,Z) i.e. the observed exposureW , tells us nothing more about the outcome, than the true
exposure and any confounders. In most situations we can assume that the effect of measurement
error is non-differential. An important example of differential measurement error is recall bias
in a case-control study. Another case where differential measurement error is observed is when
a continuous exposure subject to measurement error is split into groups, such as in the grouped
exposure analyses described in section 2.2.1. The grouping introduces differential error except
when the hazard is constant within groups [152]. This is because those individuals closer to
the boundary between groups are more likely to be misclassified than those in the centre of the
group.

Distinguishing between structural and functional methods is merely a form of classifying the
different methods. Structural correction methods place, implicitly or explicitly, distributional
assumptions on the true exposure. Functional correction methods make no assumption about
the distribution of the true exposure—the true exposure could be deterministic or random and
hence these methods are more general.

4.3 Correction methods for continuous exposures

4.3.1 Regression Calibration

Regression calibration is one of the most widely used tools for correcting for the effects of clas-
sical measurement error. The idea is simple: take the expectation of the true exposure, given
the observed. Firstly we consider regression calibration in the linear model, and then we con-
sider how the idea can be applied to the Cox model when certain assumptions are valid. We go
on to consider how this principle can be extended to non-linear exposure–disease relationships
and apply it to P-splines and fractional polynomials.
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4. Methods of correcting for exposure measurement error

Regression calibration in the linear model

In its most general form where the true linear model is E(Y |X) = f(X;β), regression cali-
bration can be expressed as

E(Y |W ) = E(f(X;β)|W ).

For example, in the case where the true exposure–disease relationship is linear,

Y = β0 + β1X + ε (4.1)

but we observe mismeasured exposure valuesW , we can apply regression calibration by taking
the expected value of the outcome Y in equation 4.1, conditional on our observed exposure

E(Y |W ) = E(E(Y |W,X)|W )

= E(E(Y |X)|W )

= E(β0 + β1X|W )

= β0 + β1E(X|W ) (4.2)

where the second line follows from the assumption of non-differential measurement error. Be-
cause of its simplicity, regression calibration has become a popular method for correcting for
the effects of measurement error in models where the exposure–disease relationship is linear
[43, 44]. Linear regression calibration makes no assumption about the distribution of the true
exposure and is therefore a functional approach.

Regression calibration provides us with a two-stage approach for correcting for the effects of
measurement error: firstly we estimate E(X|W ) and then we plug our estimate Ê(X|W ) in
place of X in the regression of Y on X .

We need a method for estimating E(X|W ). Usually a linear relationship between X and
W is assumed, and this assumption gives unbiased estimates for linear regression even if it
does not hold [33]. If we have gold standard exposure measurements then we can estimate
E(X|W ) by regressing X on W for the subset of individuals for which we have gold standard
measurements, i.e. we fit the model

X = α0 + α1W + ε (4.3)

for those individuals for which we have observed X and W . Alternatively, in the case that for
each individual (within a subset) we have a baseline exposure measurement W1 and a replicate
exposure measurement W2, we can fit the model

W2 = α0 + α1W1 + ε∗. (4.4)
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This will give the same parameter estimates because Cov(W2,W1) = Var(X), since the mea-
surement error in the replicate measurement is independent of the measurement error in the
baseline measurement.

We can check whether a linear relationship between the true and observed exposure is appro-
priate using regression diagnostics. A linear relationship gives unbiased estimates in linear
regression even if this assumption does not hold.

Once we have estimated E(X|W ) using either of these methods we replace X with this esti-
mate in a second-stage regression

Y = β0 + β1Ê(X|W ) + ε∗.

A more efficient approach, when we have observed the true exposure, is to use efficient re-
gression calibration which takes a weighted average of the parameters from the second-stage
regression above, and the parameters from the outcome model fitted to only those individuals
for which the true exposure was observed [153].

In chapter 3 we introduced the regression dilution ratio which we defined as λ := Var(X)
Var(W )

. α1 in
the model of equations 4.3 or 4.4 can be seen to be the regression dilution ratio. In equation 4.3

α1 =
Cov(X,W )

Var(W )
=

Var(X)

Var(W )
= λ

and in equation 4.4

α1 =
Cov(W1,W2)

Var(W2)
=

Var(X)

Var(W2)
= λ.

The parameter of interest β1 in equation 4.1 is given by Cov(Y,X)
Var(X)

. Note that this is equal to

Cov(Y,W )

Var(W )

Var(W )

Var(X)
=
β∗1
λ

where β∗1 is the slope parameter of the naı̈ve regression of Y on W . So an alternative approach
to the application of regression calibration is to firstly regress X on W (as in equation 4.3), or
W2 on W1 (as in equation 4.4), to obtain an estimate of λ, then regress Y on W to obtain an
estimate of β∗1 and finally calculate the corrected estimate β̂1 = 1

λ̂
β̂∗1 .

Regression calibration is just one method through which an estimate of λ can be obtained in the
case of a single exposure measured with error in the absence of confounders, and Thompson
et al. [154] compare alternative methods. Although Thompson et al. show that other methods
perform better in terms of variance, regression calibration extends easily to both the case where
we have multiple exposures measured with error, and when we have confounders.

When we have a set of confounders Z in our disease model, we need to additionally include
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4. Methods of correcting for exposure measurement error

them in the regression calibration models of equations 4.3 and 4.4. In this case the regression
dilution ratio becomes [33],

λX|Z =
Var(X|Z)

Var(W |Z)
=

Var(X|Z)

Var(X|Z) + Var(U)
.

Note that λX|Z will be smaller than the RDR unadjusted for confounders, λ, since Var(X|Z) ≤
Var(X), with equality if, and only if, X is independent of Z i.e. the effect of measurement
error is greater in the presence of confounders that are correlated with the true exposure of
interest.

In many situations it is not just the exposure of interest that is subject to measurement error,
but also confounders. The effect of measurement error in confounders is similarly to bias
the confounder-disease relationship, usually towards no relationship between confounder and
disease. Hence, when we adjust for the effect of confounders that are measured with error the
adjustment will not be complete and we may be left with residual confounding. If a confounder
is measured with error, and the measurement error component of the confounder is correlated
with that of the exposure of interest, then the effect of measurement error can be to bias the
observed relationship in either direction [155].

When multiple exposures are measured with error we can use a multivariate version of regres-
sion calibration to obtain measurement error corrected parameters

β = Λ−1β∗

where β is the vector of coefficients obtained from the regression using the observed exposure
and

Λ = Σ−1
W ΣX

with ΣX and ΣW the variance-covariance matrices of the true and observed exposures respec-
tively. As above, if we additionally have a set of perfectly measured confounders Z then the
RDR, Λ, should be calculated using conditional variances. In chapters 6 and 7 we shall look
at methods of assessing the measurement error structure including whether the measurement
error is correlated with confounders.

Regression calibration in the Cox model

Thus far we have considered regression calibration in the linear model. In a Cox regression
where the exposure–disease relationship is linear the log hazard is

log h(t|X) = log h0(t) + βX.
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Under the assumption of non-differentiality [42],

h(t|W ) = lim
ε↓0

1

ε
P ({T < t+ ε}|{T ≥ t},W )

= lim
ε↓0

1

ε
E(P ({T < t+ ε}|X, {T ≥ t},W )|{T ≥ t},W )

= lim
ε↓0

1

ε
E(P ({T < t+ ε}|X, {T ≥ t})|{T ≥ t},W )

= E(h(t|X)|{T ≥ t},W ) (4.5)

hence,
h(t|W ) = h0(t)E(exp(βTX)|W, {T ≥ t})

which depends on the past history of the process through {T ≥ t}. However, the time depen-
dence of the expectation can be expected to be small if the cumulative failure intensity is small,
which is typical in epidemiological studies. This assumption allows us to use the approximation

h(t|W ) ≈ h0(t)E(exp(βTX)|W ).

If the distribution of X|W is normally distributed with constant variance, then

h(t|W ) = h0(t) exp(βTE(X|W ) +
1

2
βT Var(X|W )β)

= h∗0(t) exp(βTE(X|W )).

This is very useful if we are able to calculateE(X|W ) (e.g. using the methods described earlier
in this section) since it allows us to use standard Cox proportional hazards regression software
but where we use E(X|W ) in place of W . Clayton [156] uses regression calibration within
risk sets to dispense with the rare-disease assumption. Regression calibration has also been
shown to be approximately true for logistic regression under similar assumptions [28].

Regression calibration for non-linear exposure–disease relationships

If a non-linear exposure–disease relationship is modelled by some function f(X) of our true
exposure we cannot simply replace f(X) with f(E(X|W )) in our model since f(E(X|W )) 6=
E(f(X)|W ), unless f(.) is affine. Therefore, for non-linear exposure–disease relationships
we need to be able to calculate E(f(X)|W ) which can be difficult. In the special case of a
quadratic Cox model, when X|W is normally distributed with constant homoscedastic vari-
ance, we may just replace X2 with E(X2|W ) since

log h(t) = log h0(t) + β1E(X|W ) + β2E(X2|W )

= log h0(t) + β1E(X|W ) + β2((E(X|W ))2 + Var(X|W ))

= log h∗0(t) + β1E(X|W ) + β2E(X|W )2.
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4. Methods of correcting for exposure measurement error

Since Var(X|W ) is a constant, the term β2 Var(X|W ) is subsumed by the baseline hazard.

If we assume that the distribution ofX|W is normal then we can estimate the mean and variance
parameters of the distribution from our regression calibration model; we discuss this further
in chapter 6. We can then calculate E(f(X)|W ) analytically or using numerical methods.
We shall now consider how regression calibration can be applied to P-spline and fractional
polynomial models.

Structural P-splines

Carroll et al. [157] proposed a P-spline based method for correcting for exposure measurement
error using regression calibration. In the situation where we observe the true exposure our
P-spline model, with power spline basis, is given by

log h(t|X) = log h0(t) +

p∑
j=0

βjX
j +

l∑
j=1

βp+j(X − tj)p+. (4.6)

When we observe mismeasured exposure measurements instead, we can apply regression cali-
bration to obtain an estimate of the relationship we would have observed under equation 4.6,

log h(t|W ) ≈ log h0(t) +

p∑
j=1

βjE(Xj|W ) +
l∑

j=1

βp+jE((X − tj)p+|W ).

The terms of the model that involve expectations are dependent on the choice of distribution
for X|W . As discussed above the normal distribution could be chosen. Carroll et al. also
suggest, for purposes of robustness, that a flexible parametric family that includes the normal
distribution, such as a mixture of normals, could be used. The simulation study Carroll et al.

conducted showed that structural P-splines exhibited much smaller bias and mean squared error
compared to the SIMEX method which shall be discussed below. Carroll et al. suggest that
the expectations can be found numerically, using Gaussian-quadrature [158] for example. In
appendix A.1 we show that the expectations can actually be calculated analytically when the
distribution of X|W is normally distributed, and we give R code in appendix F to calculate
them. Carroll et al. called this method structural P-splines because they specified explicitly the
distribution of the true exposure distribution.

4.3.2 Structural fractional polynomials

We propose applying regression calibration to fractional polynomial models, in the same way
that Carroll et al. applied it to P-spline models. We call this new model a structural fractional
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polynomial model. A structural fractional polynomial of degree m is given by

log h(t|W ) ≈ log h0(t) +
m∑
j=1

βjE(Hj(X)|W ).

As with the structural P-spline approach we need to specify the distribution of X|W . If we
assume that the X|W is normally distributed then the expectation of Xp|W cannot be worked
out analytically for negative, and fractional p. In fact, for fractional p,Xp|W is not well defined
since the normal distribution is defined over the entire real line. We propose shifting X|W so
that there is only a negligible probability ofX|W being negative, and truncating the distribution
at zero. We do not prove theoretically the properties of adopting this approach, but it appears to
work well in practice. We discuss how the data can be shifted appropriately further in chapter 6.
In the next section we provide exact results when X|W is log-normally distributed. We shall
refer to the linear model in this section as we will then obtain correction factors that would
need to be applied to the intercept term, which is not present in the Cox model.

Exact results for log-normally distributed data

If the distribution of X|W is log-normally distributed then we are able to calculate analytically
E(Hj(X)|W ) for structural fractional polynomial models. Suppose logX has mean µx and
variance σ2

x, and that logW |X ∼ N(logX, σ2
u) then logX|W is distributed normally

logX|W ∼ N
(
λ logW + (1− λ)µx, (1− λ)σ2

x

)
(4.7)

where λ = σ2
x

σ2
x+σ2

u
i.e. the RDR relating logW to logX . Note that the expectation of the

distribution is linear in W with constant variance.

Firstly we shall consider a mismeasured exposure in the absence of confounders. Suppose that
the model for the observed data is a fractional polynomial of degree 2, since this is the highest
order fractional polynomial usually considered

Y = α∗ + β∗1W
(p1) + β∗2W

(p2). (4.8)

There are essentially four different sets of powers that need to be considered when applying
regression calibration to the model in equation 4.8; by considering these scenarios we will also
be working out the required functions for fractional polynomials of degree 1:

1. p1 6= p2 and p1, p2 6= 0

2. p1 = 0 and p2 6= 0 or p1 6= 0 and p2 = 0

3. p1 = p2 6= 0

4. p1 = p2 = 0
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4. Methods of correcting for exposure measurement error

There are four expectations that we need to calculate for structural fractional polynomial mod-
els:

1. E(Xp|W ) = k(p)W λp (4.9)

2. E(logX|W ) = log(W λ) + (1− λ)µx (4.10)

3. E(Xp logX|W ) = k(p)
[
W λp log(W λ) + (1− λ)(µx + pσ2

x)W
λp
]

(4.11)

4. E((logX)2|W ) = (1− λ)
[
σ2
x + (1− λ)µ2

x

]
+ log(W λ)

[
log(W λ) + 2(1− λ)µx

]
(4.12)

where k(p) = exp

(
(1− λ)

(
σ2
xp

2

2
+ pµx

))
. Equation 4.9 is the pth moment, equation 4.10

the mean, and equation 4.12 the variance minus the squared mean, of the log-normal distribu-
tion 4.7. The derivation of equation 4.11 is given in appendix A.2.

These are all functions in W λ so we shall consider fractional polynomial models fit using W λ

i.e.

E(Y |W λ) = α
′
+ β

′

1(W λ)(p1) + β
′

2(W λ)(p2). (4.13)

Then we obtain the following relating the coefficients of the model in equation 4.13 to those
using the true exposure

E(Y |X) = α + β1X
(p1) + β2X

(p2). (4.14)

For each of the four cases described above

1.
E(Y |W ) = α + β1k(p1)W λp1 + β2k(p2)W λp2 (4.15)

So α = α′, β1 =
β′1
k(p1)

, β2 =
β′2
k(p2)

2. Let p1 = 0, p2 6= 0 (The case that p1 6= 0, p2 = 0 is analogous)

E(Y |W ) = α + β1(logW λ + (1− λ)µx) + β2k(p2)W λp2

= (α + β1(1− λ)µx) + β1 logW λ + β2k(p2)W λp2 (4.16)

So α = α′ − β′1(1− λ)µx, β1 = β′1, β2 =
β′2
k(p2)

3. Let p := p1 = p2
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E(Y |W ) = α + β1k(p)W λp + β2k(p)
[
W λp log(W λ) + (1− λ)(µx + pσ2

x)W
λp
]

= α + k(p)
(
β1 +

(
(1− λ)µx + pσ2

x

))
+ β2k(p)W λp log(W λ) (4.17)

So α = α′, β1 =
β′1
k(p)
− ((1− λ)µx + pσ2

xβ
′
2) and β2 =

β′2
k(p)

4.

E(Y |W ) = α + β1(log(W λ) + (1− λ)µx) +

β2

{
(1− λ)

[
σ2
x + (1− λ)µ2

x

]
+ log(W λ)

[
log(W λ) + 2(1− λ)µx

]}
=

[
α + β1(1− λ)µx + β2(1− λ)(σ2

x + (1− λ)µ2
x)
]

+ β1 (1 + 2(1− λ)µx) log(W λ)

+β2(log(W λ)2 (4.18)

So, α = α′ − (1 − λ)
[
β′1

µx
1+2(1−λ)µx

− β′2(σ2
x + (1− λ)2µ2

x)
]

, β1 = β′1
1

1+2(1−λ)µx
and

β2 = β′2.

An alternative to calculating adjusted coefficients is to calculate the appropriate expectations,
and substitute them into the fractional polynomial models in a similar way to the P-spline, and
linear regression calibration models.

When we additionally have confounders we can assume that(
logX

logW

)
|Z ∼ N

((
µx|z

µx|z

)
,

(
σ2
x|z σ2

x|z

σ2
x|z σ2

w|z

))

so that then we have

logX| logW,Z ∼ N
(
λ logW + (1− λx|z)µx|z, (1− λx|z)σ2

x|z
)
. (4.19)

which we note is the same as equation 4.7 except that the quantities µx|z, λx|z and σ2
x|z are now

conditional on the the confoundersZ. Therefore, we can use equations 4.9-4.12 to calculate the
necessary expectations (conditional onZ) to use in our regression analysis. If we have baseline
and repeat measurements W1,W2 then we can estimate µx|z, λx|z and σ2

x|z using maximum
likelihood as we shall describe in section 5.2.1.

4.3.3 Corrected score function

The score function, sX(Y,X; β), for our disease model using the true exposure, and the true
value β is such that

E(sX(Y,X; β)) = 0.
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4. Methods of correcting for exposure measurement error

The equality is generally not true when X is replaced with the observed mismeasured expo-
sure, W , in the equation above. The aim of the approach is to find an adjusted score function
sW (Y,W ; β) such that

E(sW (Y,W ; β)) = 0.

One way to do this is to find a function, sW (Y,W ; β), such that

E(sW (Y,W ; β)|X, Y ) = sX(Y,X; β)

since then

E(sw(Y,W ; β)) = E(E(sW (Y,W ; β)|X, Y )) = E(sX(Y,X; β)) = 0

for the true value of β.

Chan and Mak [159] give a corrected score function for least squares regression and this was
expanded upon by Cheng and Schneeweiss [160]. Stefanski [161] prove the general condition
that for a corrected score function to exist the underlying estimating function has to be an entire
function in the complex plane (i.e. it has to have no singularities). The score equation derived
from the partial likelihood of the Cox model does not satisfy this condition, however Nakamura
[162] gave approximately corrected score functions that were correct to first and second order.

Augustin [163] shows that if one uses the Breslow likelihood, where all censoring times in the
interval [τj−1, τj) are shifted to τj−1, and piecewise constant hazard is assumed

log `Br =
k∑
j=1

dj log λj +
∑

i∈D(τj)

βTXi − λj(τj − τj−1)
∑

i∈R(τj)

eβ
TXi


then a corrected score function exists because it does not contain any singularities in the com-
plex plane. Augustin also showed that Nakamura’s corrected score function is exact under the
Breslow likelihood. Augustin notes that further theoretic development is required to extend
the corrected score method to the case where mismeasured covariates have a non-linear effect
[164].

When there is no known corrected score function an alternative approach is to use Monte Carlo
corrected scores [165]. This approach shares many similarities with SIMEX (see section 4.3.4)
and relies on the result that for any suitably smooth function E(f(W + iσuZ)) is unbiased for
f(X), where i =

√
−1 and Z is a standard normal random variate. For example, under the

classical measurement error model the naı̈ve estimate is biased by the term σ2
u

E(W 2) = E((X + U)2) = E(X2) + 2E(XU) + E(U2) = E(X2) + σ2
u.
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However [166],

E((W + iσuZ)2|W ) = E(W 2 − σ2
uZ

2 + 2iσuWZ|W )

= E(W 2)− σ2
u

= E(X2).

Since any terms that involve a multiple of i correspond to odd powers of Zp, which have
expectation zero, the real part of E(f(W + iσZ)|W ) may be taken as our estimator. The
Monte-Carlo corrected score procedure involves: calculating the score equations for a large
number of generated datasets, W̃ = W + iZ, and then solving the average of these score
equations to obtain an estimate of β.

We do not consider this approach further in this dissertation, although corrected score functions
for Cox models when the exposure–disease relationship is non-linear may be an interesting
direction for future research.

4.3.4 SIMulation EXtrapolation—SIMEX

The idea behind Simulation Extrapolation (SIMEX), proposed by Cook and Stefanski [167],
is simple—we add increasing amounts of additional measurement error to the data to observe
how the estimates of the model parameters vary. We then extrapolate this trend back to the
case where we have no measurement error to obtain parameter estimates for the true exposure–
disease relationship. SIMEX is a functional measurement error model because although we
make assumptions about the measurement error distribution, we make none about the distribu-
tion of the true exposure.

We first describe the method in detail, then consider the extrapolation step, and conclude our
overview of SIMEX by looking at some of the many variations of SIMEX that have been
proposed.

Method

The method for conducting a SIMEX analysis of a Cox model with linear predictor f(W ;β)

is:

1. Fit the outcome model using the observed data

log h(t|W ) = log h0(t) + f(W ,β0)

to obtain a set of parameter estimates β̂0 = (β̂
(1)
0 , ..., β̂

(p)
0 ), where p is the number of

parameters in our model.

2. Obtain an estimate of the measurement error variance, σ2
u. This could be obtained, for ex-
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4. Methods of correcting for exposure measurement error

ample, from a regression calibration model, method of moments estimator, or an external
reliability study.

3. Let ζ = {ζ1, ..., ζK} be a set of strictly positive scale factors, ζ ∈ {0.5, 1, 1.5, 2} is
usually chosen. Let B be the number of pseudo datasets to be generated for each value
of ζ . B should should be large, typically B = 100− 200 is chosen. Then,

for k = 1, ..., K {
for b = 1, ...B {

GenerateW ∗
k,b(ζk) = W +

√
ζkZk,b, where Zk,b is a vector of randomly

generated standard normal variates.
Then fit the disease model log h(t|W ∗

k,b) = log h0(t) + f(W ∗
k,b(ζk),βk,b)

to obtain a set of parameter estimates β̂b(ζk) = (β̂
(1)
k,b , ..., β̂

(p)
k,b ) }

Calculate the mean parameter vector β̂(ζk) =
1

B

B∑
b=1

β̂b(ζk)

}

4. For each regression coefficient β(m) in the model, we consider β(m)(ζ) as a function,
f(ζ, β(m)(ζ)), of the scale factor ζk for k = 0, ..., K, where ζ0 = 0 corresponds to the
observed exposure–disease relationship. We must specify a function to estimate the rela-
tionship, and this choice is discussed below. We fit the chosen function to β(m)

k , k =

0, ..., K and extrapolate back to ζ = −1 to obtain final estimates β̂(m) = f(ζ =

−1, β(ζ)).

Extrapolating back to ζ = −1 corresponds to no measurement error because W ∗(−1) = W +
√
−1σuZ = W + iσuZ, and taking the variance of this we obtain Var(W ∗(−1)) = Var(W )−

σ2
u = Var(X).

SIMEX is intuitively appealing for many reasons. Firstly, although computationally intensive
it is easy to implement in standard software and has been implemented in R by Lederer and
Küchenhoff [168] and in STATA by Hardin and Schmiediche [169]. Secondly, it is a method
that can be easily explained to non-statisticians and can provide graphs that help us to visu-
alise the effects of measurement error. Figure 4.1 shows a simulated example where the true
exposure–disease relationship (solid line) is U-shaped, and the variance of the observed expo-
sure is one and a half times that of the true (i.e. RDR=2/3). We can see that as we increase
the value of ζ the relationship is gradually attenuated. In this example, we also see that the
SIMEX estimate, whereby we have extrapolated each of the sets of parameter estimates back
to ζ = −1, does very well in recreating the true exposure–disease relationship.

The theory for SIMEX was originally developed for linear models. Crainiceanu, Ruppert, and
Corresh [170] establish the SIMEX procedures application to Cox models.
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Figure 4.1: [Illustration of the SIMEX method.]Illustration of the SIMEX method for a true U-
shaped relationship given by y = x2

2
. One thousand standard normal values were generated for

the true exposure, normally distributed measurement error with variance 0.5 was added to form
the observed exposure. Quadratic relationship between outcome and exposure was assumed in
the SIMEX model. B = 200 and rational linear extrapolant were used.

Choice of extrapolation function

The choice of extrapolation function is key in obtaining the correct degree of correction for the
effects of measurement error. Three extrapolation models are commonly used:

• Based on Taylor expansions of β(ζ) about ζ

– Linear — β(ζ) = a+ bζ

– Quadratic — β(ζ) = a+ bζ + cζ2

• Linear Rational — θ(ζ) = γ1 + γ2
γ3+ζ
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4. Methods of correcting for exposure measurement error

The linear rational extrapolant is exact for the linear model with a single mismeasured covariate
subject to classical measurement error since

β(ζ) =
Cov(W + σu

√
ζZ, Y )

Var(W + σu
√
ζZ)

=
Cov(X, Y )

σ2
x + (1 + ζ)σ2

u

=

Cov(X,Y )
σ2
u

(σ
2
x

σ2
u

+ 1) + ζ
.

The linear rational extrapolant is more difficult to fit than the linear and quadratic extrapolants
as it requires a non-linear least squares fitting routine. To obtain suitable starting values for the
fit Carroll et al. [33] suggest fitting a quadratic model to (ζ, θ̂(ζ)), taking the fitted values from
the quadratic model for δ = (0, ζmax

2
, ζmax), and then calculating initial estimates (γ̂1, γ̂2, γ̂3)

for (γ1, γ2, γ3):

γ̂3 =
d12δ2(δ1 − δ0)− d01(δ2 − δ1)

d01(δ2 − δ1)− d12(δ1 − δ0)

γ̂2 =
d12(γ̂3 + δ1)(γ̂3 + δ2)

δ2 − δ1

γ̂1 = a0 −
γ̂2

γ̂3 + δ0

where dij = |δi − δj|. The rational linear extrapolant has a singularity in the extrapolation
region if γ3 ∈ (0, 1). If γ3 were estimated to lie in this range it would usually indicate that the
extrapolation function was a poor fit. Also, if the parameter relating to the quadratic term used
in determining the initial estimates of (γ̂1, γ̂2, γ̂3) is numerically zero, and we use the values of
δ suggested by Carroll and Stefanski then the equations for (γ̂1, γ̂2, γ̂3) are singular.

Misspecification of the extrapolation function can lead to badly biased results. Under the linear
rational extrapolant small negative values of γ3 will result in β̂(−1) being very different to β̂(0)

as we are close to the asymptote. This could give a very biased parameter estimate if the true
extrapolation function is not the rational linear.

It is essential to check plots of (ζ, β̂(ζ)) with the fitted function plotted for reasonableness.
Since the coefficients for the quadratic extrapolation function are calculated to obtain initial
values for the parameters of the non-linear least squares fit, they can be saved easily and used
for comparison.

The choice of extrapolation function to use is usually pragmatic with the quadratic extrapola-
tion function normally used in practice because of the rational linear extrapolant’s numerical
instability, and because the quadratic model tends to give a conservative correction for mea-
surement error [169]. The lack of a theoretical selection of the extrapolation function, and
the lack of indication as to when it may give poor results, is unsatisfactory. We can expect
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quadratic extrapolation to perform best when the measurement error variance is small relative
to the variance of the underlying exposure. Different extrapolation models may give good fits
to the estimates (ζ, β̂(ζ)) but the extrapolated estimates of β(−1) may vary greatly between
them.

The parameters within the disease model are correlated. In order to reduce this we can centre
covariates, which can help to remove turning points in the extrapolation function. We also
investigated allowing for the correlation by fitting a multivariate model to our extrapolation
data, however we found that it did not appear to give any appreciable improvement.

SIMEX on the RDR scale

The SIMEX procedure investigates how the parameter estimates for the disease model change
as the measurement error variance is increased; we suggest that an alternative approach may be
to perform SIMEX on the scale of the RDR, using λ instead of σ2

u as our input into the SIMEX
procedure. Under this approach we additionally have to estimate Var(W ) from our dataset to
give absolute values since the RDR is a ratio. We want to create datasets W (λ∗) such that

Var(W (λ∗)) =
1

λ∗
Var(X) =

1

λ
Var(X) +

(
1

λ∗
− 1

λ

)
Var(X).

This leads us to a simple way to create our mismeasured datasets

W ∗(λ∗) = W +

√
λ− λ∗
λ∗

σ2
wZ

for a set of values λ∗ = {λ∗1, ...λ∗K}. We would then perform our extrapolation on (λ∗,W (λ∗))

and extrapolate back to λ∗ = 1. The advantage of SIMEX using our proposed scale is that for
polynomial functions of X the extrapolation is exact in the corresponding polynomial in λ∗.
Hence, we do not need to use the unstable rational linear extrapolant.

Application of SIMEX to spline and fractional polynomial models

We can easily use SIMEX with spline based models, for example Crainiceanu et al. used
splines to model the relationship between the estimated glomerular filtration rate, a measure of
kidney function, and chronic kidney disease [170].

With a fractional polynomial analysis we would typically obtain models of different functional
form for each dataset. One approach to using SIMEX with fractional polynomial models would
be to use fractional polynomials to choose a model for the observed exposure–disease relation-
ship and then apply SIMEX to that model. An alternative approach is to add increasing amounts
of measurement error and fit the best fitting fractional polynomial model (of fixed degree) to
each data set. We could then find fitted values for each model over a grid of exposure values,
take the average fitted value at each point, and extrapolate back pointwise to obtain the SIMEX

75



4. Methods of correcting for exposure measurement error

corrected exposure–disease relationship. This approach is very computationally intensive be-
cause for each of the simulated datasets many fractional polynomial models need to be fit. The
resulting relationship would also not be of parametric form and hence could only be displayed
graphically, and standard errors could not be obtained easily.

Variance estimation

Two methods have been proposed to estimate the variance of the parameters obtained from
SIMEX—jackknife estimation [166] and asymptotic estimation [171]. We discuss only the
former as the asymptotic estimation method does not apply to the Cox model. The variance of
the SIMEX estimate, β̂SIMEX , can be expressed as

Var(β̂SIMEX) ≈ Var(β̂true) + Var(β̂SIMEX − β̂true) (4.20)

where β̂true is the hypothetical estimator calculated using true exposure. The first component of
the right hand side of equation 4.20 relates to the sampling variability, whilst the second relates
to measurement error variability. An estimate of Var(β̂true) can be obtained by calculating for
each value of ζ ,

V̂ar(β̂true) =

∑B
b=1 Var(β̂b(ζ))

B
.

This can then be extrapolated back to ζ = −1 in the same way as we did to find parameter
estimates of β̂.

For the second term an estimate of Var(β̂SIMEX − β̂true) can be calculated as

V̂ar(β̂SIMEX − β̂true) = − 1

B − 1

B∑
b=1

(β̂b(ζ)− β̂(ζ))(β̂b(ζ)− β̂(ζ))T .

This can then be extrapolated back to the case ζ = −1 analogously. Note that we require the
minus sign since the estimate will be positive for ζ > 0, zero when ζ = 0, and negative when
extrapolating back to ζ = −1. We can see this by considering the components of the variance

Var(β̂b(ζ)− β̂(ζ)) = Var(β̂b) + Var(β̂)− 2 Cov(β̂b(ζ), β̂(ζ)).

Cov(β̂b(ζ), β̂(ζ)) = Var(β̂(ζ)) since β̂(ζ) = E(β̂(ζ)|X) and we show in appendix A.3 that
lim
ζ→−1

Var(β̂b(ζ)) = 0. Therefore,

lim
ζ→−1

Var(β̂b(ζ)− β̂(ζ)) = lim
ζ→−1

−Var(β̂(ζ)) = −Var(β̂(−1)) = −Var(β̂SIMEX).

In practice, rather than extrapolating each of the two components separately, it is easier to
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calculate

V̂ar(β̂SIMEX(ζ)) ≈
∑B

b=1 Var(β̂(ζ))

B
− 1

B − 1

B∑
b=1

(β̂b(ζ)− β̂(ζ))(β̂b(ζ)− β̂(ζ))T

and then extrapolate this back to ζ = −1 [33].

The SIMEX procedure has been used in a number of applications [172–174]. Although SIMEX
has been used for linear exposure–disease relationships we believe that better, less computa-
tionally intensive methods, such as regression calibration should be used in this case. In prin-
ciple SIMEX can be used with any distribution for the measurement error, however a normal
distribution is almost always assumed. A drawback of SIMEX is that there exists no model
selection procedure so one needs to make the correct selection of naı̈ve model. As we saw in
chapter 3, the observed exposure–disease relationship may appear to have a different functional
form to the true relationship due to measurement error.

SIMEX variants

Many variants of SIMEX have been proposed. Empirical SIMEX is a variant of SIMEX that
does not assume that the measurement error is normally distributed or homoscedastic [175].
Instead of forming pseudo datasets by adding on measurement error, pseudo data are created by
taking linear combinations of replicate measurements. This means that replicate measurements
must be available for all individuals. It is uncommon in practice for all individuals to have
at least one replicate measurement, even if the study is designed so that all individuals have
replicate measurements taken, since at least some individuals will typically be lost to follow-
up. This reduces the practical usefulness of this method.

Nolte [176] has developed a variant of SIMEX for multiplicative measurement error and Ron-
ning and Rosemann [177] have developed a method they call generalised SIMEX (GSIMEX)
for when the measurement error in the response is correlated with that in the predictor. Stauden-
mayer and Ruppert [178] suggest how SIMEX can be applied to local polynomial regression.
Alpizar-Jara et al. [179] give a method for dealing with systematic measurement error when
applying SIMEX.

4.3.5 Multiple imputation

Cole, Chu and Greenland [180] proposed that multiple imputation, which is used to impute
missing data, could also be used for measurement error problems when we have gold standard
measurements within a validation substudy. We discuss in chapter 5 how this method can be
applied when we have repeat measurements. We can view the true exposure as being missing
for those individuals not in the validation study. Multiple imputation can be used to correct for
differential measurement error in our exposure as well as non-differential error, which methods
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4. Methods of correcting for exposure measurement error

such as regression calibration and SIMEX cannot. We can create imputed datasets

XIM(W,Y ) = E(X|W,Y ) + e (4.21)

where E(X|W,Y ) can be estimated using a regression calibration model e.g.

X = α0 + α1W + α2Y + ε

and e is a random draw from the residuals, ε, of this regression. The regression calibration
model may be more complex and contain for example polynomial functions of W , or an inter-
action between W and Y . If we make the assumption of non-differential error then there will
be no WY interaction/

We can form K datasets using equation 4.21, X(k)
IM(W,Y ), k = 1, ..., K and fit the outcome

model to each of these imputed datasets to obtain parameter estimates β̂(k)
IM . These parameter

estimates can then be combined using Rubin’s rules [181] to find estimates of the regression
parameters for the true exposure–disease relationship

β̂ =
1

K

K∑
k=1

β̂
(k)
IM

with variance

V̂ar(β) =
1

K

K∑
k=1

V̂ar(β̂
(k)
IM) +

K + 1

K(K − 1)

K∑
k=1

(β̂
(k)
IM − β̂IM)2.

Multiple imputation can easily be performed using the mice [182] package in R.

What is described above is suitable for a linear outcome model. In the Cox model instead of a
simple outcome Y , our outcome consists of an event indicator and the length of the observation
period. In this situation White and Royston [183] propose that the event indicator and the
Nelson-Aalen estimator of the cumulative hazard function are used in the imputation model.

4.3.6 Moment reconstruction

Moment reconstruction [184] aims to recreate the first two joints moments of the true exposure
distribution with Y by generating

XMR(W,Y ) = E(X|Y ) +G(W − E(W |Y ))

where

G =

√
Var(X|Y )

Var(W |Y )
.
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Moment reconstruction allows for differential measurement error and provides an exact, rather
than an approximate, correction for the effects of exposure measurement error in a logistic
regression when the exposure–disease relationship is linear. Remember that it was noted earlier
that regression calibration was only approximate for this model.

Thomas, Stefanski, and Davidian [55] have recently proposed a method, Mean Adjusted Im-
putation, that extends the principle of moment reconstruction and aims to find X̂ such that X̂
shares its first r moments with X , and also the cross-products of X̂rY and X̂rZ. This method
relies on the fact that if W ∼ N(X, σ2

u) then E(σruHr(
W
σu

)) = Xr where Hr(x) is the rth order
Hermite polynomial

Hn+1(x) = xHn(x)− (n− 1)Hn−1(x)

with H0(x) = 1 and H1(x) = x. Their method minimises the squared distance between the
observed exposure and the estimated true exposure, subject to the constraint that the moments
and cross products are equal to their corresponding estimates m̂rk. This method recreates the
corrected score estimators given by Cheng and Schneeweiss [160] for polynomial functions in
linear models.

Moment reconstruction and Mean Adjusted Imputation both use the outcome Y in obtaining
their imputed values, however in Cox models the outcome consists of two components, event
and censoring indicators. Thomas, Stefanski and Davidian [55] considered three possible ap-
proaches to including both the event and censoring indicators:

1. Include the censoring indicator as a variable in the moment matching.

2. Perform the moment matching within each level of the censoring indicator.

3. Perform the moment matching for each risk set.

They found that there was little difference between the results using the three methods and
therefore recommend the first approach because it is the simplest to implement. The results
of their simulations were that the corrected score method is preferable for linear models, over
their proposed method and regression calibration. However, the corrected score method cannot
be used for non-linear exposure–disease relationships and the estimation of E(Xp|W ) requires
assumptions to be made about the distribution of X|W . This method makes no assumptions
about the distribution of X|W and can be computed quickly using the code given by the au-
thors.

4.3.7 Density estimation of the true exposure

Structural correction methods require us to make distributional assumptions. One way to avoid
making these assumptions is to try and recreate the distribution of the true exposure X using
non-parametric density estimation. In some situations the distribution of the true exposure may
be of interest in itself. Non-parametric density estimation in the presence of measurement error
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4. Methods of correcting for exposure measurement error

is difficult because we observe the convolution of densities

fW = fX ∗ fU .

In order to get fX it is necessary to find the deconvolution of the two densities; this is a difficult
problem. Fan and Truong [185] discuss non-parametric kernel regression when the exposure
is measured with error. Delaigle and Hall [186] propose a SIMEX procedure for ascertaining
an optimal bandwidth since the standard methods are suboptimal when measurement error is
present . For further discussion of deconvolution based methods see Carroll et al. [33].

4.3.8 Bayesian approaches

Although we explained in chapter 2 that we would not be considering Bayesian approaches in
this dissertation, we give some methods for completeness. Berry, Carroll and Ruppert [187]
suggested Bayesian spline modelling approaches. The first method they suggested, which they
call iterative conditional modes, is only partially Bayesian and maximises each component of
the likelihood componentwise . The second method is a fully Bayesian model that utilises
the results from the first method to provide starting values for the Markov chain Monte Carlo
(MCMC). This method performed better than the structural splines described above in their
simulation.

Cheng and Crainiceanu [188] have developed a Bayesian approach for Cox models. They use
a piecewise constant function to fit the log baseline hazard and a low-rank spline to fit the
log-hazard for the exposure of interest using the Bayesian equivalent of the difference penalty
for P-splines, random walk priors. To fit their spline based model to an example consisting of
15,792 patients took 59.1 hours to obtain 10,000 samples for one MCMC chain on a modern
PC. The dataset we shall be considering in later chapters will be over fifteen times this size and
hence exemplifies why we will not be considering Bayesian approaches.

4.4 Correction methods for grouped data

In chapter 2 we discussed the problems associated with grouped exposure analyses and in
section 4.2 we noted that categorising a continuous mismeasured exposure typically induces
differential error. Despite these problems, grouped exposure analyses are frequently used in
practice and therefore we consider some of the methods that can be used to correct them for
the effects of exposure measurement error. When the exposure is grouped, measurement error
manifests itself as misclassification between groups.
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4.4.1 MacMahon’s method

MacMahon et al. [35] used a simple method for correcting for the effects of non-differential
exposure measurement error under a grouped exposure analysis where replicate measurements
of exposure were available. We shall refer to this approach as MacMahon’s method, as used
by the Fibrinogen Studies Collaboration [189]. This approach has also been referred to as
the MacMahon-Peto method [13, 190] or Peto’s method (although this is potentially confusing
because Peto’s method also refers to a method Peto developed for meta-analysis). MacMahon’s
method has been used by many studies [13, 36, 191].

The idea behind MacMahon’s method is that instead of plotting the hazard ratios obtained
from a grouped exposure analysis against the mean value of the observed exposure values
within each group, we plot the hazard ratio for each group against the mean of replicate ex-
posure measurements maintaining the baseline groups. The effect of exposure measurement
error is to ‘mix up’ the groups we would have observed using the true exposure—the highest
and lowest groups contain disproportionately many individuals whose observed baseline expo-
sure measurements happened to be higher/lower than their ‘true’ exposure level. MacMahon’s
method obtains an unbiased estimate of the mean true exposure of the observations in each
group. We shall investigate the performance of MacMahon’s method for recreating the shape
of the exposure–disease relationship in chapter 5.

4.4.2 MisClassification SIMEX—MCSIMEX

Proposed by Küchenhoff, Mwalili, and Lesaffre [192] the misclassification-SIMEX (MCSIMEX)
is the extension of the SIMEX procedure of section 4.3.4 to the case where we have discrete
exposure groups. Let G = {Gi, i = 1, ...g} be the levels that our discrete covariate can take
and define the misclassification matrix, Π = {πij} by

πij = P (W ∈ Gi|X ∈ Gj).

Π is an input into the MCSIMEX method and must be estimated, for example using a gold
standard measure.

The model for the observed exposure–disease relationship is

log h(t) = log h0(t) +

g∑
i=2

βiI(W ∈ Gi).

In the SIMEX procedure we scaled the measurement error variance by a scale factor ζ . In
MCSIMEX we increase the degree of misclassification using Πζ := EΛζE−1 , with Λ being
the diagonal matrix of eigenvalues of Π and E the corresponding matrix of eigenvectors.
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4. Methods of correcting for exposure measurement error

We can generate misclassified data as W (ζ) := MC(Λζ)(W ) where MC(Λζ) is the misclas-
sification operation. For W ∈ Gi the misclassification operation works by sampling from G

where Gj is chosen with probability πij . The SIMEX procedure can be applied using this ap-
proach for creating misclassified data for increasing values of ζ . It is suggested that the linear or
quadratic extrapolation functions are used, or β(ζ) = exp(a+ bζ) which is the correct extrapo-
lation function for a logistic regression with misclassified response. When the misclassification
probabilities are small Λζ may not exist for small values of ζ . Küchenhoff recommends an ap-
proximation procedure [193] that gives a matrix Λ∗ for which Λ∗

ζ exists when Λζ does not.

This method does not allow for differential measurement error because it assumes the proba-
bility of misclassification is the same for all individuals within each group. When estimating
the shape of an exposure–disease relationship the exposure will typically be grouped into five
or more groups, this would require the estimation of a large misclassification matrix as an input
into the MCSIMEX procedure.

4.4.3 Group-SIMEX

We propose a SIMEX based approach which we call group-SIMEX for when we have observed
mismeasured continuous exposure measurements but wish to perform the analysis on groups
of the exposure. The aim is to get around the problems caused by differential error, by adding
random measurement error to the continuous exposure before applying the grouping. The
group-SIMEX procedure is:

• Group the continuous data W into groups G = {G1, ..., Gg}

• Fit the naı̈ve model toG to obtain β0 = {βG2 , ...., βGg} (whereG1 is the reference group)

• Obtain an estimate of the measurement error variance, σ2
u

• Generate normally distributed random pseudo errors:
√
ζσuZ

• Add the pseudo errors to the observed exposure and group the data according to the
cutpoints used to define G to obtain Gζ .

• Fit the model to Gζ for each ζ

• For each parameter βGi extrapolate back to the case of no measurement error (ζ = −1).

We considered applying the quadratic and rational linear extrapolation functions for extrapo-
lating in group-SIMEX:

1. Quadratic—The quadratic extrapolant is unable to sufficiently capture the curvature in
the extrapolation data, causing it to extrapolate back to parameter estimates that under-
correct for the effects of measurement error.
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2. Rational linear extrapolant—The rational linear extrapolant can fit the β̂(ζ) very well
however:

• the non-linear least squares routine required to fit the extrapolation model often
does not convergence;

• if the parameter value does not change much with the addition of increasing amounts
of measurement error, this can cause the fitted function to have an asymptote in the
range of extrapolation;

• the fit is very sensitive and small changes in the simulated values can lead to wild
changes in the extrapolated value;

• when simulating simple examples we found that the extrapolation often would often
cause groups to switch their ordering.

We considered using a cubic extrapolant, and we also considered weighting the extrapolation
points, neither of which worked well. The cubic extrapolant did tend to pick up the curvature
better than the quadratic, but problems were experienced with turning points in the extrapola-
tion region.

We found that it may be optimal to down weight or even exclude ζ = 0 (the naı̈ve regression)
and instead introduce a ‘small’ value for ζ to simulate for; ζ = 0 is based on only one obser-
vation whereas ζ > 0 is based on B replicates. The parameters of an individual dataset can be
very sensitive to one individual moving between groups. This is more of a problem with the
Cox model because when individuals with events associated with them move between expo-
sure groups (as a result of measurement error) it can cause large changes in parameter values.
For each b, βb(ζ) is not a continuous function and is instead a step function since ζb(ζ) will
remain constant in some range (ζ, ζ + ε] until an observation crosses the boundary between
groups. For large sample sizes where the number of steps will typically be large, and since
β̂(ζ) = 1

B

∑B
b=1 βb(ζ), we expect that β̂(ζ) will behave the same as if it were continuous. We,

therefore, suspect that group-SIMEX will work best when the data contain many events within
each group. This is most likely to be the case when we have few groups, and a high proportion
of events, or a large sample size.

4.4.4 Natarajan’s method

Natarajan [194] proposed the following regression calibration based procedure for a dichoto-
mous predictor where we have observed the continuous mismeasured exposure, W , and true
exposure X in a validation substudy:

1. Fit a calibration model forE(X|W,Z) forX ,W and Z in the validation substudy. Using
the regression coefficients obtained from the calibration model, calculate the predicted
value X̂i = Ê(Xi|Wi, Zi) for each subject i who is not in the validation study and let
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X̂i = X for those individuals in the validation study.

2. Calculate Xrcb = I(X̂ > c) for chosen cutpoint c.

3. Use Xrcb in the exposure–disease model.

This method is similar in principle to the group-SIMEX procedure discussed above whereby we
perform our measurement error correction on the continuous exposure before forming groups.
Although Natarajan dichotomised the exposure the method can be used to split the exposure
into multiple exposure groups. When we only have repeat measurements then we can still use
this method but X̂i will be imputed from the regression calibration model for all individuals.

4.5 Calculation of confidence intervals

In the description of each of the methods above, we have not described how to take account of
the additional uncertainty from our measurement error model, in the disease model. In almost
all cases we can take this uncertainty into account using the nonparametric bootstrap, the easiest
method being resampling with replacement from the original data [195, 196], although other
methods for censored data have been considered [197]. Bootstrap estimation of confidence
intervals can be computationally intensive, especially when the dataset is large. This is not the
only way to take account of the uncertainty, for example sandwich estimators can sometimes
be found [28, 33], and Wood [198] proposed a multiple imputation based approach.

When using regression calibration there typically will be much more uncertainty in the sec-
ond stage Cox model than the regression calibration. Hence, many authors choose to make no
correction. Rosner [28] considered how the number of replicate measurements per individual,
and the number of individuals with replicates, affected the size of the confidence intervals for
parameter estimates within their logistic regression models and found that when the number of
individuals with replicate measurements was small then increased numbers of replicate mea-
surements per individual gave much greater precision. However, as the number of individuals
with replicates increased, the number of replicates per individual made little difference. Be-
yond 100 individuals with replicates, the increase in the size of the confidence intervals for
the parameters of the disease model, due to the uncertainty in the measurement error model,
was small. This suggests that little is lost by not correcting the confidence intervals when the
measurement error model can be well estimated. It also suggests that validation studies should
aim to obtain a single repeat on as many individuals as possible, rather than obtaining many
replicates per individual, unless the number of individuals in the validation study is to be small.

4.6 Conclusion

Usually we require additional information in order to estimate the measurement error model
parameters. This additional information can be from an (alloyed) gold standard, replicate mea-
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surements or an instrumental variable. Regression calibration is arguably the most commonly
used approach for correcting for the effects of exposure measurement error whereby we take
the expectation of the true exposure given the observed. When regression calibration is applied
to non-linear exposure–disease relationships structural assumptions usually have to be made.
Regression calibration has been applied to P-splines. We have shown how it can be applied
to fractional polynomials and given analytical correction formulae for when the distribution
of X|W is log-normal. SIMEX is an intuitive approach that makes no assumptions about the
distribution of the true exposure. SIMEX involves two steps: SIMulation, whereby we create
multiple mismeasured datasets and fit our disease model, and EXtrapolation, whereby we ex-
trapolate the average parameter estimates from the first stage back to the case where we have no
error. The choice of extrapolation function is usually pragmatic and SIMEX tends to work best
when the measurement error variance is small. Many other methods have been proposed in-
cluding, moment reconstruction, multiple imputation, Bayesian approaches, and methods that
aim to recreate the true exposure distribution via deconvolution.

It is common for continuous exposures to be grouped; this introduces differential measurement
error. Measurement error manifests itself as misclassification when continuous exposures are
grouped. MacMahon’s method is a simple method that uses repeat measurements to find unbi-
ased estimates of the group means. MCSIMEX is an extension of SIMEX to categorical vari-
ables but it assumes non-differential misclassification. We therefore proposed group-SIMEX
which adds measurement error to the continuous exposure in the simulation step before the ex-
posure is grouped. Natarajan applied regression calibration to the continuous exposure before
it was grouped, again avoiding the need to correct for differential error. Confidence intervals
for the analysis model should be corrected for the uncertainty in the measurement error model.
This can be difficult or computationally intensive and the impact may be small if the measure-
ment error model can be well estimated. In chapter 5 we investigate the performance of several
of the methods described in this chapter.
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Chapter 5

Performance of correction methods

This chapter considers the performance of some of the methods discussed in chapter 4 through
the use of simulation studies.

Firstly, we look at methods of correcting for exposure measurement error in grouped expo-
sure analyses. In simulation study 1 we extend the simulation study of chapter 3 to consider
MacMahon’s method. We then investigate some of its theoretical properties. In simulation
study 2 we compare the methods of Natarajan, regression calibration, group-SIMEX, mo-
ment reconstruction, and multiple imputation for correcting a grouped exposure analysis for
the effects of both random and systematic measurement error, when the underlying exposure is
continuous. In simulation study 3 we consider the performance of continuous models for the
exposure–disease relationship that are corrected for measurement error, using structural frac-
tional polynomial and P-spline models, again by extending the simulation study of chapter 3.

5.1 Simulation study 1: Evaluation of MacMahon’s method

5.1.1 MacMahon’s method

Under MacMahon’s method we plot the hazard ratio for each group in a grouped exposure
analysis against an unbiased estimate of the mean true exposure within each group maintaining
the baseline groups. These unbiased estimates are usually obtained from replicate exposure
measurements.

Although MacMahon’s method has been widely used, its ability to correct for the effects of
exposure measurement error in a grouped exposure analysis, where the true exposure–disease
relationship is non-linear, has not been previously investigated. We choose to consider this
method alone, and not as part of the next section where we consider a number of methods for
correcting grouped exposure analyses, because MacMahon’s method does not supply us with
corrected estimates of the hazard ratio for each group. MacMahon’s method merely is a way of
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visually displaying a measurement error corrected shape for the exposure–disease relationship.

5.1.2 Simulation procedure

The data generation mechanism and the scenarios considered in this simulation are the same as
in chapter 3. We additionally generated a replicate exposure measurement for each individual
Wi2 = Xi + Ui2, where Ui2 is normally distributed with mean zero and with the same variance
as Ui, and was generated independently of both X and Ui. We performed the same grouped
exposure analysis as in chapter 3, but we additionally calculated the mean of the replicate
exposure values according to the baseline exposure groups within each group.

5.1.3 Results

In figure 5.1 we plot the mean of the replicate exposure values according to the baseline ex-
posure groups within each group, against the average estimated hazard ratio from the 1,000
grouped exposure analyses. We can see that MacMahon’s method performs well for all shapes
for the exposure–disease relationship except for the threshold relationships. There does appear
to be some deviation from the true shape of the exposure–disease relationship when the shape
of the exposure–disease relationship displays greater curvature. MacMahon’s method overcor-
rects for the exposure groups most distant from the mean under the J-shaped, U-shaped, and
increasing quadratic shapes for the exposure–disease relationship. MacMahon’s method per-
forms particularly badly against the true shape of the threshold relationships this is because
exposure measurement error means that individuals above and below the threshold are mixed
in the baseline groups, which occludes the threshold.

5.1.4 Discussion

The baseline groups of observed exposure will typically be composites of individuals whose
true exposure values belong to several groups. The corrected group means we obtain from
MacMahon’s method are not the means of the groups of the true exposure (which is what we
are usually interested in), but are the means of the true exposure for individuals who formed
the baseline groups. Hence, the group means obtained from MacMahon’s method lie closer to
the mean of the exposure distribution, than the means of the corresponding groups of the true
exposure. We therefore view the exposure–disease relationship over a reduced range. As we
can see in figure 5.1, this reduction is considerable when the measurement error variance is
large. As the group means under MacMahon’s method are not the means of the true exposure
groups it severely hinders the interpretation of the plots obtained using this approach.

We can show theoretically that MacMahon’s method does not provide us with the shape of
the true exposure–disease relationship unless the relationship is linear. Let W (k)

1 = 1 if the
baseline exposure measurement is in the kth category and zero otherwise. An unbiased estimate
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of true exposure for individuals whose observed baseline exposure is in the kth category is
E(W2|W (k)

1 = 1). If the true exposure–disease model is log(h(t|X)) = log h0(t) +βg(X), for
some function g(X), then the log-hazard for an individual with exposure value E(W2|W (k)

1 =

1) is βg(E(W2|W (k)
1 = 1)). However, under MacMahon’s method we plot βE(g(X)|W (k)

1 =

1). These two quantities are only the same if g(X) is linear or if Var(W2|W (k)
1 ) = 0. How far

the log-hazard ratios obtained from MacMahon’s method are from the true exposure–disease
relationship will depend on the Var(W2|W (k)

1 = 1). In general this bias will be smaller when
more groups are used. What MacMahon’s method does provide us with is hazard ratios that are
corrected for exposure measurement error based on groups of the observed baseline exposure,
although this is of little practical interest.

In the simulation we considered quantile groups of the observed data, however groups are often
chosen with respect to clinically relevant cutpoints. In this case, the application of MacMahon’s
method will typically give results where the group means lie to one side of the category, or may
not even lie within the defined baseline category at all. This can severely hinder interpretation.

MacMahon’s method is a simple, quick, and easy to implement method of measurement error
correction. We have discussed how MacMahon’s method will provide us with a plot of the
true exposure–disease relationship when it is linear. Although if the relationship is linear,
we can easily fit a model with a linear term in the predictor, and correct for measurement
error using an estimate of the RDR as described in chapter 4. Under this approach we do
not view the relationship over a reduced range. When the true exposure–disease relationship
is non-linear we have seen that MacMahon’s method will generally provide us with a graph
for the exposure–disease relationship that is not too dissimilar from the true exposure–disease
relationship, unless the relationship exhibits a threshold.

We have, however, shown that MacMahon’s method does not provide us with the true shape for
the exposure–disease relationship, unless the relationship is linear. We therefore recommend
that MacMahon’s method may be used to provide a ‘quick and dirty’ approximation to the true
exposure–disease relationship, but that other correction methods should be considered if our
aim is to accurately characterise the shape of the true exposure–disease relationship.
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Figure 5.1: Grouped exposure analysis of the exposure–disease relationship using MacMahon’s
method for correcting for the effects of exposure measurement error.

90



5.2 Simulation Study 2: Correction methods for categorised
continuous exposures

As we saw in chapter 3 there are a number of methods for correcting for the effects of mea-
surement error in a continuous exposure on an exposure-disease relationship. There are also
methods for correcting for misclassification of fundamentally categorical exposures, that is
categorical exposures which are not derived from an underlying continuous measure, and are
based on estimated misclassification probabilities and focus on a binary outcome [199–201].
However, methods for correcting for the effects of measurement error in continuous exposures
on the relationships found in categorised exposure analyses have received very little attention.

This simulation study was initially motivated by the paper of Natarajan [194], whose proposed
method for correcting a grouped exposure analysis of a continuous exposure subject to mea-
surement error was described in section 4.4. As we shall see later in this section, Natarajan’s
approach is flawed.

We therefore decided to compare Natarajan’s method for correcting for the effects of mis-
classification when a continuous exposure subject to measurement error is categorised, with
methods introduced in chapter 4. We consider an alternative regression calibration based ap-
proach, moment reconstruction and multiple imputation of the continuous exposure followed
by categorisation, and group-SIMEX. In this section we restrict our attention to when the true
exposure–disease relationship is linear. We use logistic regression in our simulation studies as
this is the situation considered by Natarjan in her study, and as mentioned in chapter 1 logistic
regression is often used to model survival data. We provide results in appendix B for linear
regression and discuss how these models can be applied to survival data in the discussion.

Observed and naı̈ve estimates

Suppose that we are interested in the relationship between a true continuous exposure, X , and
a dichotomous outcome, Y . We focus on a dichotomised version of the underlying continuous
exposure, XC = I(X > C), where C is a pre-defined cutpoint. In a grouped exposure analysis
of the exposure–disease relationship using the dichotomised exposure XC we fit the model

g(E(Y |XC)) = β0 + β1XC (5.1)

where g(.) is the link function e.g. the identity function for linear regression or the logit func-
tion for logistic regression. We are interested in estimating the parameter β1, which is the
regression coefficient in a linear regression, or the log-odds ratio in a logistic regression.

The observed continuous exposure,W1, is assumed to be given by the measurement error model

W1 = α0 + α1X + U1. (5.2)
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5. Performance of correction methods

where U1 has mean 0 and variance σ2
U1

, and is independent of X and Y . This implies that the
measurement error is non-differential. The model encompasses both classical and systematic
measurement error models.

The naı̈ve approach to estimating β1 is to perform a grouped exposure analysis on the di-
chotomised observed exposure, W1C = I(W1 > C):

g(E(Y |W1C)) = β∗0 + β∗1W1C . (5.3)

The estimate of β∗1 obtained from the naı̈ve model is not an unbiased estimate of β1 because of
the misclassification inW1C caused by measurement error in the observed continuous exposure
W . Therefore, we need to correct for the misclassification inW1C in order to obtain an unbiased
estimate of the parameter β1.

Scenarios

As discussed in chapter 4, we require additional exposure measurements to be able to estimate
the parameters of the measurement error model 5.2. In this section we consider the following
four scenarios:

• The observed exposure is subject to classical measurement error i.e. α0 = 0, α1 = 1:

Scenario (1a) We assume that we have a validation substudy where we have observed the true
exposure X for a random subset of individuals. An example of this is when anthro-
pometric variables such as weight and height are self-reported by all study partici-
pants, and are measured by a nurse for a random subsample of individuals.

Scenario (1b) We assume that we have replicate measurements available for a subset of individu-
als. In this scenario we have Wj = X + Uj, j = 1, 2 where U1, U2 are independent
of each other, X , and Y . An example of this situation is where repeated blood pres-
sure measurements are available only for a subset of individuals and the exposure
of interest is usual level.

• The observed exposure is subject to systematic measurement error i.e. such that α1 6= 1:

Scenario (2a) Similarly to scenario (1a) we assume that we have a validation substudy where we
have observed the true exposure X for a random subset of individuals.

Scenario (2b) When our observed exposure is subject to systematic measurement error, we require
that a different measure of exposure is available for a subset of individuals, which is
an unbiased measure of the true exposure. For most correction methods we require
two additional measurements of this different exposure to be available in order to es-
timate the parameters of the measurement error model of equation 5.2. We therefore
assume that we have two additional exposure measurementsWj = X+Uj, j = 2, 3

where the errors U2, U3 are independent of each other, X, Y and U1, and have the
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same variance σ2
U2

. An example of this is in nutritional epidemiology where we
may have obtained FFQs from all individuals, but where food record measurements
are available for a subset of individuals.

We do not consider the situation that α0 6= 0 in this chapter. If α0 6= 0 we can use the methods
described for scenarios (1a) or (1b) if the cutpoint C is a quantile of the exposure distribution,
or the methods of scenarios (2a) or (2b) if the cutpoint is fixed.

5.2.1 Methods

In this section we start by describing how we can fit measurement error models using method
of moments and maximum likelihood approaches, we then give a brief description of each of
the methods to be investigated in the simulation study.

Estimating the parameters of the measurement error model

In chapter 4 we described methods of correcting for measurement error, however we did not
detail methods for estimating the parameters of the measurement error model. When we have
observed the true exposure for a subset of individuals, such as under scenarios (1a) and (2a),
then these parameters are easily estimated. For example, to estimateE(X|W1) and Var(X|W1)

we can regress X on W1 to obtain an estimate of E(X|W1) and the variance of the residuals
from this model gives an estimate of Var(X|W1).

When we only have repeat exposure measurements available, such as under scenarios (1b) and
(2b), then estimation of the measurement error parameters is more complicated. If W1,W2 are
replicates subject to classical error, with measurement error variance Var(U), then we can still
regress W2 on W1 to obtain an estimate of E(X|W1). However, the variance of the residuals
from this model is Var(X|W1) + Var(U). One way to obtain Var(X|W1) is to subtract an esti-
mate of the measurement error variance from the variance of the residuals from the regression
of W2 on W1. A method of moments estimate of Var(U) is given by V̂ar(U) = V̂ar(W1−W2)

2
.

The method of moments approach to estimating Var(X|W1) can sometimes give negative vari-
ance estimates in practice. An alternative approach to fitting the measurement error model,
which can be parameterised to ensure non-negative variance estimates, is to assume that (W1,W2)|M
and (X,W1)|M are jointly normally distributed and use maximum likelihood to obtain param-
eter estimates, where M is a set of variables we wish to condition upon,

W1,W2|M ∼ N

((
E(X|M)

E(X|M)

)
,

(
Var(X|M) + Var(U) Var(X|M)

Var(X|M) Var(X|M) + Var(U)

))
(5.4)

X,W1|M ∼ N

((
E(X|M)

E(X|M)

)
,

(
Var(X|M) Var(X|M)

Var(X|M) Var(X|M) + Var(U)

))
. (5.5)
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It can be shown that X|(W1,M) is then normal with mean and variance

E(X|W1,M) =
W1 Var(X|M) + E(X|M) Var(U)

Var(X|M) + Var(U)
(5.6)

Var(X|W1,M) =
Var(X|M) Var(U)

Var(X|M) + Var(U)
. (5.7)

E(X|M), Var(X|M), and Var(U) can be estimated by maximum likelihood using 5.4, where
we let E(X|M) = γ0 +γTMM . To ensure that Var(X|M), and Var(U) are positive we can use
the parameterisation [184],

Var(X|M) + Var(U) = exp(θ1) (5.8)

Var(X|M) = exp(θ1)
exp(θ2)

exp(θ2) + 1
(5.9)

which ensures that the variance parameters are positive. Maximum likelihood procedures nat-
urally extend to the situation where we have confounders Z, by conditioning on them appro-
priately. Method of moments and maximum likelihood approaches will typically give similar
results.

Natarajan’s method (RC1)

Under Natarajan’s method [194] we fit the regression calibration model

X = α0 + α1W1 or W2 = α0 + α1W1 (5.10)

depending on whether we have true exposure measurements or repeat observations for a subset
of individuals. We can use this regression calibration model to form X̃ = α0 + α1W1. The
values X̃ are dichotomised according to the cutpoint C to obtain the binary variable X̃C =

I(X̃ > C) which is used in the disease model

g(E(Y |X̃C)) = βrc10 + βrc11 X̃C . (5.11)

Under scenario (2b) we only require one of W2 or W3 to have been observed, unlike for the
methods that follow. In the simulation that follows we fit the model by regressing the mean of
W2 and W3 on W1.

Regression calibration based method (RC2)

As discussed in chapter 4 the assumption of non-differential error is not valid when a con-
tinuous exposure subject to classical measurement error is dichotomised. However, we shall
consider what happens if we do make the non-differential error assumption. In this case we
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have
g(E(Y |W1C)) = βrc20 + βrc21 E(XC |W1C).

To fit this model we need to estimate E(XC |W1C). When we have observed the true exposure
X in a validation substudy we can obtainE(XC |W1C) directly by regressingX1C onW1C using
logistic regression. Otherwise, if we assume that X and W1 are jointly normally distributed
then

E(XC |W1C = 1) = P (X > C|W1 > C) (5.12)

=
P (α0 + α1W1 + e > C,W1 > C)

P (W1 > C)
(5.13)

=

∫ ∞
C

(
1− Φ

(
C − E(X|W1)√

Var(X|W1)

))
φ

(
w − E(W )√

Var(W )

)
dw

1− Φ

(
C−E(W )√

Var(W1)

) (5.14)

where φ(.) and Φ(.) are the probability and cumulative density functions of the standard nor-
mal distribution respectively. Under scenario (1b) we estimate E(X|W1) and Var(X|W1) via
maximum likelihood using the methods described above. Under scenario (2b) we assume that
W2,W3|W1 is normally distributed and proceed similarly via maximum likelihood.

Moment Reconstruction (MR)

MR aims to create XMR(W,Y ) that shares its first two joint moments with the first two joint
moments of X with Y . It has been shown that [184, 202],

XMR(W,Y ) = E(X|Y ) +G(W − E(W |Y ))

where G =
√

Var(X|Y )
Var(W1|Y )

. We propose that the values XMR(W,Y ) are dichotomised according
to the cutpoint C to obtain the binary variable XMR

C = I(XMR(W,Y ) > C). We then use
XMR
C in our disease model

g(E(Y |XMR
C )) = βMR

0 + βMR
1 XMR

C .

Under scenarios (1a) and (2a) we can estimate E(X|Y ) and Var(X|Y ) by regressing X on Y
and under scenarios (1b) and (2b) we use maximum likelihood.

Multiple Imputation (MI)

When the true exposure has been observed in the validation substudy we can replace X in the
disease model by imputed values from the model

X = γ0 + γ1W1 + γ2Y + ε.
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Imputed measurements for X are given by

XMI(W1, Y ) = E(X|W1, Y ) + e

where e is a random draw from the residuals ε. This procedure is repeated to give K multiply
imputed datasets. We propose forming XMI(k)

C by dichotomising XMI(k) for k = 1...K and
fitting the disease model

g(Y |XMI(k)) = β
(k)
0 + β

(k)
1 X

MI(k)
C

for each of the K imputed datasets. The parameter estimates obtained from the K models can
be combined using Rubin’s rules [181] which were described in section 4.3.5.

The imputation model can be fitted directly under scenarios (1a) and (2a). Under scenario
(1b) we estimate E(X|W1, Y ) and Var(X|W1, Y ) via maximum likelihood for those individ-
uals who were not in the validation substudy; for those in the validation substudy we allow
for the fact that we have an additional mismeasured exposure measurement by imputing from
the model where we have additionally conditioned on the observed W2. Under scenario (2b)
we proceed similarly via maximum likelihood assuming that W2,W3|W1, Y is normally dis-
tributed.

Group-SIMEX (gSIMEX)

For each of several values of ζ we generate B pseudo datasets

W ∗
b (ζ) = W1 +

√
ζσuZb, b = 1, ..., B

where Zb is a random standard normal variate. B is typically chosen to be between 100 and
200. We then fit the disease model

g(E(Y |W ∗
C,b(ζ))) = β

gS(b)
0 + β

gS(b)
1 W ∗

C,b(ζ)

where W ∗
C,b(ζ) = I(W ∗

b (ζ) > C), to each pseudo dataset noting that when ζ = 0 we have
the naı̈ve model of equation 5.3. The average parameter estimates obtained from the set of
values for ζ are then extrapolated back to ζ = −1, which corresponds to no measurement error.
Suitable extrapolants include the rational linear and quadratic.

WhenW1 is subject to systematic measurement error (scenarios (2a), (2b)) we use the approach
of Alpizar et al. [179]. They suggest performing an initial calibration step to create a new
exposure variable, W ∗

1 , which is free from systematic error, where

W ∗
1 =

W1 − α0

α1

. (5.15)

gSIMEX is then applied using W ∗
1 as our ‘observed’ exposure. The gSIMEX method requires
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an estimate of σ2
u as an input into the model, however, when the error is systematic we have

to adjust the measurement error variance to take account of the transformation of the observed
values in equation 5.15, so σ2

u∗ = σ2
u

α2
1

is used in the gSIMEX procedure. Under scenarios (1a),
(1b), (2a) we can estimate σ2

u by maximum likelihood. Under scenario (2b) we can either
estimate σ2

u by assuming a trivariate normal distribution for (W1,W2,W3), or use a method of
moments estimate.

In appendix F we provide R code for fitting MI, MR, and gSIMEX models. We also include
code for plotting the SIMEX extrapolation function.

5.2.2 Simulation procedure

For a sample of 5,000 individuals the true continuous exposure, X , was generated from a
normal distribution with mean 0, and variance 1. The observed exposure, W1 was generated
using equation 5.2 with (α0 = 0, α1 = 1) for scenarios (1a) and (1b) and (α0 = 0, α1 = 0.5)
for scenarios (2a) and (2b). U1 was generated from a normal distribution with mean 0 and
variance σ2

u, for values σ2
u = 0.25, 1.

For scenarios (1a) and (2a) we assumed that the true exposure X was observed in a random
subset of 10% or 50% of individuals. Under scenarios (1b) and (2b) we assume that X is
completely unobserved. We generated two additional exposures W2 and W3 from the classical
measurement error model where the errors U2, U3 are independently distributed normal with
means 0, variance σ2

U3
= σ2

U2
= σ2

U1
, and were generated independent of U1, X , and Y . The

additional exposure measurements were assumed to be observed in a random subset of 10% or
50% of individuals. Under scenario (1b) only W2 was used in the correction methods, under
scenario (2b) we used both W2 and W3.

Dichotomised true and observed exposures,XC andWC , were formed using the fixed cutpoints
C = 0, 1. The outcome for each individual, Y , was generated according to the logistic model
P (Y = 1) = (1 + e−(β0+β1X))−1, for values β1 = log(1.5), log(2) and β0 = −2.5. This
results in event rates (Y = 1) of approximately 8% and 9% for β1 = log(1.5) and β1 = log(2)

respectively. We conducted 1,000 simulations for each value of β1, σ2
u and cutpoint, C.

We applied each of the methods described in section 5.2.1 under each of the four scenarios.
For the MI based method we used 90 or 50 imputed datasets for when our validation dataset
contained 10% and 50% of individuals respectively. This follows the rule of thumb that the
number of multiply imputed datasets should correspond to the percentage of missing data [203].
For the gSIMEX procedure we used the quadratic extrapolant and formed 100 pseudo datasets
for each value of the scaling parameter ζ = {0, 0.5, 1, 1.5, 2} for each simulation. For all
methods, where we have observed the true exposureX for a subset of the population (scenarios
(1a), (2a)) the true dichotomised exposure XC was used in place of fitted or imputed values
when they are known.
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The parameter of interest in this simulation is the estimate obtained from each of the modelling
methods of the log-odds ratio parameter β1 in equation 5.1, the coefficient of the indicator that
X > C.

5.2.3 Results

Simulation results for each scenario are given in tables 5.1–5.4. In each table we can see the
expected attenuation when we perform the naı̈ve analysis on the dichotomised observed expo-
sure; the attenuation being more severe when σ2

u1 = 1, and under scenarios (1b) and (2b) when
the observed exposure is subject to systematic error. Method RC1 under corrects for measure-
ment error under all scenarios. Under scenario (1b) and (2b) we observe that this method gives
the naı̈ve estimate when C = 0; we provide an explanation for this in the discussion. Method
RC2 provides relatively unbiased estimates under scenarios (1a) and (2a) when we have ob-
served X for 10% of individuals, and shows even smaller bias when X is observed for 50% of
individuals. Under scenarios (1b) and (2b) the estimates show severe upward bias.

MI and MR both perform extremely well, giving almost unbiased estimates under all scenarios;
even when the size of the validation substudy is only 10%. gSIMEX gives attenuated parameter
estimates, with more severe bias when the measurement error is large. This might be expected
as we are extrapolating further and therefore amplifying any error in the fitted extrapolation
function. gSIMEX also does not take advantage of the additional information in the repeat
measurements, other than through an improved estimate of the measurement error variance.
We also considered MCSIMEX (results not shown), but this also performed poorly because it
makes the assumption of non-differential misclassification between exposure groups.

We repeated the simulation for a normally distributed continuous outcome Y using linear re-
gression. The results from this simulation can be found in appendix B and are similar to those
found for the logistic model.

5.2.4 Discussion

We have seen that MI and MR work extremely well in estimating the true parameter value β1;
this is because these methods allow for non-differential error. Freedman et al. [202] obtained
similar results in their comparison of methods when the exposure was not dichotomised. In
the case where a continuous exposure subject to non-differential error is not dichotomised,
regression calibration can be used. Regression calibration is already widely used in practice
because of its simplicity, and is preferred because it is more efficient than MR and MI in this
case [202].

Regression calibration makes the assumption of non-differential measurement error and we
have seen the consequences of erroneously making this assumption in our simulation i.e.
method RC2. Although our observed continuous exposure is subject to non-differential er-
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ror, the dichotomised observed exposure is subject to differential measurement error. MI and
MR perform well because they allow for differential error.

Natarajan’s regression calibration based method did not perform well; this is because the ap-
proach is flawed. Natarajan’s method only scales the exposure measurements and does not
change the ordering of individuals with respect to their exposure measurements. Consider ap-
plying Natarajan’s method to a linear model, whenW is subject to classical measurement error,
C = 0, and the true exposure X is observed in a subset of n1 individuals. We can ignore what
regression calibration does when C = 0 because the expected value of α̂0 is 0, and α1 preserves
the sign of W since λ ∈ (0, 1]. In this situation Natarajan’s method gives

βrc11 =
Cov(X̃C , Y )

Var(X̃C)

=
n1 Cov(I(X > 0), Y ) + (n− n1) Cov(I(W > 0), Y ))

Var(X̃C)

=
n1 Cov(I(X > 0), Y )

Var(X̃C)
+

(n− n1) Cov(I(W > 0), Y )

Var(X̃C)

Note that Var(I(W > 0)) = Var(I(X > 0)) so,

βrc11 =
n1 Cov(I(X > 0), Y )

nVar(I(X > 0))
+
n1 Cov(I(W > 0), Y )

nVar(I(W > 0))

=
n1

n
β1 +

n− n1

n
β∗1 (5.16)

i.e. we get a weighted average of the true and naı̈ve estimates. When we only observe replicate
measurements then n1 = 0 and we obtain the naı̈ve estimate, as we saw in our simulations.

We initially included the cutpoint C = 2 in our simulation because this cutpoint was addition-
ally used by Natarajan. A large proportion of our simulations failed for Natarajan’s method
using this cutpoint because max(X̃) < 2. When σ2

u = 1, the variance of the fitted values from
the regression calibration model will be 0.5. Therefore, the probability that an imputed value
from the regression model exceeding the cutpoint C = 2 is only 0.002. Natarajan considered
a scenario where the regression calibration model was estimated using external data. Under
this scenario we impute all observations from the regression calibration model. This means
that in Natarajan’s simulation study, with a simulated study size of 500 individuals, there is a
31% chance of each simulated dataset not containing a single observation above the cutpoint.
Natarajan, however, makes no mention of simulation failures in her paper.

Under MI we omitted the step of sampling the parameter values and instead used the point es-
timates of the parameters (α0, α1, α2, θ1) under scenarios (1b) and (2b). These parameters will
be well estimated for the size of validation substudy we considered; almost all the uncertainty
will be in the residuals. This approach reduced the computation involved in the imputation
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procedure considerably. We did perform analyses where we sampled the parameters assum-
ing a multivariate normal distribution, using the inverse of the observed information matrix for
(α0, α1, α2, θ1) as our estimate of the variance-covariance matrix. This approach only changed
the results in the third decimal place by no more than 0.005 in either direction.

Given that we have now considered the somewhat simpler case of logistic regression, we could
now potentially investigate there application to the Cox model. Under the Cox model, instead
of a simple outcome Y , our outcome would consist of an event indicator ei and a survival time
ti. The two regression calibration methods and gSIMEX extend naturally to the case where we
have a survival outcome, since the outcome is not used in the measurement error model. MI
and MR both include the outcome in the measurement error model. White and Royston [183]
suggest that the event indicator, as well as the estimated cumulative baseline hazard, Ĥ0(t),
should be included in imputation models for missing data in a Cox model. This approach is
probably also appropriate for MR. We leave this investigation as future work.

In this simulation we considered dichotomising the underlying continuous exposure. Each of
the methods extend naturally to the situation where we categorise the underlying continuous
exposure into more than two groups. We extended the simulation to consider the performance
of MR and MI in the case that we are interested in estimating the parameters of a grouped ex-
posure analysis using quintiles of the exposure. We performed the simulation using only these
two methods because they were the only methods that provided unbiased parameter estimates
when the exposure was dichotomised. The results of this simulation are in appendix B and
show that MI and MR still provide almost unbiased estimates of the parameter estimates when
we use more than two exposure groups.

Grouped exposure analyses are often used to avoid assuming a shape for the exposure–disease
relationship, and to assess non-linearity. We have seen in this section that MI and MR perform
well when the exposure–disease relationship is linear. These methods may therefore be good
candidates for extension to the more general case where the exposure–disease relationship is
non-linear, however, we leave this for future work. MR matches only the first two moments
of the data and therefore may not perform well for non-linear relationships. It may also be
worthwhile to consider Mean Adjusted Imputation [55] which matches higher moments of the
data, and therefore allows greater flexibility.

In conclusion, we have observed that gSIMEX and regression calibration methods perform
poorly at estimating a true linear exposure–disease relationship under a grouped exposure anal-
ysis. MR and MI perform well and should be preferred if continuous exposures subject to clas-
sical measurement error are to be used in grouped exposure analyses of linear exposure–disease
relationships, and are candidates to be considered for when the relationship is non-linear.
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RC1 RC2 MI MR gSIMEX
σ2
u c Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β = log(1.5), (α0 = 0, α1 = 1)

0.25 0 Mean 0.650 0.580 0.587 0.615 0.662 0.648 0.647 0.648 0.647 0.649 0.622 0.622
SD 0.109 0.105 0.107 0.109 0.356 0.157 0.156 0.109 0.162 0.118 0.157 0.157

1 Mean 0.707 0.614 0.655 0.676 0.685 0.699 0.703 0.700 0.701 0.701 0.643 0.645
SD 0.120 0.119 0.126 0.124 0.390 0.170 0.168 0.120 0.178 0.129 0.161 0.165

1 0 Mean 0.650 0.457 0.474 0.552 0.662 0.648 0.646 0.645 0.647 0.647 0.488 0.487
SD 0.109 0.106 0.107 0.109 0.356 0.157 0.213 0.119 0.228 0.131 0.156 0.160

1 Mean 0.707 0.473 0.570 0.631 0.685 0.699 0.700 0.699 0.698 0.698 0.488 0.487
SD 0.120 0.110 0.150 0.137 0.390 0.170 0.223 0.128 0.243 0.138 0.154 0.153

β = log(2), (α0 = 0, α1 = 1)
0.25 0 Mean 1.106 0.982 0.994 1.043 1.133 1.105 1.100 1.103 1.100 1.104 1.054 1.054

SD 0.112 0.107 0.110 0.111 0.363 0.160 0.155 0.112 0.165 0.120 0.160 0.161
1 Mean 1.169 1.019 1.080 1.118 1.167 1.165 1.163 1.163 1.160 1.163 1.070 1.071

SD 0.110 0.107 0.112 0.112 0.336 0.152 0.153 0.110 0.161 0.117 0.150 0.154
1 0 Mean 1.106 0.766 0.798 0.930 1.133 1.105 1.098 1.098 1.096 1.100 0.819 0.818

SD 0.112 0.105 0.107 0.111 0.363 0.160 0.205 0.120 0.226 0.132 0.157 0.159
1 Mean 1.169 0.785 0.941 1.044 1.167 1.165 1.162 1.161 1.155 1.161 0.816 0.815

SD 0.110 0.102 0.131 0.120 0.336 0.152 0.204 0.116 0.219 0.127 0.147 0.146

Table 5.1: Mean and standard deviation (SD) of estimates of the log odds ratio in a logistic regression of a binary outcome Y on XC across 1000
simulated data sets using the true exposure, the naı̈ve method, and different correction methods when the true exposure is measured in 10% or 50%
of the study population. (Scenario (1a))
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RC1 RC2 MI MR gSIMEX
σ2
u c Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β = log(1.5), (α0 = 0, α1 = 1)

0.25 0 Mean 0.650 0.580 0.580 0.580 0.824 0.824 0.649 0.645 0.649 0.649 0.621 0.622
SD 0.109 0.105 0.107 0.106 0.150 0.150 0.112 0.100 0.117 0.115 0.158 0.157

1 Mean 0.707 0.614 0.648 0.646 0.982 0.980 0.703 0.698 0.704 0.703 0.644 0.644
SD 0.120 0.119 0.131 0.130 0.192 0.191 0.121 0.111 0.131 0.129 0.163 0.162

1 0 Mean 0.650 0.457 0.456 0.457 0.918 0.916 0.651 0.641 0.651 0.651 0.487 0.487
SD 0.109 0.106 0.108 0.106 0.217 0.214 0.194 0.119 0.161 0.134 0.156 0.160

1 Mean 0.707 0.473 0.552 0.547 1.251 1.239 0.702 0.691 0.702 0.700 0.488 0.488
SD 0.120 0.110 0.166 0.163 0.316 0.295 0.205 0.126 0.174 0.144 0.153 0.152

β = log(2), (α0 = 0, α1 = 1)
0.25 0 Mean 1.106 0.982 0.981 0.982 1.394 1.394 1.104 1.096 1.105 1.104 1.052 1.054

SD 0.112 0.107 0.108 0.107 0.154 0.152 0.113 0.103 0.122 0.119 0.162 0.161
1 Mean 1.169 1.019 1.069 1.068 1.630 1.628 1.166 1.157 1.166 1.165 1.070 1.070

SD 0.110 0.107 0.117 0.115 0.177 0.173 0.114 0.101 0.120 0.117 0.152 0.151
1 0 Mean 1.106 0.766 0.767 0.767 1.540 1.537 1.109 1.088 1.109 1.103 0.816 0.817

SD 0.112 0.105 0.106 0.105 0.221 0.212 0.197 0.119 0.164 0.137 0.157 0.160
1 Mean 1.169 0.785 0.914 0.911 2.074 2.056 1.171 1.148 1.170 1.165 0.816 0.815

SD 0.110 0.102 0.146 0.140 0.329 0.283 0.197 0.118 0.165 0.132 0.148 0.145

Table 5.2: Mean and standard deviation (SD) of estimates of the log odds ratio in a logistic regression of a binary outcome Y on XC across 1000
simulated data sets using the true exposure, the naı̈ve method, and different correction methods when W2 is assumed to be observed in 10% or 50%
of the study population. (Scenario (1b))

102



RC1 RC2 MI MR gSIMEX
σ2
u c Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β = log(1.5), (α0 = 0, α1 = 0.5)

0.25 0 Mean 0.650 0.457 0.474 0.552 0.662 0.648 0.646 0.645 0.647 0.647 0.566 0.564
SD 0.109 0.106 0.107 0.109 0.356 0.157 0.213 0.119 0.228 0.131 0.188 0.192

1 Mean 0.707 0.548 0.570 0.631 0.685 0.699 0.700 0.699 0.698 0.698 0.615 0.613
SD 0.120 0.164 0.150 0.137 0.390 0.170 0.223 0.128 0.243 0.138 0.221 0.223

1 0 Mean 0.650 0.287 0.321 0.464 0.662 0.648 0.647 0.644 0.645 0.645 0.319 0.317
SD 0.109 0.104 0.105 0.108 0.356 0.157 0.256 0.128 0.296 0.143 0.167 0.166

1 Mean 0.707 0.304 0.520 0.616 0.685 0.699 0.697 0.698 0.693 0.694 0.324 0.321
SD 0.120 0.118 0.272 0.155 0.390 0.170 0.266 0.136 0.308 0.152 0.170 0.171

β = log(2), (α0 = 0, α1 = 0.5)
0.25 0 Mean 1.106 0.766 0.798 0.930 1.133 1.105 1.098 1.098 1.096 1.100 0.949 0.948

SD 0.112 0.105 0.107 0.111 0.363 0.160 0.205 0.120 0.226 0.132 0.191 0.193
1 Mean 1.169 0.910 0.941 1.044 1.167 1.165 1.162 1.161 1.155 1.161 1.023 1.021

SD 0.110 0.139 0.131 0.120 0.336 0.152 0.204 0.116 0.219 0.127 0.198 0.201
1 0 Mean 1.106 0.479 0.536 0.777 1.133 1.105 1.100 1.097 1.096 1.099 0.531 0.530

SD 0.112 0.101 0.101 0.107 0.363 0.160 0.246 0.128 0.289 0.144 0.161 0.162
1 Mean 1.169 0.509 0.856 1.006 1.167 1.165 1.161 1.161 1.152 1.158 0.539 0.534

SD 0.110 0.109 0.224 0.134 0.336 0.152 0.243 0.124 0.281 0.140 0.158 0.159

Table 5.3: Mean and standard deviation (SD) of estimates of the log odds ratio in a logistic regression of a binary outcome Y on XC across 1000
simulated data sets using the true exposure, the naive method, and different correction methods when X is assumed to have been observed in 10% or
50% of the study population. (Scenario (2a))
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RC1 RC2 MI MR gSIMEX
σ2
u c Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β = log(1.5), (α0 = 0, α1 = 0.5)
0.25 0 Mean 0.650 0.457 0.456 0.457 0.913 0.914 0.647 0.642 0.650 0.648 0.583 0.576

SD 0.109 0.106 0.107 0.106 0.215 0.213 0.226 0.120 0.149 0.127 0.192 0.191
1 Mean 0.707 0.548 0.550 0.546 1.009 1.008 0.698 0.694 0.702 0.698 0.726 0.734

SD 0.120 0.164 0.163 0.162 0.308 0.303 0.237 0.130 0.157 0.138 0.342 0.330
1 0 Mean 0.650 0.287 0.287 0.287 0.982 0.975 0.648 0.636 0.651 0.648 0.397 0.395

SD 0.109 0.104 0.105 0.103 0.378 0.357 0.318 0.147 0.228 0.150 0.207 0.204
1 Mean 0.707 0.304 -0.057* 0.333 1.331 1.313 0.696 0.686 0.702 0.697 0.401 0.404

SD 0.120 0.118 2.507* 0.963 0.564 0.517 0.332 0.156 0.240 0.160 0.206 0.208
β = log(2), (α0 = 0, α1 = 0.5)

0.25 0 Mean 1.106 0.766 0.766 0.767 1.533 1.533 1.098 1.092 1.104 1.101 0.974 0.970
SD 0.112 0.105 0.106 0.105 0.218 0.211 0.225 0.121 0.152 0.131 0.195 0.194

1 Mean 1.169 0.910 0.911 0.910 1.676 1.675 1.159 1.153 1.166 1.162 1.218 1.223
SD 0.110 0.139 0.141 0.140 0.273 0.259 0.222 0.118 0.149 0.125 0.290 0.278

1 0 Mean 1.106 0.479 0.480 0.479 1.639 1.627 1.101 1.083 1.109 1.100 0.662 0.661
SD 0.112 0.101 0.101 0.101 0.397 0.349 0.317 0.143 0.234 0.152 0.199 0.198

1 Mean 1.169 0.509 0.394* 0.700 2.224 2.196 1.160 1.142 1.170 1.160 0.666 0.669
SD 0.110 0.109 2.221* 0.385 0.585 0.484 0.315 0.142 0.231 0.148 0.194 0.193

Table 5.4: Mean and standard deviation (SD) of estimates of the log odds ratio in a logistic regression of a binary outcome Y on XC across 1000
simulated data sets using the true exposure, the naive method, and different correction methods when W2,W3 are assumed to be observed in 10% or
50% of the study population. ∗Based on 995 datasets since max(XC) < C for five datasets. (Scenario (2b))
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5.3 Simulation Study 3: Comparison of structural fractional
polynomials & P-splines

To compare the performance of structural fractional polynomials, which we proposed in chap-
ter 4, versus Carroll et al.’s [157] structural P-splines, we again extended the simulation study
of chapter 3. We start with a brief recap of the two methods and consider measures for evalu-
ating their performance. We then describe the simulation, present the results, and finish with a
brief discussion of how the two methods compare.

5.3.1 Methods

Structural fractional polynomials and structural P-splines

Structural fractional polynomial and P-spline models result from the application of regression
calibration to fractional polynomial and P-spline models respectively. These models involve
taking the expectation of exponents of the true exposure conditional on the observed. To es-
timate these expectations we have to make distributional assumptions about the conditional
distribution.

A structural fractional polynomial model of degree m for the Cox model is given by

log h(t|W ) ≈ log h0(t) +
m∑
j=1

βjE(Hj(X)|W )

where Hj(X) is as defined in equation 2.8.

A structural P-spline model, with power spline basis, is given by

log h(t|W ) ≈ log h0(t) +

p∑
j=1

βjE(Xj|W ) +
l∑

j=1

βp+jE((X − tj)p+|W ).

where (X − tj)p+ is as defined in equation 2.10.

We assume throughout this section that X|W is normally distributed. We estimate the mean
and variance of this distribution using the method of moments, as described in section 5.2.1.

Gauss quadrature

We can calculate all the expectations for structural P-spline models using analytical formulae
(as we show in appendix A). We also showed that we can obtain explicit formulae for the ex-
pectations required to fit fractional polynomial models when the distribution of true exposure
given observed is log-normal. However, when we assume normality of the distribution of true
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exposure given observed then we cannot easily find analytical expressions for all of the expec-
tations we require for fractional polynomial models. In this case we can use Gauss-Hermite
quadrature to approximate the expectation. IfX|W follows a standard normal distribution then

E(f(X)|W ) =

∫ ∞
−∞

1√
2π
e−x

2

f(x) dx ≈
m∑
k=1

wkf(xk)

form appropriately chosen quadrature points {xk, k = 1, ...,m} and weights {wk, k = 1, ...m}.
The approximation is exact if f(x) is a polynomial of order no greater than 2m − 1. For non-
polynomial functions we can achieve better approximations to the expectation by increasing
the number of quadrature points.

Methods for comparing estimated shapes for the exposure–disease relationship

When comparing correction methods for non-linear exposure–disease relationships we require
both global and local measures of performance. This is because a good global fit may belie
regions of exposure where the fit is poor. These regions of poor fit, such as in the tails of the
exposure distribution, are often of most interest.

The root mean squared error (rMSE) of the estimated hazard ratio across the exposure range is

rMSE(x0) =

√√√√ 1

n

n∑
i=1

(
log ĤR(xi;x0)− log HR(xi;x0)

)2

where HR(x;x0) is the true hazard ratio for an exposure x relative to the reference value x0,
and ĤR(x;x0) is an estimate of this hazard. The rMSE is dependent on the choice of reference
value x0 —different choices of reference value will give different values for the rMSE. The
mean of the exposure is usually chosen as the reference value in practice, and will typically
give a smaller value for the rMSE than other choices. This is because a large proportion of the
exposure values are usually located about the mean.

We propose a measure of the average squared error that does not depend on the choice of
reference value, by summing over all possible choices of the reference value; we call this the
reference free root mean squared error (RFrMSE). We define the RFrMSE as
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RFrMSE =

√√√√ 1

n2

n∑
j=1

n∑
i=1

(
log ĤR(xi;xj)− log HR(xi;xj)

)2

=

√√√√ 1

n2

n∑
j=1

n∑
i=1

(
(log ĤR(xi;x0)− log ĤR(xj;x0))− (log HR(xi;x0)− log HR(xj;x0))

)2

=

√√√√ 1

n2

n∑
j=1

n∑
i=1

(
(log ĤR(xi;x0)− log HR(xi;x0))− (log ĤR(xj;x0)− log HR(xj;x0))

)2

.

We see from the final line of the equation above that RFrMSE is straightforward to calculate,
as it can be calculated from the errors relative to a chosen reference value.

We also propose considering the gradient of the fitted function as an alternative method of
comparison; this is a local measure of performance. The gradient of the fitted function does
not depend on the choice of reference value because the baseline hazard is independent of
the exposure, and therefore disappears upon differentiation with respect to the exposure. For
fractional polynomials the derivatives are easy to compute analytically. For P-splines they are
easy to compute if we are using a power spline basis, and if we use a B-spline basis then we can
use the formula given by De Boor [98]. The derivatives of a B-spline basis are easily obtained
in R using the spline.des function.

Govindarajulu et al. [109, 123] compared the performance of fractional polynomials and P-
splines. We considered using the performance measure they described in their study. They
proposed calculating an approximation to the mean integrated absolute error. This was done by
splitting the exposure range into a number of equally sized intervals, and within each interval
they constructed two rectangles. Both rectangles had width equal to the length of the exposure
interval, and height equal to the hazard ratio at the right hand point of the interval for the
estimated and true curves respectively. They then found the absolute difference between the
areas of the rectangles for the estimated and true values, for each interval. The sum of these
across the grid of exposure values is a crude approximation to the area between the curves.
This measure is equivalent to the mean absolute error across a regular grid of exposure values
multiplied by mw, where m is the number of rectangles over which the measure is calculated,
and w the width of each rectangle.

Govindarajulu et al. also proposed weighting this measure, where the weights are the nor-
malised inverse variances of the difference between the two curves. These variances have to be
estimated using bootstrap resampling which is computationally intensive, especially when the
model is a structural fractional polynomial or P-spline. This weighting scheme is dependent
on the curves being considered, and makes comparison across curves difficult. We therefore do
not consider this performance measure in our simulation study.
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5.3.2 Simulation procedure

The data for this simulation were generated as in chapter 3. We additionally generated a repli-
cate exposure measurement, W ∗

i2, for 10% of individuals where W ∗
i2 = Xi + Ui2 if individual i

is in the validation substudy and is missing otherwise. Ui2 was generated from a normal distri-
bution with mean 0, variance σ2

u, and was generated independently of Xi, and the measurement
error Ui. A substudy size of 10% reflects what may typically be available in practice.

Sometimes epidemiological investigations find no exposure–disease relationship. We therefore
investigate the null relationship given by

h(t|X) = log(h0(t)). (5.17)

Under this model ρ = 0.01 was found to give an event rate of approximately 10%. We include
this relationship to check that our correction methods do not artificially create a relationship
when in fact there is none.

For each level of measurement error, each shape for the exposure–disease relationship, and
each modelling method we calculate the estimated shape of the exposure–disease relationship;
the rMSE which we evaluate using the estimated true exposure from the regression calibra-
tion model; the gradient at each exposure value; and the RFrMSE which we evaluate at the
percentiles of the estimated true exposure from the regression calibration model. We use FP2
models and P-splines constrained to have 4 degrees of freedom, as in chapter 3.

5.3.3 Results

Figures 5.2 and 5.3 show the mean exposure–disease relationship obtained from structural frac-
tional polynomial and P-spline analyses. Both methods perform well at recovering the true
exposure–disease relationship except for the two threshold relationships.

Structural fractional polynomials recover the relationship that would have been observed in the
absence of measurement error for the two threshold relationships, although they are poor fits to
the true exposure–disease relationship in each case. The structural P-spline method almost re-
covers the relationship that would have been observed in the absence of measurement error for
the threshold relationship, although, the hazard is increasingly biased away from the null rela-
tionship below the mean. For the non-linear threshold shaped relationship, structural P-splines
are unable to recover the relationship that would have been observed in the absence of mea-
surement error, with over correction for higher levels of exposure; the threshold increasingly
moves away from the true value.

The reason for the over correction can be seen in figure 3.3. Between exposure levels of 10–
10.75 units the observed relationship is biased away from, and not towards unity. The bias
in this region changes little with increasing measurement error, contrary to what we would
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expect; presumably because of the rate at which those above the threshold, are being ‘mixed’
with those below the threshold, due to measurement error. When we apply the structural P-
spline model, we expect to see an increasingly steeper gradient when we correct for increasing
degrees of measurement error over this range. Above the threshold the observed relationship
is attenuated, and as a result the difference between the corrected curves remains relatively
constant upon correction.

Graphing the gradient of the average exposure–disease relationship allows us to compare the
performance of the two methods without relying on a reference value, although it is hard to
relate what we observe in the plot of the gradient, to the undifferentiated relationship. Any
range of exposure over which the gradient of the fitted function is not the true gradient, produces
an incorrect shape for the exposure–disease relationship. In figures 5.2 and 5.3 we saw that the
structural correction methods performed well, and hence the gradients of the curves obtained
from the simulation closely follow the true gradients, except for the two threshold relationships.
We therefore only give plots for these two shapes in figure 5.4.

There is a stark contrast between the gradients of the two correction methods for both shapes.
The structural fractional polynomial models are essentially quadratic and hence the gradients
are linear. The gradient of the structural fractional polynomial models does not resemble the
true gradient of the relationship. The structural P-splines perform better at picking out the non-
linearities in the gradient, but because P-splines are composed of polynomial functions they are
unable to recreate the sharp turns in the gradient of the true relationship. We might expect both
P-splines and fractional polynomials to perform badly when the exposure–disease relationship
is not suitably differentiable.

Figure 5.5 shows the rMSE under both modelling methods for each shape of the exposure–
disease relationship. We see that the rMSE is consistently smaller and less variable for struc-
tural fractional polynomial models, compared with the structural P-spline models, except under
the threshold relationships. Under the threshold relationships P-splines perform better when
there is no measurement error, or the measurement error variance is small (RDR=4/5). When
the measurement error variance is larger, structural P-splines perform worse, and are consid-
erably more variable than the structural fractional polynomial models. Surprisingly, there is
little change in performance as the measurement error increases, except for under the threshold
models.

The RFrMSE produced trends that are similar to those for rMSE, and can be seen in figure B.1
of appendix B. This suggests that the choice of reference value does not have a large impact on
our results.

Table 5.5 shows the power to detect non-linearity under both correction methods for each of
the shapes of relationship. Comparing table 5.5, with table 3.3 from chapter 3, we see that
there is no gain in power to detect non-linearity associated with applying measurement error
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Shape of exposure–disease relationship
Null Linear Threshold U-shaped J-shaped Increasing Asymptotic Non-linear

Method RDR quadratic threshold
Structural 4/5 0.01 0.01 0.42 0.53 0.51 0.51 0.23 0.41
fractional 2/3 0.01 0.01 0.25 0.33 0.32 0.28 0.13 0.23
polynomial 1/2 0.01 0.01 0.09 0.12 0.14 0.09 0.08 0.08

Structural 4/5 0.06 0.08 0.62 0.68 0.67 0.67 0.41 0.70
P-spline 2/3 0.04 0.04 0.45 0.52 0.53 0.54 0.17 0.52

1/2 0.04 0.05 0.25 0.31 0.30 0.35 0.14 0.30

Table 5.5: Estimated power to detect non-linearity under each shape for the exposure–disease
relationship, using structural fractional polynomial and P-spline analyses.

correction. This is to be expected, as correcting for the effects of classical measurement error
gives us no more information about the shape of the exposure–disease relationship.

5.3.4 Discussion

We have seen how structural fractional polynomials perform better in terms of rMSE than struc-
tural P-splines. Both methods, however, had a slight tendency to over correct. The methods
were unable to recreate either of the true threshold relationships. This is due to the inabil-
ity of the models to pick up the threshold when there is no measurement error, rather than a
failure of the correction methods. The methods’ performance did not deteriorate significantly
when we considered larger values for the measurement error variance, except under the thresh-
old relationships. Under the non-linear threshold relationship, the structural P-spline method
severely over corrected. We attribute this behaviour to the ‘softening’ of the threshold caused
by measurement error.

Under the threshold relationships, both measurement error and the modelling method used can
both lead to the threshold being obscured or lost completely. Correction for measurement error
does not allow us to recover features of the relationship that have been lost. In chapter 3,
we saw that our ability to detect non-linear relationships is severely hampered by exposure
measurement error, and we have seen in this chapter that measurement error correction does
not allow us to regain this power.

The performance of structural fractional polynomials and P-splines may vary with the degree of
non-linearity—this is an area for further research. In this simulation study we assumed that the
distribution of the observed exposure given the true is normally distributed, with constant vari-
ance. In practice this assumption may be violated, and we investigate the impact of erroneously
assuming normality in chapter 7.
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5.4 Conclusion

In this chapter we have considered the performance of many of the methods for correcting for
the effects of exposure measurement error that were introduced in chapter 4.

In simulation study 1 we showed that MacMahon’s method provides us with plots of the
exposure–disease relationship that are similar, but not identical, to the true shape of the exposure–
disease relationship, except under the threshold relationship. MacMahon’s method reduces the
range over which we view the exposure–disease relationship. We showed theoretically that
MacMahon’s method does not provide the correct shape for the true exposure–disease relation-
ship unless the relationship is linear.

In simulation study 2 we considered methods for correcting a grouped exposure analysis of a
linear exposure–disease relationship for the effects of both random and systematic measure-
ment error, when the underlying exposure was continuous. We found that group-SIMEX,
Natarajan’s method, and another regression calibration based method gave biased estimates
of the true parameter values. Moment reconstruction and multiple imputation gave unbiased
estimates even when the validation substudy was small, and both when the measurement er-
ror was random and systematic. These methods are therefore candidates to take forward to
consider when the exposure–disease relationship is non-linear—we leave this for future work.

In simulation study 3 we compared structural fractional polynomials and structural P-splines.
We considered different methods of comparing the performance of the two approaches both
locally and globally, and without dependence on the arbitrary choice of reference value. Struc-
tural fractional polynomials performed better than structural P-splines in terms of rMSE, but
neither method performed well at recreating the true threshold relationships.

In chapter 6 we apply some of the methods evaluated in this chapter to data on the relation-
ship between fasting blood glucose and coronary heart disease, and in chapter 7 we extend
simulation study 3 to consider non-classical measurement error.

111



5. Performance of correction methods

8 9 10 11 12

0.
6

0.
8

1.
0

1.
4

1.
8

Linear Association

Exposure

H
R

8 9 10 11 12

1.
0

1.
2

1.
4

1.
6

Threshold Association

Exposure

H
R

8 9 10 11 12

1.
0

1.
2

1.
4

1.
6

J−Shaped Association

Exposure

H
R

8 9 10 11 12

1.
00

1.
10

1.
20

1.
30

U−Shaped Association

Exposure

H
R

8 9 10 11 12

1.
0

1.
5

2.
0

Increasing Quadratic Association

Exposure

H
R

8 9 10 11 12

0.
4

0.
6

0.
8

1.
2

Asymptotic Association

Exposure

H
R

8 9 10 11 12

1.
0

1.
1

1.
2

1.
4

Non−Linear Threshold Association

Exposure

H
R

8 9 10 11 12

0.
90

0.
95

1.
00

1.
05

1.
10

Null Association

Exposure

H
R

True
RDR=1
RDR=4/5

RDR=2/3
RDR=1/2

Figure 5.2: Structural P-spline analysis showing the measurement error corrected exposure–
disease relationship.
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Figure 5.3: Structural fractional polynomial analysis showing the measurement error corrected
exposure–disease relationship.
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Figure 5.5: rMSE for structural fractional polynomial and P-spline simulations (with the mean
exposure as reference value).
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Chapter 6

Application — Emerging Risk Factors
Collaboration

This chapter focuses on the motivating dataset for this thesis—the Emerging Risk Factors Col-
laboration (ERFC). We firstly describe the ERFC, before focusing on the relationship between
fasting blood glucose (FBG) and the risk of experiencing a coronary heart disease (CHD) event.
We provide background on what is known about the FBG–CHD relationship, the role of con-
founding variables, and provide a summary of the main features of the ERFC FBG dataset.
We firstly perform grouped exposure, fractional polynomial and P-spline analyses using the
observed FBG measurements. We then consider the measurement error in the observed FBG
measurements before applying measurement error correction methods: MacMahon’s method,
SIMEX, structural fractional polynomials and P-splines. We also discuss the differences be-
tween the observed and measurement error corrected relationships. In this chapter we do not
allow for heterogeneity in the shape of the FBG–CHD relationship between studies; we return
to this in chapter 8. The issues arising out of the analysis of the ERFC FBG data in this chapter
shall provide motivation for chapter 7.

6.1 ERFC — Emerging Risk Factors Collaboration

As described in chapter 1 the ERFC [7] is a large individual participant data (IPD) meta analysis
of over 1.1 million predominantly white Western individuals focusing on risk factors for CHD.
There are over 69,000 incidents within the 11.7 million person years at risk. Individuals are
not censored if they are known to have undergone cardiovascular investigations since this is
not widely recorded amongst the participating studies. The studies are all prospective cohort
studies, however, a small number of studies are randomised controlled trials or have supplied
data from nested case-control studies. Full details of the collaboration can be found in the
protocol paper for the collaboration [7] with further information available at
http://ceu.phpc.cam.ac.uk/research/erfc/. We give a summary of some of

117

http://ceu.phpc.cam.ac.uk/research/erfc/
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the key features here.

The ERFC has obtained IPD from studies that had data available on: baseline measurements of
at least one of the markers relevant to the ERFC’s investigations; at least 1 year of follow-up;
participants that were not selected on the basis of having previous cardiovascular diseases; and
information on cause-specific mortality and/or major cardiovascular morbidity collected dur-
ing the follow-up period. Studies were identified for inclusion primarily from previous meta-
analyses, and additionally through literature searches, reference lists, and correspondence with
authors of relevant reports. The teams looking at each risk factor have also performed checks
to ensure that they have all available data. The data obtained from each study were checked for
consistency and definitions of variables were harmonised across studies. For example, some
studies may have categorised smoking into current smokers, past smokers and never smokers
whereas others may have had categories of current smoker and non-current smoker. Any prob-
lems found with data obtained from each study were referred back to the collaborating study.
Each investigation uses a subset of the whole dataset as not all covariates are measured for all
individuals in all studies.

The Asia Pacific Cohort Studies Collaboration (APCSC) [13], another large IPD meta analysis
of risk factors for CHD with data on 237,468 participants from 17 cohort studies, has simi-
lar aims to the ERFC. The incidence of CHD events within the Asia Pacific region is much
lower than amongst western individuals. Therefore, because the ERFC is much larger, and will
have many more CHD events, we should be able to better characterise the risk factor–CHD
relationship.

Since the ERFC has observations on so many individuals it gives us better power to charac-
terise the shape of the risk factor–CHD relationship than each study individually; especially at
the extremes of the risk factor distribution where typically each study will only have a small
number of individuals. The ERFC data are analysed principally by Cox proportional hazards
regression models stratified by sex, undertaken in each study separately. Estimates of the risk
factor–CHD relationship are combined over studies using random-effects meta-analysis.

Some covariates used in the ERFC’s analyses can be assumed to be measured precisely such as
age, height and sex but others such as FBG, cholesterol or blood pressure may fluctuate within
individuals over time and/or are difficult to measure precisely. As we have seen in chapter 3,
analyses that use mismeasured exposures can produce biased results and hence it is essential to
correct for this.

In chapter 4, we discussed how an extra source of information is required to quantify the degree
of measurement error present. There are no exposures within the ERFC for which we have a
gold standard measurement as well as the mismeasured one. However, as of August 2007, 53
cohorts had provided one or more repeat exposure measurements, for one or more risk factors,
on 339,808 participants.

118



We now look at the FBG–CHD relationship. We chose to focus on this relationship for two
reasons: FBG is known to be subject to substantial measurement error, and the relationship
with CHD appears to be non-linear.

6.2 Background — FBG and CHD

Glucose is the main source of energy for the body’s cells. The amount of glucose in the blood
fluctuates throughout the day peaking after meals, especially those rich in carbohydrates [204].
The body uses the hormone insulin to control blood glucose levels. Fasting causes the body
to produce glucagon which increases plasma glucose, and in healthy individuals insulin is pro-
duced to rebalance the increased glucose levels. Therefore, fasting blood glucose (the amount
of glucose in the blood after a period of fasting, usually >8 hours) can be used as a measure of
an individual’s ability to produce insulin and will typically be in the range 4.4–6.1 mmol/l for
non-diabetics.

Several assay methods exist for estimating fasting blood glucose (FBG) from a blood sam-
ple using either chemicals or enzymes. The ERFC FBG data consists of FBG measurements,
however, there are alternate measures of blood glucose including measuring peak blood glu-
cose concentration two hours post glucose load, and measuring levels of HbA1c (glycosylated
haemoglobin) which reflects long term average blood glucose levels [205]. HbA1c, therefore
may be a better measure of blood glucose for use in epidemiological studies in the future, but
currently it is not standardised, nor routinely measured.

Sustained high blood glucose levels (hyperglycaemia) or low blood glucose levels (hypogly-
caemia) can have serious health consequences. Long term hyperglycaemia can cause nephropa-
thy [206], neuropathy, retinopathy as well as cardiopathy [207], whilst hypoglycaemia can
cause impairment of cognitive function. Diabetes mellitus can cause high levels of blood glu-
cose as a result of insufficient insulin production (type 1 diabetes) or insulin resistance (type 2
diabetes).

FBG is typically split into three categories of interest—normal FBG, impaired FBG (IFG) and
diabetic FBG. Usually there is little attention paid to those with low levels of FBG, although
some studies have suggested increased risk amongst these individuals [208]. Disagreement
exists over the definition of IFG with the two major authorities, the World Health Organisation
(WHO) [205] and the American Diabetes Association [209] giving different ranges.

WHO American Diabetes Association
IFG 6.1 mmol/l to <7 mmol/L 5.6 mmol/l to <7 mmol/l
Diabetic FBG ≥ 7 mmol/l ≥ 7 mmol/l

There is an increasing focus on the relationship between IFG and CHD because IFG is a symp-
tom of metabolic syndrome which is thought to affect one in five people in the United States
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[210]. Bjørnholt et al. [211] found that FBG in the upper normal range was an independent
predictor of cardiovascular death in non-diabetic healthy middle-aged men and Levitan [212]
produced a meta-analysis of 38 studies of healthy non-diabetics and found an increased risk of
CHD amongst those with IFG. It was also attributed to higher risk of CHD by Barr et al. [213]

Upon full adjustment for known confounders Sung et al. [214] found that CHD risk was only
substantially raised for those with diabetic levels of FBG. The DECODE study [215] showed
a J-shape relationship between FBG and cardiovascular mortality with risk only increasing
significantly for individuals with diabetic levels of FBG. The APCSC concluded that there was
greatly increased hazard for those with impaired and diabetic levels of FBG. They also found
that low levels of FBG (<5 mmol/l) conferred protection from CHD events [40].

6.3 ERFC fasting blood glucose dataset

The aim of this analysis of the ERFC FBG data is to better characterise the FBG–CHD rela-
tionship. This is important because there may be identifiable groups of non-diabetic individuals
within the population who could reduce their risk of experiencing a CHD event by modifying
their usual FBG levels through preventative measures such as changes in diet and/or lifestyle.
The ERFC FBG dataset consists of 49 studies containing 470,454 individuals of which FBG
was measured, on at least one occasion, in 278,346 individuals. There are a total of 186,433
repeat measurements on 79,842 individuals in 21 studies. There are up to 7 repeat measure-
ments per individual but during this analysis we will only be using the first repeat measurement
for an individual where this has occurred within the first 10 years of follow-up. The first CHD
event is the outcome of interest. Although post first CHD event follow-up is available in many
studies, we do not use this information to inform us about the FBG–CHD relationship because
the relationship may differ between those who have previously experienced a CHD event and
those who have not. The purpose of our investigation is to look at FBG as a risk factor for CHD
in the general population so we shall exclude all known diabetics from our analysis. Diabet-
ics will be on treatment and/or have made lifestyle choices (healthy diet, low alcohol intake,
moderate exercise), to manage their condition which is likely to make them atypical compared
with the general population. This reduces the dataset to 260,818 individuals with 59,144 first
repeats.

Studies with fewer than eleven events were removed from the analysis. None of these studies
had repeat observations on any participants. Two observations (without repeat measurements)
from the Reykjavik study have been excluded from the analysis due to their implausibly low
values of FBG (0.39,0.44); we suggest that these result from a data entry error. One outlying
observation from the New Brunswick study was excluded from analysis because the first obser-
vation of FBG was 11.93 whilst the first repeat was 3.66 which represents a shift of more than
ten standard deviations within that study. We shall ignore repeat measurements in any studies
with repeat measurements on less than 11 individuals.
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In this chapter we shall be treating the data as if it were one large study, stratifying by cohort and
trial arm (where appropriate) to allow for non-proportional baseline hazards between cohorts as
a result of factors such as geographical variation in prevalence of CHD related events. We shall
take account of the heterogeneity in the shape of the FBG–CHD relationship between studies
using meta-analytic approaches in chapter 8.

We stratify our analyses by sex because the risk profile for CHD differs between men and
women [216]. Women are at lower risk of suffering a CHD event pre-menopause. It has been
suggested that there is a link between sex and diabetes, with increased risk of ischaemic heart
disease mortality associated with diabetes among women compared with men [217, 218]. In
the general population survival in males tends to be worse than females.

As discussed in chapter 2, it is important to adjust for the effect of confounders. In our analyses
we shall consider the effect of age, smoking status (current vs. non-current smoker), total
cholesterol, systolic blood pressure (SBP) and body mass index (BMI). Measurements of one
or more of these covariates are not available for 8,427 participants and hence the analyses are
based on data from 241,390 individuals. Therefore, the final dataset for the analyses that follow
consists of observations on 241,390 individuals with 58,568 first repeats who suffered 12,815
events during over 3 million person years of follow-up. Table 6.3 gives a summary of the
ERFC FBG data used in the analyses. This is not the same dataset that was used in the papers
published by the ERFC involving FBG [9, 10], but instead an earlier version. A table of study
acronyms used in this chapter is given in appendix C.

The first panel of figure 6.1 shows a histogram of FBG which suggests that the distribution of
FBG is non-normal with a positive skew (3.99) and is highly leptokurtic (excess kurtosis 38.5).
A log transformation seemed to improve upon this and hence all analyses were performed using
log-FBG. For presentational purposes we shall be plotting untransformed FBG on a log-axis
to account for the transformation. Although the log transformation improves the normality of
FBG, the distribution of log-FBG still has skew 0.85 and excess kurtosis of 5.89.

In general, outliers should be identified and analysed to ascertain their origin as part of the
analysis scheme. However, in many epidemiological investigations, especially those that use
large datasets, it is often not practicable to carry out a detailed outlier analysis and the most ex-
treme observations are clipped (e.g. 0.5% of both tails) to remove any outliers that may unduly
influence the analysis. We should be wary about adopting this approach when the exposure is
subject to measurement error as the extreme values may have arisen due to the effects of mea-
surement error; especially if the measurement error is multiplicative. Clipping may be justified
if we believe that some process other than measurement error is causing outlying values (e.g.
errors in data entry); we do not clip the FBG data.
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Study Individuals Individuals Events Male Current Age FBG Repeat FBG
with repeats smokers mean (sd) mean (sd) mean (sd)

ALLHAT 12288 6771 464 6402 4045 66.02 (7.51) 5.39 (1.26) 5.67 (1.50)
ARIC 12699 11910 638 5521 3309 54.29 (5.71) 5.48 (0.53) 5.78 (1.00)
BHS 1571 457 90 723 430 43.26 (16.46) 5.07 (0.78) 5.32 (0.77)

BRUN 789 735 51 386 195 57.50 (11.27) 5.43 (0.68) 5.56 (1.14)
BUPA 19110 942 19110 7503 47.37 (7.65) 5.34 (1.03)

BWHHS 2976 52 0 330 68.50 (5.45) 5.83 (0.89)
CASTEL 2157 1026 60 843 296 73.42 (5.16) 5.73 (1.08) 5.33 (1.22)
CHARL 686 6 138 414 2 54.26 (9.35) 5.31 (1.55) 6.70 (2.09)

CHS1 3357 2135 480 1247 398 72.30 (5.21) 5.53 (0.53) 5.25 (0.85)
CHS2 366 253 36 138 63 72.30 (5.25) 5.44 (0.65) 5.50 (1.65)

DUBBO 1852 239 755 284 68.31 (6.68) 4.98 (0.58)
FIA 1637 2 344 1350 405 53.92 (7.22) 5.38 (0.84) 5.95 (0.35)

FINE FIN 248 63 248 33 76.33 (4.72) 5.70 (0.79)
GOH 1115 29 550 342 51.34 (7.97) 5.53 (0.86)

GOTO43 752 26 752 230 50.00 (0.00) 4.56 (0.76)
GOTOW 1407 143 0 577 46.67 (6.19) 4.07 (0.66)

HELSINAG 358 38 93 33 78.74 (4.12) 5.68 (1.85)
HOORN 2004 62 886 651 61.02 (7.26) 5.41 (0.53)

KIHD 1965 792 366 1965 604 52.43 (5.33) 4.64 (0.72) 5.00 (0.91)
MALMO 31139 1948 21555 14173 45.35 (7.35) 4.92 (0.74)

MATISS83 2413 1594 75 1132 717 51.26 (9.64) 5.06 (0.79) 5.12 (0.97)
MATISS87 1929 1108 42 863 423 52.18 (9.47) 5.10 (0.68) 4.95 (1.09)
MATISS93 1122 13 547 312 49.04 (9.27) 4.76 (0.68)

MRFIT 12665 12428 760 12665 8039 46.86 (5.96) 5.52 (0.87) 5.45 (0.93)
NCS3 310 14 212 226 41.71 (4.42) 5.62 (0.76)

NHANES3 5843 167 2816 908 52.09 (15.86) 5.50 (1.18)
OSLO 1396 148 1396 870 42.76 (6.58) 5.79 (0.97)

PARIS1 6810 6525 321 6810 4596 47.14 (1.97) 5.67 (0.75) 5.65 (0.68)
PRHHP 3364 2883 101 3364 1684 53.93 (6.27) 4.99 (0.57) 5.26 (1.05)

RANCHO 1704 206 698 234 68.31 (11.13) 5.46 (0.85)
REYK 16450 3151 7854 7805 52.25 (8.54) 4.45 (0.63)

SHS 2065 1797 182 893 826 55.47 (8.09) 5.63 (0.59) 6.12 (2.14)
TARFS 2391 1781 136 1120 792 46.16 (13.11) 4.87 (0.85) 5.23 (1.13)

ULSAM 1603 627 436 1603 1094 49.63 (0.64) 4.90 (0.56) 4.97 (0.93)
VHMPP 66257 644 32130 12219 48.79 (13.10) 5.02 (1.46)

VITA 7225 22 3248 1945 51.34 (8.04) 4.56 (1.22)
WHITE2 7424 5746 156 5148 1408 49.47 (6.02) 5.23 (0.66) 5.17 (0.99)

ZARAGOZA 1943 32 821 348 59.18 (11.49) 5.41 (0.58)
Total* 241390 58568 12815 146258 78349 51.23 (11.68) 5.12 (1.11) 5.50 (1.12)

Table 6.1: Summary of the ERFC FBG data by study. * Excludes repeat measurements for
those studies where they were obtained for less than 11 individuals (shaded grey).
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Figure 6.1: Histograms of FBG and log-FBG for all studies combined

6.4 Modelling — Ignoring the effects of measurement error

6.4.1 Grouped exposure analysis

In the ERFC, the main analyses of the shape of the FBG–CHD relationship are based on per-
forming grouped exposure analyses [7]. We group the FBG data into nine groups, G, as in the
ERFC FBG analysis

G = {(0, 4], (4, 4.5], (4.5, 5], (5, 5.5], (5.5, 6], (6, 6.5], (6.5, 7], (7, 7.5], (7.5,∞)}

on the original scale. These groupings give a good balance between the number of groups and
the number of individuals within groups. We then performed grouped exposure analyses using
G as our predictor for FBG and adjusting for increasing levels of confounding: no adjustment
for confounders (other than sex, cohort and trial arm through stratification), adjustment for
age and smoking status; and adjustment for conventional cardiovascular risk factors at baseline
(age, sex, BMI, smoking status, SBP and cholesterol). Each of the confounders was included
as a linear term in the model.

Figure 6.2 shows a strong relationship between FBG and CHD which gets weaker upon ad-
justment for conventional cardiovascular risk factors. We show the relationship with respect
to the third group as the reference category, and for each group points are plotted at the mean
within-group exposure. Although the choice of reference category is arbitrary we have made
this choice because it is the largest group. This choice will also aid comparison in the next
section when we plot continuous methods of modelling the relationship, where it is usual to
choose the mean exposure as the reference value. The confidence intervals in figure 6.2 use the
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floating absolute risks that were introduced in chapter 2.

In the first plot of figure 6.2 we observe a strongly increasing relationship, with those indi-
viduals in the group with the highest levels of FBG exhibiting three times the risk of those
in the group with the lowest levels of FBG. The relationship could be said to be a threshold
with the threshold occurring between the third and fourth groups. When we adjust for age and
smoking status, in the second plot of figure 6.2, we see that the FBG–CHD relationship has a
similar shape; however the risk gradient is generally less steep with a much smaller difference
in hazard between the top and bottom groups of FBG. In the third plot, where we have adjusted
fully for confounding variables, there remains a considerable increase in risk associated with
high levels of FBG. The shape of the relationship is now more J-shaped. It is of interest to
note how the sixth group of FBG is now aligned with the fifth group suggesting that there is
a large difference in the hazard amongst people in the lower and upper ends of the IFG range;
although this could be an artefact of the choice of cutpoints. Figure 6.2 has shown that the
effect of confounders on the FBG–CHD relationship is large, and since the confounders are
widely accepted as independent predictors of CHD events, all analyses that follow will be fully
adjusted for baseline levels of the conventional cardiovascular risk factors used in the third plot.
To aid comparison of the FBG–CHD relationship across analyses we shall use the same axes
in all plots of the FBG–CHD relationship that follow.

6.4.2 Fractional polynomial and P-spline models

In chapter 2 we described the shortcomings of using grouped exposure analyses. We now
consider fractional polynomial and P-spline models. We fitted the best FP2, and a P-spline with
four degrees of freedom to log-FBG; these are shown in figure 6.3. The fractional polynomial
procedure chose an FP2 model with powers (0.5,1). The hazard across the exposure range is
consistently greater under the P-spline model than that under the fractional polynomial model.
The fractional polynomial model shows little increase in hazard below an FBG of 7 mmol/l,
and above this the hazard only reaches 1.5 at an FBG level of 10 mmol/l. The P-spline model
is more consistent with the trend observed in the grouped exposure analysis above (third panel
of figure 6.2). This is probably because P-splines and grouped exposure analyses (to some
degree) can better fit local features of the data. As we have seen in the histogram of log
FBG in figure 6.1 most of the FBG observations are in the range 4–6 mmol/l. The fractional
polynomial appears to be fitting this range well at the cost of infidelity in the tails of the FBG
distribution. Both curves suggest the possibility of a slight upturn in the hazard at low levels
of FBG; a moderate increase at levels consistent with IFG; and a greatly increased hazard at
diabetic levels.
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Figure 6.2: Grouped exposure analysis of the observed FBG–CHD relationship for increasing levels of adjustment for confounders. Points plotted at
the mean within-group exposure, and 95% confidence intervals produced using the method of floating absolute risk.
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Figure 6.3: Fractional polynomial and P-spline models for the observed FBG–CHD relation-
ship (with 95% confidence intervals given by dotted lines in the colour corresponding to each
method).

6.5 Measurement error in FBG

Measurements of FBG are known to be subject to substantial measurement error which may
result from a number of sources including: within-person variation, error from the assay pro-
cedure, and non-compliance with fasting. The APCSC found the RDR for measurements of
FBG to be 0.6, whilst Rosner [28] found that within-person variability makes up nearly 50%
of the total variance in FBG in the Framingham Heart Study. The analyses of section 6.4 fail
to account for the measurement error in FBG and the effects it may have on the FBG–CHD
relationship. In chapter 3 we saw that the effect of exposure measurement error is in general to
attenuate the true relationship, hence the observed FBG–CHD relationship in section 6.4 will
not reflect the true relationship.

A plot of RDRs for each study with repeats gives an indication of the variability in the amount
of measurement error between studies. The plot may be used to highlight outlying studies that
should be investigated to ascertain if there is an underlying reason as to why the amount of
measurement error within that study is inconsistent with the other studies. Figure 6.4 shows
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the RDR obtained from each study with greater than 11 repeats adjusted for baseline risk fac-
tors: age, sex, BMI, smoking status, SBP and cholesterol. There is a lot of variation in the
RDRs across the 17 studies, which suggests that the approach taken by some authors of simply
transporting an RDR from an external study may not be appropriate. However, the RDRs of
the larger studies are in a similar range. The estimate of the mean RDR 0.56 (95% CI 0.51 -
0.61) is broadly consistent with those of the APCSC and Framingham Heart Study.

The variation in the RDR between studies could be caused by a number of factors including
differences in the time between baseline and repeat measurements, and differences in unmea-
sured confounders, such as diet and exercise, between studies. The RDR is a function of not
only the measurement error variance, but also the variance of the true exposure —the latter will
almost certainly vary between studies.
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Figure 6.4: Estimated RDRs for FBG by study. Size of plotting symbol proportional to preci-
sion of RDR.

Most methods of correcting for the effects of exposure measurement error assume the classical
measurement error model and often additionally assume that the true exposure given the ob-
served is normally distributed. Carroll et al. [33] suggest plots that can be used to investigate
the measurement error structure and whether these assumptions hold.

1. Produce a normal Q-Q plot of within-person differences. If the points fall on the Q-Q
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line then this suggests that the measurement error is normally distributed.

2. Plot the standard deviation of the observations on each individual against their mean. If
the plot shows no obvious trends then this suggests that the measurement error variance
is constant across the range of exposure.

3. Plot the standard deviation of the observations on each individual against each of the
confounders. If the plot shows no obvious trends then this suggests that the measurement
error variance does not depend on the value of confounding variables.

In this chapter we shall use these graphs to assess whether the classical measurement error
holds, and whether the measurement error is normally distributed. In chapter 7 we shall talk
more about the properties of these plots and how they can inform us about the structure of the
measurement error in the case that the classical measurement error model does not hold.

Plots were produced for each of the cohorts with repeat measurements. Figure 6.5 provides
an example from the PRHHP study and is representative of the plots obtained from the other
sixteen studies with repeat measurements. The normal Q-Q plot shows a positive skew mean-
ing that any assumptions of normality we make in modelling the measurement error may be
invalid. The mean–variance plot of replicates strongly suggests that the measurement error
variance is heteroscedastic with a higher variance amongst observations in the tails of the dis-
tribution of log-FBG, especially at high levels. The plot of the standard deviations for each
individual against confounders suggest the within-person standard deviation does not appear to
vary with the level of confounders. Note that there were no female participants in the PRHHP
study. We shall ignore our reservations about the heteroscedasticity and non-normality of the
measurement error in this chapter and we shall assume that the measurement error distribution
is normal and homoscedastic (on the log scale). However, we will consider the possible impact
of non-normality and heteroscedasticity of the measurement error in chapter 7.

As we saw in figure 6.4, the degree of measurement error varies widely between studies. For
those studies where repeat measurements were available, we estimated the measurement error
variance of log-FBG using a method of moments estimator. For those studies without repeats,
we assumed that the measurement error variance was a sample size weighted average of the
measurement error variance estimates obtained from those studies with repeat FBG measure-
ments; this gave a value of 0.0069.

The average regression calibration model which we shall use for studies where repeat measure-
ments are not available is:

Intercept log(FBG) Smoking
Status: Current

Age SBP BMI Cholesterol Sex:
Female

Parameter
0.5299 0.5816 0.0053 0.0003 0.0004 0.0038 -0.0001 -0.0099

Value
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Figure 6.5: Graphs as proposed by Ruppert & Carroll for testing measurement error assump-
tions for studies with repeat measurements of FBG—PRHHP study. Note that there were no
female participants in the PRHHP study.
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As we use different regression calibration models for different studies the overall mean of usual
log-FBG is not the same as that of observed log-FBG. We shall however continue to display all
graphs with the mean of observed log-FBG as the reference value to aid comparison between
the uncorrected and corrected analyses.

6.6 Correcting for measurement error

Firstly we shall consider correcting the grouped exposure analysis of section 6.4 using MacMa-
hon’s method, which although flawed, can give a good indication as to the shape of the exposure–
disease relationship. We then use SIMEX and structural fractional polynomials and P-splines,
to correct for the effects of measurement error in our continuous models for the FBG–CHD
relationship.

6.6.1 MacMahon’s method

In figure 6.7 we have plotted the hazard ratios for each exposure group against the means of the
repeat measurements in each baseline group. We can see that the means of the most extreme
groups of FBG come in towards the centre of the distribution a long way from the unadjusted
values and we therefore observe the relationship over a much smaller range. As we described
in chapter 5, this is a graph of usual exposure in baseline groups of FBG versus hazard, rather
than what we want which is hazard against groups of usual FBG.

Figure 6.6 compares the shape of the FBG–CHD relationship obtained without correction for
the effects of measurement error, and using MacMahon’s correction method. The group means
have been connected to give an impression of the shape of the implied FBG–CHD relationship
under each analysis. We can see that the shape of the corrected and uncorrected relationships
appear to be very similar at lower levels of FBG. Only above an FBG of 6 mmol/l does the
corrected relationship appear stronger than the uncorrected one, and then the difference appears
to be rather modest, except for the highest exposure group.

6.6.2 SIMEX

The SIMEX procedure was discussed in detail in section 4.3.4 and involves observing how
parameter estimates change for increasing amounts of exposure measurement error and then
extrapolating this trend back to the case of no measurement error. In this section we apply the
SIMEX procedure to fractional polynomial and P-spline analyses.

We applied the SIMEX procedure to the P-spline model of section 6.4. When applying SIMEX
to P-splines we need to ensure that we fit the disease model using the same basis for log-FBG
in each dataset, otherwise the parameter estimates obtained for each pseudo-dataset will be
incomparable. This can be achieved by extending the range over which the basis is defined,
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Figure 6.6: Measurement error corrected grouped exposure analysis of the FBG–CHD rela-
tionship using MacMahon’s method.
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Figure 6.7: Comparison of the uncorrected and MacMahon corrected group exposure analyses,
where the hazard ratio at the group means have been connected by linear segments to give an
impression of the shape of the FBG–CHD relationship.
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Figure 6.8: SIMEX corrected fractional polynomial and P-spline models for the FBG–CHD
relationship.

beyond the range of the observed FBG measurements. In figure 6.8 we use 14 basis functions
for log-FBG and constrain the P-spline to have four degrees of freedom. It is not clear how
the penalisation of the individual P-spline models feeds through to the final model and hence
whether the model obtained from this procedure will also have four degrees of freedom. We
also applied SIMEX to the FP2 model of section 6.4.

In each case the SIMEX procedure was carried out using ζ = {0.5, 1, 1.5, 2} with 100 datasets
generated for each value of ζ . Standard errors were calculated using the jackknife procedure
[166] and both the parameters and their standard errors were extrapolated using a quadratic
function. Figure 6.8 shows the corrected P-spline and fractional polynomial models for the
FBG–CHD relationship. Comparing figure 6.8 with figure 6.3 we see that the curves obtained
from the SIMEX procedure suggest that the effects of measurement error are modest, especially
under the fractional polynomial model.

Figure 6.9 shows the extrapolation of the parameters of the fractional polynomial model in
figure 6.8. The quadratic and rational linear extrapolants fit the parameter estimates β(ζ) well
and there is only a small difference between the extrapolated parameters. We do not show the
extrapolation plots for the P-spline model due to the large number of parameters. Theoretically,
and from our experience, SIMEX works well when the degree of measurement error is small
because the extrapolation function is only approximately correct. In section 6.5 we saw that
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the observed FBG measurements are subject to substantial measurement error and therefore we
should view the results with an element of caution, although the measurement error correction
is likely to be conservative [169].

6.6.3 Structural fractional polynomial and P-spline models for FBG

We now consider the results from structural fractional polynomial and P-spline models. The
distribution of true log-FBG given the observed was assumed to be normally distributed with
mean and variance parameters as calculated using the regression calibration models in sec-
tion 6.5. The best fitting structural fractional polynomial of maximum degree two was the
degree two model with powers (-2,-2). This is a different combination of powers than those for
the unadjusted model.

One problem we encountered in applying the method of structural fractional polynomials
method was that some of the quadrature points used to evaluate expectations of powers of
usual FBG given observed FBG were located below zero. This was remedied by modifying the
transformation of equation 2.9 to

x′ = x− (xmin + σxωmin) + γ (6.1)

where σ2
x is the variance of x, ωmin is the smallest quadrature point, and γ is the smallest dif-

ference between consecutive ordered exposure measurements. For 5 point Gaussian quadrature
ωmin = −2.86. If the smallest value of x were 0.5, and the standard deviation of x were 0.2,
then the smallest quadrature point would occur at 0.5 + (0.2×−2.86) = −0.07. If the smallest
difference between successive ordered observations were 0.05 so γ = 0.05, using equation 6.1
we shift the data by adding 0.07 + 0.05 = 0.12 to each observation so that all the quadrature
nodes are positive. This example is illustrated in figure 6.10.
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Figure 6.11 shows a consistently and significantly higher risk of CHD events for those with
FBG levels of 6–10 mmol/l under both the structural fractional polynomial and P-spline anal-
yses, compared with those uncorrected for the effects of measurement error in FBG. This sug-
gests that by ignoring the effects of measurement error we may be seriously underestimating
the risk of CHD associated with levels of FBG consistent with IFG or diabetes. The struc-
tural fractional polynomial and P-spline analyses are in close agreement up until an FBG of
8 mmol/l; after this point the structural P-spline analysis suggests that the relationship begins
to flatten off whilst the structural fractional polynomial analysis suggests the hazard continues
to rise steeply. This difference is probably due to the P-spline models flexibility to fit local
features of the data at the extremes of the exposure range.

We investigated the effect of using the model selection criterion AIC or cAIC that we intro-
duced in section 2.2.4 to select the number of degrees of freedom in the P-spline models. We
found that both methods of choosing the penalty led to severe undersmoothing. Both crite-
rion chose a model with 8.1 degrees of freedom for the observed relationship, and 8 degrees
of freedom for the measurement error corrected structural P-spline model. The structural P-
spline model exhibited a turning point in the upper end of the FBG range, which implied that
CHD risk decreased with increasing FBG beyond the turning point; this is epidemiologically
implausible.

6.7 Discussion

There is a strong relationship between FBG and the hazard of experiencing a CHD event, with
increased hazard for those with impaired and diabetic levels of FBG. The shape of the rela-
tionship is attenuated by the presence of substantial measurement error in the observed FBG
measurements. The relationship between usual FBG and CHD is much stronger, with signif-
icantly higher risk associated with impaired and diabetic levels of FBG, in the measurement
error corrected analyses. These results agree strongly with those of the APCSC [40]. The shape
of the relationship appears to be S-shaped from the P-spline analyses however the fractional
polynomial analyses suggest a J-shaped relationship. The fractional polynomial models are
probably providing an extremely good fit in the normal range of FBG at the expense of some
infidelity as you move outside this region, where less of the data lie. Figure 6.12 shows all of
the continuous models that we have fit in this chapter for comparison.

The role of blood glucose in causing CHD events may also be related to other measures of
how the body maintains blood glucose levels. For example, the DECODE study [215] found
that the effect of FBG disappeared upon adjustment for blood glucose levels two hour post
glucose load, suggesting that blood glucose peaks may also have a role to play in the risk of
experiencing a CHD event.

Confounders appeared linearly in both our disease and regression calibration models. We in-
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Figure 6.10: Illustration of data transformation given in equation 6.1 for structural fractional
polynomials.
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vestigated the effect of allowing them to appear non-linearly in our disease models by including
P-spline terms for each of the confounders; this did not appear to substantially affect the results
obtained. Misspecification of the regression calibration model is a potential problem but can be
avoided by performing standard regression diagnostics. This can, however, be very time con-
suming when we have multiple studies because each study with repeats has its own regression
calibration model.

In section 6.5 we used the measurement error plots proposed by Carroll et al. to assess the
measurement error structure. We observed that the measurement error did not appear to adhere
to the classical measurement error model. These plots do not seem to be widely used in practice
and the assumption of classical measurement error is usually assumed. In the examples used
by Carroll et al. [33] and Iturria, Carroll, and Firth [133], the plots show that the classical
measurement error holds and that the error is normal. We have not found any examples in the
literature where these plots (after possible taking a logarithmic transformation of the data) have
suggested that the measurement is non-normal and/or heteroscedastic.

The confidence intervals we have presented in this chapter have not taken into account the
uncertainty in the measurement error model, which is substantial for those studies for which
we did have repeat measurements available. We have not acknowledged the possibility that
the additional cardiovascular risk factors which we have adjusted for are subject to measure-
ment error. Age can be assumed to have been measured without error. Some studies assume
that BMI is measured without error although Davey Smith [45] believes that this assumption
should not be made. Smoking status is likely to have some misclassification error due to indi-
viduals giving inaccurate information but we can probably assume this to be small [219–221].
It is well known, however, that measurements of blood pressure [35–37] and cholesterol [36–
39] can be subject to a large amount of measurement error. We saw in figure 6.5 that the
variance of the measurement error in log-FBG did not appear to be affected by the level of
any of the confounders. We might therefore expect the difference between multivariate correc-
tion and correcting for measurement error in each variable univariately to be small. Day et al.

[222] looked at the effect of correlated measurement error on a bivariate regression model and
found that unless the measurement error in the exposures was highly correlated > 0.7, then
the parameter estimates obtained tended not to be too different than those obtained when the
measurement error was uncorrelated. Knuiman et al. [223] say that multivariate adjustment
should be made after they obtained differing answers using univariate and multivariate adjust-
ment. Repeat measures of SBP and cholesterol are available within the ERFC dataset so the
error in the confounders could potentially be corrected for, but we do not consider this here.

Although the x-axis of all the FBG–CHD event associations shown in this chapter have been
labelled FBG there is a difference between what we mean by FBG in section 6.4 and sec-
tion 6.5. In the graphs of section 6.4 FBG refers to observed FBG levels which are subject to
measurement error, whereas in the graphs of section 6.5 we are referring to usual exposure; the
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long term average of FBG. The distribution of observed FBG will be much greater than that
of usual FBG. The variance of usual FBG given observed FBG, which we use in the structural
correction techniques, is smaller than the variance of usual FBG; we therefore view the rela-
tionship over a slightly reduced range. As discussed previously MacMahon’s method severely
reduces the range over which we can observe the FBG–CHD event relationship.

As is common in cohort studies we only used baseline values of risk factors in our analyses.
In reality it is likely that the levels of risk factors will change over time. It is well known
for example that BMI varies with age. The incidence of type 2 diabetes increases with age
[224] hence we would expect FBG to increase with age. During short periods of follow-up the
difference between current and baseline risk factors are likely to be small. When the follow up
period is long, however, there may be large differences.

Our regression calibration models only used the first repeat measurement and hence we are
throwing away any information that may be contained in the additional follow up measurements
in the ERFC data. However, the longer the period between the baseline measure and that of the
follow-up the less likely it is that the follow-up is going to be a true replicate of the baseline
measure. Additional repeat measurements could be taken into account by including them in
the regression calibration model [33].

6.8 Conclusion

The ERFC is a large IPD meta-analysis looking at risk factors for CHD. We focused on the
relationship between FBG and CHD events because it is non-linear and FBG is subject to
substantial measurement error. We fitted Cox proportional hazards models, stratified by sex,
cohort (and trial arm where appropriate), to the data allowing for conventional cardiovascular
risk factors: age, SBP, BMI, smoking status and total cholesterol. We considered the observed
relationship using a grouped exposure analysis, fractional polynomials and P-splines. These
analyses suggested that FBG has a relatively modest effect on the hazard of suffering a CHD
event except for those in the upper diabetic range. We then considered MacMahon’s method
for correcting the grouped exposure analysis for the effects of measurement error in the FBG
measurements; and SIMEX and structural P-spline and fractional polynomial analyses. The
SIMEX procedure suggested that the effect of measurement error is modest, whereas the struc-
tural methods suggest that there is a significant increase in hazard associated with FBG levels
consistent with IFG and diabetes and that the hazard is minimal for FBG somewhere in the
range of 4–4.2 mmol/l.

In section 6.5 we saw that the measurement error appeared to be heteroscedastic and non-
normal. In chapter 7 we look at the effects of non-normal and heteroscedastic error on the
observed exposure–disease relationship and the corrected relationship when we incorrectly as-
sume that the measurement error is normal and heteroscedastic. Then in chapter 8 we consider
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how to properly account for the heterogeneity in the shape of the exposure–disease relationship
between studies using meta-analysis.
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Figure 6.12: Summary of the fractional polynomial and P-spline models for the FBG–CHD
relationship considered in chapter 6.
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Chapter 7

Non-classical measurement error

Thus far in this dissertation we have assumed that either the measurement error, or the distri-
bution of the true exposure given observed, is normal and homoscedastic. In this chapter we
investigate non-classical measurement error and non-normally distributed true exposure, since
our structural correction methods can be sensitive to the distribution of true exposure given
observed. In chapter 6 we saw that the ERFC FBG measurements appeared to be subject to
non-normal and heteroscedastic measurement error.

In the first section we extend the simulation study of chapter 3 to consider the effects of non-
classical measurement error, and non-normal true exposure, on the observed exposure–disease
relationship. We then look at the impact on structural fractional polynomials and structural
P-splines of erroneously assuming that the distribution of the true exposure given observed
is normally distributed. In the second section we consider methods for correcting for non-
classical exposure measurement error. We use a mixture of normals for the distribution of true
exposure given observed in order to allow for non-normality in structural fractional polynomial
and P-spline models for modelling the FBG–CHD relationship within the ERFC.

7.1 Introduction

When using structural fractional polynomials and P-splines in chapter 6 we assumed that the
distribution of usual FBG given observed FBG was normally distributed. Figure 6.5 suggested
that this assumption may be inappropriate; the measurement error appeared to be non-normal
and heteroscedastic. In general the distribution of the true exposure given observed may be
non-normal if the true exposure is non-normally distributed; the measurement error is not in-
dependent of the true exposure; or the measurement error is non-normally distributed.

In many practical situations the distribution of true exposure given observed is unlikely to be
normal. Few exposures are actually normally distributed; often a simple transformation of
the data can be found, such that the transformed data are more normally distributed. When our
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exposure is subject to measurement error, transformation of the observed data is not, in general,
equivalent to transforming the true exposure; a point rarely appreciated. For example, normal
measurement error can be seen to attenuate the skewness of the true exposure distribution

E((W − µw)3)

(E((W − µw)2))
3
2

=
E((X + U − µx)3)

(E((X + U − µx)2))
3
2

=
E(((X − µx) + U)3)

(E(((X − µx)2 + U)))
3
2

=
E((X − µx)3)

(E(X − µx)2 + E(U2))
3
2

i.e. skew(W ) = σ3
x

σ3
w

skew(X) = λ
3
2 skew(X). The skewness of the observed exposure distribu-

tion reduces quicker than the exposure–disease relationship is attenuated. This makes identify-
ing non-normality of the true exposure more difficult, especially when the measurement error
variance is large.

Many exposures are subject to measurement error where the variance is not constant across
the range of exposure. Examples include serum creatinine [27] and serum cotinine [225].
Non-constant variance may be due to the exposure measurement procedure being designed
to accurately capture the level of exposure for those with high or low levels of exposure (i.e.
diseased individuals) and therefore, those with normal exposure levels are subject to greater
measurement error. Alternatively, those with extreme levels of exposure may be subject to
greater within-person variation than those in the centre of the exposure distribution.

It seems plausible that the measurement error distribution for many exposures may be skewed
and/or have heavier tails than the normal distribution. There seems, however, to be few ex-
amples of non-normal measurement error in the literature perhaps as mentioned in chapter 6,
because investigations of the measurement error structure are rarely carried out in practice.

7.1.1 Introduction of non-linearity

It is well known that non-classical measurement error can introduce non-linearity into the
observed exposure–disease relationship when it is truly linear and distorts the shape of non-
linear relationships [33]. We now consider theoretical results regarding the introduction of
non-linearity; firstly when our exposure is subject to multiplicative measurement error, an ex-
ample of heteroscedastic measurement error; and then when the true exposure distribution is
non-normal.

The multiplicative measurement error model, which was introduced in chapter 3, is perhaps
the simplest heteroscedastic measurement error model. It is heteroscedastic because the mea-
surement error variance increases with increasing exposure. Suppose that X and W are log-
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normally distributed with
logX ∼ N(µlog x, σ

2
log x)

and

logU ∼ N

(
−
σ2

log u

2
, σ2

log u

)
so that the measurement error is unbiased on the original scale. Under a multiplicative model
W = XU so logW = logX + logU meaning that

logW ∼ N

(
µlog x −

σ2
log u

2
, σ2

log x + σ2
log u

)
.

This implies

logX|W ∼ logN

(
(1− λ)µlog x + λ

(
logW +

σ2
log u

2

)
, λσ2

log u

)

where λ =
σ2
log x

σ2
logw

i.e. the RDR on the log scale. Then,

E(X|W ) = W λ exp((1− λ)µlog x + λσ2
log u).

Note how this is proportional to W λ and not W . Hence, for a simple linear model where the
exposure–disease relationship is linear the observed relationship is

E(Y |W ) = β0 + β1E(X|W )

= β0 + β1W
λ exp((1− λ)µlog x + λσ2

log u)

which is non-linear in W . Similarly for Xk we obtain E(Xk|W ) ∝ W kλ. As W increases (for
W > 1) the observed exposure–disease relationship is increasingly attenuated.

Chesher [226] showed that non-normal true exposure can also introduce non-linearity in to true
linear relationships or distort non-linear relationships, by giving a small variance approximation
for the linear model

E(Y |W = w) = E(Y |X = w)+
σ2
u

2

(
2
∂E(Y |X = w)

∂X

∂ log fX(w)

∂X
+
∂2E(Y |X = w)

∂X2

)
+o(σ2)

where fX(.) is the distribution function for the true exposure, X . When the exposure–disease
relationship is linear this gives

E(Y |W = w) = β0 + β1w + σ2
uβ1

∂ log fX(w)

∂X
+ o(σ2)

which is only linear in w when the true exposure is normally distributed; otherwise non-
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linearity is introduced through the derivative of the distribution of the true exposure in the
third term of the equation.

7.2 Diagnosing non-classical error

As discussed above, non-normal exposure and heteroscedastic measurement error can intro-
duce non-linearity into linear relationships or distort non-linear relationships. We therefore
need methods for identifying when our exposure is subject to non-classical measurement error
or when our true exposure is non-normal.

In this section we shall consider how we can investigate the properties of the measurement
error, and true exposure distributions, using the plots introduced in chapter 6. We shall focus
on the common case where we have replicate exposure measurements for a random subset of
individuals. It is essential that replicate measurements are obtained from across the exposure
range otherwise we may miss important distributional features. Also, more repeats, on more
individuals, allow us to better assess the distributional features of our exposure, and will allow
better parameter estimation in our measurement error models.

In chapter 6 we described four plots for investigating the exposure and measurement error
distributions. Here we do not consider plots of within-person standard deviation against con-
founders, but give a more detailed commentary on the other three plots:

1. Normal Q-Q plot of within-person differences—We may be able to discern that the mea-
surement error distribution is heavy or light tailed, compared with the normal distribu-
tion. The symmetry induced by taking differences means that we are unable to tell from
this plot whether the distribution is skewed. The Q-Q line should pass through the origin;
if it does not then this implies that there is a difference in systematic bias between the
baseline and repeat measurements.

2. Plot of within-person standard deviation against within-person mean—If the exposure is
subject to classical measurement error we would expect this plot to show no trend [133].
If instead a linear trend is present it suggests a multiplicative error structure (i.e. the
standard deviation of the measurement error increases linearly with exposure) and taking
logarithms may give no relationship between exposure and standard deviation [133].

Inference from this plot is not affected by the distribution of the true exposure, although
under different distributions of true exposure the cloud of data points will have a dif-
ferent shape. The relationship we observe between the within-person means and the
measurement error variance is attenuated by the remaining error in the within-person
means. The within-person means contain 1

k
times the measurement error of the individ-

ual observed values, where k is the number of repeat measurements. This attenuation
prevents accurate modelling of the variance function. A shortcoming of this plot is that
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the measurement error variance cannot be read off directly. This plot is preferred over
a Bland-Altman plot [227] because trends in the standard-deviation across the range of
exposure are more easily visible.

3. Normal Q-Q plot of the within-person means—This plot gives an indication of the nor-
mality of the true exposure. When appraising this plot one must bear in mind that non-
normality may be due either to non-normality of the true exposure, or due to the remain-
ing measurement error if it is non-normal. Non-normality of the true exposure could
mask non-normality of the measurement error if they are skewed in opposite directions.
If the measurement error in the observed values is large then the within-person means can
still be subject to substantial measurement error if k is small. In this situation relatively
small departures from normality in the normal Q-Q plot could belie large departures in
normality of the true distribution. The slope of the Q-Q line is approximately the RDR
of the within-person means if the measurement error is normally distributed.

7.3 Simulation study

We extend the third simulation study of chapter 5 to consider a non-normally distributed true
exposure, exposure measurement error that is non-normal and/or heteroscedastic, and combi-
nations of these. Firstly we look at examples of the measurement error plots we might observe
under each of the ten scenarios; this allows us to investigate how easy it is easy to diagnose the
source of non-classical error models. Then we look at the observed exposure–disease relation-
ship under fractional polynomial and P-spline analyses. We then consider the exposure–disease
relationships we obtain using structural fractional polynomial and structural P-spline correction
techniques but erroneously assume that the distribution of the true exposure given observed is
normally distributed with constant variance. This allows us to see how sensitive our structural
methods are to violation of this assumption.

7.3.1 Simulation procedure

The simulations were carried out using the data generation process and shapes of relationship
described in chapters 3 and 5. We shall continue to assume that our measurement error satisfies
an additive model

W = X + U.

Heteroscedasticity is introduced into the observed exposure by allowing the measurement error
variance to depend on a non-negative function g2(x) such that

U ∼ N(0, σ2
ug

2(X)).
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7. Non-classical measurement error

g2(X) = 1 corresponds to homoscedastic measurement error and g2(X) = X2 corresponds
to multiplicative measurement error. In our previous simulations we allowed the measurement
error variance to take the values σ2

u = 0.25, 0.5, 1. In this simulation we use the same values
for σ2

u and choose g2(x) such that ∫ ∞
−∞

g2(x)f(x)dx = 1

where f(.) is the appropriate density function of the true exposure to the scenario. This means
that σ2

u is the average measurement error variance and this allows comparison with previous
simulations. We shift and scale the true exposure and measurement error distributions as ap-
propriate so that X maintains mean 10, variance 1; and U mean 0, variance σ2

u.

We shall consider ten scenarios for the distribution of the true exposure X , measurement error
U , and the measurement error variance function g2(x); these are listed in table 7.1.

Scenario 1 is the classical measurement error model which was considered in chapters 3 and 5
and is included here for comparison. Scenarios 2 and 3 consider non-normal true exposure.
Under scenario 2 the true exposure follows a shifted Gamma distribution, which is positively
skewed, and defined on [10 −

√
6,∞), hence the smallest possible true exposure will be 7.55

units. Under scenario 3 the exposure is t-distributed, which means the exposure will have
heavier tails than the normal distribution.

Scenarios 4, 5, 6 consider heteroscedastic measurement error dependent on the level of true ex-
posure. Scenario 4 is a multiplicative measurement error model, where the standard deviation
of the measurement error increases linearly with X . Heteroscedastic error where the measure-
ment error variance increases with the mean is commonly observed in practice. Under scenario
4 the variance two standard deviations above the mean of the true exposure is 2.25 times that
two standard deviations below the mean. Scenario 5 is more extreme with the measurement
error variance two standard deviations above the mean of the true exposure 9 times that two
standard deviations below the mean. Scenario 6 was motivated by the ERFC FBG data where
we observed that the measurement error variance increased about the mean, with those individ-
uals with extreme true exposure values subject to measurement error with larger variance than
those in the middle of the true exposure distribution. Under scenario 6 the measurement error
variance two standard deviations above and below the mean is 13 times that at the mean.

Scenarios 7 and 8 consider non-normal distributions for the measurement error similar to those
used for the true exposure under scenarios 2 and 3.

Scenario 9 is a combination of non-normal true exposure and heteroscedastic measurement er-
ror. After preliminary investigation of scenarios 1-9, we found that they were not as extreme
as the trends exhibited by the ERFC FBG data. We therefore, searched for a scenario (sce-
nario 10) that replicated some of the features of the ERFC FBG data. Under this scenario the
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Class Scenario Distribution of X Distribution of U g2(x)
Classical 1 N(0, 1) N(0, 1) 1

Non-normally 2 Γ(6,
√

6) N(0, 1) 1
distributed X 3 t8 N(0, 1) 1

Heteroscedastic 4 N(0, 1) N(0, 1) x2/101
measurement 5 N(0, 1) N(0, 1) (x− 6)2/17
error 6 N(0, 1) N(0, 1) 0.2 + 0.75(x− 10)2

Non-normal 7 N(0, 1) t8 1
measurement error 8 N(0, 1) Γ(6,

√
6) 1

Combination 9 Γ(6,
√

6) N(0, 1) x2/101
10 χ2

1 N(0, 1) 1
0.6844

|x− 10|

Table 7.1: Description of each of the scenarios considered in the simulation study. Note that
the distributions are shifted and scaled so that X maintains mean 10, variance 1 and U mean 0,
variance σ2

u.

minimum possible true exposure is 9 units.

We accept that these scenarios are not exhaustive, and that other scenarios not given here may
be of interest, however we feel that this provides a sufficiently wide range of scenarios to
give an indication of the possible effects of non-classical measurement error and non-normally
distributed true exposure.

For each scenario we take a single sample of baseline and a single repeat measurement for
1,000 data points for σ2

u = 1 to illustrate typical measurement error plots. We fit fractional
polynomial and P-spline models to investigate the degree of non-linearity/distortion introduced
into the observed exposure–disease relationship. We also fit structural fractional polynomial
and P-spline models where we erroneously assume that the distribution of the true exposure
given observed is normal to allow us to assess the sensitivity of our correction methods to
violation of normality.

7.3.2 Results

Measurement error plots

Figures 7.1 and 7.2 are plots of a single sample of baseline and a single repeat measurement
for 1,000 randomly generated individuals taken from each of the ten scenarios described above
when σ2

u = 1. They are meant to illustrate what may be observed under each scenario, however,
due to sampling variation different trends may be seen in other samples.

In the first row of figure 7.1, where we have a classical measurement error model, we see
no trend in the within-person standard deviation, and the normal Q-Q plots of within person
differences and mean exposure suggest normality as expected. Rows 2 and 3 show that the
non-normality of the true exposure makes little difference to the plots we obtain, and is only
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7. Non-classical measurement error

reflected in slight non-linearity in the normal Q-Q plots of within-person means at the extremes.
As described in section 7.1 this may be expected, since normal homoscedastic measurement
error attenuates higher moments of the exposure distribution more than the mean exposure. In
practice we would probably assume normality under both these scenarios. In rows 4 and 5
we see the linearly increasing trend in the standard deviation of the measurement error as we
would expect.

In the first row of figure 7.2 we see a clear V-shape in the measurement error standard deviation.
The effect of this severe heteroscedasticity is also to make the tails of the normal Q-Q plots of
both the within-person differences and within-person means appear non-normal, giving the
impression that the true exposure is non-normally distributed although this is not the case.
Rows 2 and 3 shows that non-normality of the measurement error is hard to discern from
the normal Q-Q plots and in fact manifests itself as trends in the standard deviation of the
measurement error variance. Row 4 shows slight non-normality in the within individual means;
as discussed above this reflects much greater non-normality in the true exposure. Row 5 is
the most extreme of the scenarios considered, we see the V-shape in the measurement error
standard deviation, the normal Q-Q plot of within-person differences shows non-normality in
the tails, and the Q-Q plot of within-person means shows a positively skewed true distribution,
all of these are features of the ERFC FBG data. We note that nearly 20% of observations lie
below 9 units despite this being the minimum observable true exposure under this scenario.

Scenarios 2, 4, 5, 8-10, involve positively skewed true exposure or measurement error, or the
measurement error variance increases with exposure, or combinations of these. In the next
section, we therefore analyse these scenarios on the log scale; the usual tactic employed when
dealing with positively skewed variables, and reduces the effects of outliers. Measurement
error plots for the data on the log-scale for these scenarios are given in appendix D.

Uncorrected exposure–disease relationships

Analyses were performed on all eight shapes for the exposure–disease relationship considered
in chapter 5. For reasons of space, we shall concentrate on the linear and asymptotic relation-
ships here, and briefly comment on the other shapes afterwards.

Figure 7.3 shows P-spline models for the observed relationship for a true linear exposure–
disease relationship under each scenario. We see that the non-linearity introduced into the
relationship is relatively small for most of the scenarios. When the measurement error is het-
eroscedastic (scenarios 4-6) we observe that there is greater attenuation in ranges where the
measurement error variance is greater than the mean error variance, and less attenuation where
the measurement error variance is less than the mean error variance; this is particularly notice-
able under scenarios 5 and 6. The degree of non-linearity decreases as the measurement error
variance increases (i.e. as the RDR decreases), this is due to the simultaneous attenuation of
the measurement error variance function. Under scenarios 2 and 9 we see greater non-linearity
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Figure 7.1: Example measurement error plots for a simulated sample of 1,000 individuals
under scenarios 1-5, σ2

u = 1. Loess smooths of the data (red lines) are shown to aid trend
identification in the left hand column.
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7. Non-classical measurement error
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Figure 7.2: Example measurement error plots for a simulated sample of 1,000 individuals
under scenarios 6-10, σ2

u = 1. Loess smooths of the data (red lines) are shown to aid trend
identification in the left hand column.
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of the relationship in the tails of the exposure and under scenario 10 we observe that there is
considerable non-linearity introduced, the relationship could almost be described as exhibiting
a threshold; this is a result of increasing numbers of observations located below the minimum
observable true exposure due to measurement error.

Figure 7.4 shows the observed exposure–disease relationship under a true asymptotic relation-
ship under each scenario. We observe similar trends as in figure 7.3. Under scenarios 2 and
9 the observed relationship is essentially linear, and under scenario 10, we observe a convex
relationship. Similar trends are observed for each of the other shapes for the exposure–disease
relationship, and there is little difference between fractional polynomials and P-splines except
for under the threshold and U-shaped relationships. The differences for the threshold relation-
ship are similar to those observed in chapter 5; P-splines pick up the threshold much better
than fractional polynomials. Fractional polynomial and P-spline models under the U-shape
relationship are illustrated for scenario 10 in figure 7.5. Similar, although not as extreme dif-
ferences can be seen between the two methods under scenarios 2 and 9 as well. When there
is no measurement error, fractional polynomials and P-splines give very different shapes for
the U-shaped relationship below the mean exposure. Outside the range of the exposure the
two methods behave quite differently; fractional polynomials retain the same functional form,
whereas P-splines become linear. When the exposure measurements are subject to measure-
ment error, all values below 9 units are the result of measurement error. Almost all these
measurements will have true hazard ratios of less than 1.05. This is why we observe such a
weak relationship at low exposure levels, which the fractional polynomial model has problems
picking out. In this scenario, although we observe exposure values less than 9 units, there is no
true relationship at this level.

Corrected exposure–disease relationships

We shall now consider the effect of correcting for measurement error assuming that the distribu-
tion of the true exposure given observed is normal with constant variance. Under all scenarios,
except for scenario 1, either or both of the assumptions of normality or constant variance of the
true exposure given observed will be violated.

Figure 7.6 shows that although the normality and homoscedasticity assumptions are invalid un-
der scenarios 2–10 in many situations our correction procedure may return the correct form for
the true exposure–disease relationship. Under scenarios 3–7 there is little bias in the corrected
relationship. Under scenario 8 there is some bias but this is localised to the extremes of the
exposure range. Only scenarios 2, 9 and 10 exhibit significant bias. Under each of these three
scenarios the corrected relationship is J-shaped; although under scenario 10 the bias is not large
when only considering exposure levels of 9 units (the minimum true exposure observable) and
above.

Under the true asymptotic relationship, figure 7.7, we see similar trends as under the linear
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7. Non-classical measurement error
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Figure 7.3: P-spline analysis showing the observed linear exposure–disease relationship under
each of the ten scenarios.
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Figure 7.4: P-spline analysis showing the observed asymptotic exposure–disease relationship
under each of the ten scenarios.
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7. Non-classical measurement error
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Figure 7.5: P-spline and fractional polynomial analyses of the observed threshold exposure–
disease relationship under scenario 10.

relationship. Under scenarios 2, 9 and 10 the corrected relationship appears almost linear
when the measurement error is low, before increasingly becoming a J-shaped relationship. The
discrepancy we noted in figure 7.5 between fractional polynomial and P-spline analyses of a U-
shaped relationship under scenario 10, can be seen in the corrected relationships (figure 7.8).
Under the structural fractional polynomial model we overcorrect and the nadir increasingly
moves away from the mean as increasing numbers of observations are observed with exposure
values less than 9 units. Under the structural P-spline model there is severe over correction
above the mean whilst at lower exposure levels the relationship is under corrected.

7.3.3 Discussion

We have considered data generation scenarios for the observed exposure involving non-classical
measurement error, and non-normally distributed true exposure. We picked these scenarios
based on intuition of what might be observed in practice and were surprised to find that they
were very different to what we observe in the ERFC FBG data. It might, however, be that the
FBG data are extreme compared with other exposures. This difference between the scenarios
we initially included and the FBG data led us to also include scenario 10 in our simulation
study. Scenario 10 aimed to recreate many of the features of the FBG data, and we obtained
measurement error plots (figure 7.2) that were similar in appearance to those obtained from
studies in the ERFC. Although scenario 10 was generated to resemble the FBG data it is proba-
bly more extreme in the sense that a high proportion of the true exposure values will have been
located near to the minimum exposure value of 9 units, which caused us to observe a relation-
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Figure 7.6: Structural fractional polynomial analysis of the corrected linear exposure–disease
relationship under each of the ten scenarios.
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Figure 7.7: Structural fractional polynomial analysis of the corrected asymptotic exposure–
disease relationship under each of the ten scenarios.
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Figure 7.8: Structural P-spline and fractional polynomial analyses of the corrected threshold
exposure–disease relationship under scenario 10.

ship where there was no true relationship (figure 7.5), and to mis-correct for measurement error
(figure 7.8). It seems biologically plausible that for some exposures, including FBG, there is
a minimum level of true exposure and that all observations below this level are the result of
measurement error alone. We have observed that observations below the minimum observable
true exposure can significantly bias our results and is an issue which we believe has not been
previously discussed.

We have seen that structural fractional polynomials and structural P-splines are relatively robust
to heteroscedasticity and non-normality of the measurement error distribution. However, non-
linearity is introduced into a true linear relationship, and non-linear relationships are distorted,
when the true exposure is non-normal. Although a log transformation of the data can help
reduce the skewness of the exposure, the data in scenarios 2, 9 and 10 were still very non-
normal.

In practice we may be saved from very non-normal distributions. Firstly, if the output of a
laboratory analysis gave a wildly implausible value (as the result of measurement error) then in
many cases the sample will be reanalysed. Secondly, gross outliers tend to be removed before
the data are analysed.

In reality we do not know the true data generating mechanism. The diagnostic measurement
error plots described in section 7.2 along with the plots of within-person standard deviations
against confounders described in chapter 6 can help us to explore the distribution of the mea-
surement error, assess whether the measurement error is constant, get an idea of the distribution
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7. Non-classical measurement error

of the true exposure, and whether the measurement error is correlated with confounders. We
have seen that it can be difficult to assess certain features of the measurement error graphically.
Either we may misdiagnose the measurement error as not being heteroscedastic when in fact it
is. Alternatively, as in the case of the ERFC, we may find that no simple transformation returns
us to an additive model which leaves us in a situation which does not fit the standard models.
It can also be difficult to identify the cause of what we observe; for example we have observed
that non-normal measurement error can give plots of within-person standard-deviation against
within-person mean that appear to show heteroscedasticity of the measurement error.

7.4 Correcting for non-classical measurement error

We shall briefly describe some of the correction methods that appear in the literature for cor-
recting for non-classical measurement error, before considering a robust method for estimating
the distribution of true exposure given observed which we apply to a re-analysis of the ERFC
FBG–CHD relationship.

7.4.1 Methods proposed for correcting for non-classical error

If the measurement error variance appears to increase linearly with exposure, then analysis on
the logarithmic scale may be appropriate; this is the approach we took in the previous section.
The measurement error plots described in section 7.3.2 allow us to check whether taking the
logarithm is effective.

Guo and Little [53] propose that when the measurement error variance increases with exposure
level we can approximate the distribution of X|W by X|W ∼̇N(λ0 + λ1W,π

2W 2γ) where γ
is estimated as the slope of the regression of the log squared residuals of the regression of X
on W on the log of W 2. This method requires that we have observed a gold standard exposure
measurement for a subset of individuals.

Augustin, Doring, and Rummel [164] use a modification of regression calibration for a linear
exposure–disease relationship that allows for heteroscedastic measurement error. Augustin
comments that calculating regression calibrated values for other powers of the true exposure
requires further research.

Spiegelman, Logan, and Grove [54] recently proposed an adapted efficient regression calibra-
tion estimator, that used gold standard data to take account of heteroscedastic measurement
error. They found that ordinary regression calibration actually performed better than any of the
methods they used to correct for heteroscedastic measurement error. This seems to agree with
our findings in the last section.

Empirical-SIMEX [175] deals with the problem of heteroscedastic error by forming pseudo
datasets from linear combinations of the observations made on each individual. This method
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requires replicate observations to be available for all individuals.

Non-normality of the true exposure, which was the main cause of distortions of the exposure–
disease relationship in our simulation study, is only problematic for structural correction meth-
ods. For functional correction methods, such as SIMEX, we do not need to assume anything
about the true exposure distribution. Guolo [150] gives a comprehensive review of robust tech-
niques for measurement error correction.

As we mentioned in our description of structural P-splines in chapter 4 Carroll et al. [157]
suggested that we use a mixture of normals to estimate the distribution of the true exposure
given observed to robustify structural P-spline models. Similarly, this approach can also be
used for structural fractional polynomials. We pursue this approach in the next section since it
is a natural extension of the methods we have previously considered.

7.4.2 Mixture regression calibration modelling

Misspecification of the distribution of the true exposure given observed, can lead us to make
invalid inference, as we saw in some of the scenarios considered in the previous section. Semi-
parametric approaches allow greater flexibility for this distribution and can be more robust.
Semi-parametric models can lead to a major loss of efficiency if a suitably chosen parametric
model is approximately correct. A solution to this problem is to use a parametric model for the
distribution that offers a high degree of flexibility.

Finite mixture models are flexible parametric models that are able to accurately reproduce a
wide range of distributions [228]. Mixture models assume that observations belong to one of
K latent classes, each of which has its own distribution e.g. normal with different parameters
for each of the K latent classes in a normal mixture model. Ruppert, Carroll, and Maca [157]
suggested using a mixture of normals to build robustness into structural regression splines.
Mixture models have also been used in other measurement error problems by Carroll, Roeder,
and Wasserman [229] and Richardson, Jaussent, and Green [230]. Two approaches to fitting
mixture models are possible, Bayesian and classical likelihood—in this chapter we consider a
classical likelihood approach.

Suppose that we wish to fit a normal mixture model with K components. The likelihood
contribution of the kth component of the mixture regression calibration model is given by

fk(x|w1, z,αk, σ
2
k) =

n∏
i=1

1

σk
√

2π
exp

(
− 1

2σ2
k

(xi − (α0k + αk1w1i +αTzkzi))
2

)
(7.1)

and the likelihood of the K-component normal mixture model is given by the weighted com-
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bination of the K components

f(x|w1, z,α,σ
2,π) =

K∑
k=1

πkfk(x|w1, z,αk, σ
2
k) (7.2)

where the weights π are constrained so that πk ≥ 0 and
∑K

k=1 πk = 1. This likelihood can be
maximised directly, or via the EM algorithm [231].

7.4.3 Application — ERFC FBG data

In this section we apply the mixture modelling approach described above to the ERFC FBG
data. We shall restrict ourselves to considering a mixture of two normals in this case because of
the complexities introduced by considering multiple studies. It has also been suggested that the
distribution of blood glucose is bimodal with peaks in the normal blood glucose and diabetic
ranges [232].

For those studies with repeat measurements we fit a two component mixture regression calibra-
tion model by regressing the repeat FBG measurements on the baseline measurements, where
each component takes the form of the regression calibration models used in chapter 6. We
can then obtain the weight for each component, as well as fitted values and the variance of the
residuals for each component. We adjust the residual variances for each component using a
method of moments estimate of the measurement error within that component, in a similar way
to section 5.2.1.

For those studies where we do not have repeat FBG measurements available for a subset of
individuals we use the same approach as described in chapter 6, whereby we take a weighted
average of the mixture calibration models from each study. In this case it is not obvious how
to combine the regression calibration models for those studies with repeats across studies to
obtain an ‘overall model’. This is because the regression calibration model for each study with
repeats has two components which have no natural ordering.

We have reordered the components of the mixture models from each of the regression calibra-
tion models for studies with repeats according to the mean fitted values within each component
of the mixture. The ‘overall model’ was obtained by taking the inverse variance weighted
average of the models for each component across studies.

In figure 7.9 we see the result of fitting two component flexible structural fractional polynomial
and P-spline models to the FBG data. Under the P-spline model of figure 6.11 where we
assumed normality of the true FBG given the observed the curve flattens out between an FBG
of between 8–10 mmol/l. Under the mixture model the curve continues to rise, although at a
slower rate than before 8 mmol/l. The minimum risk occurs at a value of about 4.8 mmol/l
under the mixture model and the risk rises as the level of FBG decreases. This is in contrast

160



to the normal model where the minimum occurred at a lower level and the model suggested
that low levels of FBG had a protective effect. The structural fractional polynomial mixture
model is quite different from the structural P-spline mixture model, especially for values of
FBG above the mean where the fractional polynomial suggests a much lower hazard; although
by 10 mmol/l the fractional polynomial model is similar to the P-spline.

In this section we only considered a two component mixture model, ideally however, we would
use model selection criteria to decide on the number of components. We chose to order the
components of the mixture models within each study with repeats according to the mean fitted
values of the individual components. Although this is a reasonable approach to have taken it
is ad hoc and the resulting ‘overall model’ we used for those studies without repeat measure-
ments is clearly subject to large uncertainty; both because we are estimating a greater number
of parameters in our measurement error model than when we used a single component, and
because of the issues related to the ordering of the mixture’s components. To obtain a mixture
model for those studies without repeat measurements a better approach would be to fit a single
hierarchical model to all the studies with repeats; doing this would allow us to get around the
problem of component ordering. The problems encountered with mixture modelling highlight
the problems that can be introduced when we consider multiple studies.

In this section we have seen that a number of methods have been proposed for non-classical
measurement error. We saw that a normal mixture model can be used to allow for non-normality
of the distribution of the true exposure given observed. When we applied this to as part of es-
timating the FBG–CHD relationship, it suggested that the results of chapter 6 may be sensitive
to the normality assumption we made about true FBG given observed FBG. This model is,
however, subject to great uncertainty because of the problems associated with the mixture of
normals used in the measurement error model for those studies without repeats. For this reason
we do not take this model forward in later chapters, but we do suggest it is an area for future
research.

7.5 Conclusion

In the first section of this chapter we considered the effects of non-normal true exposure, and
non-normal and/or heteroscedastic measurement error on the observed exposure–disease rela-
tionship. We also considered the effect on structural fractional polynomial and P-spline meth-
ods for the exposure–disease relationship where we erroneously assumed that the distribution
of the true exposure given observed was normally distributed. We saw that plots using the
means and differences between replicate observations within individuals allow us to gain an
insight into the measurement error structure and the distribution of the true exposure, although
these plots were often hard to interpret.

Heteroscedastic measurement error can cause non-linearity in the observed exposure–disease
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relationship when it is truly linear, and distorts the shape of the relationship when it is non-
linear, but this effect decreases as the measurement error variance increases, since the mea-
surement error variance is simultaneously attenuated. In our simulation, however, structural
fractional polynomials and P-splines appeared to be relatively robust to heteroscedastic mea-
surement error. Non-normality also has a similar effect on the shape of the relationship but the
effect remains when the measurement error variance increases. Structural P-splines and frac-
tional polynomials retain the non-linearity introduced by heteroscedasticity and non-normality
of the true exposure. We also noted that significant bias can be introduced when observed
exposure values lie outside of the range of the true exposure distribution due to measurement
error.

In the second section we briefly discussed methods for correcting for non-classical error. We
then investigated using a two-component mixture model for the distribution of the true exposure
given observed for structural fractional polynomial and P-spline models. We applied this ap-
proach to the FBG–CHD relationship because in chapter 6 we saw that the measurement error
appeared to be heteroscedastic, and the distribution of true FBG non-normal. The relationship
observed under the two-component structural P-spline model was similar to the single compo-
nent model except at levels of FBG below the mean; however, the two-component structural
fractional polynomial was much less steep above the mean level of FBG. These results suggest
that our models may be sensitive to the assumption of normality of true FBG given observed.
We did however, note that there was considerable uncertainty surrounding the measurement
error model for those studies with repeat exposure measurements.

In chapter 6 we ignored heterogeneity in the shape of the FBG–CHD relationship between
studies. In chapter 8 we consider meta-analysis, which will allow us to properly account for
this variation, so that we are able to ascertain our best estimate of the shape of the FBG–CHD
relationship.
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Chapter 8

Meta-analysis

When modelling the FBG–CHD relationship in chapter 6 we ignored heterogeneity in the shape
of the relationship between studies. In this chapter, we consider methods to take account of this
heterogeneity. We start by giving an introduction to meta-analysis; this sets the background and
introduces the methods we shall use later in the chapter. We then consider individual participant
data (IPD) meta-analysis which is the gold standard approach to meta-analysis. Sauerbrei and
Royston [67] recently proposed an approach for performing a 2-stage IPD meta-analysis using
fractional polynomials, taking into account heterogeneity in the shape of the exposure–disease
relationship between studies. We describe their approach, consider how it might be extended to
P-spline models, and consider alternative methods for pooling relationships across studies. The
methods described in this chapter allow us to obtain the ultimate goal of this dissertation: to
produce measurement error corrected non-linear exposure–disease relationships in a large IPD
meta-analysis. Hence, we conclude this chapter by reanalysing the FBG–CHD relationship.

8.1 Evidence synthesis

Evidence synthesis is the combination of multiple sources of data on a research question. The
initial stage of an investigation is to clearly define the research question, and the strategy to
find relevant studies. The search usually uses queries of search engines such as PubMed and
Embase to identify papers that are potentially relevant. The abstracts of these papers will be
read to assess their relevance to the research question. The identified papers will then be read in
full. Once the relevant papers have been identified the references within those papers and those
citing them will usually also be checked because both are likely to be relevant. Other ways of
identifying relevant data include ad hoc searches, databases of trials, conference abstracts, and
discussions with researchers in the field. Usually more than one researcher will be involved
in this process to ensure that no studies ‘slip through the net’. The methodology used should
be published, with a diagram showing the identification process often proving helpful to the
reader.
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One of the greatest challenges of quantitative evidence synthesis is extracting an effect size
estimate Yi from each paper, and its associated variance VYi . This estimate may be an esti-
mated slope, odds ratio, or log hazard ratio for a linear, logistic, or Cox regression respectively.
Different studies may have used different analysis methods, different levels of adjustment for
confounding, different study design or different ways of reporting the outcome. For example,
different studies may have used different forms for the linear predictor, or different groupings
under a grouped exposure analysis, which can make it difficult to obtain the parameter of inter-
est, and its variance, from each study. A process of standardisation between studies therefore
needs to be performed.

8.2 Advantages/disadvantages of meta-analysis

Meta-analysis is the statistical synthesis of results from a number of studies [233]. As opposed
to a narrative review that draws conclusions in a qualitative manner, the aim of meta-analysis is
to do so quantitatively. Meta-analyses often allow conclusions to be drawn from a set of studies
that could not be drawn from any one individually.

There are many advantages to meta-analysis including:

• They are much cheaper than conducting a new trial or cohort study.

• They make best use of existing data.

• They can yield results much more quickly than waiting for the completion of a new study.
This is especially the case in epidemiological studies where follow-up periods may be
many decades long.

• They allow greater statistical power to find a significant relationship.

• They can help prioritise areas where further research should be conducted. Similarly
in some instances they may indicate areas where sufficient research has already been
conducted.

Despite the many advantages of meta-analysis, many criticisms have also been made including
[234]:

• Garbage — The use of poor-quality studies leads to poor-quality results. The studies that
go into a meta-analysis must be of good quality.

• Apples and Oranges — Often meta-analyses are accused of comparing ‘apples and or-
anges’ i.e. comparing studies that are not measuring the same outcome or differ in other
significant ways. Heterogeneity between studies can arise in a number of ways such as
differences in study design and adjustment for confounders. This can be prevented by
clearly defining the research question, using judgement, and by exploring the sources of
heterogeneity.
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• File drawer problem — In meta-analysis of clinical trials there is a tendency for studies
that do not show a significant effect not to be published but instead to be ‘filed away in
the drawer’. Similarly, in epidemiology when studies consider multiple exposure–disease
relationships, significant relationships are more likely to be published. The risk of failing
to include all relevant studies can be reduced partially by performing a thorough evidence
synthesis. We shall see in section 8.4.2, that we can also test whether publication bias is
evident within our collection of studies.

8.3 Univariate meta-analysis

Having obtained a set of effects size estimates Yi, and their variances VYi , from an evidence
synthesis we need to be able to combine these estimates across studies allowing for the rel-
ative precision of the estimates. In this section we consider fixed effect and random effects
approaches to combining these estimates to produce an overall estimate θ̂ of the true effect, and
µ̂ of the mean effect respectively.

8.3.1 Fixed effect meta-analysis

In a fixed effect meta-analysis we believe that all studies were measuring the same true effect
size, θ, and that the variation in the observed effect sizes, Yi, between individual studies is due
to random sampling error, εi i.e. we assume that the observed effect size is the sum of the true
effect and within-study sampling error

Yi = θ + εi , Var(εi) = VYi .

For example Yi might be an estimate of the log-hazard ratio from the ith study, and θ its true
underlying value.

In a fixed effect meta-analysis each study, i, is given a weight

Wi =
1

VYi

which is the inverse variance of the estimated effect size, VYi; for example this might be the
estimated variance of the log-hazard ratio, Yi. Large studies will typically receive large weights
as they will estimate the true effect more precisely, while small studies will tend to receive low
weights as they will have measured the true effect size less precisely.

The summary effect θ̂ is the weighted mean of the effect sizes from each of the K individual
studies

θ̂ =

∑K
i=1WiYi∑K
i=1 Wi

.
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The variance of the mean effect size is given by the inverse of the sum of the weights

Vθ̂ =
1∑K

i=1 Wi

.

8.3.2 Random effects meta-analysis

Under the random effects model we assume that the true effect size under each study is drawn
from a distribution of possible true effect sizes. The differences in true effect size between
studies could be due to factors such as differences in study protocols (e.g. studies may have
studied groups of people with different characteristics) and in observational studies unmeasured
confounding variables. The observed effect size in the ith study is expressed as the mean effect
size µ plus a deviation from this ηi, plus the within-study sampling error

Yi = µ+ ηi + εi.

The variance of Yi is therefore given by the sum of the sampling error variance plus the variance
of the study specific true effect sizes, τ 2. There are several ways to estimate τ 2; we shall
consider the method of moments or DerSimonian and Laird [235] method below and discuss
other methods in section 8.3.4. There is some difficulty in how we interpret the results from a
random effects analysis. Borenstein et al. [233] describes the summary effect as the mean of
all the relevant true effects.

It is argued that fixed effect meta-analysis is rarely justified [236] and that random effects
analyses should always be carried out since it will collapse down to a fixed effect analysis if the
observed heterogeneity between studies is zero. Visually, non-overlapping confidence intervals
give an indication that there is heterogeneity between studies and that a random effects meta-
analysis may be more appropriate. Statistical tests such as the Q statistic, described below,
should be used to test for heterogeneity. If significant heterogeneity is present we may wish to
look at the studies for any important differences between the studies that may have been missed
earlier in the evidence synthesis process.

8.3.3 DerSimonian and Laird estimate of τ 2

The observed weighted amount of variation between studies is given by

Q =
K∑
i=1

Wi(Yi − θ̂)2 (8.1)

=
K∑
i=1

WiY
2
i −

(∑K
i=1WiYi

)2

∑K
i=1 Wi

. (8.2)
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Q is the weighted sum of squared differences between the individual study effect sizes and
the mean effect size. Under the null hypothesis that all K studies have the same true effect
size, Q has a chi-squared distribution with K − 1 degrees of freedom. Hence we can test for
heterogeneity between studies by comparing the value of Q against a χ2

K−1 distribution. We
should not be over reliant on this test of heterogeneity, as non-significant values of Q could
result from low power to detect heterogeneity due to the meta-analysis being of a small number
of studies and/or the studies having large within study variance.

We estimate τ 2 by

τ̂ 2 =
Q− (K − 1)∑K
i=1 Wi −

∑K
i=1W

2
i∑K

i=1Wi

.

τ 2 is a variance and therefore cannot take values less than zero. Due to sampling error τ̂ 2 can
be negative if Q− (K − 1) < 0 in which case τ̂ 2 is set equal to 0.

Once τ 2 has been estimated we can calculate the random effects meta-analysis using weights

W ∗
i =

1

V ∗Yi

where
V ∗Yi = VYi + τ̂ 2.

The mean effect size, µ̂, is calculated as under the fixed effect model, but usingW ∗ which takes
into account the between-studies variance

µ̂ =

∑K
i=1W

∗
i Yi∑K

i=1 W
∗
i

, Vµ̂ =
1∑K

i=1 W
∗
i

. (8.3)

The range of weights within a random effects meta-analysis will be smaller than in a fixed
effect meta-analysis. This is because each study tells us something about the distribution of
the true effect sizes even if it has measured the true effect size for that study imprecisely. This,
however, can be a disadvantage if smaller studies are of lower quality. The consequence is that
the standard error of the summary effect will be larger under a random effects meta-analysis
than under a fixed effect model.

Higgins et al. [237] proposed a statistic I2 that tells us about the proportion of the observed
variance that relates to true differences in the effect size between studies

I2 =

(
Q− (K − 1)

Q

)
× 100%.

Values of I2 close to 0% tell us that the true effect sizes are similar between studies and a value
close to 100% tells us that the heterogeneity between studies dwarfs that within studies.
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8.3.4 Other measures of τ 2

Another popular method, although a lot more computationally intensive and less intuitive to
non-statisticians, is the use of maximum-likelihood based procedures to estimate τ 2 and µ

simultaneously. The likelihood for µ and τ 2, assuming that the observed effect sizes Yi are
normally distributed, is given by

logL(µ, τ 2|Y ) = −1

2

K∑
i=1

log(VYi + τ 2)− 1

2

K∑
i=1

(Yi − µ)2

VYi + τ 2

and can be maximised iteratively for µ and τ 2. Maximum likelihood estimates of variance pa-
rameters are known to be negatively biased in many situations [238]. The restricted maximum
likelihood (REML) given by

logL(µ, τ 2|Y ) = −1

2

K∑
i=1

log(VYi + τ 2)− 1

2
log

K∑
i=1

1

VYi + τ 2
− 1

2

K∑
i=1

(Yi − µ)2

VYi + τ 2

does not have this problem, and as above these equations are maximised iteratively.

Other estimators for τ 2 have been proposed including Hunter-Schmidt [239], Hedges [240],
and empirical Bayes [241] estimators. Viechtabauer compared the bias and efficiency of these
methods and concluded that the REML method is to be preferred, whilst the Hunter-Schmidt
and maximum likelihood methods are to be avoided [238]. Although each method will typi-
cally produce a different estimate of τ 2 the effect this has on the overall effect size estimate is
generally small.

Meta analytic methods have been implemented in most standard statistical software packages
such as the metan [242] package in STATA and meta [243], rmeta [244], and metafor
[245] packages in R.

8.4 Graphs for meta-analysis

Anzures and Higgins [246] give an overview of graphs that can be used for meta-analysis and
some useful tips on presentation. Here we give details of the three most commonly used graphs.

8.4.1 Forest plot

The forest plot is used to display the effect size and confidence interval for each study in a
meta-analysis along with the mean effect size. The effect size is usually on the horizontal axis.
The size of the plotting symbol for the effect size in each study is usually proportional to the
inverse variance of the study. This is a clever way to draw the eye to the studies with the most
precisely estimated effect sizes since otherwise the eye is naturally drawn to those with the
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largest confidence intervals which are less precisely estimated. The mean effect size is also
usually plotted using a different symbol, typically a diamond, where the width of the symbol
corresponds to the width of the confidence interval for the parameter of interest. This is to
differentiate the mean effect size from those of the individual studies.

For illustration we show the forest plot obtained from fitting a Cox model with a linear pre-
dictor for FBG (adjusting for age, sex and other conventional cardiovascular risk factors and
stratifying by trial arm where appropriate) to each of the studies within the ERFC in figure 8.1.
We shall also use this example to illustrate the two other graphs below. We observe that fixed
effect and random effects meta-analyses give very similar mean effect sizes in this case, only
differing in the second decimal place, although the confidence interval for the random effects
meta-analysis is larger. There is moderate heterogeneity in the effect sizes between studies,
τ̂ 2 = 0.13.

8.4.2 Funnel plot

The funnel plot allows us to assess publication bias. It is a scatterplot of effect sizes against a
measure of study size, usually the inverse standard error of the effect sizes. Typically the y-axis
is inverted and dotted lines showing the 95% confidence limits based on a fixed effect meta-
analysis added, which gives an indication of the heterogeneity in the data. Asymmetry in the
plot suggests that there is a relationship between effect size and its precision. This could result
from subsets of studies having different effect sizes, publication bias, or a systematic difference
between smaller and larger studies [246]. If asymmetry is present then this should be investi-
gated to ascertain the probable cause, and the appropriateness of carrying out a meta-analysis
on the whole set of effects should be considered. We illustrate this in figure 8.2 where we ob-
serve that the points show no clear asymmetry and the points lie almost within the confidence
limits.

8.4.3 Galbraith plot

An alternative to the funnel plot is the Galbraith plot [247]. The Galbraith plot is a scatter plot
of the effect sizes divided by their standard error, against the inverse of the standard error of
each study. Under this plot better estimated effect sizes lie further from the origin. The mean
fixed effect can be obtained by regressing the effect sizes divided by their standard error, on
the inverse of the standard error where the model is constrained to have zero intercept. A test
of zero intercept in the unconstrained model can indicate whether publication bias is present.
The constrained line and its 95% confidence are normally added to the plot and aid in detecting
heterogeneity. Anzures and Higgins suggest that this plot is used when there are more studies
than can be sensibly displayed in a forest plot. This plot is illustrated in figure 8.3.
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Figure 8.1: Forest plot for the slope parameter for a linear FBG–CHD relationship, with 95%
confidence interval (CI) and fixed and random effects weights (W) for each study.
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Figure 8.3: Galbraith plot for the slope parameter for a linear FBG–CHD relationship.
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8.5 Multivariate meta-analysis

There are occasions when more than one parameter is of interest; for example Hartung, Knapp,
and Sinha [248] analyse data from Kalaian and Becker where the two parameters of interest
are performance on the Scholastic Aptitude Tests (SAT) mathematics and verbal reasoning
examinations. In section 8.7.2 we shall be dealing with multiple model parameters from each
study.

The easiest approach to meta-analysis of multiple parameters is simply to ignore the multivari-
ate nature of the data and meta-analyse each parameter univariately. This ignores the informa-
tion that is contained in the correlation between the parameters. Another approach is to form
a measure that is the composite of the parameters [249]; this is clearly fraught with difficul-
ties. A more appealing approach is to perform a multi-variate meta-analysis. A fixed effect
approach was proposed by Raudenbush, Becker, and Kalaian [250] and implemented in the
gap package [251] in R whereby the outcomes are stacked and are regressed using generalised
least squares on a set of indicators, one for each parameter, which equal one if the indicator
relates to that parameter and zero otherwise. To assume a fixed effect is a strong assumption
in univariate meta-analysis but becomes even stronger in multivariate meta-analysis because it
seems implausible that there is no between-study heterogeneity in any of the parameters [252].
Therefore, a true multivariate random effects meta-analysis approach is required.

Under the multivariate model, where we have m parameters, we assume that the parameter
estimates from ith study Yi = {Yi1, ..., Yim} are distributed according to a multivariate normal
distribution

Yi ∼ N(θi,∆i)

where the true effect size is also assumed to come from the multivariate normal distribution

θi ∼ N(µ,Σ).

For example, if we have estimates of two parameters, Y1 and Y2, with within-study variance-
covariance matrix for the ith study,

∆i =

(
σ2

1i ρσ1iσ2i

ρσ1iσ2i σ2
2i

)

and between-study variance-covariance matrix,

Σ =

(
τ 2

1 κτ1τ2

κτ1τ2 τ 2
2

)
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then we get the bivariate normal model for the ith study(
Y1i

Y2i

)
∼ N

((
µ1

µ2

)
,

(
σ2

1i + τ 2
1 ρiσ1iσ2i + κτ1τ2

ρiσ1iσ2i + κτ1τ2 σ2
2i + τ 2

2

))
.

To estimate the parameters µ and Σ we can maximise the restricted likelihood

log `(µ,Σ|Y ) = −1

2

K∑
i=1

log |Σ+∆i|−
1

2
log

∣∣∣∣∣
K∑
i=1

(Σ + ∆i)
−1

∣∣∣∣∣−1

2

K∑
i=1

(Yi−µ)T (Σ+∆i)
−1(Yi−µ).

Once we have obtained an estimate for Σ we can calculate our overall effect size estimate µ̂
and its variance as

µ̂ =

(
K∑
i=1

(Σ̂ + ∆i)
−1

)−1 (
(Σ̂ + ∆i)

−1Yi

)

V̂ar(µ̂) =

(
K∑
i=1

(Σ̂ + ∆i)
−1

)−1

.

Maximising the restricted likelihood is computationally intensive, especially as the number
of parameters increases. In section 8.7.2 we perform a multivariate meta-analysis on twelve
parameters which would take considerable time using this approach. An alternative to REML
is a DerSimonian and Laird based approach [252] which is computationally simpler, especially
when the number of parameters is large. This approach is used in all of the multivariate meta-
analyses that follow in this chapter. Under this method we calculate the Q matrix where the
(j, k)th element (corresponding to the jth and kth outcomes) is given by

Qjk =
k∑
i=1

(Yji − Ȳj)(Yki − Ȳk)
σjiσki

where

Ȳj =
K∑
i=1

Yji
σjiσki

1
σjiσki

.

The expectation of Qij is given by

E(Qjk) =

(
K∑
i=1

ρj −
∑K

i=1
ρji

σjiσki∑K
i=1

1
σjiσki

)
+

 K∑
i=1

1

σjiσki
−

∑K
i=1

1
σ2
jiσ

2
ki∑K

i=1
1

σkiσki

κτjτk

which is a linear function of the parameter of interest κτjτk. Hence, by equating Qij with its
expectation we can calculate κτjτk. Note that this can be done pairwise which significantly
reduces the amount of computation required.

In univariate meta-analysis the estimated between study heterogeneity τ̂ 2 is truncated so that
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it takes a positive value. Similarly, in multivariate meta-analysis we need to ensure that our
estimate of the between study heterogeneity matrix Σ̂ is positive semi-definite. This can be
achieved by setting any negative eigenvalues of the spectral decomposition of Σ̂ to zero. Let
Φ = {φ1, ..., φm} be the eigenvalues of Σ, and e = {e1, ..., em} the corresponding eigenvectors
then

Σ̂+ =
m∑
i=1

max(0, φi)eie
T
i

will be positive semi-definite as required.

When we have studies that have not measured all parameters, and if we can assume that the
parameter values are missing at random, then we can replace the outcome measure with zero
(or with any other arbitrarily chosen value) with an extremely large within-study variance, and
zero covariance. This has the effect of weighting out those outcome measures that we did not
observe. For example, pupils from a certain school may only have sat the mathematics paper
of the SAT.

Both REML and DerSimonian and Laird approaches are implemented in STATA in the mvmeta
package [253], and REML is implemented in the package of the same name in R [254], we give
our own R code for both REML and DerSimonian and Laird approaches in appendix F.

Different ways of graphically presenting the results of a multivariate meta-analysis are required
to those given for the univariate case in section 8.4. For example a bubbleplot can be used
instead of a forest plot to display the parameter estimates from each study in a bivariate meta-
analysis or two dimensions from a higher dimensional meta-analysis [255].

8.6 Individual participant data meta-analysis

IPD meta-analysis is the gold standard approach to combining data across multiple studies al-
lowing us to control for confounders consistently between studies, carry out the same analysis
on all studies using common criteria for inclusion/exclusion, and allowing us to perform addi-
tional analyses such as sub-group analyses that we would otherwise be unable to do. IPD meta
analyses can lead to different conclusions being reached than if the meta-analysis had been
conducted on aggregate information; for some examples see Riley et al. [62].

There are increasing numbers of large consortia such as the Emerging Risk Factors Collabo-
ration [7] and the Asia Pacific Cohort Studies [13] as well as multi-centre studies such as the
European Prospective Investigation into Cancer and Nutrition [256] which combine IPD from
large numbers of studies/centres looking at similar research areas.
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8.6.1 Advantages and disadvantages of IPD meta-analysis

Thompson [257] gave a table of some of the advantages that IPD analysis of data collated by
large consortia allows, which we reproduce below:

• Enhanced comparability across studies

– Ability to check and harmonise data to a common format

– Use of standardised exposure, covariate and outcome definitions

– Use of individual-level rather than study-level eligibility criteria

• Minimisation of biases

– Ability to use common approaches to missing data

– Allowance for measurement error

– Use of consistent adjustment for potential confounders

• Greater insight

– Ability to address novel hypotheses

– Increased statistical power compared to individual studies, and the ability to assess
associations with rarer outcomes

– More precise estimation of associations under different circumstances

– Detailed exploration of potential sources of heterogeneity with less vulnerability to
ecological fallacies such as can occur with aggregated data

– Ability to update and extend duration of follow-up

– Permits more reliable sensitivity analyses to assess robustness of findings

• Consequential benefits

– Provides a network of investigators to help further common research interests

– Can help minimise duplication of research effort

– Can help promote standardisation of research practices

– Can stimulate advancement of methods that maximise the value of available data

There are some downsides to IPD meta-analysis. These include:

• Large IPD meta-analyses are expensive because of the need to employ data managers to
look after the collation and harmonisation of the data from all the contributing studies.
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• They can take considerable time because the data harmonisation process can be hindered
by slow response to data queries with collaborating studies and because it is usual that
papers resulting from such consortia are circulated amongst the collaborators before pub-
lishing.

• There can be issues regarding how authorship of manuscripts is attributed.

• Detail may be lost that was present in the original studies. For example smoking status
may have been recorded in some studies as current smoker, past smoker or never smoker

whereas some studies may have just recorded current smoker or non-current smoker.
It may however be possible to perform analyses on a subgroup of studies if sufficient
studies have records at the more detailed level. Biological measurements can also vary
between studies due to the equipment or assay procedure used. Careful analysis of the
results obtained from different methods is necessary to ensure that the measurements
from different studies are compatible.

8.6.2 Approaches to IPD meta-analysis

There are two approaches to carrying out an IPD meta-analysis: the one stage approach and
the two-stage approach. In the one-stage approach all the data are used in a single hierarchical
model that takes account of the clustering within studies; for an example see Higgins et al.

[258]. The random effects Cox model was developed by Ma et al. [259] and considered by
Tudur Smith et al. [260]. These models can be fit in R using the coxme [261] package. In the
two-stage approach a model is fitted to each of the studies and then the estimates from these
models are combined using the summary meta-analysis techniques described in section 8.3.
These two approaches generally lead to similar results [262]. We consider a two-stage approach
because of the computational complexity of fitting a one-stage model to large IPD [15].

In some situations it may not be possible to get the IPD from some studies, in which case
aggregate level data may have to be used, Riley et al. [263] give a review of this area. The
simplest approach is within a two-stage meta-analysis where the IPD are analysed in the first
stage study by study and then combined with the aggregate level data in the second stage. This
is not a problem that we have with the ERFC in which we have IPD available for all studies.

8.7 IPD meta-analysis for continuous exposure measures

In this section we consider approaches to meta-analysis of non-linear exposure–disease rela-
tionships; we start by considering combining grouped exposure analyses across studies, and
then consider methods for combining continuous models for the exposure–disease relationship
across studies.
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8.7.1 Multivariate meta-analysis of point estimates

Perhaps the most obvious way to combine continuous exposure-disease relationships across
studies is to discretise the continuous exposure by splitting the exposure into R groups, fit
a grouped exposure analysis to each study to obtain parameter estimates β̂i = {β̂1i, ..., β̂Ri}
and associated variance-covariance matrix Vβ̂i , and combine the results across studies using
multivariate meta-analysis. This was the approach taken by White [253] who performed a mul-
tivariate meta-analysis of IPD on a continuous exposure, fibrinogen, and the risk of coronary
heart disease. As we discussed in chapter 2 there are many problems with using grouped ex-
posure analyses and we would prefer to model the exposure–disease relationship in each study
using a continuous model.

8.7.2 Continuous approach

We now consider meta-analysis of continuous functions for the linear predictor. Sauerbrei and
Royston [67] noted that of the 281 references in Sutton and Higgins’ [264] review of recent
developments in meta-analysis, none of them appeared to deal with a continuous exposure
without using groups to discretise the problem. Although this was incorrect, as one of those
references by Schwartz and Zanobetti [265] does in fact pool LOESS (locally weighted scatter-
plot smoothing) smooths across studies, this is a research area that has received relatively little
attention.

Sauerbrei and Royston [67] have recently provided an approach to meta-analysis of fractional
polynomial models allowing for heterogeneity in the shape of the exposure–disease relationship
between studies. Their approach consists of two steps—model selection, and pooling of models
across studies.

For the first step, Sauerbrei and Royston give three model selection rules for choosing a frac-
tional polynomial model for each study. We discuss these rules and consider possible selection
rules for P-spline models. For the second step they suggest a pointwise pooling rule to combine
the relationship across studies allowing for heterogeneity in the shape of the relationship. We
discuss this approach, and consider alternatives. We use simulated examples to illustrate some
of the differences between the methods.

Model selection rules for fractional polynomial models

Sauerbrei and Royston’s three approaches to obtaining a fractional polynomial model for each
study within an IPD meta-analysis are:

• Overall Model

Select the best FP2 fit to the overall dataset, stratifying by study to allow for possible
differences in baseline hazard between studies. We have much greater power to detect
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non-linearity in the overall dataset so Sauerbrei and Royston suggest using a smaller
nominal significance level (e.g. 0.01 or 0.001) so only models that are highly supported
by the data are selected. We then use the powers from the selected fractional polynomial
model and refit this model to each of the individual studies.

• Studywise Model (fixed df )

In each study the best fitting FP2 is chosen for each study.

• Studywise (varying df )

In each study the best fitting fractional polynomial model of maximum degree 2 is chosen
for each study. Typically we will have lower power to detect non-linearity in individual
studies so we should use a larger nominal significance level.

Fractional polynomial fitting requires that all the exposure values are positive. If this is not the
case then a constant is added to the exposure values to ensure positivity (c.f. section 2.2.3).
When using the second and third methods above this must be done with respect to the range
of exposure values for all studies since otherwise we may get asymptotes in the range over
which we wish to obtain fitted values from the model. The studywise (varying df ) selection
rule was found by Sauerbrei and Royston to not work well, tending to give linear exposure-
disease relationships in smaller studies which results in pooled relationships that do not exhibit
much non-linearity, despite non-linearity being supported by the larger, more powerful studies.
The flaw in this approach is that it does not allow us to borrow strength about the shape of the
exposure–disease relationship across studies.

Model selection rules for P-spline models

Splines have been used in meta-regression [147, 266] but do not appear to have been combined
before in an IPD meta-analysis. We consider how we could select appropriate P-spline func-
tions to combine in a meta-analysis as described above for fractional polynomials. We propose
three different model selection rules for choosing the degrees of freedom for P-spline models
which can be viewed as having similarities with the three rules for fractional polynomials:
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• Overall model

We can fit the same model to each cohort. This can be achieved by setting the level of
penalisation to be constant across models. We are then left with the choice of a suitable
value for λ, the smoothing parameter. Using the value of λ which gives us four degrees
of freedom in the model fitted to the whole dataset will lead to oversmoothing in the
individual models. We found that using the smoothing parameter that gave four degrees
of freedom to the largest study worked well. In this case the individual models for each
cohort will have between one and four degrees of freedom. This differs from the frac-
tional polynomial approach because under this method each study will have a different
number of degrees of freedom.

• Studywise model (fixed df )

Fit a P-spline with four degrees of freedom to each study, this is directly comparable to
the studywise FP2 approach where each study has approximately four degrees of free-
dom.

• Studywise model (varying df )

For each study fit a P-spline model where the degrees of freedom are chosen by a model
selection criterion such as Hurvich’s cAIC [108].

The overall model approach relies on us using the same basis for the model fitted to the whole
dataset as well as the individual studies, since the smoothing parameter λ is specific to the basis.
As discussed in section 2.2.4 Govindarajulu et al. [109] found constraining a P-spline model
to have 4 degrees of freedom appeared to be preferable to selecting the number of degrees of
freedom by AIC. We found that the studywise (varying df ) rule suffered from similar problems
as with fractional polynomials, producing pooled relationships that did not exhibit much non-
linearity.

Pooling rules

Once a suitable model has been selected for each study we then need to consider how we can
pool the models across studies. Firstly we describe the pointwise pooling rule of Sauerbrei
and Royston, which was also used by Schwarz and Zanobetti [265], before considering two
alternative methods:

• Pointwise pooling

At each point over a fine grid of exposure values we obtain a fitted value and standard
error (relative to the reference value x0) from the model fitted to each of the individual
studies. So that for the jth grid point in the ith study we have

yij = β̂Ti (xj − x0), Vij = (xj − x0)Vβ̂i(xj − x0)T
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where β̂i is the estimated parameter vector for the ith study and Vβ̂i is its variance-
covariance matrix. At each point j on the grid, we perform a univariate meta-analysis on
yj = {y1j, ..., yKj} and Vj = {V1j, ..., VKj}. Sauerbrei and Royston suggest that either a
fixed effect or random effects meta-analysis can be carried out; although as discussed in
section 8.5 a random effects analysis is strongly preferred.

This is essentially a non-parametric approach as we only require fitted values over a grid of
points and their associated standard errors for each study. Under this method we can combine
studies where we have fitted models of differing functional form to each study. Combining fit-
ted values pointwise is appealing because it uses the standard univariate meta-analysis methods
which are commonly available in statistical software packages. The computation of DerSimo-
nian and Laird random effects meta-analyses is very quick. Hence, the pooled relationship
although requiring many calculations, can be produced quickly.

By choosing to meta-analyse the fitted functions pointwise we are reduced to a graphical dis-
play of the results as we lose the ability to write down the fitted function in a concise manner.
However, one of the advantages noted in chapter 2 of fractional polynomials fitted to individual
studies is that they can be written concisely. This is not an issue when pooling P-spline mod-
els because they cannot be written compactly. When combining the results across studies in
a pointwise manner the degree of heterogeneity between studies is allowed to vary across the
range of exposure, as we shall shortly demonstrate.

A major criticism of pointwise meta-analysis is that the relationship obtained for each study is
given with respect to an arbitrarily chosen reference value. Sauerbrei and Royston note that the
results depend on this choice and advise that it ‘should be chosen sensibly’ [67]. The choice
of reference value can lead not just to a trivial vertical shift of the graph, but to a change in
the shape of the estimated exposure–disease relationship as we shall see in the examples that
follow.

One case where the choice of reference value is not important is under a fixed effects meta-
analysis using pointwise pooling, where the predictor contains a single term e.g. an FP1
model. Since then for all pairs of studies i and j and all choices of reference value x0,

yi
yj

=
βi(x− x0)

βj(x− x0)
=
βi
βj

and
Vi
Vj

=
Vi(x− x0)2

Vj(x− x0)2
=
Vi
Vj

which are both independent of x0. Since the ratio of all pairs of effect sizes and their variances
are independent of the choice of reference value, the estimated exposure–disease relationship is
also independent of the reference value. If the predictor contains more than one term, or we are
using random effects meta-analysis, then we do not get the cancellation observed above and it
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seems unlikely that there will not be some difference in the point estimates and their variances
dependent on the choice of reference value. It is unsatisfactory that the arbitrary choice of
reference value should affect the shape of the pooled relationship, although in many practical
situations the difference may be small.

• Pointwise derivative pooling

A solution to the reference value problem is to work with the derivative of the fitted func-
tion instead of the fitted function itself as this is independent of the choice of reference
value. We can calculate the derivative of the fitted log hazard ratio and its standard devi-
ation over a suitably fine grid of points either analytically, as discussed in section 5.3.1,
or empirically. For the jth grid point in the ith study we have

yij = β̂Ti Dxi, Vyij = DxiVβ̂iD
T
xi

where Dxi is the derivative of the design matrix for the ith study. At each point j on
the grid, we can perform a univariate meta-analysis on yj = {y1j, ..., ykj} and Vj =

{V1j, ..., Vkj}. The pooled derivative can be used to find the implied relationship. We can
then choose a suitable reference value e.g. the mean exposure; and whatever the choice
we shall obtain the same shape for the exposure–disease relationship.

This approach has the same problem with lack of a concise way to write down the resul-
tant mean function. From the pointwise meta-analysis of the derivative we only obtain
the variance of the derivative of the fitted log hazard ratio, and not of the implied relation-
ship. We have not found a method for analytically obtaining the pointwise standard error
of the implied relationship; bootstrap resampling (within studies) can be used, however,
this is computationally intensive.

• Parameter pooling

This approach is mentioned by Sauerbrei and Royston in their discussion but they do not
apply this approach. It is the approach taken by Rota et al. [267] in their meta-regression
of the relationship between alcohol and oesophageal squamous cell carcinoma. This
approach can only be applied if the linear-predictor of the model fitted to each study
is the same. We take the parameter estimates yi = β̂i and their variance-covariance
matrices Vi = Vβ̂i from each of the studies and combine them using multivariate meta-
analysis to obtain the average parameter estimates and associated variance-covariance
matrix. Again this approach is not dependent on the choice of reference value. Another
advantage of this strategy is that we obtain models that can be written down in a concise
manner as they are of the same parametric form as the constituent studies.

We now investigate some of the properties of the three pooling rules using three simulated
examples. These are not intended to be serious examples of meta-analyses that might be carried
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out in practice, but are aimed at illustrating some of the differences between the methods.

Example 1

The aim of this example is to highlight the differences between the methods when we have
studies with different exposure ranges. The following data were generated:

Study 1: 50,000 observations generated from a normal distribution with mean 3 and standard
deviation of 0.6. The exposure–disease relationship was generated from a true linear exposure–
disease relationship with a slope of 0.15 and an exponential baseline hazard h0(t) = 0.01.

Study 2: 150,000 observations generated from a normal distribution with mean 3 and standard
deviation of 0.2. The exposure–disease relationship was generated from a true linear exposure–
disease relationship with a slope of 0.8 and an exponential baseline hazard h0(t) = 0.01.

A P-spline model with 4 degrees of freedom and 17 knots was fitted to both of these studies.
Each of the three pooling rules described above was used to combine the two studies. Fixed
effect analyses were used as there are only two studies. The results from this example can be
seen in figure 8.4.

The pointwise meta-analysis leads to Simpson’s paradox being exhibited. There are two re-
gions, 2.3–2.5 units of exposure and 3.5–3.7 units of exposure, in which both of the studies
give an increasing/decreasing hazard ratio but the average effect size is decreasing/increasing.
This is a result of the confidence intervals for Study 1 ‘blowing up’ outside the range of the
data and Study 2 receiving more weight; we would not see this effect with fractional polynomi-
als. We get a similar, although less pronounced effect, with the parameter based meta-analysis.
This is because each parameter corresponds to a basis function which has an influence over a
localised range. The pointwise derivative pooling rule does not show this effect and increases
across the range of exposure which is consistent with the individual studies.

Example 2

The aim of this example is to highlight the different sized confidence intervals that can be ob-
tained under each of the methods resulting from different assumptions about how the shape of
the exposure–disease relationship varies between studies. The following data were generated:

Study 1: 70,000 observations generated from a normal distribution with mean 2 and standard
deviation of 0.4. The exposure–disease relationship was generated from a true J-shaped rela-
tionship given by 0.3(x− 2.5)2 with an exponential baseline hazard h0(t) = 0.005.

Study 2: 70,000 observations generated from a normal distribution with mean 4 and standard
deviation of 0.4. The exposure–disease relationship was generated from the same relationship
as Study 1.

Here we use the overall model selection rule. The best fitting FP2 to the two studies combined
(stratified by study) was chosen which gave powers of 0.5 and 2. This model was then fitted
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to each study separately and each of the three pooling rules were applied using a fixed effect
analysis in each case.

All three methods give similar pooled relationships (figure 8.5), however the confidence inter-
vals under the parameter pooling rule are considerably smaller than for the other two methods.
Under the parameter pooling rule we assume that the shape of the relationship is known and
that we are interested only in estimating the parameters (β1, β2). Each study, independent of
the range of exposure values, gives us information about these parameters. The confidence in-
tervals under the pointwise pooling rules are much larger because each study tells us very little
about the hazard ratio at the reference value of 3 and this is reflected in the larger confidence
intervals. Note how the choice of reference value obscures this.
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Figure 8.4: Example 1 — Pooled exposure–disease relationship under each of the three pooling
rules for simulated data.

Example 3

The aim of this example is to highlight that different choices of reference value can lead to dif-
ferent shapes for the exposure–disease relationship being obtained under the pointwise pooling
approach. The following data were generated:

Study 1: 100,000 observations generated from a normal distribution with mean 2.5 and standard
deviation of 0.3. The exposure–disease relationship was generated from a true threshold shaped
relationship given by (X − 3)I(X > 3) with an exponential baseline hazard h0(t) = 0.03.
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Figure 8.5: Example 2 — Pooled exposure–disease relationship under each of the three pooling
rules for simulated data. Note that in this example the pointwise and pointwise differential
methods give identical results.

Study 2: 100,000 observations generated from a normal distribution with mean 3.5 and standard
deviation of 0.3. The exposure–disease relationship was generated from a true threshold shaped
relationship given by (3−X)I(X < 3) with an exponential baseline hazard h0(t) = 0.03.

A P-spline model with 4 degrees of freedom and 17 knots was fitted to both of these studies.
Each of the three pooling rules was used to combine the two studies using fixed effects meta-
analysis. In figure 8.6 we see that the pooled relationship under the pointwise pooling rule is
clearly dependent on the choice of the reference value; in fact the relationship obtained under
the two choices of reference value considered are near mirror images of each other. As in
example 1, the pooled relationship is going in the opposite direction to the relationships in
the individual studies i.e. below exposure of 2.6 units when the reference value is 3.5 units,
and above 3.5 units when the reference value is 2.5 units. Under the pointwise derivative and
parameter pooling rules there is essentially no relationship between exposure and disease under
both choices of reference value. Obviously this example is pretty extreme and in practice you
would probably not try to combine studies that exhibited completely opposite trends. It does,
however, serve to highlight the pointwise pooling rule’s dependence on the choice of reference
value even if the reference value is ‘chosen sensibly’.
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Graphical presentation of continuous meta-analyses

Sauerbrei and Royston suggest plotting the fitted function for each of the studies on a single
plot. This allows us to visually assess heterogeneity between studies in much the same way as
with a forest plot. There are, however, two main downsides to this plot. Firstly, there is no way
to distinguish between large cohorts whose model parameters will be well estimated and small
cohorts which will be subject to a greater amount of uncertainty, and secondly as the number
of cohorts increases so does the number of lines on our graph which can make it difficult to
interpret. Sauerbrei and Royston also plot the weight each study receives under the pointwise
pooling rule across the exposure range. Although we can see how the weights vary between
studies, it is hard to deduce the effect of the change in weight on the pooled relationship.

We propose combining these two plots to aid interpretability, and save page space. We propose
that the saturation of the colour of the line in the plot of the fitted function from each study
depends on its weight in the meta-analysis at that point. This allows us to see which cohorts
are contributing most to the overall shape of the exposure–disease relationship at each level of
exposure. This will allow us to consider heterogeneity in the shape of the relationship between
studies but also we may wish to investigate heterogeneity in regions of exposure e.g. Why does
study . . . have such a large weight in this range of exposure?

In the case that we use the parameter pooling rule with fractional polynomials then we can use
the bubbleplot approach described in section 8.5 to display the results, although we found that
if the variance in one parameter is much larger than the variance in the second then a bubbleplot
does not give a good presentation of the data. When we use P-spline models we will have many
coefficients making this approach impractical.

Heterogeneity

Heterogeneity between studies can be investigated under the pointwise pooling rule by plotting
how τ̂ 2 varies across the exposure range. This will be dependent on the choice of reference
value. τ 2 = 0 at the reference value although this is purely artificial, and we would expect it
to increase as we get further from the reference value since the pointwise variances generally
increase as we move away from the reference value. This plot will be more meaningful under
the pointwise derivative pooling rule because it does not depend on the choice of reference
value. A better way of visualising heterogeneity across the exposure range may be to use
Higgin’s I2 statistic because it is independent of scale.

187



8.M
eta-analysis

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Example 3 − Reference value: 3.5

Exposure

H
R

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Example 3 − Reference value: 2.5

Exposure

H
R

Individual studies
Pointwise
Pointwise differential
Parameter

Figure 8.6: Example 3 - Pooled exposure–disease relationship under each of the three pooling rules for simulated data with the reference value at 3.5
units of exposure (left hand panel) and 2.5 units of exposure (right hand panel).
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8.8 Application of methods to the ERFC FBG data

We now apply the methods introduced in section 8.7.2 to the FBG–CHD relationship using the
ERFC data that were introduced in chapter 6. Each of the analyses that follow are adjusted for
the confounding effects of BMI, smoking status (current smoker vs. non-current smoker), total
cholesterol, and systolic blood pressure.

8.8.1 Relationship uncorrected for the effects of measurement error

Firstly, we demonstrate a meta-analysis of a grouped exposure analysis. Within each cohort
we fit a grouped exposure analysis using the groups defined in section 6.4.1, and combined
the studies using multivariate meta-analysis. The result is shown in figure 8.7. We have used
the mean of all observations in each group across all studies to choose the x-axis plotting
locations and we have selected the third group as the reference to prevent perfect prediction in
the reference group within individual studies. Perfect prediction occurs when a group contains
observations but no events. We observe essentially the same relationship as in the third panel
of figure 6.2 although the middle group (FBG of 5.5–6 mmol/l) now lies below the 6th group
(FBG of 6–6.5 mmol/l).
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Figure 8.7: Multivariate meta-analysis of a grouped exposure analysis of the observed FBG–
CHD relationship, with quasi-variance based confidence intervals.

In figure 8.8 we apply each of the three model selection rules for P-splines to the relationship
between FBG and CHD using the pointwise pooling rule. When we use the overall model
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8. Meta-analysis

selection rule, the shape of the relationship (1st row, 2nd column) is similar to that when we
applied a model stratified by cohort to the whole dataset, although the hazard is slightly lower
at higher levels of FBG. At the lowest levels of FBG, a small number of studies have a large
amount of the weight (1st row, 1st column) whilst above the mean of FBG the weights are
distributed over a number of studies. Almost all of these show increasing risk with increasing
FBG although they differ substantially in how strong this relationship is.

Under the studywise model with 4df (2nd row, 2nd column) we find that the shape of the
relationship is broadly similar, although we get a ‘kink’ at an FBG of 9 mmol/l. We can see
(2nd row, 1st column) that this is caused by one study gaining greater weight between 9 and 10
mmol/l. We see that the weights are concentrated on a much smaller number of studies.

In the last row of figure 8.8, where we have used the studywise (varying df ) pooling rule we
see that although we get a shape of relationship that seems plausible in the middle of the range
of FBG values we get a very linear relationship in the tails; most of the weight is concentrated
on a very small number of studies. As noted above this method does not take advantage of the
fact that we can borrow strength across studies.

Figure 8.9 displays the same information as the top left hand panel of figure 8.8 but using the
plots of Sauerbrei and Royston. On the left hand side we can see the shape of the relationship
from each of the studies but we have little idea as to which curves are the ones which tell us
most about the shape of the relationship. If we consider the two plots concurrently then we
can identify which curves have the most weight and where, but with a large number of studies,
even when we use the same colour coding in the two plots, it is not easy to match the studies
with the most weight in the right hand plot to the relationship in the left hand plot. In contrast
in the left hand column of figure 8.8 our attention is immediately drawn to those studies which
have most influence on the pooled relationship.

Figure 8.10 shows the result of applying each of the three pooling rules to a fractional polyno-
mial analysis of the FBG–CHD relationship where we have used the overall model selection
rule. Although in section 8.7.2 we showed that the different pooling rules could provide us
with different shapes and confidence intervals for the relationship, we see in this example that
there is little difference between the three rules. All three methods suggest that the relationship
is slightly stronger above the mean of FBG than when we fitted a model stratified by cohort to
the whole dataset.
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Figure 8.8: P-spline models of the FBG–CHD relationship under each of the three model se-
lection rules. Left hand column: relationships in individual studies where saturation of line
represents weight in meta-analysis, right hand column: pointwise meta-analysis of relation-
ships, with stratified model (4df ) for comparison.
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Figure 8.9: P-spline models for the FBG–CHD relationship in individual studies using the Overall model selection rule (left hand panel) and weights
of these models in a pointwise random effects meta-analysis across the range of FBG (right hand panel).
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Figure 8.10: Random effects meta-analysis of the FBG–CHD relationship using fractional
polynomial models for each study chosen by the overall model selection rule and pooled using
each of the pooling rules, plus the relationship obtained by fitting a model to the combined
dataset stratified by study.

In figure 8.11 we consider how the heterogeneity under the two pointwise methods varies across
the range of FBG. Firstly, we note that the two curves in the left hand panel are not directly
comparable. We see that under the pointwise pooling method τ 2 increases as we move away
from the reference value, however as discussed previously this is partially an artefact of the
choice of reference value. Under the pointwise derivative pooling τ 2 increases sharply in both
directions as we move away from the centre of the distribution of FBG values of around 4.5 to
6 mmol/l. The right hand panel of 8.11 is much more useful because the measures are on a ratio
scale meaning that they are directly comparable (except at the reference value). The pointwise
pooling rule suggests there is less heterogeneity across much of the range of FBG compared
with the pointwise derivative rule.

8.8.2 Relationship corrected for the effects of measurement error

This chapter has provided us with the final pieces to be able to complete the jigsaw, and to
provide an estimate of the FBG–CHD relationship that both allows for the effects of exposure
measurement error and for the heterogeneity in the shape of the relationship between studies.
We can obtain the relationship using a 3 stage model:
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Stage 1 Fit a measurement error model to each study using regression calibration for each study
with repeat exposure measurements available and use the average of the parameters from
these models as the measurement error model for studies without repeats.

Stage 2 Fit the analysis model (such as a structural fractional polynomial or P-spline) using one
of the model selection rules from section 8.7.2 and the results from stage 1 for each study.

Stage 3 Perform meta-analysis on the output from stage 2 using one of the pooling methods
described in section 8.7.2.

There are a number of possible choices and variations in each of these three stages. We choose
the following combination of disease model, model selection rule, and pooling rule:

• Structural P-spline analysis — We choose to use a P-spline based analysis because they
allow a good fit to local features of the data compared with fractional polynomials which
give a more global fit.

• Overall model — We saw in figure 8.8 that studywise models gave very linear associa-
tions in the case of allowing the number of degrees of freedom to vary between studies
and are variable in the case that we allow each study 4df . As Sauerbrei and Royston
found, the overall model gave the most consistent shape for the exposure–disease rela-
tionship.

• Pointwise derivative pooling — In example 2 of section 8.7.2 we saw that this approach
is free of the choice of reference value and does not display Simpson’s paradox for P-
splines.

In figure 8.12 we see our best estimate of the FBG–CHD relationship corrected for the effects
of measurement error. Although FBG is subject to substantial measurement error this appears
to result in only a small but relatively constant increase in the hazard ratio above the refer-
ence value. Below the reference value there is a much greater difference between the corrected
and uncorrected relationship; FBG below the reference value appears to offer some protection
against CHD with the minimum hazard occurring at an FBG of about 4 mmol/l. Firstly, we note
that if we had chosen a reference value of 4 mmol/l then the difference between the corrected
and uncorrected analyses would have appeared to be much greater. Secondly, there are individ-
ual studies that exhibit regions where the hazard ratio decreases with increasing blood glucose
levels. Measurement error correction increases the magnitude of these decreases and this will
partially offset increases in hazard ratios associated with measurement error correction in those
studies with increasing relationships. This will lead to a pooled measurement error corrected
relationship that exhibits a smaller difference when compared to the uncorrected relationship
than might be expected.
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8.9 Discussion

The FBG–CHD relationship corrected for measurement error and allowing for heterogeneity
between studies is J-shaped with the nadir occurring at about 4 mmol/dl. As mentioned in
chapter 6, low levels of exposure were also observed to confer protection from CHD by the
APCSC. The pointwise pooling rule suggested that there was moderate heterogeneity between
studies across the range of exposure. Each of the three pooling rules gave similar results for the
FBG–CHD relationship in figure 8.10. An area for future research is to perform an empirical
evaluation of the three pooling rules to identify which of the three methods performs best,
and to investigate whether the limitations of the simple pointwise pooling rule highlighted in
section 8.7.2 are likely to be exhibited in practice.

A key question regarding the model selection rules is how many degrees of freedom should
each study have? Under the overall model selection procedure although we use 4 degrees of
freedom in choosing the overall model, in the individual studies we are only fitting a model
with approximately two degrees of freedom to the individual studies in the case of fractional
polynomials, or between 1 and 4 for P-splines. Since the model for each study is fitted using a
small number of degrees of freedom this does not penalise the smaller studies so severely. Un-
der the studywise (fixed df ) model selection rule with 4df , the meta-analysis gave most of the
weight to a small number of large studies. We suggest that smaller studies may be better mod-
elled with fewer degrees of freedom so that they are not completely dominated by the largest
studies. This remains an area for future research. Another area for future investigation could
be to investigate using different numbers of df for P-spline models. Although the studywise
(varying df ) model selection rule initially sounds like a good idea, in practice it fails to borrow
strength across studies and therefore we recommend that it should not be used.

The pointwise pooling rule can lead to Simpson’s paradox being displayed and is dependent
on the choice of reference value. The confidence intervals for fractional polynomials do not
become large outside the range of the data, hence large studies may still have considerable
influence on the shape of the relationship under the pointwise pooling rule well beyond the
range of the data. With P-spline analyses the confidence intervals do ‘blow-up’ and therefore
studies only contribute significantly to the pooled relationship in the region where the exposure
for that study lies. The parameter pooling rule is free from the choice of reference value but
we require that the model for each study is of the same form. We saw that we can obtain
much smaller confidence intervals from assuming that the same parametric form is suitable for
the whole exposure range, even those areas where we might not have much information from
the individual studies. The pointwise derivative pooling rule is also independent of the choice
of reference and makes no assumption about the shape of the exposure–disease relationship,
and was the only method of the three considered to give an increasing relationship when each
of the individual studies gave an increasing relationship in example 1 of section 8.7.2. This
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is why we prefer this method over the other two approaches. The downside to the pointwise
derivative pooling rule is that pointwise confidence intervals can only be obtained using the
bootstrap which is computationally intensive. Despite the differences between the methods, in
practice the different pooling methods may produce similar shapes for the exposure–disease
relationship, as was seen in section 8.8.1.

A related approach to the multivariate meta-analysis of grouped exposure analyses discussed
in section 8.7.1, is to:

1. Fit a continuous model for the exposure–disease relationship to each study, for example
a fractional polynomial or P-spline model.

2. Select a small set of exposure values x∗ = {x∗1, ..., x∗m}, and for each study i find the
fitted values Yi(x∗), and the estimated variance-covariance matrix of the fitted values
VYi(x

∗).

3. Combine Yi(x∗) across studies using multivariate meta-analysis.

This approach was not successful when we tried to implement it; the variance-covariance ma-
trices for the individual studies were computationally singular even for small m, causing the
meta-analysis to fail.

Although we have suggested model selection rules for P-splines, and have emphasised the
importance of using pooling rules that are independent of the choice of reference value, we
believe that further research into meta-analysis of continuous exposure-disease relationships
is required. This could allow us to make more principled rather than pragmatic choices with
regards to model selection and pooling rules.

8.10 Conclusion

Meta-analysis is an approach to combining data from multiple studies that address similar
research hypotheses. IPD meta-analysis is the gold standard approach as we can analyse the
data across studies in a consistent manner. Meta-analysis for continuous exposures without
resorting to cutpoints is a relatively new area of research.

We have discussed Sauerbrei and Royston method for IPD meta-analysis of fractional poly-
nomials allowing for heterogeneity in the shape of the exposure–disease relationship between
studies. Sauerbrei and Royston [67] proposed three model selection rules for choosing a model
for each study. We proposed similar model selection rules for P-splines.

We considered Sauerbrei and Royston’s pointwise pooling rule to combine the relationships
across studies to obtain the mean exposure–disease relationship, as well as two alternative
pooling rules: a parameter pooling rule and a novel pointwise derivative pooling rule. The
alternative pooling rules are independent of the choice of reference value, whereas in general
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the pointwise pooling rule is not. Although in our artificial examples the three pooling rules
gave differing results, when we applied them to an analysis of the ERFC FBG data uncorrected
for measurement error using the overall model selection rule they gave very similar results. The
meta-analysis methods described in this chapter allowed us to reach the goal of this dissertation
which was to to be able to model non-linear exposure–disease relationships in a large individual
participant meta-analysis allowing for the effects of exposure measurement error. We applied
structural P-splines, using the overall model selection rule and pointwise derivative pooling to
obtain our best estimate of the FBG–CHD relationship in the ERFC data.

In the next chapter we apply the methods we have developed throughout this thesis to the
analysis of another risk factor for CHD in the ERFC, lipoprotein(a).

197



8.M
eta-analysis

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ττ2 − Pointwise pooling rules

FBG

ττ2

4 5 6 7 8 9 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

I2 − Pointwise pooling rules

FBG

I2

Pointwise pooling
Pointwise derivative pooling

Figure 8.11: Exploration of how heterogeneity in the FBG–CHD relationship between studies varies with FBG. Left panel: τ 2 varies across the range
of FBG values, Right panel: Higgin’s I2 varies across the range of FBG.
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Chapter 9

Analysis of ERFC Lipoprotein(a) dataset

In this chapter we analyse the ERFC lipoprotein(a) (Lp(a)) dataset using methods that we have
introduced and developed throughout this dissertation. We aim to illustrate that the methods
provided in this dissertation are generally applicable to the analysis of large IPD meta-analyses.
We consider the analysis of both frequency and individually matched nested case control stud-
ies, and discuss some of the differences in how these should be analysed. Firstly, we provide
some background on what is known about the Lp(a)–CHD relationship. We then provide a
summary of the ERFC Lp(a) data including an analysis of the measurement error structure. We
then provide an analysis of the Lp(a)–CHD relationship that is both corrected for the effects
of measurement error, and that takes account of heterogeneity in the shape of the Lp(a)–CHD
relationship between studies using meta-analysis. We conclude this chapter with a discussion
of the results.

9.1 Background — Lp(a) and CHD

Lp(a) is a plasma lipoprotein consisting of a low density lipoprotein-like particle and molecules
of apolipoprotein B100 and apolipoprotein(a), and is mainly produced in the liver [268]. Lp(a)
concentrations vary enormously within the population, with over a thousandfold difference
between individuals often observed, from <0.2 to >200 mg/dl. The concentration of an indi-
vidual’s level of plasma Lp(a) can be measured in a blood sample using one of several different
assay methods. Several isoforms of the apoliprotein(a) component of Lp(a) are typically ob-
served in an individual’s blood. Isoforms vary in size and some older assay techniques are
sensitive to between-person variation in the average size of these isoforms [269]. The role
of Lp(a) within the body is not well understood, however it is believed to be an acute phase
reactant [270].

High levels of serum Lp(a) have been observed as a risk factor for CHD, cerebrovascular dis-
ease, atherosclerosis, thrombosis, and stroke. Nordestgaard et al. [271] provide a comprehen-
sive review of the Lp(a)–CHD relationship. They describe the relationship as being continuous
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without a threshold, and recommend that a desirable level for Lp(a) is less than about 50 mg/dl.
It is thought that the link between Lp(a) and CHD is causal.

If Lp(a) is an independent cause of CHD then it may be beneficial to reduce Lp(a), for those
with high levels. Lp(a) concentrations within individuals appear to be affected by kidney dis-
ease, but only slightly affected by diet, exercise, and other environmental factors. Moderate
alcohol consumption is known to reduce the risk of CHD, and it has been suggested that the
mechanism is through reducing levels of Lp(a) [272]. Niacin has been effectively used to
reduce plasma Lp(a) [273], as well as reduce the risk of CHD. However, no randomised con-
trolled trials has so far focused on reducing the risk of developing CHD through reducing
plasma Lp(a) in those with high levels [271].

9.2 The ERFC Lp(a) dataset

The ERFC Lp(a) dataset contains IPD on 120,654 individuals from 35 prospective cohort stud-
ies who suffered nearly 7,500 CHD events during over 1.1 million years of follow up. Of these
studies, 9 are nested case–control studies; 6 individually matched and 3 frequency matched,
mainly due to costs of measuring Lp(a) in the full cohort. The event of interest was first CHD
event. A list of the study abbreviations used in this chapter are given in appendix E.

There appears to be no discernible lower level of quantification of Lp(a) in the studies except for
the in the GRIPS study where there was a lower limit of 4mg/dl, analyses were conducted that
excluded this study were conducted to check that this lower level did not significantly impact
on the results. Three studies (ATTICA, GOH, TARFS) were excluded from our analyses be-
cause they observed fewer than 10 CHD events each. 6,178 individuals had at least one repeat
measurement of Lp(a). 657 unmatched individuals, mainly controls, from nested case–control
studies were removed from the analysis. In each analysis we control for the confounding ef-
fects of conventional cardiovascular risk factors: age, sex, BMI, SBP, smoking status (current
smoker vs. non-current smoker), history of diabetes and total cholesterol. These confound-
ing variables were available on 101,530 individuals from 29 studies who suffered 6,526 CHD
events during nearly 1 million years of follow up, and we use this set of individuals in all
analyses that follow. A summary of these data is given in table 9.1.

Although we excluded TARFS from our main analyses due to lack of events, TARFS does have
repeat measurements of Lp(a) along with information about confounding variables available
for a subset of participants; we therefore use the data from this study in our measurement error
modelling. The dataset used in this chapter does not include the Reykjavik study which was
additionally included by the ERFC in their analyses. Further details about the ERFC Lp(a)
dataset, and the analyses that they performed can be found in the ERFC’s papers [7, 11].

We model the Lp(a)–CHD relationship in each study using a Cox proportional hazards model
stratified by sex and trial arm (where appropriate), except for the individually nested case–
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control studies where conditional logistic regression is used, and frequency matched case–
control studies where logistic regression is used. These models give estimates of hazard ratios
in the case of standard cohort studies and frequency matched case–control studies, and odds
ratios in the case of individually matched case–control studies. If the disease is rare, odds ratios
approximate hazard ratios and therefore it is reasonable to combine them across studies using
meta-analysis [15].

The left hand panel of figure 9.1 shows the distribution of observed Lp(a), which is highly
positively skewed (2.40). We therefore applied a log transform (right hand panel) to Lp(a) to
achieve greater normality (skew -0.30, excess kurtosis -0.19). We shall use log-Lp(a) in all
analyses that follow.

Study No. of No. of ind. Events Male Current Age Lp(a) Repeat Lp(a)
individuals with repeats smokers mean (sd) median (IQR) median (IQR)

Cohort studies
AFTCAPS 902 874 21 745 115 58.8 (7.1) 7.6 (3.3 - 17.9) 7.7 (3.3 - 20.0)

ARIC 13989 843 6065 3572 54.4 (5.7) 18.3 (6.9 - 43.8)
BRUN 798 53 385 193 57.9 (11.4) 8.8 (4.4 - 21.6)
CHS1 3837 588 1472 452 72.3 (5.2) 12.6 (4.8 - 22.2)

COPEN 7484 3787 269 3168 3623 59.3 (13.4) 18.6 (6.8 - 41.9) 20.7 (4.8 - 64.3)
DUBBO 1995 272 840 312 68.4 (6.7) 11.0 (5.0 - 27.8)

EAS 622 53 316 144 64.3 (5.6) 9.2 (3.8 - 25.7)
FINRISK92 2190 92 1015 550 53.6 (6.2) 12.2 (4.5 - 31.6)

GRIPS 5783 299 5783 2178 47.7 (5.1) 9.0 (4.0 - 25.0)
KIHD 1981 383 1981 602 52.5 (5.3) 9.6 (3.9 - 22.1)

NHANES3 2457 60 1033 591 54.6 (15.6) 22.0 (9.0 - 45.0)
NPHSII 2367 157 2367 875 56.5 (3.4) 10.9 (4.3 - 29.2)
PRIME 7431 114 7431 1972 54.8 (2.9) 10.0 (5.0 - 30.0)

PROCAM 3185 453 94 2244 1140 43.0 (10.4) 4.0 (2.0 - 13.0) 7.0 (4.8 - 64.3)
QUEBEC 617 20 617 280 57.2 (7.0) 21.6 (8.9 - 49.0)

SHS 3728 407 1477 1239 56.1 (8.0) 3.0 (1.2 - 6.7)
TARFS 1 1235 359 2 580 317 53.7 (10.5) 10.1 (4.1 - 21.8) 12.1 (4.3 - 25.9)
ULSAM 1420 320 386 1420 925 50.9 (5.1) 8.3 (3.5 - 22.7) 11.1 (5.3 - 32.8)
WHITE2 7720 168 5343 1484 49.5 (6.0) 20.0 (12.0 - 46.0)

WHS 22667 206 0 2585 55.1 (7.2) 10.8 (4.4 - 32.9)
WOSCOPS 4617 299 4617 2080 55.2 (5.6) 17.0 (7.0 - 50.0)

ZUTE 304 42 304 103 75.5 (4.4) 12.2 (5.8 - 28.7)
Nested case–control studies (Individually matched)

BUPA 111 19 111 38 51.7 (7.3) 16.2 (7.2 - 45.5)
FIA 1155 401 952 291 53.8 (7.4) 26.5 (11.9 - 44.9)

FLETCHER 535 71 139 432 108 59.7 (14.0) 20.6 (7.3 - 57.6) 20.2 (5.0 - 62.6)
MRFIT 727 243 727 485 46.5 (5.6) 3.4 (1.2 - 9.3)

NHS 627 214 0 189 60.2 (6.5) 9.5 (4.8 - 28.6)
Nested case–control studies (Frequency matched)

BRHS 1554 459 1554 706 52.2 (5.3) 6.5 (3.4 - 16.6)
GOTO33 126 16 126 47 50.6 (0.2) 9.8 (4.2 - 31.8)

USPHS 601 209 601 104 59.4 (9.0) 9.3 (3.7 - 25.3)
Total 2 101530 5505 6526 53126 26983 55.0 (9.3) 12.5 (4.9 - 32.1) 16.5 (8.2 - 38.6)

Table 9.1: Summary of the ERFC Lp(a) data by study.
1 TARFS included as it provides information on repeats and contributes only to the regression
calibration modelling.
2 Only includes TARFS in columns pertaining to repeat measurements.
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Figure 9.1: Histograms of Lp(a) and log-Lp(a) for all studies combined.

9.2.1 Measurement error

Unlike most of the risk factors considered by the ERFC, measurements of Lp(a) concentration
are subject to relatively modest measurement error. For example, Bennet et al. [274] found that
the RDR for log-Lp(a) in the Reykjavik study [275] was 0.92 (95% CI, 0.85-0.99). Much of the
variation in observed Lp(a) levels between individuals can be explained by genetic variation
[276], therefore we might expect levels to stay relatively constant over time. Although the
amount of measurement error in observed Lp(a) may be small it should still be accounted for,
firstly because variation in the degree of measurement error is likely to vary between studies
(e.g. because of (non)sensitivity to isoforms of apolipoprotein(a)) making the observed levels
of Lp(a) incomparable, and secondly so that we may obtain our best estimate of the true Lp(a)–
CHD relationship. We can, however, only take account of differences in measurement error
between studies where we have repeat Lp(a) measurements available.

Plots of within-person mean against within-person standard deviation for each of the six studies
with repeats are given in figure 9.2. The COPEN study, which has the largest number of repeat
measurements, suggests that the measurement error variance decreases with increasing levels
of Lp(a). This trend is also seen in FLETCHER and PROCAM, and to a lesser extent in
ULSAM, although this may be partially due to low numbers of individuals with repeats, with
low levels of Lp(a). TARFS suggests a constant error variance. The banding that can be seen in
the PROCAM study is because the Lp(a) measurements in this study only take integer values
(except for the lowest level of Lp(a) which is 0.2 mg/dl). The most interesting result is in
AFTCAPS, where the points seem to be clustered into three distinct groups. We do not know
of any reason for this clustering.
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Figure 9.4 shows the normal Q-Q plot of within-person differences for the ULSAM study,
which is representative of what we observed for the other studies. It appears to show that the
measurement error distribution has heavy tails. In chapter 6, we saw that structural fractional
polynomials appear to be relatively robust to heteroscedastic/non-normal measurement error.
Figure 9.3 shows the normal Q-Q plot of within-person means for each study. Most of the
studies suggest that within-person mean Lp(a) shows some non-normality in the tails, but as
we noted in chapter 6 this can be caused by non-normality of the measurement error. COPEN
again is outlying, exhibiting a different trend to the other four studies with large numbers of
individuals with a repeat Lp(a) measurement. The measurement error variance did not appear
vary with the level of any of the confounders (plots not shown).

Table 9.2 gives the parameter estimates and their standard errors for each of the regression
calibration models fitted to the studies where repeat observations were available in a subset of
participants, along with an ‘overall model’ obtained via random effects meta-analysis. ULSAM
does not contribute to the coefficient for sex since all participants in this study were male. There
appears to be a difference between COPEN and the other studies with repeat measurements;
the RDR (on the log-scale) for Lp(a) is significantly lower than in the other studies. We spec-
ulate that COPEN may differ from the other studies with repeats because it is the only study
known to have used an isoform sensitive assay (the assay method for AFTCAPS is unknown).
Ideally, either meta-regression on the RDR, or subgroup analyses, would be conducted to try
and ascertain the cause of the substantial differences in the RDR between studies, however this
is not possible when repeat measurements are only available for six studies.

9.3 Analysis of the Lp(a)–CHD relationship

9.3.1 Grouped exposure analysis

As an initial exploration of the Lp(a)–CHD relationship we perform a grouped exposure anal-
ysis on deciles of the observed data; the results of which are shown in figure 9.5. The grouped
exposure analysis suggests a threshold shaped relationship between Lp(a) and CHD, with the
threshold occurring between the 7th and 8th groups i.e. at an Lp(a) of between about 22–32
mg/dl. This relationship does not appear to be greatly affected by adjustment for conventional
cardiovascular risk factors (right hand panel), which suggests that Lp(a) is an independent risk
factor.

205



9. Analysis of ERFC Lipoprotein(a) dataset

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

AFTCAPS

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

−1 0 1 2 3 4 5
0

1
2

3
4

COPEN

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2 3 4

0
1

2
3

4

FLETCHER

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−2 −1 0 1 2 3 4

0
1

2
3

4

PROCAM

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TARFS

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

ULSAM

Mean of log(Lp(a))

sd
 o

f l
og

(L
p(

a)
)

Mean−variance association for log−Lp(a)
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measurements. Red lines give LOESS smooth of points to aid trend identification.
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Normal Q−Q Plots of Within−Person mean log−Lp(a)

Figure 9.3: Normal Q–Q plots of within-person means of log-Lp(a) for each of the six studies
with repeat Lp(a) measurements.
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(Intercept) log-Lp(a) Age Sex: SBP BMI Total Smoking status: Diabetic status:
Female cholesterol Current Definite diabetic

AFTCAPS 0.178 (0.260) 0.947 (0.015) -0.006 (0.002) 0.133 (0.043) 0.001 (0.001) -0.001 (0.005) 0.019 (0.029) -0.040 (0.047) -0.105 (0.126)
COPEN 1.475 (0.088) 0.528 (0.007) -0.004 (0.001) 0.078 (0.021) 0.002 (0.001) 0.000 (0.003) 0.035 (0.009) 0.015 (0.020) 0.039 (0.082)
FLETCHER -0.567 (1.708) 0.852 (0.080) -0.003 (0.014) 0.263 (0.420) -0.003 (0.008) 0.037 (0.040) 0.095 (0.131) -0.081 (0.387) -0.559 (0.597)
PROCAM -0.453 (0.632) 0.663 (0.042) 0.009 (0.007) -0.206 (0.135) 0.003 (0.004) -0.013 (0.020) 0.071 (0.061) 0.063 (0.118) 0.105 (0.494)
TARFS 0.323 (0.313) 0.833 (0.037) -0.015 (0.004) 0.082 (0.084) 0.005 (0.002) -0.002 (0.003) 0.045 (0.033) 0.037 (0.103) 0.073 (0.139)
ULSAM -2.274 (4.251) 0.879 (0.023) 0.051 (0.085) - -0.001 (0.002) 0.007 (0.010) 0.002 (0.025) 0.017 (0.060) -0.032 (0.149)
Overall 0.382 (0.450) 0.783 (0.105) -0.005 (0.002) 0.081 (0.034) 0.002 (<0.001) -0.001 (0.002) 0.032 (0.008) 0.009 (0.017) 0.001 (0.056)

Table 9.2: Regression calibration models for log-Lp(a) for each study with repeats, and overall model obtained via random effects meta-analysis.
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Figure 9.4: Normal Q-Q plot of differences in log-Lp(a) between baseline and repeat measure-
ments for the ULSAM study.

9.3.2 Continuous exposure analysis

Uncorrected relationship

Figure 9.6 shows the estimated shape of the relationship from a random effects meta-analysis of
fractional polynomial and P-spline models for the Lp(a)–CHD relationship, using the studywise
model (fixed 4df ) selection rule and pointwise pooling rule. We could not use the overall model
selection rule for these data because we are using a combination of Cox and logistic regression
models for the individual studies.

Under the fractional polynomial model the relationship appears J-shaped, with the nadir occur-
ring at about 4 mg/dl. Under the P-spline model the relationship is flat below the geometric
mean (11.89 mg/dl), and then increases steadily up to about 70 mg/dl where it appears to begin
flattening off. If we compare the fractional polynomial model with the top right hand panel
of figure 3.2, and the P-spline model with figure 3.3, then we observe that these shapes for
the Lp(a)–CHD relationship are what we would expect to obtain under P-spline and fractional
polynomial models if the true underlying relationship exhibited a threshold. In chapter 3 we
saw that the nadir of the fractional polynomial model occurs significantly before the threshold,
and that with P-spline models the risk begins to increase closer, although still before, the true
threshold. These models therefore suggest that a threshold may occur somewhere in the range
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Figure 9.5: Group based analysis of observed Lp(a) adjusted for age and sex (and other con-
ventional cardiovascular risk factors). The group containing those with the lowest Lp(a) mea-
surements is taken as the reference..

1 2 5 10 20 50 100

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Fractional polynomial & P−spline analyses of Lp(a)

Lp(a)

H
R

Fractional polynomial
P−spline

Figure 9.6: Fractional polynomial and P-spline analyses of observed Lp(a) adjusted for age,
sex, and other conventional cardiovascular risk factors.
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of 16–20 mg/dl.

In figure 9.7 we can see the Lp(a)–CHD relationship for each of the individual studies using
fractional polynomial and P-spline analyses where, as in chapter 8, the saturation of the lines
represents their weight in the pointwise meta-analyses resulting in figure 9.6. Under both plots
we can see a definite increasing trend in the hazard ratio with increasing Lp(a). In the fractional
polynomial models we can see that for a number of the studies the hazard ratio increases steeply
beyond the geometric mean, whilst in others, it increases linearly. Under the P-spline models
we see a far greater number of studies with large increases in the hazard ratio at higher levels
which suggests that the fractional polynomials are failing to pick up this increase where a
comparatively small amount of individuals will be located in most of the individual studies.
We have observed previously that P-splines are better than fractional polynomials at estimating
the shape of true threshold relationships; we shall use P-spline models in the rest of this chapter.

Measurement error corrected Lp(a)–CHD relationship

We have used the same approach as in chapter 6 to obtain values for the expectation and vari-
ance of true Lp(a) given observed Lp(a), for each study. Namely, for those studies where we
had repeat measurements available, we used the regression calibration model corresponding to
that study from table 9.2; and for those studies for which there were no repeat measurements
available, we used the ‘overall model’ in the final row of table 9.2. As we saw in section 9.2.1
there was significant heterogeneity in the RDR between studies (I2=99.4%, 95% CI [99.2%,
99.5%]), so there is some doubt about the transportability of our model. We note in that this is
a significant uncertainty in our results.

In previous chapters we have only used structural P-splines with Cox models, although condi-
tional logistic regression can be formulated as a special case of the Cox proportional hazards
model. In order to fit structural P-spline models using logistic regression we created a custom
smooth class for the mgcv package [277].

Figure 9.8 shows the results from a meta-analysis of structural P-spline models using the point-
wise, and pointwise derivative pooling rules. Again, we see that the relationship appears to be
threshold in shape, with the relationship beyond the mean level of Lp(a) stronger than in the
uncorrected relationship. Below the mean level of Lp(a), measurement error correction makes
little difference to the relationship, since essentially it is null under pointwise pooling; although
there is a small increase in the hazard ratio for very low levels of Lp(a) under the pointwise
derivative pooling rule. Under the pointwise pooling rule the relationship starts to flatten off at
around 70 mg/dl, whereas under the pointwise derivative pooling rule the gradient is shallower
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Figure 9.7: Fractional polynomial (left) and P-spline models (right) of the Lp(a)–CHD relationship for each study.
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after about 30 mg/dl, but shows no sign of flattening off at higher levels. The corrected relation-
ship still appears to be consistent with the relationship having a threshold between 16–20mg/dl.

The pointwise standard errors for the pointwise derivative pooling rule in figure 9.8 are obtained
via the nonparametric bootstrap as in chapter 8. In this analysis, however, the resampling is
complicated by the case–control studies. We used the following resampling scheme for each
kind of study:

• Standard cohort study — sample with replacement within each study.

• Individually matched case–control studies — sample with replacement from the cases,
and then sample with replacement from the matched controls for each sampled case.

• Frequency matched case–control studies — sample with replacement from the cases and
the controls separately.

We found that we had model convergence problems for a large proportion of our resampled
datasets for the two smallest studies, GOTO33 and BUPA. We therefore decided to include
the original data without resampling in each bootstrap dataset for these two studies. Since
these studies are small and therefore the parameter estimates from the model fit are poorly
estimated, these studies have small weights in the meta-analysis and hence this approach should
not unduly influence the results obtained.
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Figure 9.8: Structural P-spline analysis of the Lp(a)–CHD relationship adjusted for age, sex,
and other conventional cardiovascular risk factors.
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Figure 9.9: Structural P-spline analysis of the Lp(a)–CHD relationship for each study. Dark-
ness of lines related to weights in a pointwise meta-analysis of the individual studies.
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Figure 9.10: Higgin’s I2 across the range of Lp(a) for pointwise and derivative pointwise
pooled structural P-spline models of the Lp(a)–CHD relationship.
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Figure 9.9 shows the measurement error corrected LP(a)–CHD relationship for each of the
individual studies. Many of the studies do seem to suggest that there is a sharp increase in risk
somewhere between 16–20 mg/dl, but there appears to be a lot of heterogeneity in the shape of
the Lp(a)–CHD relationship beyond an Lp(a) of 24 mg/dl. At low levels of Lp(a) there appears
to be considerable differences between studies, with no clear consensus on whether there is an
increased or decreased risk of CHD associated with low levels of Lp(a).

Figure 9.10 investigates how heterogeneity varies across the range of Lp(a) using Higgin’s
I2. Under the pointwise derivative pooling rule there is no heterogeneity across the entire
range, except for a blip between about 30–35 mg/dl. Under the pointwise pooling rule there
is no heterogeneity between 5 and 30 mg/dl, and two peaks of heterogeneity, one at low levels
of Lp(a) and the other after 30 mg/dl. In figure 9.8, the heterogeneity under the pointwise
pooling rule can be seen to impact the confidence intervals in each of the two areas where the
heterogeneity is non-zero. It may seem surprising that so little heterogeneity is observed in
figure 9.10 given that there is such variation in the shape of the relationship in the individual
studies (figure 9.9), this is because the within-study variances are generally large meaning that
the relationships are not incompatible with each other given zero between-studies variance.

9.4 Discussion

In this analysis of the ERFC Lp(a) dataset we have seen a modest relationship between levels of
Lp(a) and CHD. Lp(a) is subject to measurement error, but considerably less so than many other
risk factors for CHD. Lp(a) appears to have little effect on the risk of CHD below 16mg/dl, it
appears that there is a threshold somewhere between 16–20 mg/dl, and that the hazard increases
considerably beyond this point. The hazard ratio at Lp(a) level of 96 mg/dl, relative to the
geometric mean, is in excess of 1.5. In the ERFC’s analysis [11] they described the relationship
between Lp(a) and CHD as being curvilinear. If the true relationship were to exhibit a threshold
somewhere in the region of 16–20 mg/dl then, as we saw in section 5.1, this is exactly the shape
we would expect to see if we had applied MacMahon’s method. As we have seen previously,
sharp features in the exposure–disease relationship can be lost, even if the measurement error
is relatively small.

In our analysis we have used P-splines to model the shape of the Lp(a)–CHD relationship. We
have previously noted the difficulty P-splines, and to an even greater degree, fractional polyno-
mials, have in picking up thresholds in exposure–disease relationships. A change point model
may be better for modelling these data, especially if the threshold value were of particular in-
terest. Even with this large dataset consisting of over a hundred thousand individuals, we still
do not have the ability to obtain a precise estimate of the shape of the relationship beyond 85
mg/dl.

There was a lot of variation in the median level of Lp(a) between studies; this could simply
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be due to heterogeneity, or differing levels of systematic bias between studies. When we have
data from an individual study then systematic bias that affects all individuals is not necessarily
a problem as we are still able to compare individuals relative to each other. However, when
we perform a meta-analysis of multiple studies then the location of the data from each study,
relative to each of the other studies is important, and we could potentially get distortion of the
exposure–disease relationship, due to systematic bias differing between studies.

COPEN appeared to differ from the other studies with repeats, however, it is hard to evaluate
this when there are only a small number of studies with repeats. There is clearly much un-
certainty about the transportability of the measurement error models from those studies with
repeats to those without given the significant heterogeneity in the RDR; however, when further
information is unavailable these type of assumptions are unavoidable and are a limitation to
our analysis. A sensitivity analysis was carried out where we excluded the COPEN study from
our meta-analysis in obtaining our regression calibration model and it was found that it did not
significantly affect the results. The Lp(a) dataset has highlighted again the need for studies
to be designed such that replicate or gold standard measurements are obtained for a subset of
individuals. As in chapter 6 the analyses in this chapter have the limitations that they do not
take account of the uncertainty from the estimation of the measurement error model, and do
not take account of measurement error in confounders

In section 9.2.1 we saw that the measurement error appeared to be heteroscedastic. However, as
we saw in chapter 7 this appears to have little effect on the shape of the exposure–disease rela-
tionship, or our correction methods. The logarithm of log-Lp(a) was relatively normal, and the
plot of within-person means suggested that the distribution of log-Lp(a) may be relatively nor-
mal, although COPEN again showed a different trend to the other studies with repeats. Overall,
we feel that the non-normality present is probably not large enough to have a significant effect
on the Lp(a)–CHD relationship we have obtained.

9.5 Conclusion

In this chapter we have analysed the Lp(a)–CHD relationship using IPD from the ERFC, util-
ising the methods we have discussed and developed throughout this dissertation. We corrected
our models for the modest amount of measurement error in the baseline Lp(a) measurements
using structural P-splines. In previous chapters we had only used Cox models, but in this chap-
ter we used structural P-splines to correct for measurement error in logistic, and conditional
logistic, regression models. The Lp(a)–CHD relationship appears to exhibit a threshold in the
region of 16–20 mg/dl, with constant hazard below the threshold, and then increasing to a
hazard ratio of in excess of 1.5 at an Lp(a) level of 96 mg/dl.

In chapter 10 we conclude this dissertation with a discussion of the topics covered in this thesis,
areas for future work, and recommendations for practice.
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Chapter 10

Discussion

We start this final chapter by providing a summary of the key points from each of the pre-
ceding chapters. We then discuss the key themes considered in this dissertation, placing our
contributions in context. We round off the chapter by describing some of the limitations of this
dissertation, and possible areas for future research. Ultimately, we give a final conclusion.

10.1 Dissertation summary

In chapter 1 we gave the motivation for this dissertation: the characterisation of exposure–
disease relationships within the ERFC; a collaboration of studies providing IPD on risk factors
for CHD. The two main challenges in characterising these relationships were highlighted as
the effects of exposure measurement error, and the combination of non-linear exposure–disease
relationships across studies.

In chapter 2 we discussed survival analysis and introduced the Cox model. We looked at forms
for the linear predictor including: grouped exposure analyses which are sensitive to the number
and choice of cutpoints and are biased for non-linear exposure–disease relationships; fractional
polynomials which are relatively simple yet flexible polynomial based functions; and splines
which are generally more complex but can give a good local fit to the data.

In chapter 3 we showed the effects of measurement error on a range of non-linear exposure–
disease relationships that are commonly observed in epidemiological studies using simulation.
We found that random measurement error severely biases the exposure–disease relationship,
usually, but not always, towards the null. We also saw that measurement error severely reduces
our power to detect non-linear exposure–disease relationships.

In chapter 4 we discussed various methods for correcting for exposure measurement error in
non-linear exposure–disease relationships and proposed two new methods: structural fractional
polynomials, which are based on applying the method of regression calibration to fractional
polynomials; and group-SIMEX, which was an extension of SIMEX to where we categorise a
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continuous exposure.

In chapter 5 we firstly showed that MacMahon’s simple method for correcting for measurement
error in a grouped exposure analysis does not, in general, work for non-linear exposure–disease
relationships. We then compared Natarajan’s proposed method, another regression calibration
based method, multiple imputation, moment reconstruction, and group-SIMEX for correcting
a grouped exposure analysis for the effects of measurement error when the exposure–disease
relationship is linear. Natarajan’s method was shown to be flawed, the other regression calibra-
tion based method did not work because it wrongly made the non-differential error assumption,
group-SIMEX performed poorly for multiple reasons, but moment reconstruction and multi-
ple imputation both showed little bias. We finished the chapter by comparing the performance
of structural P-splines and structural fractional polynomials, and found that they performed
similarly with neither method performing uniformly better.

In chapter 6 we described the ERFC FBG data. We then corrected the J-shaped FBG–CHD
relationship for measurement error in FBG using SIMEX, structural fractional polynomials and
P-splines; however, we did not take account of heterogeneity in the shape of the FBG–CHD
relationship between studies. We found that the structural fractional polynomial and P-spline
methods made a much larger correction for the effects of measurement error than SIMEX.

In chapter 7 we showed the effects of a range of non-classical measurement error structures
on the observed exposure–disease relationship. This was motivated by the FBG data, where
in chapter 6, we had observed that the measurement error appeared to be non-normal and
heteroscedastic. We then considered the performance of structural fractional polynomial and P-
spline models when we erroneously assumed normality of the true exposure given the observed,
and found the method was relatively robust to non-normality and heteroscedasticity of the
measurement error, but not to skewness of the true exposure distribution. We also considered
robustification of structural P-spline and fractional polynomial analyses of the ERFC FBG data
by considering a mixture of normals.

In chapter 8 we introduced meta-analysis and described the method of Sauerbrei and Roys-
ton [67] for IPD meta-analysis of non-linear exposure–disease relationships. We proposed
model selection rules similar to those of Sauerbrei and Royston for P-splines, and a pointwise
derivative pooling rule. We also showed the dependence of the pointwise pooling rule on the
arbitrary choice of reference value, and that the exposure–disease relationships obtained using
this method can exhibit Simpson’s paradox. We then applied these methods to obtain our best
estimate of the FBG–CHD relationship, that was both corrected for the effects of measurement
error in the FBG measurements, and allowed for heterogeneity in the shape of the FBG–CHD
relationship across studies.

In chapter 9 we applied the methods developed throughout this dissertation to the threshold
shaped relationship between Lp(a) and CHD.
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10.2 Modelling non-linear exposure–disease relationships

Grouped exposure analyses have traditionally been used in epidemiology and are simple to
perform. In chapter 2 we argued that grouped exposure analyses are sensitive to the number
and location of cutpoints, do not reflect the continuous nature of the underlying relationship,
and we showed that they give a biased view of the shape of the exposure–disease relationship
unless the relationship is linear. In chapter 3 we also saw that grouped exposure analyses can
severely reduce our power to detect non-linearity compared with using continuous predictors
such as P-splines and fractional polynomials. We therefore suggest that grouped-exposure
analyses should not routinely be used in final analyses of exposure–disease relationships, and if
they are then sensitivity analyses should be conducted to assess dependence on the number and
choice of cutpoints. Statisticians have, and we hope will continue to, highlight the downsides of
grouped exposure analyses [1, 118, 278] and promote the use of alternative, continuous forms
for the linear predictor, such as splines and fractional polynomials [119, 121, 279].

Despite their drawbacks we feel that there are some features of a grouped exposure analysis that
are still appealing. Firstly, when using Cox models, grouped exposure analyses can provide a
quick and easy way to get an initial idea about the shape of the exposure–disease relationship.
Secondly, quasi-variances [83] (or floating absolute risks [84]), that allow us to view the un-
certainty within each group without the need for a reference category, are appealing and are
without an equivalent when considering continuous forms for the linear predictor.

Continuous forms for the linear predictor have clear benefits over grouped exposure analyses—
they provide a realistic, smoother, model for the exposure–disease relationship; they are not
sensitive to the choice of arbitrary cutpoints; and use the data more efficiently. Hence, we
strongly believe that continuous linear predictors should be used in practice. Modellers have
to make a choice between different forms for the linear predictor and it is often not obvious
which method should be used: fractional polynomials give a good global fit and can be written
compactly; P-splines give a good local fit but cannot be written compactly. Neither fractional
polynomials nor P-splines seem to be universally superior [123], and the different choices of
splines and the associated terminology can be confusing for those not well versed in the litera-
ture. In Cox models where we cannot easily visualise the model’s fit to the data, it would seem
sensible to follow the proposal of Royston [124] whereby we compare the model fit against a
P-spline with a large number of degrees of freedom. Results are best displayed graphically, but
if they are to be tabulated, then the advice of Royston [121] can be used.

A barrier to fitting models with a continuous predictor is the availability of software. Frac-
tional polynomials are widely available [94], however the availability of spline based models
is patchy. Different spline models are available in each software package, and even between
disease models within the same package. Although different spline methods can give very
similar results e.g. smoothing splines and P-splines, the results will still be dependent on the
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particular choice of spline. P-splines, which we have used extensively in this dissertation, are
not readily available in many standard software packages because they require fitting routines
that can handle penalisation. Simpler spline models such as quadratic and cubic splines are
much easier to code for use with standard fitting routines, and several authors have provided
code [279–281].

As we have seen throughout this dissertation, threshold shaped relationships are modelled
poorly by all the modelling methods we have used. Although a true threshold relationship
is usually epidemiologically implausible, it may be the case, as we saw with Lp(a), that there
is a relatively sharp change in the gradient of the linear predictor beyond some value. In this
case it may be more appropriate to use a change point model, especially as the threshold will
often be of interest in itself.

The choice of linear predictor has a significant impact on how we approach measurement error
correction. In addition to the problems associated with grouped exposure analyses, we also
noted that categorising continuous exposures introduces differential measurement error when
the underlying exposure is subject to non-differential error. In general, differential measure-
ment error is more difficult to correct for because the correction model will need to include both
additional exposure data and the outcome. As we have shown that MacMahon’s method does
not work for non-linear relationships, and there are no simple proven alternatives, we recom-
mend that grouped exposure analyses are not used when exposures are subject to measurement
error.

10.3 Measurement error

10.3.1 Effects of measurement error

Throughout this dissertation we have seen the profound effect that the ‘triple whammy’ of
measurement error can have on exposure–disease relationships: bias in parameter estimation
in models; loss of power in detecting associations between variables; and masking of features
of the data [33]. Despite this, Jurek et al. [282] took a selection of 57 articles from three major
epidemiological journals published in 2000–2001 and found that nearly 40% said nothing about
exposure measurement error, whilst of those that discussed exposure measurement error only
one attempted to quantitatively evaluate the effect of measurement error using a sensitivity
analysis. Although there have been many articles in the epidemiological literature regarding
the effects of exposure measurement error [1, 31, 283–285], it is clear that there is a continuing
need to increase awareness of the importance of the measurement error problem, especially
with regards to non-linear relationships.

In chapter 3 we saw the effect that random measurement error has on the shape of commonly
observed exposure–disease relationships, and how it significantly reduces our power to detect
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non-linear relationships. Therefore, measurement error may explain heterogeneity in the ob-
served shape of the exposure–disease relationship between studies. A lack of power to detect
non-linear relationships can causes model-misspecification which could lead to inappropriate
correction for measurement error. We feel that this could be a very real problem in practice.
The results show the importance of study size in ascertaining whether a non-linear relationship
is present, especially when the degree of measurement error is substantial. When studies are
designed they should try to take account of this lack of power when deciding upon the cohort
size.

In chapter 7 we saw the effects of non-classical exposure measurement error and how it can in-
troduce non-linearity into linear relationships and distort the shape of non-linear relationships.
The introduction of non-linearity by non-classical error into truly linear relationships has the
opposite effect of classical measurement error on non-linear relationships, thus highlighting
the importance of trying to discern some properties of the measurement error structure through
the use of diagnostic plots, something that is not usually done in practice, but that we believe
should be.

10.3.2 Correction for measurement error

We have discussed how measurement error correction requires repeat, or gold standard, mea-
surements to be available for a subset of individuals. Despite this, only 17 of the 38 FBG
studies, and 6 of the 30 Lp(a) studies, had repeat measurements available. When studies have
not obtained additional exposure data then there is no way we can quantify the measurement er-
ror in those studies. In this situation we are forced to make assumptions about the measurement
error, and in this dissertation we took a weighted average from the other studies. This is far
from ideal since we have observed that there can be considerable heterogeneity in the amount
of measurement error between studies, thus making it difficult to assess whether our model is
transportable. Studies, therefore, must be designed so that a validation substudy is included,
because there is no point in conducting a study to ascertain the shape of an exposure–disease
relationship if data are not collected that allow you to estimate it accurately. We note that this
is an unfair comment for some of the ERFC’s studies since FBG and Lp(a) were not always
exposures of primary interest in the individual studies.

For a linear exposure–disease relationship the use of regression calibration, or equivalently
correction using the RDR, is a simple and widely applicable way to correct for the effects of
exposure measurement error, and has therefore been widely used in practice [43, 44]. Regres-
sion calibration is exact for linear regression, and approximate for logistic and Cox regression
[28, 136].

When the exposure–disease relationship is non-linear there is no correction method that is as
simple, effective, and widely applicable as regression calibration is for the linear relationship.
As we have seen, regression calibration is not so simple because we have to make additional
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assumptions about the relationship between the observed and true exposure; although it is still
much simpler and more widely applicable than most other correction methods. Structural frac-
tional polynomials and P-splines combine regression calibration with non-linear predictors for
the disease model. Despite having to make additional assumptions when using regression cali-
bration for non-linear relationships, we saw in chapter 7 that structural fractional polynomials
and P-splines are relatively robust to both heteroscedastic and non-normal measurement error
when we assume normality.

Of the many methods that have been described for correcting non-linear exposure–disease re-
lationships for the effects of measurement error, both in this dissertation and elsewhere, none
seems to have been widely used in practice; the majority of citations for correction methods
appearing to come from other methodological papers. Many correction methods only perform
well for a limited range of disease models, or place restrictions on the type of additional expo-
sure data we must have available. There is a real need to identify those methods for non-linear
exposure–disease relationships that are most promising, and well written advice for epidemi-
ologists should be provided so that the methods may be adopted.

As argued above, continuous linear predictors are strongly preferred over grouped exposure
analyses. If grouped exposure analyses are to persist in the analysis of epidemiological data
then it is essential that effective methods for measurement error correction exist. In chap-
ter 5 we showed that MacMahon’s simple method for correcting grouped exposure analyses,
which has been used by large pooling studies [36, 189], does not give a corrected shape for
the exposure–disease relationship in general, unless the relationship is linear and only allows
us to view the relationship over a reduced range. Therefore we recommend that MacMahon’s
method is not used for final analyses, but as we saw in chapter 3 it may give a good approx-
imation to the shape of the relationship in many circumstances and therefore may be suitable
for an initial ‘quick and dirty’ analysis of the data.

Since MacMahon’s method does not provide adequate measurement error correction, alterna-
tive methods are required. In chapter 5 we showed that if the exposure–disease relationship
is linear then moment reconstruction or multiple imputation can be used. These two methods
do not suffer from a reduction in the range over which the relationship can be viewed, unlike
MacMahon’s method. Multiple imputation and moment reconstruction are therefore promising
methods, to take forward to consider for non-linear exposure–disease relationships; we leave
this for future work.

Most correction methods for non-linear relationships are complex to implement. Guolo [150]
points out that the development of user-friendly software is key for the diffusion of promising
measurement error correction methods; especially as correction for measurement error may
form only one part of a complicated analysis. Although it is becoming more common for au-
thors to publish code as supplementary material to papers, this code often is specific to the
examples or simulations in the paper and not easy for others to amend for their own purposes.
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This approach also relies on people being aware of the existence of the material. Authors should
look to publish flexible code that performs measurement error correction as a contributed pack-
age for the programme in which it was produced.

There are currently three packages for R which deal with measurement error: simex, gbev
and decon. The simex package performs SIMEX and MCSIMEX, however, the SIMEX
method only handles measurement error in terms included linearly (in which case simpler
and more effective methods generally exist). The gbev package [286] uses boosted regres-
sion trees to correct for measurement error and the decon [287] package uses deconvolution
to estimate a measurement error corrected Nadaraya-Watson type kernel regression estimator
[185, 288]. The latter two methods, although are able to correct for the effects of measurement
error in non-linear exposure–disease relationships, do not appear to have been used in practice.
Commands regcal and eivreg, and the package merror all feature in STATA but none
perform measurement error correction of non-linear relationships. We find it surprising that
so few methods have been implemented given that so many analyses of non-linear exposure–
disease relationships, subject to measurement error are carried out. Software for correcting
non-linear relationships for the effects of measurement error is sorely needed because of the
computational complexities of implementing methods.

Relationships that have been corrected for exposure measurement error should be reported
making sure that assumptions are ‘clearly stated and evidence presented in their support, per-
haps with a sensitivity analysis. Large corrections presented without such supporting evidence
are unsound’ [48]. We believe it is also important that the observed relationship is made avail-
able to the reader either within the main report, or as supplementary material. We feel that this
approach will allow the reader to have a better understanding of the correction for measurement
error, and would help to generate debate on the topic.

10.3.3 Final remarks on measurement error

We have seen throughout this dissertation that it is essential to acknowledge the presence of
measurement error, the magnitude and structure of the error, and its effect on the exposure–
disease relationship. Measurement error needs to be corrected for and we have provided some
methods for doing this. We believe that there needs to be a more unified approach to mea-
surement error in practice, from diagnosis to explanation, to methods for correction, and for
reporting of exposure–disease relationships that are subject to measurement error. Statisticians
can help by following up methodological papers that introduce a new method with papers in
applied journals, which give clear examples, and associated code. This will make it easier for
epidemiologists to adopt new methods.

A recent development comes from the Public Population Project in Genomics (P3G) [289]
who are currently performing a systematic review of the methodological literature on methods
to correct for measurement error in epidemiological studies, and of studies that have produced
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measurement error corrected diet–disease relationships. They aim to publish a comparison
chart on how to perform calibration studies and how to obtain correction factors, and ultimately
develop an inventory of the typical correction factors used for various nutrients. Having a
table of typical correction factors may make measurement error correction less controversial,
however this is no substitution for a validation substudy. If such a table were used then it
would be important to make sure the methods employed for measuring the exposure in those
studies for which the factors were calculated, were the same as the study that was using the
factor. We see this as a positive step forward, as it will hopefully provide greater awareness of
the effects and correction methods for measurement error amongst the P3G collaborators and
beyond. Methods that are adopted by high profile research groups such as EPIC, the ERFC and
P3G have the potential to influence the use of measurement error correction methods amongst
epidemiologists.

We would like to highlight again in this final section on measurement error that it is preferable
to reduce the measurement error in the observed exposure as this has big advantages, such as
greater power to detect non-linearity. Within-person variation will always exist therefore there
will always be a need for measurement error correction.

10.4 Meta-analysis

As discussed in chapter 8, meta-analysis allows us to make better use of existing research. IPD
meta-analysis is the gold standard approach because it allows us to treat each study consistently
and it is theoretically a more principled approach. Meta-analysis gives us much greater power
to detect non-linearity than in individual studies, and therefore when we correct for measure-
ment error we can have greater certainty that the correction we make is appropriate.

Sauerbrei and Royston [67] provide an excellent starting place for answering the two key
questions in 2-stage IPD meta-analysis of continuous exposure–disease relationships: how to
choose a model for each study and how to combine non-linear exposure–disease relationships
across studies. We have developed upon this foundation by considering how we may choose
P-spline models for each study, how we may combine curves across studies using either mul-
tivariate meta-analysis of the model parameters or pointwise derivative pooling, and how we
can show heterogeneity in the shape of the exposure–disease relationship between studies more
clearly.

Although the pointwise pooling rule suggested by Sauerbrei and Royston [67] may be simple,
we saw in chapter 8 that it can provide misleading pooled exposure–disease relationships, and
therefore we believe it should not in general be the only pooling rule considered. With the
availability of mvmeta in STATA and R for multivariate meta-analyses it is easy to implement
the parameter pooling rule, if only as a sensitivity analysis. The pointwise derivative pool-
ing rule does not rely on the choice of reference value, but suffers from the problem that the
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pointwise standard errors are difficult to compute, especially when we are combining across
different model types such as in chapter 9. We prefer P-spline models because under the point-
wise pooling rules their confidence intervals become extremely large outside the range of the
data, whereas this is not true for fractional polynomials meaning that large studies can still have
a significant influence on the pooled relationship well beyond the range of the data.

With the growing number of epidemiological studies that are sufficiently powered to detect
non-linearity, and the growth of large IPD meta-analyses, further theoretical development of
methods that allow us to combine non-linear relationships across studies will be required.

10.5 Limitations

In this dissertation we have focused almost exclusively on a continuous exposure. Many ex-
posures are not purely continuous, such as alcohol consumption where we have a group of
individuals who are non-consumers. The models we have considered in this dissertation do not
extend to these situations. For the case where we have non-consumers a good place to start may
be the extension of fractional polynomial modelling to include a non-exposed group [290]. We
would also need a different, more complicated, model for the measurement error process.

Although we have mainly focused on classical measurement error in this dissertation, there
are many practical situations where the classical measurement error model does not hold. For
example, Heitmann et al. [291] describes a situation in nutritional epidemiology where under-
reporting of total energy intake increases with increasing obesity. These situations will require
their own measurement error models.

In the application of our methods in chapters 6, 8 and 9 we have only considered correction for
measurement error in the exposure of interest, although confounders in our models have also
been subject to measurement error. Correcting for measurement error in multiple exposures
can be complex and computer intensive, but should be carried out. In our analyses we only
used the first repeat observation in our models, further repeats could have allowed us to re-
duce the variability in our measurement error model, however in many studies only one repeat
observation may be available.

We have not taken into account the uncertainty in estimated parameters from the measurement
error model in our disease model. As we have previously discussed, this can be done using
methods such as bootstrapping, or sandwich estimators, but we believe the impact of this to
be only minor when the size of the validation study is reasonably large in comparison to the
overall study size. In practice there are usually greater sources of uncertainty in our models.

In chapter 7 we used a mixture model to estimate the distribution of true FBG given observed
FBG. Apart from the uncertainty in the measurement error model which we did not take ac-
count of, there was large uncertainty in the measurement error model for those studies without
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repeats. This is because there is no natural ordering of the components in the models for those
studies with repeats.

In chapter 9 we saw that there was significant heterogeneity in the RDR between studies—
the COPEN study had a particularly low RDR. We speculated that this was due to the assay
method used. To test this hypothesis we could either use data from a study that had used
multiple assay methods, however no study did this; or alternatively we could have performed
subgroup analyses but with only 6 studies with repeats this was not possible.

In this dissertation we have only considered some of the many approaches that have been
proposed for measurement error correction. We have tried to pick out what we believe are the
most promising methods, in terms of the methods being relatively simple yet effective. Given
that a plethora of methods have been proposed there may be other methods that we would have
benefited from considering in this dissertation.

10.6 Areas for future work

10.6.1 Modelling non-linear exposure–disease relationships

Spline based models should be made more accessible for epidemiologists. Firstly, there needs
to be a clearer exposition of the different splines available. Secondly we believe that code
should be available so that modellers are able to fit the same spline with the same options,
whatever their choice of model, and across different software packages. A second area we
think could receive greater attention is the threshold shaped relationship, which was not well
modelled by any of the methods we considered. It would be of interest to find a way of identify-
ing when such a relationship is present, especially when the exposure is subject to measurement
error.

10.6.2 Effects of measurement error

We believe that heteroscedastic and non-normal measurement error are probably more common
than has been reported in the literature. We suggest that the diagnostic plots proposed by Carroll
et al. [33] are used, and the findings reported. In chapter 7 we considered the robustness of our
models to non-classical error structures and there seemed to be some evidence that moderately
heteroscedastic measurement error does not introduce large bias into regression calibration
based methods. More research into the identification of non-classical error, and its correction,
is needed.

In chapter 7 we saw that significant bias can be caused if there is a minimum or maximum
value that the true exposure can take, but there are observations that lie beyond this value due
to measurement error. Although this minimum/maximum true exposure limit may exist, it may
not be known, and an interesting problem would be to estimate it.
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10.6.3 Measurement error correction

In chapter 5 we considered correction methods for categorised continuous exposures when the
exposure–disease relationship was linear and found that multiple imputation and moment re-
construction performed well. An important area for further research is to investigate how these
methods perform when the exposure–disease relationship is non-linear. It would also be of
interest to find out how these methods perform for non-linear exposure–disease relationships
where the exposure is not categorised, as considered by Freedman et al. [202] for linear rela-
tionships. We could investigate both the uncategorised and categorised situation by modifying
the simulation studies of chapters 3 and 5 respectively. It may be the case that when the rela-
tionship is non-linear, moment reconstruction does not work because it only matches the first
two moments of the data. It might therefore be wise to additionally consider the recently pro-
posed method, moment adjusted imputation, of Thomas, Stefanski, and Davidian [55] which
matches higher moments.

Correcting the structural fractional polynomial and P-spline models for the exposure–disease
relationship when the true exposure has a natural minimum or maximum may be an interesting
research avenue.

Carroll et al. [157] did not consider a single normal for the distribution of true exposure given
observed in their simulation study when they introduced structural P-splines, choosing only to
consider a normal mixture model instead. It would be interesting to see how much more robust
using mixtures of normals, or other flexible distributions, for the distribution of true exposure
given observed is, and whether the significant computational challenges in implementation are
actually worthwhile. We saw in chapter 7 that normal mixture models for the distribution of true
exposure given observed cannot be easily pooled across studies to obtain a model for studies
without repeat measurements. We therefore suggest that future work could consider robust
models for the distribution of true exposure given observed in greater detail, and approaches
for estimating a model that is suitable for studies without repeat measurements.

10.6.4 Meta-analysis

The methods presented in chapter 8 are somewhat pragmatic and ad hoc. We believe that there
is much fruitful research to be carried out in putting this topic on a firmer theoretical footing.
Although it is clear that choosing a model for each study using the studywise (varying df )
model selection rule is a bad approach to take, as it does not allow us to borrow strength across
studies, it is not clear which of the other two selection rules we should take. A simulation study
could be conducted to investigate which of the two approaches performs best. Following on
from this, we suggest that the number of degrees of freedom in each of the models fitted to the
individual studies should be investigated.

Simulation could be used to investigate which of the pooling rules provide the best estimate
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of the true exposure–disease relationship. This would also allow us to explore the different
strengths and weaknesses of the pooling rules. In chapter 8 we proposed some ways of at-
tempting to visualise various aspects of our meta-analyses, however as Jackson et al. comment
‘how to attempt to display all aspects of high-dimensional meta-analyses, and produce multi-
variate funnel and forest plots for example, remains an open question’ [255].

10.7 Conclusion

In chapter 1 we said that this dissertation was motivated by the observation that ‘characterizing
the shape of the underlying exposure–disease relationship, while taking into account possibly
heterogeneous measurement error, is not well studied, especially in the context of IPD meta-
analysis’ [15]. We have shown the effects of exposure measurement error, both classical and
non-classical; shown how we may correct for its effects; and how we can combine exposure–
disease relationships across studies. We therefore hope that this dissertation goes some way
towards meeting the needs identified by Thompson et al. [15].
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Appendix A

Appendix to chapter 4

A.1 Calculation of basis functions for structural P-splines
when X|W is normally distributed

Under the structural P-spline approach of Carroll et al. [157] we need to be able to calculate
expectations of the form E((X − k)p+|W ). In the case that we assume that the distribution of
X|W is normal, we can calculate these expectations exactly given the mean and variance of
the distribution.

Consider the general case where we have x ∼ N(µx, σ
2
x) and we wish to calculateE(xp|x > k)

for some constant k. We shall show that we can generate a recursive formula to calculate this
expectation.

Let ε = x−µ
σ

and h = k−µ
σ

then

E(xp|x ≥ k) =
1

1− Φ(h)

∫ ∞
h

xpf(x)dx

=
1

1− Φ(h)

∫ ∞
h

(µ+ σε)pφ(ε)dε (A.1)

(µ+ σε)p =

p∑
r=0

(
p

r

)
µp−rσrεr (A.2)

and let Ir = 1
1−Φ(h)

∫∞
h
εrφ(ε)dε so

E(xp|x ≥ k) =

p∑
r=0

(
p

r

)
µp−rσrIr. (A.3)
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Let s = εr−1 and dt = εφ(ε) and integrate by parts to obtain the recursive formula

Ir =
1

1− Φ(h)

∫ ∞
h

εrφ(ε)dε

=
hr−1

1− Φ(h)
φ(h) + (r − 1)Ir−2. (A.4)

We have the initial values

I0 =
1

1− Φ(h)

∫ ∞
h

φ(ε)dε = 1

I1 =
1

1− Φ(h)

∫ ∞
h

εφ(ε)dε =
φ(h)

1− Φ(h)
.

Let ρ(h) = φ(h)
1−Φ(h)

then we have for p = 3

I0 = 1

I1 = ρ(h)

I2 = hρ(h) + 1

I3 = h2ρ(h) + 2ρ(h).

Plugging this into equation A.3 we obtain

E(x3|x ≥ k) = µ3I0 + 3µ2σI1 + 3µσ2I2 + σ3I3

= µ3 + 3µ2σρ(h) + 3µσ2(1 + hρ(h)) + σ3(2ρ(h) + h2ρ(h)). (A.5)

Instead of calculating E(xp|x ≥ k) we want to be able to calculate E((x − k)p|x ≥ k). If we
let y = x− k then we can see

E((x− k)p|x ≥ k) = E((x− k)p|x− k > 0) = E(yp|y > 0)

where µy = µx − k and σ2
y = σ2

x with cutpoint for y, ky = 0. Therefore, hy = 0−(µx−k)
σx

and
putting this all in to equation A.5 we can calculate E((x− k)p|x ≥ k) = E((x− k)p+)

E((x− k)p+) = P (y < 0)E(yp|y < 0) + P (y > 0)E(yp|y > 0)

= 0 + (1− Φ(hy))E(yp|y > 0). (A.6)

For p = 3,

E((x−k)p+) = (1−Φ(hy))
[
µ3
y + 3µ2

yσyρ(hy) + 3µyσ
2
y(1 + hyρ(hy)) + σ3

y(2ρ(hy) + h2
yρ(hy))

]
.
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This can easily be coded in R and code is given in appendix F.

A.2 Calculation of E(Xp logX)

For structural fractional polynomial models where the distribution of X|W is log-normally
distributed we need to be able to calculate E(Xp logX|W ) for the case when our FP2 powers
are equal and non-zero.

For integer p greater than one,

E(Xp logX) =

∫ ∞
0

xp log x

xσ
√

2π
exp

(
−(log x− µ)2

2σ2

)
dx

=

∫ ∞
−∞

u

σ
√

2π
exp

(
−(u− µ)2

2σ2
+ pu

)
du

= exp

(
pσ2(pσ2 + 2µ)

2σ2

)∫ ∞
−∞

u

σ
√

2π
exp

(
−u− (µ+ pσ2)2

2σ2

)
du

= (µ+ pσ2) exp

(
p2σ2

2
+ µp

)
.

Since X|W ∼ N(λ logW + (1− λ)µx, (1− λ)σ2
x), it implies

E(Xp logX|W ) = k(p)
[
W λp log(W λ) + (1− λ)(µx + pσ2

x)W
λp
]

where k(p) = exp

(
(1− λ)

(
σ2
xp

2

2
+ pµx

))
.

A.3 Proof that limζ→−1 Var(β̂b(ζ)) = 0

This section provides the proof that limζ→−1 Var(β̂b(ζ)) = 0 which is used in deriving the
jackknife variance estimate of the SIMEX estimator.

Firstly we show, using a different approach to Stefanski and Cook [166], that if Z1 and Z2 are
standard normal random variables then E((Z1 + iZ2)n) = 0 for n = 1, 2, ...

Consider the moment generating function for Z1 + iZ2:

MZ1+iZ2(t) = E
(
et(Z1+iZ2)

)
= E

(
etZ1+itZ2

)
= E

(
etZ1
)
E
(
eitZ2

)
= e

1
2
t2e−

1
2
t2

= 1.
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Hence, dMZ1+iZ2
(t)

dt
= 0 for all n = 0, 1, 2, ... i.e. E((Z1 + iZ2)n) = 0 for n = 1, 2, ...

We can use the result above to show that lim
ζ→−1

E(f(µ + σ(Z1 +
√
ζZ2))) = f(µ) as fol-

lows [166],

lim
ζ→−1

E(f(µ+ σ(Z1 +
√
ζZ2))) = lim

ζ→−1
E

(
f(µ) +

∞∑
n=1

f (n)(µ)σn

n!
(Z1 +

√
ζZ2)n

)

= E

(
f(µ) +

∞∑
n=1

f (n)(µ)σn

n!
(Z1 + iZ2)n

)

= f(µ) +
∞∑
n=1

f (n)(µ)σn

n!
E ((Z1 + iZ2)n)

= f(µ).

So,

lim
ζ→−1

Var(β̂b(ζ)) = lim
ζ→−1

E((β̂b(ζ))2)− E(β̂b(ζ))2

= β̂b(−1)2 − β̂b(−1)2

= 0.
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Appendix B

Appendix to chapter 5

B.1 Simulation study 2

B.1.1 Results for linear regression

We repeated the simulations of 5.2 for a linear regression model where the response Yi for each
individual was generated according to Yi = Xi + εi where εi is normally distributed with mean
0 and variance σ2

ε = 0.12, 1.

The results from this simulation are in tables B.1–B.4. They are very similar to those found for
the logistic model in section 5.2

B.1.2 Results for multiple imputation and moment reconstruction when
the exposure is grouped into quintiles

In chapter 5 we found that multiple imputation and moment reconstruction performed well
in correcting for the effects of measurement error in a grouped exposure analysis of a linear
exposure–disease relationship using logistic regression. In this section we investigate whether
these two methods still perform well when the continuous exposure is split into quintile groups,
as is often done in epidemiological investigations.

Suppose that we split the observed true exposure X into quintile groupsQ = {Q1, ..., Q5} and
the disease model we wish to estimate is

g(E(Y |Q)) = β0 + β1Q1 + β2Q2 + β3Q4 + β4Q5

where the central quintile group Q3 is the reference category.
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The observed relationship would then be obtained by fitting the model

g(E(Y |QW )) = β∗0 + β∗1Q
W
1 + β∗2Q

W
2 + β∗3Q

W
4 + β∗4Q

W
5

whereQW = {QW
1 , ..., Q

W
5 } are quintile groups of W .

The only differences in the application of the two measurement error correction methods when
considering quintiles of exposure are as follows:

Moment Reconstruction (MR)—Instead of forming XMR
C we form quintile groups of XMR,

XMR
Q = {XMR

Q1
, ..., XMR

Q5
}, and fit the disease model

g(E(Y |XMR
Q )) = βMR

0 + βMR
1 XMR

Q1
+ βMR

2 +XMR
Q2

+ βMR
3 XMR

Q4
+ βMR

4 XMR
Q5

.

Multiple imputation (MI)—Instead of forming XMI(k)
C for each imputed dataset we form quin-

tile groups of XMI(k),XMI(k)
Q = {XMI(k)

Q1
, ..., X

MI(k)
Q5

} , and fit the disease model

g(E(Y |XMI(k)
Q )) = β

MI(k)
0 +β

MI(k)
1 X

MI(k)
Q1

+β
MI(k)
2 +X

MI(k)
Q2

+β
MI(k)
3 X

MI(k)
Q4

+β
MI(k)
4 X

MI(k)
Q5

.

The data for the simulation were generated in exactly the same was as in chapter 5. The results
from this simulation are in tables B.5–B.8. We can see that both multiple imputation and
moment reconstruction continue to provide almost unbiased parameter estimates for the true
quintiles.

B.2 Simulation study 3: RFrMSE

The reference free root mean squared error (RFrMSE) is an attempt to give a global measure of
of the performance of the structural fractional polynomial and P-spline models for the measure-
ment error corrected exposure–disease relationship without dependence on the arbitrary choice
of reference value.

RFrMSE =

√√√√ 1

n2

n∑
j=1

n∑
i=1

(
log ĤR(xi;xj)− log HR(xi;xj)

)2

The RFrMSE was evaluated at the percentiles of the distribution of true exposure given ob-
served obtained from the regression calibration model in each simulation of section 5.3.

Figure B.1 gives boxplots of the RFrMSe for structural fractional polynomial and P-spline
models for each shape of the exposure–disease relationship considered in the simulation. The
results are very similar to what was observed for rMSE (figure 5.5), which suggests that the
choice of reference value made in the simulation did not unduly influence the rMSE.
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RC1 RC2 MI MR gSIMEX
σ2
u c True βX Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
σ2
ε = 0.12, (α0 = 0, α1 = 1)

0.25 0 1.596 Mean 1.595 1.426 1.443 1.510 1.945 1.737 1.595 1.595 1.595 1.595 1.577 1.578
SD 0.018 0.021 0.020 0.019 0.030 0.020 0.018 0.018 0.018 0.018 0.027 0.026

1 1.813 Mean 1.812 1.581 1.684 1.743 2.383 2.031 1.812 1.812 1.812 1.812 1.782 1.782
SD 0.020 0.024 0.027 0.023 0.061 0.026 0.020 0.020 0.020 0.020 0.036 0.034

1 0 Mean 1.595 1.127 1.173 1.361 2.051 1.727 1.595 1.595 1.595 1.595 1.413 1.414
SD 0.018 0.024 0.023 0.022 0.051 0.023 0.018 0.018 0.018 0.018 0.039 0.038

1 Mean 1.812 1.203 1.485 1.653 2.668 2.033 1.812 1.812 1.812 1.812 1.545 1.546
SD 0.020 0.028 0.044 0.027 0.102 0.030 0.020 0.020 0.020 0.020 0.051 0.048

σ2
ε = 1, (α0 = 0, α1 = 1)

0.25 0 Mean 1.595 1.425 1.442 1.510 1.944 1.736 1.595 1.594 1.595 1.594 1.576 1.576
SD 0.034 0.035 0.034 0.035 0.049 0.040 0.042 0.034 0.045 0.035 0.050 0.051

1 Mean 1.812 1.581 1.683 1.743 2.383 2.030 1.813 1.812 1.812 1.812 1.782 1.782
SD 0.041 0.042 0.048 0.045 0.081 0.051 0.049 0.041 0.053 0.044 0.068 0.067

1 0 Mean 1.595 1.126 1.172 1.360 2.050 1.726 1.595 1.594 1.594 1.594 1.411 1.412
SD 0.034 0.037 0.036 0.036 0.071 0.044 0.047 0.035 0.054 0.037 0.063 0.062

1 Mean 1.812 1.202 1.486 1.652 2.667 2.032 1.813 1.812 1.812 1.812 1.544 1.545
SD 0.041 0.044 0.066 0.050 0.131 0.058 0.056 0.042 0.066 0.046 0.079 0.078

Table B.1: Mean and standard deviation (SD) of estimates of the slope parameter in a linear regression of Y on XC across 1000 simulated data
sets using the true exposure, the naive method, and different correction methods when X is assumed to be observed in 10% or 50% of the study
population. (Scenario (1a))
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RC1 RC2 MI MR gSIMEX
σ2
u c True βX Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
σ2
ε = 0.12, (α0 = 0, α1 = 0.5)

0.25 0 1.596 Mean 1.595 1.127 1.127 1.127 1.436 1.437 1.571 1.573 1.592 1.593 1.271 1.275
SD 0.018 0.024 0.024 0.024 0.081 0.034 0.033 0.025 0.020 0.019 0.041 0.034

1 1.813 Mean 1.812 1.431 1.434 1.431 2.709 2.689 1.779 1.781 1.851 1.857 1.376 1.382
SD 0.020 0.042 0.055 0.042 0.400 0.169 0.045 0.030 0.029 0.023 0.045 0.044

1 0 Mean 1.595 0.712 0.714 0.712 1.326 1.329 1.585 1.591 1.582 1.590 0.858 0.860
SD 0.018 0.027 0.027 0.028 0.075 0.049 0.028 0.022 0.033 0.023 0.049 0.048

1 Mean 1.812 0.788 1.180 1.172 2.457 2.421 1.798 1.807 1.818 1.827 0.889 0.891
SD 0.020 0.034 0.202 0.126 0.336 0.155 0.042 0.028 0.034 0.023 0.054 0.051

σ2
ε = 1, (α0 = 0, α1 = 0.5)

0.25 0 Mean 1.595 1.126 1.126 1.126 1.435 1.436 1.444 1.484 1.448 1.445 1.271 1.274
SD 0.034 0.037 0.037 0.037 0.090 0.048 0.049 0.034 0.045 0.038 0.061 0.056

1 Mean 1.812 1.430 1.433 1.430 2.707 2.687 1.605 1.656 1.908 1.904 1.374 1.380
SD 0.041 0.065 0.076 0.066 0.409 0.194 0.054 0.039 0.076 0.069 0.073 0.070

1 0 Mean 1.595 0.711 0.713 0.711 1.324 1.327 1.715 1.706 1.435 1.429 0.856 0.858
SD 0.034 0.040 0.039 0.039 0.093 0.072 0.067 0.040 0.084 0.050 0.070 0.069

1 Mean 1.812 0.787 1.187 1.172 2.453 2.416 1.987 1.971 1.750 1.740 0.888 0.890
SD 0.041 0.050 0.262 0.182 0.356 0.189 0.082 0.049 0.118 0.075 0.075 0.073

Table B.2: Mean and standard deviation (SD) of estimates of the slope parameter in a linear regression of Y on XC across 1000 simulated data
sets using the true exposure, the naive method, and different correction methods when W2 is assumed to be observed in 10% or 50% of the study
population. (Scenario (2a))

236



RC1 RC2 MI MR gSIMEX
σ2
u c True βX Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
σ2
ε = 0.12, (α0 = 0, α1 = 0.5)

0.25 0 Mean 1.595 1.127 1.173 1.361 2.051 1.727 1.595 1.595 1.595 1.595 1.413 1.414
SD 0.018 0.024 0.023 0.022 0.051 0.023 0.018 0.018 0.018 0.018 0.039 0.038

1 Mean 1.812 1.431 1.485 1.653 2.298 1.925 1.812 1.812 1.812 1.812 1.545 1.546
SD 0.020 0.042 0.044 0.027 0.079 0.029 0.020 0.020 0.020 0.020 0.051 0.048

1 0 Mean 1.595 0.712 0.801 1.153 1.952 1.660 1.595 1.595 1.595 1.595 0.982 0.982
SD 0.018 0.027 0.026 0.023 0.065 0.025 0.018 0.018 0.018 0.018 0.052 0.051

1 Mean 1.812 0.788 1.405 1.637 2.372 1.903 1.812 1.812 1.812 1.812 1.020 1.021
SD 0.020 0.034 0.085 0.028 0.092 0.030 0.020 0.020 0.020 0.020 0.056 0.054

σ2
ε = 1, (α0 = 0, α1 = 0.5)

0.25 0 Mean 1.595 1.126 1.172 1.360 2.050 1.726 1.595 1.594 1.594 1.594 1.411 1.412
SD 0.034 0.037 0.036 0.036 0.071 0.044 0.047 0.035 0.054 0.037 0.063 0.062

1 Mean 1.812 1.430 1.486 1.652 2.299 1.924 1.813 1.812 1.812 1.812 1.544 1.545
SD 0.041 0.065 0.066 0.050 0.110 0.058 0.056 0.042 0.066 0.046 0.079 0.078

1 0 Mean 1.595 0.711 0.800 1.152 1.952 1.659 1.594 1.595 1.593 1.594 0.979 0.981
SD 0.034 0.040 0.039 0.037 0.092 0.048 0.050 0.035 0.061 0.039 0.076 0.075

1 Mean 1.812 0.787 1.409 1.637 2.372 1.901 1.812 1.811 1.813 1.812 1.018 1.020
SD 0.041 0.050 0.124 0.058 0.138 0.061 0.058 0.042 0.075 0.047 0.082 0.080

Table B.3: Mean and standard deviation (SD) of estimates of the slope parameter in a linear regression of Y on XC across 1000 simulated data
sets using the true exposure, the naive method, and different correction methods when X is assumed to be observed in 10% or 50% of the study
population. (Scenario (2a))
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RC1 RC2 MI MR gSIMEX
σ2
u c True βX Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
σ2
ε = 0.12, (α0 = 0, α1 = 0.5)

0.25 0 1.596 Mean 1.595 1.127 1.127 1.127 1.436 1.437 1.594 1.595 1.594 1.595 1.409 1.413
SD 0.018 0.024 0.024 0.024 0.081 0.034 0.019 0.019 0.019 0.018 0.067 0.039

1 1.813 Mean 1.812 1.431 1.434 1.431 2.709 2.689 1.811 1.811 1.811 1.812 1.537 1.544
SD 0.020 0.042 0.055 0.042 0.400 0.169 0.025 0.021 0.025 0.021 0.065 0.047

1 0 Mean 1.595 0.712 0.714 0.712 1.326 1.329 1.585 1.591 1.586 1.592 0.980 0.982
SD 0.018 0.027 0.027 0.028 0.075 0.049 0.029 0.022 0.028 0.022 0.053 0.050

1 Mean 1.812 0.788 1.180 1.172 2.457 2.421 1.798 1.806 1.799 1.807 1.019 1.021
SD 0.020 0.034 0.202 0.126 0.336 0.155 0.043 0.028 0.042 0.027 0.054 0.053

σ2
ε = 1, (α0 = 0, α1 = 0.5)

0.25 0 Mean 1.595 1.126 1.126 1.126 1.435 1.436 1.596 1.594 1.595 1.593 1.408 1.413
SD 0.034 0.037 0.037 0.037 0.090 0.048 0.053 0.035 0.047 0.037 0.084 0.062

1 Mean 1.812 1.430 1.433 1.430 2.707 2.687 1.815 1.811 1.814 1.811 1.534 1.542
SD 0.041 0.065 0.076 0.066 0.409 0.194 0.062 0.042 0.062 0.051 0.092 0.077

1 0 Mean 1.595 0.711 0.713 0.711 1.324 1.327 1.599 1.594 1.598 1.593 0.979 0.980
SD 0.034 0.040 0.039 0.039 0.093 0.072 0.077 0.043 0.074 0.045 0.076 0.074

1 Mean 1.812 0.787 1.187 1.172 2.453 2.416 1.819 1.811 1.820 1.812 1.017 1.019
SD 0.041 0.050 0.262 0.182 0.356 0.189 0.094 0.053 0.100 0.062 0.080 0.079

Table B.4: Mean and standard deviation (SD) of estimates of the slope parameter in a linear regression of Y on XC across 1000 simulated data sets
using the true exposure, the naive method, and different correction methods when W2,W3 are assumed to have been observed in 10% or 50% of the
study population. (Scenario (2b))
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σ2
u Using XC Naive MI MR

Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5

β = log(1.5), (α0 = 0, α1 = 1)

0.25 Mean -0.55 -0.21 0.22 0.59 -0.50 -0.19 0.20 0.52 -0.55 -0.21 0.22 0.58 -0.55 -0.21 0.22 0.59
SD 0.20 0.18 0.17 0.16 0.20 0.17 0.17 0.16 0.17 0.14 0.13 0.14 0.20 0.18 0.17 0.16

1 Mean -0.55 -0.21 0.22 0.59 -0.39 -0.15 0.16 0.41 -0.55 -0.21 0.22 0.58 -0.55 -0.21 0.22 0.59
SD 0.20 0.18 0.17 0.16 0.18 0.18 0.16 0.15 0.17 0.14 0.13 0.14 0.21 0.18 0.17 0.17

β = log(2), (α0 = 0, α1 = 1)

0.25 Mean -0.93 -0.36 0.38 1.01 -0.84 -0.32 0.34 0.89 -0.93 -0.36 0.37 1.00 -0.93 -0.36 0.38 1.00
SD 0.22 0.19 0.17 0.15 0.22 0.18 0.16 0.15 0.20 0.15 0.13 0.14 0.23 0.19 0.16 0.16
Mean -0.93 -0.36 0.38 1.01 -0.66 -0.25 0.26 0.69 -0.92 -0.36 0.37 1.00 -0.93 -0.36 0.38 1.00
SD 0.22 0.19 0.17 0.15 0.19 0.18 0.16 0.15 0.18 0.15 0.12 0.14 0.23 0.19 0.16 0.16

Table B.5: Mean and standard deviation (SD) of estimates of the parameters for each group in a logistic regression of Y onQ = {Q1, Q2, Q3, Q4, Q5}
across 1000 simulated data sets using the true exposure, the naive method, and different correction methods when X is assumed to be observed in
10% or 50% of the study population. Q3 is the reference category. (Scenario (1a))
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u Using XC Naive MI MR
Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5

β = log(1.5), (α0 = 0, α1 = 1)

0.25 Mean -0.55 -0.21 0.22 0.59 -0.50 -0.19 0.20 0.52 -0.56 -0.22 0.22 0.59 -0.55 -0.21 0.22 0.58
SD 0.20 0.18 0.17 0.16 0.20 0.17 0.17 0.16 0.14 0.06 0.06 0.12 0.14 0.07 0.07 0.12

1 Mean -0.55 -0.21 0.22 0.59 -0.39 -0.15 0.16 0.41 -0.56 -0.22 0.22 0.58 -0.55 -0.21 0.22 0.58
SD 0.20 0.18 0.17 0.16 0.18 0.18 0.16 0.15 0.17 0.07 0.07 0.18 0.12 0.05 0.05 0.12

β = log(2), (α0 = 0, α1 = 1)

0.25 Mean -0.93 -0.36 0.38 1.01 -0.84 -0.32 0.34 0.89 -0.94 -0.37 0.37 1.01 -0.93 -0.37 0.37 1.00
SD 0.22 0.19 0.17 0.15 0.22 0.18 0.16 0.15 0.15 0.07 0.06 0.12 0.16 0.07 0.07 0.11

1 Mean -0.93 -0.36 0.38 1.01 -0.66 -0.25 0.26 0.69 -0.94 -0.37 0.37 1.01 -0.93 -0.36 0.37 0.99
SD 0.22 0.19 0.17 0.15 0.19 0.18 0.16 0.15 0.17 0.07 0.07 0.19 0.13 0.05 0.05 0.12

Table B.6: Mean and standard deviation (SD) of estimates of the parameters for each group in a logistic regression of Y onQ = {Q1, Q2, Q3, Q4, Q5}
across 1000 simulated data sets using the true exposure, the naive method, and different correction methods when W2 is assumed to be observed in
10% or 50% of the study population. Q3 is the reference category. (Scenario (1b))
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u Using XC Naive MI MR

Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5

β = log(1.5), (α0 = 0, α1 = 0.5)

Mean -0.55 -0.21 0.22 0.59 -0.39 -0.15 0.16 0.41 -0.55 -0.21 0.22 0.58 -0.55 -0.21 0.22 0.59
SD 0.20 0.18 0.17 0.16 0.18 0.18 0.16 0.15 0.17 0.14 0.13 0.14 0.21 0.18 0.17 0.17
Mean -0.55 -0.21 0.22 0.59 -0.25 -0.09 0.10 0.25 -0.54 -0.21 0.22 0.58 -0.55 -0.21 0.22 0.58
SD 0.20 0.18 0.17 0.16 0.17 0.17 0.16 0.15 0.17 0.14 0.13 0.15 0.22 0.19 0.17 0.18

β = log(2), (α0 = 0, α1 = 0.5)

1 Mean -0.93 -0.36 0.38 1.01 -0.66 -0.25 0.26 0.69 -0.92 -0.36 0.37 1.00 -0.93 -0.36 0.38 1.00
SD 0.22 0.19 0.17 0.15 0.19 0.18 0.16 0.15 0.18 0.15 0.12 0.14 0.23 0.19 0.16 0.16
Mean -0.93 -0.36 0.38 1.01 -0.42 -0.16 0.16 0.43 -0.92 -0.36 0.37 1.00 -0.92 -0.36 0.37 1.00
SD 0.22 0.19 0.17 0.15 0.17 0.16 0.15 0.14 0.18 0.14 0.13 0.14 0.24 0.20 0.16 0.17

Table B.7: Mean and standard deviation (SD) of estimates of the parameters for each group in a logistic regression of Y onQ = {Q1, Q2, Q3, Q4, Q5}
across 1000 simulated data sets using the true exposure, the naive method, and different correction methods when X is assumed to be observed in
10% or 50% of the study population. Q3 is the reference category. (Scenario (2a))
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chapter
5σ2

u Using XC Naive MI MR
Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5

β = log(1.5), (α0 = 0, α1 = 0.5)

0.25 Mean -0.55 -0.21 0.22 0.59 -0.39 -0.15 0.16 0.41 -0.56 -0.22 0.22 0.58 -0.55 -0.21 0.22 0.58
SD 0.20 0.18 0.17 0.16 0.18 0.18 0.16 0.15 0.20 0.08 0.08 0.21 0.14 0.07 0.07 0.13

1 Mean -0.55 -0.21 0.22 0.59 -0.25 -0.09 0.10 0.25 -0.56 -0.22 0.22 0.59 -0.56 -0.22 0.22 0.58
SD 0.20 0.18 0.17 0.16 0.17 0.17 0.16 0.15 0.27 0.11 0.11 0.29 0.14 0.06 0.06 0.14

β = log(2), (α0 = 0, α1 = 0.5)

0 Mean -0.93 -0.36 0.38 1.01 -0.66 -0.25 0.26 0.69 -0.94 -0.37 0.37 1.00 -0.93 -0.36 0.37 1.00
SD 0.22 0.19 0.17 0.15 0.19 0.18 0.16 0.15 0.20 0.08 0.08 0.21 0.15 0.07 0.07 0.12

1.000 Mean -0.93 -0.36 0.38 1.01 -0.42 -0.16 0.16 0.43 -0.93 -0.37 0.37 1.01 -0.93 -0.37 0.37 1.00
SD 0.22 0.19 0.17 0.15 0.17 0.16 0.15 0.14 0.26 0.11 0.11 0.30 0.14 0.06 0.06 0.14

Table B.8: Mean and standard deviation (SD) of estimates of the parameters for each group in a logistic regression of Y onQ = {Q1, Q2, Q3, Q4, Q5}
across 1000 simulated data sets using the true exposure, the naive method, and different correction methods whenW2,W3 are assumed to be observed
in 10% or 50% of the study population. Q3 is the reference category. (Scenario (2b))

242



●

●

●
●

●

●

●
●●

●

●

●

●
●
●

●
●●

●

●
●

●

●●
●

●●

●

●

●
●

●●
●

●

●

●●

●

●

●●●●

●
●

●

●

●

●

●●●

●●
●

●●

●

●

●

●

●

●

●●

●
●●
●●
●

●

●
●
●

●

●●

●

●

●●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Linear Association

RDR

rM
S

E

●

●
●

●
●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●●
●●

●
●●
●
●

●●

●●

●

●

●

●

●
●●

●

●●●●

●

●

●●
●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Linear Association

RDR

rM
S

E

●●

●

●
●●●

●
●●
●●

●

●●

●
●

●●
●

●

●

●

●

●
●
●

● ●
●
●
●

●

●
●●
●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Threshold Association

RDR

rM
S

E

●
●

●
●

●

●
●
●

●

●●●

●
●●

●

●
●●

●
●
●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●
●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●
●

●●●

●

●

●●
●
●●
●

●●

●

●

●

●

●
●

●●●●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Threshold Association

RDR

rM
S

E

●

●●
●

●

●●
●●
●
●
●

●●

●●
●

●●

●

●

● ●

●

●

●

●
●●●●●
●

●

●

●

●

●

●

●
●

●●

●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

J−Shaped Association

RDR

rM
S

E

●

●
●●●●●

●

●●

●
●

●●

● ●
●

●

●●

●
●
●
●

●●

●

●

●
●●

●

●
●

●

●●●
●

● ●
●●

●

●

●●●●
●●
●●
●●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

J−Shaped Association

RDR

rM
S

E ●
●●●

●
●

●

●
●

●●●●

●●

●
●

● ●
●

●

●

●

●
●
●● ●

●

●
●

●

●
●●●
●●●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

U−Shaped Association

RDR

rM
S

E ●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●●
●
●

●
●
●●●
●●

●

●●●●●

●

●

●
●
●
●
●

●

●●●●●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

U−Shaped Association

RDR

rM
S

E

●

●

●●
●
●●●

●

●●
●
●
●

●
●

●
●
●
●

●
●●
●●●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●●●
●●

●

●
●
●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●
●

●
●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Increasing Quadratic Association

RDR

rM
S

E

●

●

●

●
●●
●●

●
●
●

●
●

●

●

●

●●
●●
●

●

●

●●

●

●
●
●

●

●
●

●
●
●

●

●

●

●●●

●

●

●
●

●
●
●●

●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Increasing Quadratic Association

RDR

rM
S

E

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●●

●

●

●

●

●
●

●●

● ●

●

●

●●
●

●

●

●●

●

●●

●

●●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Asymptotic Association

RDR

rM
S

E

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●●
●
●

●

●

●●
● ●

●
●●
●

●
●
●

●
●

●●●●●

●

●
●

●
●●
●
●
●●
●

●
●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Asymptotic Association

RDR

rM
S

E

●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●
●

●

●●

●●●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Non−Linear Threshold Association

RDR

rM
S

E

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●
●
●

●

●

●●

●

●●

●
●
●
●●●

●
●

●
●●

●
●
●
●
●

●

●●
●

●
●●●
●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Non−Linear Threshold Association

RDR

rM
S

E ●●●
●
●
●

●

●
●
●

●

●
●
●

● ●

●

●

●
●●

●

●

●
●

●
●●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Null Association

RDR

rM
S

E ●
●

●

●●●
●

●

●
●
●
●●●

●

●
●
●●
●
●

●

●
●
●
●
●

●

1 4/5 2/3 1/2

0.
00

0.
05

0.
10

0.
15

Null Association

RDR

rM
S

E

Structural P−spline Structural fractional polynomial

Figure B.1: Boxplots of RFrMSE for structural fractional polynomial and P-spline models for
the exposure–disease relationship.
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Appendix C

Appendix to chapter 6
C.1 ERFC FBG data — study names

ALLHAT Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial
ARIC Atherosclerosis Risk in Communities Study
BHS Busselton Health Study
BRUN Bruneck Study
BUPA BUPA Study
BWHHS British Women’s Heart and Health Study
CASTEL Cardiovascular Study in the Elderly
CHARL Charleston Heart Study
CHS1 Original cohort of the Cardiovascular Health Study
CHS2 Supplemental African-American cohort of the Cardiovascular Health Study
DUBBO Dubbo Study of the Elderly
FINE FIN Finland, Italy and Netherlands Elderly Study - Finland cohort
GOH The Glucose Intolerance Obesity and Hypertension Study
GOTO43 Göteborg 1943 Study
GOTOW Population Study of Women in Gothenburg, Sweden
HELSINAG Helsinki Aging Study
HOORN Hoorn Study
KIHD Kuopio Ischaemic Heart Disease Study
MALMO Malmö Study
MATISS-83 Cohort of Progetto CUORE
MATISS-87 Cohort of Progetto CUORE
MATISS-93 Cohort of Progetto CUORE
MRFIT Multiple Risk Factors Intervention Trial
NCS3 Cohort of The Cardiovascular Disease Study in Norwegian Counties
NHANES III Third National Health and Nutrition Examination Survey
OSLO Oslo Study
PARIS1 Paris Prospective Study I
PRHHP Puerto Rico Heart Health Program
RANCHO Rancho Bernardo Study
REYK Reykjavik Study
RIFLE Risk Factors and Life Expectancy Pooling Project
SHS Strong Heart Study
TARFS Turkish Adult Risk Factor Study
ULSAM Uppsala Longitudinal Study of Adult Men
VHMPP Vorarlberg Health Monitoring and Promotion Programme
VITA Vicenza Thrombophilia and Athrosclerosis Project
WHITE II Whitehall II Study
ZARAGOZA Zaragoza study
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Appendix D

Appendix to chapter 7

D.1 Example measurement error plots for scenarios 2,4,5,8-
10 using log-exposure
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Figure D.1: Example measurement error plots under scenarios 2, 4, 5, 8-10, σ2
u = 1 using

log-exposure.
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Appendix E

Appendix to chapter 9
E.1 ERFC Lp(a) data — study names

AFTCAPS Air Force/Texas Coronary Atherosclerosis Prevention Study

ARIC Atherosclerosis Risk in Communities Study

ATTICA Attica Study

BRHS British Regional Heart Study

BRUN Bruneck Study

BUPA British Union Provident Association

CHARL Charleston Heart Study

CHS Cardiovascular Health Study

COPEN Copenhagen City Heart Study

DUBBO Dubbo Study of the Elderly

EAS Edinburgh Artery Study

FIA First Myocardial Infarction in Northern Sweden

FINRISK 92 Finrisk Cohort 1992

FLETCHER Fletcher Challenge Blood Study

FRAMOFF Framingham Offspring Cohort

GOH The Glucose Intolerance, Obesity and Hypertension Study

GOTO33 Göteborg Study 1933

GRIPS Göttingen Risk Incidence and Prevalence Study

HPFS Health Professionals Follow-up Study

KIHD Kuopio Ischaemic Heart Disease Study

MRFIT Multiple Risk Factor Intervention Trial

NHANES III National Health and Nutrition Examination Survey III

NHS Nurses Health Study

NPHS II Northwick Park Heart Study II

PRIME Prospective Epidemiological Study of Myocardial Infarction

PROCAM Prospective Cardiovascular Münster Study

QUEBEC Quebec Cardiovascular Study

REYK Reykjavik Study

SHS Strong Heart Study

TARFS Turkish Adult Risk Factor Study

ULSAM Uppsala Longitudinal Study of Adult Men

USPHS U.S. Physicians Health Study
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Appendix F

R code

In this appendix we give R code to accompany many of the methods described in this disserta-
tion.

F.1 Code to accompany chapter 2

F.1.1 P-spline plotting function

pspline.plot will plot P-splines from Cox proportional hazards models.

pspline.plot takes the following arguments

x Exposure to which the P-spline was fit
coef Spline coefficients from a coxph fit
v Variance-covriance matrix for coef
add If TRUE then will plot curve on current graph
se.plot If TRUE will plot standard errors
df Degrees of freedom of spline model
nterm The number of spline basis terms
degree Degree of P-spline
base Reference value, if NULL then the mean of x will be used as the reference value
... Options to be passed on to plot functions

pspline.plot <- function(x, coef,v=NULL, add=FALSE, se.plot=FALSE, df=4,

nterm=2.5*df,degree=3,base=NULL, ...){

require(survival)

#Recreate basis - uses code from pspline

x <- sort(x)

keepx <- !is.na(x)
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F. R code

base <- ifelse(is.null(base),mean(x[keepx]),base)

rx <- range(x[keepx])

dx <- (rx[2] - rx[1])/nterm

knots <- c(rx[1] +

dx * ((-degree):(nterm - 1)), rx[2] + dx * (0:degree))

temp <- spline.des(knots, x[keepx], degree+1)$design[,-1]

#Calculate log-HRs and subtract log-HR at reference

plot.vals <- temp%*%coef

pred.base <- spline.des(knots, base, degree+1)$design[,-1] %*%

coef

plot.vals <- as.vector(plot.vals) - pred.base

#Calculate standard errors if required

if(se.plot){

base.vals <- spline.des(knots, base, degree+1)$design[,-1]

for(i in 1:ncol(temp))

temp[,i] <- temp[,i] - base.vals[i]

se <- rep(NA, length(x[keepx]))

for (i in (1:NROW(temp))) {

se[i] <- sqrt(sum(temp[i,] %*% v %*% temp[i,]))

}

}

#Plot spline

if(add==FALSE)

plot( x[keepx], exp(plot.vals), type="l" , ylab="Hazard Ratio"

, xlab="Exposure level",log="y",...)

else lines(x[keepx], exp(plot.vals),...)

#Plot standard errors if required

if(se.plot){

lines(x[keepx], exp(plot.vals+1.96*se), col="red", lty="dashed")

lines(x[keepx], exp(plot.vals-1.96*se), col="red", lty="dashed")

}

}

An example using the cancer dataset that is supplied with the survival package

library(survival)

fit1 <- coxph(Surv(time, status) ˜ ph.ecog + pspline(age), cancer)

pspline.plot(cancer$age,fit1$coef[-1], fit1$var[-1,-1], se.plot=TRUE)
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F.2 Code to accompany chapter 4

F.2.1 Calculation of E((x− k)p+) for structural P-splines

For the mathematical details and notation used we refer the reader back to appendix A.

First we create a function that calculates Ir for r = 0, ..., p.

The function Ir takes the arguments:

p The degree of the truncated power function
h The standard score at the threshold k

Ir <- function(p,h){

I.temp <- rep(NA,length(p))

I.temp[1] <- 1

I.temp[2] <- dnorm(h)/(1-pnorm(h))

i <- 3

while(i<(length(p)+1)){

I.temp[i] <- ((hˆ(i-2)*dnorm(h))/(1-pnorm(h)))+(i-2)*I.temp[i-2]

i <- i+1}

I.temp}

The function spline.trunc which uses Ir calculates E((x− k)p+).

spline.trunc takes the arguments

mu The mean of the distribution of x
sigma The standard deviation of the distribution of x
k The threshold
p The degree of the truncated power function

spline.trunc <- function(mu,sigma,k,p){

h <- (k-mu)/sigma

r <- 0:p

if((1-pnorm(h))<.Machine$double.eps) 0

else (1-pnorm(h))*sum(choose(p,r)*muˆ(p-r)*(sigmaˆr)*Ir(r,h))

}

Note that the fourth line catches the case that h is very large which can lead to (numerical)
division by zero within Ir.
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F. R code

F.3 Code to accompany chapter 5

F.3.1 Multiple imputation with true exposure observed in a subset

mi.mod will perform multiple imputation, where we have a continuous exposure subject to
classical measurement error but wish to perform our analysis on groups of this exposure; we
have observed the true exposure for a subset of individuals; and where the exposure–outcome
relationship is modelled using a generalised linear model. Note that we require the mice [182]
package to be installed.

mi.mod takes the arguments:

y Outcome vector
w Vector containing the variable subject to measurement error
int.val Vector containing the true exposure for each individual where this is observed and

NA otherwise
cutpoints A vector of cutpoints to be used to group the continuous exposure
m The number of imputations, if NULL then defaults to percentage of missing data
z A matrix or data frame of other covariates (assumed to be measured without error)

to be included in the model
family A description of the error distribution and link function to be used in the model. See

help for glm for more details.

mi.mod <- function(y,w,int.val,cutpoints,m=NULL,z=NULL,family="gaussian"){

#Loads mice if not already loaded

require(mice)

#Sets the number of imputations to percentage of missing data if not

#specified

m <- ifelse(is.null(m),

ceiling((sum(is.na(int.val))/length(int.val))*100),m)

#Creates data frame of all variables

if(is.null(z)) mydata <- data.frame(y,int.val,w)

else mydata <- data.frame(y,int.val,w,z)

#Creates m multiply imputed datsets

imp.data <- mice(mydata,im="norm",m=m,printFlag=FALSE)

#Create formula for regression

fmla <- as.formula(ifelse(is.null(z),

"y ˜ cut(int.val,c(-Inf,cutpoints,Inf))",
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paste("y ˜ cut(int.val,c(-Inf,cutpoints,Inf))+",

paste(colnames(z),collapse="+"))))

#Fit models using each of the imputed datasets

fit.imp <- with(data=imp.data,glm(fmla, family=family))

#Pool results using Rubin’s rules

pool(fit.imp)

}

Example:

#True exposure

x <- rnorm(1000)

#Mismeasured exposure

w <- x+rnorm(1000)

#Outcome

y <- 2+x+rnorm(1000,0,sqrt(0.25))

#Validation substudy

int.val <- x

int.val[sample(1000,100)] <- NA

#Compare results from MI and using the true exposure

mi.mod(y,w,int.val,2)

lm(y˜(x>2))

F.3.2 Moment reconstruction with true exposure observed in a subset

mr.mod will perform moment reconstruction, where we have a continuous exposure subject
to classical measurement error but wish to perform our analysis on groups of this exposure; we
have observed the true exposure for a subset of individuals; and where the exposure–outcome
relationship is modelled using a generalised linear model.

mr.mod takes the arguments:

y Outcome vector
w Vector containing the variable subject to measurement error
int.val Vector containing the true exposure measurement for each individual where this is

observed and NA otherwise
cutpoints A vector of cutpoints to be used to group the continuous exposure
m The number of imputations, if NULL then defaults to percentage of missing data
z A matrix or data frame of other covariates (assumed to be measured without error)

to be included in the model
family A description of the error distribution and link function to be used in the model. See

help for glm for more details.
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F. R code

mr.mod <- function(y,w,int.val,cutpoints,m=NULL,z=NULL,family="gaussian"){

#Create formula for imputation model

fmla <- as.formula(ifelse(is.null(z),

"int.val˜ y",

paste("int.val ˜ y +",paste(colnames(z),collapse="+"))))

fmla2 <- as.formula(ifelse(is.null(z),

"w ˜ y",

paste("w ˜y +",paste(colnames(z),collapse="+"))))

#Create matrix of data

if(is.null(z)) mydata <- cbind(1,y)

else mydata <- cbind(1,y,z)

#Find conditional expectations and variances

mod.valgivyz <- lm(fmla)

mod.wgivyz <- lm(fmla2)

exp.x.given.yz <- mod.valgivyz$coef%*%t(mydata)

exp.w.given.yz <- mod.wgivyz$coef%*%t(mydata)

var.x.given.yz <- var(residuals(mod.valgivyz))

var.w1.given.yz <- var(residuals(mod.wgivyz))

g<-sqrt(var.x.given.yz/var.w1.given.yz)

#Find moment reconstruction values

mr.vals <- exp.x.given.yz+g*(w-exp.w.given.yz)

x.mr<- ifelse(!is.na(int.val),int.val,mr.vals)

#Fit disease model using moment reconstruction values

fmla3 <- as.formula(ifelse(is.null(z),

"y ˜ cut(int.val,c(-Inf,cutpoints,Inf))",

paste("y ˜ cut(int.val,c(-Inf,cutpoints,Inf))+",

paste(colnames(z),collapse="+"))))

glm(fmla3, family=family)$coef

}

Example:

#True exposure

x <- rnorm(1000)

#Mismeasured exposure
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w <- x+rnorm(1000)

#Outcome

y <- 2+x+rnorm(1000,0,sqrt(0.25))

#Validation substudy

int.val <-x

int.val[sample(1000,100)] <- NA

#Compare results from MI and using the true exposure

mr.mod(y,w,int.val,2)

lm(y˜(x>2))

F.3.3 group-SIMEX

gsimex.mod will fit a group-SIMEX model, where we have a continuous exposure subject
to classical measurement error but wish to perform our analysis on groups of this exposure;
we have observed a replicate measure of exposure for a subset of individuals; and where the
exposure–outcome relationship is modelled using a generalised linear model.

gsimex.mod takes the arguments:

y Outcome vector
w Vector containing the variable subject to measurement error
meas.err Estimate of measurement error variance
cutpoints Vector of cutpoints to be used to group the continuous exposure
z Matrix or data frame of other covariates (assumed to be measured without error) to

be included in the model
family A description of the error distribution and link function to be used in the model. See

help for glm for more details.
lambda Vector of lambda values for which the simulation step should be performed
B Number of pseudo datasets to be created for each value of lambda

gsimex.mod <- function(y,w,meas.err,cutpoints, z=NULL, family="gaussian",

lambda=c(0.5,1,1.5,2), B=100){

#Define lambda

lambda <- c(0,lambda)

#Create formula for regression

fmla <- as.formula(ifelse(is.null(z),

"y ˜ cut(wstar,c(-Inf,cutpoints,Inf))",

paste("y ˜ cut(wstar,c(-Inf,cutpoints,Inf))+",

paste(colnames(z),collapse="+"))))

#Calculate number of cefficients
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ncoef <- 1+length(cutpoints)+ifelse(is.null(z),0,ncol(z))

#Define coefficient vector and input value from naive model

wstar <- w

temp.mod <- glm(fmla, family=family)

coef.labs <- names(temp.mod$coef)

coef.vals <- matrix(NA,length(lambda),ncoef,

dimnames=list(lambda,coef.labs))

coef.var.vals <- matrix(NA,length(lambda),ncoefˆ2)

coef.vals[1,] <- temp.mod$coef

coef.var.vals[1,] <- as.vector(summary(temp.mod)$cov.unscaled)

#For each value of lambda create B replicate datasets and take average

#parameter and calculate covariance matrix

for(j in 2:length(lambda)){

temp <- matrix(NA,B,ncoef)

temp.var <- matrix(0,ncoef,

ncoef)

for(i in 1:B){

wstar <- w + sqrt(lambda[j])*sqrt(meas.err)*rnorm(length(w))

temp.mod <- glm(fmla, family=family)

temp[i,] <- temp.mod$coef

temp.var <- temp.var+summary(temp.mod)$cov.unscaled}

coef.vals[j,] <- apply(temp,2,mean)

coef.var.vals[j,] <- (1/100)*as.vector(temp.var)-as.vector(cov(temp))

cat("\n lambda=",lambda[j],"complete \n")

}

#Regress coefficient values on lambda

out.coef <- rep(NA,ncoef)

names(out.coef) <- coef.labs

for(i in 1:length(out.coef)){

temp.mod <- lm(coef.vals[,i] ˜ lambda + I(lambdaˆ2))

out.coef[i] <- temp.mod$coef[1] - temp.mod$coef[2] + temp.mod$coef[3]}

#Regress var values on lambda

out.var <- rep(NA,ncoefˆ2)

for(i in 1:length(out.var)){

temp.mod <- lm(coef.var.vals[,i] ˜ lambda + I(lambdaˆ2))
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out.var[i] <- temp.mod$coef[1] - temp.mod$coef[2] + temp.mod$coef[3]

}

out.var <- matrix(out.var,ncoef,ncoef,byrow=TRUE,

dimnames=list(coef.labs,coef.labs))

#Output

list(B=B, lambda=lambda,out.coef=out.coef, cutpoints=cutpoints,

out.var=out.var, SIMEX.coef=coef.vals)

}

gsimex.mod returns:

B Number of pseudo datasets to be created for each value of lambda
lambda Vector of lambda values for which the simulation step was performed
out.coef The group-SIMEX corrected parameter estimates
out.var The jackknife estimated variance-covariance matrix for the group-SIMEX

corrected parameter estimates
cutpoints Vector of cutpoints that were used to group the continuous exposure
SIMEX.coef A matrix of parameter values for each value of lambda

Example

#Generate true exposure, mismeasured exposure and outcome

x <- rnorm(1000)

w <- x+rnorm(1000)

y <- 2 + x + rnorm(1000,0,sqrt(0.25))

#Fit true model with cutpoint c=0

lm(y˜I(x>0))

#Fit group-simex model to observed data

gsimex.mod(y,w,meas.err,cutpoints=0)

F.3.4 Plots of SIMEX extrapolation curves

simexgraphwill produce plots of the quadratic extrapolation function for both gsimex.mod
as well as for models fitted using the simex and mcsimex functions with the simex pack-
age.

simexgraph takes the arguments:

mod Object fitted using gsimex.mod described above or simex and mcsimex func-
tions from the simex package

variables A vector of variable names or coefficient numbers to be plotted. If NULL all vari-
ables are plotted.

title A vector of titles. If NULL titles are generated.

simexgraph <- function(mod, variables=NULL,title=NULL){
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#Select all variables if none are chosen

if(is.null(variables))

variables <- colnames(mod$SIMEX.estimates)[-1]

#Create plot window

par(mfrow=c(ceiling(length(variables)/2),2))

for(i in variables){

#Create blank plot

plot(mod$SIMEX.estimates[,1],mod$SIMEX.estimates[,i],

xlab=expression(lambda), ylab=expression(beta(lambda)), type="n")

#Create title or use user defined

if(!is.null(title)) title(title[i])

else(title(paste("Extrapolation plot for variable",i)))

#Recreate quadratic extrapolation

bob <- lm(mod$SIMEX.estimates[-1,i]˜mod$lambda+I(mod$lambdaˆ2))

#Plot points and curves

curve(coefficients(bob)[1]+coefficients(bob)[2]*x+

coefficients(bob)[3]*xˆ2,

add=TRUE,lwd=1,from=0, to=2, col="blue")

curve(coefficients(bob)[1]+coefficients(bob)[2]*x+

coefficients(bob)[3]*xˆ2,

add=TRUE,lwd=1,from=-1, to=0, col="blue", lty=2)

points(mod$lambda, mod$SIMEX.estimates[-1,i],

pch=rep(16,length(mod$lambda)), cex=1.5)

points(-1,mod$coefficients[i], cex=1.5)

}

}

Example

library(simex)

#This is the example from the SIMEX package

x <- rnorm(200, 0, 100)

u <- rnorm(200, 0, 25)

w <- x + u

y <- x + rnorm(200, 0, 9)
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true.model <- lm(y ˜ x)

naive.model <- lm(y ˜ w, x = TRUE)

simex.model <- simex(model = naive.model, SIMEXvariable = "w",

measurement.error = 25)

#Plot SIMEX graph

simexgraph(simex.model)

F.4 Code to accompany chapter 8

F.4.1 DerSimonian and Laird based multivariate meta-analysis

multi.meta.dl will perform a fixed- or random-effects multivariate meta-analysis using a
DerSimonian and Laird based approach.

multi.meta.dl takes the arguments:

TE Matrix with n rows and np columns
varTE List of n np × np variance-covariance matrices
subset Vector of which studies are to be included
fixed Whether a fixed effects analysis is to be performed (random effects is default)

multi.meta.dl <- function (TE, varTE, subset=NULL, fixed=FALSE){

#If subset then select data

if(!is.null(subset)){

TE <- TE[subset,]

temp <- list(varTE[[subset[1]]])

for(i in 2:length(subset))

temp[[i]] <- varTE[[subset[i]]]

varTE <- temp}

TE <- as.matrix(TE)

#No. of outcomes

no <- ncol(TE)

#No. of studies

n <- nrow(TE)

#Fill in missing values - weight out using large variance

TE[is.na(TE)] <- 0

for(i in 1:n)

diag(varTE[[i]])[diag(varTE[[i]])==0] <- 1e12
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#Calculate standard errors

seTE <- t(sapply(varTE, function(x) sqrt(unlist(diag(x)))))

#Calculate correlation matrices

corTE <- lapply(varTE, function(x) cov2cor(matrix(unlist(x),no,no)))

#Initialise variables

Sigma <- Sigma_trun <- Q <- matrix(0,no,no)

#If fixed then set Sigma to zero

if(fixed)

Sigma_trun <- matrix(0,no,no)

else{

for(i in 1:no){

for(j in 1:no){

#Do pairwise (by outcome) calculations

#Select outcomes

X <- TE[,i]

Y <- TE[,j]

#Calulate weights

W <- 1/(seTE[,i]*seTE[,j])

#Calculate weighted means

X.bar <- weighted.mean(X,W)

Y.bar <- weighted.mean(Y,W)

#Calculate Q matrix value

Q[i,j] <- sum( W*((X-X.bar)*(Y-Y.bar)))

temp.cor <- rep(NA,n)

for(k in 1:n)

temp.cor[k] <- as.numeric(corTE[[k]][i,j])

#Calculate coefficients in equation

a <- sum(temp.cor) - weighted.mean(temp.cor, W)

b <- sum(W) - weighted.mean(W, W)

#Calculate Sigma matrix value

Sigma[i,j] <- (Q[i,j]-a)/b

}}

#Perform truncation
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eig <- eigen(Sigma)

for(i in 1:no)

Sigma_trun<-Sigma_trun+max(0, eig$values[i])*

eig$vectors[,i]%*%t(eig$vectors[,i])

}

#Calculate components of treatment effect

temp <- matrix(0,no,no)

temp2 <- rep(0,no)

for(i in 1:n){

temp.inv <- solve(Sigma_trun+matrix(unlist(varTE[[i]]),no,no))

temp <- temp + temp.inv

temp2 <- temp2 + temp.inv %*% TE[i,]

}

#Calulate overall TE and variance

TE.overall.var <- solve(temp)

TE.overall <- TE.overall.var%*%(temp2)

#Name rows and columns

colnames(Sigma) <- rownames(Sigma) <- colnames(Sigma_trun)

<- rownames(Sigma_trun) <- colnames(Q) <- rownames(Q) <- colnames(TE)

#Output list of results

if(fixed)

list(TE.overall=TE.overall,TE.var=TE.overall.var,subset=subset)

else list(TE.overall=TE.overall,Sigma_trun=Sigma_trun,Sigma=Sigma,

Q=Q,TE.var=TE.overall.var,

eigen=eig, subset=subset)

}

multi.meta.dl returns

TE.overall The overall treatment effect
TE.var The variance-covariance matrix for the overall treatment effect
subset Vector of which studies were included (NULL if all were included)

and additionally for random effects analyses

Sigma The estimated between study variance-covariance matrix
Sigma_trun The estimated truncated between study variance-covariance matrix
eigen The eigenvalues of Sigma
Q The Q matrix
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F.4.2 REML based multivariate meta-analysis

multi.meta.dl will perform a fixed- or random-effects multivariate meta-analysis using
a DerSimonian and Laird based approach. Note that this function requires that the package
meta is installed as it is used to obtain starting values for maximising the restricted maximum
likelihood.

multi.meta.reml takes the arguments:

TE Matrix with n rows and np columns
varTE List of n, np × np variance-covariance matrices
subset Vector of which studies are to be included

multi.meta.reml <- function(TE,varTE, subset=NULL){

#If subset then select data

if(!is.null(subset)){

TE <- TE[subset,]

temp <- list(varTE[[subset[1]]])

for(i in 2:length(subset))

temp[[i]] <- varTE[[subset[i]]]

varTE <- temp}

# Number of outcomes

m <- ncol(TE)

#Number of studies

k <- nrow(TE)

#Perform univariate meta-analysis to obtain start values for ML

uni.meta <- rep(0,2*m)

require(meta)

mu <- sig <- rep(0,m)

for(i in 1:m){

temp.se <- rep(0,k)

for(j in 1:k) temp.se[j] <- sqrt(unlist(varTE[[j]][i,i]))

mu[i] <- metagen(TE[,i], temp.se)$TE.random

sig[i]<- metagen(TE[,i], temp.se)$seTE.random

}

#Create function that calculates the log-likelihood
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ll <- function(musig){

mu <- musig[1:m]

Sigma <- matrix(0,m,m)

diag(Sigma) <- musig[(m+1):(2*m)]ˆ2

Sigma[upper.tri(Sigma)] <- musig[((2*m)+1):(m+0.5*m*(m+1))]

Sigma[lower.tri(Sigma)] <- t(Sigma)[lower.tri(t(Sigma))]

#Make sure that Sigma is positive semi-definite

Sigma_trun <- matrix(0,m,m)

eig <- eigen(Sigma)

for(i in 1:m) Sigma_trun<-Sigma_trun+

max(0, eig$values[i])*eig$vectors[,i]%*%t(eig$vectors[,i])

Sigma <- Sigma_trun

#Calculate the three components of the likelihood

term1 <- 0

for(i in 1:k)

term1 <- term1 + log(det(Sigma+matrix(unlist(varTE[[i]]),m,m,byrow=TRUE)))

temp <- matrix(0,m,m)

for(j in 1:k)

temp <- temp +

solve(Sigma+matrix(unlist(matrix(unlist(varTE[[j]]),

m,m,byrow=TRUE)),m,m,byrow=TRUE))

term2 <- log(det(temp))

term3 <- 0

for(l in 1:k)

term3 <- term3 + t(as.numeric(TE[l,])-mu)%*%solve(

Sigma+matrix(unlist(varTE[[l]]),

m,m,byrow=TRUE))%*%(as.numeric(TE[l,])-mu)

#Want to minimize -loglik

reml <- term1+term2 +term3

}

#Maximise the restricted likelihood

max.vals <- optim( c(mu,c(sig, rep(0,0.5*(m-1)*m))),ll, method="BFGS")

mu <- max.vals$par[1:m]

Sigma <- matrix(0,m,m)
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diag(Sigma) <- max.vals$par[(m+1):(2*m)]ˆ2

Sigma[upper.tri(Sigma)] <- max.vals$par[((2*m)+1):(m+0.5*m*(m+1))]

Sigma[lower.tri(Sigma)] <- t(Sigma)[lower.tri(t(Sigma))]

#Calculate the truncated matrix which is positive semi-definite

Sigma_trun <- matrix(0,m,m)

eig <- eigen(Sigma)

for(i in 1:m) Sigma_trun<-Sigma_trun+max(0, eig$values[i])*

eig$vectors[,i]%*%t(eig$vectors[,i])

list(TE.overall=mu, Sigma_trun=Sigma_trun, Sigma=Sigma, eigen=eig, subset=subset)

}

multi.meta.reml returns

TE.overall The overall treatment effect
TE.var The variance-covariance matrix for the overall treatment effect
subset Vector of which studies were included (NULL if all were included)
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[132] I.M. Heid, H. Küchenhoff, J. Wellmann, M. Gerken, L. Kreienbrock, and H.E. Wich-
mann. On the potential of measurement error to induce differential bias on odds ratio
estimates: an example from radon epidemiology. Statistics in Medicine, 21(21):3261–
3278, 2002.

[133] S.J. Iturria, R.J. Carroll, and D. Firth. Polynomial regression and estimating functions
in the presence of multiplicative measurement error. Journal of the Royal Statistical

Society: Series B, 61(3):547–561, 1999.

[134] E. Biewen, S. Nolte, and M. Rosemann. Perturbation by multiplicative noise and the
Simulation Extrapolation method. AStA Advances in Statistical Analysis, 92(4):375–
389, 2008.

[135] K.B. Michels. A renaissance for measurement error. International Journal of Epidemi-

ology, 30(3):421–422, 2001.

[136] M.D. Hughes. Regression dilution in the proportional hazards model. Biometrics,
49(4):1056–1066, 1993.

[137] J. Kuha and J. Temple. Covariate measurement error in quadratic regression. Interna-

tional Statistical Review, 71(1):131–150, 2003.

[138] R. Doll, R. Peto, E. Hall, K. Wheatley, and R. Gray. Mortality in relation to consumption
of alcohol: 13 years observations on male British doctors. BMJ, 309(6959):911–918,
1994.

[139] K. Poikolainen. Alcohol and mortality: a review. Journal of Clinical Epidemiology,
48(4):455–65, 1995.

[140] A.G. Shaper, M. Walker, and G. Wannamethee. Alcohol and mortality in British men:
explaining the U-shaped curve. Lancet, 2(8623):1267–73, 1988.

[141] F. Boutitie, F. Gueyffier, S. Pocock, R. Fagard, and J.P. Boissel. J-shaped relationship

277



References

between blood pressure and mortality in hypertensive patients: New insights from a
meta-analysis of individual-patient data. Annals of Internal Medicine, 136(6):438–448,
2002.

[142] W. Cates. Contraception, unintended pregnancies, and sexually transmitted diseases:
why isn’t a simple solution possible? American Journal of Epidemiology, 143(4):311–
318, 1996.

[143] J. Polesel, L. Dal Maso, V. Bagnardi, A. Zucchetto, A. Zambon, F. Levi, C. La Vecchia,
and S. Franceschi. Estimating dose-response relationship between ethanol and risk of
cancer using regression spline models. International Journal of Cancer, 114(5):836–
841, 2005.

[144] S. Port, L. Demer, R. Jennrich, D. Walter, and A. Garfinkel. Systolic blood pressure and
mortality. Lancet, 355(9199):175–180, 2000.

[145] R. Bender, T. Augustin, and M. Blettner. Generating survival times to simulate Cox
proportional hazards models. Statistics in Medicine, 24(11):1713–1723, 2005.

[146] S. Lewington, T. Thomsen, M. Davidsen, P. Sherliker, and R. Clarke. Regression dilution
bias in blood total and high-density lipoprotein cholesterol and blood pressure in the
Glostrup and Framingham prospective studies. European Journal of Cardiovascular

Prevention & Rehabilitation, 10(2):143–148, 2003.

[147] V. Bagnardi, A. Zambon, P. Quatto, and G. Corrao. Flexible meta-regression functions
for modeling aggregate dose-response data, with an application to alcohol and mortality.
American Journal of Epidemiology, 159(11):1077–1086, 2004.

[148] H. Schneeweiß and T. Augustin. Some recent advances in measurement error models
and methods. Allgemeines Statistisches Archiv, 90(1):183–197, 2006.

[149] T. Augustin and R. Schwarz. Cox’s proportional hazards model under covariate mea-
surement error - A review and comparison of methods. Technical report, Ludwig-
Maximilians-Universität, München, 2001.

[150] A. Guolo. Robust techniques for measurement error correction: a review. Statistical

Methods in Medical Research, 17(6):555–580, 2008.

[151] N.E. Day, N. McKeown, M.Y. Wong, A. Welch, and S. Bingham. Epidemiological as-
sessment of diet: a comparison of a 7-day diary with a food frequency questionnaire
using urinary markers of nitrogen, potassium and sodium. International Journal of Epi-

demiology, 30(2):309–317, 2001.

[152] K.M. Flegal, P.M. Keyl, and F.J. Nieto. Differential misclassification arising from
nondifferential errors in exposure measurement. American Journal of Epidemiology,
134(10):1233–1244, 1991.

278



References

[153] D. Spiegelman, R.J. Carroll, and V. Kipnis. Efficient regression calibration for logistic
regression in main study/internal validation study designs with an imperfect reference
instrument. Statistics in Medicine, 20(1):139–160, 2001.

[154] C. Frost and S.G. Thompson. Correcting for regression dilution bias: comparison of
methods for a single predictor variable. Journal of the Royal Statistical Society: Series

A, 163(2):173–189, 2000.

[155] K.B. Michels, S.A. Bingham, R. Luben, A.A. Welch, and N.E. Day. The effect of
correlated measurement error in multivariate models of diet. American Journal of Epi-

demiology, 160(1):59–67, 2004.

[156] D.G. Clayton. Models for the analysis of cohort and case-control studies with inaccu-

rately measured exposures, pages 301–331. Oxford University Press, 1991.

[157] R.J. Carroll, J.D. Maca, and D. Ruppert. Nonparametric regression in the presence of
measurement error. Biometrika, 86(3):541–554, 1999.

[158] G.H. Golub and J.H. Welsch. Calculation of Gauss quadrature rules. Mathematics of

Computation, 23(106):221–230, 1969.

[159] L.K. Chan and T.K. Mak. On the polynomial functional relationship. Journal of the

Royal Statistical Society: Series B, 47(3):510–518, 1985.

[160] C.L. Cheng and H. Schneeweiß. Polynomial regression with errors in the variables.
Journal of the Royal Statistical Society: Series B, 60(1):189–199, 1998.

[161] L.A. Stefanski. Unbiased estimation of a nonlinear function a normal mean with ap-
plication to measurement error models. Communications in Statistics — Theory and

Methods, 18(12):4335–4358, 1989.

[162] T. Nakamura. Proportional hazards model with covariates subject to measurement error.
Biometrics, 48(3):829–838, 1992.

[163] T. Augustin. An exact corrected log-likelihood function for Cox’s proportional hazards
model under measurement error and some extensions. Scandinavian Journal of Statis-

tics, 31(1):43–50, 2004.

[164] T. Augustin, A. Doring, and D. Rummel. Regression calibration for Cox regression
under heteroscedastic measurement error: Determining risk factors of cardiovascular
diseases from error-prone nutritional replication data. Recent Advances in Linear Models

and Related Areas: Essays in Honour of Helge Toutenburg, pages 253–278, 2008.

[165] S.J. Novick and L.A. Stefanski. Corrected score estimation via complex variable simu-
lation extrapolation. Journal of the American Statistical Association, 97(458):472–481,
2002.

279



References

[166] L.A. Stefanski and J.R. Cook. Simulation-Extrapolation: The measurement error jack-
nife. Journal of the American Statistical Association, 90(432):1247–1256, 1995.

[167] J.R. Cook and L.A. Stefanski. Simulation-extrapolation estimation in parametric mea-
surement error models. Journal of the American Statistical Association, 89(428):1314–
1328, 1994.
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