

Supporting Virtuosity and

Flow in Computer Music

CHRIS NASH

December 2011

THIS DISSERTATION IS

SUBMITTED FOR THE

DEGREE OF DOCTOR

OF PHILOSOPHY

Computer Laboratory

Supporting Virtuosity and Flow in Computer Music

© 2011 Chris Nash. All rights reserved.

This dissertation is the result of my own work

and includes nothing that is the outcome of

work done in collaboration except where

specifically indicated in the text.

No part of this dissertation has already been, or

is currently being submitted by the author for any

other degree or diploma or other qualification.

This dissertation does not exceed 60,000 words

including tables and footnotes, but excluding

appendices, bibliography, photographs, and diagrams.

All brand names and registered trademarks used in

this work are the property of their respective owners.

 3

Supporting Virtuosity and Flow in Computer Music

Chris Nash

As we begin to realise the sonic and expressive potential of the computer, HCI

researchers face the challenge of designing rewarding and accessible user experiences

that enable individuals to explore complex creative domains such as music.

 In performance-based music systems such as sequencers, a disjunction exists

between the musician’s specialist skill with performance hardware and the generic

usability techniques applied in the design of the software. The creative process is not

only fragmented across multiple physical (and virtual) devices, but divided across

creativity and productivity phases separated by the act of recording.

 Integrating psychologies of expertise and intrinsic motivation, this thesis proposes a

design shift from usability to virtuosity, using theories of “flow” (Csikszentmihalyi,

1996) and feedback “liveness” (Tanimoto, 1990) to identify factors that facilitate

learning and creativity in digital notations and interfaces, leading to a set of design

heuristics to support virtuosity in notation use. Using the cognitive dimensions of

notations framework (Green, 1996), models of the creative user experience are

developed, working towards a theoretical framework for HCI in music systems, and

specifically computer-aided composition.

 Extensive analytical methods are used to look at corollaries of virtuosity and flow in

real-world computer music interaction, notably in soundtracking, a software-based

composing environment offering a rapid edit-audition feedback cycle, enabled by the

user’s skill in manipulating the text-based notation (and program) through the

computer keyboard. The interaction and development of more than 1,000 sequencer

and tracker users was recorded over a period of 2 years, to investigate the nature and

development of skill and technique, look for evidence of flow experiences, and

establish the use and role of both visual and musical feedback in music software.

Quantitative analyses of interaction data are supplemented with a detailed video study

of a professional tracker composer, and a user survey that draws on psychometric

methods to evaluate flow experiences in the use of digital music notations, such as

sequencers and trackers.

 Empirical findings broadly support the proposed design heuristics, and enable the

development of further models of liveness and flow in notation use. Implications for

UI design are discussed in the context of existing music systems, and supporting

digitally-mediated creativity in other domains based on notation use.

 4

 5

Acknowledgements

Many people have helped and supported me during my work on this research. I’d

especially like to thank my supervisor, Alan Blackwell, for his unwavering support

and many insights, and from whose unfathomable depths (and breadths) of

knowledge, I have learnt so much. Similar thanks go to Ian Cross, at the Centre for

Music and Science, for his support in supervising me.

The whole Rainbow Group, along with my colleagues at the CMS and St. John’s

College have made my time in Cambridge a warm, friendly, and vibrant experience.

Darren Edge, Daniel Bernhardt, Bjarki Holm, and Sam Aaron especially, have not

only been invaluable sources of feedback and insight in my work, but much valued

friends, inseparable by distance. Likewise for my college brethren, among them Matt

Dolan and Moira Smith – who are always there when I need a pint or curry.

This work would never have been possible without the financial support of both

Russell Ambrose and the Harold Hyam Wingate Foundation, and their valued

enthusiasm for both music and inter-disciplinary research.

I am also grateful to everyone in the reViSiT user community, whose openness and

enthusiasm has enabled this research, especially Maarten van Strien, Martin Fegerl,

Hans Terpstra, and Esa Ruoho. I hope to make up for the lack of development during

this research, with lots of new “scientifically-proven” updates!

Above all, however, I thank my family – Mum, Dad, and Kate – for their support,

love, and patience. For a quiet, loving environment to live, grow up, and write up. But

most of all, for inspiring my passion for music, and the drive to create and learn.

For my parents

 6

 7

 Abstract 3

 Acknowledgements 5

1 Introduction 9

 1.1 Thesis Summary +2 11

 1.2 Aims and Objectives +3 12

 1.3 Research Contributions +3 12

 1.4 Structure of Dissertation +3 12

2 Sequencing, Tracking, and the Demoscene 15

 2.1 Digital Audio Workstations (DAWs) +1 16

 2.2 Soundtrackers and the Demoscene +7 22

 2.2.1 Technical Overview +8 23

 2.2.2 Social Context +12 27

3 Creativity, Expertise and Motivation 31

 3.1 Personal Creativity +2 33

 3.2 The Creative Process +10 41

 3.3 Creativity Synthesised +16 47

 3.4 Supporting Creativity +19 49

 3.5 Creativity in Music +25 56

 3.6 Developing Musical Expertise +34 66

 3.7 Motivation and Flow +43 74

4 Towards Digitally-mediated Creativity 84

 4.1 Supporting Virtuosity in Computer Music +1 85

 4.1.1 Design Heuristics for Virtuosity-enabled Systems +2 86

 4.2 Systems of Musical Flow +12 97

 4.2.1 From Virtuosity to Flow +13 97

 4.2.2 Abstracting the Creative Music Process +16 100

 4.2.3 Systems of Musical Flow +17 101

 4.2.4 Modelling ‘Liveness’ in a Musical System +24 109

5 iMPULS: Internet Music Program User Logging System 115

 5.1 Objectives +1 116

 5.2 The reViSiT Soundtracker +2 117

 5.2.1 Background +2 117

 5.2.2 Program Overview +2 117

 5.2.3 Reception and User Community +5 120

 5.2.4 Development and Testing +7 122

 5.2.5 Distribution +11 126

 5.3 System Architecture +11 126

 5.3.1 User Registration and Identification +12 127

 5.3.2 Data Collection +13 128

 5.3.3 Data Delivery +16 131

 5.4 Interaction Visualisation Environment (IVE) +18 133

 5.4.1 Visualisation and Analysis +20 135

 5.5 Running the Experiment +25 140

 5.5.1 Testing Experiment Code +25 140

 5.5.2 Experiment Launch +26 141

 8

6 Video Study: Tracking Composition Practices 143

 6.1 General Observations +2 145

 6.2 Chronological Overview +6 149

 6.3 Evidence for Flow and Virtuosity +12 155

7 Keyboard Use and Motor Learning in Tracking 157

 7.1 Speed and Timing +1 158

 7.2 Keyboard and Program Knowledge +4 161

 7.3 A Descriptive Model of Tracker Interaction +6 163

 7.4 Developing Fluency in Soundtracking +9 165

8 Focus and Feedback in Digital Music 173

 8.1 Activity Profiles +1 174

 8.2 Measuring Liveness +11 184

 8.3 Direct Manipulation for Audio-based Programs +15 188

 8.4 Visual Feedback and Window Use +21 194

 8.5 Case Study: Image-Line FL Studio +29 202

9 Flow and Cognitive Dimensions in Notation Use 207

 9.1 Interaction Styles and Preferences +2 209

 9.2 Flow and Experience +4 211

 9.3 Cognitive Dimensions and Flow Profiles +6 213

 9.4 Modelling Flow with Cognitive Dimensions +11 218

10 Conclusion 229

 10.1 Summary of Findings +1 230

 10.2 Methodological Review +5 234

 10.3 Towards a Theoretical Framework +7 237

 10.4 Future Directions +9 239

 Bibliography 243

 Appendix A Tracker Effects Reference

 Appendix B Flow in Music Composition

 Appendix C iMPULS Questionnaires

 Appendix D iMPULS Interaction Event Types

 Appendix E iMPULS|IVE Visualisations

 Appendix F reViSiT Software Updates

Appendix G Overview of sampled users and data

 9

chapter one introduction

… one can ask how deep a union research in musical

controllers will be able to forge with the larger field of Human-

Computer Interfaces, which generally emphasizes ease-of-use

rather than improvement with long years of practice.

– Paradiso and O’Modhrain (2003)

As we begin to realise the sonic and expressive potential of the

computer, human-computer interaction (HCI) researchers face the

challenge of designing both rewarding and accessible user

experiences that enable individuals to effectively control and

explore complex creative domains such as music.

 Exploratory creativity relies on expertise and intrinsic

motivation, contrasting goal-based usability approaches in

mainstream HCI practice and analysis. In music, creative

individuals not only develop virtuosity with instruments, but also

notations; and, while new performance devices provide new

modes of realtime musical expression, relatively little research has

looked at the composer’s use of notation, and how it can be

supported by the computer, as a tool for sketching creative ideas.

 Conventionally, both professional and amateur music production

uses a mix of virtual and electronic devices integrated through a

sequencer-based digital audio workstation (DAW), which couples

the capture of a live (realtime) performance with offline (non-

realtime) graphical user interface (GUI)-based editing. In the

process, the user’s creative process is not only distributed across

 10

multiple devices, but also across distinct creativity and

productivity phases, separated by the act of recording. An

important question is how to bridge this divide between the

musician’s direct control and intimacy with hardware and the

virtual environment of software.

 This research looks at more pervasive use of digital notations in

computer-based musical creativity, exploring digital approaches to

editing notations that maintain a sense of “liveness” (Tanimoto,

1990) and immersion in the musical domain, while avoiding both

the “indirect involvement” associated with overly formal or

abstract notational layers (Leman, 2008) and the reliance on

traditional musicianship. Drawing on creativity and musicology

research, this thesis argues for a design shift from usability to

virtuosity; proposing notation-based interfaces for composition

that support the development of skill (motor and memory), and

where a concise visual representation is closely-integrated with the

high-availability of musical (sound) feedback, in order to maintain

a musical context during offline editing.

 At the same time, while developing musical virtuosity is

historically associated with years of tuition and deliberate practice,

the computer’s capacity to respond to manipulations of a notation

with rapid musical feedback can enable an intrinsically rewarding

experiential learning process based on creativity, listening, and

tinkering with music. Musical performances are scripted by the

user, but executed by the computer, allowing interaction at a pace

that is not only accessible to novices, but also increases the scope

of what experts can express beyond what is possible in realtime.

 Integrating psychologies of expertise and intrinsic motivation,

flow theory (Csikszentmihalyi, 1996) is used as a framework for

identifying and analysing the properties of a notation that support

learning and creativity, and is combined with the cognitive

dimensions of notations framework (Green, 1996) to develop

models of the creative user experience, working towards a

theoretical framework for HCI in music.

 Extensive analytical methods are used to look at corollaries of

virtuosity and flow in real-world computer music interaction,

using the example of soundtracker software as an alternative

paradigm for computer-aided composition – a text-based notation

that supports motor learning via the computer keyboard and a

rapid edit-audition feedback cycle that helps to maintain focus and

the liveness of interaction within the musical domain. To

investigate the nature and development of skill and technique,

look for evidence of flow experiences, and establish the use and

 11

role of both visual and musical feedback in music software, the

interaction and development of more than 1,000 sequencer and

soundtracker users was recorded for a period of over 2 years.

Quantitative analyses of interaction data are supplemented with a

detailed video study of a professional tracker composer, and a user

survey that draws on psychometric methods to evaluate flow

experiences in the use of digital music notations, such as

sequencers and trackers.

1.1 thesis summary

 Creativity depends on experimentation. Experimentation requires

support for sketching and fast working methods, facilitated by the

skilled use of flexible tools. Tools that support sketching must

support a high level of liveness, through fast feedback from the

domain, but also balance the expressive power gained from

abstracting aspects of the domain, in the interface and notation.

 In music, there are many established abstractions, governing

elements of music, as well as composition and production

processes, which are prominent in the visually-mediated,

metaphor-based interaction of popular modern music applications.

The studio production process applied by sequencers and DAWs,

for example, formalises a predominantly linear way of working

that increases the viscosity of music editing; the act of recording

commits the music to the notation, and acts as a watershed

between creative and productive stages in the creative process.

 By supporting virtuosity and flow, programs can extend

creativity to computer-based interaction with a notation, such that

flow is no longer limited to realtime performance with a musical

instrument. By relaxing this requirement, interaction proceeds at a

pace set by the user, making it easier for novices to maintain

interaction flow, but also enabling experts to increase the

complexity and scope of their musical expression. When

manipulated through a device that supports motor learning, the

program can support embodied interaction with the notation, and

levels of immersion in music that are comparable to those found

with live performance devices. Soundtracker software, through its

use of a concise textual notation and computer keyboard, supports

a rapid edit-audition cycle and demonstrates an example of

virtuosity and flow in interaction with a digital music notation,

lessons from which can inform the design of other music software.

 12

1.2 aims and objectives

• To investigate user creativity in modern music software, and

identify ways to improve support for a user’s creative process.

• To evaluate the support of virtuosity and flow, as integral

components of creativity, in interaction with digital notations.

• To work towards the development of a theoretical framework

for the design and evaluation of notations in digital music.

• To study real-world interaction in soundtracking, as an

example of virtuosity and flow in digital music interaction.

• To contribute to the limited canon of research on music

composition processes and role of notation in creative music.

1.3 research contributions

 The major contributions of this work to the field of music HCI are:

• Theories and models. Several models describing aspects of

computer music interaction are proposed and evaluated,

including:

a model of flow and liveness in musical systems (Chapter 4)

a descriptive model of music software interaction (Chapter 7)

a quantitative model of liveness in notation editing (Chapter 8)

a statistical model of flow in notation use (based on the

cognitive dimensions of notations framework; Chapter 9)

• Design guidelines. A set of design heuristics for supporting

virtuosity in the design of user interfaces, supported by

empirical findings and other research.

• Empirical methods and findings. A new approach, combining

several creativity research methodologies is developed, based

on the longitudinal study of a large number of users, logging

interaction in real-world creative scenarios, supplemented by

psychometric-style surveys and a video study.

1.4 structure of dissertation

 Following a description of relevant music technologies, in the next

chapter; Chapter 3 reviews and integrates the limited catalogue of

research in music composition, drawing on more general creativity

research in psychology, to identify challenges faced in the design

and evaluation of music software. As critical factors in creativity;

 13

expertise and motivation are highlighted and discussed in the

context of musical activities such as composition. Chapter 4

explores these factors in the context of the user experience,

identifying design heuristics for supporting virtuosity and working

towards a theoretical framework for modelling the creative user

experience, based on flow (Csikszentmihalyi, 1996) and liveness

(Tanimoto, 1990), subsequently used to support extensive user

studies of interaction in computer-aided composition.

 Chapter 5 outlines an experiment platform developed to collect

and analyse data, capturing real-world examples of musical

creativity from more than 1,000 tracker and sequencer users, over

a 2-year period, employing a variety of empirical methods.

Findings are presented in combination with a video study (Chapter

6), analysis of interaction logs relating to both motor skill in

keyboard interaction (Chapter 7) and use of visual and musical

feedback (Chapter 8), as well as user surveys that draw on

psychometric approaches to develop a model of flow in notation

use, based on the cognitive dimensions of notations framework

(Green, 1996; see Chapter 9). Further to the general trends

identified in this penultimate chapter, Chapter 10 concludes with a

review of the findings, methods, and theories offered by this

research, as well as the opportunities and implications for design

and further study.

 14

15

chapter two sequencing, tracking, and the demoscene

Buxton (1975) distinguishes between computer-aided composition,

supporting a user’s musical creativity, and composing programs

that are themselves used to generate music. In contrast to trends in

music research (Cascone, 2000),
1
 this study focuses on the former,

and technologies in mainstream music practices and aesthetics,

such as amateur and professional music-making. The research also

emphasises issues related to notation use in software environments,

as supported by generic and already ubiquitous computer hardware

(keyboard, mouse, screen), rather than specialist music systems.
2

 This chapter provides an overview of relevant technologies,

beginning with the digital audio workstation (DAW), the modern

evolution of the MIDI sequencer,
3
 with which most readers should

be familiar. Section 2.1 identifies the salient characteristics of their

user interface and interaction, highlighting the role of performance

capture, the use of windows, icons, menus and pointer (WIMP) in

subsequent interaction, and the focus on production, in contrast to

creativity (see Section 3.2) and composition (see Section 3.5).
 Section 2.2 describes soundtracking, an alternative approach to

computer music, based on interaction with a text-based notation

manipulated using the QWERTY keyboard. This research uses the

example of tracking to highlight factors in the computer music user

experience that facilitate higher levels of focus and engagement,

1
 For example, where music programming languages (e.g. CSound, Max/MSP, SuperCollider) provide

abstraction power that enables composers to innovate beyond what they see as limits in conventional

musical formalisms, and below the level of the note (Desain et al, 1995; Cascone, 2000).
2
 MIDI devices are also discussed in the context of live performance. Multi-touch screens are becoming

increasingly popular, allowing for wider adoption of new creative music environments, such as the

Reactable (Jordà et al, 2005), and promising new ways to interact with notation-based systems. Though

such emerging systems are not detailed, findings should be generalisable to these technologies.
3
 MIDI (musical instrument digital interface) is a protocol for sending and storing music data (e.g. notes).

A sequencer records and stores live data sent from MIDI-enabled instruments (e.g. keyboards).

16

and allow the development of virtuosity. Section 2.2.1 provides a

technical overview of tracking, with details and examples of the

notation, user interfaces, and specific packages. Section 2.2.2 also

highlights the role of virtuosity beyond the user experience, within

the tracker user community and wider demoscene sub-culture.

2.1 digital audio workstations (DAWs)

 Modern digital audio workstations (DAWs) evolved from MIDI

sequencer software, designed to capture and edit a performance

from a MIDI instrument and later extended to include facilities to

record and process audio (using acoustic instruments, mics, etc.).

In this capacity, DAW software (such as Steinberg Cubase, Apple

Logic and ProTools) not only integrates well with conventional,

hardware-based recording studio practices, but is also used in

smaller, more affordable home computer-based environments, as

the foundation of the desktop studio (White, 2000).
high-level editing

 The sequencer UI (Figure 1) revolves around the � arrange

view (sometimes called the project window), typically based on a

linear timeline (Duignan, 2007), offering macroscopic views and

editing of the song. In this window, blocks of music can be

moved or copied, and subjected to high-level manipulations

through automation envelopes that control global variables over

time (e.g. volume, spatialisation, effect sends, etc.), but must be

opened in a separate device or part editor to access and edit

recorded content (e.g. notes, waveforms). Song data is entered

into MIDI or audio tracks of data with the aid of the � transport

bar, which offers playback, spooling, and recording controls in

the style of a tape recorder (Millward, 2005). Some further global

and realtime track parameter editing and automation is possible

through the � mixer, also styled after analog hardware.
low-level editing

 To edit parts, a � piano roll (or key editor) plots pitch against

time, often with an adjacent plot of volume against time, both of

which enable manipulation of notes through the mouse.
4

Sequencers also provide a � score editor, though Guérin (2004)

highlights usability issues in creating a neutral, authoritative

reference score from expressive and nuanced live interpretations.
5

4
 Interaction can be accelerated with the keyboard, but cursors are typically bound to existing notes or

parts, requiring new notes to be drawn with the mouse or recorded through MIDI. It can also be

difficult to select and edit objects that overlap (in time or pitch) using the mouse, or predict cursor

behaviour, due to unclear orderings of events arising from nuanced timing in recorded performances.
5
 In comparison to dedicated notation packages (like Sibelius or Coda Finale), the limited score editors

in sequencers can be seen as best suited to quickly transcribing music for studio performers, supporting

the recording process, rather than for the purposes of composition, playback, or typesetting (Wherry,

2009). Though this research does not look at score notation software in detail, many of the observations

and findings in this report can be applied to these programs, which have also been observed to focus on

transcription activities, rather than exploratory design (Blackwell and Green, 2000).

17

F
ig
u
re

 1
 –
 D

ig
it
a
l
A
u
d
io
 W

o
rk

st
a
ti
o
n
 (
D
A
W

).
 T

h
e

co
m

m
o

n
 c

o
m

p
o

n
en

ts
 w

it
h

in
 a

 m
o

d
er

n
 s

eq
u

en
ce

r
/

D
A

W
 (
S
te
in
b
er
g
 C

u
b
a
se
 5
 p

ic
tu

re
d

):

(1
)

A
rr

an
g

e
/

P
ro

je
ct

 W
in

d
o

w
 (

in
cl

u
d

in
g

 c
u

rr
en

t
tr

ac
k

 i
n

fo
;

h
ie

ra
rc

h
ic

al
 t

ra
ck

 l
is

t;
 l

in
ea

r
ti

m
el

in
e

w
it

h
 M

ID
I

/
w

av
ef

o
rm

 p
re

v
ie

w
,

in
-p

la
ce

 a
u

to
m

at
io

n
 e

d
it

in
g

,
an

d
 p

la
y

b
ac

k
 c

u
rs

o
r)

(2
)

T
ra

n
sp

o
rt

 B
ar

 (

4
)

P
ia

n
o
 R

o
ll

(6

)
D

at
a

L
is

t

(8

)
A

u
d

io
 P

o
o
l

 (

1
0
)

C
o

n
tr

o
l

R
o

o
m

 O
v

er
v

ie
w

(3
)

M
ix

er

 (
5
)

S
co

re
 E

d
it

o
r

 (
7
)

A
u

d
io

 E
d

it
o

r

 (

9
)

P
lu

g
in

 S
y

n
th

es
iz

er

 (

1
1
)

T
im

e
D

is
p

la
y

 /
 T

im
ec

o
d

e

18

 A number of parameters are not displayed or editable in the

piano roll or score editor, but only found in the � data list, which

provides an itemised list of all events in a MIDI part in text

format. Millward (2000) observes that the relatively hidden

nature of this data can lead to confusing program behaviour.

Moreover, this highlights the use of multiple diverging layers of

abstraction, in each device’s representation of the musical

domain; different part editors offer different views and editing

opportunities for different underlying data formats (waveforms,

MIDI messages). Indeed, as either an extension or metaphor to

the studio itself, it is thus possible to see sequencers as a

container of connected but perceptually separate devices, rather

than an integrated editing environment (Duignan et al, 2004).
6

sequencer

 “devices”

 Programs thus also emulate the interconnects between devices,

which route audio and MIDI signals around the system, but vary

in their display of signal flow – from the “spaghetti hell” of

dangling cables (see Figure 2(a)), to the absence of any visual cue

in the mixer “sends” metaphor used in most programs (Duignan

et al, 2004).
7
 The trade-off between the visibility and conciseness

in showing such dependencies can present barriers to effectively

using and understanding a system (Green and Petre, 1996).
digital audio

 DAWs augment the basic sequencer concept with support for

recording, importing, and editing of audio waveforms. Like

MIDI, separate audio tracks share similar high-level preview and

editing processes in the arrange window. However, the absence

of note-level data limits editing audio parts. Instead, a basic �

audio editor enables post-processing of recorded (or imported)

waveform data. Unlike MIDI data, which is encoded in the

project file, audio data is stored separately on the hard disk, and

referenced as an external resource in the � audio pool.
8

software synthesizer

and effect plugins

 With the increasing processing power and decreasing latency of

computers, DAWs extend their basic mixing and recording roles

using plugins (e.g.), which provide software synthesis and

DSP effect processing (White, 2001).

6
 Chapter 4 discusses the implications of distributing interaction and domain representation across

multiple redefinition sub-devices, rather than a comprehensive primary notation – insofar as they relate

to facilitating flow, by dispersing focus and harming a user’s sense of control (see Section 3.7).
7
 Figure 1
 shows a peripheral screen in Steinberg Cubase that illustrates a broad schematic of signal

flow, between devices in the project. The UI of Mackie Tracktion (see Figure 5-16) explicitly enforces

a left-to-right signal flow that also attempts to show effects, instruments, and routing in-place with the

relevant MIDI or audio track.
8
 While the portability of sequencer projects is also inhibited by the size and number of audio files, as

well as the availability of hardware used, complex or unclear file dependencies significantly complicate

management, copying, versioning, and backing-up (Duignan, 2007). This contrasts the integrated file

formats used by trackers, which facilitate the sharing and revisioning of music (see Section 2.2.1).

19

(a) Virtual Analog Synthesizers
(left) Arturia Moog Modular V plugin

(above) Original Moog Modular synthesizer

(b) Rob Papen BLUE

 Promotional 3D perspective

render of software-only synthesizer.

(c) Luxonix Ravity S plugin
Sliders, push buttons, and back-lit LCD displays, with

GUI extensions to offer tabbing, menus, and patch lists.

(d) Sugar Bytes Guitarist plugin (above)
Virtual guitar and guitarist with rendered instrument

and paper-effect step-sequencer, in 1940’s aesthetic.

(e) Antress Modern Series plugins
Effects plugins styled as 1U and 2U rackmounted,

outboard hardware, with analog pots, toggle switches,

VU meters, LEDs, rocker switches, screws and vents.

Figure 2 – Sample images of DAW plugins.

20

 Figure 2 shows a variety of plugin synthesizers and effects,

again highlighting a trend towards visual metaphors to hardware

devices. However, without the aid of a MIDI controller (which

map generic physical buttons, pots, and sliders to controls in the

software UI – see Figure 3), live and realtime control of these

virtual devices can be cumbersome, especially using the mouse

(Millward, 2004; Knörig, 2006).
hardware

requirements

 In practice, DAWs depend on specialist hardware; minimally a

microphone or MIDI keyboard (White, 2000; Guérin, 2004;

Millward, 2005), which enable the realtime entry of music or

audio data. In contrast to the windows, icon, mouse and pointer

(WIMP)-based editing of visual representations, these physical

devices enable a more direct mode of interaction with music

through acoustic or digital musical instruments, based on non-

visual haptic or aural modes of feedback (Leman, 2008). The

computer has only an incidental role during recording, as the

user’s focus rests entirely with the musical controller and

performance. In this way, new musical ideas are established and

explored through interaction with instruments (as in the past; see

Graf, 1947; Harvey; 1999), and then subsequently committed to

record, using a studio or sequencer (Boyd, 1992).

 Text-based parameter display Time code display

Assignable rotary

knobs with LED
visual feedback.

Dedicated track

switches / indicators

(mute, solo, record

arm, signal present)

Software controls,

emulating keyboard
functions, including

modifiers, undo,

redo, save, and
assignable shortcuts.

Channel selection

Motorised faders

for fine parameter

(e.g. volume) control

with haptic feedback.

Navigation and

transport control,
including playback,

jog-shuttle wheel,

and cursor keys.

Figure 3 – Hardware control surfaces,

illustrating various hardware approaches to

augmenting control of DAW and plugin

software, also available in generic hardware

devices such as MIDI controllers (inset),

showing assignable faders, pots, pads, etc.

21

 Recording acts as a watershed moment between creativity and

productivity, such that the sequencer supports only the latter

stages of a creative process; the final production and verification

of an idea (Smith et al, 2007; also Duignan, 2007; see Section

3.2). Hardware interfaces that enable direct interaction with

music (Figure 3) are designed for realtime use during recording,

and are harder to exploit during subsequent “offline” editing.
9

 This research looks at the challenges of designing user

interfaces in music software, examining the characteristics of

musical performance and composition, to establish ways in which

the computer can facilitate early-stage musical creativity without

the recourse to analog methods, specialist hardware, or live

performance seen in production software.

other software

for composition

 Other types of software also exist to support composition, but

are not detailed in this research. Notably, score editors (Figure 4)

are a logical evolution of the composer’s traditional use of score

paper. However, they have only limited capacity to express

digital music processes (Desain et al, 1995) and concentrate on

visual, rather than aural, presentations of music. Blackwell and

Green (2000) accordingly observed that their use seems limited to

transcription (e.g. for performance), rather than as a medium for

exploratory design.
10

 At the same time, the similarities between

score editors, trackers, and sequencers mean many of the findings

in this research can be generalised to other applications.
11

Figure 4

Sibelius 7 (2011)

a comprehensive,

modern musical

notation editor

9
 Exceptions to this include control surfaces (see Figure 3), digital mixers, and hardware sequencers,

which have a wider remit in the production process, but which can also be seen to implicitly highlight

limitations of software UIs by shifting key aspects of interaction to dedicated hardware.
10

 This is reflected in the visual, document-based editing focus, WIMP-based interaction, and relatively

limited sonification capabilities of notation packages, as suggested by the page layout view and MS

Office style UI (including ribbon toolbar), in Figure 4. See also Sections 3.2 and 3.6 for the distinction

between the creation of intermediary forms (sketches) and the production of a final manuscript.
11

 For example, like trackers and unlike DAWs, score editors present a single, central notation that

likely benefits user focus (see section 8.4), and thus might support flow experiences if other criteria are

also met (see section 3.7), through improvements in control (Chapter 7) and feedback (Chapter 8).

22

2.2 soundtrackers and the demoscene

 This section begins with a technical description of tracker notation

and interaction, followed by an account of the technological

and social context, notably within the user community, and

demoscene subculture, where the virtuosic coding and artistic

talent of practitioners are as celebrated as the end product.

(a) Pattern Editor (F2)

(b) Sample List (F3) (c) Instrument List (F4)

Figure 5

The tracker UI

as demonstrated by

Impulse Tracker 2

(IT2), a 64-channel,

16-bit DOS tracker,

developed by Jeffrey

“Pulse” Lim from

1995 to 1999, styled

on Scream Tracker 3

(see Figure 8)

Including full-screen

switchable tabs (with

dedicated F-key) for:

(a) Pattern Editor (F2)

where music (notes &

patterns) is edited;

(b) Sample List (F3)

where samples are

loaded and looped;

(c) Instrument List (F4)

where samples are

layered and filtered;

(d) Info Page (F5)

offering an overview

of song playback;

(e) Order List (F11)

where patterns are

ordered in the song

(d) Info Page (F5) (e) Order List (F11)

23

 2.2.1 Technical Overview

 Primarily using text to represent notational elements, a

soundtracker (or simply “tracker”, pictured in Figure 5) allows the

user to create patterns of note data comprising a short passage of

music (often 4 bars). The music is realised in real-time,

traditionally through an integrated sample engine and user-

supplied set of samples. These patterns – resembling a spreadsheet

in appearance, and analogous to a step-sequencer or player piano

in function – are then arranged in a specific order to produce a

song. The saved file (or module) stores the song together with all

the notes, samples and instrument settings.

tracker notation In the grid of the pattern, columns represent separate tracks (or

channels) and the rows represent fixed time slices, like a step

sequencer (see Figure 6). Each cell has fixed spaces for pitch,

instrument, volume (or panning) and a variety of musical

ornaments (or effects), for example: C#5 01 64 D01 starts playing

a note [C#] in octave [5]; instrument [01]; maximum volume [64];

with a slow [01] diminuendo [D]. Figure 6 shows an excerpt from

a tracker pattern representing a single bar of music, inset with the

equivalent phrase in conventional score notation.

Figure 6 - Example of tracker notation, inset with equivalent score notation and overlaid with

reViSiT’s in-program technical explanation of the effect used for the crescendo (DxF). Note

how, in contrast to MIDI, which samples absolute values, tracker effects explicitly represent

relative changes in musical parameters over time, similar to score notation.

24

 The final three digits in the cell enable a variety of other musical

(and sound) effects, including other slides (e.g. portamento,

glissando, filter, panning), oscillations (e.g. vibrato, tremolo),

global variations in time or volume, or even branching in

playback. These effect codes, while taking time to memorise, give

experts a fast, flexible, and powerful way of adding musical

expression to tracked music. Moreover, a number of effects also

allow changes that are not easily expressible in score notation or

MIDI, such as low-level control of sample playback or synthesis,

which help bridge the apparent gap between a performer’s control

of sound and a composer’s control of notes, and higher-level

musical primitives found in notation (see Jordà, 2001). A full list

of the effects available in modern trackers is given in Appendix A.
tracker interaction Tracker programs are almost exclusively controlled using the

computer’s QWERTY keyboard, used for entry and editing of

musical data, as well as management and navigation within the

program. This allows the user to stay at the keyboard without

incurring the time and focus penalties of homing between input

devices, observed in sequencer use (Mohamed and Fels, 2002).

Figure 7

Note and pitch entry in

tracker software. A two

register, 29-key musical

keyboard is superposed

over QWERTY keys.

Each register begins on

C natural (Z / Q keys)

and uses alternate rows

of the keyboard for

black and white keys

(e.g. C# at S / 2 keys).

 The text representation allows many parameters to be simply

typed, but pitches are entered using a virtual piano (Figure 7).

Interaction principally takes place in the pattern editor (Figures 5

and 8), and is mediated through keyboard shortcuts preserving

visual focus on the notation itself. Shortcuts and macros accelerate

all parts of the program, notably replacing the mouse’s typical role

in block selection and navigation, through the provision of rich-

cursor movement. The cursor also plays a central role in triggering

playback using the keyboard, allowing specific excerpts to be

quickly targeted and auditioned.
12

12

 The pervasive use and central role of the cursor in tracker interaction is explored further in Chapter 7.

25

 Other parts of the program offer control of song, sample and

instrument settings using more conventional interaction styles, such

as buttons, sliders and text boxes, but typically play only a

peripheral role after the initial set-up is complete. Nonetheless,

these screens present fixed layouts and control focus, permitting the

learning of screen configuration (as spatial schemata, see Section

3.6) to support fast visual inspection, navigation and editing using

the keyboard.
graphical vs.

textual styles
 Figure 8 shows other tracker programs, from which two distinct

design styles have emerged: a tiled, graphical UI designed for

keyboard and mouse (Ultimate Soundtracker, FT2, Renoise); and a

tabbed, text-oriented UI designed more exclusively for keyboard

(ST3, IT2 in Figure 5, and reViSiT in Figure 5-1).

(a) Ultimate Soundtracker (Amiga, 1987)

(b) Scream Tracker 3 (DOS, 1994)

(c) Fast Tracker 2 (DOS, 1994-1997) (d) Renoise (Windows/OSX/Linux, 2002-)

Figure 8 – Notable tracker programs: (a) Ultimate Soundtracker, the original 4-channel, 8-bit

tracker, by Karsten Obarski, released commercially by Electronic Arts for the Commodore Amiga in

1987; (b) Scream Tracker 3 (ST3), the first major DOS tracker with 32-channel, 8-bit sample support,

by Sami “Psi” Tammilehto, released by demo group Future Crew in 1994; (c) Fast Tracker 2 (FT2), a

popular 32-channel, 16-bit DOS tracker that competed with IT2 (Figure 5), by Fredrik “Mr. H” Huss

and Magnus “Vogue” Högdahl, released by demo group Triton in 1994; (d) Renoise, a commercial

32/64-bit tracker-based DAW, by Ed “Taktik” Müller and Zvonko “Phazze” Tesic (from code by Juan

Antonio Arguelles “Arguru” Rius), released for Windows in 2002. See also Figures 5 and Figure 5-1.

26

 Summarising the tracker user experience, Computer Music

magazine highlighted the virtuosity supported by use of the

keyboard, observing, “The art of tracking has often been likened to a

sort of musical touch-typing” (MacDonald, 2007). In a manner

similar to expert programming editors such as Emacs, tracker

programs avoid visual metaphor and graphical music notation

abstractions, focusing on a concise textual representation and rapid

manipulation of musical ‘source code’ – enabling quick edits,

control of real-time interpretation (by synthesizer), and a just-in-time

debugging-style mode of interaction (Nash and Blackwell, 2011;

Church, Nash, and Blackwell, 2010; see Section 4.2.4).
comparisons

with sequencers
 As a tool for organising musical notes, trackers can be classified as

a type of sequencer.
13

 Using the taxonomy developed by Duignan

and Biddle (2005), Table 1 highlights similarities and differences in

the user interfaces of related music software. While trackers use a

textual medium, it lacks the descriptive power of freeform text,

unlike live coding environments (e.g. SuperCollider). Moreover, the

grid layout of the pattern shows the timing of events geometrically,

similar to the graphical piano roll in sequencers. Patterns are thus

subject to eager linearisation (events are shown in the order they are

heard). However, the sequence of patterns can be affected at

playback (with tracker effects, MIDI, or changes in the order list).

This can introduce a delay to linearisation, with the advantage of

increasing the provisionality of the music, as seen in loop-based

programs like Ableton Live (Duignan, 2007).
14

 Like linear

sequencers, however, the tracker editing focus is on notes, rather

than loops or triggers, meaning they can be used for a broad range of

musical styles. Ultimately, trackers can be placed on a continuum

between linear and sample/loop-based sequencers, where

distinctions and crossovers respectively help identify and generalise

core properties of the computer music user experience.

 Linear Sequencers Soundtrackers Sample/Loop Triggers

 (Cubase, Logic, ProTools) (FT2, IT2, Renoise, reViSiT) (Ableton Live, FL Studio)

Medium Graphical Textual Graphical

Abstraction Predetermined Predetermined Predetermined

Linearisation Eager Eager/Delayed Delayed

Event Ordering Control Control Control

Applicability General General Special

Table 1 – Characteristics of DAWs and trackers, based on Duignan and Biddle (2005)

13

 Renoise describes itself as a “vertical” sequencer (see www.renoise.com). Similarities to step-

sequencers, as well as early text-based sequencers, are also evident, especially in early trackers (see

Figure 8). The German for tracker, Rastersequenzer (raster sequencer), also draws an analogy to raster

graphics, based on the central role of grids (bitmap vs. tracker pattern) and sampling (sound vs. image).
14

 Loop-based programs (like Live) focus on cycling audio loops, rather than longer passages of notes.

27

 2.2.2 Social Context

 While this research focuses on the properties and design of the user

experience, it is important to highlight the backdrop in which

tracking developed. This section presents a historical overview of

the users, developers and culture behind tracking, and the specific

role of virtuosity, in the demoscene subculture.

programming tools

for game music
 Emerging in the late 80’s, the first trackers were based on

technologies developed to provide music in computer games

(Collins, 2008). They ran on home computers with very limited

processing power, storage space, graphics, and audio hardware.15

Thus, the crude simplicity of the tracker’s text-based interface and

sound engine reflected not only its legacy as a programmer tool, but

the limitations of the underlying hardware.

 Consequently, the musical capabilities and appeal of early trackers

appear limited: the early tracker MOD format supported 4

monophonic channels, hosting one of up to 15 instruments (mono, 8-

bit, PCM samples). Sample compression, panning, and software

mixing were beyond the hardware.
16

 However, for technically-

minded users, such as young hackers and video gamers, these

limitations simply presented a challenge, where they could compete

against one another to defy the apparent limitations of the format.

Tricks such as polyphonic samples (e.g. recorded major or minor

chords) and virtual polyphony (interwoven monophonic pitches or

samples to create the perceptual illusion of polyphony or multi-

timbrality), enabled users to create rich musical soundscapes, and

highly complex pieces in almost any musical style (e.g. Figure 9) –

not just dance, but electronica, rock, jazz, blues, and even orchestral.

The quality of the music improved, if not the sound quality, and

user-defined samples offered significantly more sonic creativity and

control than General MIDI sound sets of the time.

15

 For example, the popular Commodore Amiga (the original platform of choice for the tracker

musician) was a 16-bit computer with 20kHz stereo sound, typically booting programs from a 720KB

floppy disk into 512kB of RAM.
16

 Nonetheless, the programs represent one of the first examples of low-latency software synthesis,

foreshadowing technologies now common in modern digital desktop studios (see Section 2.1).

Figure 9 – Example bar from

Alternative Samba (1992), by

Juha “Dizzy” Kujanpää. A 4-chn

MOD, using all 31 samples (14

shown) with polyphonic samples

and virtual polyphony to create

the impression of two flamenco

guitarists, keyboardist, and

drummer in a jam session.

28

Figure 10

Cracktro demo

from Platoon.

the demoscene
 Ultimately a commercial failure owing to the perceived learning

curve and chasm with conventional music paradigms, tracker

programs became the care of these expert users, who continued

development of the technology, as part of an artistic subculture

called the demoscene (Tassajärvi, 2004; Polgár, 2008; Botz, 2011).

This community of coders and artists began with young hackers,

reverse engineering (‘cracking’) games to remove copy protection

or change playing conditions. To flaunt their skills, hackers teamed

together in crews, adding splash screens with credits, greetings, or

messages to friends or rival crews (see Figure 10). Over time, these

intros became a prominent showcase for coding talent, exhibiting

increasingly complex visual art, animations, and music, ultimately

eclipsing and displacing the original hacking activities.

demo parties Practitioners and crews met at demo parties, partly to socialise,

play games and swap coding tips, but mostly to exhibit or compete

against each other with their latest demos and music. Works were

judged not just on their artistic quality, but by the technical

virtuosity shown by authors. Small gatherings that began in

hackers’ basements have since grown into prestigious events, with

tightly invigilated competitions, attended by thousands (Figure 11).

Figure 11

ASSEMBLY 2010

a modern demo party,

at the Hartwell Arena,

Helsinki, Finland.

29

music file sharing Between parties and before the advent of the World Wide Web,

crews would exchange, publish, share and review programs, demos

and music over bulletin board systems (BBS), or mailed floppy-disk

compilations and newsletters (called disk mags) (Botz, 2011). The

tiny file sizes of tracker music (typically around 100kB) enabled

fast transfer over slow modem connections, yet contained all the

music and sample data required for playback on any computer with

a soundcard, without a need for specialist MIDI or audio hardware.

Moreover, music was shared in a completely open format that

allowed any listener to load, edit, change the music and re-use the

samples in their own work. This opportunity represented a valuable

learning resource for the novice, who could develop knowledge of

the program by observing its use by others, tinkering with the

music to learn the workings of the notation and program.

 By the late 90’s, the scene had moved to the IBM PC and DOS,

and new programs and formats began to support up to 64

polyphonic channels of CD quality audio. However, at the same

time, the original, increasingly obsolete MOD format survived.

Although modern DSP, resampling, and upsampling marginally

improved the playback quality, the format was retained specifically

for its limitations and its capacity to test the ingenuity of

composers, whose endeavours to defy listeners’ expectations and

garner the respect of their peers continued.

 Similar trends are witnessed across the demoscene (Botz, 2011).

DirectX and video hardware provided similar leaps in graphics

capabilities for demos, but competition categories formed with

explicit limits on the size of demos, allowing entries no more than a

64kB (or even 4kB) footprint
17

 for their executable – which must

contain the entire code and content for the presentation of all visual

and audio content (text, textures, graphics, animation and camera

scripts, music, sound samples and synthesiser). Exploiting complex

procedural generation algorithms to mathematically create intricate

textures, shapes, visual effects, sounds and music, winning entries

nonetheless deliver intricate, high quality, high resolution audio-

visual spectacles, often several minutes in duration, and

comparable to other productions that are measured in megabytes or

gigabytes. Figure 12 shows stills from a recent 64kB demo placed

2
nd

 at Assembly 2011, with a description of the techniques used.

 In the 20 years of tracking history, though hardware capabilities

and user interface design have moved on, the basic design of

tracker software and interfaces has changed little - in appearance,

17 For comparison: today’s average web page is 320kB [Source: Google].

30

function, or use. Little effort has been made to make the programs

easier-to-use, and obsolete file formats and limitations from DOS

and Amiga programs are still supported and celebrated. Instead, the

appeal of these programs and their limitations are that they

specifically provide a challenge to the user; that mastering them is

rewarded both intrinsically and extrinsically, in the user experience

and community respectively. Accordingly, the designers of new

musical interfaces should consider more than the simple sonic

capabilities or usability factors of their innovations.

Figure 12 – Uncovering Static
(2011), by Fairlight + Alcatraz.

18

59kB demo with over 5 minutes

animation (shown in 1080p) and

symphonic techno soundtrack.

Graphics: realtime rendering

(no pre-calculation), distance

field manipulation, procedural

generation (spores, buildings,

textures, clouds), ray-casted

ambient occlusion (lights,

shadows), Boolean algebra,

and post-processing (filters).

Audio: MIDI song data with

realtime physically-modelled

instruments (solo and layered

strings, piano, oboes, breath pad,

cymbal, orchestral and rock bass

drums and snares) and analogue

synthesis (lead and pad), plus

effects (reverb, water-like LPF).

18

 Executable available at www.pouet.net/prod.php?which=57449 (HD video also available on YouTube)

 31

chapter three creativity, expertise and motivation
 This chapter presents an overview of creativity research and

theory from the fields of psychology, HCI, and music, using it to

explore the challenges of user experience design in music,

specifically music composition based on notation use.

 Over the course of the chapter, an argument for supporting

virtuosity and flow is outlined, entailing three broad shifts away

from the principles of usability design, as illustrated above,

outlining an effort to move beyond the productivity of current

software methods, towards interfaces that support creativity.

 Section 3.1 presents a definition of personal creativity, such as

that in expressive arts, crafts and music, rather than the social

creativity in problem-solving environments, such as business,

science or professional design. Section 3.2 considers models of

the creative process that can inform the design of the user

experience, highlighting the limits of working with formal

notations. Section 3.3 establishes expertise and motivation as the

key factors of creativity; acknowledged in musical practices, but

often deprecated in usability techniques. Then, treating the

user interface as a creative environment, Section 3.4 explores

strategies to facilitate creativity, taken from psychology research.
(continued overleaf)

 32

 The final three sections respectively explore the issues of

creativity, expertise and motivation in the contexts of music and

the computer. Section 3.5 looks at creative processes in music

composition, and the roles of sketching and performance. Section

3.6 looks at the nature of expertise, the role of procedural

knowledge (such as motor skill) and declarative knowledge, and

their respective emphases in music and HCI. Lastly, Section 3.7

looks at the sources of motivation in creativity, music, and the

UI, highlighting the importance of an intrinsic reward in creative

activies, and looking at Csikszentmihalyi’s theory of “flow” as a

framework for combining concepts of creativity, expertise, and

intrinsic motivation, which is used later to develop a model of the

creative user experience in music (see Chapter 4).

 33

3.1 personal creativity

 In researching creative practices, it is crucial to define the context

that creativity is studied in (Hewett et al, 2005). Depending on the

individual, domain, or research goals, definitions of creativity vary

significantly, with implications for findings and practice (Blythe et

al, 2007). At the same time, apparent differences can arise as a

result of terminology, stemming from a “parochial” tendency to

study creativity within individual domains (Wehner et al, 1991).

This section draws on several dimensions identified in psychology

research (Mayer, 1999), developing a definition of creativity that

can be applied to the design and evaluation of the user experience,

specifically as concerns creative authoring tools and software in

music. Table 2, at the end of the section, summarises the definition

of creativity adopted here, as a specific intersection of this “n-

dimensional taxonomy” (Hewitt et al, 2005).
creativity =

novelty + value
 Mayer (1999; Table 1) demonstrates a broad consensus among

researchers that creativity is the production of something novel

(new, original), but which also has value (appropriate, significant)

within a given context. This definition fits with the wider public’s

implicit concepts of creativity (Sternberg, 1985), but becomes

increasingly complicated when the various contexts of creativity

are considered (Mayer, 1999; Hewett et al, 2005).

Table 1 – two defining

features of creativity

(adapted and extended

from Mayer, 1999)

author feature 1 feature 2

Gruber and Wallace (1999) novelty value

Martindale (1999) original appropriate

Boden (1999, 2004) novel valuable

Nickerson (1999) novelty utility

Sternberg and Lubart (1999) novel appropriate

Amabile (1983, 1996, 2006) novel appropriate

Mayer (1999) originality usefulness

P-creative

vs. H-creative
 Boden (2004), who explores computational approaches to

navigating and mapping creative domains, at the same time makes

an important distinction between novelty as recognised by the

practitioner and that of history itself: P-creative describes acts

that have a personal, subjective significance and should be

understood in a psychological context; whilst H-creative describes

objective novelty, the impact of which can be understood in

historical and social contexts. Other researchers have made

similar distinctions (Maslow, 1968; Sternberg, 2003; Hewett et al,

2005). Csikszentmihalyi (1996), for example, uses a ‘big C’ to

denote socially-validated creativity, discussing subjective, inter-

subjective and objective evaluations. Others further distinguish

between novelty within a specific social-group or society and

humanity at large (e.g. Mandler, 1995; Nickerson, 1999).

 34

P-creative

⊆ H-creative
 Naturally, these classifications are not mutually exclusive. H-

creative, for example, is a subset of P-creative, since something

novel to everyone is invariably novel to its creator (Boden, 2004;

Hewett et al, 2005), even if they don’t themselves fully-recognise

the value of the innovation (Shneiderman, 2002).
the role of

recognition

 Social recognition also comes after the creative act, upon

dissemination of a work (e.g. through a concert, exhibition, or

publication). Some researchers class the act and art of persuasion

as an integral component of being creative (Sternberg, 2003; with

Lubart, 1995). Others see it as a final stage that can be considered

separately, after-the-fact (Simonton, 1994; Shneiderman, 2002).

Figure 1 – a systems

view of creativity
(Csikszentmihalyi, 1999)1

the individual,

field, and domain

 In his systems perspective, Csikszentmihalyi (1999; Figure 1)

contends that Creativity is “the ability to add something new to the

culture”: where culture comprises a variety of domains (cultural or

symbolic spaces), which an individual transforms or extends, but

which is guarded by a field, whose members (e.g. teachers, buyers,

and critics) act as gatekeepers that evaluate and admit new ideas.
2

primary

vs. secondary

 In an opposing perspective, Maslow (1963) maintained that

studies should not focus on the outcome of creativity, but on the

process. For the individual, novelty and value is apparent during

the act, notably as a motivating factor (Sternberg, 1985; with

Lubart, 1995). Like Boden, Maslow (1968) describes two kinds of

creativity: primary, pursued for self-actualisation and fulfilment;

and secondary, leading to the sort of achievements recognised by a

field. Sternberg (2003) notes that the latter is the kind “with which

scholars in the field [of creativity] are more familiar”.
3

1
 Figure 1 is as cited, with minor addenda: the arc Individual � Domain is de-emphasised, to reflect

the gate-keeping role of the Field (Csikszentmihalyi, 1999), but retained to show the broadly-perceived

attribution of creativity; the triad is re-oriented to facilitate comparisons with later work (Chapter 4).
2
 Csikszentmihalyi (1996), however, notes that social validation may not come during the individual’s

lifetime, citing Van Gogh as someone who only posthumously became “Creative”.
3
 A focus on recognised works is also tacit in specialist domains like music (Collins, 2005), which tend

towards studies of outcome and achievement rather than process, as discussed in Section 3.5.

 35

the individual’s

perspective
 Maslow’s approach, however, appears to resonate more with

creative individuals themselves (Boyd, 1992; see section 3.5),

where artists see their activities as acts of self-expression, rather

than efforts to please a crowd. Discussing strategies to support

creativity, Nickerson (1999) argues,

[H]owever we conceive of creativity we should not make its

existence dependent on it being recognized as such. By definition,

we are not aware of creativity that goes unnoticed, but we have

every reason to believe that it exists.

 HCI researchers must thus be careful of how they conceive of

creativity, and how they use a social or systems perspective to that

end, as it requires one to “recognize the fact that the audience is as

important to creativity as the individual to whom it is credited”

(Csikszentmihalyi, 1999). It is doubtful such a view is held by

many artists (Sloboda, 2005; see section 3.5); and thus a systems

perspective would seem to conflict with any mental model we

might hope to develop for artistic users. Even the most ground-

breaking Creativity seems not to be motivated by social efficacy,

but by an intrinsic interest in the activity itself (Csikszentmihalyi,

1996). Section 3.7 specifically details how social factors can have

an adverse effect on an individual’s motivation and creativity by

involving ego, harming confidence (e.g. to take risks), and

encouraging conformity (Amabile, 1983; Nickerson, 1999), to the

extent that artists tend to explicitly seek isolation and solitude

(Getzels and Csikszentmihalyi, 1976; Boyd, 1992).
active vs. passive

social involvement

 At the same time, whilst an individual might not actively engage

with the field, no one can absent themselves entirely from the

system (Fischer, 2005). The domain in which an individual works

is defined by its field, who not only determine the works in wide

circulation, but also the commonly-used notations, symbols, tools,

and practices (Csikszentmihalyi, 1996; Fischer, 2005). Even a

self-taught musician can’t escape the influence of what they hear

on the radio, nor the fact that the design of their instrument has

likely evolved from centuries of historical precedent. In this sense,

“Whether one follows the crowd or takes a different path, it is

usually impossible to ignore what takes place in the field.”

(Csikszentmihalyi, 1996) A critical distinction, however, is how

free an individual is to follow different paths, in relation to how

constrained they are to follow the field.
the field

of interaction
 In digital creativity, the influence of the field is prominent in the

UI, which shapes a user’s view of a creative domain, as might

otherwise be the role of mentors, tutors or other peers (Lubart,

2005), defining the methods, representations and interpretations

 36

possible. A degree of formalism is inherent in the digital extension

of any domain (Dix, 2005), but compounded by the need to

generalise and standardise a user experience for multiple users,

often drawing on, and thus perpetuating, existing conventions and

formalisms in a field (Kitzmann, 2003; Blackwell et al, 2008).

 Music, especially, is a field where well-established formalisms

and traditions (see section 3.5) not only serve to operationalise the

musical domain (Johnson-Laird, 1988), but can also constrain an

artist’s creativity (Sloboda, 1985; Boyd, 1992). Yet, while score

notation grew out of a need to formalise music so it could be

communicated to other musicians, the page also supported

informal, personal notes and the sketching of ideas in forms that

need only be understood by the composer (Graf, 1947; Schubert

and Sallis, 2004). Section 3.5 explores this affordance and the role

of sketching in creativity, highlighting the limitations of music

software based in formal music systems.
creative genius

 Another consequence of taking a sociocultural perspective of

creativity is the resulting focus on eminent creative practitioners

that make the most impression on society, and thus a tendency to

describe creativity as the exclusive province of genius (Weisberg,

1993; Csikszentmihalyi, 1999).
4
 However, if there’s one benefit to

the increased availability, affordability, and accessibility of

powerful creative tools, such as the computer, it’s that a wider

proportion of the population has the means to engage in the

creative activities (Resnick et al, 2005; von Hippel, 2005).
the average case

 Often seen as the father of scientific creativity research (Plucker

and Renzulli, 1999), Guilford (1950) described creativity as a

“pattern of traits that are characteristic of creative persons”, and

stated that “[w]hatever the nature of creative talent may be, those

persons who are recognised as creative merely have more of what

all of us have.” His psychometric tests were designed to efficiently

and economically measure creativity quantitatively, supporting

comparisons between genius and the ‘average case’ (Sternberg

2003; with Lubart, 1999).
5
 However, the limited insight offered by

such paper-and-pencil approaches (see Amabile, 1983; Gruber and

Wallace, 1999) prompted a shift “from the measurement and

development of presumably general underlying traits of creative

ability toward analysis and explanation of remarkable instances of

real-world creative accomplishment.” (Feldman, 1999)

4
 For example, Leonardo, Mozart, Darwin, Michelangelo, Einstein (in Simonton, 1994, 1999;

Csikszentmihalyi, 1996; Mayer, 1999; Shneiderman, 2002; Boden, 2004).
5
 Psychometric research, which monopolised early studies of creativity, developed in parallel to studies

of intelligence (Plucker and Renzulli, 1999), itself originally motivated by the desire to find, measure,

explain, and cultivate “genius” (Albert and Runco, 1999).

 37

prodigious and

innate talent

 Weisberg (1993) cautioned against limited “genius only” views,

which lead to the assumption that successful creativity depends on

innate talent or personality traits that individuals are born with, as

evidenced by child prodigies.
6
 Howe (1999) concludes,

As far as the likelihood of someone eventually becoming capable

of mature creative accomplishments is concerned, the fact that

one was a prodigy in childhood is significant not because it

points to some inherent special quality of the person, but simply

because it provides an indication of significant progress having

been made while the person was still young.

developing

creative ability
 Ericsson et al (1993) similarly demonstrated that what people

have previously considered “innate talent” is more accurately

explained as the result of many years of disciplined and deliberate

practice. Correspondingly, the development of expertise is now

widely seen as central to creativity (Amabile, 1983; Sternberg,

2003; see Section 3.3). Mastery of a tool (e.g. a musical

instrument) allows the individual to more effectively explore and

focus on the domain (see Section 3.6). However, the threshold at

which expertise enables creativity is much lower than that entailed

by social recognition, which would otherwise prevent us from

calling most children creative, and so present problems for studies

of creativity in education or other development environments

(Barrett, 2005; see also Section 3.5).
everyone can

be creative
 Boden (2004) observes that creativity draws largely on

“everyday psychological abilities, such as noticing, remembering,

and recognizing” that can be specialised for skilled application

within a given domain, with effort. Sternberg (2003; with Lubart,

1995) similarly sees creativity as a “decision” – a willingness to be

creative, and a choice to invest the required effort to develop

relevant domain skills, cultivate patience and open-mindedness,

and learn to question the status quo.

 Such modern theories of creativity (see also Amabile, 1996)

champion the notion that, with effort and inclination, anyone is

capable of great creativity, and all that is required is the right

environment to bring this forth (Feldman, 1999; Howe, 1999).

These environments are defined by one’s surroundings, teachers,

families and communities (Barrett, 2005), but increasingly also

one’s computer, which like the others must encourage (or avoid

discouraging) an individual towards development and personal

growth, and balance formal learning with independent thinking

and experimentation, in order to facilitate creativity.

6
 For example, in music: Mozart, Chopin, Mendelssohn, and Paganini (Graf, 1947; Harvey, 1999).

 38

Internet-based

creativity

 Recently, the advancement of communication and data storage

technology (notably the Internet) has led to the wider availability

and retention of ‘lesser’ creative works, presenting further

opportunities to study amateur, non-professional, and less-

recognised creativity (Bardzell, 2007). As in studies of creativity

in education, research into less exceptional achievements and

talents provides insights into creative individuals in the formative

stages of development (Barrett, 2005), as well as the creative

opportunities that would appear to lie within reach of a far greater

cross-section of society (von Hippel, 2005). In this capacity, the

demoscene and tracking sub-cultures in computer music that arose

in the 1980s and 1990s, supported by early connectivity

technologies (such as bulletin board systems, see Section 2.2) act

as an early example of the democratisation of creativity enabled

by the computer. Similarly, this research also represents a study of

real-world creative activity, in tracking and sequencing, and

development that is not limited to recognised practitioners, but

also includes complete beginners (see, for example, Chapter 5).
creative

collaboration

 Shneiderman et al (2005) also embrace the Internet as an

opportunity to move beyond what they see as creativity research’s

focus on the individual as solo practitioner, advocating software

support for creative collaborations. While acknowledging a social

context, even Csikszentmihalyi’s systems perspective revolves

around the individual (Barrett, 2005; Fischer et al, 2005).
7
 Support

for creative thinking in project teams working on specific

problems appears an achievable and valuable goal (Shneiderman,

2002), but there seems an inherent conflict between the introverted

nature of artists and the extroverted nature required in working

with others (detailed further in Section 3.7).

 The solo life of artists needn’t be a consequence of limitations in

working methods or technology, but possibly a conscious choice

and desire of the artist. Beyond homage or loosely-linked

‘schools’, social collaboration would appear to be the antithesis of

what artists are seeking when they look to isolate themselves

(Getzels and Csikszentmihalyi, 1976).
8
 For individuals with

mature skills, collaboration can be highly productive and

enjoyable, but entails an objective (or inter-subjective) social

perspective of creativity. As with recognition (see earlier), the

presence of other people in the creative process must also be

7
 Fischer (2005) also suggests how to extend a systems perspective to group and distributed activities.
8
 In popular music, collaborative songwriting is much rarer than the sheer number of groups suggests;

bands can be dominated by one member, take it in turns to write songs, or have a separate songwriter,

and often break up as a result of differing personal sentiments, high emotions, “bad chemistry”, or

simply the desire to pursue solo projects (Boyd, 1992).

 39

considered for its capacity to negatively impact an individual’s

motivation, freedom, and confidence (Runco and Sakamoto, 1999;

see 3.7), especially when they are still in the process of developing

skills (Collins and Amabile, 1999; Nickerson, 1999; see 3.6).

supporting personal

creativity in the user

experience

 Moreover, while the goal of distributing the creative process

across multiple participants will hopefully become increasingly

relevant, this project aims to demonstrate that HCI, at least with

regard to music, faces more immediate challenges in supporting an

individual user’s creativity that should be addressed before

considering more complex scenarios.
9
 Fischer et al (2005) state,

literature)

[D]espite the inherent social aspect of creativity, individual

knowledge, imagination, inspiration and innovation are the

bases for social creativity; without inspirational sparks from the

individual, social creativity simply has no chance to flare up in

the first place. Augmenting and then better utilizing individual

creativity is thus essential for achieving social creativity.

 One of the first objectives of HCI research into creativity should

therefore be to “enhance the personal experience” (Hewitt et al,

2005). Accordingly, in the context of this research, the social

dimensions of activities such as musical performance and

improvisation are not explored in detail.
10
 Terms such as

‘performance’ and ‘audition’ are used in a technological context

only, more generally referring, respectively, to any time-critical

execution of a task or direct interaction with a domain (cf. “Level

4 liveness”, discussed in Section 4.2.4) and realtime evaluation of

a creative product, irrespective of social context. In this sense, a

performance does not imply the presence of listeners other than the

practitioner (e.g. audience or collaborators).

 Table 2 summaries the implications for defining creativity in this

context, and as it relates to HCI, as discussed in this chapter. The

next section proceeds with a review of research on the mental

processes involved in an individual’s creative process, in an

attempt to carry forward such knowledge into the design of the

user experience.

9
 Indeed, the desktop studio of sequencers and DAWs (see Section 2.1) can already be seen as a model

of a collaborative environment (i.e. the electronic recording studio), which might offer an explanation

for interaction issues that arise in solo use (such as focus, discussed in Chapter 8). In this sense, whilst

art and creativity research have focused on the individual, music software has had an implicit tendency

to focus on collaboration, even as they look to target individual users.
10
 For deeper discussions of social aspects of music interaction and perspectives on how technology can

facilitate group-based music interaction, group flow, collaborative musical creativity and performance

liveness, see Sawyer (1995, 2006), Bryan-Kinns (Nabavian and Bryan-Kinns, 2006; Sheridan and

Bryan-Kinns, 2008; Bryan-Kinns and Hamilton, 2009), Auslander (1999), and Emmerson (2007).

 40

property of products – persons – processes

Creativity is studied by looking at the processes that underpin the creative

user experience, where a user (creative individual) uses a notation to create

new data (creative product). (see Section 3.2; Ward et al, 1999).

significance personal – social

The user experience is judged on its capacity to support self-expression,

self-actualisation and fulfilment, as judged by the user themselves.

(see Section 3.7; Maslow, 1968; Nicholson, 1999)

creative ability universal – special

Users are not assumed to have innate creative talent or genius, but the

ability to develop creative ability and motivation. Everyone can, to some

extent, be creative; which computers can facilitate (or obstruct).

(see Section 3.6, Nicholson, 1999; Weisberg, 1999).

enabling skills domain-specific – general

Whilst the user may have general creative skills, the UI governs how a

(symbolically-encoded) domain is manifest in the user experience, and how

skill is developed within it and the domain (e.g. music). (see Section 3.6;

Csikszentmihalyi, 1999; Ward, Smith and Finke, 1999; Boden, 2004)

measurement qualitative – quantitative

Both qualitative and quantitative methods are used to study aspects of

creativity, such as motivation and expertise, to provide a balanced account

of both the process and product of creativity.

(see Chapter 5-9; Hewett et al. 2005; Collins, 2005, 2007)

activity individual – collaborative

The research focus is on single-user systems, and explicitly explores the

advantages arising from the perceived lack of collaborators or observers

during the creative act. (see Section 3.7; Amabile, 1983; Hallam, 2002)

Table 2 – the definition of creativity applied in this research (using the

n-dimensional taxonomy proposed by Hewett et al, 2005; based on Mayer, 1999).

(with references to discussion in the text and supporting literature)

 41

3.2 the creative process

 In crafting a user experience to support creativity, UI designers

have a significant influence over the creative process – not simply

by defining the explicit interactive procedures of the creative act,

but also shaping the environment’s inherent capacity to support

creative thinking and working styles (Nickerson, 1999; Auh,

2000; Hewett et al, 2005). This section explores models of the

creative process, whilst illustrating how only the final, incidental

stages of creativity are supported by many modern user interfaces,

even in the creative arts, and general HCI approaches to usability.
stage theories

of creativity

 It is evident in even the earliest theories of creative thinking that

creativity draws heavily on unconscious cognitive processes

(Martindale, 1999). In 1896, Hermann von Helmholtz reflected on

his own creative process, identifying three stages: saturation,

incubation and illumination – in which, respectively: an

individual familiarises themselves with the details of a challenge;

waits for the mind to reconcile them; until the moment a solution

becomes apparent. In 1908, Henri Poincaré described this process

as a period of conscious thinking about a problem, followed by a

period of unconscious thought, until a solution bursts back into

the conscious mind, after which deliberate work is undertaken to

verify the insight. Their reflections were formalised by Wallas

(1926) as one of the first models of the creative process, based on

discrete stages of unconscious or conscious thought: preparation,

incubation, intimation
11
, illumination, and verification.

problem solving

vs. problem finding

 Nickerson (1999), however, associates stage-based, step-wise

models and their descriptions exclusively with problem solving,

as faced by scientists, mathematicians, or philosophers, which can

be difficult to apply to less well-defined creative activities, such

as artistic self-expression. Gruber and Wallace (1999) also note a

tendency to focus research on problem solving activities,

encouraged by the relative ease of studying and modelling well-

formed, easily-articulated tasks.

 Artistic expression is as much about finding problems as solving

them (Getzels, 1975; Alty, 1995; Collins and Amabile, 1999;

Runco and Sakamoto, 1999; Sternberg, 2003). An artist does not

set about a given, well-defined problem, nor pursue a definitive

solution that pertains to truth or correctness; their intentions are

ill-defined and changeable (Collins, 2007; see Section 3.5), and

the merit of their solutions is subjectively good-or-bad, and only

right-or-wrong in a socio-cultural context, itself changeable.

11
 The intimation stage, characterised by the feeling of an impending breakthrough, is often omitted in

more recent accounts (e.g. Webster, 1989) and seen as a component of other stages.

 42

F
ig

u
re

 2
 -
 a
 c
o
m
p
ar
is
o
n
 o
f
st
ag
e-
b
as
ed
 t
h
eo
ri
es
 o
f
th
e
cr
ea
ti
v
e
p
ro
ce
ss
,
an
d
 t
h
re
e
d
es
cr
ip
ti
o
n
s
o
f
th
e
m
u
si
c
co
m
p
o
si
ti
o
n
 –
 w
it
h
in
 t
h
e
“c
re
at
iv
it
y
”
an
d
 “
p
ro
d
u
ct
iv
it
y
”

p
h
as
es
 o
f
“i
n
n
o
v
at
io
n
”,
 a
s
ch
ar
ac
te
ri
se
d
 b
y
 A
m
ab
il
e
(1
9
9
6
).
 T
h
e
d
ia
g
ra
m
 a
ls
o
 i
n
cl
u
d
es
 a
n
 i
ll
u
st
ra
ti
v
e
ex
am
p
le
 o
f
th
e
ro
le
 o
f
sk
et
ch
es
,
in
 G
ra
f’
s
co
m
p
o
si
ti
o
n
 p
ro
ce
ss
.

1
 A
m
ab
il
e
(1
9
8
3
)
d
ef
in
es
 p
ar
t
o
f
th
is
 s
ta
g
e
as
 “
re
ac
ti
v
at
in
g
”
in
fo
rm
at
io
n
,
im
p
ly
in
g
 t
h
e
re
-e
m
er
g
en
ce
 o
f
n
o
n
-c
o
n
sc
io
u
s
k
n
o
w
le
d
g
e.

 43

modern stage theory

 Composer Jonathan Harvey also appears to have trouble relating

his ‘inspiration’ to Wallas’ model, observing that there are

opportunities for inspiration at almost every stage of the

composition process, including the revisions prompted by

verification (Deliege and Harvey, 2006). Accordingly, music

researchers have attempted to adapt stage theory for application to

the expressive arts: looking for more complex, non-linear routes

through the stages (Burnard and Younker, 2002), more iterative

and recursive applications of the process (Webster, 1989, 2002;

Knörig, 2006), or parallelised, potentially ill-defined, problem-

solving activities at different granularities of detail (Collins,

2005). As such, stage theory remains relevant in modern research

(Martindale, 1999; Burnard, 2007; e.g. Csikszentmihalyi, 1996;

Shneiderman et al., 2005; Knörig, 2006); especially in music (see

Sloboda, 1985; Webster, 1989; Auh, 2000; Burnard & Younker,

2002; Delige and Harvey, 2006; Collins, 2005, 2007).

 Figure 2 illustrates several of the popular models of stage-based

theories of creativity process, including three representations of

the musical composition process (as described by Graf, 1947;

Sloboda, 1985; Webster, 2002) that illustrate the difficulties

music researchers can have trying to reconcile less-structured

musical creativity with stage-based models.
12

 Highlighting the limits of stage-based theories, Weisberg (1993)

and Burnard (2007) both argue that, while unconscious processes

play an important role in creativity and are difficult to articulate,

there is no reason to believe we are not in control of them, and

that they are not driven, overlapped and more finely interwoven

with conscious thought.
adaptive regression

 In psychoanalytic theory, Kris (1952) described primary and

secondary cognitive processes respectively corresponding to an

unconscious, dream-like mental state characterised by concrete

images, and a conscious, waking, abstract state characterised by

logical reasoning.
13
 Creative thinking, he argued, involves

adaptive regression – the ability to alternate between the primary

state, where new thoughts are formed, and the secondary state,

where they are elaborated. Accordingly, Kubie (1958) talks about

an intermediate preconscious state, which contains unconscious

thoughts that can be subjected to conscious interpretation.

12
 Few accounts of the composition process explicitly define a conscious, preparatory stage of musical

creativity, highlighting the lack of a well-defined problem that the composer seeks to solve. Section 3.5

explores this stage of the creative process in the context of developing music skill and knowledge,

which allows musicians to navigate the musical domain without defining an end-goal (see Alty, 1995).
13
 Not to be confused with Maslow’s primary and secondary creativity (see Section 3.1).

 44

emerging awareness

 Reviewing the habits and accounts of notable composers, Graf

(1947) offered a description of the creative process in musical

composition as it was before the age of computers. He describes

three broad phases in musical creativity, as listed in Figure 3.

Figure 3 - three

phases of creativity

(Graf, 1947)

1. preliminary work done by the unconscious
14

2. combined work of unconscious and conscious mental powers

3. conscious final polishing of the form

 In this process, the secondary processes of the conscious mind

and critical thinking gradually take a larger role, as artistic fancies

and fantasies are formed by the primary processes of the

unconscious. While Graf’s description of the composition process

is less tied to discrete stages and offers only a loose description

and chronology of different moods and moments in the process,

the broad stages of Wallas’ model emerge from his account

(Deliege and Harvey, 2006).
using sketching to

probe the unconscious
 Crucially, Graf (1947) also identifies the musical sketch as a

practical mechanism used by composers to mediate between

conscious and unconscious thinking – illustrated in Figure 2 as

separate, smaller, and shorter creative processes that allow

composers to experiment with ideas that may (or may not)

contribute towards the final form of the music, culminating in a

draft that is finalised using critical thought alone. More detailed

discussion of musical creativity, drawing on Graf’s accounts of

composition and the role of sketching, is given in Section 3.5.
goal-oriented vs.

exploratory creativity

 Ward, Smith and Finke (1999) characterise the difference

between problem solving and problem finding approaches as

“goal-oriented versus exploratory creativity”. This begins to

mirror terminology found in HCI literature, where Hewett (2002)

notes a similar tendency towards formulating and solving well-

defined, testable goals, operators and methods as efficiently as

possible, rather than the open-ended exploration critical to

creativity. Candy and Edmonds (2004) similarly argue that

problem finding and problem solving require different skills and

thinking styles, but only the latter seems supported by technology.
divergent and

convergent thinking

 Instead of a procession of distinct stages, the creative process

can be characterised as a broad arc over divergent and convergent

thinking styles, where several ideas are generated, then selectively

pursued or elaborated, based on perceived merit (Sternberg and

14
 Graf uses the term “subconscious” for this phase, also drawing on Freudian psychodynamic theory of

the early 20
th
 Century, in his account of artists’ lives. As Graf correctly predicted; “It is probable that

new research will alter the Freudian constructions” (Graf, 1947, p80). Even so, though Freud himself

had deprecated the term (preferring “unconscious”) and though theory has since moved on, the change

in thinking does not otherwise invalidate Graf’s broader description of the composition process.

 45

Lubart, 1999; Plucker and Renzulli, 1999). The significance of

divergent thinking was the major finding from psychometric

studies of creativity (e.g. Guilford, 1950), in which ideation (the

quantity, rather than quality, of ideas) was measured and linked to

higher creative performance (Gruber and Wallace, 1999).
“wicked” problems

 As an exercise in problem-solving, McBride and Brown (2007)

suggest that creative self-expression might be regarded as what

Rittel and Webber (1973), in the field of social policy, refer to as

a “wicked” problem – an ill-defined, ongoing challenge with no

definitive or standard solution (see Figure 4). By contrast, they

consider well-defined tasks and challenges, such as those focused

on by creativity and HCI researchers, as “tame” problems.

Figure 4 - the ten

characteristics of a

“wicked” problem

(Rittel & Webber, 1973)

1. There is no definitive formulation.

2. They have no stopping rule.

3. Solutions are not true-or-false, but good-or-bad.

4. There is no immediate and no ultimate test of a solution.

5. Every solution is a "one-shot operation"; there is no opportunity

to learn by trial-and-error, every attempt counts significantly.

6. There is no enumerable (or an exhaustively describable) set of

potential solutions, nor is there a well-described set of

permissible operations that may be incorporated into the plan.

7. Every problem is essentially unique.

8. Every problem can be considered to be a symptom of another.

9. The existence of a discrepancy representing a problem can be

explained in numerous ways. The choice of explanation

determines the nature of the problem's resolution.

10. The planner has no right to be wrong.

“wicked” art

 Applied to music, these characteristics mirror recent adaptations

of stage theory that introduce iterative or cyclic processes to

tackle ill-defined problems.
15
 They also implicitly identify the

benefits and roles for technology in facilitating creativity. For

example, whilst live performance (and recording) might be

considered a “one-shot operation”, technology offers us the

chance to immediately review, and optionally revisit, material.

15
 Most creative domains have established sets of permissible operations; accepted techniques or

systems, such as schools of painting, rules of harmony, tonality, etc. Formal notations can thus be seen

as part-formulations of a problem, allowing solutions to be codified and enumerated. Lerdahl and

Jackendorff (1983) have even theorised about identifying a formal grammar for Western tonal music,

albeit with limited practical success (Cross and Woodruff, 2009). Indeed, celebrated creativity is often

characterised by bending or breaking rules (Simonton, 1994). For example, at the beginning of the 20
th

Century, some composers pronounced the exhaustion of the major/minor key system, in Western tonal

music, inspiring the members of the Second Viennese School, such as Schoenberg, Berg and Webern,

to develop new tonalities, e.g. atonalism, serialism, chromaticism (Grout and Palisca, 1996).

 46

Beyond the social context, this gives an individual the opportunity

to learn by trial-and-error, and the “right to be wrong”.
16
 This role

of immediate feedback, in facilitating iterative sketching of

musical solutions highlights how the computer can reduce the

wickedness of a creative problem without subtracting from the

scope or reward of the challenge, is a major focus of subsequent

theoretical (Chapter 4) and empirical work (Chapter 5 to 9).
beyond elaboration

 Born from a mathematical heritage, HCI and computing can be

seen to tend towards precise definitions and the solving of well-

formed problems (Hewett, 2002; Candy and Edmonds, 2004;

McBride and Brown, 2007). Problem solving methodologies

assume that the user has “collected” all the ideas already, and

merely has to converge on the final solution (Shneiderman, 2002).

In design scenarios, and especially in music, the individual is thus

expected to already know their production goals and strategy

before sitting down in front of the computer. For example, section

4.2.3 demonstrates how the dominant model for music software,

the sequencer, relies on a recording paradigm that largely depends

on the user having already prepared a musical performance

beforehand, not necessarily through the computer.

 Existing authoring software is thus often exclusively able to

support the final stages of creativity: the elaboration, verification

or refinement of an idea, “and take the ‘aha’ moment of insight as

having already happened” (Smith et al, 2009). In music,

sequencers and DAWs vary dramatically in their support

for experimenting and playing with new musical ideas. Music

programs that seek to support exploratory design are often used

simply for transcription (Blackwell and Green, 2000), where the

user experience becomes one of productivity rather than creativity

(Knörig, 2006), both of which are integral parts of the innovation

sought by individuals and organisations (Amabile, 2006).

16
 Roberts (2000) outlines three general strategies to tackle “wicked” problems: authoritative, where

the number of stake-holders is reduced; competitive, where parties are pitched against each other; and

collaborative, where parties work together to find a mutually-agreeable solution. As such, the focus on

personal creativity (see Section 3.1) might be seen as an “authoritative” strategy to tackle creativity; in

comparison to the competitive, social, or collaborative approaches also discussed.

 47

3.3 creativity synthesized

 As suggested in the last section, art presents “wicked” problems

for practitioners, researchers, and toolmakers (Rittel and Webber,

1973). In natural and social sciences, individuals pursue these

problems for palpable rewards, such as new technologies, lower

crime, or better education. In professional and social creativity,

they pursue the expressed needs and desires of a client, society, or

culture, for rewards of money, recognition, or fame. However, in

personal and artistic creativity, practitioners pursue their own

objectives and set their own challenges, often without the promise

of rewards from others. The emphasis shifts from the expertise

needed to solve problems, to the motivation needed to find them.
creativity

= expertise

+ motivation

 This section explores the interdependence of expertise and

motivation, as integral components of creativity (Amabile, 1983,

2006; Sternberg, 1999, 2003; Boden, 2004). Expertise and skill,

especially in music, are detailed further in Section 3.6. Likewise,

Section 3.7 explores motivation, specifically intrinsic motivation

(where the activity is its own reward – Amabile, 1983), and the

theory of “flow” (Csikszentmihalyi, 1990, 1996), which unifies

intrinsic motivation and skill development.

 Domain knowledge and expertise is widely seen as critical to

creativity (Ward, Smith and Finke, 1999; e.g. Amabile, 1983;

Nickerson, 1999; Boden, 2004).
17
 Originally seen as an innate

talent, the ability to be creative is now more widely linked with

acquired skill, gained through work or practice over an extended

period (Ericsson et al, 1993; Weisberg, 1999). In either socially-

recognised or culturally-relevant creativity, knowledge of a

domain is required to identify the opportunities for novelty and the

techniques to produce it, both of which require great expertise,

developed over many years of effortful learning (see Section 3.6).

Boden (2004) observes that “the more impressive the creativity,

the more expert knowledge is typically involved.”
personal

development

 In personal creativity, there is no predefined level of challenge

or skill – they are determined by the individual themselves.

Whereas an expert brings their considerable skill to bear on

difficult, socially-significant activities, a novice derives a similar

sense of personal achievement from tackling tasks that are easier,

but which make no less a demand of their relative ability

(Csikszentmihalyi, 2000). An individual’s satisfaction with their

achievement motivates them to seek new tasks, in which they look

for a greater challenge, comparable to their growing experience

17
 See also Ward, Smith and Finke (1999, p207-8) for further references.

 48

and ability (Hallam, 2002). In this way, expertise is developed

gradually, and motivation is maintained intrinsically, with less

dependence on uncertain and often limited external validation and

support (Collins and Amabile, 1993; see Section 3.7).

Figure 5

 Componential

Model of Creativity

(Amabile, 1996, 2006)

Amabile’s

componential

model of creativity

 In both personal and social environments, creativity can thus be

seen to depend on both expertise, to meet the challenge of being

creative, and motivation, to pursue both the challenge and the

acquisition of expertise (Csikszentmihalyi, 1996; Nickerson,

1999; Sternberg, 2003; Boden, 2004). Amabile (1983; see also

1986, 1996, 2006) explicitly combines these factors in her

componential model of creativity (Figure 5), in which she

describes creative performance as the confluence of: domain-

relevant knowledge and abilities (or expertise, detailed in Section

3.6), intrinsic motivation (detailed in Section 3.7), and creative

thinking skills (described below).
 Figure 5 illustrates creativity as the intersection of three inter-

related dependencies – that is, all three are requisite for creativity

itself, but also depend on each other. For example, one must be

motivated not just to be creative, but to develop expertise (e.g. to

practise), where such learning can itself be a strong motivator, by

stimulating and empowering the individual (Candy and Edmonds,

2004). Similarly, creative achievements that are enabled by

expertise can provide further motivation to develop new skills and

pursue further creativity (Hallam, 2002).
creative

thinking skills

 The last component, “creative thinking skills”, denotes cognitive

styles and attitudes that determine how flexibly and imaginatively

people approach problems (Amabile, 2006). As presented in other

confluence theories of creativity (Sternberg, 2003; with Lubart,

1995), they involve willingly embracing concentration, focus,

 49

effort, energy, complexity, ambiguity and rule-breaking, as well as

knowledge of work styles, techniques or heuristics that are likely

to provoke original thinking, but which might otherwise be

counterintuitive. These traits are not only a product of an

individual’s personality, but also affordances of the creative tools

and environment, which may support or hamper such skills.
beyond usability

 Unfortunately, many of these attitudes are actively discouraged

in computing and mainstream HCI theory and practice (Gentner

and Nielsen, 1996). Many usability textbooks (e.g. Nielsen, 1993;

Shneiderman and Plaisant, 2005) explicitly oppose complexity,

ambiguity and effort. Attention and focus is divided in multi-

tasking, multi-window environments; concentration is broken by

errors, notifications, or background processes; complex processes

are automated, hidden, abstracted, and simplified, obviating

challenge and effort; rule-breaking is defeated by pre-defined

and well-defined interaction procedures (e.g. wizards), notions of

“correct actions”
18
, and preset tasks or templates; and ambiguity

or uncertainty is frustrated by the precision demanded explicitly

by formal notations and implicitly by requirements of digital

encoding. Related issues are highlighted in the context of music

software, such as DAWs and sequencers (described in Section

2.1), in the remaining sections of this chapter and in subsequent

chapters on empirical findings (notably, Sections 8.4 and 9.3).

3.4 supporting creativity

 The more we understand the creative process and mind, the more

we can identify factors in the experience or environment of the

individual that contribute towards creativity, over which we may

have some influence (Nickerson, 1999).
fostering

creativity

 Components such as expertise and motivation, highlighted in

the last section, were recognised as ingredients to creativity in the

1950’s, when psychometric tests were developed to identify the

creative potential of children, in an effort to ensure ‘gifted’

individuals received appropriate support and encouragement

(Plucker and Renzulli, 1999). Whether one accepts creative skill

as a product of nature or nurture and whether there exists a limit

to one’s creativity or not, Nickerson (1999) argues that almost

everyone has the potential to be more creative, and that “few

people realise anything close to their potential in this regard.”

18
 As explicit in HCI evaluation methodologies that require precise and correct interaction steps to be

defined, such as Cognitive Walkthrough (Polson et al, 1992) or GOMS (Card et al, 1983).

 50

measuring

the benefit

 In the 1960’s, when modern creativity research was still young,

several speculative theories for enhancing one’s creativity

(notably Edward de Bono’s “lateral thinking”) achieved popular

success, with the public and organisations, but showed only mixed

results in subsequent empirical tests (Nickerson, 1999).
19
 This,

however, raises the practical difficulties in defining and

measuring such an abstract and disputed quantity as creativity (see

Csikszentmihalyi, 1999, Gruber and Wallace, 1999), which make

it difficult to rigorously evaluate the effectiveness of any given

strategy (Nickerson, 1999). For example, controlled experiments

cannot provide a free and open environment for creativity, but

represent contrived or constrained scenarios that can be hard to

translate to the real-world (Hewett et al, 2005; Collins, 2005).
objectivity

vs. subjectivity
 Maslow’s humanistic approach explores creativity from the

perspective of the individual, rather than from that of their peers

or society (see Section 3.1). In modern creativity research, this

approach is largely deprecated, due to the perceived lack of

scientific rigor in the qualitative assessment of subjective

phenomena. With reference to Maslow’s view, Csikszentmihalyi

(1999) accepts the importance of an individual’s subjective

experience, but argues that a systems perspective is necessary for

the objective, scientific study of creativity and its cultural impact

(see also Barrett, 2005; Hewett et al, 2005).
20

idiographic

vs. nomothetic
 In creativity research, Simonton (1999) observes that many

studies of the creative process, which include biographical

approaches, observation, or detailed case studies of unique

individuals and acts, are necessarily idiographic (based on single

or small samples). While such studies can be revealing (see

Section 3.5), it can be difficult to ascertain the broader relevance

of findings concerning inherently unique individuals and

processes (Gruber and Wallace, 1999). At the same time, the

labour involved in such longitudinal studies can make it difficult

to extend them to larger samples of individuals.

 Science, he argues, is better served by nomothetic approaches

(generalised explanations, based on large samples), such as his

own historiometric analyses of creative output (Simonton, 1980,

1984, 1994; also Section 3.5). However, such studies reveal little

19
 Sternberg and Lubart (1999) are similarly sceptical of such unproven approaches, and voice concern

about their ensuing rise as the public face of “creativity research”.
20
 It can also be seen to retrospectively vindicate the tendency, in research, to focus on the lives, works,

traits, and environs of a minority of highly successful, influential, and recognised creative individuals

(see Webster, 1989; Wehner et al, 1991; Albert and Runco, 1999; Bardzell, 2007). Though his earlier

works (such as flow theory, see Section 3.7) focus on studies of individuals from various backgrounds,

Csikszentmihalyi (1999) cites his more recent attitude as a reaction to the frustrations he had in

attempts to rigorously study largely subjective experiences and processes.

 51

about the creative or cognitive processes involved in the

production of a work. Moreover, only the extant creative output

of historically-recognised individuals can be studied (Hall and

Sallis, 2004). Simonton (1999) argues that this implicit vetting by

society and history ensures a work is “unquestionably” creative.
21

At the same time, whilst a larger sample size is used, it is

inherently biased towards a minority of creative practice, and

history offers little opportunity to verify trends found in famous

individuals, against a control group representing the wider

population. Sternberg and Lubart (1999) instead call for new

scientific approaches that mediate between the narrow focus of

psychometric and experimental approaches and the narrow

validity of biographic approaches.
the creative process

as user experience

 In contrast to the field of creativity research, HCI has drifted

beyond its own ‘system’-focused perspective towards individual-

oriented, user-centred methodologies for the evaluation and

design of user interfaces (Sharp et al, 2007; e.g. Norman and

Draper, 1986). These approaches accept the user experience as a

subjective one, but one that can be usefully, if not always

rigorously, tested with qualitative methods such as field studies

that might include observation, user surveys, and interviews.

Shneiderman et al (2005) also note the value of multi-

dimensional, in-depth, longitudinal case studies.
studying creativity

via the computer
 Researchers have advocated the use of the computer in studies

of creativity: to facilitate larger and more complex studies of

creative output (Simonton, 1994); to augment subjective feedback

from the individual with objective measures, and reduce the

interruption or distraction inherent in self-reporting (Collins,

2007; e.g. Sloboda, 1985); to remove the researcher and observers

as intruders in the creative process (Perkins, 1981; Collins, 2005);

or as a platform for setting, controlling or measuring the creative

task or environment.
22
 Candy and Edmonds (2004) recommend

practice-based research, which combines technology-based art

projects with observational activities (e.g. Nash and Blackwell,

2008), mirroring the standard approach of researchers in the field

of music instrument design, as in the NIME (New Interfaces for

Musical Expression) conference series (a musical offshoot,

21
 As such, Simonton (1994) is in accord with Csikszentmihalyi’s position that the scientific study of

creativity inherently depends on social validation. However, he explicitly sees the act of persuasion as

separate from the creativity itself. Csikszentmihalyi (1999), though, dismisses this strategy as

“epistemologically” problematic, arguing that, under his definition of creativity, even an individual

cannot be sure of their own creativity, if they can’t persuade someone else of the fact. This reasoning,

however, would seem to presuppose that artists, and humans at large, always think rationally.
22
 See Scripp et al (1988), Webster (1989), Kratus (1989), Smith and Smith (1994) or Folkestad (1996).

 52

originally a workshop, of leading HCI conference, SIGCHI),

which focuses on novel technologies for interacting with music.
HCI research

in digital music
 Within this artist-led field, practitioners often feel confined by

notations and visual UIs in software (especially in usability-

oriented, end-user GUIs), favouring more direct interaction with

sound, offered by live performance with specialist hardware

enabling more embodied approaches (e.g. gesture, haptics)

(Leman, 2008). The use of digital archiving (recording) processes

can also be seen to further obviate the need for notation, while

shifting the focus of musical creativity from composition to

improvisation (further discussed in Section 3.5).
23
 Moreover, the

methodological challenges of studying creativity have limited use

and development of techniques and theory for evaluating new

interfaces with respect to usability, ergonomics, or expressivity. It

is hoped that this study of notation-based computer interaction

and related theoretical considerations (Chapter 4) can facilitate

wider discussion of these topics in the field of music research.
 In developing creative support tools, Hewett et al (2005)

advocate a mix of subjective, qualitative, or idiographic methods

and objective, quantitative, or nomothetic methods – specifically

citing ethnography, computer logging, or participatory design, as

methods that more richly capture the creative user experience, in

comparison to traditional HCI approaches that use performance

metrics and largely concentrate on user productivity.

 Accordingly, the research in this thesis uses a variety of

methods to study the creative process and correlates of creativity

such as virtuosity and flow, using the Internet to broaden analysis

to larger numbers of individuals while also shifting the focus to

the personal creativity of less-recognised artists. These techniques

include combinations of: large-scale, multi-user, longitudinal

computer logging (Chapters 5, 7, and 8); a video case study,

supported by interviews (Chapter 6); and both user questionnaires

and psychometric-based user surveys (Chapter 9).
24

how (not) to

kill creativity

 Amabile (1983) observed that creativity research had yet to

reveal any effective ways to amplify creativity, but has instead

highlighted many ways in which creativity is killed. Even more

recently, Amabile (2006) noted that “creativity gets killed much

more often than it gets supported” – and thus there remains plenty

of scope to increase creativity by removing detrimental factors.

23
 Though Butler (2008) notes that the lack of an established canon of notated electronic music works

may act as an impediment to the wider adoption of novel musical interfaces.
24
 Through summaries of composers’ historical accounts of the composition process (Graf, 1947; Boyd,

1992; Harvey, 1999; see 3.5 and Appendix B), this research can also be seen to draw on historic and

biographical approaches to studying creativity (Plucker and Renzulli, 1999).

 53

 Rubin (1968) observes,

The research evidence unfortunately does not suggest that by

using a prescribed scheme we can produce creativeness at will.

What is suggests, rather, is that virtually everyone has more

creativity than he makes use of, that different conditions flush it

forth in different individuals, and that a given procedure tends

to nurture a part, but not the whole of one's capacity.

controlling the

environment

 Creativity arises from interaction between a person and their

environment (Csikszentmihalyi, 1996; Sternberg, 2003; with

Lubart, 1995). Csikszentmihalyi (1996) observed that creative

individuals actively adapt their environment to suit their styles

and rhythms, and isolate themselves from the world.

Consequently, strategies intended to support creativity – such as

Nickerson (1999); Sternberg (2003); Amabile (1983, 2006) – do

so by attenuating influences in the environment that discourage

creative thinking. Moreover, these summaries of developmental

and environmental factors affecting creativity have been, at least

in part, borne out by empirical research, and consequently

integrated into modern confluence theories of creativity, such as

Amabile’s component model of creativity (Amabile, 1983, 1996,

2006; see Section 3.3) or Sternberg and Lubart’s investment

theory of creativity (Sternberg, 2003; with Lubart, 1995).
25

strategies towards

creativity

 Many authors have suggested strategies concerning how the

creative environment can be manipulated to improve support for

creativity (Amabile, 1996, 2006; Nickerson, 1999; Plucker and

Renzulli, 1999; Sternberg, 2003). Some recommendations are

targeted at individuals, but others are framed as guidance for

parents, managers or teachers, in developmental, business, or

educational contexts. Many of these can be generalised to the

individual (and user experience), but a few, such as those

uniquely concerning social factors (e.g. role-model creativity,

teaching by example), childhood or collaboration, lie beyond the

scope of this research (see section 3.1) and are not detailed here.

 In the following pages, Table 3 reviews their recommendations,

in the context of four broader objectives, advocating support for

EXPLORATION, EXPERTISE, MOTIVATION, and INDEPENDENCE.

25
 Investment theory is so named because it advocates that individuals, working in a social climate

(see 3.1), should “buy low and sell high in the world of ideas […] generate ideas that are relatively

unpopular (buy low) and convince others of the worth of these ideas (sell high)” (Sternberg, 2003).

 54

Sternberg

(2003)

● Encourage idea generation ● Redefine problems

● Tolerate ambiguity

Nickerson

(1999)

● Stimulate and reward curiosity and exploration

● Provide opportunities for choice and discovery

● Use techniques / strategies for facilitating creative performance

Amabile
(1983)1

(2006)2

● Heuristics to generate novel ideas (e.g. counterintuitive approach)
1

● Work style characterised by the ability to set aside problems
1

● Freedom (concerning the process)
2

EXPLORATION

Although new ideas form an intrinsic part of all creativity, individuals should

be encouraged to explore multiple, alternative ideas, including those that might

be considered counterintuitive, before committing to, or thinking too critically

about, a specific approach. The environment must support provisional,

incomplete, uncertain, and ambiguous expressions and solutions that can be

easily changed or abandoned, without significant consequences.

Sternberg ● Recognise that knowledge is double-edged sword

Nickerson

● Build basic skills

● Encourage acquisition of domain-specific knowledge

● Focus on mastery and self-competition

Amabile

● Cognitive style that involves coping with complexities
1

● Challenge (that suitably stretches ability)
2

EXPERTISE

Creativity requires domain knowledge and expertise (see section 3.6), together

with specialist use of everyday skills; the acquisition and development of

which must be supported and encouraged in the environment. The provision of

a challenge commensurate with ability provides the opportunity to learn in a

manner that is stimulating and rewarding. Mastery of tools and techniques

helps tackle complexity, leading to higher attainment; but too much received

knowledge encourages conformity.

Sternberg

(2003)

● Find what you love to do ● Tolerate mistakes

● Accept delayed-gratification

Nickerson

(1999)

● Build motivation (especially intrinsic motivation)

● Use external motivation to reinforce intrinsic motivation

● Establish purpose and intention

Amabile
(1983)1
(2006)2

● Work style characterized by concentrated effort,

● an ability to set aside problems, and high energy
1

● Enhance intrinsic motivation (by reducing extrinsic constraints)
 1,2

● Challenge (that stimulates and satisfies)
2

MOTIVATION

Creativity is best supported by intrinsic motivation (see section 3.3 and 3.7),

which can be directly influenced by the environment. An environment must not

interfere with an individual’s will to be creative, and should promote activities

that are inherently rewarding and fulfilling, such as the stimulation and

satisfaction provided by an effortful challenge. Mistakes or failures should not

be highlighted by external tests or evaluations, but tolerated and addressed

without discouraging further activity. Less emphasis on external rewards also

reduces the impact of delayed-gratification.

Table 3 – a summary of strategies developed to support an individual’s creativity (continued on

next page) by controlling environment factors, across four broad themes: Exploration, Expertise,

Motivation, and Independence (based on Sternberg, 2003; Nickerson, 1999; and Amabile, 1983, 2006).

 55

Sternberg

(2003)

● Identify and surmount obstacles ● Build self-efficacy

● Question and analyse assumptions ● Take sensible risks

● Allow time for creative thinking

● Take responsibility for both successes and failures

● Maximize person-environment fit

Nickerson

(1999)

● Encourage confidence and willingness to take risks

● Provide balance (between rule-following and rule-breaking)

● Promote supportable beliefs (in one’s potential; self-efficacy)

● Develop self-management (meta-cognitive skills)

Amabile
(1983)1

(2006)2

● Cognitive style that involves breaking one’s mental set
1

● Freedom (autonomy)
2

● Resources (time, money and space)
 2

INDEPENDENCE

The pursuit of novelty requires an environment that encourages uniqueness,

independence, and autonomy. Self-efficacy and self-worth are required to

enable an individual to take risks, persevere in the face of obstacles, and defy

assumptions and established practices. External pressures (including time,

money, correctness, recognition) must not be allowed to interfere with or limit

creativity. Success or failure must be self-attributed, enabling an individual to

identify and address their own strengths and weaknesses in private.

 Many of these strategies shift the individual’s awareness away

from the social factors of creativity, towards the activity itself and

personal, psychological matters. Nickerson (1999) maintains that

such an approach, especially concerning the reduced emphasis on

the need for recognition (see Section 3.1), is critical to enhancing

the creativity of the individual. Individuals, he argues, “need to

believe that creativity is determined by motivation and effort to a

significant degree”; not subject to some random, unpredictable

extrinsic factor beyond their control.
controlling the

digital environment

 Nickerson (1999) writes of the potential of computer software

packages: “Can we assume that such tools – at least the best of

them – will facilitate creativity?” He is optimistic, but noted a lack

of existing research investigating the matter. More recently, HCI

researchers have begun to consider the issues, strategies,

challenges, and opportunities in digitally-mediated creativity (e.g.

Resnick et al, 2005; Lubart, 2005; Knörig, 2006). Some of the

findings of this emerging field are discussed in Chapter 4.

 Moreover, many of the issues outlined in this section relate to

the characteristics and requirements for “flow”, a mental state

characterised by challenge, absorption and intrinsic motivation

that Csikszentmihalyi (1996) has explicitly linked with creative

performance, and which has also been considered in the context of

the computing, as discussed in Section 3.7.

 56

3.5 creativity in music

 Music, together with art in general, is a discipline that people

implicitly associate with creativity (Sternberg, 1985). Yet, at the

same time, creativity is a less-studied aspect of musical research

(Sloboda, 1985/1999, 2005; D. Collins 2005, 2007).
26

paucity of

composition

research

 A strong bias towards musical performance and musicology is

also evident in modern teaching syllabi; and what studies of

musical creativity there are tend towards studies of creative

output, rather than process (Sloboda, 1985/1999). Sloboda (1999)

notes a “general neglect of musical creativity in the arena of high

art or 'classical' tradition which dominates schools, colleges, and

universities." Though there is a significant degree of creativity in

performance, there remains a paucity of research on more overt

acts of musical creativity, such as improvisation and composition

(Sloboda, 1985/1999, 2005; D. Collins, 2005, 2007).
 27

composers and

psychologists

 Sloboda (2005) observes that the typically introverted nature of

composers can create research problems, and also lies at odds with

psychologists’ focus on the listener, providing the science of what

the audience seeks, to facilitate its manufacture by composers.
music as

architecture

or artefact

 Instead, he advocates studies of music as architecture or

artefact, using a three-step strategy for practical psychological

research concerning composition and musical creativity:

(a) determine the function(s) the [architecture / artefact] may perform

(b) design structure that can serve that function

(c) choose materials which will allow the structure to be made
28

 For example, music composition might best be supported by

psychology research that suggests how notations can better

capture composers’ musical creativity. With the increasing role of

the computer in modern music production, this approach would

seem to characterise the role of the interaction designer, who

develops both the system architecture and information artefacts

available to the computer-based musician, as well as the visual

notations that form the user interface and define the interaction

(e.g. Green and Petre, 1996).

26
 Harvey (1999) notes that his own work on musical creativity, in the 60’s, was actively discouraged

by the music faculty of his university, which tended towards traditional, analytical musicology studies

of the seventeenth-century.
27
 Sloboda (1985) noted, and later (1999) reiterated, "The reader should be warned that composition is

the least studied and least well understood of all musical processes, and that there is no substantial

psychological literature to review."
28
 He also notes that “(b) and (c) often interact, in the sense that the structure can be to a certain extent

determined by the available materials.” (Sloboda, 2005)

 57

composition as an

“ill-defined” problem

 Unlike improvisation, which can be seen as the timely solving of

constraints (Johnson, 1980; Johnson-Laird, 1988; Alty, 1995;

Thompson and Lehman, 2004), composition has been described as

an ill-defined problem, with no pre-defined end-goal (Collins,

2007). Several authors describe composition as the transformation

of this ill-defined problem into multiple well-structured problems,

which can be solved separately (Sloboda, 1985; Collins, 2007),

based on the identification and solution of constraints (Reitman,

1965; Lerdahl, 1988; Alty, 1995; Wiggins and Pearce, 2001).

Once reduced, the composer can draw on a large, established

canon of theory, technique, and practices in music. Reitman’s

study of the composition process (Reitman, 1965), for example,

focused on the fugue; a highly complex, yet highly systematised

musical form, with many established rules and methods.
29,30

finding, solving and

breaking constraints

 Johnson-Laird (1988) explores the issues of balancing freedom

and constraint in creativity, arguing that the issue is not the degree

to which creative processes are inherently computable or

deterministic, but to which the individual perceives themselves to

have choice and freedom of will. Constraints and aesthetic criteria

are critical to the generation of ideas, but must exist in the creative

individual as tacit knowledge, so as not to impact their sense of

freedom. Conversely, conscious awareness of constraints benefits

analytical thinking, but discourages creativity.
31
 Sloboda (1985)

likewise notes that constraints that have so far been identified tend

to apply to only “those events over which the composers have

greatest conscious control”, and are thus confined to latter stages

of the creative process (see Section 3.2).

 Some authors argue that musical creativity, especially in

composition, is about breaking rules rather than applying them

(Auh, 2000). Burnard and Younker (2002) note that the degree of

reliance on rules depends on the individual, who can balance the

29
 Indeed, the tractability of the fugue is evidenced by its link with improvisation (Mann, 1980), and

has arguably led to the exhaustion of the form (Adorno, 1997). As such, even though Sloboda (1985)

cites Reitman (1965) as one of the few observation studies of the composition process, one can argue

that, like improvisation, the creativity exhibited is a special case. However, the methodology employed

has since been applied to other composition activities (e.g. Collins, 2005, 2007).
30
 Based on research into formal grammars and psychoacoustics, Lerdahl (1992) goes as far as to

propose a number of universal constraints on compositional systems. While he entreats readers to

understand the constraints as psychological imperatives, the explicit aesthetical implications have been

less well received (e.g. Boros, 1996). While his constraints identify the limits of musical complexity in

order to be comprehensible to listeners, he advocates composers work as close to that limit as possible.

He identifies Indian raga, Japanese koto, jazz, and most Western ‘art’ music as satisfying his criteria,

but explicitly exempts both serialism and rock music, on the grounds of being respectively too far

beyond or below this threshold. Whether one accepts these judgements or not, it is evident that such

prescriptive systems lie at odds with many composer’s own motivations, philosophies, aesthetics and

perceived artistic freedom (Sloboda, 2005).
31
 Johnson-Laird (1988) offers this as an explanation for differences between critics and practitioners.

 58

level of constraint and freedom to regulate the level of challenge

and artistic independence (see Section 3.7). The implication for

HCI is that research that identifies and reveals the constraints

within a domain should not necessarily be used to formalise them

in the interface, or explicitly bring them to the attention of the

user. Rather, interfaces must be built around the development of

tacit knowledge, and also afford the opportunity for users to

discover and form their own perspectives (see 3.6 and 4.1.1).
the “blank canvas”

 Many composers and researchers have observed that the most

challenging and daunting part of the composition process is facing

the initial “blank canvas”; establishing an initial musical idea

(Graf, 1947; Boyd, 1992; Alty, 1995; Harvey, 1999; Deliege and

Harvey, 2006; Collins, 2007). Once a theme has been laid down,

composers can draw on the established devices of “transposition,

augmentation, subdivision and recombination of elements,

changes of rhythm, etc.” (Sloboda, 1985). However, it is these

established, more formal processes that are the easiest to

operationalise in the digital domain, contributing to a perception

that related software (including DAWs and score editors) caters

only for latter-stage productivity, offering only limited support for

early-stage creativity (Blythe et al, 2007; Duignan, 2007).

 Early stage musical creativity is characterised by unconscious

thought processes that are hard to articulate, leading to a paucity

of research (Sloboda, 1985), but which are most usually modelled

using some derivative form of stage theory (see 3.2; e.g. Webster,

1990; Auh, 2000; Collins, 2005, 2007; Burnard and Younker,

2002; Burnard, 2007). Since a piece is most often the synthesis of

multiple musical ideas (across time, melody, harmony, timbre,

etc.) stage models are invariably adapted to accommodate multiple

creative processes, operating iteratively (looped), recursively

(nested), or in parallel. Creative threads can also be abandoned

(ideas are discarded) or upended (ideas are revisited).
32

exploring and

expanding

 Harvey (1999), reflecting on both his own experiences and those

of other composers, observes that “unconscious inspiration” is not

limited to just the inception of a musical piece, but also plays

a significant role in revisions made in the latter evaluation

stages of creativity (see also Deliege and Harvey, 2006). More

broadly, Kratus (1989) divides the composition process into

“exploration” and “development” phases, supported by divergent

and convergent thinking styles respectively. Graf (1947) similarly

described composition as a mix of conceiving, condensing and

concentrating, expanding, elaborating and intensifying musical

32
 A number of developments of stage theory in music are discussed in 3.5 and illustrated in Figure 2.

 59

ideas.
33
 Webster (1988) accordingly emphasises the importance of

divergent thinking skills, such as musical “extensiveness”

(ideation), flexibility, and originality, in addition to the subsequent

application of convergent skills, such as musical syntax.

 Whilst incubation is often associated with “time away” from the

problem (Webster, 2002), waiting for the intimation of an idea

(see section 3.2), composers like Stravinsky (Graf, 1947) and

Harvey (1999) ascribe more focused effort (or “perspiration”,

according to Harvey) to the process of exploring, expanding, and

discarding different musical ideas. Boyd (1992) also describes

professional music artists who see musical creativity simply as a

“trial-and-error” process. Composers in the past have often turned

to improvisation and experimentation with their instruments

(especially the piano) to experiment with musical ideas, prior to

notation (Graf, 1947). With the advent of the studio, musicians

can record “jam sessions” for subsequent review (Boyd, 1992), a

process that further shifts the emphasis from interaction with

notation to performance.
34

sketching in music

 Graf (1947) looks at the accounts of composers through history,

and highlights the important role of sketching, which allows

relatively cheap and noncommittal exploration of ‘fanciful’ ideas,

and enabled composers like Beethoven to probe their unconscious

and capture fleeting artistic moods. He describes the composition

process as a gradual transition from unconscious to conscious

thought processes, across several ‘moods’ characterised by a

gradually decreasing playfulness and increasing commitment to

specific ideas. The composer begins in a productive mood,

playfully trying out musical fantasies, until the conception of a

musical idea, which the composer then attempts to bring to form,

aided by the informal, provisional format of the sketch, “until

critical thinking alone puts the finishing touches to the tone

figures.” Harvey (1999) also comments:

Beethoven's sketch books are perhaps the most eloquent

witness to the idea of inspiration as a gradual, 'clarifying'

process: in them we can trace the emergence not only of

themes but of entire structures, gradually becoming more

and more crystalline.
35

33
 Such descriptions compare with those articulated in the video study, in Chapter 6.

34
 This performance-based model of musical creativity is also evident in sequencers (see 2.1 and 4.2.3).

35
 Earlier composers, such as Mozart and Haydn, relied less on sketching, except as memory aids for

larger, more complex works (Graf, 1947). However, the more formal rules of harmony, form, and

structure in baroque and classical periods greatly facilitated the reduction and recollection of music

(Harvey, 1999). Harvey (1999) also observes that these well-established rules and practices of the

baroque period engendered less diversity, and greater conformity that ultimately impeded creativity

(“achievement of synthesis”).

 60

Figure 6 – Berio’s

sketch for Requies

(1983-5), illustrating
corrections (�), non-

standard notation (�),

ink transcription from

an earlier draft (�),

hurried additions (�),

side notes (secondary

notation, �), and the

lighter use of pencil in

new work (�). Image

reproduced from Hall

and Sallis (2004, p28).

 The role of the sketch, as a tool for informally exploring ideas

and thus a catalyst for creativity, is widely-recognised – not only

in music (Graf, 1947; Hall and Sallis, 2004; Healey and

Thiebaut, 2007 – see Figure 6), but also other areas of design

(Blackwell et al 2008), including the design of user experiences

themselves (Buxton, 2006). Schubert and Sallis (2004) state that

sketches “are understood to be unfinished, open and provisional:

the first unsure attempts to notate ideas, the significance of which

is uncertain.” Sloboda (1985) describes them as, “necessary and

enabling resources for the compositional process.” They allow

composers to informally notate music without considering the

legibility or acceptability of the idea to other musicians, allowing

them to work quickly and without circumspection, at arbitrary

levels of granularity or fidelity. The reduced investment of time

and effort in producing a sketch also leads to fewer inhibitions to

abandoning a path, should it prove unproductive. Moreover,

paper sketches, made with pencil rather than pen, make it easy to

make changes and further increase the provisionality of musical

ideas – enabling artists to “avoid giving their original thoughts a

permanent form.” (Graf, 1947)

�

�

�

�

�

�

 61

provisionality

and viscosity

 Like sketching, digital notations must enable playful styles of

interaction, to support both learning and creativity through

exploration. However, these provisional, non-committal, and easily

undoable (reversible) modes of manipulating a notation are not

always available in music software (Duignan, 2007; Healey and

Thiebaut, 2007). On the computer, data is stored and processed

using volatile mediums that can be changed or erased much faster

than an artist composer might rub out a pencil mark, but few user

experiences are able to offer the opportunities and flexibility

afforded by paper (Sellen and Harper, 2001). Blackwell et al

(2008) observe a tension between the formalism required by

computational interpretation and the informality desired in sketch

tools, also noting limitations in physical control.
 In music, Blackwell and Green (2000) used the Cognitive

Dimensions of Notations framework (Green and Petre, 1996) to

compare the computer use of musicians and programmers and

found that “the musicians spent the majority of their time

transcribing music from other sources, while the programmers

spend more time exploring possible solutions.” Comparing the user

experiences of each group, the study specifically highlights

problems with provisionality and viscosity (a notation’s “resistance

to change”) provided by the music editing environments.
36

 In reviewing the limitation of computer music tools in supporting

sketching, Healey and Thiebaut (2007) also talk about the need to

support ‘vagueness’ and ‘ambiguity’. The cognitive dimension,

secondary notation, is similarly related to a system’s provision for

user inputs not adhering to the formalisms in the primary notation –

that is, the opportunity to make freeform notes, annotations, etc. By

definition, such notes cannot be interpreted (executed or played) by

the computer, and serve only as an aid to user interaction, but one

that may be useful in framing ideas before they are entered in an

executable format. Section 4.2.4 further discusses this in terms of

levels of liveness in the editing process.
improvisation

vs. composition

 Sloboda (1985) considers composition through an analogy with

the musical creativity exhibited during improvisation:

The composer rejects solutions until he finds one which seems to

be the best for his purposes. The improviser must accept the first

solution that comes to hand... the crucial factor is the speed at

which the stream of invention can be sustained, the availability

of things to do which do not overtax the available resources.

36
 In Chapter 9, this analytical framework is used to further analyse tracker and sequencer styles of

music software, with respect to these dimensions of the user experience.

 62

improvisation

and performance
 Improvisation depends on mastery of performance skill, such

that control of the instrument is automatic, and the conscious mind

free to consider the musical, rather than physical challenge –

where fluid performances require dexterous fingering and fast

motor control (see section 3.6). Alty (1995) sees improvisation as

the realtime solution of a musical problem through the recognising

and solving of well-learnt heuristics or constraints, made possible

by focusing the performer’s attention on a narrower window of

time (Sloboda, 1985) and working within basic and largely preset

musical structures, relating to tonality, harmonies, and form. Such

“real time creativity”, argues Johnson-Laird (1988), is impossible

without knowledge of constraints that hasten a solution.
composition

and performance

 Composition, by comparison, involves the discovery of these

constraints (Alty, 1995). The difference between improvisation

and composition can thus be seen as a respective emphasis on

problem solving vs. problem finding (see Section 3.2). The

composer has broader latitude over both the music and time. The

scope for complexity is increased, potentially raising the breadth

or depth of the challenge, but the laxer timing constraint allows

the challenge to be tackled at a more relaxed pace, reducing the

requirements on real-time performance and improvising skill;

reducing the anxiety without reducing the challenge. Production

software based on realtime musical performance, such as DAWs

or sequencers (see 2.1), thus do not exploit this opportunity to

lower the threshold for musical creativity (see Scripp et al, 1988).
controlling

musical time

 Burnard (2007) makes a phenomenological comparison of

improvisation and composition, looking at the differences between

the practitioners’ respective experiences. She characterises

improvisation as time-constrained, task-constrained, and situation-

driven; and composition as free, independent, self-driven and

situation-owning. As with Sloboda (1985), improvisation restricts

the opportunity for the personal exploration and appropriation of

musical ideas and practice; in composition, the practitioner exerts

controls over the situation, whereas in improvisation, they feel

controlled. Sawyer (1995), who focuses on social perspectives of

creativity in group-based improvisation, similarly makes a

temporal distinction, describing improvisation as “synchronic”

(immediate, single reception, ephemeral, where creative process

and product are coincident) and composition as “diachronic”

(delayed, multiple receptions, where the creative process is

distinct from, but results in, the creative product).
37

37
 Collaborative systems rely on the presence of others as extrinsic sources of inspiration or motivation,

contrasting the intrinsic motivation required for flow in personal creativity (see Section 3.1 and 3.7).

 63

 Thus, the flexibility and control of (musical) time becomes a

critical factor in the UIs of composition software. Duignan (2007)

notes that, while linear timelines are useful for building and

finalising the overall arrangement of a piece, non-linear music

systems allow a greater flexibility and provisionality that can

facilitate creativity. He states, “By being able to arrange in real-

time, producers can try out new ideas very rapidly and create

results they would have otherwise overlooked”. He also notes that

a “state of flux” can be maintained during music production,

where artistic decisions are deferred later into creative process, in

contrast to the premature commitment enforced by linear timelines

(e.g. sequencers). Thus, beyond the linear, realtime requirements

associated with performance and improvisation modes of studio-

based musical production, tools for composers must be designed

not just for the fluid control of musical variables (pitch, dynamics,

etc.), but also fluid control of time itself (see Section 8.3) and

support of an interactive composition process.
studying

composition

 Beyond studies of musical output,
38
 Sloboda (1985) identifies

four ways by which one might inspect the composition process

itself: composer reflections, studying sketches, observation (e.g.

'think aloud' studies), or by looking at improvisation instead.
composer

reflections

 Graf (1947) attempts to collate the reflections of composers,

regarding their creative processes, and place them in a coherent

psychological context. Harvey (1999) can be seen as a similar

anthology of perspectives and reflections that also encompasses

modern composers of the 20
th
 Century. His account lacks a

psychological context, but is largely reconcilable with Graf’s

(Deliège and Harvey, 2006), demonstrating the earlier work’s

continuing relevance. More recently, Boyd (1992) provided an

anthology of reflections from artists in popular music, framed by

Maslow’s theories of self-actualisation, creativity and motivation

(Maslow, 1963, 1968; see Section 3.7). Such anthologies should

be seen as invaluable resources for UI designers following user-

centred approaches (see 3.4; e.g. Norman and Draper, 1986).

38
 Pioneering the historiometric approach to studying creativity, Simonton (1994) studied 15,618

classical pieces from the classical period, examining the first six notes of the main themes from the

works of 479 composers, looking for trends and probabilities in their tonality and the divergences

thereof, as indicators of the originality. The significance of such novelty (the “musical fame”) was then

scored on a 32-point scale based on the piece’s showing in various music dictionaries, combined with

rankings by musicologists. Among other findings, he showed a correlation between creativity and

productivity, arguing that composers have a constant probability of creative success, such that more

prolific individuals are more likely to hit upon something that society will recognise as original. While

Simonton concedes that the characterisation of the music he uses is simplistic (reducing works of

several minutes or hours duration to only 6 pitches; and ignoring harmony, instrumentation, dynamics

and other critical factors in music), but offers his studies as examples of the application of computer in

studying creativity and musical composition.

 64

studying sketches

 Within musicological studies, Johnson (1980) notes a tendency

to concentrate on the finished form of a work. The promise of

sketches is that they come closer to showing the inception and

evolution of a creative work, showing an author’s consideration of

different ideas and the chronology of their creative process.

 Schubert and Sallis (2004), however, note several problems with

studying the creative process through sketches, largely concerning

the availability of work to study and establishing the context or

meaning of surviving pages. Moreover, they can be seen as an

example of the biographic approach to studying creativity and,

like historiometric approaches (e.g. Simonton, 1994, 1999), rely

on eminent, indisputable, singular instances of creativity (Plucker

and Renzulli, 1999). Neither approach is readily able to correlate

their findings with analyses of less successful (or even failed)

attempts that have been discarded; nor are they able to explore any

aspect of the creative process that leaves no material evidence.
composer

observations

 A few studies have attempted to address this by observing the

creative act in process, through longitudinal studies following a

composer from musical idea to realisation (e.g. Reitman, 1965;

Sloboda, 1985; Collins, 2005, 2007). While this approach still

focuses on subjects with recognised professional experience and

skills in composition, the threshold for recognition is lower than

that demanded by historical record, and thus also promises

broader insights and relevance concerning more commonplace

creative practices. Several findings of Collins (2005, 2007) are

discussed in relation to the video study, detailed in Chapter 6.
longitudinal

case studies

 Collins (2007) identifies methodological challenges in case

studies. The duration of a composition process is indeterminate,

varying from an afternoon to several years, pursued solidly or

intermittently over that period. Thus, it is difficult to ensure the

presence of an independent observer, who may also disrupt or

intrude on the activity. Studies often rely on self-reporting

techniques, which depend on a practitioner’s subjective reflections

and awareness of their own thought processes (more recently

supported by audio and video recording), and the semi-regular

saving of MIDI files (Collins, 2005). Neither record allows the

observer to probe a composer’s interaction in detail, but audio and

video tapes can identify questions that can be put to the artist later,

in the form of structured discussions and interviews. Lastly, due to

the work involved in observation, studies are usually limited to

single subjects; the observer is thus responsible for mediating

objectivity, selecting an appropriate subject for study, and drawing

conclusions that can be generalised to a broader population.

 65

self-reporting and

self-consciousness

 Inevitably, an individual’s reflections on their own actions and

motives make them increasingly self-conscious, and can harm the

creative process (Csikszentmihalyi, 1996; Nickerson, 1999).

However, creative processes are most obviously disrupted by the

recurrent need for the composer to interrupt their activity, to

reflect and report on their actions. Moreover, artists are frequently

distracted by the composing activity itself, and forget to make

their reports. While this presents a methodological problem that

affects the quality and completeness of the study (Sloboda, 1985;

Collins, 2005), the oversight is itself significant, as it indicates that

the composer has become so focused and absorbed in their work,

they forget the outside world. Section 3.7 discusses this

phenomenon in the context of “flow”, a mental state of total

absorption in an activity that has been associated with creativity

(Csikszentmihalyi, 1996).
creativity in

group composition
 Although collaborative creativity lies outside the scope of this

research, social settings can also offer insight into individual

creative processes. Nabavian and Bryan-Kinns (2006), for

example, conducted a study of distributed cognition in group

composition, in which the interactions and communications of the

participants provides a commentary on the emergence of musical

ideas. In line with stage-based theories of personal creativity and

accounts of composer’s working processes (Section 3.2; Figure

3.2), the study identified three contingent processes – attainment

(assembling information), experimentation (idea generation and

selection), and structuring (verification and finalisation).
creativity in

music education

 Barrett (2005) advocates studies of composition in education

(see Webster, 1989; Auh, 2000; Burnard and Younker, 2002,

Hallam, 2002; Burnard, 2007), as a way to broaden the focus of

studies of musical creativity; in which an emphasis on recognition

is counter-productive, and where rewarding achievement needs to

be balanced with rewarding effort. In this sense, the school

environment can be seen to address or mitigate some of the

limitations of other approaches: the restrictive and contrived

creative scenarios in controlled experiments; the inviolable and

unpredictable freedom of solo work in case studies; and the lack

of access to the process or products of personal creativity in

biographic and historiometric studies. Studies of computer-based

learning environments are discussed in the next section, which

attempts to identify the skills and techniques used in music, and

composition specifically, as well as the respective opportunities

and challenges afforded by the computer.

 66

3.6 developing musical expertise

 As established in the previous sections, expertise within a domain

is widely recognised as an integral component of creativity

(Amabile, 1983, 2006; Ward, Smith and Finke, 1999). However, a

number of HCI researchers highlight a design bias towards the

novice user, at the expense of more expert, experienced users

(Gentner and Nielsen, 1996; van Dam, 1997). Paradiso and

O’Modhrain (2003) have questioned “how deep a union research

in musical controllers will be able to forge with the larger field of

Human-Computer Interfaces, which generally emphasizes ease-of-

use rather than improvement with long years of practice.” Hewett

(2002) also notes that the expertise commonly associated with

computers and technology focuses on finding efficient solutions to

specific problems, rather than facilitating the more open

exploration that is important in creative practice (see Section 3.1).

This section explores what types of expertise technology must

support to facilitate creativity in music composition.
explicit knowledge

and tacit knowledge

 While formal music systems revolve around explicit, declarative

knowledge (e.g. musical score, scales, rules of harmony), which is

comparatively simple to convey in a UI, expert music interaction

(including listening, performing, improvising and composing)

depends on a considerable amount of tacit, procedural knowledge,

which is far more difficult to articulate, teach, and often acquired

through sensorimotor learning, for execution below the level of

reflective consciousness (Dowling, 1999). McCullough (1996)

argues that “software makers would do well to place more value

on tacit knowledge: the best tools will account for levels of

mastery and psychology of participation, and conversely tool users

should get more leverage from software’s formal constructions.”
acquisition of skill

 Fitts and Posner (1967) describe three stages of skill acquisition.

In the initial cognitive phase, one executes a task consciously,

reflecting on each step to gain an understanding of it. In the

associative phase, repetitive practice then leads to the emergence

of patterns in stimuli and actions, enabling one to prioritise stimuli

by recognising their relative usefulness. In the final autonomous

phase, the application of these patterns and priorities becomes

increasingly automatic, enabling unconscious performance.

 Developing the ability to automatically process tasks within a

domain is a crucial step in developing the expertise required for

creativity (Collins and Amabile, 1999; Weisberg, 1999; Boden,

2004). In composition, skill and technique does not increase the

artist’s inspiration or creativity, but rather their ability to quickly

and faithfully articulate creative impulses in notation (Graf, 1947;

 67

Webster, 1987; Harvey, 1999). Boyd (1992), however, notes that

some artists deliberately develop mastery of instruments to reduce

the role of conscious mind, so that “the musician is more likely to

tap into the unconscious mind.” Weisberg (1999) argues that

unconscious, automatic processing, developed through prolonged

immersion in a task, frees capacity that can be spent on the finding

and recognising of novelty. Boden (2004) observes that domain-

specific skill, such as that in music, is also a process of developing

and specialising unconscious, everyday psychological abilities

(such as noticing, remembering, and recognising) – until complex

musical structures can be interpreted automatically.
the role of memory

 In skilled memory theory, Chase and Ericsson (1981) describe

how experts acquire encoding and retrieval skills in long-term

memory that, with practice, increase access times to levels

comparable to short-term memory, allowing for an effective

increase in the capacity of their overall working memory. An

extension of this idea, long-term working memory (LTWM) theory

(Ericsson and Kintsch, 1995) also suggests how subjective

knowledge-based associations work with similar memory

mechanisms to provide musicians with individual understandings

of music (Jänke, 2006). Alty (1995) describes a similar process in

music, and argues that both short-term memory and long-term

memory are important in composition, allowing composers to

apply broad musical experiences to creative problems, such that

“recall is far superior to recognition”.

 The increased role and capacity of memory, in expert use,

challenges the common precepts of usability design, which

encourage the use of visual cues (“recognition, rather than recall”)

specifically to “minimise the user memory load” (Nielsen, 1993).

Whereas novices benefit from learning scaffolds, interaction that

attracts attention to the individual steps taken harms the

performance of experts (Beilock et al., 2002). Whilst experts can

quickly recall commands or information from memory, the visual

cues and searches guiding novices through a task support a much

slower and more hesitant style of interaction (Gentner and

Nielsen, 1996). Shneiderman and Plaisant (2005) note that the

different densities of information favoured by novices and experts

make it difficult to design scalable interfaces to suit both user

classes. The implications and requirements of an increased role for

memory in user interaction are further discussed in Section 4.1.1.
composition skill

and editing scope

 In music, several studies of composition suggest that whilst

novice composers focus on a narrow, local editing scope, working

note-by-note, bar-by-bar; experts are also aware of larger-scale,

 68

strategic and global factors (Davison and Welsh, 1988; Colley et

al, 1992; Younker and Smith, 1996; Burnard, 2007), and use their

knowledge of music to more efficiently chunk musical elements

(Alty, 1995; Ginsborg, 2004). Chaffin and Lemieux (2004) define

musical excellence as the ability to quickly switch between these

low and high level (“Big Picture) perspectives, while maintaining

concentration. Narrowing a learner’s focus to shorter musical

passages, within the context of a longer piece, is an effective way

of mediating the level of challenge and suggests a scalable way of

then increasing it, as ability develops (Gabrielsson, 1999).
39

 Accordingly, a scalable computer music authoring environment

should support note-level, microscopic editing of shorter passages,

to both simplify novice interaction and provide finer, detailed

levels of control for experts, while also offering experts broader,

macroscopic editing and song overviews. In computer music,

Collins (2005) observed that, while expert composers dynamically

alternate between low and high level editing perspectives in the

sequencer, workflow and focus are not always maintained.
40,41

motor skill

and learning

 Smyth et al (1994) conclude “music requires many levels of

representation, some of which are concerned with the knowledge

of music itself, while others are auditory, spatial and motor.”

Notably, they stress the importance of motor learning and control,

and recommend three perspectives when investigating “flexible,

well-learned skills”: the action as a physical operation, with

physical and physiological constraints; movements as an operation

in space, requiring a representation of such space; and the

potential for the hierarchical structure of motor control to mirror

structural meaning in the domain.

 The important role of the hands has been critical to mankind’s

evolution, by enabling the development of skills for completing

complicated tasks (Wilson, 1998). Both computer and music

interaction rely heavily on the accuracy, fidelity and dexterity of

arm, hand and digit movement (Williamon, 2004), which are also

central to the support of digital craft (McCullough, 1996).

39
 The importance of which is discussed in the context of “flow”, in Section 3.7.

40
 Collins (2005) also notes that most writing on the subject of composition concerns higher-level

musical processes, even though a significant amount of the composer’s time is focused on finer, low-

level detail. His study observed that such low-level edits were often characterised by absorbed, highly-

focused interaction. This might indicate a flow state (see Section 3.7) and thus concern activity about

which composers are less able to articulate in writing.
41
 Sections 8.5 and 9.3 explore the advantages offered by DAWs that focus on shorter musical passages

(patterns or loops), in comparison to more traditional sequencers based on linear timelines and project

overviews (e.g. the arrange window).

 69

 Theories of motor control suggest that repetitive tasks can be

learned and cued unconsciously. Such neuromuscular facilitation

(or “muscle memory” – Chafe and O’Modhrian, 1996), has been

used to explain expert use in activities such as touch-typing and

piano-playing (Smyth et al, 1994). For example, in typing,

exposure to common phrases (digraphs, trigraphs, etc.), and their

respective sequences of physical actions, condition the motor and

nervous systems to respond with little or no conscious reflection,

freeing cognitive resources for application in the task domain.
spatial schemata

 Smyth et al (1994) describe experiments that also demonstrate

the use and development of generic spatial schemata for devices,

such as the layout of the computer keyboard. Cohen et al (1990),

for example, showed that the performance shown by touch-typists

is not simply a product of specific well-learnt motor sequences,

but also of a generic knowledge of keyboard layout that enables

them to maintain performance during unfamiliar sequences.
developing

 musical skill

 Smyth et al (1994) observed similar mechanisms at work in

piano-playing. Like the computer keyboard, the static, fixed layout

of musical keyboard, enables the development of both spatial

schemata and motor learning. Similarly, Thompson and Lehmann

(2004) see both sight reading and improvisation as dependent on

motor programs developed from exposure to a large base of

musical knowledge and experience. Sloboda (1985) also makes a

distinction between memorised instrument fingerings and ‘general

knowledge’ developed by exposure to a wide-range of problems,

where new fingering problems can be effortlessly solved at sight.
the role of

experience

 In a music teaching environment, a student is exposed to enough

knowledge (i.e. declarative or by practical demonstration) to

enable them to attempt a task, the execution of which allows them

to develop the tacit knowledge from their own experiences

(Sloboda, 1985; Boden, 2004). Mastery of a musical instrument is

then further developed through regular, deliberate, and repetitive

practice (Ericsson et al, 1993; Ericsson and Lehmann, 1996;

Weisberg, 1999; Williamon, 2004).

the requirement

of practice

 Musical skill takes both considerable time and sustained effort

to develop (Sloboda, 1985; Gabrielsson, 1999; Williamon, 2004).

Virtuosic performance skill can demand up to 10 years (or 10,000

hours) of deliberate and disciplined practice (Ericsson et al,

1993),
42
 which “presupposes high motivation and extended effort,

42
 A similar “10 years of silence” has been observed before even prodigious talents realise their first

masterpiece (Hayes, 1989; also cited in Weisberg, 1999; and Chaffrin and Limieux, 2004). For

example, Mozart’s remarkable childhood concertos and symphonies are generally seen as studies or

imitations of other composers, rather than original works in their own right (Weisberg, 1999).

 70

full attention during practice” (Gabrielsson, 1999). Necessarily,

the development process must itself become a source of

motivation; as progress is made and attributed to the effort, self-

efficacy and self-perception increase, spurring further effort

(Candy and Edmonds, 2004; Chaffin and Limieux, 2004; see 3.7).
learning by ear

 In the last century, a number of music pedagogies (notably: the

Suzuki Method, Dalcroze Eurhythmics, Kodály Method, Orff

Schulwerk, and Music Learning Theory – Shehan, 1986; Gordon,

1997) have emerged that defer or eschew the explicit learning of

theory or notation until after students have a tacit understanding of

musical structure, developed from extensive exposure to music,

often in combination with singing and movement. These learning

by ear approaches attempt to mirror the way children learn

languages through listening, imitation, and experimentation, while

also emphasising the role of the body and motor skill in music

(Kreitman, 1998). Distinct from literacy, the student implicitly

identifies structures and patterns in sounds and actions, such that

enable predictive and generative interaction and mental simulation

of music. In Music Learning Theory, Gordon (1997) calls this

“audiation”,
43
 arguing that it forms the foundation, and provides

the musical context, for subsequent developing notational literacy,

as well as performing and composition skill. A similar approach to

learning music and composition is observed in tracker interaction,

in Chapter 6 and later chapters.
44

formal music

education

 However, Webster (1989) observes of music education, “More

often than not, we tend to teach our art only by rule or by rote”.

Students acquire, and become entrenched in, an understanding of

music based on theory and polished performances of set works,

encouraging conformity and correctness, inhibiting creativity

(Sloboda, 1985; Webster, 1989; Harvey, 1999).
45,46

 Barrett (2005,

2006) also observes the inhibitive influence of classical training

on the creativity and motivation of younger musicians; during

training, performing artists are exposed (and ultimately disposed)

to techniques that encourage common practice, rather than novel

and independent ways of thinking. Imitation and exposure to a

large repertoire of music is an inherent component of both

43
 Audiation is the process of hearing music in your head, in the absence of physical sound as a

stimulus – the mind’s ear – and is musically analogous to how individuals can think in terms of

language, without reading, listening or speaking. (Gordon, 1990)
44
 As enabled, for example, by rapid musical feedback after tinkering with the notation (see Chapter 8).

45
 See also Alty (1995); Weisberg,(1999).

46
 Such expertise also reduces the chance of serendipitous ‘mistakes’ that lead creative individuals

down paths they would not otherwise have considered (Alty, 1995). McLean (2011) even observes that

the error proneness of a music notation or interface might not be as undesirable as in other task

domains, or usability practices.

 71

performance and improvisation tuition (Thompson and Lehmann,

2004),
47
 but also a deterrent to creative growth (Boyd, 1992;

Simonton, 1999). While exposure to the works in a domain can

inspire artists to innovate, appropriate, and combine the styles of

others (Alty, 1995; Csikszentmihalyi, 1996; Harvey, 1999;

Weisberg, 1999), too much knowledge can encourage convention

rather than invention (Sternberg, 2003; Feinstein, 2011).
creative play

in development

 The opportunity for creativity itself can also be an important, if

underexploited, motivation to develop expertise (Torrance, 1962;

Sloboda, 1985; Collins and Amabile, 1999; see section 3.3).

Swanwick and Tillman (1986) observe that, whereas there is a

necessary sequence to developing musical skill (in which

creativity relies on an ability to express ideas, enabled by

sufficient mastery of a tool), there are opportunities to introduce

personal, playful, self-motivated and creative activities throughout

development. Kratus (1989) also observes that current musical

pedagogies are based primarily on performance and listening, and

identifies a benefit to supplementing them with creative activities,

such as improvisation and composition, much earlier in

development. His studies noted that young children were not only

already able to compose music with meaning, but did so with

considerable enthusiasm. He also noted that older children

increasingly moved away from a focus on generating new ideas,

towards a product-oriented approach based on the development

and refinement of fewer ideas (Kratus, 1989).
Orff Schulwerk

 The Orff Schulwerk is one of the few pedagogical approaches to

actively promote musical creativity from the outset (Shehan,

1986) – enabled by the central role of play, whereby “the

materials used in all areas should be simple, basic, natural, and

close to the child’s world of thought and fantasy.” (Shamrock,

1986) Students begin with exploration (of the relationship

between sound and movements), acquire basic rhythmic and

melodic performance skills through imitation, where they learn to

recognise patterns that ultimately enable unprepared improvisation

of new patterns in realtime group activities; all culminating in

composition (or “creation”), where material from previous phases

47
 Thompson and Lehmann (2004) also observe that improvisation is rarely taught. Along with

composition, Johnson (1980) sees this as a consequence of a wider perception, in traditional music, that

creativity cannot be taught. More generally, the concentration on performance technique, music theory

and musicology in musical research and curricula might be seen as a consequence of the practical

limitations of didactic (factual, critical, or theoretical) teaching, which result in the marginalisation of

predominantly autodidactic (self-taught) musical creativity, such as improvisation and composition.

Performance, which similarly relies on implicit and procedural knowledge, only remains in the musical

syllabus because it is seen as the common-denominator of all musical activities – expertise that enables

improvisation, and thus musical creativity and composition.

 72

is combined to prepare works in simple musical forms, based on

literary material (poems or stories). Inspired by early medieval

music, set pieces draw heavily on simple (but varying) rhythms,

modal scales and ostinati (short repeated phrases), which greatly

simplifying the learning of pitch, tonality, and melody.
48
 The use

of simpler musical building blocks makes the domain easier to

master, lowering the threshold for creativity, but still providing a

scalable challenge as different elements are combined to engender

more complexity. This use of “simple primitives” is further

explored, in an HCI context, in section 4.1.1.
self-taught

approaches

 In her study of popular composers and songwriters, Boyd (1992)

observes, “Many artists resisted the limitations imposed by formal

music or art lessons as… feeling the need to break free of all

limitations." She notes that many show an independent and

rebellious attitude in developing technique and personal style.

According to Sloboda (1985), “Idiosyncrasies of self-teaching can

be advantageous, in comparison to the rigorous formal training,

often to the point where individuality becomes submerged."

 Drawing on the developmental epistemology of Jean Piaget,

Knörig (2006) notes that discovering a musical concept for oneself

can lead to a greater, more flexible understanding, compared to

what might be formally imparted. As in the Orff Schulwerk, such

personal exploration and experimentation as a learning strategy

encourages creative thinking from an earlier stage of development.

Moreover, these intrinsically-rewarding activities instil self-

efficacy and a feeling of autonomy, also benefiting creativity

(Amabile, 1983; Nickerson, 1999; see Section 3.7).
49

interactive

exploration

 Scripp et al (1988) explored uses of the computer that allowed

musically-untrained adults to tackle complex music composition

tasks, by using playback to guide their interaction, rather than

interpreting their music through visual notation or performance:

Students using computer software to solve their counterpoint or

harmony homework appear more likely to take advantage of the

editing, revising, and playback functions of the computer without

being distracted by the demands of musical performance beyond

their level of proficiency. Musical composition can be more

objectively related to its notation through computer playback, a

noninterpretive rendering of the score.

48
 This effectively reduces the octave from twelve to seven pitches (e.g. the white notes on a piano),

obviating the need for accidentals (flats and sharps) or knowledge of key.
49
 Indeed, in this sense, it can be seen as a P-creative act in itself, whereby the individual perceives

newly discovered concepts as both novel and useful (Grüber and Wallace, 1999).

 73

 Their study is also significant in that it illustrates a capacity for

musical creativity in adults who have not been subject to extensive

musical training from an early age. Rather, a degree of audiation

skill develops naturally in most individuals, through years of

music listening, enabling composition through the “interactive

exploration” of a digital notation. The findings of Gall and Breeze

(2005) – who note a similar democratisation of musical creativity

in computer-based composition, afforded by a focus on musical

feedback – also suggest a less conscious, more synthetic style of

interaction arises. Chapter 8 observes a similar interaction style

and learning process in tracker interaction.

embodied interaction

and music cognition

 Knörig (2006) advocates embodied learning approaches in

digitally-mediated musical creativity. Following the earlier

arguments of Winograd and Flores (1986) and Dourish (2001),

and based on Heidegger’s phenomenological distinction between

tools that are zuhanden (ready-to-hand) rather than vorhanden

(present-at-hand), he looks at tangible user interfaces, for ways

the body can “extend itself through external devices.”

 Leman (2008) makes a similar case for music performance

technologies to exploit and support the development of embodied

music cognition, through the provision of rapid action-reaction

cycles that enable motor learning by assuring perceptible

relationships between actions and objects, or cause and effect. He

argues that musical experiences mediated by notations based on

“abstraction, conceptualisation, and verbalisation” contribute to

“indirect involvement” in music, and seeks ways of using gesture-

based descriptions of music (e.g. movement) to reconcile

semantic, linguistic-based descriptions (e.g. emotions) and

sensory, signal-based descriptions (e.g. sound, waveform).
50
 Rollo

May (1975) expressed similar concerns; that “technology [can]

serve as a buffer between us and nature, a block between us and

the deeper dimensions of experience.” Indeed, Boyd (1992) quotes

May to describe a common perception of technology among

musicians, particular in the studio, that technology can remove the

spontaneity, “feel” and touch from music making.
formalism

and metaphor

in the GUI

 Graphic user interfaces in music software are often based on

formalisms, notations, theory, and visual metaphor to standard

practices in traditional, professional, and studio-based music

production (Duignan, 2007). The emphasis on visually-mediated

tasks through these notations, rather than the tightly-coupled

motor actions and sound responses inherent in live music

50
 Indeed, this research can be seen as an adaptation of some of Leman’s concepts, when applied to

necessarily notation-based musical activities, such as composition (see Chapter 3).

 74

interaction, is unlikely to support the learning experiences

advocated above. As a learning mechanism, such use of metaphor

facilitates knowledge transfer, rather than its development

(Blackwell, 2006; Venkatesh, 2007). At the same time, the

increased standardisation reduces the opportunity for creative self-

expression, and users become less able to appropriate the tools

they use for their craft (Kitzmann, 2003; Blackwell et al, 2008).
51

 Gentner and Nielsen (1996) identify problems for expert

interaction, in the WIMP and GUI-based approaches to usability,

which entail “a trade-off between ease of learning on one hand,

and ease of use, power, and flexibility on the other hand.”

Blackwell (2006) specifically describes their “Anti-Mac”

philosophy as an attempt to shift the use of metaphor in UI design

towards a less deterministic, less structural approach that would

enable creative interpretation and freedom. Creativity research has

also established the need to allow individuals to develop their own

metaphors, in their perceptions of a creative domain (Nickerson,

1999; in music, Webster, 1989).
towards computer-

aided composition

 Whereas production tools like sequencers and DAWs draw

heavily on previously learnt musicianship,
52
 developing computer-

based composition software that supports digital creativity

requires the design of user experiences that support intrinsically-

rewarding learning processes, based on exploration, discovery,

and development of musical concepts situated within the digital

music environment itself – in input devices that support motor

learning, feedback mechanisms that allow learning by ear, and

visual notations that support experimentation and scalable levels

of musical complexity.

3.7 motivation and flow

 Previous sections established the critical role of motivation, in the

pursuit of creativity (3.3) and development of expertise (3.6). This

section explores the various roles and manifestations of

motivation in both personal and digital creativity, looking at the

implications for the design of the user interfaces and experiences.

It aims to highlight an implicit contrast between the sources of

motivation required to support virtuosity in a user interface, and

those that characterise the more conventional pursuit of usability.

51
 Shneiderman (2002) reasons that computers are best suited to evolutionary rather than revolutionary

creativity because of the inflexible paradigms in software that can “restrict your thinking”.
52
 For example, DAWs require knowledge of the electronic studio, sequencers require performance

skill, and score editors require notational literacy.

 75

intrinsic

vs. extrinsic

motivation

 Amabile (1983, 1996, 2006, with Collins, 1999) distinguishes

between intrinsic motivation, where a task is its own reward, and

extrinsic motivation, where a task is undertaken for some external

incentive (e.g. salary, prize, recognition, duty, fear). Creativity,

she argues, depends on intrinsic motivation, whereas extrinsic

factors can impede it (see also Crutchfield, 1962; Hennessey,

1989; Csikszentmihalyi, 1990, 2006; Nickerson, 1999; Plucker

and Renzulli, 1999; Runco and Sakamoto, 1999).

 In intrinsic motivation, individuals focus on, and immerse

themselves in, the challenge, process, or task itself; in extrinsic

motivation individuals focus on the end-goal, product, or reward

(Crutchfield, 1962; Lubart and Sternberg, 1995; Nickerson, 1999).

Extrinsic motivation can thus distract attention from a task

(Crutchfield, 1962; Amabile, 1983; Collins and Amabile, 1999),

and undermine intrinsic motivation (Plucker and Renzulli, 1999).

Notably, extrinsic factors can increase the involvement of ego in a

task, make the individual self-conscious, and introduce the fear of

failure or rejection – discouraging risk-taking and experimenting

with new ideas and encouraging conformity (Crutchfield, 1962;

Nickerson, 1999).

 Some forms of extrinsic motivation can be useful, either in the

absence of, or support of, intrinsic motivation. Though sustained

participation in a domain requires intrinsic motivation (Amabile,

2006; in music, Chaffrin and Lemieux, 2004), encouragement

from peers, parents, or teachers can be important in seeding initial

interest (Crutchfield, 1962; Collins and Amabile, 1999; Plucker

and Renzulli, 1999) and providing positive, confidence-boosting

or constructive feedback that leads to independent thinking or

alternative perspectives during early development (Moran and

Liou, 1982; Runco and Sakamoto, 1999). Amabile (1996)

describes these extrinsic motivations as synergistic, encouraging a

sense of control; rather than non-synergistic, encouraging a feeling

of being controlled. Without the controlling influence, individuals

are more disposed to the unconscious, playful styles of thinking

that favour creativity (Koestler, 1964; Collins and Amabile, 1999).
the role of self

 Maslow (1963) asserts that beyond our basic requirements

(e.g. health, security, love), self-actualisation (the realisation

of one’s potential) constitutes the pinnacle of man’s “hierarchy

of needs”, and provides the drive for creativity (see also

Boyd, 1992
53
; Collins and Amabile, 1999; Sternberg and

Lubart, 1999; Knörig, 2006).
54

53
 Boyd (1992) also notes similar philosophies in the work of psychiatrists Carl Jung and Rollo May.

 76

self-efficacy

and challenge

 As an individual builds experience, they develop self-efficacy;

the confidence in one’s abilities to set and attain their own goals,

instilling the courage to pursue new paths and challenge

conventions, required for development and self-expression in a

creative domain (Boyd, 1992; Amabile, 2006). Creative

individuals are intrinsically motivated by challenging tasks that

stretch and extend their abilities and creative power (Torrance,

1962; Collins and Amabile, 1999). A similar cycle exists in music,

where practice leads to expertise, motivating further practice

(Hallam, 2002), and where experts revel in their perceived

creative power (Sloboda, 1985; Candy and Edmonds, 2004).
self-attribution

and effort

 In personal creativity and development, self-attribution is

implicit; credit and blame are not diluted by external influences

(Chaffin and Lemieux, 2004). While success motivates an

individual to try harder challenges, failure demands that they

acknowledge their weaknesses (Csikszentmihalyi, 2006). External

influences can allow an individual to dismiss criticism as unfair or

attribute the failure to the teacher, environment, or other factors

beyond their control. Software interfaces play a similar role, as

Magnusson and Mendieta (2007) observe,

People see it as their fault if they cannot play the instrument

properly, not the imperfection of the instrument design itself.

This is different with digital instruments […] where people

are more likely to criticise and see the limitations as

weakness of the design rather than their own work methods

or understanding of the system.

 In the study, musicians cited “direct and natural” interaction as a

key property of acoustic instruments, in contrast to digital music

experiences, which were considered “disembodied”.
55

 Computing approaches that automate or abstract complex

processes not only create “black boxes” that impede a user’s

understanding and control of a system, restricting their creative

freedom, but can also remove the challenges and efforts required

to create an intrinsically-rewarding user experience (Resnick et al,

2005). McCullough (1996) argues, “Our use of computers ought

not be so much for automating tasks as abstracting craft.”

 Similarly, Ryan (1991), remarks “though the principle of

effortlessness may guide good word processor design, it may have

no comparable utility in the design of a musical instrument. In

54
 Jordan (2002) also uses this hierarchy to advocate pleasurable products, based on intrinsic

motivation, as the next step for HCI beyond usability.
55
 Similar to Leman’s contention that notations can engender “indirect involvement” in music (see 3.6).

 77

designing a new instrument it might be just as interesting to make

control as difficult as possible.” Linson (2011) also raises

Norman’s call for “appropriately complex” interfaces (Norman,

1993), arguing that musicians tolerate and embrace greater

complexity than that assumed by many usability approaches.
self-evaluation

and confidence

 The role of external evaluation has also been cited for its

negative effect on creativity (Rogers, 1954; Crutchfield, 1962;

Amabile, 1983; Hennessey, 1989; Runco and Sakamoto, 1999;

Plucker and Renzulli, 1999). Nickerson (1999) observes, “Fear of

failure, fear of exposing one’s limitations, and fear of ridicule are

powerful deterrents to creative thinking.” By contrast, the free,

personal environment is inherently forgiving of failure; self-

evaluation is inherently biased towards a positive outcome, and

able to downplay a negative one (Hallam, 2002). The failure is

still evident to the individual, but never becomes the subject of

ridicule, and so can be addressed privately without harming self-

worth (Collins and Amabile, 1999).

 Recognising this, composers use the private nature of sketches,

which do not have to be perfect or even legible to others, to

overcome their inhibitions and explore original, incomplete and

imperfect ideas (Graf, 1947; see 3.5). This affordance is less well

supported in digital notations, where not only must music remain

communicable to the computer (or synthesizer, etc.), but where

rigid interfaces become unwieldy when users stray from their

intended use. Collins (2007), for example, observed that sequencer

users must frequently stop and “tidy” the UI in order to progress.
56

digital collaboration

 As a design principle, Resnick et al (2005) argue that creative

support tools must support collaboration, and exploit the

connectivity offered by technologies such as the Internet. The

suitability of this should be carefully considered in artistic

endeavours, such as music. Bryan-Kinns and Hamilton (2009), for

example, explore the design of user experiences that support

mutual engagement (or group flow – Csikszentmihalyi, 1996) in

music. In their study, they identify problems with “lack of

control” and “clash of ideas”, attributed to concerns over

intellectual ownership and social awkwardness. Framed in terms

of motivation, these problems can be explained by the role of ego

and perception of self, whereby events in the activity that more

explicitly draw attention away from the task and towards other

56
 The visual aesthetic of the interface can also imply formalism (Blackwell et al, 2008). In music, a

tendency towards neatness and correctness is implicit in the typeset, print-quality notations used by

score editors, which mimic that of a final manuscript rather than a hastily-pencilled sketch.

 78

people increase one’s self-awareness, impeding flow.
57
 Whilst

Sawyer (2006) observes that group flow can help individuals

attain their own flow state, this presupposes that synergy within

the group is strong, such that members feel confident (e.g. with

their ability) and can interact naturally without being self-

conscious. Boyd (1992), for example, highlights the challenges of

striking the right “chemistry” when musicians collaborate, and a

tendency for song-writers and composers to work, or seek time,

alone and isolated from the world (Graf, 1947; Getzels and

Csikszentmihalyi, 1976).

 Fencott and Bryan-Kinns (2010) noted that digital collaborators

make extensive use of private working areas to develop musical

contributions before introducing them to the group. Largely as a

result of technological limitations, tracking practice similarly

revolves around writing music in isolation, and sharing it with

others upon completion; enabling composers to selectively engage

with the community, and only when they were satisfied with their

efforts and confident of social acceptance.
58

motivation from

online communities

 A large number of online communities (e.g. the demoscene, see

2.2.2) cater for varying musical tastes and skill levels, and provide

a source of extrinsic motivation that is often synergistic, where

technological limitations create a detachment that can insulate the

individual. On a basic level, simply the increased opportunities to

display creativity can help motivate individuals (Csikszentmihalyi,

1996). Cook (2009) also found that online communities tend

towards positive, constructive (“reinforcing”) feedback, refraining

from disparaging or negative feedback. Flexible, ambiguous, and

possibly-inflated perceptions of audience may also motivate initial

attempts at social creativity. Similarly, the relative anonymity can

remove inhibitions (Junglas and Steel, 2003), giving individuals

the confidence to expose their work or seek help.

 Like the presence of other people, a UI must be considered for

its potential to expose external influences in the user’s creative

process. Lubart (2005)’s anthropomorphising of the role of the

computer as a “partner” in the creative process should perhaps be

considered for its impact on motivation.
59
 Moreover, aesthetics,

57
 This fits with Bryan-Kinns et al (2007)’s discovery that engagement improves when the identity of

others is hidden, and thrives in the absence of explicit interaction, such as verbal communication,

between participants.
58
 The Renoise tracker’s default full-screen, self-contained, DirectX environment implicitly retains this

impression, separating the user from other OS processes and distractions.
59
 Lubart (2005) sees four roles for computers in creativity: the nanny, which actively intervenes to

enforce deadlines, prompts breaks, and handles housekeeping tasks; the pen-pal, which enables the

 79

conventions, practices, or assumptions about a domain, implicit in

the design of software, but in conflict with the user’s values, may

also be perceived as an external influence or controlling factor.
the computer as

creative environment

 In this research, the role of the computer is thus defined by

analogy to the creative environment (see also section 3.4); an

integrated container for tools and processes that support free and

personal exploratory creativity within a virtualised domain that

can be appropriated by the user.
60
 Many strategies for enhancing

creativity (see section 3.4) focus on enhancing an environment’s

capacity to support intrinsic motivation (Nickerson, 1999; Hallam,

2002; Sternberg, 2003), and can thus also be adapted to the user

interface (e.g. Shneiderman et al, 2005).

 More literally the virtualisation of a creative environment, the

desktop studio draws heavily on visual metaphor to simulate the

electronic recording process (Duignan, 2007; with Biddle, 2005),

but which also imposes preconceptions of music and the

production process that depend on performance skill and external

devices, rather than facilitating digitally-mediated creative

exploration (see Section 2.1).
61
 Boyd (1992) records musicians’

mixed feelings towards the creative affordances of the studio, but

notes that its “timeless, womblike atmosphere" can be conducive

to focusing and immersing oneself in the musical activity. Graf

(1947), Boyd (1992) and Harvey (1999) also describe how

composers and songwriters control their environment to cut off the

outside world, helping them become more absorbed in the music.
immersion and play

 Intrinsic motivation is often characterised by deep involvement

and immersion in an activity (Crutchfield, 1962; Policastro and

Gardner, 1999), in which all attention, awareness, and cognitive

ability is focused on the task itself, without regard to external

factors or goals (Golann, 1962; Collins and Amabile, 1999). For

example, while Ericsson and Lehman (1993) argue that the effort

involved in developing musical expertise is not inherently

enjoyable, Boyd (1992) observes that when musicians become

immersed in music, through their instrument, “the distinction

between work and play [becomes] shadowy.”

communication of ideas to other users; the coach, which offers alternative perspectives and analogs to

“jump-start” the process; and the colleague, which collaborates with the user on the problem.
60
 Unifying analogies in video gaming, computer security, and software testing, we might look to

design the creative environment as a “sandbox” – enabling playful, open exploration of a virtualised

domain; moderating the social presence, to protect the creative individual from outside intrusion or

enable them to engage with it on their own terms; and creating a safe environment for learning and

experimentation, where practitioners do not have to worry about the consequences of their acts or

ideas. Some of these concepts have already been applied to digital learning environments (Johnson et

al, 2005; Bellotti et al, 2009).
61
 See also FL Studio’s more integrated, software-based studio, discussed in Section 8.5.

 80

 Similar characteristics are found in the leisurely act of playing.

When an activity becomes more playful, individuals will explore

possibilities beyond the prescribed bounds of a task and become

disposed to creativity and learning; tapping into imagination,

fantasy, curiosity, energy, and whimsy (Nickerson, 1999; see also

section 3.5). The link between immersion, play, and intrinsic

motivation is evident in video games (Sweetser and Wyeth, 2005;

Jennett et al, 2008; e.g. virtual reality, role-playing), which have

also been adapted to provide environments for learning and

creativity, in the form of “Serious Games” (Michael and Chen,

2005; Bellotti et al, 2009).
personal computing

 The hardware of the personal computer (screen, keyboard, and

mouse) has been criticised for its “absorbing” physical presence,

and tendency to isolate the user from the outside world (Knörig,

2006; Armstrong, 2006; see also Weiser, 2001). Knörig (2006)

describes the computer “not as a tool, but as an own world”. From

the perspective of motivation, this isolation may serve to mask

extrinsic factors in the environment, while the screen acts as a

focal point for the user’s attention. However, this also increases

the onus on the software interface to maintain the user’s focus and

limit other references to agents, objects, and processes outside the

user’s creative activity, which can be difficult in modern

connected, multi-tasking desktop environments.
62
 Indeed, this can

be seen as an implicit advantage of early music and tracker

programs, which ran as full-screen applications in single-task

environments (e.g. Amiga, DOS; see Section 2.2). The thin OS

layer and low-level hardware integration enabled such programs

to appropriate and adapt the computer, providing more of a

dedicated interface for music, closer to that found in embedded

devices like hardware samplers or sequencers.

 In the user experience, immersion is also supported by software

that focuses the user’s attention on the music, rather than the

interface (Leman, 2008). This can be achieved by emphasising

musical feedback over visual; supporting non-visual interaction

through memory and sensorimotor skills (see Section 3.6);

enabling playful exploration of the domain (e.g. sketching; see

Section 3.5); allowing users to appropriate the affordances of

objects within a UI to support their own working styles and

understandings of music; and otherwise minimising outside

distractions or controlling influences. Specific design implications

of these strategies are explored in Chapter 4.

62
 Section 8.4 highlights problems when layered, window-based software environments not only divide

a user’s attention and require extra management of the workspace, but also create a hidden background.

 81

Figure 7

model of the flow state
in which challenges

and skills are balanced

to regulate boredom

and anxiety.

Examples

Novice individuals can

experience flow in simple

tasks (1), but increasing

challenges can lead to

anxiety (2), which is met

by increasing skill (4).

Conversely, a rise in skill

must be met by rise in the

challenge, so as to avoid

boredom (3).

Csikszentmihalyi’s

“flow” theory

 “Flow” theory (Csikszentmihalyi, 1990, 1996, 2000) provides a

useful framework that brings together the themes discussed in this

section: the individual, focus, immersion, intrinsic motivation,

challenge, skill, and creativity.
63
 It describes a mental state, where

a delicate balance of challenge and ability leads to a feeling of

control and a loss of self-consciousness, engendering a working

environment that can benefit creativity (Csikszentmihalyi, 1996).

As Figure 7 illustrates: too much challenge and an individual

becomes anxious, too little and they become bored. Over time,

ability increases, requiring greater challenges to maintain flow,

ultimately leading to the development of mastery in a domain. In

this context, the flow concept describes an intrinsically rewarding

path to building ability, through enjoyable and fulfilling

challenges, matched to the individual. Table 4 lists the nine

components that often characterise a flow experience.
flow in

computer use
 Norman (1993) proposes flow as a basis for introducing

informal learning, challenge, and reward into the user experience.

Several researchers have already drawn upon flow theory to

investigate the enjoyment and learning afforded by the challenge

of video games (Jones, 1998; Sweetser and Wyeth, 2005). Church,

Nash and Blackwell (2010), based in part on the research in this

thesis, explore flow in notation uses in both music and computer

programming. Originally delivered as a keynote on flow in

programming and HCI,
64
 Bederson (2004) notably emphasises the

63
 Flow theory, as “the psychology of optimal experience”, can be seen as a development of Maslow’s

“peak experience”, which Boyd (1992) uses in her interviews with modern composers and songwriters.
64
 Human-Centric Computing 2002 (now Visual Languages and Human-Centric Computing, VL/HCC).

 82

Clear Goals
In artistic creativity, knowing end-goals can be difficult or even counterproductive, but artists should

have (possibly unconscious) knowledge of actions to perform to make progress, at any given moment.

Direct and Immediate Feedback
Actions must provoke an immediate response, to allow individuals to assess their progress, and

adapt to problems. Direct feedback on individual actions enables finer control and focus, but

feedback on overall progress enables sustained concentration and can provide an autotelic reward.

Balance of Challenge and Ability
An activity must challenge an individual to provide an intrinsic reward, but too difficult a task that

exposes insufficient ability can make them self-conscious (see below). Specifically, a task should

stretch the individual just beyond their ability, leading to increased skill over time (Amabile, 2006).

Action-Awareness Merging
The task domain should be the limit of the individual’s awareness, immersing them in the activity, so

that all attention and skill can be applied to meeting the challenge presented.

Concentration and Focus
Flow activities are often characterised by a momentum or continuity of action that demands

sustained concentration on the immediate task at hand, uninhibited by outside distractions.

Sense of Personal Control
The individual has an implicit confidence to meet the challenges exhibited in a task, and total control

within the task environment. There is no worry of failure, or reflection on consequences.

Loss of Self-Consciousness
Undivided focus on the activity removes the doubt prompted by an individual’s tendency to monitor

their appearance to others, preventing them from acting or trying new approaches. Ego becomes

irrelevant; though subsequent reflection, following success, ultimately leads to improved self-image.

Distorted Sense of Time
The subjective experience of focusing continually on the present and exclusively on the world of the

task (see above) can detach an individual from their perception of time. Hours may seem like minutes;

but great ability that affords fast thinking can also seem to slow down fleeting, complex moments.

Activity becomes Autotelic
Under the above conditions, the activity can become intrinsically-rewarding. Initial involvement may

be exotelic, requiring an extrinsic motivation, but increasing ability brings rewards, and instil self-

efficacy (Maslow, 1968), that enable the task to be pursued and enjoyed for its own sake.

Table 4 – common components of flow (based on Csikszentmihalyi, 1996)

 importance of maintaining interaction “speed” and minimising

interruptions, and specifically highlights how this can be

facilitated by the learning and skill supported by the computer

keyboard, as further explored in Chapter 7.
65

flow in music Flow is an integral part of musical experiences (Byrne et al,

2003; Chaffin and Limieux, 2004; MacDonald et al, 2006; Fritz

and Avsec, 2007; Mullett, 2010) – “all musicians experience this

creative peak in one way or another." (Boyd, 1992; see footnote

63).

Leman (2008) looks towards music technologies “as an

65
 Bederson (2004) describes the flow components supported by NoteLens, a simple note-taking

program to support the quick recording and recollection of ideas, which uses keyboard shortcuts to

provide a scalable user experience, enable fast expert interaction, and maintain focus on the task by

avoiding visual distraction. This can be seen to mirror the interaction style of soundtrackers (see 2.2).

 83

extension of the human body to reach peak experiences”, drawing

on embodied interaction (Dourish, 2001), through the linking of

motor skills and immersion in sound, to enable the optimal

experience of flow. Specifically, he warns that if actions become

decoupled from their response, “skills and challenges may become

decoupled and interest may be quickly lost if the subject has the

impression that improvement of skills has no apparent effect on

feedback from the interactive system.” (Leman, 2008)
 In the next chapter, flow theory and its components, along with

the other themes reviewed in this chapter, are used to develop a

model of the creative user experience in music composition.

Appendix B also provides an overview of the components of flow

in the context of musical creativity, drawing on writings on the

experiences of composers and song writers (Graf, 1947; Sloboda,

1985; Boyd, 1992; Harvey, 1999).

 84

chapter four towards digitally-mediated creativity

The content of this

chapter is to appear

in the forthcoming

Oxford Handbook of

Interactive Audio (ed.

Collins, K). See Nash

and Blackwell (2012)

in bibliography.

The previous chapter presented an overview of research into

creativity, expertise and motivation, also identifying several

limitations in the creative user experience afforded by modern

music software. These user experiences are hard to describe and

analyse using conventional, goal-oriented HCI design and

evaluation techniques, where performance equates to speed and

precise formulations of tasks are often required, yet are elusive in

creative activities (Stowell et al, 2009). Following recent moves

toward user experience design (e.g. Norman, 1993), several

researchers have suggested the use of “flow” theory, in designing

tools that support creativity (Bederson, 2004; Shneiderman et al.

2005; see section 3.7) – for which more “holistic” HCI

frameworks, such as the Cognitive Dimensions of Notations (see

Green and Petre, 1996), might provide a foundation.

 In this chapter, I develop this approach and present a model of

computer music interaction, designed to assist the analysis and

design of creative user experiences, drawing chiefly on the

concepts of virtuosity and flow. Common computer music

scenarios are discussed in the context of the model, which is used

to better understand the issues facing the interface designers of

associated programs. In the next chapter, this approach is used to

guide a large-scale, real-world user study.

85

4.1 supporting virtuosity in computer music

 The Oxford English Dictionary describes a virtuoso as “one who has

special knowledge or skill in music”. In this research, virtuosity is

defined as the enabling factor of fluency in a domain (i.e. music

composition) through mastery of a device or system. As detailed

earlier, such fluency is seen by researchers as one of the enabling

factors of creativity (Amabile, 1993; Plucker and Renzulli, 1999;

see Section 3.4).
device-specific

knowledge
 Distinct from other types of knowledge in musical creativity (such

as music literacy), this definition of virtuosity focuses

on the development of interaction skill. Such device-specific

knowledge concerns the learnability of a notation or input device,

and notably the low-level aspects of interaction, supported by

procedural memory and motor learning (see section 3.6). In this

approach, expertise is developed with the notation, rather than the

domain. With experience, actions become increasingly reflexive and

automatic, allowing greater attention and focus on the domain itself

(i.e. the music).
transparency In this way, virtuosity is an approach to interface transparency,

where “the user is able to apply intellect directly to the task”

(Rutkowski, 1982; Holtzblatt, Jones, and Good, 1988). Direct

manipulation is another approach to transparency (Shneiderman,

2005), extending the idea of visual metaphor to not only represent

objects in the domain, but also how they interact with each other,

creating a virtual, metaphorical world (Dourish, 2004). Recently, the

use (and misuse) of metaphor has come to dominate usability design

practice (Blackwell, 2006) – as can be seen in sequencers (see

Section 2.1). Virtuosity, by contrast, is aligned with embodied

approaches to transparency, such as those of Winograd and Flores

(1987) and Dourish (2004), and relies as much on the physical

interaction, as the visual aspects of the notation.

 Following a similar approach, in the context of music; Leman

(2008) warns that notation-mediated interaction models lead to a

situation where the notation (and thus its designer) dictates the

user’s perception of the domain. Sloboda (1985) also observes the

historical influence of notation (both positive and negative) on

music over the centuries. Accordingly, Leman advocates “direct

involvement” in music, by minimising or removing notation from

interaction; engaging with the physical domain itself, rather than a

virtual or metaphorical representation. However, while apt for

musical performance, it is less practical to cut notation out of the

composition process, where its abstraction power provides the

composer with broader editing scope and control of musical time.

 86

 Instead, virtuosity in composition is about learning how changes

in the notation affect the domain, rather than simply how a static

abstract representation maps to an end product. Thus, while a

composer interacts with the notation, concrete feedback from the

domain should be prioritised over more abstract visual feedback

from the notation. In music, this means making the results of an edit

available as sound, in addition to a visual, syntactic change in the

displayed music notation (e.g. score). Skill development with the

notation might then be driven by a phenomenological hear-

understand process, rather than more structured formalisms or

learning of theory.

 4.1.1 design heuristics for virtuosity-enabled systems

 Following the principles above, this section suggests design

heuristics for developing interfaces to support virtuosity, drawing on

literature reviewed in Chapter 3 and explored in subsequent

chapters, through studies of skill learning (Chapter 7), feedback

liveness (Chapter 8) and flow (Chapter 9) in music software.
heuristic

evaluation
 Designing for virtuosity represents a different challenge to that of

usability, and thus the heuristics presented here differ

from, or even contradict, Nielsen’s original recommendation for

heuristic evaluation of usability (Nielsen and Molich, 1990; Nielsen,

1993), and other usability design manuals (Shneiderman and

Plaisant, 2005; Sharp et al, 2007). Designing multi-layered

interfaces to suit both novice and expert presents design challenges

(Kitzmann, 2003), but a distinction is made in the targeting of expert

users; a virtuosity-enabled system should enable a novice user to

become expert – it does not rely on domain expertise learnt

elsewhere (e.g. music literacy), though should consider the

transferability of skills learnt.
creativity support

tools (CST) workshop
 At points, these heuristics draw and develop upon the

recommendations of a recent workshop report on creativity support

tools (Resnick et al, 2005). These are discussed and referenced as

appropriate, at the points denoted by the CST marker.
cognitive dimensions

of notations (CDs)

correlates

 Similarly, the CDs marker denotes a discussion of the each heuristic

with respect to the Cognitive Dimensions of Notations (CDs)

framework (Green and Petre, 1996). In Chapter 9, this framework is

also used to establish usability profiles for creative programs, and

explore the role of notation in supporting flow.
the relationship

between heuristics
 Lastly, though each heuristic stands alone, attention should be

drawn to the relationships between them. An effort has been made

to highlight these interactions; in both the heuristics’ descriptions

and the order they are presented. As such, while a given heuristic

87

might propose design goals and objectives for the interface designer,

subsequent heuristics can offer strategies to address these new

challenges; engendering a gradual progression from design

principles towards more specific design implications and

manoeuvres. For example, skill development (H1) can be facilitated

by fast feedback loops (H2), both of which can, in turn, be aided by

simple interface primitives (H3).

design heuristics for

supporting virtuosity

in computer use

H1: Support learning, memorisation, and prediction
 (or “recall rather than recognition”)

Expert interaction is enabled by the use of memory (Chase and

Ericsson, 1981; Ericsson and Kintsch, 1995). While some

interface widgets support both novice and expert interaction

(e.g. the use of mnemonics, in menu accelerators), provisions for

usability (e.g. “recognition rather than recall” – Nielsen and

Molich, 1990) can hamper experts (van Dam, 1997) and their

impact should be considered carefully in systems designed for

experts. Using memory, interaction is no longer mediated

through visual metaphors fixed by the interface designer, but by

schemata derived from physical interaction and personal

experience (Chase and Ericsson, 1981).

 Notations should not aim or hope to be “intuitive”, or rely

heavily on domain-specific knowledge (e.g. music literacy), or

otherwise devalue the learning experience. Instead, they should

provide a rewarding challenge that scales with user experience

(Csikszentmihalyi, 2000). Corresponding studies of motor skill

and learning in keyboard use in tracker interaction are provided

in Chapter 7.

CST: The CST workshop likewise highlights the importance of

expertise, in the development of tools for creativity. Such tools

should present a “low threshold” (be accessible to the novice),

whilst supporting a “high ceiling” (allow advanced uses). What

distinguishes their recommendations from Shneiderman’s own

calls for multi-layer interfaces (2005) is the addition of a third

goal – “wide walls”, the support for a wide range of

explorations, paths and interaction styles.

 The design implications of this are the use of “very general

primitives” (Resnick et al, 2005) in the interface (see H2), which

are themselves easily learnt, but can be efficiently combined or

layered to create more complex functionality. Though this

addresses design pitfalls inherent in multi-layer interfaces (such

as over-simplification vs. over-specification, in respectively

 88

catering for novices and experts), the workshop report cautions

that a learning onus remains, as the users learn how to combine

primitives. However, in virtuosity (and flow –Sections 3.6 and

3.7), learning is a desirable attribute in the creative user

experience; and, in contrast to the steep learning curve of many

professional music tools (based on knowledge of studio and

music practice, see 2.1), a “simple primitives” approach

provides a gradient that scales with experience.

CDs: CDs offer little account of ‘learnability’ as a factor of

notation use (Elliot, Jones, and Barker, 2002), despite its relative

importance in interaction design (Dix et al, 1998). Though the

activity of exploratory understanding is identified as a possible

goal of a notation, it concerns the learning of a domain. The

literature makes few references to the learnability of notations,

observing that greater consistency facilitates learning, closeness

of mapping aids knowledge transfer, and hidden dependencies

demand long-term working memory skills (Green and Petre,

1996). In our case, while the visibility of data in the notation

remains crucial, parts of the interface might be hidden from

view, if they can be triggered from memory (e.g. using shortcut

keys). Likewise, the learning of more concise syntax provides

for reduced diffuseness.

 It can be argued that the challenge posed by learning

constitutes a hard mental operation, as the user is encouraged to

“work out more in their head” (Blackwell and Green, 2000),

rather than relying on automation or notational hints, such as

visual cues. An interaction requiring more mental effort and

reflection can be more engaging and memorable, compared to

calmer, more pedestrian interactions (Rogers, 2006). CDs

literature to date, however, has focused almost exclusively on

the negative design implications of hard mental operations (e.g.

Green and Petre, 1996) – in contrast to most other dimensions,

whose relative merit (or “polarity” – Blackwell et al, 2001) rests

on context, or trade-offs with related dimensions. In the context

of virtuosity, have we found a use case where hard mental

operations
1
, if not actually desirable, are tolerable?

1
 Perhaps more neutrally termed, complex mental operations.

89

 H2: Support rapid feedback cycles and responsiveness

To master a system, its behaviour must be “transparent”

(Holtzblatt, 1988), allowing the user to easily equate cause with

effect, in their interactions. In typical computer scenarios, basic

control feedback should be provided within ~100ms (Miller,

1968; Nielsen, 1993) to appear instantaneous. Complicated

operations should complete within roughly 1s (~300ms to 3s), or

otherwise risk interrupting the flow of thought (Newell, 1990).

After 10s of idleness, users actively become restless, and will

look to fill the time with other tasks (Nielsen, 1993). As such,

longer delays, especially those requiring wait cursors or progress

meters, should be avoided; and are “only acceptable during

natural breaks in the user's work” (Nielsen, 1994).

 To support live performance and recording, there are even

stricter criteria for music systems, which must respond within a

few milliseconds (Walker, 1999).
2
 Dedicated low-latency sound

drivers, such as Steinberg ASIO and Microsoft WDM, were

developed to provide such latencies – typically confining delays

to under 25ms, and potentially as low as 2ms. Even below this

threshold, musicians and professional recording engineers are

sensitive to jitter (the moment-to-moment fluctuations of clock

pulses, measured in nanoseconds), but the impact is perceived in

terms of sound quality (the addition of noise and inharmonic

distortions, and deterioration of the stereo image), rather than

system responsiveness.

Table 1 – timing

requirements in

computer music

interaction

timing perceived as... if violated...

< 1 ms sound quality

(‘tightness’, ‘jitter’)

user hears noise artefacts, inharmonic

distortions, muddied stereo image

< 25 ms realtime audio

(‘low latency’)

user has difficulty keeping musical time,

maintaining sync. during performance

< 100 ms ‘instantaneous’

UI response

system feels slow and unwieldy,

harming user’s sense of control

< 1s noticeable delay user has difficulty planning ahead

and maintaining “flow of thought”

or continuity of action

< 10s tolerable delay user loses focus, and their attention

wanders to other tasks

2
 Indeed, a realtime music system operates at much higher timing resolutions, up to 192kHz (1 sample

every 5ns). Human hearing extends to around 20kHz, but these extensions account for the requirements

and limitations of digital audio, such the Nyquist limit (dictating the 44.1kHz specification of CD

Audio), aliasing (prompting the 192kHz specification of DVD Audio) and oversampling (to improve

signal-to-noise ratio, particularly in cheaper hardware).

 90

 While less “live” interactions, such as playback control and

general UI responses, tolerate higher latencies, longer delays

nonetheless affect the perceived directness of the user

experience. Table 1 summarises these requirements for

interaction, in a musical system, with examples. The relationship

of timing and control emerges; the finer the required control, the

tighter the demands on responsiveness.

 Another way of looking at this trend is to consider the relative

availability and timeliness of feedback from the domain itself. In

music, “live” interactions are not only highly responsive, but are

also driven by concrete feedback from the domain itself – that is,

raw feedback in a form not encoded in or constrained by the

abstract formalism of a notation. As visual notations, UIs

provide abstract feedback, presenting only a representation or

specification of the end product.

 A related concept of “liveness” exists in programming

(Tanimoto, 1990; see Section 4.2.4).
3
 Like music composition,

programming is the process of specifying and scripting future

events (Church, Nash, and Blackwell, 2010). Programmers use

various forms of abstraction to describe a program, which is then

compiled or interpreted to executable code. Liveness is a quality

of the design experience that indicates how easy it is for a

programmer to get an impression of the end product, during

various stages of design. More generally, promoting liveness is

an example of the push to accelerate the feedback cycle in

software design, complementing the philosophies of similar

moves towards rapid application development (RAD). In RAD,

the early-availability of testable prototypes allows more flexible

targets, and facilitates experimentation and ideation (Resnick et

al, 2005), both of which constitute enabling factors of creativity

(Sternberg, 1999; see 3.1).
 In a computer music context, “liveness” thus means being able

to easily audition the music encapsulated in the visual notation

(e.g. specific notes, phrases, instruments) (Nash and Blackwell,

2012). Music notations tend towards an “eager linearization” of

time (Duignan et al, 2005), scripting a linear sequence of

musical events. Excerpts of single beats, bars, phrases,

3
 In music, the term “liveness” is increasingly used to describe a subjective sense of intimacy and

immediacy in live art, as experienced between audience and performer (e.g. Auslander, 1999). In live

electronic music, research highlights the challenge of delivering liveness in the context of disembodied,

acousmatic sound (e.g. from a laptop), decoupled from a performer’s physical actions (Emmerson,

2007). Though this use of the term differs from that used in this thesis (i.e. Tanimoto, 1990; discussed

in Section 4.2.4), the two contexts are related: When liveness is lacking, the audience/user feels less a

part of the performance/music, and may find it harder to understand what they hear or should expect,

given the (limited) visual feedback.

91

movements, and even arbitrary segments of the music, are easily

evaluated. As a result, realtime music systems can harness the

principles and benefits of fast feedback loops at various

granularities, to foster iteration and experimentation. The use

and role of feedback (and liveness) in modern music software is

examined in detail, in Chapter 8.

CST: Providing support for exploration was the primary design

principle put forward by the CST workshop report, which

advocated the use of ‘what-if’ scenarios and an emphasis on

iterative design, experimentation and “tinkerability” in the user

experience – allowing users “to mess with the materials, to try

out multiple alternatives, to shift directions in the

middle of the process, to take things apart and create new

versions.” (Resnick et al, 2005) Papert’s related concept of

“bricolage” observes how such a constructionist, experiential

approach to learning provides a more personal, flexible

alternative to the traditional “analytic, rule- and plan-oriented

style” (Turkle and Papert, 1992).

CDs: In the CDs framework, exploratory design is one of 6 basic

activity types, each of which entail distinct dimensional profiles

(Blackwell and Green, 2003). The progressive evaluation

dimension measures how evaluable the end-product is, at

various stages of development. Providing for it can mitigate the

premature commitment of requiring a completed work before

feedback is available.

 The opportunity to then take a new direction falls under the

dimension of viscosity (resistance to change). A creative

environment must be non-viscous, supporting all manner of

changes at any stage in design (Gentner and Nielsen, 1996).
4

Green and Petre (1996) make the distinction between knock-on

viscosity, where small changes require the user to repair

consistency of their work, and repetition viscosity, where

multiple (repetitive) actions are required towards a single goal.

In each case, the UI designer has the opportunity to automate or

abstract such involved or laborious processes. Again, there is not

only the risk of concealing the inner workings of the system,

making them hard to grasp (see H3), but also of reducing the

user activity and engagement surrounding the task, as well as

their perception of being in control.

4
 Modelessness (Gentner and Nielsen, 1996; see H4) can also be seen as facilitating faster changes to

notation (e.g. without the premature commitment of changing mode).

 92

 H3: Minimise musical (domain) abstractions and metaphors

In HCI, UI designers try to reify the user’s “mental model” to

represent and operationalise a task domain (Norman, 1988),

using predetermined abstractions (Duignan et al, 2005) and

metaphor (Blackwell, 2006), across various levels – processes,

properties, states, relationships. The formalisms of any notation

determine the expressive flexibility it allows, shaping a user’s

perspective of the domain, or even an entire culture’s (Sloboda,

1985). It is difficult for a UI designer to match the user’s internal

representation of musical expression without inadvertently

shaping or constraining their creativity (Cascone, 2000;

Kitzmann, 2003; Duignan et al, 2005).

 Though classically-trained or musically-literate users will

share many perceptions of musical structure, there are few

widely-accepted formalisms encapsulating the full gamut of

computer music capabilities, and non-digital abstractions (such

as wires, pots, pedals, mixers, or other metaphors to electronic

and acoustic music; see Section 2.1) can be confusing, confining

or cumbersome (Desain et al, 1995; Duignan, 2007).

 Indeed, it is a major challenge for UI designers to design any

unified user interface for artistic audiences, who define

themselves by their uniqueness and innovation – how do you

design a box, for people who want to think outside of it?

 One approach is to simply make the box smaller: avoiding the

use of higher-level abstractions, in favour of low-level

primitives, that can be layered and combined, by the user, to

produce equivalent or greater functionality. The simpler

functionality of each primitive makes it easier to understand and

learn. Then, as more are layered and combined, the challenge

increases, providing a scaleable learning experience, towards the

development of broader mastery. Turkle and Papert (1992) call

this “soft-mastery”, observing that it encourages “closeness to

the object”, and that such bottom-up perspectives are common in

fine artists and musicians.

 Automation, as an abstraction of process, should also be

considered in respect of keeping the user active and engaged. An

interaction designer, in automating trivial yet laborious tasks can

increase overall productivity and reduce the effort invested by

the user. However, this also has the effect of reducing their

involvement in the workings of the system; harming their

understanding of the system (sense of control), or leading to

periods of waiting and idleness (see H1), interrupting the

continuity and flow of interaction.

93

CST: The CST workshop report similarly concluded that

achieving the desired low threshold, high ceiling, and wide

walls, in creative support tools, revolved around careful

selection of “black boxes” and keeping interface primitives as

simple as possible (Resnick et al., 2005).

 Resnick et al (2005) also warn against “creeping featurism”;

the tendency to incrementally add advanced features in new

software versions, encouraged by the ease of selling products

based on feature set, rather than user experience. This trend is

evident in production tools like DAWs (Duignan, 2007; see 2.1),

which introduce specialist tools or processes, sometimes as

black boxes, raising complexity and reducing consistency.

CDs: Many modern music programs can be described as

abstraction hating, favouring predefined, standardised objects

that facilitate out-of-the-box use, assuming the user is already

familiar with the conventions used – metaphors from the analog

recording studio (mixers, wires, faders, etc.) or acoustic music

(pianos, the score, etc.). In such cases, “the closeness of mapping

to conventional audio processing equipment ... is indicative of a

corresponding reduction in potential for creative exploration”

(Blackwell and Collins, 2005). Duignan (2007) also details

several issues with the abstractions presented in existing music

production software.

 Notations that encourage users to form their own abstractions

are described as abstraction tolerant. In the literature, this

normally implies the use of a redefinition device, allowing users

to explicitly change the notation to suit their interaction style or

perception of the task domain (e.g. Blackwell & Green, 2000).

The process requires that the user is not only familiar with the

definitions of the original notation, but can also articulate the

appropriate re-definition, using a separate notation. As such, it

can require an enormous attention investment (Blackwell, 2002)

and encourages precisely the planned, analytic interaction style

we wish to avoid – for periods, interrupting the user’s workflow,

increasing their exposure to predefined formalisms, potentially

distancing them from the music itself.

 Instead, while still favouring notations that are abstraction

tolerant, this heuristic proposes less formal abstraction

processes. To this end, secondary notation (some means of

including extra information, other than formal syntax –

e.g. annotations, comments) may offer suitable interpretive

freedom. However, the interface designer should also not

 94

overlook the implicit abstractions a user will make by simply

listening to their music – the user’s perceived structure of the

sound itself. In this capacity, simply the broad availability of

such musical feedback (see H2), may be the best scaffolding for

a user to form their own abstractions. In this sense, such

‘audibility’ may be seen as a correlate of the visibility dimension

(concerning how much systems “bury information in

encapsulations”; Blackwell and Green, 2003) and, accordingly,

the closeness of mapping dimension (“How closely does the

notation correspond to the problem world?” - Green and Petre,

1996) thus concerns only the selection of low-level primitives.

 H4: Support consistent output and focused, modeless input

An interface that remains consistent, from moment to moment,

can be more easily remembered and predicted. Fixed, static

layouts enable the development of not only spatial schemata, but

also motor learning (Smyth et al, 1994), both of which allow a

degree of interaction to be handled subconsciously (see H1).

 Changeable, dynamic screen layouts (such as floating

windows) require conscious reflection, interrupting thought

processes and hampering the performance of experienced users.

Whereas inexperienced users want to “find where everything is”

(Kitzmann, 2003), experienced users want to know where

everything is. They should not have to visually search through

different windows, modes or other views, to locate information

or effect minor edits, but “should be able to perform any task at

any time” (van Dam, 1997).

 Novice users, on the other hand, may benefit from taking their

initial steps more slowly, and digesting the program in smaller

chunks, or else find themselves daunted by the program’s

surface complexity (Norman, 1988). Limited screen real-estate,

even on high-resolution computer displays, forces interface

designers to divide functionality across separate views – often

exposing only part of the notation in each. Interface hierarchies,

like menus and window systems, are used to breakdown

complex programs into simpler parts, while presenting a logical

ordering, that attempts to balance how easily a novice can

identify the appropriate selection, against how quickly an expert

can make it.

 Most programs still present a primary notation that is kept in

view for the majority of the time, and which constitutes the

focus of activity – for example, the source code in an IDE, the

95

document in a word processor, the waveform in a sound editor.

It is the first view that greets the newcomer, and the first they

learn, before moving onto other parts of the program.

 However, an equivalent notational focus is largely absent from

many music production programs – perhaps because a definitive

visual representation of digital music is so elusive (see H3). In a

DAW, workflow is spread over multiple windows and input

devices (see Figure 2-1), serving various purposes. The desktop

studio is exactly that; a studio on the desktop – a combination of

separate interfaces mimicking the separate “devices”
5
 in a

recording studio, through visual metaphor (Duignan et al, 2005),

wired together to allow you to capture and mix a musical

performance. To become expert in these programs, you must

become expert in the full range of hardware and processes used

in the electronic studio – tasks usually shared across several

individuals, including performers, tape operators, sound

engineers – each able to focus on a specific device. There is little

consistency across the different devices, at the same time

providing diverse editing techniques to achieve similar end

results (see Table 2), while occasionally offering select

capabilities found nowhere else in the environment.

 In addition to spreading functionality over different areas of

the program, a single-user studio paradigm encourages the

segregation of the music-making process over time – prepare,

perform, record, edit, mix, finalise. Each stage depends on the

previous, and requires the user to have a clear, preformed

concept of what they want to achieve. Exploring and

experimenting with different ideas involves moving back-and-

forth between these stages and interfaces.

Table 2 – Controlling

note volume in DAWs,

a list of selected settings

and associated interfaces

that influence the final

volume of a single note,

in a standard DAW setup

variable or setting controlled using

MIDI note velocity MIDI controller, piano roll, score, data list

MIDI key/channel aftertouch MIDI controller, arrange window, data list

MIDI channel volume arrange window, mixer, data list

MIDI track volume arrange window, mixer

MIDI excerpt volume arrange window

volume envelope settings synthesizer

MIDI global volume synthesizer

master volume setting synthesizer

audio input gain soundcard setting

audio track gain arrange window, mixer

audio track level arrange window, mixer

audio output bus level arrange window, mixer

master volume mixer, transport bar

audio output level soundcard setting

5
 The actual term used by Steinberg Cubase, for each editing view.

 96

 Hardware devices (e.g. MIDI instruments, controllers, control

surfaces, digital mixers) can make visual metaphors tangible and

enable peripheral interaction (Edge, 2008), often presenting

fixed, physical layouts that aid motor learning. At the same time,

they potentially swap the contention of screen space for that of

desk space, risk confining the user’s control and attention – their

hands and eyes – to specific devices, and increase the effort of

moving back-and-forth during experimentation. Such tradeoffs

are evident in computer music hardware and studio equipment

(see Section 2.1). The use and role of visual focus and feedback

in music software is explored in Chapter 8 (Sections 8.4 to 8.5).

 This heuristic calls for a more central focus in computer music

interfaces, and principled separation of primary and peripheral

notations. This model already exists in some computer music

practices, such as live coding (Blackwell and Collins, 2005) and

score editing. In score editors, the notation (the musical score) is

not always apt for representing computer music and digital audio

processes.

CDs: This heuristic is closely related to the cognitive dimension

of consistency, which has been linked to the learnability of a

notation already (see H1; Green and Petre, 1996). The DAW’s

variety of notations can be seen to improve role expressiveness

(Blackwell and Collins, 2005), albeit at the expense of such

consistency – potentially demonstrating a trade-off between

these dimensions.

 Minimising diffuseness improves visibility, reducing the need

for keyhole editing techniques, such as multiple windows and

scrollable views, that selectively show or hide parts of the

notation. Such divisions of information, across different modes

or views, can likewise create hidden dependencies (as in Table

2), obfuscating the behaviour of the system.

 Finally, the need to complete tasks in a specific order

represents a premature commitment, and increases viscosity,

which is undesirable in exploratory design activities, such as

musical creativity (Blackwell et al, 2000).

 These heuristics detail specific goals and properties that creative

systems should have to support the development of virtuosity. In the

next section, we expand upon the relationships between

them, integrating them with a broader concept of flow

(Csikszentmihalyi, 1990), to develop a more general model of the

creative user experience.

97

4.2 systems of musical flow

 A considerable amount of existing HCI design and evaluation

methodology relies on the articulation and abstraction of objectives,

success criteria, tasks and processes. Ill-defined creative pursuits,

like music, rarely permit this; a piece of music need have no

practical purpose and is only deemed satisfactory or complete if the

composer says so (see Section 3.2). They might start writing at any

point in the piece, for any instrument, at any pitch, any volume, etc.

and they might then return to that point at any time subsequent, and

change it to something completely different. Of the computer, they

demand the creative freedom to be able to do anything to anything,

at any time, in any order. Each action informs the next, with the

artist perpetually seeking to maintain their creative thread, flow, and

pace.

 This section builds on the previous, extending concepts and

proposals concerning ‘virtuosity’ to develop a generic model of the

creative process in music that can act as a framework for discussing

and designing open-ended user experiences that support flow

(Section 3.7) and creativity in general (Chapter 3).

 4.2.1 from virtuosity to flow
 The description of the creative user experience presented above

shares characteristics Rittel and Webber (1973) outlined for “wicked

problems” (Section 3.2), except that creative endeavours, in contrast

to being “one-shot operations”, allow for and demand more

experimental trial-and-error learning and practice. Outside of a live,

public performance, musicians and composers can try new ideas

without significant consequences, or the worry of failure.

feedback cycles In Section 4.1, support for rapid feedback cycles (H2) was

proposed as a way of supporting such experiential learning, and the

development of computer music virtuosity. Leman (2008) expands

on the idea of the feedback loop in music, identifying four repeating

stages: play, listen, judge, and change (Figure 1). He uses this

‘action-reaction cycle’ as the basis for a philosophical framework

for computer-mediated embodied music cognition, which he

proceeds to use as an argument for the role of gesture in music

interfaces. Leman argues that the approach has the power to afford

“direct involvement” in music, by cutting out the indirection

inherent in conventional interfaces. In many ways, his thesis can be

seen as a musical reworking of embodied interaction (Dourish,

2004), drawing on the phenomenological approaches, pioneered by

Heidegger and Husserl, and introduced to the wider HCI community

by Winograd and Flores (1986).

 98

Figure 1

Action-reaction cycle

(Leman, 2008)

‘readiness-to-hand’,

transparency, and

the “flow of work”

 Karen Holtzblatt’s earlier work (on what later developed into

contextual design) similarly drew on this foundation, to discuss

Heidegger’s ‘readiness-to-hand’ as an approach to interface

transparency (see Section 4.1) – advocating “creative iteration”, the

maintaining of “workflow”, and avoidance of disruptions, in the

user experience (Holtzblatt et al, 1988) – foreshadowing subsequent

HCI rationales for Csikszentmihalyi’s own theory of flow (Norman,

1993; Bederson, 2004; Shneiderman et al, 2005).

virtuosity as a

basis for “flow”
 Flow, the theory of “optimal experience” (Csikszentmihalyi, 1988;

2000 – detailed in Section 3.7), describes a mental state that

underlies creativity (Csikszentmihalyi, 1996) and enumerates

several components (see Table 2-4) required to achieve it, for a

given activity. In addition to advocating rapid feedback (H2), other

aspects of the definition of virtuosity in section 4.1 are implicit in

some of the specific requirements of flow (see Table 3) – both call

for interactions supporting focus, concentration, skill development

and directness of control and feedback.
action-awareness

merging
 Of the two remaining components of flow (absent in Table 3),

action-awareness merging objectifies the resulting trance-like flow

state itself, where the individual is wholly-engaged in the activity,

unfazed by external, environmental factors. It can thus be seen as

the product of other components, such as loss of self consciousness

and concentration and focus, as well as a corollary of distorted

sense of time.
intrinsic motivation

and rewards
 The other missing component similarly stresses a separation from

the outside world – that the activity be intrinsically-rewarding. Flow

theory was developed upon the idea of intrinsic motivation, which

occurs in an activity that is its own reward, in contrast to tasks

requiring external incentives (extrinsic motivation; e.g. deadlines,

penalties, money, recognition – see Section 3.7). An intrinsically-

rewarding activity is thus an enjoyable task that is both fun and

fulfilling.

99

Table 3 – the design

heuristics for virtuosity,

and corresponding

components of flow

H1: Support learning, memorisation, and prediction

 (or “recall rather than recognition”)

� Balance of Challenge and Ability

A learnable notation allows interaction skill to develop, and for

achievement to scale with experience (see H3). By contrast,

traditional usability heuristics, such as Nielsen and Molich’s (1990),

advocate “recognition rather than recall” (Minimize User Memory

Load) and minimal learning curves, tailored for novice use.

� Clear Goals

Although final goals are hard to articulate, in creative endeavours,

this component of flow concerns the moment-to-moment goals in

interaction, and how easy it is for the user to discern the appropriate

actions to take, to achieve a desired outcome. As such, it represents

the latter stages of virtuosity, where mastery allows transparent use

of the interface, balancing high levels of ability and challenge.

� Sense of Personal Control

A notation that allows skill to develop empowers the user.

Experience allows the user to predict what to expect so that they can

plan ahead and actively drive interaction, rather than passively rely

on visual cues and hints, allowing the program to set the pace.

� Loss of Self Consciousness

When an interaction is learnt or memorised to the extent it becomes

automatic, it becomes reflexive rather than reflective, and the user

becomes less consciously aware of how such actions and behaviour

appear to others, allowing them to focus on the task itself.

H2: Support rapid feedback cycles and responsiveness

� Direct and Immediate Feedback

Feedback should not only be fast, but direct from the domain. In a

musical application, any change caused by an edit should be

immediately reflected in the visual notation, and immediately

available to audition, aurally.

� Distorted Sense of Time

Slow or delayed feedback, such as those prompting idleness, wait

prompts, progress bars or predicted completion times, implicitly or

explicitly draw a user’s attention towards the passage of time. The

user must be able to proceed at their own pace, in their own time.

H3: Minimise musical (domain-) abstractions and metaphors

� Balance of Challenge and Ability

The use of simple interface primitives, which are easily learnt

individually, provides novice users with a low starting threshold,

while enabling increasingly greater challenges and functionality,

when such primitives are combined (Resnick et al, 2005).

H4: Support consistent output and focused, modeless input

� Concentration and Focus

Spreading interaction across multiple windows, views and input

devices splits the user’s attention. Where modes or windowing are

unavoidable, the user should be able to focus and concentrate on

that area of program, without having to refer elsewhere.

 100

flow in music

performance
 Musical performance is a commonly cited example of such an

intrinsically-rewarding activity (Leman, 2008), and can be used to

illustrate many of the flow components (Csikszentmihalyi, 1998;

2000) and obstacles to be overcome. Acoustic instruments, for

example, offer direct and immediate feedback, allowing experiential

learning and, with experience, total, reflexive control (Williamon,

2004). Musicians can lose themselves in their instrument, for hours

at a time (Boyd, 1992).
 In the formative stages, however, a musician may have trouble

articulating a pleasing sound, or achieving a sense of control. The

lacking balance of challenge and ability can make them

prohibitively self-conscious, especially if a suitably private practice

space is not available. Similarly, music literacy, when taught as a

pre-requisite to music interaction, presents an additional challenge

for beginners that, as an example of “structured learning”, can

detract from more playful and enjoyable “informal learning”

experiences (Norman, 1993; see also Section 3.6), and deter

students from persevering.

 Ultimately, maintaining flow in the creative user experience

requires protection from interruptions and distractions from the

outside world, ensuring the user maintains focus, motivation and

control.

 4.2.2 abstracting the creative music process
 Having observed the difficulty associated with a precise definition

of goals and methods in a creative process, this section considers the

various roles of different people and commodities historically

involved in the composition process, in an attempt to articulate those

of the computer-based composer.

Figure 2 - a contextual

design “flow model”

of work (music) in the

composition process

101

 In contextual design (Holtzblatt, Wendell and Wood, 2004), this

approach is known as work modelling, and is used to produce the

“flow model” in Figure 2. Significantly, the modelled “flow”

concerns the communication and coordination of work, and is not a

reference to Csikszentmihalyi’s mental state.
6
 However, a shared

foundation in phenomenology helps justify the model’s use here

(see Holtzblatt, 1988). Shneiderman (whose recent work has

focused on creativity – see 4.1.1) also comments that such

modelling is a useful way of presenting a “structured process, with

sufficient freedom for innovative excursions.” (Holtzblatt, Wendell

and Wood, 2004). Here, the approach is used to give a basic

structure to the largely unstructured process of innovation in music,

further developed in the next section.

 4.2.3 systems of musical flow
 In Figure 3, I present a model to represent the creative process in

music, in a way that can be operationalised for use as a tool in the

design and evaluation of digital music interfaces, and that provides

a basic taxonomy for talking about the creative process in

interactive music systems.

Figure 3

the systems of

musical flow model

of digitally mediated

music interaction

6
 According to Csikszentmihalyi (1988) the term “flow” originated from the analogy of being carried

along by a current of water, as presented by several subjects in early interviews on the flow experience.

 102

 In the computer, the roles of composer, performer and listener are

unified as that of the user, separately presented in the model of the

previous section (Figure 2). Even in conventional acoustic practices,

these roles are not mutually-exclusive – the composer (as

performer) will audition musical phrases before committing them to

notation, and (as listener) draws inspiration for new phrases by

listening to existing material. At the same time, the computer also

assumes the role of performer, able to realise the notation as sound

programmatically. Accordingly, folding the original model to

present the process from a single-user perspective creates the three-

way dialogue between the user, notation and musical domain, seen

in Figure 3.

 The approach is thus able to model the creative process as a

network of feedback loops, such as those described earlier for

virtuosity (see 3.1) and similar to the action-reaction cycles

described by Leman (2008). Moreover, the closed nature of these

feedback cycles, as well as the system at large, signify the intrinsic

properties of interaction – where rewards and motivations arise

from within the user experience itself, be it the music contained in

the notation, or the sense of empowerment from mastering the

system as a whole. By contrast, an interactive system typified by an

acyclic graph (not illustrated in Figure 3, but discussed later in this

section) signifies an extrinsic factor, which may indicate a problem

with the interaction.
conceptual

spaces
 The three nodes in the graph represent the conceptual spaces of

the user, the notation and the music. In any space, a “concept”
7
 has

the potential to motivate the creative process and enable flow. Each

supports a distinct representation of the domain – perceptual,

virtual, and real, respectively. Their mapping onto each other

defines the creative user experience, as musical ideas are passed

around the system and repeatedly translated (possibly not faithfully)

from one space to another.

7
 A precise definition of this term entails a discussion of one of the most debated topics in musicology;

the signification (meaning) of music. As will become apparent, this model does not rely on a specific

interpretation of this term, in order to be useful as an engineering solution; and only observes that such

“concepts”, whatever they may be, are those that motivate and pre-empt action. For further reading, the

topic is thoroughly explored in several texts: in computing (Winograd and Flores, 1987), in interaction

(Dourish, 2004), and in music (Sloboda, 1985; Leman, 2007; Cross and Woodruff, 2008).

103

Figure 4

creative sub-processes

performance

manipulation

transcription

audition

visualisation

Realisation

creative

sub-processes
 The arcs (see Figure 4) represent creative sub-processes that

translate concepts in one space to those of another and, in so doing,

shift the motivational impetus. The creative sub-processes

(performance,
8
 audition, visualisation, manipulation, realisation

and transcription) form the basic building blocks of a creative

music process. For example, a musical concept in the user is

transformed by a process of data manipulation into musical data in

the notation, whereupon it can be transformed either by

visualisation, back to the user, or through a process of realisation,

into some physical instance of music (e.g. sound).
intrinsic

vs. extrinsic
 A system is formed by the combination of two or more creative

sub-processes, modelled as a directed graph. By considering the

cyclicity of the graph, designers and evaluators can predict whether,

and to what extent, the system affords motivation intrinsically, and

whether it depends on extrinsic factors (an external goal, reward, or

other incentive). Intuitively, cyclic, closed loops help contain

motivation within the system and preserve flow, whereas acyclic,

open paths require external sources and sinks. Such paths introduce

uncertainty, self-consciousness, as well as a perceived loss of

control, and thus typically impede flow (Csikszentmihalyi, 1990).
a scalable model Using these graphs, it is possible to model, diagnose and design

user experiences of varying complexity, accounting for multiple

notations (a skill-intensive example of macro-flow; Csikszentmihalyi,

1992) and multiple users or systems (potentially affording group

flow – see Csikszentmihalyi, 1990). Most real-world scenarios,

however, can be discussed in terms of simpler configurations.

8
 As discussed in Section 3.1, the terms ‘performance’ and ‘audition’ are used in a technological

context only, referring to any time-critical execution of a task or direct interaction with a domain

(“Level 4 liveness”, see Section 4.2.4) and realtime evaluation of the product, irrespective of social

context (e.g. the presence of listeners other than the practitioner, such as audience or collaborators).

 104

Figure 5

intrinsic micro-

processes

manipulation loop

(manipulation &

visualisation)

performance loop

(performance

& audition)

transcription loop

(transcription &

realisation)

intrinsic micro-

processes (basic

feedback loops)

 Three basic feedback loops (see Figure 5) form intrinsic micro-

processes between the user and notation (the notation loop), the user

and music (the performance loop), and the notation and music (the

transcription loop).
composite

processes
 Arcs can also be paired to form composite processes that

are, by themselves, extrinsic. As can be seen in the symmetry of

Figure 6, composite processes mirror the function of corresponding

creative sub-processes. For example, the user can affect music either

directly through performance or, indirectly through the notation,

using the transitive coupling of data manipulation and realisation.

The difference between the two paths is the difference between

Leman’s aforementioned “direct” and “indirect involvement” in

music (Leman, 2008). However, as is easily deduced from Figure 6,

one or more composite processes are necessary if a system is to

encompass all three conceptual spaces, which are necessary when the

activity is, for example, composition rather than performance. Indeed,

the introduction of notation, into the last example, would seem to

transform a process of performance into one of structured

composition. Figure 6 illustrates the six composite processes, each

corresponding to one of the six creative sub-processes, in Figure 4.

Figure 6

composite processes

with constituent

(and equivalent)

sub-processes

manipulation + realisation

structured composition
(~performance)

performance + transcription

performance capture
(~manipulation)

audition + manipulation

manual transcription
(~transcription)

transcription + visualization

musical analysis
(~audition)

realisation + audition

digital playback
(~visualization)

visualisation + performance

interpretation / recital
(~realisation)

105

Figure 7 – instrinsic

macro-processes

recording
(performance, transcription

& visualisation)

composition
(manipulation, realisation

& audition)

 Paired, sub-processes afford either intrinsic couplings of two

conceptual spaces or extrinsic couplings of all three. To incorporate

the user, music and notation in an interactive system supporting

flow, three or more sub-processes must be combined, to form a

closed loop, intrinsic system.
intrinsic macro-

processes
 Figure 7 illustrates how three sub-processes are combined to form

one of two intrinsic macro-processes, either of which can form the

foundation of a flow-enabled interactive system. Clockwise, the

loop entails performance, transcription, visualisation, describing a

recording process. Anti-clockwise, the loop entails manipulation,

realisation, audition, describing a composition process. Loops can

also be seen as combinations of respective composite processes.

system archetypes With four sub-processes, systems support two intrinsic loops,

yielding nine system archetypes. Most real-world music activities

can be considered in terms of one of these archetypes, enabling flow

in different ways, with various trade-offs, as detailed in Figure 8.
operationalising

the model
 In prototyping an interactive system, a designer must decide

which arcs and loops are desirable in their user experience, and how

they can inform the design. Accordingly, an evaluator decides if

specific arcs or loops are both present and adequately implemented

in a system under evaluation. Some specific design trade-offs are

identified in Figure 8, but a more general vocabulary is needed if

the model is to be scalable to a broader and more complex variety

of scenarios. The system features of the model (Figure 9) are the

key to its operationalisation and verification as a design and

evaluation methodology. Such system features can be considered in

terms of specific conceptual spaces, processes or feedback loops, to

obtain a more detailed system description. For example, a “multi-

modal system” can be considered in terms of flow redundancy

(multi-modal feedback), flow fission (multi-modal action) and flow

congestion (multi-modal feedback and action). As such, the system

has the potential to inform or confuse the user’s comprehension of

the mapping between the notation and the music. Alternative, a

“cross-modal system” (visualisation and performance, or audition

and manipulation) must consider the same factors, but also flow

estrangement, which can further obfuscate the mapping.

 106

Figure 8

system archetypes
(with real-world

examples)

performance-driven
Flow is possible through “direct involvement” with the

music via performance, which can be auditioned, or

transcribed for visualisation. The system harnesses

performance skills without requiring (or benefiting from)

data manipulation skill or literacy with notation.

e.g. A sequencer or digital audio workstation (DAW) enables

direct interaction with music through a MIDI or acoustic

instruments, from which the output is recorded and visualised.

audition-driven
Flow is possible through “direct involvement” with the

music, via performance, but the data is manually entered,

in structured composition. The system allows the user to

“jam” or practise before committing to an idea, which is

entered manually and auditioned. The user manually inputs

music in a format acceptable to the notation.

e.g. Augmented instruments focus interaction on live

performance through a union of acoustic sound and electronic

processing, the latter of can be manipulated using a visual UI

(e.g. a computer or smartphone).

transcription-driven
Flow is possible through the recording macro-process, but

performance relies on visual, not aural feedback. Acoustic

feedback can be present, but is less important. The

estrangement of the transcription loop, makes

understanding complex mappings between notation and

music challenging, but this could be the intention.

e.g. Guitar tuners and vocal trainers provide visual feedback to

augment or replace audio feedback, making it easier to discern

subtle variations in pitch. Interaction in music games, such as

Guitar Hero, is also driven by simplified visual cues and actions,

only loosely coupled to musical playback.

realisation-driven
As above, the user is estranged from the transcription

loop, but flow is possible via the composition macro-

process, driven by data manipulation. The lack of visual

feedback challenges the user to infer the mapping between

notation and music using only audible feedback.

e.g. Max/MSP enables complex mappings between user input

(gesture and other non-visual modes) and intricate sound and

musical processes. Active listening similarly involves an indirect

coupling of control and digital music playback.

visualisation-driven
Flow is supported between the user and the notation, and

also in the recording macro-process. Data can be

manipulated, or transcribed from a performance, for

visualisation. Such systems are concerned with visual

representations of music, rather than the music itself.

e.g. Through visualisation, systems for performance analysis

reveal details about musicianship that performers cannot

articulate. In score editors, composers use performances to enter

data with the goal of typesetting notation.

107

Figure 8 (contd.)

system archetypes
(with real-world

examples)

manipulation-driven
Flow is supported between the user and the notation, and

also in the composition macro-process. Users manipulate

music through the notation, but receive visual and aural

feedback. Thus, whilst the notation determines what is

musically possible, the result is heard in non-abstract

terms, helping the user understand how what they see in

the notation relates to what they hear in the music.

e.g. Notation-oriented programs emphasising rapid feedback

like trackers (Section 2.1) and live coding environments like

SuperCollider and Max/MSP (when focus is on the UI). When

used for composition rather than transcription, score editors

also provide audio feedback to guide interaction with notation.

user-mediated
In this symbol-based modelling scenario (Leman, 2007),

flow is possible between user and music, as well as user

and notation, but the user is responsible for determining

the mapping between notation and music. Focus and

concentration are split, and the challenge requires skills

in two distinct areas, performance and manipulation.

e.g. The lack of transcription or storage in acoustic instruments

and analog synthesisers requires composers to transcribe their

music using an alternative method of notation. Uncoupled to

the sound source, such methods (e.g. sketching on paper) may

not provide musical feedback, placing demands on literacy.

notation-mediated
The user interacts with the notation visually, and the

notation interacts with the music. The user achieves

flow, but is estranged from the music, and the notation’s

designer (the programmer) determines the mapping of

notation and music.

e.g. In algorithmic composition, artists focus on abstract

representations of musical processes. In digital music, low

liveness systems with delayed musical feedback (i.e. compiled

languages, such as CSound) are effectively visually-mediated.

music-mediated
(e.g. gesture, Max/MSP, audio recording)

Flow is possible through “direct involvement” with the

music, via performance, which goes through automatic

transcription to data in the notation. Users are estranged

from the data, and are able to record and playback the

musical data, but not effectively manipulate it.

e.g. Many automated processes can act on the sound or music

(MIDI) during a live performance without user intervention,

from conventional DSP effects processing (reverb, echo, EQ,

etc.) to more advanced uses of music programming languages

(e.g. Max/MSP or SuperCollider). Such processes may also be

affected by other users, which may be modelled by adding

additional user nodes to the network, or by integrating other

system archetypes (e.g. sharing the transcription loop with

another user’s manipulation-driven system).

 108

Figure 9

system features
flow congestion
The possible paths through conceptual spaces increase

exponentially as more sub-processes are involved,

complicating the system design or user experience.

e.g. systems with multiple notations (see Figure 10a)

or user-mediated systems (see Figure 8)

flow redundancy
Conceptual spaces fed by more than one sub-process can

increase the opportunities for maintaining flow, at the cost

of complicating processes in the conceptual space.

e.g. the combination of visual and aural feedback in

manipulation-driven system like trackers (see Figure 10b)

flow fission
Conceptual spaces that feed more than one sub-process,

potentially divide or redirect flow and focus, which can

positively (or negatively) impact the user experience,

depending on context. e.g. systems with multiple notations or

input methods (e.g. digital audio workstations, Figure 10a)

flow interference
Systems that mix overlapping feedback loops (i.e. an

intrinsic micro- and macro-process) combine flow

redundancy and flow fission; potentially combining the

impetus of each in a way that can reinforce system flow. e.g.

in trackers, visual and audio feedback respectively feed

interaction cycles with the notation and music (Figure 10b)

flow estrangement
All intrinsic micro-processes lie apart from an opposing

conceptual space (e.g. user vs. transcription loop).

From the user’s perspective, any such estrangement

can obfuscate system behaviour, making it difficult to learn

and predict. e.g. realisation- or transcription-driven systems

system indirection
Systems that channel flow around or through a single

conceptual space can, respectively, divide or complicate the

interaction. The mappings between conceptual spaces (e.g.

user and domain) become less clear, and interaction

becomes less direct. e.g. notation-mediated systems

offering “indirect involvement” in music (Leman, 2008)

extrinsic reward
Where other users or external sources of oversight exist

in the user experience, the system becomes dependent on

extrinsic factors, making the user self-conscious and

impeding flow. An extrinsic reward often also indicates an

extrinsic motivation (see below). e.g. other agents, such as

collaborators or audiences in social situations (Section 3.7)

extrinsic motivation
Where the impetus for action is derived from an

external source, interaction depends on stimuli outside

the user’s or system’s control. While this can aid novices

needing extra guidance, it harms their sense of autonomy

and can thus impede flow. e.g. a tutor, instructor,

supervisor, collaborator, or even documentation

109

 4.2.4 modelling ‘liveness’ in a musical system

The model presented in the previous section lays out a foundation

for representing the creative user experience as a network of closed

feedback loops. Figure 9 looked at specific features of the network

that impact the interaction, relating to formation of loops in the

graph. However, it is also critical to consider the quality of the

feedback, when such loops are present in a system.
Tanimoto’s

levels of ‘liveness’
 Tanimoto (1990) introduces the concept of “liveness” to the

practice of programming, unifying notation and interaction by

considering the different ways the end product (an executable

program) is manifest during the development process, and how

manoeuvres in the notation affect the resulting execution of code.

As described in Table 4, he identifies four increasing levels of

liveness, each offering a decreasingly-abstract picture of execution.

 In contrast to other uses of the term “liveness” in the performing

arts (Auslander, 1999; Emmerson, 2007; see also Footnote 3, p90),

Tanimoto’s HCI concept of liveness is applied here for its capacity

to describe single-user systems and relationships between user and

notation, and its clear delineation of specific levels and properties

affecting liveness in the user experience. An interesting question for

future research, however, is whether a similar operationalisation of

liveness could be applied to Auslander’s discussions of issues in

performing arts, i.e. levels of performance liveness.

Table 4 (below)
Tanimoto’s four

levels of liveness

(from Church, Nash

and Blackwell, 2010;

and with Tanimoto’s

original descriptions)

 In programming, Level 4 liveness is rare, since it places

constraints on the power of useful abstraction available to the

programmer. Blackwell (2002) highlights such abstraction as a

critical programming tool that governs the possible complexity of

programs that can be encoded by a notation.

Level 1 liveness (informative; “ancillary”)

describes situations in which a visual representation is used as an aid to software design (Tanimoto

was referring to a user document such as a flowchart, not a programming language). This provides

a basic level of graphical representation, and can be made continuously visible, although mainly

because of the fact that a paper document can be placed beside the screen, rather than on it.

Level 2 liveness (informative, significant; “executable”)

describes situations in which the system can use the visual representation as an executable

specification (i.e. a visual programming language, but only as offering graphical input to the

compiler, rather than being continuously interpreted). This provides a basic kind of physical action,

in that modification of the representation will eventually change the program’s behaviour.

Level 3 liveness (informative, significant, responsive; “edit-triggered”)

describes situations in which the representation responds with immediate user feedback, for

example via interactive syntax checking. This allows users to make rapid actions, and often (after

noting the system response) an opportunity to reverse an action that was incorrect.

Level 4 liveness (informative, significant, responsive, live; “stream-driven”)

describes situations in which the environment is continually active, showing the results of program

execution as changes are made to the program. This provides visibility of the effect of actions.

 110

recording in

programming
 Some consumer programs, such as Microsoft Office, allow end-

users to record interaction, as an alternative to coding automation in

a scripting language (e.g. VBA) – the application automatically

generates the code to reproduce the original interaction, which can

then be executed, viewed and edited. Such macro recording may be

seen as implicit Level 4 liveness, since the process engendered by

the final code mimics precisely the actions used to generate it.

However, it also exemplifies the expressive power lost through the

lack of opportunities to abstract processes across time (e.g. iterative

loops) or context (e.g. conditional statements).
music as

programming
 Church, Nash and Blackwell (2010) use music as an analogy to

programming, to illustrate the similar trade-off in the recording of a

musical performance. Using a MIDI or acoustic instrument to

record a ‘live’ musical performance, in realtime, allows “direct

involvement” in music (Leman, 2008), during which the effects of

actions (on the instrument) are continuously and immediately

audible. Sequencers are unable to sustain Level 4 liveness after the

point at which the performance is captured, instead providing sub-

devices (e.g. Arrange Window, Score Editor, Piano Roll, etc.) each

allowing the visualisation and editing of specific and distinct

aspects of the recorded data, where interaction is driven by visual

feedback, and less frequently auditioned by spooling to the

appropriate point and initiating playback. This subsequent process

of transcribing, abstracting and editing the result, as in a DAW,

significantly lowers the directness and liveness of interaction.
liveness in music Table 5 gives programming and musical examples that conform to

each level of liveness. Liveness is a property of the notation and the

user experience (Church, Nash, and Blackwell, 2010), and varies

between both interfaces and users, depending on the interface’s

implementation and user background, respectively. These examples

are only offered as a guide, to expose general trends and factors in

common interaction styles; specific programs may be more (or less)

susceptible to liveness issues, or mitigate issues in one part of the

program with the provision of another. Indeed, the variety of tools

and UI styles in a DAW can be seen as an implicit attempt to tackle

the apparent trade-off between liveness and abstraction power.

Table 5 – examples of

the each liveness level,

in both programming

and music

(based on Church, Nash

and Blackwell, 2010)

liveness in programming... in music...

1 flow chart, UML diagram composer shorthand,

arrange window

2 code editor, compiler score, data list, piano roll,

CSound, OpenMusic

3 code completion, syntax

highlighting, edit & continue

soundtracking, live coding

4 macro recording sequencer/DAW recording,

live performance, mixing

111

 At the lowest end of the scale, Level 1 liveness can be seen in the

offline notations used by composers, such as the sketching of ideas

and musical processes on paper. The macro- and meta-editing

aspects of musical arrangement, such as the visual delineation and

decontextualisation of musical phrases, repeats, forms, and

structures represent highly-abstract levels of musical notations that

are only tacit
9
 in the final sound. As such, many of the functions of

a sequencer’s Arrange Window might be seen in this context – part

boundaries, sections, markers, labels, colours. The central position

of this view affords a top-down composition process, contrasting

the bottom-up process afforded by the wider sequencer user

experience – that of recording the individual notes and musical

events through performance capture. In modern packages (e.g.

DAWs), direct manipulation techniques, such as drag-’n’-drop and

related clipboard operations allow macroscopic editing that affect

the musical output and improve the liveness of the arrange window,

but still rely on other interaction techniques to permit the entering

and editing of individual notes and musical events.
Level 2 and 3 liveness

in musical scenarios
 The majority of other computer music scenarios are centred on

editing a visual specification of what will happen in the music, as in

both a sequencer/DAW’s GUI and trackers. Such programs thus lie

somewhere on a continuum between Level 2 and Level 3 liveness,

based on the immediacy and quality of feedback provided. In most

modern music programs, the music encapsulated in a visualisation

can be interpreted and realised (executed) in realtime, at a quality

approaching that of the final master copy – thus presenting no

technological impediment to liveness; which becomes an issue for

the interaction designer. One factor that determines the perceived

liveness of an editing episode is the delay between the editing

action and the auditioning of the result – in Level 2 liveness, the

user completes an edit, then manually triggers an update; in Level 3,

the update is triggered by the edit automatically.
Level 3 liveness

in live coding
 In live coding, programming languages like SuperCollider and

ChucK have modes where music or audio source code is subject to

automatic interpretation (Blackwell and Collins, 2005), often used

for editing a live performance. The incremental edit-and-update

style favours progressive, generative, or textural musical styles (a

“code and run” aesthetic – ibid.) that focuses on processes, rather

than events – and where it can be hard to address individual notes.

Such Level 3 liveness, however, greatly improves the directness of

interaction, in contrast to the Level 2 liveness of older, non-realtime

languages such as CSound and OpenMusic.

9
 Literally, from the Latin, tacitus, meaning “to be silent”. In music, tacet similarly denotes silence.

 112

 In mainstream music programs, such instant, automatic feedback

is only practical for very simple edits. In many programs, for

example, entering or selecting a single note will trigger playback of

that isolated note. For more involved edits, the user must retain

control of how the wider musical picture is presented (e.g. through

playback controls on the transport bar), or otherwise risk a fatiguing

cacophony of sound (arising from the program’s relentless playback

of even the most trivial changes) or the perceived loss of control

and transparency if the program itself triages edits for playback.
controlling playback

in a sequencer/DAW
 When sonic feedback is actively managed by the user, the

program supports only Level 2 liveness, and it becomes the user’s

responsibility not only to chose when to trigger playback, but to

select what should be played back. In sequencers and DAWs,

playback is controlled using the transport bar, using the metaphor

of a tape recorder, with play, record, pause, fast-forward and

rewind buttons. As such, the program also maintains a separate

cursor for playback (song position), independent of other editing

cursors or focus. Consequently, when a user finishes editing a part

of the music, it is necessary for them to align (spool) the playback

cursor to the edited section, before the edit can be auditioned. To

accelerate the process, many programs allow markers to bookmark

common points in the piece, and associate them with specific

shortcut keys. However, managing bookmarks requires foresight

and planning, representing both a premature commitment and an

attention investment (Blackwell, 2002), reducing the dynamism of

the creative user experience. The cost of auditioning the music

encourages the user to audition the music less frequently, and

refocuses their attention on the notation and visual feedback, rather

than more concrete aural feedback (see Chapter 8).
controlling playback

in a soundtracker
 By contrast, the keyboard bias of soundtrackers requires them to

constantly maintain a single editing focus, to indicate which part of

the notation keyboard input will be directed. Playback of the song

can be easily triggered from wherever this editing cursor lies within

the music, using a single key press (e.g. F7). During playback, the

editing cursor can also be slaved to the playback position, to ensure

the visual and aural focus remain aligned. In such cases, the editing

cursor functions like a sequencer’s playback cursor, enabling

similar realtime (live) music entry and editing. At other times, the

visual and aural focus remain closely linked, and the reduced cost of

auditioning edits encourages the user to rely more on the aural

feedback, rather than the visual representation in the notation.

 The architecture of the tracker song similarly encourages tighter

feedback cycles. The user’s focus is narrowed by the division of the

113

song into a sequence of short musical phrases (patterns, typically 4

bars in length), the start of which presents another point from which

playback can be triggered (Ctrl-F6), using a single key press, and

over the length of which playback can be looped (F6). This allows

the user to listen to a recent edit with the appropriate musical pre-

and post-amble, to cheaply audition it in the local musical context,

without having to move a cursor. The entire song can be similarly

played back from the start, using a single key press (F5). Naturally,

it is just as simple to stop any current playback (F8).

 In trackers, liveness is improved by attenuating both the delay and

effort involved in requesting aural feedback. Moreover, the physical

actions can be learnt, so that the user triggers aural feedback after

an edit reflexively; cognitively, it becomes automatic to hit F6 or

F7, to hear what it sounds like. Under such conditions, the tracker

user experience supports Level 3 liveness (see Chapters 7 and 8).
liveness and flow In Church, Nash and Blackwell (2010), Tanimoto’s concept of

liveness was combined with the systems of musical flow model

(outlined earlier, in 4.2.3), by annotating the constituent feedback

loops with their corresponding level of liveness. Figure 10 shows

the two musical scenarios discussed in previous paragraphs.

Figure 10

Feedback loops in two

music program types,

annotated with

levels of liveness

(from Church, Nash

and Blackwell, 2010)

(a) digital audio workstation (DAW)

(b) soundtracker

 Figure 10 (a) illustrates the divided sequencer/DAW user

experience: a performance loop, straddled by notations representing

two of the common DAW editing ‘devices’ (see 2.1). Interaction

centres on capturing a performance, the notation-less process of

which implicitly supports Level 4 liveness. Outside performance,

multiple visual notations compete to present different aspects of the

musical recording, splitting interaction between different views or

windows, each allowing editing with Level 2 liveness, focusing the

interaction on visual, rather than aural feedback. By contrast, the

user experience of the soundtracker is illustrated in Figure 10 (b) –

the manipulation loop, augmented by feedback from the domain; as

in the basic manipulation-driven system archetype (see Figure 8).

The tracker prioritises a central notation, and supports rapid sound

feedback to support higher (Level 3) liveness during editing.

 114

 Church, Nash and Blackwell (2010) likened the soundtracker user

experience to that of standalone code editors (like Emacs), both

favouring keyboard input, text output and expert use. Indeed, the

similar interaction modalities and audiences engender equivalent

flow schematics, as shown in Figures 10 (b) and 11 (b) respectively.

Figure 11

Two programming

experiences, modelled

using feedback loops,

with source code (n/nS),

and other notations

(nP, a code profiler; and

nA, a static analyser)

(from Church, Nash

and Blackwell, 2010)

(a) an integrated development

environment (IDE)

(e.g. Visual Studio)

(b) standalone code editor

(e.g. Emacs)

 The article likewise drew an analogy between integrated

development environments (IDEs) and the integrated musical

production environment of the DAW. However, here a distinction is

evident; as IDEs retain the code editor as a central, primary

notation, extending the system’s functionality with ancillary

notations (e.g. code profiler, static analyser) that remain in the

periphery of interaction, as illustrated in Figure 11 (a). As such, this

might suggest a future direction for DAWs, were one of the existing

sub-devices to be extended and given greater prominence in the user

experience.

 115

chapter five iMPULS: internet music program user logging systeminternet music program user logging systeminternet music program user logging systeminternet music program user logging system
 This chapter outlines the structure of an investigation into

virtuosity and flow in computer music interaction, focusing on

the analysis of interaction logs from a large number of users of

reViSiT (Nash, 2004), an established tracker program, as well as

sequencer/DAW packages.

 In the experiment, participants download and run the software

on their own computers, using it to write music. As they use the

software, information about their interaction with the program is

gathered. When the program is closed, the recorded data is sent

to an Internet server, for collation and analysis. This chapter

details the workings, development, preparation, and running

of the system, ahead of subsequent chapters, where the

experiment’s results and findings are presented.

 116

5.1 objectives

 As established in Section 3.4, creativity research presents a

methodological dilemma. Controlled experiments seek to observe

or measure specific cognitive processes under controlled or

constrained conditions, which lie at odds with the freedom or

autonomy that psychologists and artists recognise as crucial to

many forms of creativity (Sternberg, 1999).

 Other investigations focus on reviewing the biographies and

repertoire of the “creative genius”, which often relies on

subjective, introspective, and fragmented accounts of the subject’s

motivations and experiences, whilst also restricting the type of

creativity to that recognised by society, historically (H-creativity)

– rather than the individual, personally (P-creativity) (Boden,

2004). With the rise of the Internet and online end-user

communities, subcultures have appeared, where audience tastes

are more specialised, feedback is less critical, and the threshold for

entry and recognition is lower. As a result, home users are

increasingly becoming the target audience for music software

developers (e.g. Band in a Box, Guitar Hero), whose focus is

shifting away from career music production professionals – and, at

the same time, from creative end-product to user experience.

 The goal of our experiment is to objectively investigate

creativity “in the wild”, and investigate the role of interface

design in the creative user experience, looking empirically:

• for evidence of virtuosity, where users have developed skills

enabling them to tackle more challenging or complex creative

tasks; establishing UI factors supporting (or hindering) learning.

• for evidence of flow, where users demonstrate an ability to stay

focused and engaged with a task, as virtuosity is developed;

establishing UI factors supporting (or hindering) flow.

• at end-user creativity, not just creative geniuses, where a user’s

attainment is measured personally, and the user experience drives

itself, rather than the promise of an end result or prize; where the

task is intrinsically-rewarding.

• at a private, uncontrolled setting, where the user is free to

experiment in their own space, with their own PC and software,

in their own time, in their own way; where ego, self-doubt and

extrinsic factors are less involved.

• to develop quantitative techniques for evaluating user

experiences and interfaces, in creative authoring software, that

can be efficiently and economically used to highlight issues with

virtuosity, flow and user experience.

 117

5.2 the reViSiT soundtracker

 This section introduces the reViSiT software, the platform used in

later analyses of virtuosity and flow. As an example of tracker

software, reViSiT provides the opportunity to scrutinise a user

experience, in which users have observed many hallmarks of

‘flow’ – concerning focus and concentration, skill development,

action-awareness merging and even a distorted sense of time.

 These next pages describe the software and its user community,

and how both were prepared for the ensuing investigation.

 5.2.1. background
 With many of the established tracking packages based in DOS, the

popularity of tracking waned significantly with the advent of

Windows XP in 2001. Popular tracker programs, such as Fast

Tracker 2 (FT2) and Impulse Tracker 2 (IT2) could no longer run

in this new environment. At the same time, the rise of the desktop

studio and the increasing power of home computers encouraged

manufacturers to move from hardware-based DSP to software.

Tracker users migrated to soundcards and sequencers compatible

with new innovations, such as software synthesizers and effects

(e.g. VST plugins) and high-quality, low-latency audio drivers

(e.g. ASIO, WDM), unavailable in most trackers.

 reViSiT was originally developed as “VSTrack” (Nash, 2004),

an academic project to resurrect the tracker user experience and

integrate it with that of sequencers, allowing tracker musicians to

take advantage of modern music technologies and provide

sequencer users access to the benefits of the tracker user

experience. The project endeavoured to offer the best of both

worlds, wherein a composer might enter music that is suited to a

MIDI or acoustic performance using the sequencer’s recording

process, but switch to the tracker’s notation-mediated interface,

for musical edits requiring a more flexible interaction cycle – such

as drum or synthesizer programming.

 5.2.2. program overview

 Pictured in Figure 1, reViSiT unifies tracking and sequencing by

presenting a tracker interface as a VST Instrument (VSTi) plugin,

which can be loaded into any compatible VST host (e.g. a

sequencer).
1
 Unlike most VSTi plugins, input comes not from

realtime MIDI messages, but from asynchronous (“offline”)

computer keyboard interaction. Using the tracker interface, the

1
 VST (virtual studio technology) is an industry-standard plugin format, developed by Steinberg,

for hosting software-based effects and synthesizers in compatible music programs.

 118

user works on a parallel tracker song, which is rendered and

relayed to the host for audio output or further processing, as

needed. The plugin maintains its own playback and edit cursor,

allowing the user to freely audition any part of the tracked music

during editing, but automatically synchronises playback, when it is

triggered from the host. Optionally, the edit cursor can also be

synchronised to the host, to allow realtime musical input to the

tracker, during playback.
VST plugin

architecture
 Functioning as a plugin, the hardware layer is abstracted;

reViSiT simply populates an audio buffer, which becomes the

responsibility of the host to handle further. As such, reViSiT

automatically works with any audio devices and protocols

supported by the host program, such as ASIO, WDM, DirectX, etc.

Similarly, the host’s support for VST means that any audio or

MIDI output from the plugin can be connected with other VST

plugins, allowing reViSiT users to avail themselves of the host’s

various software synthesizers, effects, and hardware connections,

from their tracker song.

Figure 1 – the reViSiT tracker plugin, comprising a main editor window (showing the pattern editor)

and toolbar (which simply acts as a placeholder or anchor, within the plugin host environment; see

Section 5.2.4). The UI is based on that of Impulse Tracker 2 (see Section 2.2 for a detailed description of

the program and notation) – a number of extensions to which are visible in the figure, including colour-

coded instruments and channels, high-definition sub-row editing, context-sensitive graphical editing

guidance and feedback (e.g. pitch represented as a piano keyboard), and an integrated help system.

 119

Figure 2

reViSiT (right) running

under Cubase SX (left)

tracker heritage

and compatibility
 reViSiT’s interface and notation draws heavily from Impulse

Tracker 2 (IT2, see Section 2.2.1); user input is almost exclusively

through the keyboard, and both data and UI objects are almost

exclusively represented as text. The program supports the

importing of older tracker formats, including MOD (Amiga), XM

(FT2), IT (IT2) and S3M (ST3), but its expanded feature set can

only be saved in its native format, which simply packages together

an XML description of the music with the samples used (in WAV

format) in a compressed ZIP archive. This data is automatically

embedded in documents saved by the host application, but can

also be exported to a separate file, to facilitate open interchange of

music and samples with other programs and users.
target audience reViSiT provides a natural upgrade path for users of older

trackers (notably IT2 and ST3), remaining faithful to their use of

terminology and keyboard shortcuts, allowing users to draw on

knowledge and skills learnt previously.

 At the same time, the project aims to attract new users and

develop the user experience. For musicians and sequencer users,

the learning requirement associated with tracking software

represents a large attention investment (Blackwell, 2002), which

discourages users from even engaging with the technology. As a

plugin, the investment is reduced, allowing new users to

experience tracking without leaving their existing music software

environment. At the same time, reViSiT includes a tightly-

integrated support system, providing popup, context-sensitive crib

sheets in many parts of the program to reduce the onus on

memory, in addition to visually-rich help and tutorial pages (see

Figure 3) that encourage learning-by-doing and experimentation.

 120

Figure 3 - reViSiT’s

integrated support

documentation

(top) context-sensitive

popup tooltips explaining

notation usage and syntax

(pitch column shown, left)

or providing reference lists

such as effects or keyboard

shortcuts (shown right)

(bottom) integrated HTML

Help documentation, with

more detailed guides, tips,

tutorials, and descriptions,

and pages also linked with

current program focus.

5.2.3. reception and user community

 reViSiT was released as closed-source freeware, and quickly

became popular with users and reviewers, earning a place in

Computer Music magazine’s Freeware Top 50 awards; described

as “perfect for those who need both audio-handling power of the

modern DAW and the quick, hands-on, detailed editing that

trackers provide.” (Robinson, 2007)

 121

user backgrounds A short survey presented to users before they downloaded beta

versions of the software produced 4,981 responses and suggests

the plugin format is successful in attracting both former tracker

users and more traditional musicians without tracking or advanced

computing experience:

• 71.9% (3,583) stated proficiency in music

• 41.5% (2,066) stated proficiency in tracker

• 38.7% (1,926) stated proficiency in programming

• 27.8% (1,339) stated proficiency in music only

• 19.8% (974) stated proficiency in tracking & programming

 These figures only record downloads, and do not necessarily

reflect the backgrounds of users that go on to use reViSiT on a

regular basis. Indeed, other user feedback suggested that those

with tracker experience were more likely to continue with the

program, and that novices were perhaps still intimidated by the

tracking environment. This reinforces the value of the plugin

format, by lowering the barrier to trialling the software and

allowing analysis of the pivotal initial moments and obstacles for

users that do not continue beyond the first few minutes.

 Users that persevered have formed an active online community,

centred on the reViSiT Forum.
2
 The forum acts as the official news

source of the project – new releases, development updates, and

related topics. Over 350 discussions (almost 2000 posts in total)

cover a variety of subjects; chatting, posting comments,

seeking help, reporting problems, suggesting changes or

features, and exchanging music tracks (or even videos)

made with reViSiT. As a result, even though the source

code is closed, individual users have a large and

perceptible influence on development of the program and

interface, wherein design decisions are proposed, then

discussed and debated by users, before being put to code.

 Within the online community, a handful of more

enthusiastic users
3
 make greater contributions to the

project: maintaining a presence on the forum,

staying abreast of project developments, providing

detailed test reports of new versions, and sharing

their knowledge and music with novice users and

other visitors. Indeed, it is the openness and

enthusiasm of reViSiT’s user community that have

enabled this study of the program’s real-world use.

2
 http://forum.nashnet.co.uk

3
 See Acknowledgements (p5).

forum and

user community

Figure 4

(front to back)

reViSiT forum,

website and FAQ

 122

 5.2.4. development and testing
 To gather as much data as possible, from as many individuals as

possible, the study has to attract people to the software and also

ensure users are not deterred by other factors.
data privacy

concerns
 A limited number of users will join the experiment out of

enthusiasm for the research or loyalty to the developer, but most

will be more circumspect about surrendering their data and

privacy, especially in light of the recent blight of spyware and

attempts by both hackers and companies to gather user data.

Ethical approval and the mark of the University of Cambridge will

allay some fears, but provide little incentive for users to update to

a special version of free software that collects user data.
participation

incentives
 Like many experiments involving human volunteers, a more

tangible incentive is required. For small studies; sweets, vouchers

or money are often used, but the size and spread of our sample

makes such offerings impractical. An alternative is to make the

experiment the reward itself, offering an experience that

individuals would otherwise find difficult or too expensive; the

promise of money saved, rather than received.
quid pro reViSiT Since a version of reViSiT was already freely available, there

was little to entice current users to take part. However, prior to the

research, a “Professional Edition” of the software had been

mooted on the forum, promising a significantly expanded feature

set, tailored and priced for professional users and enthusiasts.

Consequently, it was decided to develop this edition of the

program to give away to experiment volunteers. Perceived as a

monetary reward, it provides an incentive to take part in the

research, as well as compensation to offset privacy concerns.

 Figure 5 lists the four main features exclusive to the reViSiT

Professional, not only designed to extend the free edition, but

representing innovations not generally found in other programs,

designed to broaden the appeal of the program to musicians

working with video, audio, MIDI, and trackers, respectively.

Figure 5

exclusive features in

reViSiT Professional

surround sound support – extending stereo output to 5.1 channels, with

special notation syntax and pattern effects to address extra panning options

(e.g. Cartesian or polar coords, depth and rotation slides, discrete channels).

advanced output routing – enabling different notes, samples, instruments,

or channels to be sent to the host on separate audio outputs (for effects and

post-processing), where routings can be set on-the-fly using pattern effects.

MIDI-triggered patterns – allowing users to control the order of playback

via MIDI, triggering patterns using notes from a MIDI device or recorded

track, enabling live arrangement or editing via the host’s visual editors.

hi-res timing & hi-def editing – addressing the perceived rigidity and low

timing resolution of trackers by enabling users to ‘zoom into’ or ‘open-up’

the pattern grid, placing musical events between rows (see Figure 1).

 123

 Once registered, a user is solely responsible for the running of

the program. Whereas lab-based participants may feel morally-

obliged to complete the prescribed procedure and not walkout in

the middle, there is little to inhibit our user from abandoning the

experiment, by simply closing and deleting the software.
reducing the impact

of program errors

user feedback

and testing

 Program errors are especially likely

to discourage and deter participants.

Whereas bugs and oversights are more

easily tolerated in free or academic

software, users will demand a complete,

fully-tested, and reliable program if it is

billed as a commercial product. Moreover,

errors in the program may also interfere

with user interaction, where unanticipated

program behaviour risks impeding the

very flow sought by the experiment. As

such, significant effort was invested in the

testing of the reViSiT Pro, and the code

to support the experiment. Figure 6

summarises the various milestones in the

development and testing of reViSiT.

 The limited resources of lone developers

are often most keenly felt in aspects of

quality assurance. The user interaction

and audio engine in reViSiT is complex,

especially compared to more conventional

effect and instrument plugins, and whilst

the new features were quickly coded,

debugging the complete program took

significantly longer.

 Defensive coding and unit testing helps

reduce bugs that appear in individual lines

and sections of code. Object-oriented,

interface-driven coding techniques also

help simplify the integration of different

system components. However, it can be

hard to anticipate how a system will be

used, and thus many issues only present

during use. The problem is arguably

exacerbated for developers of authoring

tools, which seek to support flexibility

and creative freedom, and where original

and unforeseen uses must be expected.

Figure 6

development timeline

 124

 Moreover, the plugin architecture presents extra debugging

challenges. The VST plugin specification (Steinberg, 1999) tries to

standardise the communication and interactions between plugin

and host. However, manufacturers have different approaches and

styles, and thus host behaviour varies. Many hosts stray from the

specification and others implement only part of it, requiring plugin

developers to extensively test plugins for compatibility problems.
VST plugin

keyboard support
 For example, many manufacturers assume that plugins will be

manipulated using the mouse, and thus provide little or no support

for keyboard input. The VST specification contains no mechanism

for hosts to tell plugins what, if any, keyboard support they

provide. Even where support exists, many hosts relay only a

subset of keystrokes to plugins, holding back others for their own

use, regardless of whether the plugin has focus or not.
4

multi-threading

and thread safety

 Another pitfall for developers has emerged relatively recently,

and concerns the increasing use of multi-threading. As a plugin,

reViSiT exists as a dynamic-link library (dll), a set of routines that

run in the threading environment of the host program. Thread-

safety problems can arise when functions are called concurrently

and use shared resources (e.g. memory). Modern VST hosts run

high-priority threads for audio processing in parallel with lower-

priority threads for the UI, meaning users create, delete and

change musical data that is, at the same time, in use by the audio

engine. In the worst case, delayed execution leads to glitches or

‘dropouts’ in the sound output (for the audio thread) or stuttering

and poor responsiveness in the interface (for the UI thread).

 Newer versions of reViSiT use mutex objects to guard against

such conflicts, where threads wait until it is safe to access an

object. At the same time, identifying and debugging concurrency

issues can be problematic and time consuming. Unlike some code

errors, memory and resource conflicts can be hard to reproduce,

and may only cause problems in a tiny fraction of use cases –

when multiple threads are unfortunate enough to contend for the

same object at the same moment.
5

4
 In tracking, keyboard support is paramount and, despite trying various workarounds (e.g. keyboard

hooks and other Win32 ‘hacks’), no solution ensures uncensored keyboard input reaches the plugin

window in every host. In many cases, the host’s parent window intercepts, filters, or blocks keystrokes,

allowing users to click in the plugin, but not control it by keyboard. In what became an undesirable but

necessary compromise, reViSiT’s UI was split into two windows: the standard VST plugin window

becomes a simple, mouse-controlled transport-/tool-bar, created and positioned by the host; the main

editing environment resides in a separate window spawned by the plugin itself. This window is not

owned by the host, and thus receives unfiltered keyboard input from the OS directly. The impact of the

split UI is minimised by making the toolbar functionality superfluous, duplicated in the editor window.
5
 For example, if two threads access a shared resource roughly once a minute, and that access takes

10ms, the chance of a collision, in a given minute, could be as low as 0.000003% – the code could run

continually for 8 months before an overlap occurs, which may not even then lead to an error.

 125

automated feedback

and crash reports
 As such, it is not possible for developers to test all eventualities,

and the burden must be shared between a wider circle of testers,

using pre-release alpha and beta versions of the software, and

across different computers, hosts, and interaction styles.

 Although some users have programming experience, many come

from a non-technical, musical background and are unable to give

technical details when issues occur; many others were more

interested in simply using the program, rather than helping with

testing, and don’t bother to email about problems they encounter.

To address this, reViSiT 0.92.1 introduced an automated feedback

system (Figure 7), allowing the program to easily send user

feedback directly back to the developer, along with technical data

describing the fault and code location.

Figure 7

reViSiT’s integrated

user feedback feature

(right) status bar button;

(below) feedback dialog

 The mechanism can be triggered manually, to comment about

the program or report a soft failure (unexpected, but non-

catastrophic behaviour, not prompting an explicit error message).

In the event of a hard failure (an unhandled exception or program

crash), the mechanism activates automatically. In both cases, a

dialog appears, asking to send technical information (a stack

dump, with system and error details) and also asking the user for

any additional information they can provide, including a message

(error description, steps to reproduce, recent system activity, etc.),

screenshot, or copy of the music data being edited.
 The feature has been invaluable in fostering user feedback, and

accelerating the debugging process. The stack dump can be used

to recreate the crash, using a debugger, which automatically

pinpoints the offending line of code and provides the function call

context leading to it. In threading issues, where an error occurs in

one part of the code but is triggered by another, the combination of

the stack dump and a user comment reveals the nature, context and

cause of the problem, which is otherwise very difficult to identify.

 126

 5.2.5. distribution
 reViSiT is primarily distributed as a free download from the

developer’s website
6
. At times, the software has been included on

magazine coverdiscs and CD shareware collections. More

recently, it has appeared in major online shareware libraries, such

as CNET Download.com, Tucows, Brothersoft, etc. To ensure their

information remains accurate and current, a PAD (Portable

Application Description) file is now maintained on site.
 Two mailing lists, covering roughly 6,000 reViSiT users and all

experiment registrants, are used to announce new releases. New

versions are typically released at the beginning of the week, and

only announced on the forum, so that initial use is largely

restricted to experienced users and enthusiasts – those most eager

to trial new features and best suited to catch teething problems. In

the absence of any problems, a wider release is made the following

Friday to catch people as they check emails before the weekend,

when they are most likely to have time to use the program. The

mailing list includes several press contacts and music technology

websites, who subsequently carry the announcement to their

readers, attracting new users and extending the surge of

registrations and downloads.

5.3 system architecture

 The user study begins with the collection of interaction data from

the user’s computer. The data is uploaded to a central server, from

which it can be downloaded for collation and analysis. Figure 8

illustrates the overall architecture of the system and flow of data

within the experiment.
7

 This section describes the methods and technologies used at

each stage, detailing: the online procedure for registering new

participants; the extensions made to the program under study

(i.e. the reViSiT tracker) to record relevant data; the client- and

server-side mechanisms for delivering that data to Cambridge. The

tools used to collate, filter and analyse data from different sessions

and users are then discussed in the next section. Although our

focus concerns reViSiT and the tracker interface, the systems

described here are designed to be easily-adaptable to other

software applications and user environments.

6
 http://revisit.nashnet.co.uk.

7
 The code supporting the experiment is collectively referred to as “iMPULS”, an acronym for Internet

Music Program User Logging System. The name reflects the experiment’s attempts to capture the rapid

interactions in the tracker user experience, as mirrored by the names of many tracker programs:

Scream-, Fast- and, above all, Impulse Tracker, the original inspiration for reViSiT.

 127

Figure 8

System architecture

and data flow within

the experiment

(1) The user registers by filling in an online survey and providing an email address.

(2) The server generates an activation code, using the email address and a unique ID.

(3) The user downloads and runs the program, using the emailed code to activate it.

(4) While the program runs, user interaction data is collected, then sent to the server.

(5) Experimenters later download the interaction data for analysis.

 5.3.1 user registration and identification
 Participants register for the study through the experiment’s

website
8
 by filling in an online form and questionnaire (see

Appendix C). Following submission, the server automatically

sends an email containing an activation code to the address

provided by the user. This code is used, by the user, to activate

their copy of reViSiT Pro, and also, by the experiment, to uniquely

identify the user. The user registration and identification process is

summarised in Figure 8, illustrating how the user’s identity is

protected by separating the user’s personal and experiment data.
reViSiT activation To fulfil these roles, the activation code must:

• uniquely identify a user without disclosing their identity,

to compare users and track their development, whilst

ensuring an individual’s privacy is protected;

• discourage sharing of registration details, to ensure data

from each individual can be separated during analysis;

• be computable instantly and automatically, by the online

server, to ensure a quick and easy registration process;

• be verifiable without online access to a user database, so

the program can still be activated and used when an

Internet connection is unavailable.

 To achieve this, the code is a combination of two parts: a key

derived from the user’s personal identity, for their use in the

program, and an ancillary ID representing an impersonal identity,

for our use in the experiment. The user provides an email address

to the website during registration, from which a cryptographic

hash function generates the first part of the activation code. Hash

functions are lossy, one-way mathematical operations, where the

8
 http://experiment.nashnet.co.uk

 128

input data is not recoverable from the result. As a result, the user

then only has to provide their email address to the program for

authentication against their code, after which only the code is used

to tag experiment data, withholding the email address from the

experimenters. The remaining part of the code contains a server-

generated unique identifier to ensure there are no collisions as a

result of the hash function.
keeping track

of users
 Alternatives to requesting an email address were considered,

since it could be construed as an attempt to gather personal

information. For example, a network IP address could be easily

and automatically retrieved from website visitors as they register.

However, the rise in Internet users has led to the increasing use of

network address translation (NAT), which effectively maps

multiple users to single IP addresses. Another option would be to

generate a hardware ID, based on the user’s computer system.

However, this is more complex and invasive, and tracks the

system rather than the user, which breaks down if the user later

modifies or switches the system they are using.

 By comparison, using an email address holds several

advantages: a user’s email address is guaranteed to be unique; the

information is easy for a user to recall and enter into the website or

program; it needn’t necessarily betray personal information; and is

something many users are used to giving out. Additionally, it

provides a means for the experimenters to collectively contact

participants in the experiment, to notify them of important

software or experiment developments. To support this, the

mapping of IDs to email addresses are securely stored in a

database on the server,
9
 which handles delivery of the

experimenters’ messages without divulging the email addresses or

codes of individual themselves.

 5.3.2 data collection

 During use, the program records a variety of events relating to the

user’s interaction – both input and output. The data collected is as

full and raw as possible, to support not only the planned analyses,

but also allow for investigations that were not envisaged, without

necessitating the further collection of data.

9
 The storing of this mapping is also necessary for occasions when a user requires reminding of their

activation code, since the server must remember which unique identifier was assigned to which

participant. Theoretically, this enables a brute force attack, where an experimenter with access to the

database could use it to generate all the possible keys from the email addresses and experiment IDs

contained, and then compare them against the code used to tag specific interaction data. However, the

separation of this database from the experiment data increases the effort required for such an attack,

which can be simply averted by denying experimenters access to the database (e.g. having it

maintained by a trusted third-party).

 129

 At the same time, recording all data is not feasible, as it would

constitute too great an invasion of privacy and place a significant

processing overhead on the client program. The collection

mechanisms must not interfere with normal program operation or

use, as might be the case if the experiment data required too much

computer memory or processing power. Moreover, the data

collected must be quickly transmittable over the Internet, as the

program closes, without interrupting the user experience.

Table 1 – different

event frequencies in

the user experience

 in the order of... frequency range

interaction hertz (Hz) up to 10 Hz

audio kilohertz (kHz) 20 to 192,000 Hz

processor megahertz (MHz)

or gigahertz (GHz)

300,000,000

to 4000,000,000,000 Hz

 In programming, the process of instrumentation is used to record

and study program use, but can significantly reduce program

performance, as timing data is collected and stored at such a high

rate, for each executed function, line of code, or CPU instruction.

As illustrated in Table 1, the frequencies of interaction are an

order of magnitude lower than those relating to audio, which itself

runs at a significantly lower rate, compared to the computer

processor. As such, instrumenting a program to record user

interaction need have little or no impact on the user experience, as

long as it doesn’t delay or interrupt other program processes, such

as audio processing or disk access.
data encoding

and bit-packing
 To ensure as small a processor and memory footprint as

possible, events are bit-packed and stored in memory, then flushed

to disk during periods when the computer is idle.
10

 Figure 9 gives

an overview of the different log entries and data encodings used to

record each type of interaction event. Further technical details of

each event type are given in Appendix D.
 The corresponding data types are derived from a base class,

representing the members and functions generic to all interaction

log entries. This abstract data type provides a single data member

to identify the type of log entry, and declares pure and virtual

functions that specify an interface, allowing code to handle

10
 By default, the smallest data type (datum size) in the C++ programming language is 1 byte (8 bits),

which is typically then aligned to 8-byte (64-bit) boundaries to improve the speed of memory accesses.

In the best case, this means a simple true/false (1/0) boolean (bool) value takes 8 times the memory

required (1-bit); in the worst case, it can take 64 times. To pack the bits more densely, bit masks and

Boolean operations (logical AND, OR, NOT) are employed to address single bits within a byte (e.g.

the value of the n
th
 bit of x is accessed using the expression x & 2n-1). At the same time, a dedicated

compiler directive (#pragma pack(push, 1)) is used to override the alignment of members in the data

structure used to record log entries. The remainder of the program is unaffected, and thus free to use

faster, if more greedy, memory access methods.

 130

Figure 9 – an overview

of the different event

types recorded as part

of the experiment

collections of interaction events without worrying about the

differing event types and their implementation or encoding. These

functions require derived classes define code that:

• returns a human-readable description of the event (text)

• specifies a colour associated with the event type (colour)

• returns the object size (_size), for fast memory copying

 Additional functions are declared and defined for the loading

and saving of entries from file or memory, which can be

overridden by child classes (for example, to save entries of

variable length, such as those containing strings):

• loads event data from a file (load(FILE*))

• loads event data from a memory buffer (load(BYTE**))

• saves event data to a file (load(FILE*))

instrumenting the

user experience
 The timestamp used for the session is set with creation of an

iMPULS object, which hosts the functions, buffers and other

mechanisms used to manage data collection.
11

 However, hook

functions and data collection are not started until the

iMPULS::start() function is called, which should be triggered upon

successful conclusion of the program’s startup.

11
 The code to support data collection is contained in three files: a header file defining constants and

parameters (e.g. connectivity settings) (iMPULS_Constants.h), a header file declaring data types and

the support functions (iMPULS.h), and a source code file (iMPULS.cpp) providing the function bodies.

The code is integrated into an existing program’s source by including the main header file (#include

“iMPULS.h”) and creating a single, global instance of the iMPULS controller object. These files and

details about integrating IMPULS with other programs are available from the author upon request.

 131

 Hooked events (such as host notifications and help system calls)

are recorded automatically, through callback functions provided

by the iMPULS controller, but other events are recorded manually,

using explicit calls to an appropriate iMPULS function:

• keyboard(...) and mouse(...), called from the program’s

input handlers, upon user input.

• message(...), called from the program’s window procedure,

upon certain Windows notification messages.

• cursor(...) and focus(...), called as the user moves, within

or between controls, tabs or pages.

• command(...), called to log specific program functions as

they are triggered (e.g. as the result of input), or activity

not automatically caught by other handlers (e.g. occuring

as a result of activity in the host, such as tempo changes).

 Each function follows a similar procedure; constructing the log

entry using the appropriate data type (see Figure 9 and Appendix

D), then passing it to a function that adds the entry to the memory

buffer, which is flushed to disk as appropriate.

 5.3.3. data delivery

 An interaction log file is created for each user session with the

program. When the program closes, the file is compressed into a

ZIP archive, which the program attempts to send back to the

laboratory, over the Internet. In the event of failure, the archive

remains on the user’s computer until another attempt can be made,

whenever the user next runs the program. Repeated attempts are

not made immediately, to avoid interruption to the user experience

or normal functioning of the computer. Should new log files be

created before a previous one is sent, the file is simply added to

the archive awaiting transmission.
offline uploader Some computer musicians maintain a separate computer for their

musical activities, separate from the Internet. In such cases,

transmissions will always fail, log files will gradually build up,

and the data may never be sent for analysis. Thus, when a

specified threshold is reached, the program automatically compiles

a separate upload executable, containing the collected logs, and

prompts the user to run the package on a computer with Internet

access. Until they do so, the prompt appears as a reminder at the

beginning of each new program session, but can be dismissed after

5 seconds. When run, the new program simply uploads whatever

logs it contains, before marking itself for deletion when the

computer next starts.

 132

 To generate the upload program, the main program binary

(i.e. reViSiT.dll) contains a template copy of the upload program

as an embedded resource. Upon extraction, the new program

contains an empty ZIP archive as one of its own resources, which

the main program programmatically swaps for the archive

containing the user’s logs. The user is then prompted to save the

resulting executable (.exe) to disk, and run it on any computer

with an Internet connection (see Figure 10).

 Ultimately, only 130mb of data was delivered via this method.

Although this represents a small percentage (roughly 1%) of the

total data collected, the threshold implicitly ensures that a

minimum amount of data was gathered for each user, which

increases the relative value of the contribution.

Figure 10

reViSiT Experiment

offline uploader tool

 The development of reViSiT’s feedback and crash report system

(see 5.2.4) allowed early testing of different methods of passing

data over the Internet, avoiding interference from overzealous

security processes. Normal file transfer protocols, such as FTP, are

typically blocked; as is email (SMTP), whether using server

authentication or not. In each case, default firewall configurations

block the outgoing TCP port, requiring the user to manually open

them, which we can’t expect to happen.

 The solution was to use basic HTTP data transfer (web

communication), which firewalls don’t block because it would

disable most web access. The program therefore uses the built-in

functions of the Windows Internet API to send files as though they

were attachments on a web-based HTML form, generating the

appropriate commands in the HTTP protocol (PUT, GET). The

files are sent to an Active Server Pages (ASP) script, on a web

server, where they are simply saved to the server’s disk space.

 133

5.4 interactive visualisation environment (IVE)

 In order to efficiently manage the 20GB of collected data (see

Appendix G for an overview), a dedicated program, iMPULS|IVE

(iMPULS Interactive Visualisation Environment), was developed

to download, verify, collate, filter, visualise the user logs, and

support their analysis. The user interface is pictured in Figure 11,

illustrating the main window, containing a tree overview (left) and

object information (right), in which the data is presented and

visualised. For operations that take time, a second window (inset)

displays a text log, used to provide feedback during processing –

reporting errors, showing debug info or the status and progress of

analyses and other processes. Figure 12 presents an overview of

the program’s structure, which is further detailed below.

Figure 11

the Interactive

Visualisation

Environment

downloading and

checking the logs
 The program connects to the server containing the compressed

logs, and downloads them to a local disk using FTP, grouping

each user’s logs in separate directories (in Figure 12). Once

downloaded, the logs are decompressed and then loaded to verify

the integrity of the data (). The loading process reads events

piecewise, checking each for encoding errors and corruption.
12

12
 Unexpected values trigger an exception that rolls back the load process to the last known good event

and tries to step over unrecognised data. If an error is detected or the loading of an event fails, the file

pointer may not be aligned to the beginning of the next entry, preventing the loading process from

continuing. Data corruption is rare, but can happen as a result of faulty hardware (RAM or hard drive)

in the user’s computer, transmission errors, or bugs in the encoding algorithms. Since a single

misplaced bit can potentially invalidate hours of subsequent interaction data, the loading process

attempts to recover from failures, iteratively trying to restart from offsets after the error. Invalid offsets

quickly produce further errors, prompting the algorithm to move to the next.

 134

Figure 12

internal data structures

used in the Interactive

Visualisation Environment

 135

optimising data

and caching status
 Upon successful verification, log files are processed into a new

format, designed to accelerate loading and processing of the data,

during subsequent analysis and visualisation. Larger entries, such

those detailing files (iFILE) or windows (iWINDOW_Info), are

removed to separate files, and the remaining interaction events are

saved to a session (.ses) file (). While the program processes the

events, it maintains a running status of the user’s system – the

current focus, cursor positions, modes and other activity (such as

whether music is currently playing, or what the last triggered

command was). A snapshot of this status is appended to each

event before it is saved, so that the context of each interaction is

known without having to search previous events. The resulting

verified, and ultimately much smaller, session file can be

completely copied into memory, enabling events to be loaded

using very fast bit-copying functions (e.g. memcpy) and without

further checks. Such optimisations significantly improve the

loading times, allowing analyses and visualisations that are run

over the entire dataset to execute in minutes rather than hours or

days. This faster feedback cycle improves the provisionality of

such activities, facilitating the exploration of different approaches.

 5.4.1. visualisation and analysis

 Although many analyses were already planned, the experiment

was designed to support flexible exploration of the user experience

– allowing different aspects of the interaction to be explored in

greater detail, as their relative importance was established. As

such, the tool was designed not only to manage the execution of

the experiment, but to provide an experimental platform for testing

new analyses and visualisations of the data.

Figure 13

visualisations in

iMPULS|IVE

(see Appendix E

for specific details of

visualisations used)

 136

Shneiderman’s Visual

Information-seeking

Mantra

 In this way, the application provides capabilities consistent

with Shneiderman’s Visual Information-seeking Mantra (1996):

“Overview first, zoom and filter, then details-on-demand”. This

exploits the visual-processing and pattern-matching capabilities of

the human brain – providing as many different visual perspectives

as possible and allowing the user to guide the visualisation

process, in order to identify trends and relationships in data.
visualisation and

the scientific method
 Visualisations, such as those in Figure 13, can suggest both new

analyses and findings, but the added flexibility increases the risk

of cherry-picking data – focusing (possibly inadvertently) on

analyses that appear to support a specific conclusion or opinion,

and overlooking those that produce less clear-cut results. When it

becomes quicker and easier to perform analyses, it becomes easier

to over-analyse data, tinkering with a methodology or sample until

a finding is found. As a scientific tool, it is important to balance

the use of visualisation in its capacity for exploration versus

explanation (Tall, 1991). Appendix E details the visualisations

used to support and guide analyses in subsequent chapters.
overview first... The main screen (Figure 11) presents the data in hierarchical

(tree) form, with nodes for each user, containing nodes for each

user’s sessions, which themselves contain additional nodes for

files and windows described in the session. Selecting a node brings

up information about the corresponding object in the right pane,

which can also include summary information about the objects it

contains. For example, the root node provides an overview of all

users and sessions in the dataset; a user’s summary page presents

details about the user and all their sessions. This hierarchy is

explicit in both the interface and the internal data types used by

the program (see Figure 12).

Figure 14

(top) user and session

filters on toolbar;

(bottom) interaction

event filter dialog

 137

zoom and filter... The tree hierarchy allows the experimenter to ‘zoom in’ on

individual users or individual sessions, but other filtering systems

allow them to restrict analyses or visualisations to groups of users

or sessions (in Figure 12). Summary information for each user

and session is cached in a database, and can be used to include or

exclude users or sessions with certain properties. For example,

Figure 14 excludes users with under 30 minutes total interaction,

and sessions with less than 10 minutes time in the pattern editor.

 Individual logs can also be filtered with regard to interaction

events, limiting processing to specific event types (see Figure 14).

The text representation required by the Entry class (Figure 9)

enables events to be filtered using simple string comparisons –

looking for combinations of key words or phrases that appear in,

or are absent from, the description. Figure 14 also illustrates how

different subsets of events can be extracted, combining several

simple filters using logical operators.
13

… then details

on demand
 Once the dataset has been optimised and filtered, the program

offers different ways to analyse the data (), for visualisation or

exporting to another program, such as R or Excel.
 Analysis typically involves iterating over each user or session,

extracting quantitative information about interaction events. For

example, extracting the average keyboard input rate, for all

sessions belonging to a user, exporting them to disk as tab-

delimited or comma-separated values. Such interaction data can

then be cross-tabulated with data from questionnaires (see

Appendix C), enabling comparisons between users of different

background and levels of experience. Alternatively, where a user

has supplied enough data, similar observations can be made

between their formative and more recent stages of development to

look closer at the learning process – by, for example, looking at

behaviour, averaged over set intervals – and the role of expertise.

 As shown in Figure 12, analyses can be written for any Data

Object type, and typically operate on the collection of entries they

contain. As such, most analyses target the Corpus object, which

contains all the data in the experiment – allowing access to all

users and their sessions. An analysis is created by sub-classing the

abstract Analysis class, and implementing the process() function.

Compiler macros were written to abstract common or complex

analysis operations, such as iteration or the use of multiprocessing.

13
 Such filtering helps researchers visually explore the data, but can also greatly speed up data analysis.

For example, if an analysis only concerns keyboard input, the program can use the filtering system to

extract iKEYBOARD events to separate files, which can then be analysed without loading the full session.

 138

Figure 16 – analysis

options in iMPULS|IVE

 The user triggers analyses from the Analysis menu, shown in

Figure 16. A wide range of analyses were developed for the

reViSiT experiment, the specifics of which are detailed in the next

chapter. Despite their diversity, most analyses follow a common

procedure: loading, extracting, aggregating and exporting data.

Figure 17 presents an example code template for a new analysis,

which aggregates extracted data from sessions by user, and

enables the use of multi-processing – allowing the computer to

process more than one user at a time.

Figure 17

code template for data

analysis, using macros

(emphasis denotes

separate process)

multi-processing The multi-processing optimisation is achieved by performing the

analysis in two passes – a first pass that collects data from separate

users or sessions and saves it to a file, and a second pass that

collects the data from these files and aggregates it. Since no

session data is shared between users, the first stage, which

includes the costly loading of session data, can be split between

different threads. To implement this, the iMPULS|IVE program

simply spawns other processes of itself, passing a command-line

argument to them that defines an affinity. The affinity is an

integer, defining which ordinals in a given collection (i.e. users or

sessions) the process will handle. For example, in a two-process

 139

scenario the original program creates one new process with an

affinity of 1. With the original program assuming an affinity of 0,

the two processes will thus divide the collection into the sets

{0,2,4,6...} and {1,3,5,7...}, respectively. Processing is split using

the PREPARE_MULTIPROCESSING() macro. Analysis is restricted to the

appropriate ordinals, using the USE_MULTIPROCESSING macro, which

can be placed inside either the user or session loops, to split

processing by users or sessions, respectively. The compiler

macros, ON_COLLECT{…} and ON_AGGREGATE{…} are then used to define

what should happen in each of the two passes. The macros allow

unnecessary technical details to be hidden from the experimenter,

making it easier to follow the line of the analysis.

Figure 18

code template

for visualisation,

using macros

preparing

visualisations
 The visualisations developed for the program (Figure 13) follow

a similar template to analyses: loading, extracting and aggregating

data – as illustrated by the example code in Figure 18. Instead of

exporting the results to a file for use in another program, the code

represents data visually, on screen. The program’s separate

console window, inset in Figure 11, can also be used to quickly

prototype visualisations, using low-fidelity ANSI text.
 Visualisations are tightly integrated with the program, making it

difficult to split the workload between separate processes. In many

visualisations, the code itself still operates in two passes, where

pre-processing is needed to establish drawing parameters – for

example, in the case of normalising a graph where the maximum

value must be known before the others can be scaled. While this

makes processing slower, visualisations typically target single

users or sessions, so there is less data to process – though more

prolific users result in longer delays.

 In addition to their use as an analysis tool, visualisations are an

invaluable tool for monitoring the experiment and debugging the

client program, as discussed in the next section.

 140

5.5 running the experiment

 This section briefly describes the final preparations, launch and

running of the experiment. Table 2 provides an overview of major

events in this process.

2008 13 March reViSiT 0.92.1 released to testers, with data delivery code.

 17 October Experiment development begins.

 15 November Experiment website launched.

 reViSiT 0.95 Pro released to selected testers, with data collection code.

 1 December Experiment begins (announced on website / forum only).

 reViSiT 0.99.1 Pro released to public.

 14 December Experiment announced to mailing lists.

 reViSiT 1.0 Pro released, with full documentation.

 18 December Experiment announced in Computer Music magazine (Issue 134).

2009 6 January iMPULS|IVE development begins.

 4 May reViSiT 1.1 Pro released, with user-definable keyboard shortcuts.

 23 May Over 1,000 experiment registrations.

 6 September reViSiT 1.2 Pro released, with high-definition pattern editing.

 20 December reViSiT 1.3 Pro released, with features for novices (e.g. mouse support).

2010 9 May reViSiT 1.4 Pro released, with sample and instrument library screens.

 10 July Data received from over 1,000 users.

 26 December End of Experiment Questionnaire issued (see Chapter 9).

 Table 2 experiment milestones

 5.5.1. testing experiment code

 Testing of the data collection and delivery code ran in parallel

with the testing of reViSiT Professional (see 5.2.4). In debug

versions of the software, an additional console window is

displayed, in which logged interaction events are printed as they

happen, using Entry’s text() function. Log entries are created,

encoded for saving, then instantly decoded for display, thus

highlighting any problems in collection, encoding or decoding.

 After basic internal testing, the experiment code was integrated

with the reViSiT Professional versions already being tested by

selected users. This allowed a wider variety of interaction events

and styles to be tested, as well as a wider variety of user systems,

with different Internet connections and security (e.g. firewall)

configurations. It also broadened testing to include data delivery

mechanisms, which had largely already been proven, through their

use in delivering reViSiT user feedback (see 5.2.4). As more data

was collected, work began on the interactive visualisation

environment (IVE); designed to analyse the data, but also enabling

further verification and checking of the collected data (see 5.4).

 141

 5.5.2. experiment launch
 The experiment went live on 1

st
 December 2008. Like reViSiT

releases, the launch was staggered, to minimise the impact of

unforeseen teething problems, with the program, registration

process, and wider experiment system. As such, the initial

announcement was only made through the website and forum,

offering reViSiT 0.99.1 Pro – tested and complete, but lacking

documentation, which was added over the subsequent fortnight.

On the 14
th
, the experiment and reViSiT 1.0 Pro was announced to

the 6,000 users on the reViSiT mailing lists, by which time the

majority of issues had been addressed.

 In November, a press release was issued to several online and

print music technology publications, to catch their January issues,

due for release mid-December. The announcement was carried by

a number of websites, and appeared in the News section of

Computer Music magazine on 18
th
 December, 2008. By the end of

the month, over 500 individuals had registered.

 5.5.2. maintaining the experiment

The launch was followed by an initial surge in registrations, as the

novelty of the software and experiment attracted press coverage

and people found time to try the software during the holiday

season, and as existing reViSiT users migrated to the reViSiT Pro.

As the novelty wore off, so did the number of registrations.

 At the same time, only about a half of registrants went on to

provide data – others either failing the activation process (e.g.

providing bogus email addresses), overlooking the need for

suitable host software, or using systems away from the Internet.

 Furthermore, many registrants abandoned the program with only

limited exposure. Although this was expected, the experiment

objective was to observe users over time, as they developed skills

with the program. Longitudinal information was assured from

reViSiT’s existing users, but would only provide insight into

previously-developed expertise. Thus, to increase the sample, it

was necessary to keep the project, software and community active.

 Figure 19 – user sessions uploaded, week-by-week

 142

 This was achieved through a series of updates to the reViSiT Pro

program, addressing issues (including those exposed by the study)

and adding functionality to broaden the appeal of the program,

specifically to novices and new users. Each update prompted an

announcement; restoring the experiment to the news cycle,

increasing public exposure, and renewing interest. Appendix F

details the updates, and the justification behind each. The overall

success of this strategy is evidenced by the interaction spikes seen

in Figure 19, each corresponding to new releases of the software.

 Finally, in the closing weeks of the experiment’s run, a second

questionnaire was issued to gauge subjects’ subjective experience

of the experiment, as well as both sequencer (e.g. host) and tracker

software in general, probing factors such as their experience of

flow, use of notation, and changes in their interaction preferences

or perceived level of skill. The questionnaire form is presented in

Appendix C, results of which are detailed in Chapter 9.

 143

chapter six video study: tracking composition practices
 As data collection proceeded online, a video study of an expert

reViSiT composer was conducted to provide context for subsequent

analyses. This section provides an overview of the interaction in the

session, and makes general observations about the captured user

experience, with regard to flow, virtuosity, and liveness (see 4.2.4).

 In later chapters, these concepts are explored in more detail, using

a much broader sample of users and scenarios. To this end, this

qualitative, idiographic video case study not only provides a general

overview of the tracker user experience, but formed an exploratory

study that helped develop and focus later quantitative, nomothetic

analyses, many of which seek to generalise findings made here.
about the task

and subject
 A Dutch-based user who began using reViSiT in 2006 and since

became involved in beta testing, the composer selected for the study

uses the reViSiT tracker professionally, writing music for computer

games, TV and film, but is also a well-known music artist from the

MSX “demoscene” (see Section 2.2.2). Outside his professional

work, for both enjoyment and practice, he also specialises in

orchestral and FM synthesizer remixes and reversions of well-

known electronic, film, and video game music. In this pursuit, the

video records the composition of an original soundtrack for a

Warner Brothers “Road Runner” cartoon, completed over the

course of a single day (8 hours, with three 20-40 minute breaks), an

intrinsically-motivated task the composer set himself. reViSiT 1.3

Pro (running in Steinberg Cubase SX3) was used and also provides

the complete log of interaction during the session (see Section 5.3

for details).

 144

 The object hierarchy shows users and sessions in the study, plus the window tree of the

selected session. Selecting a window shows the map (see) of only that window and its

descendants.

2
The video pane displays and plays back recorded video footage, including audio. Videos are

synchronised with both the window simulator and session log. Scrubbing is supported using

the mouse scroll wheel, which can skip by events or fixed time intervals. Below the video, the

audio waveform corresponding to the before and after the current frame is displayed.

 The current reViSiT focus, the editor page and (where appropriate) tab or control.

The session log displays time-stamped interaction events immediately before and after the time

shown in the video. Events are colour-coded by type (e.g. keyboard, mouse, focus change), and

can be shown either as a sequential list, or spaced in proportion to their timing in the log.

The window simulation illustrates the changing configuration of the user’s workspace,

showing window positions and the current focus (in white), within the host (red) and reViSiT

(blue) software, at 1:4 scale. Mouse usage is shown using points (for clicks) and lines (for

drags), lightening the corresponding part of the representation. The simulation is synchronised

with the video and log, flashing the appropriate window rectangle as it receives user input. See

also Figure 4.

The session overview displays an overview of the entire session log, and can be used to move

within the session. The lower strip shows the distribution of events within the session, colour-

coded by type (as with). Sections with red background indicate accompanying video

footage, which when active, also show a preview of the audio waveform. Right-clicking the

strip opens a context menu with options controlling how the session log is displayed. Above

the strip, a histogram shows the distribution of selected events within the session, based on the

current event filter (see 5.4.1).

Figure 1 – Video analysis UI. Screenshot and description of the interface used to study

interaction logs with video footage, within the iMPULS|IVE program (see Section 5.4).

 145

methodology

 Following an initial review of the recording, interpretation of the

video and log was supported by several discussions with the

composer, which are quoted as appropriate. Figure 1 describes the

Video Analysis screen of the iMPULS|IVE application (see section

5.4), showing a frame from the video recording. The camera is

focused to capture the interaction around the hands and keyboard,

where the majority of activity takes place.
1
 The mouse is only

partially visible at the top of the frame, but rarely used and largely

restricted to rudimentary clicks in the host. However, all window

activity and mouse input is captured using log data, and simulated

visually beside the video. Corresponding events in the log, as well

as histograms of selected interaction events, are also displayed.
comparisons with

other studies
 It was hoped to conduct a similar study of sequencer use, but it

proved difficult to locate a subject to provide a useful comparison:

i.e. an intrinsically-motivated composer using the software to create

and edit music, in contrast to professionals (working for an external

goal and reward) or studio scenarios (which focus on hardware,

rather than software, interaction). Instead, references are made to

another longitudinal case study of a sequencer-based composer

(Collins, 2005, 2007), enabling comparisons between sequencer

and tracker approaches. A screen-captured video (with inset view of

the keyboard) of the Renoise tracker, made by a Renoise user

presenting a tutorial, is also referenced as appropriate.
2

6.1 general observations

 The vast majority of the user’s time is spent at the keyboard: 98.8%

of all tracker input is through the keyboard; even the host, which is

little used, was typically manipulated through keyboard shortcuts

(65.4% of host input), mostly for controlling song playback.
musical

touch-typing

 Interaction is characterised by periods of sustained typing, with

minimal body movements, punctuated by frequent auditions of

short passages from the pattern currently under edit. Notably, the

expert fluency shown in the video evokes common descriptions of

tracking as a form of “musical touch-typing” (MacDonald, 2007).

He moves around the pattern and music fluidly, maintaining a

continuity of activity, facilitated by learnt actions, sequences and

schema of screen and keyboard layouts, many of which are evident

in the video. Like musicianship, these skills are developed through

experience; they are easy to learn, but hard to articulate or teach,

and are developed through repetition and practice.

1
 The narrower angle also served to reduce the subject’s feeling of self-consciousness.
2
 http://www.youtube.com/watch?v=SQ5jTaXywuM [Last retrieved: 04/06/11]

 146

(a) navigation (b) editing (c) playback (d) piano (e) host

Figure 2

Common postures

observed in the video

(a) navigation – default posture left hand over LShift/Tab (move between

channels) and right hand over cursors (move between rows/columns).

(b) editing – two-handed pose during most editing (left hand

left of alphanumeric area, right hand over cursors);

(c) playback – after editing, left hand moves to and hovers over F7/F8 keys,

right stays with cursors (used to position cursor before and after, often Page

Up/Dn). The division of hands allows editing, cursoring, and play-back to

be dovetailed into one fluid motion, where one hand is in use whilst the

other homes into position.

(d) piano – both hands in alphanumeric area, for note entry, often

overlaid or interwoven (as in piano fingering for chromatic runs).

(e) host – withdrawal to the mouse for video-synchronised song playback and

sampler settings (e.g. HALion). Playback triggered with left thumb on

space, as left hand retreats from keyboard.

 Figure 2 details five common postures adopted by the composer

that illustrate his use of the keyboard. The navigation posture

serves as the default “home” position between more active periods

of pattern editing and playback, piano-like note entry and host-

based song and video playback. The sound of fingers frequently

brushing over keys is prominent in the video’s audio, suggesting

the use of haptic (rather than visual) feedback, in guiding the hands

around the keyboard.

 Though these emerge as ‘set’ positions, the composer’s generic

knowledge of program, keyboard commands and layout (spatial

schemata) allow him to adapt to the context, to optimise the speed

of editing, where the roles of hands are split between distinct roles.

For example, during editing, or when the left hand is otherwise

occupied, the right hand is used for control of playback.
playback and

editing threads

 At other times, though a hand will normally linger to terminate

playback, listening can be mixed with other activities (navigation,

editing). Here, playback and editing tasks are dovetailed, indicating

a degree of parallel processing in the user’s thinking, and which is

also evident in motor control.
3
 For example, where audio feedback

prompts an edit, playback often continues; the editing activity

monopolises both hands, and the termination of playback is

3
 Consequently, the sequential processing model of KLM-GOMS (Newell, 1990) is likely to overestimate

the time taken for tasks by expert tracker users, which may be better modelled by the critical path method

variation, CPM-GOMS (John and Gray, 1995).

 147

deferred until a more convenient moment, whereupon playback is

stopped with an almost inadvertent ‘stab’ at the F8 key. The F8 key

is often also instinctively prefixed to the triggering of playback (e.g.

F7), stopping and clearing the audio engine, whether such action is

required or not.

Figure 3

Renoise in use
Still from screen

capture video, inset

with view of keyboard

and mouse (from

online tutorial
2
)

bimanual

tracker control

 While the postures in Figure 2 characterise the keyboard-centric

design of the reViSiT tracker (as well as the earlier Impulse and

Scream Tracker), a bimanual keyboard-mouse style is evident in

other trackers. Figure 3 illustrates expert use of the Renoise tracker,

originally based on the influential and more graphical user interface

of Fast Tracker. The mouse and pointer, rather than the keyboard,

are used to navigate around the program and data (pattern).

However, the division of responsibilities between the hands is

consistent with that seen in reViSiT. In the video, the user spends

more time in visual search and is frequently forced to home the

right hand between the mouse and keyboard, for navigation and

editing tasks respectively; but the mouse integrates well with the

tiled and graphical elements of the UI around the pattern editor,

which accommodate greater and more varied functionality than that

found in reViSiT – also meshing well with the generally mouse-

based interaction with plugins.
minimal

window use

 Figure 4 illustrates the use of windows within the host workspace,

across the composer’s multi-display system. The use of two high-

resolution (1690x1050) monitors minimises the contention for

screen space, allowing him to dedicate the entire right screen to the

reViSiT window, using the left as a peripheral display for the host’s

windows, such as the project / arrange window, tempo track,

synthesizer settings (HALion sampler), mixer and video preview.
4

As such, the physical desktop layout, with the keyboard before the

4
 The unused area, left of the desktop, corresponds to a space reserved for an IRC chat client, used to

maintain contact with other members of the MSX demoscene, but largely ignored during composition.

 148

right monitor, affords the composer the impression of dedicated,

keyboard-controlled tracker system, and serves to contain his

attention and focus.
5

minimal window

management

 In his rare use of the host, window focus and mouse interaction is

concentrated in the project window, manipulating song position (for

playback), configuring tracks and sound sources, and infrequent

track editing. Aside from positioning feedback displays at the

extremes of the workspace, little consideration is given to

maintaining optimal layouts or maximising use of screen space,

where hidden or overlapped windows are instead simply brought to

the foreground as needed, from a cascade of windows in the upper-

left quadrant of the frame. Notably, though most attention is given

to the project window, it extends across less than one third of the

application, which little effort is expended to redress.
avoidance

of the mouse

 Mouse use in reViSiT is similarly rare, and simply appears to

serve for returning the window (and keyboard) focus after

excursions to the host. The window isn’t maximised, making room

for the sequencer’s transport bar, which is only used in a feedback

capacity, to provide information about, rather than control of, song

and video playback. Nonetheless, a notable amount of screen real

estate around the reViSiT window remains unused during the

several hours of interaction, which could easily be reclaimed by

sizing the window. Along with the host, this highlights the

composer’s antipathy towards mouse use and the management of

floating windows, which was also evident in discussions.

Figure 4

Window simulation

Windows are illustrated as rectangles (red = host; blue = reViSiT).

Mouse activity (clicks = dots; drags = lines) is shown by a monochrome

white-black gradient relative to each window, where each pixel in the

simulation represents a 4x4 pixel area on the user’s screen.

5
 Cubase’s transport bar also resides on the right monitor, beside reViSiT, but is used exclusively for

visual feedback during song and video playback, rather than control of it.

 149

6.2 chronological overview

 Interaction begins with an initial period of playback and

preparation, as the composer familiarises himself with the video,

aligns patterns to events in the cartoon, and loads samples in the

HALion sampler. This period is characterised by mouse interaction

in the host. Once complete, mouse use is largely limited to

repositioning the host song pointer before playback, and otherwise

avoided by the composer, who notes that “mouse usage for creative

things is a problem" and only accepts its role in the sampler because

he doesn’t try to use it creatively.

 After this point, the composer spends almost all his time with

both hands on the keyboard. Despite the MIDI keyboard beside it,

the computer keyboard is used for pitch-entry. Similarly, though his

studio contains a control surface, mixer, and many other MIDI

synthesizers and keyboards, they remain unused.
6

 After preparation, just over 15 minutes are spent recreating the

Warner Brothers theme tune for the start of the cartoon. Largely an

exercise in musical transcription, this period is characterised by

higher interaction rates and productivity, quickly producing a fully-

orchestrated arrangement of the jingle. During this period, the

composer does not reference an original recording or score of the

music. Instead, the composer enters and edits the music using audio

feedback to build a copy of the piece from memory, experimenting

with edits and identifying mistakes by ear.
composing by ear

 Consequently, audio feedback is in constant, frequent use, during

interaction. Playback commands follow even small edits, where it is

clear the composer uses the audio to understand the music he has

written, relying less on the visual notation. This illustrates the

central role of audition in manipulation-driven notation systems

(inset, see Figure 4-9). Occasionally, there is more sustained editing

between auditions, when the sound, he says, is more predictable.

“expand/explore”

approach

 This intuitive, exploratory approach to composition is evident

throughout the session, as the composer works linearly, drafting

and finishing small, sequential sections, rather than creating a

blueprint for the whole soundtrack. In subsequent discussions, he

observed that the practice of working in small sections is common

in tracker users, in contrast to sequencer users, who tend to build

pieces in layers (e.g. tracks), commenting:

Actually, unless I'm remixing or rearranging an existing

piece, I'm never planning ahead. I don't plan large things. I

expand/explore small things.

6
 Indeed, the composer notes that they have not been used in months.

 150

FFOCUS & ACTIVITY

Host (Cubase SX)

 % time in focus

 (music playing)

— input (avg. cmds/min)

 (measured from top)

reViSiT

 % pattern editor

 (music playing)

 % other screens

 (music playing)

— input (avg. cmds/min)

USER INPUT (cmds/min)

Cubase

▬ keyboard
— mouse

reViSiT

▬ keyboard
— mouse

reViSiT INPUT (cmds/min)

Based on contexts of key

commands in reViSiT use
(see 7.3 and Figure 7-5).

— EDIT

— NAVIGATION

— PLAYBACK

— DATA

— SELECTION

— CLIPBOARD

— FOCUS

— SETTING

 In reference to vertical and horizontal composition styles

(Folkestad, 1996), which respectively correspond to initial focuses

on harmony or melody, this approach brings both considerations

forward in the composition process. Within the tracker’s pattern

architecture, the composer is seen to work horizontally, laying

down short excerpts of melody, then augmenting it with harmony

and even final touches, before moving to the next pattern. Thus a

whole song becomes the product of many smaller, sequential

creative processes, where each pattern goes through Sloboda’s

progression from an initial draft form to final score (Sloboda,

1985). Moreover, new themes are rarely auditioned away from the

pattern (e.g. in the Instrument List), but entered and experimented

with in-place, in the pattern itself.

(a)

(b)

(c)

(d)

(e)

 151

linear working style

 While constructing patterns could be approached using trial-and-

improvement, the composer’s ability to maintain a coherent musical

thread between patterns, and across the piece, demonstrates a

deeper musical understanding. Few mistakes or major corrections

are evident; the composer enters the majority of a section in

sequence, and seems to have clear idea of what he wants, and how

to realise it (an example of Clear Goals, in flow; see Section 3.7).

 Though the user has had considerable exposure to music

performance (including piano tuition), his composition practice is

largely self-taught; implicitly learnt over many years of working

with trackers ("no training; just looking, listening, seeing and

understanding the relation”). This has lead to an extensive, but tacit

knowledge of musical processes, which he finds difficult to

Figure 5 – Session profile from video study.

A chronological view of the session, spanning

multiple phases of creative editing (see above),

presented in five plots (see left for legend):

(a) Focus and overall input activity for reViSiT

and Host (Cubase SX), shown as a percentage of

the user’s interaction time.

(b) User input in reViSiT and Host, broken down

by keyboard and mouse interaction, measured in

events per minute.

(c, d, e) reViSiT keyboard interaction broken

down by context, based on the descriptive model

outlined in Section 7.3 and Figure 7-5, measured

in commands per minute.

 152

articulate. For example, asked how he knows patterns will work

together, he states, “If the expanding/exploring is done in a natural

way, then it'll fit", and says that he simply relies on listening to

check that a section feels “natural”.
“macro-listening”

 To gain a broader perspective of the music, the composer devotes

long periods to repeated playback of the wider song (often more

than 30 minutes in length), which he calls “macro-listening”,

contrasting to the shorter auditions supporting editing (“micro-

listening”). During this time, the task switches from composition to

active listening (a realisation-driven system; inset, see Figure 4-9).

 He also makes extensive use of selections and clipboard, allowing

him to work with larger blocks of music and repeat elements of the

music, to form progressions. However, users with less experience,

lacking such knowledge and technique, may find it harder to

maintain themes and ideas across the breaks between patterns.

 Moreover, this linear workflow may be a consequence of relying

on audio, rather than visual, feedback – where the poor role

expressiveness of the text notation makes it harder to step back and

quickly gain a broad overview; with audio, longer perspectives

entail longer interruptions, as the song plays in realtime.
“spot-on debugging”

 Instead, the composer uses short excerpts of playback to guide

edits, and only listens to it in its entirety towards the completion of

a phrase. Here, listening becomes the focus of interaction, as he

triggers playback (F7) with his left hand and leaves it poised over

the adjacent stop key (F8), ready to terminate playback and jump

straight into editing, cursoring with his right hand, as soon as a

mistake or new idea becomes apparent. The composer calls this

technique “spot-on debugging” (in reference to similar approaches

in programming, such as just-in-time (JIT) debugging), a further

example of the primary role of musical feedback in the tracker.

 Fast navigation around the music and program is central to the

composer’s working style. Rapid, complex cursor activity, seam-

lessly interwoven with almost every task (including listening, note

entry, arranging, and instrumentation) frequently exceeds rates over

100 cmds/min. In spot-on debugging, for example, cursors are used

to quickly select the playback material and then to quickly convey

the composer to the appropriate point, when he hears something.
near-realtime

composition

 During note entry, the cursor is also used to step through the

pattern to correctly place notes. Unlike a live recording, notes are

not entered in realtime, but the composer’s dexterity in interleaving

cursor movement with note entry allows him to preserve much of

the rhythm of the notes, so the character of the melody or phrase is

preserved in the incidental audio feedback. At the same time, the

 153

lack of rigid metre allows him to slow down or pause as necessary,

for more complex edits. Faster-than-realtime input is also possible,

and it is not uncommon to see longer passages initially entered into

a confined space, then expanded using shortcut keys.
arrangement

and abstraction

in clipboard use

 In the session profiles (Figure 5), some editing periods are

characterised by direct data entry, and others by increased use of

selections and the clipboard. Frequently, the composer is seen to

edit a short section in detail (a beat or bar) before cloning it to form

the basis for longer phrases. Though this practice is common in

loop-based music, leading to progressive musical styles
7
, the

composer uses this approach for more intricate musical structures,

whereby the flexibility of block selection and the clipboard allow

him to build new patterns not just by repeating whole sections, but

by drawing on and mixing select parts of previous material, in a

process more like bricolage (see Turkle and Papert, 1992). Unlike

individual notes, selection-based edits do not automatically trigger

audio feedback, so the composer relies more heavily on short

excerpts of song playback and “spot-on debugging”.
 After the composer has laid down several basic themes, a slight

shift towards increased clipboard use occurs (~02:20), continuing

until the end of the session, as new material increasingly draws on

that preceding it. During selection use, the interaction rate remains

high, and with each key command now affecting multiple notes,

overall productivity increases. Block selection supports a subtly

higher level of music editing that mixes microscopic note-level

editing with more abstract editing based on themes, phrases, parts,

and other musical devices. This transition is implicit, with little

change in interaction style (input mode, visual representation), thus

enabling free movement between stages in the creative process. So,

even as a user moves from exploratory creativity (finding themes)

into a later-stage composition process based more on problem-

solving (arrangement, applying music to video), there is little to

hinder them from experimenting with new ideas.
host-based song

& video playback

 Working with video, the composer is forced to return to the host

program to audition the song in-sync with the visual footage. This

diversion punctuates longer periods of interaction with the tracker,

in which the music is created and edited. As a result, a clear

distinction in the role of playback emerges between the host and

reViSiT, whereby the sequencer provides the longer, broader

musical context, managed through the timeline and transport bar,

and the tracker provides focused feedback for editing, through the

7
 Music based on a progression, where several iterations of a passage are gradually developed or varied, in

respect of melody, harmony, rhythm or texture; common in dance, house, trance, drum‘n’bass music.

 154

keyboard. These two modes of playback differ in frequency,

duration, and manner of control, as well as the subsequent posture

of the user. In the tracker, the composer continues to interact or

hovers, poised over the stop key, in anticipation of further editing.

In the sequencer, the composer positions the playback cursor with

the mouse, and triggers the song with the keyboard – striking the

space bar with his left hand, as it retreats from the keyboard – and

then remains idle, listening to the music. In this scenario, the

sequencer’s role is that of a tool for evaluation, the final stage in the

creative process. Later analyses explore this in the context of what

other studies (Blackwell and Green, 2000; Smith et al, 2009) have

identified as a tendency for music software to focus on the later

stages of creativity (i.e. transcription, productivity).
energy and

tiredness

 At the same time, longer auditions can be restorative. The

composer noted that the rapid interaction and constant focused

attention of tracking can be tiring, disposing him towards longer

auditions as a productive means of resting. The intense, hard cut

bursts of sound arising from frequent auditions of notes, passages

and patterns may also lead to ear fatigue, though longer breaks after

several hours of interaction help to combat the risk.
centralised

focus & control

 Within reViSiT, the composer spends the vast majority (93.8%) of

his time in the Pattern Editor. Apart from the initial configuring of

instruments and occasional edit to the Pattern Order, the only

significant use of any other part of the program is the Instrument

List’s role in changing the current instrument used for editing.
8
 In

reViSiT, there are a number of ways to do this from the Pattern

Editor itself, and while the Instrument List may have its advantages,

the composer concedes that his choice of method is likely a habit

picked up in IT2, from which the original inspiration for reViSiT’s

UI comes. This is a clear indication of well-learnt interaction, based

in the development of both motor skills (key sequences) and spatial

schemata (the instrument list and keyboard layout).
mastering

the tracker

 The composer is conscious of his expertise; as something that has

taken years to develop and mature, largely learnt through practice

and experimentation, but also through dissecting the music of

others’ and the sharing of tips and tricks in online communities

(e.g. the demoscene). When asked to reflect on the most important

concepts and lessons a new user should learn to develop mastery of

the tracker, in comparison to other digital music practices, he cites

(in no specific order):

8
 More usually, he "picks up" an instrument from existing music in the pattern, by moving to one of its

notes and hitting Enter. This way, the visual search through Instrument List is avoided, and the user’s

attention can remain with the editing context.

 155

• the freedom and blank canvas of the pattern

to place any note(s) of any instrument in any cell or channel,

allowing the composer to group elements as they see fit,

without being bound to or separated by MIDI channels, or

having to create and prepare tracks before data can be input;

• “spot-on debugging”

the rapid edit-audition cycle and use of editing cursors to

quickly trigger playback (F7), during which the user listens

and remains poised, ready to jump back to editing;

• fast navigation using the keyboard

allowing routes though the program, commands, and

sequences of actions to be executed from memory without

visual inspection, and fluidly interwoven with other inherently

keyboard-based tasks, such as editing.
9

6.3 evidence for flow and virtuosity

 Evidence of several flow components (defined in Section 3.7)

emerge from the video, log data, and discussions. The linear

approach to composing music in patterns sequentially – without

significant backtracking, and as opposed to establishing and

building on an outline – demonstrates the existence of clear goals,

which the composer knows how to achieve using the program,

confident in the balance of challenge and ability.
focus and

feedback
 A high rate of interaction is sustained over several hours,

maintaining concentration and focus. Specific techniques, like

“spot-on debugging”, help keep the user engaged and absorbed in

the editing process, providing direct & immediate feedback.

Through similar expert use of the keyboard, he is likewise able to

maintain a strong sense of control throughout.
action-awareness

merging
 On viewing 5 hours of footage from a single working session, he

was surprised not only by the length of time he had been working,

but to see how “obsessed” he was, comparing his typing to

“speedcubing” (competitive Rubik’s Cube solving). This extreme

level of engagement indicates action-awareness merging, from

which he exhibits a distorted sense of time and lack of self-

consciousness, commenting,

I'm never conscious of those kazillions of keyclicks [...] It’s also as

if it’s very long/boring. I was almost afraid that this vid’ showed

tracking is *not* fast, but alas, when in the first 18 minutes I have a

full orchestra/bigband … I guess it’s still radically fast.

9
 The composer cited an earlier occasion, in the MSX program FAC SoundTracker, where his knowledge

of the program and reliance on audio feedback enabled him to continue using the program several days

after his monitor had stopped working.

 156

 The barrage of sound in these editing sessions may seem

discordant to observers, as the disjointed playback jumps randomly

and fleetingly between short excerpts of the music. However, the

subject remains unfazed, again indicating his concentration and

focus and loss of self-consciousness.
intrinsic

motivation
 Perhaps most importantly, the fact that the subject voluntarily

spends 5 hours of tiring, engaged interaction on a musical exercise

with no promise of extrinsic reward, seems to point to an inherently

enjoyable, intrinsically-rewarding flow experience.

 From observations, interaction data, and subsequent discussions,

it is evident that the composer is able to use the tracker as part of

what he sees as an intuitive (“natural”) approach to composing,

where his focus and expertise enable him to quickly sketch and

refine (“explore-expand”) musical ideas in notation, guided by the

frequent and integral use of audio feedback. The tracker, through its

use of the keyboard, enables the development of motor skills that

enable rapid and fluent interaction bridging note entry and music

editing with program control. In this example of constructive flow

interference (inset left, explained in Section 4.3, Figure 4-9),

focused interaction with the notation is supported by both visual

and musical feedback (flow redundancy), though manual skill is

required to fluidly integrate them in the user experience.
 In the logs, these skills and working styles are manifest in several

ways, such as the rates of interaction, fluidity of input sequences, as

well as frequency and use of musical feedback. In the following

chapters, these quantities are among those explored using logs and

feedback from other users of the reViSiT program, in an effort to

build a broader understanding of flow and virtuosity in general use

of music software. Specifically, Chapter 7 looks at the users’

development of motor skills with the computer keyboard, notably

through which a rapid edit-audition cycle becomes possible. This

skilled use of musical feedback is further detailed in Chapter 8,

which explores how a greater frequency of feedback contributes to

greater liveness in the user experience (see Section 4.2.4). Chapter

8 likewise explores the role of visual feedback, and factors that

affect a user’s focus and concentration. Further components of flow

(see Section 3.7) are examined in Chapter 9, which combines

earlier findings from the video study and user logs with additional

survey results, working towards a more general model of how a

program’s capacity for flow is determined by specific properties of

the notation.

 157

chapter seven keyboard use and motor learning in tracking
 The use of the keyboard is central to tracking, distinguishing it

from the more common mouse-based GUIs used by sequencers,

DAWs and score editors. The keyboard’s distributed, fixed layout

supports motor learning that enables rapid rates of interaction, and

control over a broad range of program functionality. In many

trackers, all tasks are executable through the keyboard, including

note entry and editing, block selection and clipboard arranging,

playback and program management.
 This section looks at several aspects of keyboard interaction,

across varying levels of experience. Following a simple look at

speed and the rate of interaction, other aspects of timing, such as

rhythm, are explored. Performance metrics are then integrated

with accounts of keyboard and program knowledge, such as

command vocabulary and fluency, using a descriptive model of

tracker interaction that generalises tasks in music software, to

illustrate the development of technique in the tracker.
 The findings and methods presented in this section should be

generalisable to other music hardware built on similar styles of

interaction, such as MIDI controllers, instruments, and control

surfaces with multiple, fixed-function controls, plus other space-

multiplexing input devices, as opposed to time-multiplexing

devices, like the mouse (Buxton and Myers, 1986).

 158

7.1 speed and timing

The average user demonstrated a keyboard interaction rate of

9.74±0.44 commands per min (cmd/min). Tracker novices were the

slowest, averaging 6.34±0.68 cmd/min (n=67), and tracker experts

were significantly faster (p < .05), averaging 11.89±0.50 cmd/min

(n=107) – almost twice as fast as novices. However, the fastest

overall work rate is demonstrated by reViSiT experts, who can

average up to 42.42±1.08 cmd/min (exhibited by the composer who

took part in the video study).
 These figures average the total number of keyboard commands

triggered over a normal period of reViSiT interaction, which also

includes thinking time and periods spent interacting with the

mouse. Sessions of over 30 minutes are used to calculate a user’s

average, ignoring the first 10 minutes, which is characterised by

preparatory activity. In most users’ first session, bursts of data

entry are also common in the first 2 or 3 minutes. This is

attributed to new users entering random notes into the pattern, to

experiment with the workings of the pattern editor and keyboard –

similar to when users record random music into a sequencer, to

test its workings. In both cases, the provisionality of the notation

enables the user to learn by experimentation.
 Figure 1 shows log graph (with linear detail inset), showing the

timing separation of different keys in sequences of keyboard input

(within a 10s threshold, and ignoring repeats)
1
, as a measure of the

speed users move around the keyboard.

0.01%

0.10%

1.00%

10.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Tracker Beginners Tracker Experts

0%

1%

2%

3%

4%

0 100 200 300 400 500 600 700 800 900 1000

Figure 1 – Distribution of intervals between distinct keys (ignoring repeated keys).

1
 Separations greater than 10s are taken to indicate a pause or break in interaction.

 159

experience improves

speed and consistency

 Both series decay according to an inverse power law (beginners,

R
2
=0.963; experts, R

2
=0.987), but while experts average a faster

overall rate of interaction (median = 400.9ms, compared to

557.4ms for beginners), the mode drops 11% (from 125.0ms, for

beginners, to 140ms, for experts). Instead, experts’ higher average

is attributable to an increase across the 100-500ms range and

decrease in longer intervals (above 1000ms). Two explanations

are offered for this: firstly, that the higher median rate for experts

leads more quickly to tiredness and a long-term slowdown in

performance. Secondly, that experts do not aim for peak

performance, but a more relaxed, tempered, and sustained rhythm

– pacing interaction and maintaining a sense of control, but also

forestalling the onset of tiredness. Both conclusions are supported

by the video study (Section 6.1), which not only notes the impact

of tiredness, but also a rapid, yet tempered rate of interaction.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 100 200 300 400 500 600 700 800 900 1000

Tracker Experts

reViSiT Experts

IT2 Experts

Non-Playing

0%

1%

2%

3%

4%

5%

6%

0 100 200 300 400 500 600 700 800 900 1000

Playing

150 120 100

1 2 4

110 Musical Beat (Tempo)

Tracker Row (120bpm)

Figure 2 – Intervals between keys with and without playback (including non-typematic

repeats). Histogram of inter-keystroke intervals (x-axis, in milliseconds), with guidelines for

common musical tempo and tracker row intervals.

rhythmic

cursoring

 In Figure 2, samples are taken of experts with differing tracker

backgrounds, and include manually repeated keys, but not

typematic repeats (when a key is held), to show the intervals

between physical key presses. A similar peak around 150ms,

followed by a long tail, is visible in the plot, but also accompanied

by local maxima at several other intervals, which correspond to

musical timings, notably the musical beat at the sequencer’s

default tempo of 120bpm (500ms), which occurs both during and

outside music playback.
2
 reViSiT experts, familiar with the more

2
 In Nash and Blackwell (2011), these results were presented including typematic repeats, which lead to

large, additional spike at 20-30ms (typematic rate). Notably, it also accentuates the peak at 500ms

(typematic delay). To scrutinise a potential link between musical tempo and non-musical interaction, the

 160

complex handling and synchronisation of tempo in the host-plugin

configuration show a more diverse use of tempi, with additional

peaks corresponding to 100, 110 and 150 beats per minute.

 In terms of flow, this is an indication of action-awareness

merging – an implicit coupling of musical perception and motor

action, where the environment influences the user’s behaviour.

Such entrainment in music, such as the tendency of listeners to tap

a musical beat, is been widely studied in psychoacoustic research

(e.g. Clayton et al, 2005), but is here merged with program

interaction, and shows that motor behaviour in trackers is subject

to both conscious and unconscious influences (also showing the

interference of visual and musical feedback in a manipulation-

driven system; inset, see Figure 4-9). This interaction also has the

effect of maintaining the continuity of physical activity in idle

time between episodes of more focused editing,
3
 and may serve as

an epistemic action (Kirsch and Maglio, 1994), where the cursor is

stepped over musical material to aid mental simulation.

 Finer divisions of the beat, corresponding to a single pattern row

in the tracker (125ms), are also evident. The non-playing sample

excludes note entry (which triggers playback of the note), but

includes intervening cursor movement, which makes up most of

these peaks. This behaviour corresponds to the entering of notes in

near-realtime, specific examples of which were found in the video

study and logs of other experienced users. The absence of similar

peaks for reViSiT Experts might be explained by the more varied

use of tempo, but may also reflect a skill associated with longer

term mastery, not yet widespread in the younger program.
controlling time

 Compared to live recording in the sequencer, the technique

effectively extends a user’s command of the creative environment

to the direct control of time. In terms of flow, the individual

benefits from a greater sense of control, as the musical input rate

can either be slowed to facilitate more complicated input, or

accelerated to increase throughput. In this way, a user effectively

self-regulates the balance of challenge and ability, allowing them

to work at a natural pace that preserves a degree of musical

continuity, without depending on realtime performance skills.

Furthermore, the learning curve associated with tracking can be

seen to reflect computer, rather than musical, literacy.

analysis presented here has been adapted to identify and filter typematic repeats from log data, producing

a more accurate profile of physical user activity. The conclusions of the original paper, however, are still

supported by the revised profile (Figure 2), in which the peaks remain evident.
3
 Neurology research (Wickens, 2003) has linked high levels of dopamine in both motor activation and

reward-mediated learning, contributing to an individual’s ability to maintain focus. As such, this habit in

tracker users may represent an unconscious effort to self-regulate their level of engagement.

 161

7.2 keyboard and program knowledge

 Figure 3 plots the average times taken for keystrokes against the

range employed by users across increasing levels of experience.

Here, more experienced users are not only faster, but faster across

a wider range of keys. Using a 1200ms latency as the threshold of

“unfamiliar codes” (Card et al, 1980), novices show familiarity

with less than 20 keys, while experts’ vocabulary is over 60 keys.
transferring

knowledge from

other programs

 Less experienced users, even complete beginners, demonstrate

some expertise with a limited range of keys, corresponding to

simple commands, common to other software, such as basic

cursoring (e.g. arrow keys) and data entry. Users with a little

tracker experience show knowledge of a broader repertoire,

executed slowly (possibly more deliberately), suggesting that

keyboard layout and motor actions are yet to be fully memorised.
 At higher levels of experience, the repertoire continues to

increase, but more importantly, the proportion of those keys

averaging faster times also grows rapidly. While users with the

most experience (4) demonstrate familiarity with an additional

22.9 (36%) keys compared to other experienced users (3), the

proportion of familiar keys below the threshold for skilled entry of

“complex codes” (750ms)
4
 increases from 25.5% to 62.4%.

Figure 3 - Keyboard vocabulary. Number of distinct keys used, plotted against their average execution

time (ms), across different levels of tracker experience (sample size in brackets). For example, experts show

familiarity with 87.2 key commands, of which 54.4 are performed below the threshold of skilled use.

4
 From Card et al (1980), which unifies several figures from Devoe (1967) measured using coded

keyboards and matrices of keys, in which individual keys represent code words or commands. In the

context of tracker interaction, this figure is applied to use of program shortcuts and keyboard macros.

 162

 The least experienced group of users (0) were excluded from the

previous analysis.
5
 While these users tended not to persevere with

the tracker experience (possibly intimidated by the learning curve

discussed here), they also showed a propensity for input through

the mouse and other modalities (MIDI, audio, etc.).
bimanual

interaction

 Programs based on GUIs, such as sequencers, favour bimanual

interaction styles, involving one hand (typically, the user’s

preferred hand) on the mouse and one on either the keyboard or

another device (e.g. mixer, MIDI keyboard).
6
 This style is also

seen in the Renoise tracker (see Section 2.2.1; Figure 6-3), where

cursor navigation, selection, and program settings are largely

effected by the right-hand and mouse, but editing and playback by

the left-hand and keyboard. While reViSiT (like IT2) is more

exclusively designed for keyboard control using both hands, the

video study shows a similar split in the responsibilities for each

hand (see Figure 6-2), with the right hand rooted to the cursor

keys. This consistency across different interaction styles, in music

programs, may make it easier to move between them. At the same

time, it highlights cursor navigation as one of the challenges

facing new reViSiT users, who must learn to effectively use the

keyboard, rather than the mouse, to get around the music and

program. Figure 4 illustrates this transition, and the diminishing

role of the mouse associated with greater reViSiT experience;

moving from 64% mouse to 71% keyboard interaction. Use of the

mouse requires visual inspection, such that the shift to the

keyboard reduces the complexity of visual feedback, allowing

greater focus on both the music and notation. The emergence of

keyboard skills is further explored in the next section.

Figure 4 – Mouse

and keyboard use by

reViSiT experience

0%

20%

40%

60%

80%

100%

0 1 2 3 4

reViSiT experience

%
 u

s
e
r
in

p
u
t

Keyboard

Mouse

5
 Users claiming absolutely no awareness of tracking (0) recorded too few keystrokes to support a

reliable plot of the average; of the 41 users who provided more than 30 minutes of interaction, only

5,425 key presses were entered (0.2% of the total).
6
 As Mackenzie (2003) notes, typical mouse usage breaks Guiard’s model of bimanual interaction

(Guiard, 1987), in that the preferred hand (typically, right) uses coarse movements to lead the non-

preferred hand (left) and set the spatial frame of reference in which it operates.

 163

7.3 a descriptive model of tracker interaction

 Keystroke selection varies between users, depending on their

specific techniques, habits, and goals. Performance comparisons,

such as the keystroke-level model (KLM), are thus confounded, in

creative design applications, by the absence of representative tasks

or correct actions.

generalising

user interaction

 To enable comparisons between users, interaction styles, and

programs, a descriptive model (Mackenzie, 2003) based on the

broader context of actions performed in music editing was

developed. Applying this model to tracking, a mask was defined

for each command in the reViSiT program, using the contexts

described in Figure 5, allowing individual keystrokes to be

summarised and tabulated against user experience and interaction

preferences, provided by survey data.

Figure 5

A descriptive model

of interaction in the

tracker, using context

flags to characterise

the general behaviour

of individual keys

(with examples)

SETTING Changes settings or modes in the program

DATA Enters data directly into the pattern (e.g. digits, text, notes)

AUDITION Triggers incidental playback (notes, samples, live performance)

NAVIGATE Navigates around the music (i.e. cursoring)

FOCUS Navigates around the program (e.g. control focus)

PLAYBACK Triggers song playback

SELECT Uses block selection

CLIPBOARD Uses the clipboard (cut, copy, paste, overwrite, etc.)

HELP Accesses support documentation (built-in help)

EDIT Flags a change in the musical data

 Examples

 Play Song / Pattern / from Cursor � PLAYBACK

 Note Entry � EDIT | DATA | AUDITION

 Clipboard Copy � SELECT | CLIPBOARD

 Clipboard Cut / Paste / Mix � EDIT | SELECT | CLIPBOARD

 Figure 6 shows the breakdown of keyboard usage, for all users

and across groups, characterised by different interaction

preferences or levels of experience. Selected percentages and

ratios are plotted in Figure 7 and summarised in Table 1,

highlighting differences and progressions in interaction styles,

dependent on user background.

 164

(9
5
4
)

M
o
u
s
e
 (
2
4
2
)

K
e
y
b
o
a
rd
 (
3
7
5
)

N
o
n
e
 (
3
7
4
)

S
o
m
e
 (
2
2
7
)

A
m
a
te
u
r
(2
8
7
)

P
ro
fe
s
s
io
n
a
l
(6
6
)

0
 (
4
1
)

1
 (
1
3
3
)

2
 (
2
8
3
)

3
 (
3
3
6
)

4
 (
1
5
6
)

All

Users

Device

Preference

Performance

Experience

Tracker

Experience
0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

0
%

1
0
%

2
0
%

3
0
%

0
%

1
0
%

2
0
%

3
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

0
%

1
0
%

2
0
%

3
0
%

4
0
%

0
%

1
0
%

0
%

1
0
%

 H
E
L
P

E
D
IT

D
A
T
A

 S
E
L
E
C
T

C
L
IP
B
O
A
R
D

 N
A
V
IG
A
T
IO
N

F
O
C
U
S

S
E
T
T
IN
G

A
U
D
IT
IO
N

 P
L
A
Y
B
A
C
K

T
a
b
le
 1
 (
le
ft
)
–
 S
u
m
m
a
ry
 o
f
k
ey
b
o
a
rd
 u
se
,

b
as
ed

o
n

se
le
ct
ed

p
er
ce
n
ta
g
es

an
d

ra
ti
o
s
o
f

co
m
m
an
d
s,
 a
s
sh
o
w
n
 i
n
 F
ig
u
re
s
5
 a
n
d
 7
.

F
ig
u
re
 6
 (
ab
o
v
e)
 –
 B

re
a
k
d
o
w
n
 o
f
k
ey
b
o
a
rd
 u
se
,

b
as
ed
 o
n
 c
o
m
m
an
d
 c
o
n
te
x
t
(s
ee
 F
ig
u
re
 5
),
 b
o
th

fo
r
al
l
u
se
rs
 a
n
d
 a
cr
o
ss
 g
ro
u
p
s
ch
ar
ac
te
ri
se
d
 b
y

sp
ec
if
ic
 i
n
te
ra
ct
io
n
 p
re
fe
re
n
ce
s,
 a
s
w
el
l
as
 l
ev
el
s

o
f
tr
ac
k
er

an
d

m
u
si
c
p
er
fo
rm
an
ce

ex
p
er
ie
n
ce
.

(s
am
p
le
 s
iz
es
 i
n
 b
ra
ck
et
s)
.

A
ll

U
se
rs

M
o
u
se

K
ey
s

N
o
n
e

S
o
m
e

A
m
.

P
ro

0
1

2
3

4

E
D
IT

3
0
.4

4
7
.1

2
8
.9

2
5
.2

2
8
.9

3
8
.2

4
4
.7

6
0
.6

5
2
.5

4
5
.2

3
4
.5

2
7
.7

P
L
A
Y
B
A
C
K

1
3
.2

5
.7

1
3
.9

1
4
.7

1
2
.4

1
1
.4

7
.1

1
.2

3
.8

4
.1

1
2
.4

1
4
.1

A
U
D
IT
IO
N

1
8
.4

2
4
.5

1
7
.5

1
5
.2

1
7
.6

2
2
.7

2
8
.1

3
7
.7

2
7
.4

2
4
.2

2
0
.9

1
6
.9

D
A
T
A

1
7
.9

2
2
.7

1
7
.1

1
5
.2

1
7
.3

2
1
.4

2
6
.5

2
9
.2

2
4
.5

2
2
.5

2
0
.1

1
6
.6

S
E
L
E
C
T
IO
N

8
.1

2
.3

8
.7

9
.7

8
.4

6
.2

1
.8

0
.0

1
.1

4
.8

7
.3

8
.7

H
E
L
P

0
.2

1
.1

0
.1

0
.0

0
.1

0
.5

0
.9

2
.4

1
.5

1
.4

0
.4

0
.1

(i
)
D
A
T
A
 :
 A
U
D
IT
IO
N

.9
7

.9
3

.9
8

1
.0
0

.9
8

.9
4

.9
4

.7
8

.8
9

.9
3

.9
6

.9
8

(i
i)
 P
L
A
Y
B
A
C
K
 :
 A
U
D
IT
IO
N

.7
2

.2
3

.7
9

.9
6

.7
1

.5
0

.2
5

.0
3

.1
4

.1
7

.5
9

.8
4

(i
ii
)
S
E
L
E
C
T
 :
 D
A
T
A

.4
5

.1
0

.5
1

.6
4

.4
9

.2
9

.0
7

.0
0

.0
4

.2
1

.3
6

.5
2

(i
v
)
P
L
A
Y
B
A
C
K
 :
 E
D
IT

.4
3

.1
2

.4
8

.5
8

.4
3

.3
0

.1
6

.0
2

.0
7

.0
9

.3
6

.5
1

T
ra
ck
er
 E
x
p
er
ie
n
ce

percent (%) ratios

P
er
fo
rm

a
n
ce
 E
x
p
er
ie
n
ce

P
re
fe
re
n
ce

 165

Figure 7 – Trends in

keyboard use, plotted

as changing ratios in

keyboard contexts,

used to indicate:

(i) notation focus
(vs. live music)

(ii) feedback rate
(liveness, see 4.2.4)

(iii) feedback scope
(song vs. note)

(iv) editing scope
(selection vs. note)

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

Tracker Experience

C
o
n
te

x
t
R

a
ti
o

(i) DATA : AUDITION
 y = .10Ln(x) + .84 R² = .97

(ii) PLAYBACK : AUDITION
 y = .20x - .16 R2 = .90

(iii) SELECT : DATA
 y = .14x - .11 R² = .97

(iv) PLAYBACK : EDIT
 y = .12x - .10 R2 = .89

0 1 2 3 4

selection and

clipboard use

 The DATA : AUDITION ratio (i) indicates the degree of editing that

does not trigger an audition, and the shift from performance-like

note entry to notation-based editing, as well as advanced control

of dynamics (e.g. volume), spatialisation, and tracker effects. This

more advanced editing quickly emerges with tracker experience

(R
2
=.97). An increased use of selections similarly represents more

advanced editing, as indicated by the SELECT : DATA ratio (iii),

which is also tied to experience (R2
=.97). Tracker experts edit faster

and more efficiently, using selections to work at higher levels of

musical abstraction (such as beats, bars, parts and phrases with

multiple instruments), thus broadening the editing scope to include

arrangement tasks (and the “big picture”, see 3.6). By contrast,

live musicians, used to the performance capture model in DAWs,

favour direct note entry over these more abstract control methods.

increased use

of playback

 The PLAYBACK : AUDITION ratio (ii) indicates feedback scope,

representing how often the wider song is played, in contrast to

auditions of individual notes. With tracker experience, this ratio

rises significantly (R2
=.90), from limited use of song playback by

beginners, to near-parity with note auditions in experts. This is

partly explained by the fewer auditions associated with the move

to selection use, but also corresponds to fewer instances of users

experimenting with instruments or melodies, before committing

them to the notation. For experts, the provisionality of the notation

supports sketching via destructive edits, removing the premature

commitment of preparing a performance. This trend is also evident

in the lower ratios of skilled performers, though greater musical

knowledge may also reduce the user’s reliance on audio feedback.

liveness in

keyboard use

 In a similar regard, the final PLAYBACK : DATA ratio (ii) acts as a

measure of liveness (see 4.2.4), indicating the changing ratio of

playback and edit commands. Experts exploit this property of the

notation to maintain a ‘live’ representation of the end product, the

music (see Figure 4-10b). Like the previous ratio, this quantity

correlates positively with tracker experience (R2
=.90).

 166

mouse use

by novices

 Notably, these ratios only relate to keyboard interaction. A

degree of equivalent functionality is offered by the mouse, as seen

in novice use (see Figure 4). However, the more cumbersome use

of drag-and-drop in the text-based pattern window and peripheral

location of buttons (Play, Stop, etc., in toolbar) discourage their

use, and make it difficult to maintain the same level of liveness

available from the keyboard. The program’s support for mouse

interaction is instead designed as a teaching mechanism that

exposes keyboard use and functionality to users more familiar

with the use of the mouse, in sequencers or other music programs.

To this end, clickable buttons, right-click context menus, and

status bar messages supporting drag-and-drop operations always

display equivalent keyboard shortcuts. The effectiveness of this

strategy is underlined by the figures for keyboard-based program

navigation (FOCUS), already prominent in unskilled use, and not

significantly influenced by further tracker experience (R2
=.01).

 Another indication of learning is provided by decreased use of

help documentation, with greater tracker experience (R2
=.95). In

the beginning stages, this documentation provides overviews,

explanations, and tutorials, which later gives way to reference use

for effect syntax and keyboard shortcuts, and which experts are

ultimately able to commit to memory.

7.4 developing fluency in soundtracking

 The development of virtuosity involves not only the use of

advanced features, but also the integration of individual

commands into fluid sequences of input. Expert tracker use,

especially as regards the enabling of rapid edit-audition cycles,

dynamically combines editing, cursoring, playback, and program

control into passages of unbroken keyboard interaction. The

matrices in Figure 8 illustrate the intervals between consecutive

keystrokes, across increasing levels of tracker experience, broken

down by context. At each level, two matrices respectively

illustrate the fraction of intervals completed in less than 1 second,

and the average speed based on all key transitions (in keys per

second), accompanied by a summary and explanation of the

results, supported by direct observations from the original logs

themselves.
7

7
 The threshold of 1s is chosen to fall between those of “unfamiliar codes” (1.2s) and “complex codes”

(0.75s), but also significantly below the typical threshold of mental preparation (e.g. M = 1.35s), in an

attempt to isolate keyboard input that has been learnt to the point where it is executed with a minimum of

conscious reflection (Card et al, 1980; see 7.2).

 167

% of intervals
under 1 second

average speed (kps)
based on all intervals

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 keys per sec

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

Tracker Experience 0 (absolute beginner)

Input from novice users is characterised by

simple, direct edits of the data. The keyboard is

not used to make selections, trigger playback

or change program settings, which are not only

rarer, but also fall to the mouse. Inputs are

slow and hesitant; characterised by note entry

(EDIT | AUDITION | DATA) and deletion (EDIT).

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

Tracker Experience 1 (beginner)

Keyboard skill first develops with cursoring

operations (moving around the musical patterns,

NAVIGATE) – as users migrate from the mouse to

the keyboard, for equivalent operations, and

develop greater speed. Quick oscillations

between cursoring and simple edits (e.g. note

entry, deletion) develop as ‘finger macros’.

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

Tracker Experience 2 (intermediate)

Eventually, users develop skills for making and

using selections (SELECT) and the clipboard

(CLIPBOARD). Interaction is both more efficient,

editing more than a single note at once, and

faster; keyboard input accelerates across nearly

all contexts, as users learn to control more of the

program through the keyboard.

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D
 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

Tracker Experience 3 (advanced)
Keyboard-controlled playback (PLAYBACK) gains

a greater role, enabling faster and tighter musical

feedback, as users use the cursors (NAVIGATE) to

quickly set and trigger playback. Speed further

improves, and users make greater use of shortcut

keys to control the edit environment (SETTING),

interleaved with the edit operations themselves.

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D

 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D

 SETTING

 DATA

 AUDITION

 EDIT

 NAVIGATE

 FOCUS

 PLAYBACK

 SELECT

 CLIPBOARD

Tracker Experience 4 (expert)

Playback, selection and settings trends continue,

as the interaction rate accelerates further.

Selections and clipboard operations are amongst

the fastest operations in the user experience,

supporting experts’ tendencies to work with a

broader focus, at more abstract levels of music

(theme, phrase, part), above microscopic editing.

Figure 8 – Keyboard performance in the tracker, illustrated by inter-keystroke metrics across levels

of tracker experience (approximate skill in brackets). Matrices indicate expertise within editing contexts:

based on (left) the % of intervals under 1 second (x-axis – key 1; y-axis – key 2); (right) the average

speed based on all intervals (in keys per second). A brief summary and explanation of results and trends,

drawing on observations from user log data, is provided for each level of experience.

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D

 S
E
T
T
IN
G

 D
A
T
A

 A
U
D
IT
IO
N

 E
D
IT

 N
A
V
IG
A
T
E

 F
O
C
U
S

 P
L
A
Y
B
A
C
K

 S
E
L
E
C
T

 C
L
IP
B
O
A
R
D

 168

 The development of specific keyboard skills is evident with each

level of experience, providing a picture of how virtuosity is

obtained with the tracker, through the keyboard. While even

absolute beginners adapt to the virtual piano keyboard (see Figure

2-7), perhaps drawing on familiarity with the piano itself, more

specialised tracker skills develop later.

Figure 9

Developing mastery

in tracker interaction,

shown as the development

of specific keyboard skills,

contingent on each other.

 Figure 9 illustrates how new skills build on those developed

previously – for example, cursor navigation is integral to both

forming a selection and choosing where to start playback. The

progression also corresponds to a gradual migration of interaction

from the mouse to the keyboard (placing the cursor, drawing

selections, and triggering playback). The final stage approaches

mastery, where individual skills are not only combined, but

quickly and seamlessly executed, across most contexts.
need for guidance

and practice

 Keyboard control of playback, especially, is fundamental in the

tracker’s support for rapid edit-audition cycles, and the late

emergence of this skill highlights a potentially serious usability

issue – where functionality that may enable flow is not available

to novice users. By themselves, the shortcuts and key sequences

are straightforward, and draw on generic computer knowledge.

Yet, while mastery of these skills might require extended practice

(see Section 3.6), there is no obvious mechanism advertising or

exposing them to the novice user.
 Though reViSiT’s help system contains ‘Getting Started’

tutorials, which do emphasise the use of playback, there is little

evidence they are effective, if used at all. The developmental

progression observed here identifies the core skills in tracking,

which could inform the design of more interactive tutorials that

explicitly guide users towards more advanced use of the program.

 169

.

.1%

.5%

.2%

.5%

1%

2%

2%

1%

.2%1%

Novices

Experts

Figure 10 – Common sequences of keys, in tracker interaction. (top) Detail of the most common

sequences, each constituting more than 1% of observed sequences, with a description of interaction and

appropriate links to discussions in the main text; (bottom) General breakdown of sequences over 0.1%.

Keys are colour-coded by context, as described in Figure 6.17.

 Notably, the role of playback could be emphasised from an earlier

stage of learning. Moreover, it might be possible to adapt the

metrics used here to detect in realtime when a user is not making

best use of the program, and could benefit from guidance – for

example, monitoring average ratios of direct edits to selection /

clipboard use, or overall edits to playback use).
specific techniques

in tracker use
 Figure 10 illustrates common sequences of keys separated by no

more than 1s, ranked by frequency (average percentage of user’s

sequences). The goal of this analysis was to identify sequences of

keys that users are able to execute quickly, indicating that they

have been well-learnt. Sequences represent possible examples of

chunking in motor learning, where composite actions are

Novices Experts

Note entry (16ths) � NoteEntry CursorDown

In-place audition � NoteEntry CursorUp

Note entry (16ths) � NoteEntry CursorDown Play (with reset) + Stop PlayFromCursor

Note entry (16ths) � NoteClear NoteEntry Play channel + Solo PlayFromCursor

Note editing (16ths) � DataEntry CursorDown Cursor overshoot � PreviousChannel NextChannel

2%

Note editing (16ths) � DataEntry CursorDown

Mute channel(s) � Mute NextChannel

Move diagonally � CursorUp CursorRight

Note editing (backwards) � DataEntry CursorUp

Duplicate block/channel SelectBlock NextChannel

Break to edit � Stop CursorDown

Break to edit � Stop CursorUp

Play without channel + Mute PlayFromCursor

Play snapshot � PlayFromCursor Stop

Audition editing context � CursorPageUp PlayFromCursor

Move diagonally � CursorUp CursorLeft

Fast cursoring � CursorPageDown CursorUp

Cursor overshoot � CursorDown CursorUp

In-place audition � NoteEntry CursorUp Cursor overshoot � CursorUp CursorDown

Move diagonally � CursorUp CursorRight Correction CursorUp NoteEntry CursorDown

Cursor overshoot � CursorDown CursorUp Move diagonally � PreviousChannel CursorDown

Clear note � NoteDelete NoteInsert CursorDown Break to edit � PlayFromCursor CursorPageDown

In-place audition � CursorUp NoteEntry Break to edit � Stop CursorPageUp

In-place editing DataEntry CursorUp Audition during move PlayFromCursor NextChannel

1%

LEGEND

� can be performed in fewer keystrokes

� refines cursor position

often performed in rapid succession

("finger macro")
�

�
part of a rapid edit-audition cycle

("spot-on debugging")

+
composite command (operation

formed through multiple inputs)

 170

perceived atomically; that is, where the user thinks of a sequence

of keystrokes as though it were a single gesture, allowing them to

interact more abstractly, potentially in terms of program

functionality rather than physical actions. As such, this represents

a mechanism through which interaction is partially embodied, and

processed unconsciously.
keyboard sequences

as atomic gestures

 Figure 10 provides an overview of common key sequences, in

abbreviated form, colour-coded by context (see Figure 5). 94

sequences were identified in common use by novices, focusing on

data entry or cursor navigation, and knowledge transferred from

similar interactions in other software, such as word processors and

spreadsheets.
8
 By comparison, the 346 sequences identified in

expert interaction also exhibit specialist knowledge, notably

integrating playback control with other interaction contexts, as

seen earlier (see Figure 8). Figure 10 also lists the most common

sequences, each constituting over 1% of sequences exhibited by

the average user. Sequences are annotated to describe the

operation performed as a result, using icons cross-referencing

discussions in the main text.
near-realtime

composition

 The most common sequence for both novices and experts is a

rapid oscillation between note entry and the down cursor. This has

the effect of entering a sequence of notes spaced at regular

intervals in the pattern, matching common musical note lengths,

such as a quaver (2 rows) or crotchet (4 rows). In the video study

(see Chapter 6), this behaviour allowed the user to step through

the music, manually inputting at a rate approaching musical time.
“finger macros”

 Such oscillations are an example of a wider phenomenon,

sometimes called a “finger macro”, where sequences of two or

more keys are repeated in quick succession, typically when the

data being entered is itself repetitive. Other examples, in the

tracker (denoted using a � symbol), include rectilinear cursoring,

to approximate the most direct route between two points in the

pattern, and the muting of multiple consecutive channels, to filter

whole musical parts or instruments from the playback mix.
in-place

experimentation

 A similar succession alternates between note entry and the up

cursor, enabling in-place auditioning of notes.
9
 Unlike a finger

macro, the up cursor is alternated with different notes, allowing

the user to trial different pitches for a given position in the music.

Here, the provisionality of the notation is sufficient to enable the

user to experiment with their music using destructive edits.

8
 The frequency of the ‘Clear note’ sequence likely derives from the subtly different cursor behaviour,

prompting novices to string together three familiar actions, where more experts use a single key.
9
 Note entry triggers the playback of the note.

 171

controlling

playback

 Three keyboard sequences are commonly used by experts to

prepare and trigger playback. The keys for Stop/Reset (F8), Mute

Channel (Alt-F9), and Solo Channel (Alt-F10) are adjacent to the

Play from Cursor key (F7), enabling playback to be (re)started,

focused, or filtered using single strokes or gestures of the hand,

combining individual keyboard inputs (+). In the same manner,

the composer in the video study was seen to reflexively press F8

before triggering playback, thus saving him from conscious

reflection on the state of playback (or MIDI devices), and

simplifying the process of getting musical feedback.

cursor overshoot

 Holding a key down provides a quick, but imprecise, method to

repeat keyboard input multiple times. For example, a user might

move forward in the music by holding the down cursor, but is

likely to undershoot or overshoot their destination. This situation

explains the frequency of sequences, in Figure 10, that seem to

backtrack or undo earlier actions (�). Experts, however, are

partially able to mitigate this using faster cursoring techniques that

make use of the Page Up / Down keys and other navigation

shortcuts (Home, End, Alt-Cursor, etc.).
“spot-on

debugging”

 The specific sequences underlying the fast edit-audition cycle of

the tracker, such as the “spot-on debugging” observed in the

video study, are also highlighted in the list (�). These include

cursor navigation before and after playback. Having made an edit

the user quickly moves the cursor back (CursorPageUp) and

triggers playback. When stopped, the user promptly cursors back

to the editing context. Very short playback episodes, less than a

second in duration, were classified by the analysis as a single

keyboard sequence; providing a momentary snapshot of the music,

useful for feedback on harmonic content, orchestration, or to

aurally gauge the music not currently visible on in the viewport.
 Figure 10 highlights the centrality of the Play from Cursor

command, in expert use of the tracker. Indeed, when playback is

used by less experienced users, the tendency is to rely on playback

mechanisms that play a whole section (Play Pattern) or the whole

song (Play Song), befitting a working style where the composer

spends longer periods editing larger musical building blocks,

before auditioning them in more complete forms (see also section

8.3). This may simply derive from a lack of familiarity with the

use of the Play from Cursor command,
10
 or it may indicate a more

classical, analytical approach to composition, based on musical

theory and traditional practices, as supported in other software,

such as professional sequencers and score editors.

10
 Even though its prominence in the UI and keyboard layout is equivalent to other playback functions.

 172

the role of practice

 The more synthetic approach of experimentation and

exploration, associated with tracker use, only seems to emerge

with experience, even despite the reduced requirement it

supposedly places on notational literacy. It is likely that although

the individual commands and sequences are simple to learn, their

fluid and expert use requires a level of familiarity that only comes

from extensive practice. In this way, an analogy is found in the

skilled use of a musical instrument, from which it may be

relatively simple to elicit a tone, but with which it is considerably

harder to develop virtuosity (see both Section 3.5 and 3.6). To this

end, this section has sought to identify aspects of interaction that

correlate with such well-learnt skills, and which facilitate fluid

interaction and rapid feedback in the tracker.
 Whether it is knowledge or experience of the program that a

novice lacks, a program’s support systems (online help, interactive

tutorials) can use information about expert behaviour to provide

advice or exercises for the user. For example, it may be of value to

include interactive finger and keyboard exercises that focus on

skills such as cursor navigation, to develop dexterity, motor skill,

and coordination. Deliberate practice is an important component

of developing musical expertise (Ericsson et al, 1993), and such

provisions, based around keyboard interaction, may be a way to

introduce it into computer music interaction. Ericsson et al assert

that such practice is not inherently enjoyable, but programs may

be able to integrate such exercises in more rewarding formats,

such as a game that encourages improvement through competition

(with oneself, intrinsically; or a community, extrinsically).
11

11
 The DOS tracker, Fast Tracker 2, had a built-in game called FT Nibbles, based on the classic Snake

video game. Though it cannot be said that the programmers’ intention was to develop a user’s motor

skills for tracking, the game consisted of very fast use of the cursor keys and rectilinear navigation,

which could foreseeably translate to improved dexterity in the pattern editor.

 173

chapter eight focus and feedback in digital music

 This chapter looks at visual and musical feedback mechanisms

in music software interaction. It looks at how a user’s focus

changes over the course of interaction, both between the tracker

and host sequencer, and also between notation editing and

music listening (Section 8.1). The mechanisms and use of

musical feedback are examined and compared in each

environment, especially in the context of editing activity, from

which a measure of liveness is developed, based on the balance

between playback use and both the duration and depth of

editing (Section 8.2 and 8.3).

 Section 8.4 subsequently explores how window and UI

layouts influence a user’s concentration, potentially dispersing

their visual focus and requiring housekeeping that can interrupt

and distract from music editing. Finally, in Section 8.5,

previous discussions of both musical and visual feedback are

brought together in the context of FL Studio, an advanced step-

sequencer-based DAW that effectively combines a liberal use

of windows, visual metaphor, and mouse interaction with

focused editing and playback of short patterns of music.

 174

8.1 activity profiles

 Figure 1 (a) shows the focus and playback profiles for sessions of

over 30 minutes, plotted against time (in % of session). Over the

session, users spend an increasing majority of their time in the host,

and an increasing amount of that time playing music. Intuitively, as

music is created, more time is needed to audition it.

 However, beyond the initial moments, no such increase occurs

within reViSiT, despite the availability of song playback

throughout the program. Instead, playback in the Pattern Editor

levels off at roughly 20% of the user’s time, with roughly another

5% listening time supported by other parts of the program. This

suggests that playback in reViSiT is not used to listen to the wider

musical context, but for shorter windows of musical feedback,

simply to support editing. In turn, the gradual shift to host-based

interaction could indicate the growing utility of the DAWs’ higher-

level arrangement and post-processing facilities (which can also be

applied to music created in reViSiT). In this case, the increased

playback would not only encapsulate listening, but also host-based

editing, which also takes place in realtime (a Level 4 liveness

performance-based system, see Figure 4-9; e.g. recording live

audio, MIDI, or automation). Whatever its use, the corresponding

drop in input activity for both environments tends to indicate that

the host-based listening activities gradually replace, rather than

support, more active editing interaction.
1

 (a) (b) (c) (d)

Figure 1 – Focus and playback profile of average session. An overview of the users’ division of time

between the host and reViSiT (including the Pattern Editor), as well as the proportion of that time spent

listening to music (shaded), and curves plotting the corresponding level of input activity. Based on all

sessions over 30 minutes in duration, plotted against time as % of total session duration, across different

groups of users: (a) all users (1195 sessions, 175 users); (b) tracker novices (154 sessions, 68 users);

(c) tracker experts (1041 sessions , 107 users); (d) reViSiT experts (276 sessions, 11 users).

1
 Note: Host MIDI input is not detectable by the reViSiT plugin, and is not included in the plots, but is

assumed to be proportional to supporting mouse and keyboard interaction (e.g. used to initiate it).

 175

Figure 2 – Focus and

playback profiles at

session start and end

(legend as Figure 1)

plotted against time

in minutes. Based on

sessions over 60 mins
(508 sessions, 77 users):

 (a) first 30 minutes (b) final 45 minutes

stage theory in action:
preparation, creativity,
evaluation

 The profiles are divided into three phases, characterised by

changing trends in interaction corresponding to an initial period

of preparation, a prolonged period of creative editing; and a

closing period of evaluation. These phases, and the above trends,

are evident in Figure 2, which illustrates the opening and closing

minutes of longer sessions.
preparation
and start

 Preparation lasts up to 9 minutes and is characterised by host

interaction, slowly shifting to increased use of reViSiT. The

amount of time spent in the Pattern Editor increases, as

preparatory tasks in other parts of reViSiT and the Host (such as

configuration of samples, tracks and workspace, or loading of

songs and samples) are gradually completed. Activity supporting

music editing (such as the management of instruments in other

parts of reViSiT) continues, diminishing as the user settles on a

musical palette and turns their attention to the music itself.

Significant host-based playback (30%) is evident from the outset,

indicating the likely existence of prior art, which the user plays to

re-acquaint themselves, or possibly the use of realtime editing

and recording features in the host. Users may take time to build

momentum and find a rhythm once editing starts, contributing to

less activity at the outset of the session. General observations of

computer use suggest this can take up to 15 minutes (DeMarco

and Lister, 1999), and may explain the continuing but less

pronounced acceleration of input, in the subsequent period, in

Figure 2, which appears to approach a limit during the first 20%

or 20 minutes of interaction.
evaluation
and end

 A final phase of interaction is visible in the last 10-11 minutes

of sessions, characterised by diminishing reViSiT editing activity

and a surge in host-playback. This shift corresponds to the users’

progression to the later stages of the creative process

(evaluation, verification, elaboration, and refinement; see 3.2) as

they review their work, and make final edits, increasingly in the

host, and at an audio (rather than musical) level.

 176

delayed
gratification

 Together, these two periods suggest that up to 20 minutes are

potentially lost to activities other than musical creativity, where

there is also less expectation of focused, engaging, and rewarding

flow experiences. In this study, analyses are thus limited to

sessions longer than 30 minutes in duration and, as appropriate,

ignore the first 10 minutes of preparation.
 In other areas, these shorter sessions help highlight specific

usability issues and learning obstacles for new and novice users,

and may identify ways to speed up the transition to hands-on

editing. One obvious solution, to this end, is the provision of

templates or presets that obviate the need for preparation, and

which are becoming increasingly common in music, by way of

bundled sample collections. In music programs designed for the

consumer market, these libraries of pre-recorded sounds, loops

and, longer musical phrases start the user at a more mature stage

in the creative process, but enable creative tinkering with

professional sounding results and minimal expertise. While they

don’t allow the flexibility of expression that artists and creative

professionals might demand, they create a precedent for reducing

the level of required preparation in music production. More

professional pattern and loop-based programs – such as Ableton
Live, FL Studio, and trackers – can also benefit from bundled

sound libraries,
2
 but also offer earlier gratification by focusing

editing on shorter slices of music (see Section 8.3).

 All Users Tracker reViSiT All Users

 Beginners Experts Experts (normalised)

 users 175 68 107 11 175

 sessions 1195 154 1041 276 1195

Total playing 59.49 ± 0.42 59.77 ± 1.05 59.50 ± 0.37 60.89 ± 0.64 51.61 ± 0.92

 Host focus 56.89 ± 0.39 50.69 ± 0.61 57.85 ± 0.40 41.73 ± 0.49 43.67 ± 0.69

 playing 35.93 ± 0.39

(63% of focus)
32.33 ± 0.85

(64% of focus)
36.50 ± 0.39

(63% of focus)
25.04 ± 0.50

(60% of focus)
22.84 ± 0.63

(52% of focus)

 reViSiT focus 43.11 ± 0.39 49.31 ± 0.61 42.15 ± 0.40 58.27 ± 0.49 56.33 ± 0.69

 playing 23.56 ± 0.18

(55% of focus)
27.44 ± 0.72

(56% of focus)
23.00 ± 0.18

(55% of focus)
35.85 ± 0.38

(62% of focus)
28.77 ± 0.58

(51% of focus)

 Pattern Editor focus 33.75 ± 0.26

(78% of reViSiT)
29.99 ± 0.61

(61% of reViSiT)
34.26 ± 0.30

(81% of reViSiT)
53.05 ± 0.45

(91% of reViSiT)
32.05 ± 0.54

(57% of reViSiT)

 playing 19.35 ± 0.16

(57% of focus)
19.13 ± 0.61

(64% of focus)
19.39 ± 0.17

(57% of focus)
33.34 ± 0.39

(63% of focus)
18.02 ± 0.43

(56% of focus)

 Other screens focus 9.36 ± 0.19

(22% of reViSiT)
19.32 ± 0.53

(39% of reViSiT)
7.89 ± 0.16

(19% of reViSiT)
5.23 ± 0.31

(9% of reViSiT)
24.28 ± 0.58

(43% of reViSiT)

 playing 4.20 ± 0.11

(45% of focus)
8.31 ± 0.57

(43% of focus)
3.60 ± 0.08

(46% of focus)
2.51 ± 0.15

(48% of focus)
10.75 ± 0.50

(44% of focus)

Table 1 – Summary of focus and playback, across user groups

Mean percentages and 95% confidence intervals based on the interquartile period (25-75% total

duration) within average session, for four user groups with varying levels and types of expertise.

Normalised figures for All Users are provided in the final column (see text).

2
 It was beyond the resources of this research to provide a sample library with the reViSiT distribution.

However, this is partly mitigated by support for MIDI and soft-synth connectivity, and the widespread

online availability of samples, as well as tracker songs that contain re-usable samples and instruments.

 177

intermediate forms

 It is also important to note that each session only represents an

extract of a creative process; a finished piece of music is typically

the product of several sessions. As such, the activity represented

is not that between a blank canvas and a finished work, but can

begin or end with partially-completed material. Accordingly, the

degree of relative changes and trends indicated by the data is

expected to be greater across the wider creative process.
3

 The main body of interaction corresponds to a relatively stable

period of editing, and gradual accumulation of musical material.

Aside from the gradual trends observed above, the divisions of

focus (and playback) otherwise remain in roughly constant

proportion over the period. These proportions, however, vary

significantly, depending on user background and expertise. In

Figure 1, the sample is split between (b) novice and (c) expert

tracker users, respectively; with (d) illustrating sessions from

users with specific reViSiT expertise. Table 1 shows a breakdown

of the average time (in % of session) users spent in each part of

the system, plus the respective time in which music was playing.

Figures are based on the interquartile period (25-75%) of the

average session, in order to capture the main, productive phase of

interaction, and ignore characteristics found only in the opening

and closing moments of a session. The first four series

correspond to the session profiles illustrated in Figure 1, targeting

different levels of user experience.
focus and expertise

 Whilst Tracker Beginners spend significantly more overall time

in reViSiT, compared to Tracker Experts (49.31% > 42.15%, p < .05),
4

they spend significantly less time actually editing music in the

Pattern Editor (29.99% < 34.26%, p < .05).
4
 This difference is largely

attributable to the longer time novices spend in the tracker’s other

screens, learning about and editing instrument and song settings

(19.32%). Experience with reViSiT outside the Pattern Editor (e.g.

shortcuts, layout, function) allows experts to complete tasks more

quickly. Because there is a low ceiling to the complexity of

interaction in these parts of the program (and fewer paths to

take), significantly less overall time is spent in them (7.89%,

p < .05),
4
 which allows the user to devote more time to editing the

music itself, either in the Pattern Editor or host program. This

trend becomes more prominent when looking at users with

experience of reViSiT specifically, rather than trackers in general.

Over half these users’ time is spent in the Pattern Editor (53.05 ±

3
 This supposition is also supported by Figure 3, where the normalisation process increases the influence of

users with fewer sessions (less prior art), and where such trends are also prominent.
4
 Tested using a one-tailed, unpaired Welch’s t-test (see Table 1 for sample sizes and confidence intervals).

 178

0.45 %), and less than 10% of the total time in reViSiT’s other

screens (5.23 ± 0.31 %). Unlike other users, reViSiT is the focal

point of interaction (in focus for 58% of the time), yet a surge in

host-based playback, at the end of the session, is still evident.
 As a measure of the average session, Figure 1 (a) reflects the

interaction of the users who contribute the most sessions,

favouring the most prolific (and more experienced) users of the

program, as can be seen by comparing the profile with that of

Figure 1 (c). A fifth column of Table 1 uses the same dataset as

the first series, but normalised to users (i.e. each user’s sessions

are averaged before the profile is summed with that of other

users). The corresponding normalised profile is pictured in Figure

3. With this process, a novice with only one session influences

the result as much as an expert with several (at the cost of

increased variance from summing of fewer profiles, themselves

based on fewer sessions). The resulting figure is a measure of the

average user (rather than the average session), a significant

proportion of whom are new to reViSiT (94%) and tracking

(39%), thus favouring novices and providing insight into earlier

stages of learning, as confirmed by the similarity with the earlier

Tracker Beginners session profile (Figure 1 (b)). Similarly, these

results also emphasize these users’ earlier stage in the creative

process, with the corresponding profile in Figure 3 initially

showing less host playback (due to the lack of prior art) and more

preparatory activity in the tracker (outside the Pattern Editor), as

well as less signs of a surge in host playback, at the end of the

session, that characterises the conclusion of a creative process.

 (a) (b) (c)

Figure 3 - Session profile of average user (legend as Figure 1), based on sessions

over 30 minutes duration (175 users, 1195 sessions), normalised by user: (a) first 15

minutes; (b) second and third quarters (25-75%); (c) final 15 minutes.

 179

(b) 10-30mins (c) 30-60mins (d) > 60mins

P
la

y
b

a
c
k
 R

a
ti

o

(a) Session Duration (mins)

0% 10% 20%
0%

20%

40%

60%

80%

100%

0 60 120 180 240 300 360 0% 10% 20% 0% 10% 20%

sample size n 1651 642 764

mean x̅ 49.2 57.0 61.1
standard deviation s 20.3 25.4 30.5

1st quartile Q1 21.4 39.9 50.7
median x̃ 53.0 60.3 64.5

3rd quartile Q3 75.0 76.8 74.7
interquartile range IQR 53.6 36.8 24.0

Figure 4 – Proportion of time spent playing music. Percent of activity with music playing,

plotted as (a) a scatter plot against session duration, with histograms (and summary statistics) for

playback use in sessions (b) under 30 minutes, (c) 30 to 60 minutes, and (d) over 6 minutes.

audio feedback
threshold

 Despite varying focuses, user backgrounds and programs, the

overall percentage of time spent playing music remains surprisingly

uniform; averaging 60% of the time a user spends active.
5
 Though

expertise in either the tracker or sequencer can be seen to increase

playback use in the respective environment, it is generally balanced

by less playback in the other.
6
 The division of focus between the

two environments also does not appear to affect the overall use of

playback (R2=.04).
 Figure 4 plots the proportion of time in which playback was

playing, against session duration. Figure 4 (b) shows varied use of

playback in short sessions (< 30 minutes), with a near uniform

distribution of playback ratios – from negligible use of playback

(associated with visual editing, learning, or exploring the UI) to

near-continuous playback (associated with live editing, recording,

‘macro-listening’ to a song, or browsing different songs, possibly

from other artists). In longer sessions (Figure 4 (c & d)), associated

with more productive editing activities, these extremes all but

disappear, and tend towards an increased, but balanced use of

musical feedback. In sessions over 60 minutes, playback is active

5
 Normalised by user, this proportion drops to 52%, as the influence of users with fewer sessions (less

perseverance) is increased. Beginners with more sessions, however, spend 60% of their time listening to

audio, which may signify an early rise in playback use, after the first session, or 30 minutes.
6
 For example, sequencer experts (expected to use reViSiT in a supporting role) did demonstrate a higher

proportion of playback use in the sequencer itself (74%), but balanced by a lower use of playback in

reViSiT (55%), which still culminated in an overall average of 64%, in line with the trend).

 180

for roughly two thirds of interaction time (x̅=64.5%), with over half

exhibiting playback ratios of between 50% and 75% (IQR=24.0%).

The tendency towards this level of playback is illustrated by the

normal distribution evident in Figure 4 (d), and supported by an

interquartile range test for normality (zQ1=-.68; zQ3=.67).
domain feedback
and liveness

 As domain feedback, greater use of audio playback instils greater

liveness in the user experience (see Section 4.2.4), and facilitates

the editing of visual notation (see flow interference, Figure 4-9). In

music, hearing the actual music, rather than interpreting an abstract

representation of it, leads to more direct involvement (Leman,

2008). The feedback motivates a user not only by providing early

gratification for effort already expended, but also the impetus and

guidance for further interaction. Duration, in this context, can thus

be used as a simple, but effective indicator of activity where

motivation is maintained. The predominantly non-professional and

non-social use of the program also suggests that such motivation is

likely intrinsic to the user experience, conducive to both enjoyment

and the conditions for flow. Figure 4 suggests that prolonged

interaction, as an indicator of motivation, increasingly depends on

high availability and increased use of musical feedback.
 Several factors also serve to limit the use of musical feedback.

While sequencers support realtime entry and manipulation of music

(e.g. recording), other editing operations are not connected with

playback, especially where they concern manipulation of a visual

notation. This asynchronous mode of editing is even more common

in the tracker, where edits are made and then auditioned

sequentially. As such, it becomes unnecessary (and even difficult)

for a user to have music playing continuously. Indeed, such a

scenario may not be desirable. Unlike listening for pleasure,

musical feedback that supports editing is more broken, repetitive

and strenuous, both mentally and physically. In studios, engineers

can suffer physical discomfort (ear fatigue) as a result of sustained

listening to music at high volume levels. More generally; focused,

engaged interaction and concentration has a tiring effect on the

individual. In the video study, the composer was observed to adjust

his way of working to drop his work rate and take longer breaks to

combat tiredness (see Section 6.2).
7,8

7
 His principal technique was to break from the rapid tracker edit-audition cycle, and move to the sequencer

for more relaxed listening, to longer excerpts of the song. Though this has the effect of increasing the net

use of playback, the less broken, more structured, and polished nature of the audio feedback ultimately

places less strain on the ears.
8
 Another question, not explored in this research, concerns how the accumulation of material, and

increasing time spent reflecting on it, impacts or encroaches on subsequent editing and the creation of new

material. How does an individual’s satisfaction with their creativity balance with their confidence to

maintain it? Are users able to recycle the creative process, or do they quit while they are ahead?

 181

early stage
creativity

 This section correlates the first and last phases in the session

profiles with the respective extremes of the creative process, as

defined by stage theories of creativity (see Section 3.2). These

stages (preparation, evaluation, and elaboration) are distinguished

by conscious activity, and are the easiest to identify and observe.

The intermediate unconscious stages of creativity (incubation,

intimation, and illumination) are harder to delineate. In user logs,

passages of interaction are sometimes characterised by lulls and

unfocused sketching that precede bouts of high-energy productivity,

followed by extended listening, but it is difficult to determine, with

any reliability, how this progression relates to these stages.
 The variation between individuals means that an average taken

over users and time will obscure these details, which are better

revealed by detailed studies of individuals. The composer in the

video study, for example, mentioned long periods of simply

listening to his music at length, distinct from editing activity.

These periods, which he calls “macro-listening”,
9
 can easily last

over an hour, where he simply places the music on cycle and sits

back. They not only serve for analysis of his work, but to refresh

his feel for the music after an absence from editing, or simply

because he enjoys the music. As “time away” from active editing,

this passive phase of interaction thus serves to incubate new

musical ideas and artistic decisions ahead of editing, but in an

explicitly disengaged, unhurried and unfocused manner. It

highlights an example of incubation later in the creative process

(after the production of an “intermediate form”) and a role for less

conscious reflection during evaluation stages, such as verification
and refinement, lending support to models of musical creativity as

iterative and parallelised creative processes (e.g. Webster, 2002,

Knörig, 2006; see also Section 3.2).
from sketching
to refinement

 It is also useful to consider Graf’s (1947) description of the

composition process (see both Section 3.2 and 3.5); as a gradual

transition from less conscious creativity, supported by sketches, to

increasingly critical thought and reflection, culminating in the final

score. This progression may be evident in the sessions, the gradual

shift from tracker-based editing to increased use of higher-level

editing, song playback, and post-processing in the sequencer.
10

9
 And which he distinguishes from “micro-listening”, the very short (<2s) bursts of audio feedback used to

support editing. See Sections 8.2 and 8.3 for more detailed analyses of playback use in music software.
10
 This is supported by later analyses (see section 8.3) that reveal tracker editing to focus on fast,

provisional editing cycles, characterised by frequent, short episodes of musical feedback, conducive to

sketching and experimentation with new ideas, facilitating early-stage creativity. Other studies have also

found the main value of sequencers and other music software arises during the later stages of the creative

process (Blackwell and Green, 2000; Smith et al, 2009).

 182

user development
over time

 Figure 5 concatenates each user’s sessions to provide a picture

of the average user’s first 4 hours in the tracker, and their initial

exposure to the program.
11

 As such, it illustrates not only the

newcomer’s early development of skills and practices, but also

coincides with the start of a creative process, not confounded by

the continuation of previous work evident in session profiles.
 Initially, the user spends the majority of their time in reViSiT,

exploring, experimenting, and learning the program. In the first 10

minutes, this exploration is focused on the Pattern Editor, but soon

split with other supporting screens that govern the loading and

editing of instruments, and are a pre-requisite of music editing.

Focus on the Pattern Editor remains stable, at around a third of the

user’s time, while use of other parts of the program diminish,

reducing the overall proportion of time spent in reViSiT linearly

over the next 90 minutes (R²=.87), towards parity with the host.

After this point, the majority of a user’s interaction in reViSiT is

focused on the Pattern Editor and music editing.
 Total playback rises quickly from zero, approximating a

logarithmic curve (Figure 6, R²=.88). After 20 minutes, playback in

reViSiT stabilises, occupying just under a third of the user’s time,

but sequencer playback continues to rise linearly for the next 90

minutes, accompanied by a corresponding shift in focus, from the

11
 The overlapping sections of the (b) 2 and (c) 4 hour samples are not shown. When overlaying the

duplicated sections, the sole discernable distinction is increased noise in the samples that are based on

fewer users. For this reason, the role of these omitted sections is served by the displayed profiles, together

providing an accurate representation of interaction trends in the first 4 hours of reViSiT use.

 (a) 1
st
 hour (n=185) (b) 2

nd
 hour (n=106)

Figure 5 – User profile over time. Concatenates users’ sessions to illustrate the first 4 hours of interaction,

showing focus splits between the host and reViSiT (and Pattern Editor), as well as the proportion of that

time spent listening to music (shaded), and curves plotting the corresponding level of input activity.

 183

tracker to the sequencer. Here, as the skill with reViSiT matures, a

user’s attention extends to combined use of the tracker and

sequencer environment, such as the application of the sequencer’s

post-processing facilities to music created in reViSiT.

Figure 6 – Total

playback over time

(1
st
 hour of activity)

y = .09Ln(x) + .10 R2 = .88

0%

10%

20%

30%

40%

50%

0 10 20 30 40 50 60

Time (mins) >T
o
ta
l
p
la
y
b
a
c
k
 u
s
e

(%
 t
im
e
)

 After roughly 90 minutes, focus and playback use approaches

that demonstrated in the sessions of tracker experts (see Figure 1

(c)), which may indicate an important milestone in the learning

curve. At the same time, as much as this may reflect skill

acquisition, it likely also reflects the gradual build up of a sample

collection, upon which more experienced tracker users can draw –

thus saving time on preparatory and peripheral tasks, enabling

users to focus on editing music in the Pattern Editor.
12,13

12
 This explanation is supported by the higher percentage of time spent in the Pattern Editor, by Sequencer

Experts, during early interaction (76% of total time in reViSiT). These users have no tracker background,

but likely have a sample library. reViSiT’s supporting screens are also based on concepts and interaction

styles seen in DAWs (e.g. software samplers), which may support the transfer of their expertise.
13
 Music programs are increasingly bundled with large libraries of samples, presets, and templates to help

new users get started, and jump straight to music editing. Unfortunately, a similar provision was beyond the

resources of this research, such that reViSiT is not strictly usable “out of the box” (see also Footnote 2),

which may have influenced the initial appeal of the program, and the wider retention of users with less

experience or knowledge of trackers.

Figure 5 (contd.) – (c) 3
rd
 and 4

th
 hours (n=67)

 184

 Moreover, while these figures might indicate the assimilation of

the broad tracker concept, deeper and more advanced expertise,

such as motor and keyboard skill takes longer to develop, only

approaching that of users with general tracker experience in the

fourth hour of interaction (x̅180-240=11.25 cmds/min) – and still a long

way from the mastery and interaction rate of users with specific

reViSiT (or IT2) tracker expertise (see Section 6.2.1).
 Minor fluctuations in the focus average are also subsequently

visible, in Figure 5, in which an oscillation between the tracker

and sequencer is visible, in cycles of roughly an hour. Based on

the earlier session profiles (e.g. Figure 1), this might indicate

periods of tracker-based editing, followed by host-based

refinement and evaluation, and thus correspond to iterations of the

creative process. The lack of any significant correlation between

the time spent in the host and the input activity, may also suggest

that the sequencer is predominantly used for listening. However,

the increased noise in these smaller samples, as well as the lack of

detailed data on how the sequencer is used during these periods,

makes it difficult to explore this hypothesis.

8.2 measuring liveness

In a music program, timely audio feedback is perhaps even more

critical than visual. Analysing keystroke categories (see 6.2.2)

showed that users with different amounts of tracker experience

differed in their use of playback. Novices tend to audition their

music from the beginning of the piece (F5) or phrase (pattern, F6),

while more experienced users audition shorter passages at or

around the editing cursor (F7), developing a rapid edit-audition

cycle, with edit commands interwoven between playback of a

single tracker row, the beat (4 rows) or the bar (16 rows).

liveness in
tracking

 Though the net use of playback is similar in both trackers and

sequencers (see section 8.1), Figure 7 highlights a difference in

individual episodes of playback, in each environment. Analysing

the lengths of playback episodes, it is evident that trackers support

a tighter edit-audition cycle. Whilst greater experience leads to

faster feedback cycles in both programs, the overall distribution of

playback episode lengths shows how sequencer playback is

heavily quantised to musical bars, as illustrated by the spikes in

Figure 7, during shorter auditions. The mode of tracker episodes is

a duration of 0.5s (1 beat at 120bpm), the peak of a long, smooth

tail that shows varied and flexible use of playback, with slight

shelves corresponding to the musical bar (2s / 16 rows in 4/4) and

tracker pattern (4s / 64 rows). By comparison, sequencers show a

 185

strong tendency towards whole bars and longer phrases – at 2s, 4s,

and 8s (1, 2 and 4 bars at 120bpm, 4/4), and also 10s, 20s, 30s,

45s, 60s, and 90s, for workspaces using digital timecodes.
 Figure 8 illustrates playback use in the tracker and host

sequencers, highlighting not only the quantisation of sequencer

playback episodes, but the premature commitment that requires a

user to set a duration, which is then doggedly maintained

throughout the session. By comparison, few such trends are visible

in the tracker plot, except wider tendency towards shorter

playback snapshots, with almost half (48.4%) the episodes under 2

seconds in duration (compared to 34.6%, in the sequencer).

y = 0.113x-1.562

R2 = 0.890

y = 0.134x-1.763

R2 = 0.919

0.01%

0.10%

1.00%

10.00%

0 15 30 45 60 75 90

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 2 4 6 8 10 12

Sequencer Playback

Tracker Playback

Figure 7 – Durations of playback episodes, plotted against the frequency of their occurrence,

using logarithmic scale up to 90 seconds, inset with detail under 12s duration using linear scale.

Figure 8 – Scatter plot

of session offset (mins)

vs. playback duration

(seconds).

From all sessions

over 30 minutes, for:

(a) the reViSiT tracker

and (b) the host DAW.

 (a) the reViSiT tracker (b) host sequencers

 186

 This disparity with tracking can be explained by the provision of

cursors in the UI, which indicate where the focus of work is. Both

programs maintain a playback cursor, but while the keyboard

focus of tracker programs provides a constant edit focus, no fixed

focus or context is supported by the sequencer’s mouse pointer,

which can affect any moment or property in the music, across any

window. Auditioning recent sequencer edits thus requires a more

involved reconfiguration of the playback cursor, which is then

typically snapped to the nearest bar or beat. That the sequencer

maintains a persistent playback, rather than edit, cursor is an

example of the different emphasis, as compared to tracking, in line

with the system archetypes defined earlier in Section 4.2.3.
reflective vs. reflexive
use of playback

 The need to step out of editing inhibits frequent and fluid use of

musical feedback, encouraging more sparing use of playback in

the sequencer. In Figure 7, both distributions fit an inverse power

curve (Sequencer, R²=.890; Tracker, R²=.919), in which the higher

exponent in the sequencer curve reflects a tendency towards

longer playback durations. This trend is notable in playback over

10s, indicating sustained listening to the song. While this may be

attributable to live recording and the capture of longer

performances, the concentration of sequencer playback at the

backend of the session (see section 8.1) points to more reflective

evaluation (or post-processing refinement) of previously-recorded

material. In this regard, the added precision and preparation

supported by the sequencer’s playback control may suit the more

conscious thinking styles that characterise late-stage creativity.

 In the tracker, playback control is more reflexive. Evidence for

this comes from the frequency of extremely short audition clips,

truncated to less than 100ms, before they can usefully provide

feedback. These false starts suggest users have a well-learnt,

automatic mechanism for triggering playback after short edits,

only reflecting on the appropriateness of the action retrospectively.

Rapid edit-audition iterations build momentum so that this double-

take can occur when the user switches to a more reflective mode

of listening, requiring more forethought or preparation.
playback caesura These slightly longer auditions act as punctuation marks in

editing, like a typist using a full stop, a programmer using a semi-

colon, or even a musical caesura. Focus, however, is maintained,

through the tracker users’ tendency to hover over the Stop key

(F8), to truncate auditions the instant they have served their use.

The composer in the video study (see Chapter 6) described this

approach as “spot-on debugging”, allowing him to jump straight

back into editing when he hears something of interest. As a

 187

consequence, the tracker user remains engaged, and their attention

focused, in the short episodes of playback linking different periods

of more active editing.
bottom-up
composition

 In all, three distinct modes of listening emerge in tracker use,

supporting a bottom-up approach to composition, hierarchically

increasing in temporal scope: note, phrase, and song. At the

lowest level, notes are entered and edited with support from very

short auditions of single beats, but still within the wider harmonic

context of the piece. These fine edits are sequenced and layered,

culminating in short musical phrases, of one or more bars, which

are auditioned as a whole. Finally, these bars, phrases and patterns

are sequenced and layered to form a song, supported by longer,

more reflective interaction. This approach immerses the user in the

detail of the music, in contrast to analytical, top-down composition

styles, built on knowledge of musical structure and theory.
engagement
and intimacy

 Feedback from one user, with significant past experience with

Impulse Tracker, goes as far as to describe a closer physical

proximity to the computer itself, when interacting with reViSiT:

I felt so familiar with this program, like it has
always lived in my computer, and it kind of pulled
me forward to sit in front of the screen and focus
on overcoming the limitations of the host.

 Other users likewise describe a greater sense of intimacy, one

likening the user experience to that “more like an instrument”,

attributed to the speed and spontaneity of interaction. Other former

DOS tracker users also commented on the lower level of

engagement in Windows and sequencing, which frustrate fast

interaction and focus through the need to switch between windows

and input modes or devices. In this sense, greater liveness (as

direct and immediate feedback) is also a critical factor in the sense
of control, leading to more reflexive use of a program, but

hindered by the more reflective playback control in sequencers.
the “big picture” The overall tendency for tracker experts to focus on finer details

and shorter sections seemingly contradicts other findings that

observe expert musicians’ ability to focus on the “big picture”

(Chaffin and Lemieux, 2004). However, this finding should be

interpreted as a reiteration of their improved ability to retain the

big picture in mind, without recourse to visual or aural feedback.

Thus, the lack of these scaffolds has more implications for

developing users, less able to visualise musical structures or

implicit patterns in the raw notes. Though it may be relatively

easy for a novice to pick up the basics of the tracking approach

 188

and notation through tinkering with short phrases, the interface’s

limitations in catering for broader visual (or aural) overviews, and

support for higher-level, macroscopic editing and arranging, make

it difficult for inexperienced musicians to tackle longer, more

complex musical forms, structures, and developments. Indeed, a

similar trade-off is evident in other music programs founded on

loops or short phrases (see sections 8.5 and 9.3), leading to a

tendency to favour simpler musical forms, such as the progressive

styles of dance music (house, trance, drum and bass).
 A rift between direct and abstract musical control is even more

pronounced in the sequencer, between performance capture and

subsequent musical editing based on direct manipulation of

musical structures. However, even during sequencer interaction,

Collins (2005) found a “pre-occupation with small scale actions”.

While he considers the consequent drop in productivity in

contradiction to the composer’s pursuit of a fast work rate

(“achieving as much as possible”), this habit must be considered in

the context of the user’s subjective experience, where the

narrowed focus leads to more flow-like interaction, like that

described for tracking. Moreover, it is worth noting that, whereas

productivity slows, such focused interaction typically corresponds

to more rapid feedback, physical activity, and higher energy,

which the user might perceive as a fast work rate, and find

intrinsically rewarding.
 Trackers provide an example of computer music interaction that

bridges composition and performance practices; coupling more

visceral, immersive, and engaging user experiences, based on

reflexive actions and motor skill, with more abstract control of

musical processes and time. Moreover, by identifying the

mechanisms involved in supporting such interaction, program

designers may be able to find ways to integrate them with more

complex musical affordances.

8.3 direct manipulation for audio-based programs

 The continuity of feedback is a central component of direct
manipulation (Shneiderman, 1983), which leads UI designers to

visual representations of music data that, while continuous, can be

highly abstract. Rapid, shorter, more focused musical feedback,

interleaves the domain representation with lower-level interaction

(e.g. simple edits), towards not only support for more “continuous

representation of objects of interest”, but through “rapid reversible

incremental actions with immediate feedback” (see Table 2).

 189

pr
in

ci
pl

es

• continuous representation of the objects and actions of interests;
• rapid reversible incremental actions with immediate feedback about the object of interest;
• physical actions and button pressing instead of issuing commands with complex syntax;

be
ne

fi
ts

• helping beginners learn basic functionality rapidly;
• enabling experienced users to work rapidly on a wide range of tasks;
• allowing infrequent users to remember how to carry out operations over time;
• preventing the need for error messages, except very rarely;
• showing users immediately how their actions are furthering their goals;
• reducing users’ experiences of anxiety;
• helping users gain confidence and mastery and feel in control;

Table 2 - The principles and benefits of direct manipulation,

as summarised by Sharp et al (2007), based on Shneiderman (1983).

 Sequencers and DAWs offer graphical user interfaces (GUIs)
based on traditional applications of direct manipulation principles,

developed for visual mediums. Digital tools and processes are

linked to musical concepts through visual representations, which

help trained musicians understand the workings of a program.

Leman (2008) argues that this use of visual notations is harmful to

music interaction, where users are involved in music only

“indirectly”, through the visual proxy of notation (see also system

indirection, Figure 4-9). While trackers do not abandon the

advantages of a notation (e.g. abstraction as a tool), feedback is

shifted to prioritise audio representations of the musical data, but

in a way where the aforementioned goals and principles of direct

manipulation are respected. This section has shown that this

approach to direct manipulation for audio, using frequent, rapid,

short episodes of audio feedback, confers the same advantages

Shneiderman (1983) observed in visual mediums (see Table 2).

 The previous section described the use of musical feedback to

facilitate a user’s understanding and use of tracker notation. In this

section, these analyses are extended to consider the editing

activity and complexity of notation use that precipitates playback,

and the effect of experience.

measuring
directness

 Figure 10 shows the elapsed time spent editing the music,

between playback, for novice and expert tracker users,

generalising trends observed in user sessions (see Figure 9 (a)).

Logarithmic sampling is used, so that the area under the curve

remains proportional to the number of episodes, using a log scale

(see inset for an illustration of the intervals used). In the Expert

case, the curve exhibits a log-normal distribution centred on a

mode of 17.13s and median of 15.92s. For Novice users, the

distribution is skewed towards considerably longer editing

episodes, with a median of 67.15s and mode of 155.76s (2m36s).

 190

However, a notable increase, relative to a log-normal distribution,

is apparent at very short editing durations, below 10s (local

minima, 1.30s), which may indicate inexperienced users tinkering

with the tracker; making small changes to the notation, then using

playback to understand their effect. This behaviour largely

disappears with minimal experience.
 The extent to which novice users are working slower, rather than

simply longer, is indicated by Figure 11, which plots the number

of edits (inputs that affect the data) between auditions, rather than

absolute time. Here, experts, like novices, are shown to also

favour individual edits, but as part of a wider trend towards

shorter editing sequences (median = 2.36 edits), whilst novice

interaction is still characterised by greater editing activity between

requests for musical feedback (median = 5.44 edits).

(a) Tracker

Novice
User #129

(Recorded 21/09/10)

Tracker

Expert
User #32

(Recorded 04/08/09)

(b)

∆d × ∆t uncertainty ~

 2

 (c)

Figure 9 – Editing metrics and uncertainty. Examples, explanations, and definitions relating to analysis

of editing episodes: (a) Total data changes plotted against session time, as visualised in iMPULS|IVE (see

Section 5.4), taken from two representative session logs, with corresponding keyboard activity indicated on

the time axis, in green; (b) Illustrative example of the roles of edits, selections and playback within an

editing episode; (c) Proposed model for uncertainty, as used in Figure 12.

Table 3

Duration and

editing statistics

from Figures 10-12

editing episodes novices experts

Duration median 67.15s 13.24s

 mode 155.76s 17.13s

Number of edits median 5.44 2.36

 mode 1 1

Data created/modified median 5.70 4.00

 mode 1 1

 191

Figure 10 – Editing Episode Durations. The elapsed time (in seconds) between uses of playback,

during which data is edited, for novice (green, n=548) and expert (red, n=574) tracker users. Data taken

from sessions with over 30 minutes of interaction sampled logarithmically (see inset).

0%

5%

10%

15%

20%

1 10 100 1000

Figure 11 – Editing Activity between Auditions. The number of edit actions between uses of playback,

during which data is edited, for novice (green, n=548) and expert (red, n=574) tracker users. Data taken

from sessions with over 30 minutes of interaction sampled logarithmically. Adjusted (dotted) lines

account for the increased scope of selections-based edits.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.1 1 10 100 1000 10000 100000 1000000

Figure 12 – Model and Plot of Editing Uncertainty. Uncertainty modelled as the product of data

modifications and time between auditions (see inset equation), for novice (green, n=548) and expert (red,

n=574) tracker users. Data taken from sessions with over 30 minutes of interaction (sampled

logarithmically).

0%

2%

4%

6%

8%

10%

0.1 1 10 100 1000 10000

1000

 192

 It is expected that expert users enter data more efficiently,

exploiting features to manipulate blocks of music, rather than just

individual notes. To account for the varying complexity of edits,

logs were analysed to track the cumulative amount of data created

(or modified) prior to each audition (illustrated in Figure 9 (b)),

factoring for the use of selections and the clipboard. Figure 11

includes adjusted curves for both groups, which effectively weight

edits according to the size of the selection they address. As the

users’ musical data is not collected, the data density of selections is

estimated using a 25% coverage heuristic, based on tracker usage

established from saved file summaries and publicly-available

tracker songs.
14,15

 The adjustment brings the expert profile closer to that of novices,

who show only minimal selection-based editing (likely through

drag-and-drop). However, the expert’s greater tendency to make

shorter edits remains, and thus neither speed nor efficiency can

completely explain their more frequent use of auditions.

 The variables modelled in Figure 11 and 12 can be seen as

factors in the user’s perception of liveness, which concerns the

mapping of physical action to its effect on the domain (see 4.2.4).

The difference between discrete levels of liveness is described by

the nature and extent of the delay (in time or edits) in domain

feedback, inherent in a notation or UI. Music software can exhibit

Level 2 (manually-triggered), Level 3 (edit-triggered), or Level 4

(real-time) liveness. However, the findings above illustrate how

experienced tracker users manually-trigger playback at or near the

edit rate, influencing the effective liveness of the user experience.
 Greater liveness, through timely domain feedback, makes it

easier for the users to understand the effect of their interactions

within the notation, so far as they relate to the domain. As time

passes, individual edits accumulate, making it harder for a user to

recall and maintain a mental image of the product described, based

solely on the abstract visual representation. Eventually, a threshold

is reached, whereby it becomes necessary to execute (e.g. audition)

the work to comprehend it. To account for the effect of both

memory and editing complexity, Figure 9 (c) presents a

hypothetical model of this threshold, modelled as uncertainty with

14
 This corresponds to an average of one note every four tracker rows, or single musical beat. This fits with

expectations regarding the use of the notation, balancing denser percussive patterns, which divide the beat,

and sparser harmonies, which combine several beats (or bars) and tracks.
15
 Note that a constant coefficient does not account for the tendencies of users, especially experts, to chunk

selections into more abstract groupings (e.g. beat, bar, instrument, melody, harmony, pattern), which serve

to make large selections more manageable. If we were to assume that most selections encapsulate single

gestalts, such as a bar, then complexity is best modelled simply by the number of edits.

 193

the notational representation that grows in proportion to both the

number of changes in data, ∆d, and passage of time, ∆t (in

seconds).
16

 Figure 12, as the product of the distributions in Figures

10 and 11, exhibits a log-normal distribution under the model, with

modes of 225.02 for novices and 24.75 for experts.

 Whilst greater expertise and literacy in most fields, including

music, typically enables an individual to work more exclusively

with written notation without recourse to live simulation, the

findings in this section suggest this is not the case in tracking. In

contrast, experience with trackers leads to a lower threshold, and

sees tracker experts relying more on audio feedback (from the

musical domain) rather than visual feedback (from the notation).
 Unfortunately, the absence of equivalent data sets for other

authoring software prevents the wider testing of the model, in

respect of its applicability to more general interaction in music

production and creativity. This work is left to future research.

However, if verified, there are implications and applications of this

metric, for UI design.
 Less dependence on visual notation reduces the literacy

threshold; tracker novices should instead seek to introduce more

frequent auditions into their interaction. This frequency and the

other editing metrics explored in this section (complexity,

uncertainty), are measurements and calculations that can be made

at the time of interaction. A program can track them and use them

in support of the user’s interaction and development. For example,

music programs could display “liveness status”,
17

 as a visual cue to

encourage more frequent auditions. This might be as simple as a

visible timer counting from the last instance of playback, a counter

of the un-auditioned edits, or varied shading of data to indicate

when, if ever, it was last heard. More complex implementations

might track a user’s average over time, activating a response only if

it deviates sufficiently from an established optimum.
18

 In the samples studied, novices have tended towards longer

editing episodes. Some evidence has been identified for the use of

very short edits, possibly as a learning device. In Figures 10 and

12, these appear as local maxima, outside the main log-normal

16
 This variable can be seen to approximate the area under the line, in Figure 9 (c).

17
 For example, as a timer counting from the last instance of playback, or a meter counting the subsequent

number or extent of edits. Sections of music could also be colour-coded (e.g. desaturated) to reflect the

times they were last heard live, creating a heat map signifying editing activity within a piece. Rothermel et
al (2000) have used similar visual feedback mechanisms to indicate “testedness” in spreadsheet use and

software development, representing the degree to which a formula or block of code has been executed

(tested). Notably, however, the objective in artistic creativity is to support a user’s focus on their music,

rather to encourage “correctness” or guard against “overconfidence” (see Rothermel et al, 2000).
18
 For example, guiding the display of tips or advice (see Future Work, Section 10.4).

 194

distributions, this time below the averages for experts. In these

cases, extensive use of playback is punctuated by trivial edits that

limit a user’s productivity, if maintained. This bimodal distribution

may suggest a goldilocks principle; a happy medium between

editing that is too long or short, too complex or trivial, or involves

too much or too little uncertainty. In this way, an individual’s use

of playback in managing liveness may be related to flow theory’s

balance of challenge and ability (see 3.7), and the “flow channel”

that lies between boredom and anxiety (Figure 3-7). The challenge

of mentally simulating a visual representation of the music is

mitigated by aural feedback, but greater ability to work without this

scaffold benefits overall productivity and allows the individual to

tackle greater musical challenges.

8.4 visual feedback and window use

 To support the “many paths” taken by creative individuals, music

programs provide extensive and varied tools for visualising and

manipulating data. Though command syntaxes and keyboard

shortcuts require no visual cues, popular usability techniques (e.g.

Nielsen, 1993) encourage the use of visual metaphor to advertise

and explain program functionality, notably through the use of

icons. Consequently, limited screen space requires more complex

authoring programs to distribute program functionality over

multiple windows, which not only hide aspects of the interface,

notation and data, but require the user to manage their creative

environment – finding, switching, and arranging views and

window, before data can be manipulated.
focusing
and learning

 This section looks at the use of windows in music software, and

their impact on the creative user experience. Windows are the

containers for visual feedback, and can greatly influence the user’s

ability to maintain the focus and concentration necessary for flow.

Multiple views (or multiple notations, as in Figure 4-10a) can

provide a broader and flexible perspective of a project, but also

divide the user’s attention. Moreover, segregating aspects of the

notation can introduce hidden dependencies, and varying visual

formats (especially of similar data) can reduce consistency, making

it harder for the user to get a grasp of the program or their data. By

comparison, more unified views support less flexibility, but direct

and maintain the user’s focus in one place. In combination with

fixed layouts, the program also becomes easier to memorise and

anticipate, requiring less management.

 195

the desktop studio

 Figure 13 identifies styles of window layouts commonly seen in

music programs. Using visual metaphors to separate hardware

devices in the electronic studio (Duignan et al, 2004), sequencers

and DAWs naturally lend themselves to distributed window

layouts in digital music production – mixers, transports, effects,

samplers, synthesizers, tape decks. However, the WIMP approach

also imposes the “desktop metaphor” on this virtual studio, in

which each device is now also a metaphorical “page” on the virtual

desktop. Banks of dedicated, physical buttons, devices and displays

are replaced by flat, abstract, and mutable virtual representations,

contending for space on a confined screen. In most cases, the

metaphor is stretched to enable users to resize, scroll and zoom, as

well as simply move and arrange, different views.

 Figure 14 shows how the design of window layouts in music

programs translates to the observed number of concurrently active

windows in the user interface, each of which must be managed by

the user or program. Figure 15 plots the number of windows

against the corresponding frequency of user inputs devoted to

managing them, where a positive correlation between the number

of windows and the level of management is evident. The

relationship follows a power curve (R²=.525), with minimal window

management for single-windowed programs (with some popup

dialogs), significantly increasing for multi-windowed workspaces,

but which are then also able to accommodate more windows at

limited extra cost. As such, the underlying window style of a

program (see Figure 14) seems the strongest predictor of both

window numbers and management, despite variations in design and

use. In Figure 15, clusters are drawn to delineate both single-

windowed approaches and those supporting more flexibility in

moving, sizing, or layering (i.e. MDI and floating windows).

single-plugin hosts

 Expectedly, simple dedicated plugin hosts (shells that connect

plugins to audio hardware, but offer little or no editing

functionality of their own – e.g. SAVIHost and MiniHost) employ

the fewest windows, simply providing a frame for the plugin (i.e.

reViSiT).
19

 A plugin itself, reViSiT’s tabbed-window design and

use of the keyboard to expose program functionality also enable

minimum window use.
20

19
 VSTHost, another dedicated plugin host, is more advanced, supporting multiple plugins, with multiple

windows per plugin (e.g. settings and plugin UI). energyXT is also used in a similar capacity.
20
 To gain absolute control over keyboard input, reViSiT’s UI must be separate from the host frame.

However, the VST architecture requires a plugin to specify a UI for display by the host. For this purpose,

reViSiT provides a simple, minimal toolbar, styled as a transport that merely duplicates selected

functionality available in the other window, and is expressly designed to be ignored by the user.

 196

(a) multi (MDI) (b) floating (c) tiled (d) single (SDI) (e) tabbed

Figure 13 – Archetypal window styles used in music software. Programs often employ more than one

style (e.g. tabbed floating windows; MDI client windows and floating toolbars), as shown in Figure 14.

window composition

● ● ● ● ● ● ● ● ● ● ● multi (MDI)

● ● ● ● ● ● ● ● ● ● ● ● floating*

● ● ● ● ● ● ● ● ● tiled

● ● ● ● single (SDI)

● ● tabbed

* excluding plugin

windows and

popup dialogs

average = 2.45

Sequencer

Tracker

Other

Small sample

├─┤ Std. deviation

co
nc

ur
re

nt
 w

in
do

w
s

(a
ve

ra
ge

)
>

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

F
L

S
tu

di
o

S
O

N
A

R

E
m

ag
ic

 L
og

ic

N
ue

nd
o

C
ub

as
e

M
ad

T
ra

ck
er

Je
sk

ol
a

B
uz

z

P
ro

 T
oo

ls

S
am

pl
itu

de

A
C

ID
 P

ro

V
S

TH
os

t

P
lo

gu
e

B
id

ul
e

O
pe

nM
P

T

en
er

gy
X

T

C
an

ta
bi

le

LM
M

S

P
sy

cl
e

A
bl

et
on

 L
iv

e

A
ud

io
M

ul
ch

R
en

oi
se

R
E

A
P

E
R

Tr
ac

kt
io

n

M
in

iH
os

t

re
V

iS
iT

S
A

V
IH

os
t

Figure 14 – Window layouts by program. Plots window layout styles and average number of concurrent

window in music programs, colour-coded by family. Figures exclude non-interactive static windows, such

as MDI frames and reViSiT toolbar. (Small samples, based on less than 5 users, are also indicated.)

ACID Pro Pro Tools

Jeskola BuzzPsycle

Samplitude

MadTracker
Cubase

Ableton Live Plogue Bidule

SONAR

Nuendo

VSTHost

energyXT

OpenMPT FL Studio

Cantabile

AudioMulch
Renoise

Emagic Logic

Tracktion

S
A

V
IH

os
t

LM
M

S

REAPER
MiniHost

reViSiT

y = 1.47x
0.40 R

2 = .53

y = 1.36x
0.52 R

2 = .70

1

1.5

2

2.5

3

1 2 3 4 5 6 7
concurrent windows >

o
p

e
ra

ti
o

n
s

 /
 m

in
u

te

 >

 ● Sequencer / DAW
 ●/● reViSiT / Other tracker
 ● Other music program
 ● Small Sample (n < 5) -
 ― Trend (- - excluding FL Studio)

Figure 15 – Window management in music programs. The amount of window management

(operations per minute, including switching, showing, hiding, moving, and sizing), plotted against the

average number of concurrent windows. Two trend lines are plotted, including and excluding the FL
Studio outlier (see Section 8.5). Clusters delineating single and multi-windowed UIs are also shown.

Single-Windowed
(SDI, tiled, tabbed)

Multi-Windowed
(MDI, floating)

 197

the sequencer legacy

Figure 16

Screenshots of

sequencer and

DAW interfaces.

 Four of the five programs with the most prolific use of windows

represent long established platforms for music production –

Cakewalk SONAR, Emagic Logic21
, and Steinberg Nuendo and

Cubase. These programs average between 4.5 and 6.0 concurrently

active windows, but use varies considerably between users

(standard deviation ~ 1.5), indicating the increased flexibility, but

also management requirement. The legacy of these programs,

which each date back to the late 1980’s and the original rise of

GUIs and desktop metaphors, is still clearly evident in the window

styles they employ (see Figure 16 (a) and (b)). Though aesthetics

have improved over the years, the conservative use of generic

window styles provided by OS APIs (MFC, WPF, Carbon, Cocoa)

remains evident. However, SONAR’s uni-platform approach

enables it to avail of platform specific window mechanisms to

deliver a greater number of windows more efficiently. Though

APIs progress, manufacturers looking to support multiple platforms

(including older OS’s) are restricted to functionality common to

each, limiting the adoption of newer methods, and restricting

programs to a lowest common denominator subset of features.

(a) Logic 1.5 (C-Lab, 1993)

(b) Logic 8 (Apple, 2008)

(c) Live (Ableton, 2006) (d) Cubase 4 (Steinberg, 2006)

21
 Logic has changed ownership several times, most recently to Apple, who withdrew support for Windows

users. Data in this study thus comes from older versions of the program (v5.5), by Emagic.

 198

 Whilst multi-window styles coped with the simpler functionality

of early MIDI sequencers, the greatly extended capabilities and

audio production remit of the modern DAW lead not only to an

unmanageable number of floating windows, but an increasingly

distributed sense of UI focus. For example, Cubase’s main project

window (arrange view) appears as a generic child window, beside

more peripheral parts of the UI (e.g. time display, settings

window). Indeed, unlike other parts of the notation, this central

view seemingly has no dedicated menu or keyboard shortcut.
housekeeping tasks

 That these mechanisms are not always apt is highlighted by

Collins’ (2005) observation that sequencer users must frequently

interrupt their work and perform “housekeeping tasks” to keep the

program manageable. In this research, logs show that users often

simply ignore this requirement, labouring on in cluttered

workspaces (e.g. Figure 6-4 and Figure 16 (d)) layered with

unclosed yet unused windows, despite unused space around them,

into which windows could be moved or expanded, but never are.
22

In a well-defined production environment built on standard

processes, users can benefit from optimising their workspace for

common tasks; but, in fast-paced, spontaneous, and unstructured

creativity, tasks are more varied, planning ahead is harder, and time

is more precious. Unless the program becomes unusable, artists are

reluctant to invest their attention in housekeeping activities, the

return on which is too abstract or distant for them to appreciate.
case study:
FL Studio

 The heaviest use of windows is seen in FL Studio, which fills the

workspace with numerous smaller views and devices. Contrary to

expectations and the trend in Figure 15, the program exhibits good

performance with regard to window management and flow (see

Section 9.3). When FL Studio is treated as an outlier and omitted

from the regression analysis,
23

 the fit of the resulting model

dramatically improves (R²=.704), as shown in Figure 15. Section

8.5 presents a brief case study of the program to explore this

anomaly in the context of other aspects of interaction – noting that,

while windowing does present focus issues, the overall impact on

the user experience is partly mitigated by specialist UI provisions,

and the availability of musical, rather than visual, feedback.

22
 An effort to accurately gauge how program views contend for screen space was also made, by summing

the total area of active windows and dividing by the visible area of the workspace. This contention ratio

accounts for the relative size of windows, so that programs aren’t penalised for smaller windows that

obscure the background less. Results ranked programs similar to that in Figure 14, with multi-windowed

environments hiding up to 60% of the active workspace. However, the metric showed limited predictive

power when correlated with window-related activity (R²=.44), cognitive dimensions, or flow. The lack of

relationships between this metric and other interaction properties would also seem to confirm users’

disregard for maintaining and optimising their workspaces.
23
 FL Studio lies over 3 standard deviations below the values predicted by either curve, in Figure 15.

 199

modern DAWs
and trackers

 More recently-introduced music programs, such as Ableton Live
(2001-), Mackie Tracktion (2003-) and REAPER (2007-), adopt

integrated, tiled approaches that unify core functionality into a

single, main screen, as indicated by the significantly lower

proliferation of windows in Figures 14 and 15.
24

 Trackers, such as

Renoise, reViSiT, and Psycle generally also focus on a central, main

view of the tracker notation, though others, such as MadTracker
and OpenMPT, have tried to marry older DOS layouts with more

standard Windows™ GUI methods, incorporating floating tool

windows and MDI clients reminiscent of sequencers.
 Ableton Live, however, receives almost no benefit from its

minimal window layout. Apart from preferences dialogs, Live’s

own UI is careful to minimise the use of windows. Instead, the

problem can be attributed to floating plugin windows, which the

full-screen, single-windowed application is less well equipped to

accommodate, creating extra work for the user. The UI supports

only limited windows concurrently, but many different (possibly

large) windows are used during the course of interaction, requiring

frequent opening and closing, hiding and showing – windows are

distributed over time, rather than space.
plugin windows

 Support for plugins plays a significant factor in the proliferation

of windows in music authoring environments. A flexible plugin

architecture gives third-party developers a free hand to add

functionality to a program that was not in the original design. This

foreign influence on the user experience introduces UIs that vary in

layout, size and interaction styles, and cannot easily be accounted

for or seamlessly integrated into the host’s main UI. In music

programs, plugin effects and synthesizers (including reViSiT itself)

thus appear as separate windows, either within an MDI frame or

floating above and outside the host UI. Moreover, with one or more

plugins often assigned to individual tracks, a single project can host

dozens of plugins. The resulting number and variety of UIs,

aesthetics, and interaction styles adds clutter to the workspace,

reduces the consistency and cohesion of the overall user

experience, harming the user’s sense of control. While the

architects of plugin specifications should perhaps look for ways to

encourage greater uniformity in plugin UIs, host manufacturers

should look to more adaptive, integrated approaches for hosting

and managing plugin windows.

24
 Aspects of these streamlined workspaces can also be seen in the recently-announced Cakewalk SONAR

X1 and Apple Logic Pro 9.

 200

Figure 17

Window metrics vs.

cognitive dimensions.

Window metrics taken

from user logs, plotted

against survey results

from the 7 most-used

programs in the study.

y = -0.10x + 0.26 R2 = .759

y = -0.13x + 0.60 R2 = .504

-1

0

1

1 2 3 4 5 6 7 8

No Hidden Dependencies

Low Error Proneness

(a) Average Windows

y = -0.39x + 0.69 R2 = .599

y = -.43x + 1.57 R2 = .444

-1

0

1

1 2 3

Low Error Proneness

Low Diffuseness

(b) Operations per Minute

 Figure 17 draws on user surveys, covered in the next section, to

highlight the impact of windows and window management on the

cognitive dimensions of a notation, based on the seven most

frequently used programs in the study (reViSiT, REAPER,

Cubase/Nuendo, Ableton Live, FL Studio, Renoise, and SONAR).

Greater numbers of windows engender hidden dependencies
(R²=.504) and increase the user’s error proneness (R²=.759), which

are harmful to a user’s sense of control, make it harder to maintain

concentration & focus. The knock-on requirement to manage

greater numbers of windows likewise correlates with error
proneness (R²=.599), but is also closely associated with a user’s

perception that a program is too diffuse, making worse use of space

(diffuseness, R²=.444). Other aspects of cognitive dimensions and

flow are further explored in the next section.

Other 2%

Transport 1%

Mixer 5%

Audio Editor 4%

Modular Synth 3%

Settings 3%

Data List 1%

Score Editor 2%

Project or

Arrange

Window

43%

Piano Roll

19%

Effects or

 Plugins

 11%

Step Sequencer
6%

Preferences 3%

Order List 2%

Info Page 2%

Instrument List 5%

Sample List 6%

Pattern

Editor

82%

 (a) in sequencer / DAWS (b) in reViSiT

Figure 18 – Users’ main focus in music software. Percentage of users with given main focus

(a) in sequencers, based on survey response (n=191) and (b) in reViSiT, based on log data (n=1125).

 201

dispersed focus
in sequencers

 The precise roles of individual windows within the various hosts

are difficult to extract from raw window data in the logs, but

responses from the end-of-experiment survey shed some light on

sequencer use. Figure 18 (a) shows which device or component part

of a program is seen as the focus of a sequencer user’s interaction,

out of the various standard views offered in modern DAW

software. The arrange view (or project window) stands out as the

most common focus in the sequencer (43% of users), offering

macroscopic view of the tracks within a piece, plus facilities to

arrange parts and record performances using MIDI or microphone

input. Users who rely less on recording turn to computer-based note

entry and editing using the piano roll (19%) – especially in FL
Studio, where it is focal to over half (55%) the users. Similar editing

functionality in score editor views is much less central to the

sequencer user experience (2%), despite a relatively high literacy

rate among users (46%). Lastly, a fifth (20%) of users spend the

majority of their program time in parts of the sequencer that offer

no direct editing facility (mixer, effects, plugins, settings, transport

bar) – presumably concentrating their creativity on interaction with

external audio and music hardware, using only the recording,

synthesis and DSP processing offered by the software.
pattern editor
as focal point

 By comparison, data from reViSiT interaction (Figure 18 (b))

showed a central and fundamental role for the Pattern Editor, the

interaction focus for 82% of users. Most like the piano roll, this

screen governs note-level music editing, but it also enables a degree

of low-level arrangement, through block selection and clipboard

operations (see section 7.2), and offers a wider scope, across all

tracks, parts and instruments at any one moment in the piece.

Though trackers cater less well for more macroscopic editing and

overviews of the music, offered by a sequencer’s arrange window,

the user’s attention and activity is significantly less divided

between diverse and separate sub-devices, leading to a more

concise perception (lower diffuseness) of the notation, and defining

a clear visual locus for the user’s concentration and focus, also

indicated in the survey detailed in Chapter 9.
window use
in context

 Ultimately, while there is little doubt that greater numbers of

windows lead to more complicated screen layouts and more

frequent housekeeping, often at odds with exploratory creativity,

their ultimate impact on the user experience depends on context,

and the provisions for window management within any given

program. In respect of virtuosity, consistency and predictability are

key to enabling the learning and fluid execution of editing activities

in any creative environment, yet are defeated by dynamically

 202

changing and reconfigurable screen layouts. Moreover, if music

programs are to support spontaneity and exploratory creativity,

forcing the user to plan and manage the creative environment only

detracts from interacting with the music.
 Interaction and window management becomes most complicated

when programs mix UI styles, especially when free-floating

windows are supported both inside and outside a program’s main

UI, as in the combination of MDI containers and floating, always-

on-top toolbars or other views in many DAWs. Ableton Live also

highlights the problems when only a few floating windows, such as

those belonging to plugins, are introduced to a host environment

that is not designed to accommodate them. To conclude this review

of window use in music programs, the next section presents a case

study of FL Studio and its prolific, yet efficient use of windows, in

what at first sight appears to be an exception to the rule, but

ultimately exemplifies many of the findings discussed in this and

previous sections.

8.5 case study: Image-line FL Studio

 FL Studio (Figure 19) is a WIMP-based DAW, which draws

heavily on visual metaphors to the electronic studio. This thesis has

highlighted issues with similar approaches to music software

design, as concerns the reliance on the mouse, visual metaphor and

windowed environments. This case study briefly looks at how these

potential problems are handled in FL Studio – which, despite

exhibiting the highest number of concurrently active windows

recorded in our study (see Figure 14), nonetheless shows evidence

of supporting flow experiences.

Figure 19

Screenshot

of FL Studio.

 203

 In his review (Harding, 2010), sound engineer, Julian

Harding, states:

FL Studio is still my ‘turn-to’ sequencer for anything
needing sampling, MIDI sequencing or virtual inst-
ruments, and it’s much quicker for turning an idea to
reality than any other environment… it is worth becoming
familiar with the ‘individual’ sequencing methodology in
FL Studio for the sheer speed and satisfaction available…
no DAW makes work quite so much fun as FL Studio.

 In the end-of-experiment questionnaire (see section 9.3), FL
Studio users (n=29) similarly scored the program highly with

regard to direct & immediate feedback (+0.80), loss of self-
consciousness (+0.82), and intrinsic reward (+1.18). The overall

flow metric of +0.73 was likewise high, relative to other

sequencers. Notably, Ableton Live exhibited a similar profile, but

only surpassed FL Studio with respect to concentration & focus –
the integrated UI of Live (+0.75), and those of trackers (+1.00),

score higher than FL Studio (+0.59), which more closely mirrors

the performance of other windowed sequencers (+0.56). Moreover,

despite a generally strong cognitive dimension profile, windowing

may also explain low scores for hidden dependencies (-0.04),

which also give rise to error proneness (-0.29) and hard mental
operations (-0.38). For example, it can be difficult to track the flow

of an audio signal between devices (windows) in the program.
25

a pattern-based
step-sequencer

 The program began as a simple emulation of a hardware step-

sequencer, but later expanded to cover the full remit of the studio,

by mimicking the appearance and function of other hardware

devices. As in the tracker, musical time is represented by a grid,

typically representing one bar divided into 16 quarter-beats, where

a song is formed by sequences and layers of grids, called patterns.

Unlike the text of a tracker, each cell in the pattern contains a

toggle switch that is linked to some form of one-shot sound source,

such as a sample or MIDI part.
fast, frequent
musical feedback

 The limited length of step sequencer patterns best suits drum

programming and simple melodies based on repeated loops and

variations of 1-bar phrases, as found in popular, “four-on-the-floor”

dance music. Editing is normally conducted with the pattern

playing on repeat and the user toggling 16
th
-notes in the grid to

25
 Some programs offer more explicit representation of signal flow. Modular programs (Buzz, energyXT)

use a visual programming language style, drawing lines between objects of interest. Reason more literally

displays the wires between devices. Other programs, such as Tracktion or Live, enforce a left-to-right or

top-to-bottom flow of audio signal, where audio channels become ordered lists of devices. See (Duignan,

2007) for a detailed analysis of different approaches.

 204

create and edit the music, during playback, dedicated control of

which is exposed using the play, stop, and skip keys on multimedia

keyboards. This constitutes a very ‘live’ creative environment,

where edits are quickly realised, at the next iteration of looped

playback, but do not require the constant input or skill of a realtime

musical performance (see Section 4.2.4). Instead, users tinker with

the on/off states of the grid, at their own pace, until they arrive at a

pattern they like, which can then be committed to the song.

Combined with a large library of preset sounds, this engenders a

very low learning threshold, where novices can quickly produce

‘professional sounding’ music, albeit in a limited range of styles.

With experience, more complexity and creativity is possible

through the piano roll, and the editing of presets and sound sources.
integrated creative
environment

 In contrast to other DAWs, FL Studio is designed for creating and

editing material within the program – using virtual instruments and

devices, rather than as an adjunct to a recording process supported

by external instruments or hardware. The user’s focus remains

within the program for the duration of the creative process, albeit

divided across its constituent components and windows. By

restricting windows to the confines of the MDI client, the user’s

area of activity and awareness are unified, facilitating action-
awareness merging. Control is also highly optimised for the mouse

and handful of keyboard shortcuts, obviating the need to switch

between input modalities and devices (e.g. acoustic, audio, MIDI).

 The high number of windows is also, in part, mitigated by the

simple functionality of the devices themselves, which represent

basic, generic simulations of their hardware counterparts, in

contrast to more literalistic, faithful reproductions of specific

hardware marques. As an integrated suite of tools, devices can be

designed to complement each other while also applying consistent,

unified UI techniques, which allow users to easily switch between

editing contexts. By comparison, working environments built on

diverse, independently-developed machines (e.g. external devices,

plugins) allow more flexibility and depth, at the risk of duplicating

and dispersing functionality, compartmentalising the creative

process, and lowering consistency (of aesthetic, interaction styles,

etc.) between different parts of the UI.
streamlined window
management

 Most windows are of fixed size and layout, facilitating learning

and organisation, and expose select windowing functions as mouse

gestures, which vary depending on the window’s role: while a

double-click serves to maximise the main track view, it will “roll-

up” windows less central to editing. Moreover, while sizable

windows can be scaled with the conventional, yet fiddly drag of the

 205

thin outside frame, the environment also allows their height to be

more quickly, if less directly, manipulated by right-clicking the

caption and moving the mouse up or down. Such provisions

streamline housekeeping tasks within FL Studio; explicitly catering

for more advanced and experienced users, with methods that trade

the consistency and visibility of direct-manipulation, for quicker,

non-visual, well-learnt behaviours. Because of this, and because FL
Studio focuses more editing activity within single windows, the

corresponding rate of windowing activity (1.97 ±0.24 commands/min) is

comparatively low, given the large number of active windows (7.85

±0.47) and high contention ratio (2.52 ±0.12).
 Harding’s review relates the speed of his creative process with

the fun and reward involved; describing use of the program as one

might a sketching process, taking musical ideas down as quickly as

possible. FL Studio supports a live editing environment, partly

enabled by narrowing the focus of musical edits. In the same

review, Harding admits to having to resort to other programs for

more complex aspects of musical production. Perhaps significantly,

of all the sequencers tested, FL Studio was seen by its users as the

easiest to master (virtuosity = +1.25), which may indicate that,

while the program supports a low entry threshold through the

provision of simple primitives, the ceiling of musical complexity is

also lower than other programs.

 206

 207

chapter nine flow and cognitive dimensions

 Towards the end of the experiment and after registration had

closed, a second questionnaire was issued to users to gauge their

subjective experience of reViSiT and tracker notation, notably in

comparison to their experiences with a specific sequencer with

which they were familiar (e.g. the host sequencer), with respect to

flow and the cognitive dimensions of notations framework (Green,

1989). Participation in the questionnaire was incentivised by the

offer of a new version of reViSiT Pro, which in addition to a

handful of new features (in part based on lessons learnt during the

research
1
), also removed the interaction logging component.

 Questions were presented in three parts, for both reViSiT and

their chosen program. The first is based on interaction styles and

preferences, repeating questions in the initial questionnaire (see

Section 5.3.1 and Appendix C), this time focusing exclusively on

the user’s experience of the program in question. In sequencer

survey, these were supplemented with questions to probe details

of sequencer use beyond that available from the collected

interaction data.

1
 Support for MIDI files (open interchange) and pattern annotations (secondary notation).

 208

measuring flow

 The second part of the questionnaire presented two blocks of

statements describing the 9 components of flow, which the user

was instructed to score on a 5-point Likert agree-disagree scale,

with respect to how they perceived them in the user experience.

This section and the flow statements were adapted from the

Dispositional Flow Scale-2 (DFS-2), developed as a psychometric

test to quantitatively measure flow in a given activity (Jackson and

Eklund, 2002), which has also been successfully applied to HCI

contexts (Wang et al, 2009). In contrast to other applications of

the technique, each flow component was probed using only two

statements (rather than four) to reduce the overall length of the

questionnaire, which might otherwise deter participants.
2

measuring cognitive

dimensions

 The third and final part uses similar Likert scales to score a

single block of sixteen statements corresponding to cognitive

dimensions of the notation, which enables comparisons and

correlations to be made between flow components and properties

of the notation. Statements were based on the Cognitive

Dimensions Questionnaire Optimised for Users, which presents

each dimension in language that could be interpreted by end-users.

 An additional virtuosity dimension is introduced in an effort to

assess ‘learnability’ properties of a notation, not captured by the

original framework (Elliot, et al., 2002). Here, it is tested using the

statement “With time, I think I could become a virtuoso user of

the system”, corresponding to how easy a user believes a notation

is to master, in line with flow’s balance of challenge and ability.

 Questions were presented twice, once for reViSiT and once for

the user’s chosen sequencer, which they selected from a preset list

of 12 common packages or specified themselves.
3
 Users also had

to state their level of experience with the program and select, from

a list, which device or component part of the sequencer they spent

most time in (Arrange window, score editor, etc.).

2
 Consequentially, though answers can be averaged to produce a more accurate response (less subject to the

wording of flow descriptions), reliability statistics are not calculable. However, previous use of the

technique in an HCI context (Wang et al, 2009) testifies to the soundness of the method.
3
 Despite explicit instructions to the contrary, a number of users answered this section about another tracker

– possibly heralding from Renoise’s marketing of the tracker as a “DAW”, but possibly due to the

respondent’s lack of knowledge concerning more traditional sequencers. This oversight, however, proved

useful in providing an alternative source of impressions on tracking (see text).

 209

9.1 interaction styles and preferences

 Table 1 shows the results of the survey with respect to interaction

styles and preferences in (a) reViSiT and (b) the user’s chosen

sequencer or DAW. A total of 254 completed questionnaires were

received, with 9 excluded as invalid (offering the same response to

all questions). Of the 245 remaining responses, 191 (78%) describe

sequencer-style DAWs, 14 (6%) describe other trackers (e.g.

Renoise), and another 40 (16%) describe other types of music

program, such as score editors (e.g. Sibelius), audio tools (e.g.

Audacity) or modular graph-based tools (e.g. energyXT, Buzz).
input device

preference

 Despite the keyboard emphasis in the tracker UI, equal numbers

of reViSiT users spend considerable time on both the keyboard

(42%) and mouse (43%), possibly as a result of the plugin’s

integration with mouse-oriented hosts. With experience, however,

users move away from the mouse (r=.33), towards a preference for

the keyboard (r=.29). Experience with other (standalone) trackers

also correlates with an avoidance of mouse-based (r=-.20) and

MIDI (r=-.22) input modes. Indeed, a negative correlation between

a preference for the mouse and its actual use (r=-.20) may reflect

the relative lack of mouse support in the UI’s design.
enjoyment and

hardware use

 53% of participants enjoyed using reViSiT, compared to 73% for

other software, typically their preferred music program.

Remarkably, SONAR users – which combines extensive use of

the keyboard (42%), mouse (67%), and MIDI (50%) – appear to

universally enjoy their program (100%), though the sample is both

of limited size (12 users) and contains no professional users.

Ableton Live (87%) and REAPER (63%) also stand out as enjoyable

programs. Live users, notably, appear to rely heavily on hardware

control, through MIDI controllers (87%) and control surfaces (54%),

as well as keyboard shortcuts (64%) – all of which facilitate fast

and direct control of the program. Use of MIDI is similarly

common in REAPER users (71%).
4
 Indeed, only 12% of sequencer

users stated that they didn’t use any specialist hardware.
 Sequencer users also saw little contradiction between programs

that are “simple and easy”, and those “powerful and advanced”

(r=.32), both showing moderate correlations with enjoyment (r=.41

and r=.50), which may reflect the mixture of usability techniques

and advanced functionality in modern DAWs. By contrast,

reViSiT users’ enjoyment correlates significantly more with

greater functionality (r=.28), compared to usability (r=.02) (p < .05).
5

4
 Though not evident in the survey data, REAPER’s results might also be boosted by the demographic of its

audience, which notably attracts amateurs and hobbyists, for which enjoyment is key.
5
 Tested using Williams’ T2 statistic (r12=.27, r13=.02, r23=.04; t=-.3.025; df=242).

 210

R
E
V
IS
IT
 U
S
E
R
S

(2
4
5
)

a
v
o
id
 m
o
u
s
e

b
o
th
 h
a
n
d
s
 o
n
 k
e
y
b
o
a
rd

m
o
s
t
ti
m
e
 o
n
 k
e
y
b
o
a
rd

p
re
fe
r
k
e
y
b
o
a
rd

u
s
e
 k
e
y
b
o
a
rd
 a
 l
o
t

u
s
e
 k
e
y
b
o
a
rd
 s
h
o
rt
c
u
ts

u
s
e
 m
o
u
s
e
 w
h
e
e
l

k
e
y
b
o
a
rd
 &
 m
o
u
s
e
 t
o
g
e
th
e
r

u
s
e
 m
id
i

m
o
s
t
ti
m
e
 o
n
 m
o
u
s
e

u
s
e
 m
o
u
s
e
 a
 l
o
t

p
re
fe
r
m
o
u
s
e

u
s
e
 p
ro
g
ra
m
 l
o
ts

lik
e
 p
o
w
e
rf
u
l
a
n
d
 a
d
v
a
n
c
e
d

e
n
jo
y
 p
ro
g
ra
m

lik
e
 s
im
p
le
 a
n
d
 e
a
s
y

s
u
ff
e
r
d
is
c
o
m
fo
rt

fi
n
d
 p
ro
g
ra
m
 a
 c
h
o
re

c
a
n
 t
o
u
c
h
 t
y
p
e

c
a
n
 t
y
p
e
 q
u
ic
k
ly

T
ra
c
k
e
r
E
x
p
e
ri
e
n
c
e

IT
2
 E
x
p
e
ri
e
n
c
e

C
o
m
p
u
te
r
E
x
p
e
ri
e
n
c
e

P
ro
g
ra
m
 E
x
p
e
ri
e
n
c
e

Listener 81 .12 .09 .09 .09 .18 .19 .10 .12 .07 -.03 .08 -.01 -.01 .14 .10 -.04 -.04 .06 .12 .14 .18 .05 .29 .04

Pianist 37 .04 .04 .08 .04 .09 -.05 -.02 -.06 .11 -.04 .02 -.02 -.05 .08 .04 .05 .07 -.01 .04 .05 -.01 -.05 .10 -.16

Acoustic Instrument 59 .06 .04 .02 -.01 .02 .05 -.01 .14 .03 -.02 .02 -.02 .04 .07 .06 .02 .09 .07 .06 .12 -.02 -.02 .05 -.11

Several Instruments 39 .17 .02 .04 .11 .06 .09 .05 .08 .06 -.01 -.01 -.12 .11 .10 .13 .06 .11 .01 .17 .09 -.03 -.01 .03 .05

Music Literate 43 .09 .12 .07 .12 .17 .10 .09 .03 .11 .05 .03 -.09 .09 .18 .10 .08 .05 .10 .09 .14 .04 .03 .08 .00

Music Lessons 37 .07 .09 .06 .09 .11 .12 .01 .05 .02 -.13 -.08 -.06 .02 .11 .07 -.04 -.03 .05 .07 .10 .13 .03 .17 -.05

Live Performer 33 .08 -.01 .02 .01 -.01 .08 -.09 .00 .10 -.03 .05 .00 .14 .12 .07 .05 -.02 -.05 .08 .09 .00 -.02 .04 .12

Professional Performer 6 .02 .02 -.01 -.10 -.03 -.05 -.11 -.08 .17 .05 .00 -.06 .09 .00 -.05 .08 -.04 -.07 .02 -.07 -.11 -.14 -.05 .03

Composer 81 .15 .06 .13 .12 .01 .07 -.05 .18 -.14 -.11 -.10 -.06 .12 .11 .04 -.03 .02 .03 .15 .09 .31 .17 .19 .14

Professional Composer 10 .05 .16 .04 -.01 -.04 -.06 -.08 -.15 .07 .09 .01 .02 .09 .01 -.01 .15 -.06 -.05 .05 .03 .01 -.01 .08 .13

avoid mouse 18 .42 .42 .40 .20 .15 -.18 -.14 -.07 -.17 -.30 -.27 .19 .15 .19 -.02 -.02 -.02 .21 .18 .33 .21 .19 .19

both hands on keyboard 12 .42 .47 .24 .27 .15 -.10 -.22 -.16 -.12 -.13 -.19 .16 .03 .06 .06 .01 -.02 .25 .33 .29 .16 .15 .11

most time on keyboard 15 .42 .47 .39 .32 .29 .02 -.06 -.10 -.11 -.19 -.17 .22 .12 .14 .05 -.07 -.04 .37 .39 .31 .29 .24 .17

prefer keyboard 34 .40 .24 .39 .15 .11 .07 -.03 -.03 -.13 -.23 -.26 .07 .09 .17 .02 -.02 -.06 .16 .25 .29 .27 .19 .11

use keyboard a lot 42 .20 .27 .32 .15 .20 .16 .12 -.01 -.11 .15 -.27 .12 .16 .09 .00 -.05 -.07 .27 .38 .27 .21 .20 .15 95

use keyboard shortcuts 54 .15 .15 .29 .11 .20 .23 .17 .04 .02 .06 -.18 .17 .18 .15 -.07 .06 .01 .28 .31 .13 .22 .15 .12 .46

use mouse wheel 36 -.18 -.10 .02 .07 .16 .23 .23 .11 .06 .07 -.16 -.05 .06 .06 .08 .07 -.01 .00 .23 .03 .06 .10 -.02 78 .38

keys & mouse together 38 -.14 -.22 -.06 -.03 .12 .17 .23 .09 .09 .25 -.05 -.02 .10 -.02 .02 .07 -.05 .14 .22 .14 .11 .06 .01 .30

use midi 37 -.07 -.16 -.10 -.03 -.01 .04 .11 .09 .12 -.04 .12 .01 .04 .16 .05 -.08 -.01 .01 -.02 -.22 -.25 -.11 .03 60 .22

most time on mouse 15 -.17 -.12 -.11 -.13 -.11 .02 .06 .09 .12 .00 .25 .13 .00 -.04 .07 .07 .00 .01 -.05 -.10 -.14 -.03 .05 .14

use mouse a lot 43 -.30 -.13 -.19 -.23 .15 .06 .07 .25 -.04 .00 -.20 .02 .04 .04 .08 .00 -.02 .01 .13 -.08 -.06 .02 -.03 43 .06

prefer mouse 25 -.27 -.19 -.17 -.26 -.27 -.18 -.16 -.05 .12 .25 -.20 -.11 -.06 .01 .03 .01 .03 -.05 -.16 -.20 -.18 -.12 -.11 .00

use program lots 6 .19 .16 .22 .07 .12 .17 -.05 -.02 .01 .13 .02 -.11 .10 .13 .07 -.04 -.07 .24 .06 .17 .16 .08 .38 26 -.00

like powerful & advanced 35 .15 .03 .12 .09 .16 .18 .06 .10 .04 .00 .04 -.06 .10 .28 .04 -.07 -.03 .22 .22 .16 .17 .17 .20 -.06

enjoy program 53 .19 .06 .14 .17 .09 .15 .06 -.02 .16 -.04 .04 .01 .13 .28 .02 -.13 -.20 .17 .12 .14 .13 .08 .21 9 -.22

like simple and easy 28 -.02 .06 .05 .02 .00 -.07 .08 .02 .05 .07 .08 .03 .07 .04 .02 -.11 -.18 .00 .12 -.04 -.04 .02 .15 0 -.30

suffer discomfort 3 -.02 .01 -.07 -.02 -.05 .06 .07 .07 -.08 .07 .00 .01 -.04 -.07 -.13 -.11 .22 -.09 .03 .06 .16 .00 -.07 -.38

find program a chore 8 -.02 -.02 -.04 -.06 -.07 .01 -.01 -.05 -.01 .00 -.02 .03 -.07 -.03 -.20 -.18 .22 .03 -.06 -.03 -.10 .02 -.04 -.46

can touch type 21 .21 .25 .37 .16 .27 .28 .00 .14 .01 .01 .01 -.05 .24 .22 .17 .00 -.09 .03 .45 .22 .19 .19 .19 -.54

can type quickly 36 .18 .33 .39 .25 .38 .31 .23 .22 -.02 -.05 .13 -.16 .06 .22 .12 .12 .03 -.06 .45 .25 .24 .26 .09

c
o
rr
e
la
ti
o
n
 c
o
e
ff
ic
ie
n
t

s
a
m
p
le
 m
e
a
n
 (
%
)

L
E
G
E
N
D

(a) reViSiT Questionnaires

S
O
N
A
R

R
E
A
P
E
R

C
u
b
a
s
e
/N
u
e
n
d
o

F
L
 S
tu
d
io

A
b
le
to
n
 L
iv
e

S
e
q
u
e
n
c
e
r
H
o
s
ts

A
ll
T
ra
c
k
e
r
H
o
s
ts

A
ll
h
o
s
ts

a
v
o
id
 m
o
u
s
e

b
o
th
 h
a
n
d
s
 o
n
 k
e
y
b
o
a
rd

m
o
s
t
ti
m
e
 o
n
 k
e
y
b
o
a
rd

p
re
fe
r
k
e
y
b
o
a
rd

u
s
e
 k
e
y
b
o
a
rd
 a
 l
o
t

u
s
e
 k
e
y
b
o
a
rd
 s
h
o
rt
c
u
ts

u
s
e
 m
o
u
s
e
 w
h
e
e
l

k
e
y
b
o
a
rd
 &
 m
o
u
s
e
 t
o
g
e
th
e
r

u
s
e
 m
id
i

m
o
s
t
ti
m
e
 o
n
 m
o
u
s
e

u
s
e
 m
o
u
s
e
 a
 l
o
t

p
re
fe
r
m
o
u
s
e

u
s
e
 p
ro
g
ra
m
 l
o
ts

lik
e
 p
o
w
e
rf
u
l
a
n
d
 a
d
v
a
n
c
e
d

e
n
jo
y
 p
ro
g
ra
m

lik
e
 s
im
p
le
 a
n
d
 e
a
s
y

s
u
ff
e
r
d
is
c
o
m
fo
rt

fi
n
d
 p
ro
g
ra
m
 a
 c
h
o
re

u
s
e
 m
id
i
c
o
n
tr
o
lle
r

u
s
e
 c
o
n
tr
o
l
s
u
rf
a
c
e

u
s
e
 a
c
o
u
s
ti
c
 i
n
s
tr
u
m
e
n
t

u
s
e
 m
ic
ro
p
h
o
n
e

C
o
m
p
u
te
r
E
x
p
e
ri
e
n
c
e

P
ro
g
ra
m
 E
x
p
e
ri
e
n
c
e

58 83 78 79 92 81 86 81 .03 -.04 .05 .12 .13 .22 .11 .14 .01 .14 .03 .01 .10 .33 .10 .13 .02 -.06 .16 .14 .05 .07 .27 .10 Listener

42 32 37 34 46 37 57 38 .02 .06 .10 .08 .07 .01 -.02 -.06 -.04 -.03 .01 .03 .05 .04 -.03 .00 -.03 -.07 .18 .02 .12 .02 .09 .08 Pianist

75 73 57 69 62 63 36 59 .01 .00 -.04 .04 .02 .11 .05 .15 .08 .19 .10 .00 .12 .14 .19 .10 .04 .05 .10 .06 .33 .29 .07 .13 Acoustic Instrument

42 51 33 55 44 42 14 39 .04 -.03 -.08 .09 .07 .04 .05 .07 .12 .14 .10 -.06 .08 .09 .11 .13 .01 .09 .12 .13 .34 .33 .01 .11 Several Instruments

58 41 48 38 44 45 29 43 .04 -.01 -.02 .06 .05 .02 .11 .09 -.04 .07 .16 -.02 .13 .07 .07 .17 .00 -.01 .18 .06 .04 .04 .06 .12 Music Literate

42 39 39 45 44 40 36 37 .02 -.02 -.04 .05 -.01 .07 .03 .10 .04 .12 .07 -.02 .04 .17 .09 .04 .02 -.07 .15 .06 .09 .03 .17 .11 Music Lessons

25 54 30 24 44 35 21 33 .05 -.04 -.02 -.05 .09 .16 .10 .14 .20 .03 .00 .02 .15 .23 .13 .08 -.01 -.06 .14 .20 .27 .25 .01 .28 Live Performer

0 15 4 3 5 6 14 6 -.01 .11 .04 -.02 .09 -.10 .01 -.08 .05 -.05 -.05 .03 .05 .05 .03 .09 .06 -.05 .00 -.05 .14 .07 -.05 .03 Professional Performer

75 76 80 86 95 81 79 82 .06 .01 .01 .06 -.01 .04 -.10 .11 .06 .06 -.08 .06 .16 .19 .11 .10 .02 .04 .17 .06 .09 .14 .17 .27 Composer

0 12 15 7 10 10 14 10 -.05 .05 -.02 -.01 .05 .01 .12 -.04 .02 -.03 -.04 .02 .16 .04 .00 .09 -.06 .00 .03 .01 .15 .00 .08 .14 Professional Composer

0 10 4 7 13 7 0 8 .21 .16 .30 -.05 .09 -.09 .02 .04 -.09 -.17 -.23 .07 .05 .08 .14 -.05 .01 -.03 .12 .03 .08 .10 .15 avoid mouse

0 5 2 3 3 3 7 5 .21 .51 .17 .20 .01 -.09 -.18 -.09 -.12 -.13 -.14 .05 .02 -.03 .05 .19 .14 -.15 .10 .09 .01 .09 .01 both hands on keyboard

0 5 11 0 10 7 14 9 .16 .51 .19 .22 .09 .03 .01 .08 -.04 -.09 -.13 .17 .14 .04 .06 .03 -.07 -.05 -.04 -.06 -.05 .15 .06 most time on keyboard

8 22 28 14 26 22 36 26 .30 .17 .19 .11 .06 -.04 .05 -.01 -.10 -.13 -.28 .02 .02 -.06 .07 -.04 -.03 .01 .01 -.05 .02 .13 .05 prefer keyboard

42 22 37 31 21 30 36 33 -.05 .20 .22 .11 .09 .17 .13 -.05 -.12 .13 -.14 .19 .12 .11 .15 .04 -.01 -.06 .06 .08 .08 .07 .09 use keyboard a lot

50 54 50 48 64 53 43 55 .09 .01 .09 .06 .09 .30 .29 .06 .13 .11 -.08 .30 .35 .24 .22 -.04 -.02 .11 .16 .22 .08 .06 .20 use keyboard shortcuts

42 39 33 28 38 35 29 35 -.09 -.09 .03 -.04 .17 .30 .18 .13 .21 .23 .00 .25 .24 .27 .18 .03 .02 .13 .09 .10 .00 .09 .12 use mouse wheel

17 46 35 31 38 38 21 38 .02 -.18 .01 .05 .13 .29 .18 .13 .19 .20 -.04 .19 .25 .25 .14 .02 .01 .12 .06 .19 .12 .13 .11 key & mouse together

33 71 50 41 54 57 50 53 .04 -.09 .08 -.01 -.05 .06 .13 .13 .05 .02 .03 .14 .21 .11 .12 -.04 -.01 .21 .12 .13 .08 -.02 .04 use midi

17 29 35 34 13 25 21 23 -.09 -.12 -.04 -.10 -.12 .13 .21 .19 .05 .17 .21 .25 .22 .12 .05 .08 .08 .11 -.14 .17 .13 .13 .16 most time on mouse

67 56 57 55 59 57 64 53 -.17 -.13 -.09 -.13 .13 .11 .23 .20 .02 .17 -.12 .09 .14 .20 .10 .06 -.06 .04 .06 .09 .04 .04 -.03 use mouse a lot

42 32 39 41 44 38 36 38 -.23 -.14 -.13 -.28 -.14 -.08 .00 -.04 .03 .21 -.12 .02 .07 -.02 .02 -.03 .01 .04 -.10 -.06 -.06 -.02 -.01 prefer mouse

42 39 41 52 56 47 29 48 .07 .05 .17 .02 .19 .30 .25 .19 .14 .25 .09 .02 .44 .48 .39 -.07 -.03 .15 .14 .21 .14 .16 .50 use program lots

67 54 57 55 74 62 50 62 .05 .02 .14 .02 .12 .35 .24 .25 .21 .22 .14 .07 .44 .50 .32 -.02 -.01 .21 .19 .17 .20 .22 .26 like powerful & advanced
100 73 70 62 79 74 57 73 .08 -.03 .04 -.06 .11 .24 .27 .25 .11 .12 .20 -.02 .48 .50 .41 -.06 -.15 .17 .14 .25 .26 .09 .23 enjoy program

25 37 28 45 69 46 43 47 .14 .05 .06 .07 .15 .22 .18 .14 .12 .05 .10 .02 .39 .32 .41 -.06 -.11 .20 .14 .19 .13 .16 .32 like simple and easy

0 5 4 3 0 3 7 3 -.05 .19 .03 -.04 .04 -.04 .03 .02 -.04 .08 .06 -.03 -.07 -.02 -.06 -.06 .46 -.02 -.04 .04 .08 .00 -.12 suffer discomfort

0 5 7 3 8 5 0 4 .01 .14 -.07 -.03 -.01 -.02 .02 .01 -.01 .08 -.06 .01 -.03 -.01 -.15 -.11 .46 .07 .08 .04 .03 .03 -.08 find program a chore

50 63 57 52 87 65 64 64 -.03 -.15 -.05 .01 -.06 .11 .13 .12 .21 .11 .04 .04 .15 .21 .17 .20 -.02 .07 .29 .13 .08 .16 .23 use midi controller

17 20 17 21 54 26 0 23 .12 .10 -.04 .01 .06 .16 .09 .06 .12 -.14 .06 -.10 .14 .19 .14 .14 -.04 .08 .29 .24 .20 .07 .19 use control surface

33 41 35 28 33 33 29 31 .03 .09 -.06 -.05 .08 .22 .10 .19 .13 .17 .09 -.06 .21 .17 .25 .19 .04 .04 .13 .24 .52 .01 .17 use acoustic instrument

25 32 28 17 33 27 14 24 .08 .01 -.05 .02 .08 .08 .00 .12 .08 .13 .04 -.06 .14 .20 .26 .13 .08 .03 .08 .20 .52 -.01 .10 use microphone

S
O
N
A
R
 (
1
2
)

R
E
A
P
E
R
 (
4
1
)

C
u
b
a
s
e
/N
u
e
n
d
o
 (
4
6
)

F
L
 S
tu
d
io
 (
2
9
)

A
b
le
to
n
 L
iv
e
 (
3
9
)

S
e
q
u
e
n
c
e
rs
 (
1
9
1
)

T
ra
c
k
e
rs
 (
1
4
)

A
ll
h
o
s
ts
 (
2
4
5
)

a
v
o
id
 m
o
u
s
e

p
re
fe
r
k
e
y
b
o
a
rd

u
s
e
 m
id
i

u
s
e
 m
o
u
s
e
 a
 l
o
t

p
re
fe
r
m
o
u
s
e

u
s
e
 p
ro
g
ra
m
 l
o
ts

e
n
jo
y
 p
ro
g
ra
m

s
u
ff
e
r
d
is
c
o
m
fo
rt

u
s
e
 m
id
i
c
o
n
tr
o
lle
r

u
s
e
 m
ic
ro
p
h
o
n
e

HOST USERS b
o
th
 h
a
n
d
s
 o
n
 k
e
y
b
o
a
rd

m
o
s
t
ti
m
e
 o
n
 k
e
y
b
o
a
rd

u
s
e
 k
e
y
b
o
a
rd
 s
h
o
rt
c
u
ts

u
s
e
 k
e
y
b
o
a
rd
 a
 l
o
t

u
s
e
 a
c
o
u
s
ti
c
 i
n
s
tr
u
m
e
n
t

P
ro
g
ra
m
 E
x
p
e
ri
e
n
c
e

C
o
m
p
u
te
r
E
x
p
e
ri
e
n
c
e

u
s
e
 m
o
u
s
e
 w
h
e
e
l

u
s
e
 c
o
n
tr
o
l
s
u
rf
a
c
e

k
e
y
b
o
a
rd
 &
 m
o
u
s
e
 t
o
g
e
th
e
r

lik
e
 p
o
w
e
rf
u
l
a
n
d
 a
d
v
a
n
c
e
d

m
o
s
t
ti
m
e
 o
n
 m
o
u
s
e

lik
e
 s
im
p
le
 a
n
d
 e
a
s
y

fi
n
d
 p
ro
g
ra
m
 a
 c
h
o
re

(b) Sequencer / DAW Questionnaires

Table 1 – Music Experience & Interaction Preferences. Survey results (left) and correlation

matrix (middle, right) with respect to musical backgrounds, technology expertise and experience,

and interaction styles or preferences, for (a) reViSiT and (b) the user’s chosen sequencer.

 211

music experience

 In contast to tracker users, music experience (e.g. performing,

literacy) is generally more common amongst sequencer users, with

the exception of piano skills, which are considerably more

prevalent in tracker users (57% vs. 37%). It is notable that programs

in which users tend to have performance backgrounds

– especially Ableton Live, but also FL Studio and REAPER –

correspond to those that show greater use of hardware interfaces,

such as instruments and other controllers through microphones or

MIDI. In the next section, these sequencers stand out as the more

conducive to flow, and whilst such benefits can be attributed to

properties of the software interface and notation, the directness

and immediacy of hardware control can undoubtedly play a

significant role. Indeed, the degree to which sequencers have been

designed simply to support (and capture) the intimate musical

interaction of a musician with their instrument might explain the

limitations of some programs to support a focused, coherent, and

fluid user experience in the absence of hardware. In this respect,

the aforementioned programs also correspond to packages more

explicitly targeting the desktop studio, based on close integration

with limited hardware, in comparison to other sequencers that

have traditionally catered for professional use, offering

automation of extensive and complex electronic studios.

9.2 flow and experience

 Analyses of flow were confounded by the influence of experience

on the user’s perception of a program. While it was expected to

see more flow in reViSiT interaction, initial results did not bear

this out, showing a significantly lower flow metric for reViSiT

(+0.42 ±0.065) compared to other software (+0.61±0.069; p < .05).
6,7

These figures, however, do not account for the inherent gap in

users’ program experience, between reViSiT and their chosen

program – with most respondents indicating expertise with their

chosen program, yet only recently being introduced to reViSiT

(and tracking), as illustrated in Figure 1. The effect of this

confounding variable is shown in Figure 2, where the flow

metric is significantly higher in programs for users with

relevant experience. Notably, the reViSiT tracker demonstrates a

significantly higher flow metric, compared to sequencers, when

only experienced users are considered (p < .05).
8

6
 Figures and tests quoted using mean average and 95% confidence level (intervals displayed).

7
 Tested using a one-tail, paired t-test (n=245).

8
 Tested using a one-tail, unpaired t-test, for users with experience 3 and 4 (nreViSiT=33; nsequencer=177).

 212

Figure 1

User sample size by

program experience

0

50

100

150

200

reViSiT 0 22 198 27 6

Sequencers 0 10 58 87 90

0 1 2 3 4

Figure 2

Flow metric by

program experience

0

1

1 2 3 4

 reViSiT

 Sequencer

 To further illustrate the effect of experience within the sample,

Figure 3 (a) shows the cognitive dimensions and flow profiles of

the reViSiT data, together with a separate profile sampled

exclusively from reViSiT experts (Experience 3 or 4). The overall

flow metric for this sample is +0.79 (±0.194).

 This figure and profile for reViSiT experts approaches that seen

in other trackers (also given in Figure 3 (a)). Despite instructions

to the contrary, some users elected to complete the sequencer

section of the questionnaire in reference to another tracker –

notably Renoise, self-styled as a “DAW with a vertical timeline

sequencer”.
9
 However, this oversight enables the comparison

of tracker and sequencer notations, and corresponding user

experiences based on samples with comparable expertise, without

relying on the restricted reViSiT sub-sample. At the same time, the

wider reViSiT sample may provide insights into obstacles to flow

at earlier stages of learning. Indeed, the extent to which the

conditions for flow are improved by experience in these programs

highlights the greater challenge for software designers, in crafting

user experiences that enable flow for novice and first-time users.

9
 See http://www.renoise.com.

 213

9.3 cognitive dimension and flow profiles

 Figure 3 (b) and (c) shows profiles generated from questionnaire

responses, with regard to the cognitive dimensions of the notation

and relative presence of flow components in the user experiences

of popular music programs.
10

 The selection of programs in the survey is made by the users’

personal preference, and thus corresponds to broadly positive

impressions, based on extended experience, of their chosen

program. As such, the profiles represent properties of the notation

under skilled use, rather than those automatically available to new

and novice users. This should be noted when considering the

results in context with other uses of the cognitive dimensions

framework, or other evaluation techniques for usability.

 Direct comparisons with the results of reViSiT are not supported,

due to the relative difference in the users’ experience with each

program (see 9.2). However, differences in relative trends within

each survey are discussed as appropriate, and data from Renoise

and other trackers provide an alternative basis for comparison of

sequencing and tracking approaches, as illustrated in Figure 3 (b).
common

creative profile

 A common cognitive dimensions profile emerges for the

programs in the study. As the first application of this quantitative

approach, no existing data exists to indicate whether this general

profile is common amongst the music programs in the study, or

whether it may be more universal. However, the characteristics

identified broadly correspond to properties desirable in a notation

designed for musical creativity (Blackwell and Collins, 2005;

Duignan, 2007) and other exploratory design activities (Blackwell

and Green, 2000; Blackwell et al., 2000), including:

• high visibility (ease of viewing and finding data)

• high juxtaposability (ease of comparing data)

• low viscosity (resistance to changing data)

• low diffuseness (conciseness, helping visibility and editing)

• high role expressiveness (ease of determining the role of objects)

• high provisionality (ease of sketching and experimentation)

• high progressive evaluation (ease of checking progress)

• high consistency (facilitating sense of control and learning)

• low premature commitment (freedom to change paths)

10

 Dimensions are oriented so that higher values signify a generally positive impact on the user experience

(e.g. low diffuseness), and allowing scores to be easily aggregated.

 214

C
O
G
N
IT
IV
E
 D
IM

E
N
S
IO
N
S

v
is
ib
ili
ty

ju
x
ta
p
o
s
a
b
ili
ty

h
a
rd
 m
e
n
ta
l
o
p
e
ra
ti
o
n
s

lo
w
 v
is
c
o
s
it
y

lo
w
 d
if
fu
s
e
n
e
s
s

ro
le
 e
x
p
re
s
s
iv
e
n
e
s
s

lo
w
 e
rr
o
r
p
ro
n
e
n
e
s
s

c
lo
s
e
n
e
s
s
 o
f
m
a
p
p
in
g

p
ro
v
is
io
n
a
lit
y

n
o
 h
id
d
e
n
 d
e
p
e
n
d
e
n
c
ie
s

p
ro
g
re
s
s
iv
e
 e
v
a
lu
a
ti
o
n

c
o
n
s
is
te
n
c
y

n
o
 p
re
m
a
tu
re
 c
o
m
m
it
m
e
n
t

s
e
c
o
n
d
a
ry
 n
o
ta
ti
o
n

a
b
s
tr
a
c
ti
o
n
 m
a
n
a
g
e
m
e
n
t

v
ir
tu
o
s
it
y

F
L
O
W
 M

E
T
R
IC

b
a
la
n
c
e
 o
f
c
h
a
lle
n
g
e
 &
 a
b
ili
ty

a
c
ti
o
n
-a
w
a
re
n
e
s
s
 m
e
rg
in
g

c
le
a
r
g
o
a
ls

d
ir
e
c
t
&
 i
m
m
e
d
ia
te
 f
e
e
d
b
a
c
k

c
o
n
c
e
n
tr
a
ti
o
n
 &
 f
o
c
u
s

s
e
n
s
e
 o
f
c
o
n
tr
o
l

lo
s
s
 o
f
s
e
lf
-c
o
n
s
c
io
u
s
n
e
s
s

tr
a
n
s
fo
rm
a
ti
o
n
 o
f
ti
m
e

in
tr
in
s
ic
a
lly
-r
e
w
a
rd
in
g

0

1

(a) reViSiT (253)

reViSiT (expert) (33)

Renoise (and other trackers) (17)

0

1

(b) Tracker Hosts (17)

Sequencer Hosts (228)

0

1

(c)
 All Sequencers (228)

Ableton Live (39)

FL Studio (29)

 Cubase / Nuendo (46)

REAPER (54)

SONAR (12)

Figure 3 – Cognitive dimensions of notations (left) and flow component (right) profiles for music software, based

on mean survey response (sample size), scored on a Likert scale (-2 strongly disagree; +2 strongly agree):

(a)ITracker summary, with adjusted figure for reViSiT (compensating for user inexperience; see text); (b) Tracker

and sequencer host comparison (excluding reViSiT); (c, top) Sequencer summary, average (bold) broken down by

program;(c, bottom) Sequencer breakdown, including tracker hosts, as residuals from sequencer average.

 215

 At the same time, programs score lower with respect to

generally undesirable properties, with neutral scores for hard

mental operations (working things out in your head) and error

proneness (ease of making mistakes). While creative individuals

may be more tolerant (even welcoming) of mental challenges (see

3.3), the ease of making “careless mistakes” (Green and Petre,

1996) may signify a trade-off between allowing users creative

freedom and exposing them to undefined program behaviour.

However, results from these two dimensions also show a higher

variance between users, compared to other dimensions, indicating

that they are more susceptible to individual working styles.
trackers vs.

sequencers

 Comparisons of tracker and sequencer responses, in Figure 3 (b),

show a higher subjective opinion among tracker users, with regard

to the majority of cognitive dimensions and flow components.

Diffuseness stands out as a particular strength of the tracker, which

benefits from its concise text-based notation. By contrast,

juxtaposability is not significantly greater than that in sequencers,

indicating one area where more flexible window layouts may

benefit the user (e.g. by enabling side-by-side comparisons).
 Role expressiveness similarly varies little between the two styles

of music software; despite the heavy use of visual metaphors in

sequencers, text labels and descriptions hold at least as much

explanatory power in the tracker, for experienced users.
11

However, the large discrepancy in consistency can also be

explained by a similar adherence to the use of text throughout the

notation and interface, rather than the variety of graphics, texts,

sub-devices, interaction styles, and input modalities in DAWs.
temporal scope

and premature

commitment

 Sequencers also seem to involve more premature commitment,

possibly due to the linear sequencing approach, where it is harder

to insert or delete sections from the piece without considering the

knock-on effect (e.g. to tempo, key, and other global settings). By

contrast, the tracker divides the song into largely self-contained

blocks (patterns) of music which are later placed in order. This

explanation is supported by a similar trend in DAWs that also

present a narrow temporal focus (e.g. patterns or loops), such as

FL Studio, Ableton Live and trackers, which show less premature

commitment than more traditional sequencers based on broader

temporal scopes, using linear timelines and realtime capture.
flow in trackers

 With regard to flow components, these properties of tracker

notation contribute to improved concentration & focus, also

facilitating action-awareness merging. Along with higher scores

for sense of control and intrinsic reward, these results corroborate

11

 Though novice users may find more role-expressive notations easier to learn, initially.

 216

similar findings in the interaction logs and video observations (see

Chapter 6), arising from engaging and embodied interaction

supported by learnt motor skills, high liveness, and focused use of

a concise text-based notation, contained in a single, central view.

The interaction style allows users to quickly sketch, play with,

listen to musical ideas, and check their progress, which provides a

source of motivation for continuing interaction, as users take

satisfaction in their efforts and skill development.
social creativity

in tracking

 The one exception to the trend is tracker’s lower score for loss of

self-consciousness, though reViSiT’s own score is more in line

with sequencers. As discussed later, there are methodological

issues with subjective measurement of this component, but the

result may highlight a larger role of social interaction within the

user community, where tracker musicians are more disposed to

sharing their music and thus consider how it will be received by

their peers (e.g. online, within the demoscene; see 2.2.2). As an

extrinsic motivator, such influence has the potential to inhibit flow

and creativity, which thrives on separation from the outside world

(Amabile, 1983). At the same time, it is easy to avoid, retreat

from, or only selectively engage in online participation.
flow in context

 Figure 3 (c) shows deviations from the average sequencer profile

for individual programs, highlighting the relative strengths and

weaknesses of each, and the relative performance of trackers. FL

Studio and Ableton Live notably stand out as the most conducive

to flow, exhibiting more favourable cognitive dimensions profiles.
FL Studio

 FL Studio’s step-sequencer view (see Section 8.5), for example,

enables greater conciseness (low diffuseness), by hiding details of

musical events in the pattern display, but at the cost of increased

hidden dependencies, which also reflects the prolific use of

windows, leading to more hidden data (see section 8.4).
Ableton Live

 Ableton Live benefits from its unified, single-window UI,

supporting stronger concentration & focus compared to other

windowed environments, including FL Studio. A relatively low

secondary notation score suggests that the program would benefit

from additional provisions that allow the user to sketch ideas

outside the formal notation and procedures built-in to the program.
Cockos REAPER

 REAPER, the most popular program in the survey, exhibited the

lowest overall flow metric, especially with regard to feedback and

focus. Judged with respect to the themes discussed in this chapter,

its highly-configurable and scalable feature set (reflected in the

high scores for abstraction management and secondary notation),

coupled with a tiled, one-window interface, would be expected to

provide better support for flow and creativity, among experienced

 217

users. However, the extreme affordability of the program (free for

non-commercial use) makes it a natural choice for first-time,

amateur and hobbyist users. Thus, unlike the other programs

surveyed, REAPER users averaged a lower level of expertise,

which has been shown to impact the user’s flow experience (see

Section 6.4.2).
12

 As with reViSiT, it thus becomes difficult to

compare the data with that of other programs. Instead, the profile

appears in the graph as a representation of the flow profile

experienced by sequencer users at an earlier stage of development,

which may highlight factors that UI designers can use to improve

the learning experience – in this case, with respect to progressive

evaluation, feedback and focus (see Section 6.3). Notably, in

terms of process, REAPER is faithful to the linear timeline model

seen in traditional sequencers, with its respective disadvantages.
Steinberg Cubase

and Nuendo

 In this survey of notation, Cubase (and Nuendo) consistently

performs below the sequencer average, across most dimensions

and flow components. Standout weaknesses inversely correlate

with previously noted strengths of trackers – provisionality,

premature commitment, and progressive evaluation. Earlier

discussions relate such characteristics to software designed for

later-stage creativity and goal-oriented productivity, rather than

exploratory creativity (see Section 3.5). This partly reflects the

software’s origin and design focus: the electronic studio and

professional audio production of recorded musical performances.

However, the profile illustrates aspects of the program that

function less well in the absence of studio hardware or performers,

as is the case in the growing home and bedroom “desktop studio”

market, or users looking for an integrated software-based

authoring tool.
13

 In terms of flow, this is evident in the

comparatively low score for action-awareness merging, where

users have to stop more frequently to consciously think about

what the appropriate actions are, and where more natural,

reflexive, and skilled interaction is only enabled through external

instruments or interfaces. In a similar vein, the low abstraction

management score also indicates limitations in accommodating

12

 Indeed, reviews note that the extensive and advanced REAPER feature set can engender a significant

learning curve, also reflected in the low virtuosity metric for the program. (Senior, 2009)
13

 Steinberg markets a cut-down, loop-based sequencer, called Sequel, to the home market, which

potentially addresses many of the interaction issues identified in this report – integrating all functionality

into a single, tiled window, and providing dedicated features for working with shorter phrases of music.

Unfortunately, the lack of support for the company’s own plugin technology (VST) prevents reViSiT from

running in the program, excluding it from the study. Indeed, the omission is indicative of what might be

more widely perceived by users as a generally low ceiling to the software, impacting the long-term

prospects for flow, and the opportunity to field test these innovations using expert and professional

musicians, for inclusion in Steinberg’s professional line.

 218

 users looking to move beyond prescribed uses of the program.

Like reViSiT, these Steinberg programs are yet to integrate a

powerful end-user macro, scripting or programming capability,

such as that seen in other programs.
14

 Together, the individual application profiles underscore the

arguments for improved liveness, a stronger and narrower focus,

and computer-based virtuosity, detailed earlier in this chapter, in

contributing towards user experiences that support flow.

9.4 modelling flow with cognitive dimensions

 Table 2 and 3 represent the correlations in responses from users of

popular music software, together with the flow metric from the

separate survey of their impressions of the reViSiT software.

Again, only differences in relative trends between the results can

be made, due to the relative difference in the users’ experience

with each program (see Section 9.2).

14

 For example, CAL Script in Cakewalk SONAR, Buzz machines in FL Studio (and Jeskola Buzz),

Max/MSP integration in Ableton Live, JS scripting in REAPER, Lua scripting in Renoise.

IN
T
E
R
A
C
T
IO
N
 P
R
E
F
E
R
E
N
C
E
S

u
s
e
 p
ro
g
ra
m
 l
o
ts

lik
e
 s
im
p
le
 a
n
d
 e
a
s
y

lik
e
 p
o
w
e
rf
u
l
a
n
d
 a
d
v
a
n
c
e
d

e
n
jo
y
 p
ro
g
ra
m

m
o
s
t
ti
m
e
 o
n
 k
e
y
b
o
a
rd

a
v
o
id
 m
o
u
s
e

u
s
e
 k
e
y
b
o
a
rd
 a
 l
o
t

u
s
e
 c
o
n
tr
o
l
s
u
rf
a
c
e

u
s
e
 m
ic
ro
p
h
o
n
e

u
s
e
 m
o
u
s
e
 w
h
e
e
l

u
s
e
 m
id
i

b
o
th
 h
a
n
d
s
 o
n
 k
e
y
b
o
a
rd

u
s
e
 k
e
y
b
o
a
rd
 s
h
o
rt
c
u
ts

u
s
e
 a
c
o
u
s
ti
c
 i
n
s
tr
u
m
e
n
t

k
e
y
b
o
a
rd
 &
 m
o
u
s
e
 t
o
g
e
th
e
r

u
s
e
 m
id
i
c
o
n
tr
o
lle
r

p
re
fe
r
k
e
y
b
o
a
rd

u
s
e
 m
o
u
s
e
 a
 l
o
t

p
re
fe
r
m
o
u
s
e

m
o
s
t
ti
m
e
 o
n
 m
o
u
s
e

s
u
ff
e
r
d
is
c
o
m
fo
rt

fi
n
d
 p
ro
g
ra
m
 a
 c
h
o
re

FLOW METRIC (reViSiT) .24 .25 .29 .21 .23 .15 .23 n/a n/a -.04 -.09 .23 .17 n/a .00 n/a .13 -.05 -.24 -.09 -.21 -.19

FLOW METRIC .36 .32 .26 .23 .17 .16 .15 .13 .12 .12 .11 .10 .10 .09 .08 .04 .03 .02 -.05 -.07 -.19 -.24

intrinsically-rewarding .46 .32 .36 .40 .18 .13 .16 .06 .16 .15 .14 .06 .18 .05 .05 .03 .02 -.02 .03 -.03 -.31 -.33

sense of control .35 .32 .20 .27 .07 .14 .18 .07 .03 .15 .06 .01 .17 .06 .11 .04 .02 -.01 -.04 -.06 -.29 -.31

action-awareness merging .21 .25 .14 .16 .10 .19 .18 .07 .05 .06 .09 .01 .07 .03 .09 .01 .09 -.03 -.09 -.07 -.16 -.20

concentration & focus .25 .25 .12 .08 .13 .08 .16 .13 .14 .05 .04 .11 .03 .09 .04 .01 -.03 -.07 -.04 -.09 -.12 -.14

direct & immediate feedback .14 .20 .18 .04 .10 .05 .08 .09 -.02 .04 .08 .10 .08 .00 .04 .09 .04 .06 -.05 -.08 -.03 -.04

clear goals .17 .12 .06 .04 .08 .14 .09 .06 .10 .12 .07 .08 .05 .19 .12 -.06 .04 -.05 -.10 -.02 -.05 -.06

balance of challenge & ability .18 .15 .15 .11 .13 .11 .02 .07 .08 .01 .00 .08 .03 .09 .02 .02 -.03 .02 -.07 -.06 -.17 -.20

transformation of time .16 .05 .14 .11 .14 .03 .04 .12 .15 .04 .03 .02 -.03 .00 -.05 .04 .02 .08 .00 .02 .06 -.01

loss of self-consciousness .13 .19 .13 .11 .06 .02 -.04 .03 -.02 .06 .12 .09 -.01 .01 .03 .01 .01 .09 .03 .00 -.08 -.11

virtuosity .31 .23 .26 .28 .08 .07 .03 .19 .21 .15 .09 -.01 .19 .13 .11 .12 -.01 .08 -.06 .04 -.17 -.16

visibility .24 .30 .25 .25 .04 .15 .19 .09 .05 .17 .12 .09 .04 .08 .00 -.02 .03 .01 .04 -.12 -.21 -.24

progressive evaluation .26 .17 .27 .29 .12 .06 .11 .15 .16 .18 .14 .08 .13 .16 .06 .06 -.01 .03 .02 -.05 -.20 -.20

low viscosity .17 .17 .16 .23 .07 -.03 .15 .11 .05 .17 -.01 .06 .12 .06 .06 .03 -.02 .08 -.01 -.15 -.23 -.28

role expressiveness .19 .19 .24 .22 .00 .07 .07 .08 .17 .11 .10 -.01 .06 .10 .08 -.01 -.09 .06 .05 -.11 -.07 -.09

consistency .14 .16 .12 .13 .09 .12 .13 .01 .09 -.02 -.01 .09 .08 .09 .01 .05 .00 -.06 .06 -.12 -.11 -.15

low diffuseness .10 .12 .06 .09 .04 .03 .07 .07 .07 .08 .01 .03 -.06 .07 -.03 .04 -.01 -.01 .07 -.12 -.17 -.14

no premature commitment .11 .11 .11 .11 .12 .11 -.03 .22 .11 .03 -.01 .08 .01 .04 -.05 .02 -.08 -.10 -.01 -.08 -.16 -.11

provisionality .12 .14 .10 .13 -.09 .05 .05 .26 .12 .05 .07 -.07 .07 .07 .05 .07 -.06 .03 .03 -.19 -.25 -.10

closeness of mapping .05 .14 .07 .03 -.08 .11 .12 .00 .07 -.07 -.01 .04 -.08 .08 -.09 -.01 -.06 -.06 .09 -.13 -.19 -.14

juxtaposability .15 .19 .17 .18 -.03 .05 .12 .09 .08 .05 .05 -.02 -.06 .10 .04 .03 -.01 -.02 .05 -.08 -.13 -.16

secondary notation .05 .01 .11 .08 .03 -.02 -.01 .06 .18 .05 .08 .01 .03 .22 .05 .02 .05 .03 .04 .07 -.18 -.21

abstraction management .03 -.02 .07 .14 .11 .06 .07 .20 .15 .17 -.01 -.01 .10 .09 .04 .09 .05 -.05 -.12 .00 -.05 -.06

low error proneness .15 .23 .16 .16 .01 .04 .05 .07 -.05 .05 .05 -.03 .21 -.02 .19 .14 -.04 .03 -.01 .02 -.06 -.18

no hidden dependencies .17 .16 .19 .21 .05 .05 .16 .15 .10 .05 .04 -.01 .09 .18 .31 .09 -.02 .05 -.02 .05 .07 -.05

no hard mental operations .19 .21 .10 .14 -.02 .19 .02 .12 .09 .03 .05 .04 .17 .05 .14 .07 .07 .03 -.09 .00 -.12 -.12

Table 2 – Correlation matrix between interaction preferences, flow and cognitive dimensions.

 219

 Below the reViSiT results, six correlation matrices present the

results from other software in more detail. The upper matrices

correlate flow and its components with experience, interaction

preferences, and cognitive dimensions, in an effort to identify the

factors that contribute towards support of flow in a given music

program. The lower matrices correlate cognitive dimensions with

flow components and other dimensions.
 Strong correlations are not to be expected, since not only are the

figures averaged over multiple contexts (e.g. users, programs), but

also represent components and dimensions of the user experience

that share complex relationships and inter-dependencies. Instead,

the matrices are used to highlight general trends that exist across

music software, and specifically identify these more complex

relationships. At the same time, the consistently low correlations

for loss of self-consciousness and transformation of time highlight

the challenge of measuring these factors through subjective

means, which depends on a user’s conscious, retrospective

awareness of inherently unconscious phenomena.

C
o
m
p
u
te
r
E
x
p
e
ri
e
n
c
e

T
ra
c
k
e
r
E
x
p
e
ri
e
n
c
e

IT
2
 E
x
p
e
ri
e
n
c
e

P
ro
g
ra
m
 E
x
p
e
ri
e
n
c
e

C
O
G
N
IT
IV
E
 D
IM

E
N
S
IO

N
S

v
ir
tu
o
s
it
y

v
is
ib
ili
ty

p
ro
g
re
ss
iv
e
 e
v
a
lu
a
ti
o
n

lo
w
 v
is
c
o
si
ty

ro
le
 e
x
p
re
ss
iv
e
n
e
s
s

co
n
s
is
te
n
c
y

lo
w
 d
iff
u
s
e
n
e
ss

n
o
 p
re
m
a
tu
re
 c
o
m
m
it
m
e
n
t

p
ro
v
is
io
n
a
lit
y

cl
o
s
e
n
e
ss
 o
f
m
a
p
p
in
g

ju
xt
a
p
o
s
a
b
ili
ty

s
e
co
n
d
a
ry
 n
o
ta
ti
o
n

a
b
s
tr
a
ct
io
n
 m
a
n
a
g
e
m
e
n
t

lo
w
 e
rr
o
r
p
ro
n
e
n
e
ss

n
o
 h
id
d
e
n
 d
e
p
e
n
d
e
n
ci
e
s

n
o
 h
a
rd
 m
e
n
ta
l o
p
e
ra
ti
o
n
s

.18 .25 .21 .26 .42 .45 .49 .43 .40 .44 .35 .42 .29 .39 .40 .27 .26 .20 .12 .09 FLOW METRIC (reViSiT)

.10 .09 -.05 .33 .43 .53 .51 .46 .46 .45 .43 .40 .38 .36 .34 .32 .25 .12 .10 .09 FLOW METRIC

.05 .00 -.10 .31 .48 .54 .57 .48 .44 .39 .36 .34 .41 .36 .29 .29 .19 .17 .16 .13 intrinsically-rewarding

.04 .04 -.03 .34 .37 .54 .44 .45 .41 .43 .46 .26 .33 .33 .44 .28 .15 .24 .11 .07 sense of control

.03 .08 -.05 .25 .26 .47 .36 .31 .30 .31 .31 .42 .38 .34 .31 .25 .21 .07 .06 .00 action-awareness merging

.08 .13 .00 .29 .30 .35 .42 .38 .32 .37 .32 .30 .27 .27 .25 .23 .14 .16 .11 .04 concentration & focus

.14 .09 -.01 .18 .22 .28 .32 .31 .37 .34 .23 .31 .25 .29 .20 .23 .19 .10 .11 .09 direct & immediate feedback

.08 .10 .07 .15 .20 .24 .23 .27 .28 .24 .20 .24 .15 .20 .11 .31 .29 .05 .14 .11 clear goals

.11 .09 .03 .21 .42 .32 .21 .25 .22 .19 .24 .18 .14 .22 .17 .19 .09 .02 -.01 -.06 balance of challenge & ability

.04 .00 -.09 .09 .19 .12 .20 .09 .09 .13 .20 .09 .14 .07 .11 -.02 .20 -.08 -.07 .00 transformation of time

.01 .00 -.10 .09 .08 .22 .17 .14 .20 .16 .14 .14 .11 .04 .09 .10 -.04 -.01 -.01 .12 loss of self-consciousness

.15 .08 .01 .40 .38 .40 .34 .34 .25 .25 .28 .29 .20 .30 .33 .41 -.02 .06 -.10 virtuosity

.09 .02 -.09 .24 .38 .54 .55 .52 .40 .46 .37 .33 .42 .69 .30 .08 .12 .10 .03 visibility

-.01 -.13 -.19 .30 .40 .54 .52 .43 .41 .38 .40 .42 .27 .41 .31 .15 .10 .16 -.01 progressive evaluation

.04 -.12 -.11 .27 .34 .55 .52 .45 .24 .37 .46 .40 .33 .39 .43 .26 .06 .10 .01 low viscosity

.01 -.06 -.08 .18 .34 .52 .43 .45 .43 .43 .35 .43 .36 .51 .35 .14 .13 .22 .10 role expressiveness

-.05 .03 .03 .18 .25 .40 .41 .24 .43 .52 .27 .30 .41 .35 .20 .15 .07 .00 .03 consistency

-.01 -.02 -.03 .19 .25 .46 .38 .37 .43 .52 .22 .32 .39 .44 .28 .08 -.03 .04 .09 low diffuseness

-.02 -.13 -.18 .15 .28 .37 .40 .46 .35 .27 .22 .42 .29 .32 .35 .33 .07 .09 -.09 no premature commitment

-.11 -.03 -.09 .16 .29 .33 .42 .40 .43 .30 .32 .42 .40 .38 .39 .30 .07 .14 .06 provisionality

-.08 -.01 -.12 .11 .20 .42 .27 .33 .36 .41 .39 .29 .40 .36 .32 .24 -.03 .13 .11 closeness of mapping

.00 .00 -.13 .23 .30 .69 .41 .39 .51 .35 .44 .32 .38 .36 .35 .14 .15 .22 -.02 juxtaposabil ity

-.09 .06 -.02 .18 .33 .30 .31 .43 .35 .20 .28 .35 .39 .32 .35 .33 .02 .13 -.03 secondary notation

.03 .06 -.05 .18 .41 .08 .15 .26 .14 .15 .08 .33 .30 .24 .14 .33 -.14 .05 -.09 abstraction management

.13 .02 .05 .09 -.02 .12 .10 .06 .13 .07 -.03 .07 .07 -.03 .15 .02 -.14 .34 .27 low error proneness

.01 .03 .02 .19 .06 .10 .16 .10 .22 .00 .04 .09 .14 .13 .22 .13 .05 .34 .39 no hidden dependencies

.10 .05 .07 .12 -.10 .03 -.01 .01 .10 .03 .09 -.09 .06 .11 -.02 -.03 -.09 .27 .39 no hard mental operations

 Table 3 – Correlation matrix between experience, cognitive dimensions and flow.

 220

flow and

input device

 Table 2 illustrates how interaction preferences (e.g. for input

devices or modes of working) relate to flow and cognitive

dimensions. From these results, keyboard interaction is shown to

be generally conducive to flow, especially when compared with

equivalent results for the mouse, which appears to impede it.

Interaction preferences related to keyboard use are consistently

above those related to mouse use, when ranked by both the overall

flow metric and with respect to individual components. Moreover,

there exist negative correlations of flow and programs favouring

the mouse (prefer mouse, r=-.05; most time on mouse, -.07). This

is contributed to by low values for action-awareness merging (r=-

.09) and clear goals (r=-.10), which may suggest the mouse’s

reliance on visual search encourages more conscious, reflective

styles of thinking. Individually, these correlations are weak, but

become increasingly relevant when considered in the context of

other trends (most time on keyboard, r=.17), and echoed in related

results (avoid mouse, r=.16). Indeed, the only properties of

interaction ranked lower than those related to the mouse, are those

inherently undesirable: suffer discomfort (e.g. RSI; r=-.19) and

find program a chore (r=-.24).
 While the generally high level of experience in this sample is

likely a confounding factor that may bias results towards increased

keyboard use (see Appendix G), it must be noted that, with very

few exceptions, the interfaces of the programs studied here (i.e.

sequencers) are primarily based on mouse-based interaction styles,

such as WIMP and other direct manipulation-based approaches.

At the same time, many of these programs are also designed to

work with hardware, such as microphones, MIDI controllers, and

control surfaces. While these input devices correlate positively

with flow components, to the benefit of the wider user experience,

they are largely designed to operate independently of, and away

from, the main program and notation. This observation is reflected

by positive correlations between secondary notation and both use

acoustic instrument (r=.22) and use microphone (r=.18).
experience and

flow components

 In the leftmost matrices of Figure 3, experience with a given

program is seen to positively correlate with all flow components.

The stronger correlations for intrinsic reward (r=.31) and sense of

control (r=.34) fit with theories of creativity (see section 2.3), and

the respective requirements of motivation and expertise. The

related components of concentration & focus (r=.29) and action-

awareness merging (r=.25) also show a relatively high correlation,

the latter of which may indicate an increasing execution of tasks

unconsciously, as actions are facilitated by learnt motor skills.

 221

 Interestingly, a user’s impression of a program’s balance of

challenge & ability also seems to improve with experience (r=.21).

This component was tested with respect to the level of challenge

and the user’s ability to meet that challenge. A positive correlation

suggests that experience not only better equips users to meet the

demands of the program, but also find new challenges. While this

indicates the presence of high ceilings in modern music software,

it might also indicate high entry thresholds, intimidating to novice

users, such as performance skills in sequencers and literacy

requirements in score editors and other trackers.
tracker-sequencer

migration

 User responses were also correlated with respect to their stated

experience with trackers, and notably that with the text- and

keyboard-oriented IT2 tracker (see 2.2.1). In this latter case

especially but also in the general case, tracker experience

correlates negatively with the user’s perception of several flow

components and cognitive dimensions in sequencer-style software.

IT2 users, forced to abandon the DOS-based tracker, seem to have

had trouble finding a substitute music environment that suits their

interaction style, or offers them sufficient support for flow (r=-.05).

Negative correlations stand out for progressive evaluation (r=-.19),

premature commitment (r=-.18) and viscosity (r=-.12), each of

which can be related to the fast and free edit-audition cycle

associated with most trackers. A similar relationship between flow

and closeness of mapping (r=-.12) may also indicate a mismatch in

these users’ mental models of music, and that manifest in

sequencers. Indeed, such challenging paradigm shifts are a

consequence of the deeply-learnt knowledge and skills associated

with virtuosity, which itself may be harder to develop and

maintain in fast-changing software environments.
the key role

of feedback

 The rightmost matrices look at the correlations between

individual cognitive dimensions and flow components, as well as

the internal relationships between dimensions. The strongest

correlation between a cognitive dimension and flow is visibility

(r=.53), closely followed by progressive evaluation (r=.51). These

respectively correspond to the availability of visual and musical

feedback within the music editing environment, confirming their

central role in the creative user experience, as well as the

importance of liveness (see Section 4.2.4). In the survey of

reViSiT use, these dimensions similarly ranked highest, but in

reverse order: progressive evaluation (r=.49) and visibility (r=.45).

This may reflect the greater emphasis given to musical feedback

in the tracker interface, as well as the reduced use, detail, and

richness of visual and graphical representations.

 222

 The final matrix shows the correlations between individual

dimensions. Though a thorough analysis is largely beyond the

scope of this thesis, this final matrix offers a way to empirically

look at the relative orthogonality and granularity of dimensions

(two of the acceptance criteria for new dimensions; see Blackwell

et al, 2001), and provides insight into the various trade-offs and

dependencies between them. Moreover, the prominence of several

recognised relationships between cognitive dimensions in this

matrix also helps to validate the broader methodology and dataset,

when looking at other aspects of interaction, such as flow.
15

virtuosity as

a dimension

 With regard to virtuosity, the matrix shows several moderate

correlations, but none that suggest this new addition duplicates, or

is otherwise fully-accounted for by, other dimensions. The

dimension is tested against the phrase, “With time, I think I could

become a virtuoso user of the system” – and, in line with flow’s

balance of challenge & ability (r=.42), the quantity is not a

measure of the difficulty of a notation, but the relative challenge

faced by the user. Consequently, a simple notation designed for

novices can score as well as a complex notation designed for

experts. As will be shown, this dimension significantly contributes

to the predictive power of cognitive dimensions when used as a

model for designing flow-enabled user experiences.

regression model

 To account for the internal interactions between different

cognitive dimensions and identify the key dimensions that

contribute to perceptions of flow in the user experience, the survey

data was subjected to multiple regression analysis. Table 4

presents models produced by a stepwise regression analysis, using

forward selection with Mallows’ Cp as a stopping rule to reduce

the likelihood of overfitting the data.
16

 Three models are

presented, respectively based on the surveys of reViSiT and other

music software, and a combination of the two. Here, the relative

difference in the experience present in each sample (see 9.2) is

used to study the properties of notations that contribute to flow in

15

 For example, visibility and juxtaposition, which are often combined as a single dimension, unsurprisingly

show a relatively strong correlation (0.69). Indeed, there is a generally high correlation between dimensions

based on visual properties of a notation. Dimensions targeting less tangible, more cognitive aspects, such as

error proneness and hard mental operations, also seem to correspond. Moreover, it may also be significant

that little interaction is shown between these two groups of dimensions. This could reflect the difficulty in

relating visual and cognitive aspects of interaction, but may also reflect the relative polarity of dimensions.

While dimensions are defined to be neutral descriptions of notational properties, the desirability of which is

determined by context, some are more intrinsically good or bad, such as error proneness, hard mental

operations, and hidden dependencies. Further analysis and explanation is left to future work.
16

 The number of independent variables (16 dimensions) made an all possible regressions analysis too

computationally intensive to be practical. However, the models presented were checked using an all

possible regressions analysis on a subset of 12 variables, in which the 4 least significant terms were

omitted (in all cases, p > .5), based on an initial least-squares regression analysis of all 16 dimensions.

 223

novice and expert use, and also identify considerations relevant to

bridging the divide, in designing multi-layered interfaces

supporting both novices and experts. Individual factors are tested

using a student’s t-test (95% and 99% confidence levels are

highlighted), and the models using analysis of variance (ANOVA).

Multiple R .699 Reg. Res. Total .680 Reg. Res. Total .702 Reg. Res. Total

R² .489 df 7 213 220 .461 df 6 195 201 .492 df 8 414 422

Adjusted R² .472 SS 26.98 28.17 55.15 .444 SS 23.03 26.92 49.95 .483 SS 53.66 55.33 108.99

Standard Error .364 MS 3.854 0.132 .372 MS 3.839 0.138 .366 MS 6.707 0.134

Observations 221 F 29.15 202 F 27.80 423 F 50.19

Mallows Cp 8.015 p < .001 7.000 p < .001 11.820 p < .001

Terms

.000 .043 -0.660 .510 .085 .000 .049 2.728 .007 .096 .000 .032 1.220 .223 -.024

.179 .036 3.233 .001 .071 .239 .041 3.492 .001 .080 .188 .027 4.335 < .001 .064

.184 .038 3.037 .003 .075 .198 .038 3.033 .003 .076 .169 .027 3.796 < .001 .050

.173 .041 3.121 .002 .080 .173 .040 2.860 .005 .079 .173 .028 4.374 < .001 .067

.128 .031 2.276 .024 .061 .139 .036 2.206 .029 .072 .148 .023 3.628 < .001 .038

.172 .026 3.311 .001 .051 .135 .025 2.346 .020 .049 .121 .018 3.226 .001 .022

.211 .035 3.830 < .001 .069 - - - - - .132 .026 3.158 .002 .031

.129 .031 2.230 .027 .062 - - - - - .084 .020 2.104 .036 .003

- - - - - .137 .037 2.148 .033 .073 .104 .025 2.495 .013 .013

(a) reViSiT (b) Other software (c) Combined sample

A
N
O
V
A

B
e
ta

C
o
e
ff
.

S
td
.
E
rr
.

t
S
ta
t

p
-v
a
lu
e

9
5
%
 C
I

.039

-

.116

.122

.104

.084

.057

.083

.043

.062

.070

.086

.134

.070

Role Express.

R
e
g
re
s
s
io
n

9
5
%
 C
I

9
5
%
 C
I

S
td
.
E
rr
.

A
N
O
V
A

B
e
ta

.079

.133

.141

.116

.115

.080

-

.059

-

-.028

Prem. Commitment

Abstraction Mgmt.

Viscosity

A
N
O
V
A

C
o
e
ff
.

Visibility

Progressive Eval.

Consistency

Virtuosity

Intercept
B
e
ta

C
o
e
ff
.

t
S
ta
t

p
-v
a
lu
e

S
td
.
E
rr
.

p
-v
a
lu
e

t
S
ta
t

.117

.126

.116

Table 4 – Flow Models based on Cognitive Dimensions. Regression statistics, terms, and ANOVA

results from modelling flow using forward selection stepwise regression, for each end-of-experiment

survey, plus a model based on a combined sample. 95% (and 99%) significance levels are highlighted,

for p-values in each model, and terms significant in all models.

 All three models showed a strong goodness-of-fit, with R² and

adjusted R² figures suggesting that between six and eight

cognitive dimensions of the notation account for almost half the

variation in the flow indicated by users. In models based on more

dimensions, limited predictive power is gained, and the tendency

for the model to overfit increases, with individual terms failing

significance tests (α=.05).
17

 The following paragraphs discuss the

roles of individual dimensions in the model, with respect to flow

(see Table 3) and findings from other analyses in this report. As

appropriate, references are also made to the four design heuristics

for supporting virtuosity (H1 to H4, developed in Chapter 4) and

their relationships to both specific cognitive dimensions (see

Section 4.1.1) and corresponding findings in the survey. Table 5

illustrates these relationships, also highlighting dimensions

appearing in the models above.

17

 The maximum observed adjusted R² value was 0.486, based on a 12 variable model including the

dimensions in Table 4 (c), plus closeness of mapping (p=.099), hard mental operations (p=.125), hidden

dependencies (p=.143), and juxtaposability (p=.810).

p < .05 p < .01

 224

role of feedback

 Three cognitive dimensions stand out as highly significant

across all models: visibility, progressive evaluation, and

consistency. Visibility (“easy to view and find parts of the music

during editing”) reflects the importance of visual feedback and

fast navigation around the notation, contributing to the user’s

sense of control and enabling action-awareness merging, where

the user is able to maintain focus on the task rather than peripheral

distractions, mirroring the recommendations of H4, advocating

“focused, modeless input”.

 In music applications, progressive evaluation (“easy to stop and

check my work while creating or editing it”) similarly highlights

the importance of feedback, but from the musical domain, in the

form of audio. This directly correlates with H2 and the support of

“rapid feedback cycles and responsiveness”. Through greater

liveness (see Section 4.2.4), the causal effects of user actions are

easily perceived, again contributing to a sense of control, but also

allowing greater concentration & focus to rest as much with the

actual music, as the abstract visual representation. Both

dimensions are fundamental to the user’s understanding of what is

going on in the program, and their music.
consistency

and learnability

 The effective transparency of the notation enabled by rapid

domain feedback improves the learnability of a program, where

users can experiment with commands and features to understand

their function. In this respect, the consistency (“Where aspects of

the notation mean similar things, the similarity is clear in the way

they appear”) allows users to transfer knowledge and expertise

from one part of the program to another, and simplifies the overall

management and learning of the system. By contrast, a lack of

consistency can create unexpected program behaviour, leading to

surprise and confusion that can harm the user’s sense of control,

and potentially make them less confident and more self-conscious.

This notably reiterates the need to provide “consistent output”

(H4), to facilitate “learning, memorisation, and prediction” (H1).
beyond mastery

 Two further dimensions are also significant in all three models,

and likewise relate to learning and expertise: virtuosity and

abstraction management. Virtuosity (“With time, I think I could

become a virtuoso user of the system”) effectively gauges the

balance of challenge and ability, which affects a user’s level of

confidence to engage and experiment with the notation, and their

motivation to develop expertise. As a creative individual becomes

more expert, the level of formalism in a program’s notation can

present a challenge; acting as a ceiling to their creativity, which is

limited to paths more explicitly encoded in the representation, as

 225

Table 5 – the cognitive dimensions of notations, with brief descriptions of each dimension (as

presented to users, see Appendix C for details; originally based on Blackwell and Green, 2003), also

identifying relationships (positive ● and inverse ○) with the design heuristics for virtuosity (as detailed

in Section 4.1.1). Dimensions marked * (also highlighted in green ●) further denote those likewise

appearing in the regression model of Table 4.

 envisaged by program designers. A notation’s abstraction

management (“Users can do things to customise, adapt or use the

program in ways its designer may not have intended”) determines

the opportunity for users to appropriate the program as their own,

for their own purposes, and extend its functionality and use

beyond that envisaged by others. It gives those who know what

they’re doing the ability to more precisely realise what they want

(clear goals), and tackle higher challenges.
18

 To lower the

18

 Overall motivation likely also benefits from taking a program beyond its apparent limits, which may also

affect a user’s level of self-consciousness. However, rather than removing ego from the activity (as in loss

of self-consciousness), motivation is gained with respect to an extrinsic source, the program designer (or

other experts). This introduction of a synergistic extrinsic motivator (Amabile, 1996) complements the

intrinsic motivation and reward upon which flow is based. That it occurs later in the user’s development,

once they have built skill and confidence, may indicate that the individual has reached a stage in which

 226

threshold of creativity, H3 advocates that notations “minimise

musical and (domain-) abstractions and metaphors”, leaving users

to develop their own understanding of the domain, moving from

UIs based on “black boxes” to user-defined combinations of

“simple primitives” (see p92-4). In this context, abstraction

management is about providing mechanisms for the user to

abstract complexity they have created themselves, which may

include provisions for automation and scripting (see p217-8).
flow in tracking

and sequencing

 The role and importance of the remaining three dimensions in

the models depend on context. The reViSiT model, fed by data on

novice tracker users, includes terms for viscosity and premature

commitment. The more general model, fed by data on experienced

users of various music programs (notably sequencers), instead

includes a term for role expressiveness. Respectively, these

variables appear to reflect the strengths of the keyboard-

controlled, pattern-based tracker and the visually-rich sequencer:

trackers allow fast notation-based manipulation, sketching and

experimentation with shorter passages of music (inset top-left, see

Section 8.3), while sequencers are based on a linear timeline, song

overviews and macroscopic editing (see Section 8.2), and more

prominent representation of well-defined musical concepts and

processes, including live performance and visual metaphors to

traditional acoustic and electronic practices (inset left-bottom; see

Section 2.1, Figure 2-2).
 At the same time, each survey must be considered with respect

to the confounding factor of experience – and how much the terms

in each model indicate variables that respectively contribute to

flow in novice and expert interaction. In the first instance, novices

engaged in learning are likely to benefit from lower viscosity and

lower premature commitment, enabling them to explore, play, and,

experiment (“tinker”, Beckwith et al, 2006) with unfamiliar

features of the notation, and easily backtrack or correct the

mistakes beginners are liable to make. The absence of these

factors in the model of more experienced sequencer use may

support their larger role in earlier stages of learning.
combined model

 The third model combines the questionnaire results of both

surveys, in an attempt to produce a generalised flow model across

a broader context of music software and its users, both novice and

expert. While the emphasis (i.e. standardised coefficient, or beta)

of each term is marginally reapportioned, the stepwise regression

extrinsic motivation becomes significant, and where their creativity can be usefully modelled with respect

to external and social factors (see Section 3.7).

 227

process selects the same dimensions as before, including the five

shared dimensions and all three context-specific dimensions. The

higher variation of experience in the combined sample does not

appear to significantly affect the terms selected by the stepwise

regression process; no other dimensions are useful in capturing the

influence of experience on flow.
19

non-orthogonality

between dimensions

 Of the eight absent dimensions, several are recognised to hold

relationships with those already in the model, due to overlaps and

trade-offs within the cognitive dimensions framework (Green and

Petre, 1996). Visibility, for example, is often joined with juxta-

posability as a single dimension, or cited as a trade-off against

hidden dependencies. The interaction between dimensions reduces

their supposed orthogonality, reducing their combined predictive

power. In the stepwise selection process, such redundant variables

are implicitly recognised and eliminated. Figure 4 highlights

relevant interactions between dimensions where such redundancy

occurs, most of which are also evident in Table 3.

Figure 4

Implicit relationships

in cognitive dimensions

between dimensions

eliminated and selected

in regression models

(Green & Petre, 1996;

see also Table 3)

juxtaposability

low diffuseness }visibility

low viscosity
provisionality {no premature commitment

error proneness

hard mental operations}hidden dependencies

closeness of mapping } abstraction management

the individual

as a factor

 Additional variation in flow will also be influenced by factors

beyond the notation, notably characteristics of the individual

themselves, such as personality traits, aesthetic, environment, and

also specific personal experiences within the program. The four

remaining dimensions not used in the model also correspond to

factors sensitive to individual contexts, habits, and experience.

The related dimensions of hard mental operations and error

proneness can arise from a breakdown in the closeness of

mapping, where representations used in the program don’t match

the user’s mental model. Secondary notation, distinct from the

formal properties of the notation, also represents informal

functionality that will be perceived and used very differently by

different users.

19

 An additional regression analysis was run with experience as a factor, to assess the overlap between this

aspect of the individual and the properties of the notation. Using the combined sample, the term was

significant (p < .01), but only a relatively low beta (.108) and marginal improvement in predictive power

(Adjusted R²=.491) was observed.

 228

Figure 5

Adjusted R² vs.

number of variables

in regression model.

.250

.300

.350

.400

.450

.500

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of variables
A
d
ju
s
te
d
 R
²

 Figure 5 shows the diminishing growth of predictive power

(Adjusted R²) in models based on increasing numbers of cognitive

dimensions, in the case of the combined sample. It illustrates the

limited value of using more than 8 dimensions, but also highlights

the significance of the five dimensions shared by all models. In

the scenarios studied here, these five dimensions – visibility,

progressive evaluation, consistency, virtuosity, and abstraction

management – have proved less sensitive to context, and thus may

represent the core properties desirable in notations supporting

flow, in music software and possibly other creative contexts.

 229

chapter ten conclusion

Figure 1 (top)

Obsoleet, by Voodoo

(2004), a screenshot

from a demo show-

casing a history of the

demoscene, and what

one reviewer cites as

an artist’s impression

of “deep hack mode”.

In the absence of an established canon of research into the

composition process (Sloboda, 1999), this dissertation has drawn

on psychological theories of creativity, in an effort to identify and

address challenges in designing user experiences for computer-

aided composition. As a study of real-world software and

interaction, concepts of virtuosity and flow were explored in the

context of tracking and sequencing user experiences, supported by

a large-scale user study of over 1,000 tracker and sequencer users.

 This final chapter reviews the approaches taken and findings

made over the course of the research. Section 10.1 summarises the

findings made through empirical investigations, the various

methodologies of which are reviewed in Section 10.2. Section

10.3 then summarises theoretical offerings, developed to guide

user studies and designed to provide a foundation for thinking

about computer music experiences in general terms, to allow

comparisons and cross-fertilisation across different music research

contexts (e.g. performance, improvisation, composition) and

applications (e.g. sequencers, trackers, score editors, live coding

environments). Finally, Section 10.4 briefly discusses future

directions for computer music research and development,

suggested by the work.

 230

10.1 summary of findings

 Table 1 provides an overview of the specific findings of this

research, with references to pages where they are discussed in the

dissertation. Chapter 6 highlighted techniques that characterise

expert tracker interaction, where well-learnt motor skills and

program knowledge are applied to enable focused interaction with

the notation, frequently interwoven with playback, which

maintains a high level of liveness, and a source of closure for

recent work and impetus for further editing.
tracking as a

bottom-up approach

 Trackers’ bottom-up approach to editing music also benefits

the learning experience by enabling composition using simple

primitives, combinations of which can later be used to create more

complex musical constructs. At the same time, high-level musical

abstractions are only implicit in the notation and user’s data, such

that macroscopic editing (arrangement) and broader overviews of

song structure are limited by the standard tracker UI, suggesting

directions developers should look to innovate and may learn from

DAW approaches (see, for example, Figure 2).
the role of motor

skill in music
 The role and importance of motor skills was highlighted in

Chapter 7, which concentrated on how users develop skill with the

computer keyboard, to achieve fluency across interaction contexts

within the tracker program. The importance of motor skill is well-

established in music interaction (see Section 3.6), and as a critical

factor of the expertise required for musical creativity (Section 3.5).

In the sequencer, motor learning is supported in hardware

interfaces such as MIDI controllers, but not available in software-

based WIMP or direct manipulation interfaces that emphasise

visual feedback, and often draw upon visual metaphors that afford

physical interactions the mouse cannot support.
rapid edit-

audition cycles

 In tracking, the keyboard cursor acts to anchor the user’s focus

and interaction, across both visual and aural contexts, with the

notation and musical playback respectively. Commands such as

Play from Cursor (F7), in combination with fast cursor navigation,

ensure that playback is readily available throughout editing,

enabling fast edit-audition cycles (see inset). By emphasising

domain (musical) feedback, composition progresses by listening

and tinkering, rather than notational literacy or music performance

skill, and thus enables experiential learning of music and

composition (see Scripp et al, 1988; Folkestad, 1996).

 231

Table 1 – Summary of findings (with relative location within this report)

Video Study (Chapter 6)

• use of set “postures” in different interaction contexts (6.1; Figure 2)

• “spot-on debugging”: quick listening episodes, poised to break into editing (6.2)

• “macro listening”: periods of more relaxed reviewing of work, for wider reflection and to

combat tiredness caused by focused energetic interaction (6.2)

• “expand/explore”: bottom-up, exploratory creativity (6.2)

• experiential learning of composition technique (6.2)

• focused, energetic keyboard-based interaction over 8 hours, showing evidence of flow (6.3)

Keyboard and Motor Skill (Chapter 7)

• higher average interaction rate, but peak speed drops (due to tiredness and pacing) (7.1)

• indications of unconscious skill in musical entrainment of tempo (7.1)

• transition from mouse to keyboard interaction with experience (7.2; Figure 4)

• keyboard expertise a product of speed and knowledge, leading to fluency (7.3; Figure 8)

• navigation (cursoring) as basis for advanced skills (selections, playback) (7.3; Figure 9)

• simple actions can be learnt as atomic motor sequences (“finger macros”) (7.3; Figure 10)

Focus and Feedback (Chapter 8)

• use of sequencer as tool for evaluation and refinement (8.1; Figure 1 to 3)

• 10-20 minute of preparation before active editing (and flow), worst for novices (8.1)

• over time, users tend towards having music playing for 2/3 of the time (Figure 4)

• trackers support rapid feedback, interwoven with editing activities (8.2)

• sequencer playback requires more preparation, suited to longer song playback (8.2)

• liveness appears more important to tracker experts than productivity (8.3; Figures 10 to 12)

• liveness (editing:feedback) as corollary of flow channel (boredom-anxiety) (8.3; Figure 12)

• windowed UIs can lead to cluttered workspaces, interfering with focus and requiring

housekeeping (8.4; Figure 13 to 15)

• narrower editing scope (loops or patterns) benefits user focus (and flow) and liveness (8.5)

Flow and Cognitive Dimensions (Chapter 9)

• hardware control important in sequencer/DAW packages (9.1)

• flow in music software depends on user’s experience with program (9.2)

• music programs exhibit a similar cognitive dimension profile (9.3)

• flow can be usefully modelled using 5 to 8 cognitive dimensions (Adjusted R² = .483; 9.4)

o core dimensions: visibility, progressive evaluation, consistency

(~ notation feedback, domain feedback, support for learning / sense of control)

o other important dimensions: virtuosity, abstraction management

(~ balance of challenge and ability; “low threshold, high ceiling, wide walls”)

o viscosity, premature commitment

(~ support for exploration, sketching, tinkering; “many paths”)

o role expressiveness

(~ support for knowledge development / transfer)

• proposed virtuosity dimension useful as predictor of flow (~ balance of challenge & ability)

• tracker UIs exhibit more favourable flow profiles, compared to sequencers

(esp. action-awareness merging, concentration & focus, sense of control, intrinsic reward)

• sequencers also based on loops or patterns show improved support for flow (Live, FL Studio)

 232

F
ig
u
re
 2
 –
 C
h
a
n
g
es
 o
r
a
d
d
it
io
n
s
to
 t
h
e
re
V
iS
iT
 U
I,
 a

d
d

re
ss

in
g

 s
p

ec
if

ic

in
te

ra
ct

io
n

is

su
es

ra

is
ed

b

y

th
e

re
se

ar
ch

(w

it
h

co

rr
es

p
o

n
d

in
g

co

g
n

it
iv

e

d
im

en
si

o
n

s,
 r

ef
er

en
ci

n
g

 t
h

e
m

o
d

el
 a

n
d
 p

ro
fi

le
s

o
f

S
ec

ti
o

n
s

9
.3

 a
n

d
 9

.4
).

 233

maintaining

liveness

 Chapter 8 explored feedback mechanisms and the use and role of

playback in both sequencers and trackers. In contrast to the close

integration of playback in tracker interaction, which facilitated

shorter, more frequent auditions of musical material, the more

involved playback mechanisms of sequencers are best suited to

auditions of longer passages of preset lengths (see Section 8.2).

Section 8.3 shows that the liveness engendered by more frequent

auditions during editing plays an important role in expert tracker

interaction, even though greater productivity might be achieved by

longer and more involved episodes of editing prior to playback. At

the same time, the impact of interruptions created by playback

likely decreases as users learn to employ shorter auditions,

transition fluidly between editing and listening modes, and

edit data during playback. The effect of these skills, as seen in

expert tracker users, is to compromise between the stop-start,

asynchronous edit-and-run (Level 2) liveness of visual notation

editing and the direct, synchronous, realtime control of notation-

less live performance (Level 4 liveness), enabling “direct

involvement” and immersion in the musical domain (Leman,

2008). Arguably, the resultant interaction is comparable to Level 3

(edit-triggered) liveness, by virtue of the expert user’s own

automaticity, in that they have learnt to reflexively trigger

playback following a sequence of edits.
maintaining focus

 Chapter 8 also explored aspects of visual feedback that have the

potential to distract or interrupt interaction, harming the user’s

focus, sense of control, and flow of interaction. Inevitably, the

more windows present in a workspace, the more housekeeping is

required (Section 8.4). While this may appear to offer more

flexibility for users to appropriate programs for their own use,

there is little evidence that musicians are willing to invest the

required attention. Moreover, this meta-management of the UI

explicitly draws attention to the notational layer and away from

the music, defeating attempts to make interaction as direct or

transparent as possible.
flow and cognitive

dimensions

 Chapter 9 brings together many of the themes in earlier chapters,

looking at the components of flow and properties of the notation,

as present in tracker and sequencer use. Specific sequencer and

tracker packages were profiled to identify favourable properties of

digital music notations (Section 9.3), leading to a model of flow

based on the Cognitive Dimensions of Notations framework

(Green and Petre, 1996; see Section 9.4). The model suggests that

flow mainly depends on a limited number of dimensions,

corresponding to domain feedback (progressive evaluation), visual

 234

feedback (visibility, juxtaposability), learning (consistency,

virtuosity, abstraction management), and both fast and free editing

(low viscosity, low premature commitment). These dimensions

also echo calls for the provision of low thresholds (virtuosity),

high ceilings (abstraction management) and wide walls (low

viscosity, low premature commitment) in creative tools (Resnick et

al, 2005), and contribute to conditions suiting exploratory

creativity (see Section 3.1) and sketching (Sections 3.2 and 3.5).
towards digitally-

mediated creativity

 Above all, this research has identified several areas and ways in

which the current crop of music editing software can be improved

to support more focused and rewarding user experiences, already

seen in other areas of computer and music interaction. To this end,

concepts of flow and virtuosity provide useful frameworks for

articulating, modelling, and evaluating the motivational aspects

and expertise supported by a tool, in facilitating the user’s

creativity. To progress beyond the productivity offered by current

usability practices in authoring software, this research presents a

case for UIs to support the user’s development of virtuosity with

the computer, as evident in the expert use of trackers. By

identifying and generalising the properties of tracker interaction

that facilitate learning, focus, sketching, and flow, it is hoped that

the findings made here can be applied to other styles of music

software that seek to provide comprehensive support for the user’s

creative process. The theories, models, and heuristics presented in

Chapter 4 are reviewed in respect of this goal and the findings of

the user studies presented here in Section 10.3.

10.2 methodological review

 As a study of creative practice, this research has applied a variety

of empirical methods to investigate the creative user experience,

thus addressing limitations of individual approaches (Hewett et al,

2005). This section reviews the performance and utility of the

methods used, from both research and engineering perspectives.
as creativity

research

 From a research perspective, this project has used a synthesis of

qualitative and quantitative approaches, as well as idiographic and

nomothetic approaches, in an effort to balance detail, validity, and

reliability in investigations of musical creativity in composition,

and overcome methodological challenges when such approaches

are applied in isolation (see Chapter 3). The emergence of similar

themes in each approach – including motor skill, focus, and

feedback – underlines their importance in the user experience, but

different analytic methodologies revealed different perspectives or

granularities of detail in each.

 235

 The video study and discussions with a tracker composer

(Chapter 6) provided a context for subsequent analyses of motor

skill, focus, and feedback in the interaction logs of a large,

distributed sample of tracker users from various backgrounds

(Chapter 7-8). Significantly, the non-invasive logging of

interaction enabled the study of real-world creativity, without

interfering with the individual’s creative process or intruding in

their environment. In this capacity, the Internet has proven a

powerful tool that can be instrumental in the remote observation of

subjects in creativity research.

 The large scale of the study allowed the habits and techniques

observed in expert tracker practice to be examined in

a more general population including less-experienced users;

demonstrating how widespread such skills are, and also revealing

how they develop with time. Longitudinal studies of tracker

interaction were supplemented with surveys of a wider cross-

section of music software use, including users of mainstream

DAWs (sequencers, and loop- or sample-based triggers) and other

trackers (Chapter 9). This report has also outlined how techniques

used to study tracker interaction in detail might be applied to other

activities and tools in digital music (Section 10.3; e.g. Section 4.2;

Section 7.3), in developing taxonomies (e.g. Duignan, 2007) and

models of computer music.
as an HCI

methodology

 From an engineering perspective, evaluation techniques are also

subject to practical considerations, which determine the benefit of

using them in product development. Video studies, user surveys,

and interaction logging are already employed by many companies

to elicit user feedback. However, companies are rarely able to

combine these approaches, target as large a sample of end-users,

or afford the time to run longitudinal studies over months or years.

Moreover, the reViSiT experiment (Chapter 5) benefited from the

software’s open, established, and enthusiastic community of

tracker users (and wider demoscene culture), as well as the

trust engendered by association with the University. Large

corporations, by comparison, are likely to suffer more from the

privacy concerns of users, which may restrict sample size or the

detail of collectable data, but which might also be countered with

larger incentives.

 However, if a program is able to automatically collect data on its

use, and that information can be automatically processed to

highlight interaction issues, it could represent a low-cost method

of providing ongoing feedback on the usability of a UI or

program, and without requiring the active participation of the user.

 236

Code libraries such as iMPULS (Chapter 5) could be established to

collect and analyse common metrics, tailored to an activity or

genre of software (e.g. music), minimising the initial cost of

installation. Then, interactive visualisation applications such as

iMPULS|IVE (Section 5.4) could be equipped with both preset and

configurable filters, analyses, and visualisations that minimise the

effort (and experience) required to probe data. As an engineering

solution, visualisations of interaction data (see Appendix E) may

also prove a more expedient tool, compared to statistic and

quantitative methods, for quickly exploring user trends and

debugging user experiences and interfaces, where the scientific

rigour of statistical tests or development of quantitative metrics is

less important. Other uses of interaction metrics, however, are

explored in Section 10.4.
measuring flow

 Indicators of flow experiences were also established in each

methodology used. However, whereas quantitative analyses can be

used to reveal corollaries of specific flow components – by, for

example, looking at feedback use, interaction focus, or the

continuity of action – investigation of the user’s mental state and

subjective experience of flow (self-consciousness, awareness,

sense of control, and perception of time) is ultimately only

available from engagement with the user directly, through

interviews, discussions, or user surveys. In practice, these more

qualitative techniques may be sufficient to provide enough

reliability and validity to inform design and engineering contexts

(Sharp et al, 2007), if not the rigor to meet the requirements of

scientific research (Weisberg, 1999; Csikszentmihalyi, 1999).

 In this research, however, the benefit of combining several

methodologies is that it enables us to refine the effectiveness and

accuracy of simpler, low cost approaches, using insights from

more extensive and involved analyses. Chapter 9, for example,

demonstrated a simple application of the Cognitive Dimensions of

Notations framework (Green and Petre, 1996) that drew upon the

more detailed findings of previous chapters.

 237

10.3 towards a theoretical framework

 In addition to empirical findings, this dissertation discusses a

theoretical foundation for considering notation-based music

editing, and which enables empirical findings to be generalised

and applied to other musical activities and applications. As

summarised in Table 2, Section 4.1.1 offered a set of design

heuristics for supporting virtuosity, based both on reviewed

literature (Chapter 3) and themes examined in detail through user

studies (Chapters 6-8, see table). In the process, both a descriptive

model of music software interaction (Section 7.3) and a model of

editing liveness (Section 8.3) were developed, which enabled

comparisons across different tracker users, but which could also

be extended to enable evaluations of other programs, including

sequencers, score editors and other tools, in future research.
flow, feedback

and liveness

 Section 4.2 presented a framework for illustrating liveness and

flow properties of an interactive music system, defined as the

product of one or more feedback cycles (Figure 3). Like Leman

(2008), the model distinguishes between engagement with a

notation and with the domain, but uses the iterative and cyclic

properties of the creative process (Section 3.2) to describe systems

as a synthesis of feedback from both the notation and the domain,

demonstrating how liveness and flow can be supported in

notation-based systems, such as trackers. By comparison,

performance-based systems, such as sequencers, support liveness

and immersion in music through realtime musical expression,

which the computer automatically transcribes to notation.

 related themes (and studies) in tracker interaction

H1: Support learning, memorisation, and prediction
 (or “recall rather than recognition”)

virtuosity, motor skill

(Chapter 6 and 7)

H2: Support rapid feedback cycles and responsiveness liveness, music feedback

(Chapter 6 and 8)

H3: Minimise musical (domain-) abstractions and metaphors process abstraction, UI

primitives, metaphor
1

H4: Support consistent output and focused, modeless input

focus, visual feedback

(Chapter 8, Section 4-5)

Table 2 – design heuristics for virtuosity (from Section 4.1.1) with references to related themes and

studies in the report. See also: supporting findings in the study of flow in notation use (Chapter 9, p223).

1
 Though some aspects of this heuristic are explored (e.g. use of ‘simple primitives’ in notation-based

systems vs. linear production processes, described in Chapter 2; bottom-up editing and tacit learning in

trackers, Chapter 6; and through cognitive dimensions, closeness of mapping, role expressiveness, and

secondary notation, Chapter 9), this research does not extensively explore the use of abstraction and

metaphor in digital music. For detailed discussions of these issues, see the work of Duignan (2007;

with Biddle, 2005; with Noble, Barr, and Biddle, 2004), which complements the themes studied here.

 238

Figure 3

flow in notation use,

adapted from the

systems of musical

flow model (presented

in Section 4.2.3) for

general application to

creative practices

 This effectively compartmentalises the creative process into a

creation phase (the performance) using a hardware musical

instrument, followed by a production phase (post-processing,

mixing, arranging) using software, which has led to criticisms of

the user experience in such software, as only supporting the later,

incidental stages of creativity; the transcription or refinement of a

musical idea (see Blackwell and Green, 2000; Blythe et al, 2007;

Duignan, 2007).
beyond realtime

performance

 This research has demonstrated that a user experience can feel

‘live’ without relying on realtime interaction. As found in trackers

and pattern- or loop-based sequencers, programs that couple fast

editing of short passages with rapid feedback cycles are able to

support a feeling of immersion and directness, while allowing time

for users to think about and plan interactions. For novices, this

relaxes the virtuosity required to engage in the musical domain,

lowering the threshold for creativity (Scripp et al, 1988; Folkestad,

1996). At the same time, it gives experts the time to consider and

experiment with more complex, advanced, and original musical

solutions (compared to what is solvable in realtime performance or

improvisation, see Johnson, 1980; Johnson-Laird, 1988; Sloboda,

1999; Burnard, 2007), raising the ceiling of creativity.
towards flow in

notation use

 In this way, users can manage the pace of interaction, allowing

them to self-regulate the balance between challenge and ability,

preserving a sense of control. Along with the creativity itself, the

opportunity to discover, learn and develop virtuosity (including

motor skills, composition technique, and musical knowledge)

delivers an intrinsically-rewarding user experience. If a program

can also maintain a user’s focus and concentration, without

distractions or interruptions, flow experiences become possible,

which this research has studied closely in the case of trackers, but

also noted in some uses of sequencers.

 239

10.4 future directions

 From both theoretical and analytical perspectives, this work has

attempted to lay a foundation for further studies of computer-aided

composition. Within the field of digital music, research into tools

for end-users is limited, and most work is driven by practice-based

methods that cater for academic needs and aesthetics (Orio et al,

2001). This research, as well as that of Duignan (e.g. 2007),

highlights significant areas for innovation and improvement in

mainstream digital music practices and tools that would benefit

from greater attention from established research communities (e.g.

NIME, ICMC). Beyond the digital domain, this report also noted a

paucity of studies, models, accounts, and theory concerning the

creative processes, techniques, and tools of music composition,

distinct from performance, improvisation, production, or other

forms of musical creativity (see also Sloboda, 1999, 2005).
musical content

analysis
 The quantity and depth of data collected during this research

(see Section 5.2.2 and Appendix G) will support further analysis.

The wide, online availability of compositions by tracker users

coupled with program usage data from pitch entry and saved file

summaries could, for example, provide information about the keys

and harmonies used by composers at various stages of musical

development – which may be used to examine how musical

knowledge is self-taught, using interfaces that provide music

feedback and allow tinkering with a notation.
modelling other

musical activities
 The modelling approach described in Section 4.2.3 indicated

how feedback, liveness, and flow are relevant in most digital

music activities, and suggests that subsequent analyses of these

phenomena (e.g. Chapters 7-9) can be replicated in other music

programs and activities. Specifically, the questionnaire and model

combining cognitive dimensions and flow, in Section 9.3 and 9.4,

could be applied to other music editing environments, such as

score editors, live coding, and visual programming environments.
meta-interaction

and development

feedback

 As a learning environment, computer music tools such as

trackers and those proposed by Scripp et al (1988) support a

self-taught approach, and thus lack the instruction and direction

traditionally imparted by tutors. Whilst online communities are

a source of assistance (and extrinsic motivation), programs might

be able to offer more dynamic, personally tailored solutions, using

internal analysis of the user’s interaction. The metrics used in

Chapter 7, for example, describe how a user develops skill

with respect to knowledge of the keyboard and program. In

programs such as reViSiT, established thresholds and practices

at different skill levels could be used by the program to not

 240

only assess the user’s stage of development, but also adapt

program behaviour to emphasise or introduce new or unused

features, shortcuts, or settings that suit the user’s ability, and

maintain an appropriate level of challenge.
the computer

as music tutor
 If analyses are also extended to musical content, basic guidance

concerning musical knowledge (tonality, harmony, rhythm) may

also be deliverable.
2
 The open-source nature of tracker songs (see

Section 2.2.2) enables users to pick apart the music they listen to

and admire, and future programs may be able to highlight the

musical properties and devices used, and explain them to the user.

Musical genres and styles, for example, are often distinguished by

simple, common and easily-replicated tricks (Prochak and

Prochak, 2001). However, from both a personal and cultural

perspective, such mechanisms should be carefully considered for

their capacity to influence the creativity of the individual.
competing for

fun and practice
 Dynamic help or tutoring must also be careful not to interfere

with the user’s flow. While a program might intervene to maintain

the balance of ability and challenge, the intervention itself must be

carefully timed to minimise the disruption to the user’s sense of

control or self-consciousness. Lessons from managing flow in

serious games (e.g. Sweetser and Wyeth, 2005; Michael and Chen,

2006) may be used, as might the idea of introducing game

elements themselves. The role of motor skill has suggests learning

should not be limited to following stepwise instructions of a

tutorial, but should also be supported by exercises in fingering,

command recognition, or timed set-task completion – possibly

styled as a game with goals, targets, scores, and rewards.

Activities could be designed to develop dexterity, knowledge, and

familiarity with a program and its interactions, and motivated by

competition with either oneself (through timing- and accuracy-

based games encouraging self-improvement through intrinsically-

motivated, deliberate practice) or one’s peers (through advertising

achievements with the community, based on sharing and flaunting

exercise scores or interaction metrics).
3

from usability

to virtuosity…
 Lastly, this research has advocated a shift from usability to

virtuosity, within the creative user experience, but Section 2.2.2

also notes how, in trackers, interaction skill plays a significant role

beyond the UI. As researchers have argued (Csikszentmihalyi,

1999; see Section 3.1), it is also important to consider the social

2
 The program, for example, may detect that a user is implicitly favouring simpler musical styles – such

as modal keys (e.g. C Major; the white keys of the piano, no accidentals), or 120bpm tempo, or a 4/4

time signature – and highlight features which may contribute to a broader musical palette.
3
 The use of interaction metrics might also suggest how a program could connect users with suitable

communities of practice; either artists of commensurable skill or experts to provide help or mentoring.

 241

context of creative practice. The demoscene subculture represents

a seldom-studied artistic community, but one that has also

foreshadowed developments in wider digital creative practices and

technology, such as online collaboration, digital communities, and

music sharing (Botz, 2011). Trackers and the demoscene provide

examples of how the role of virtuosity can contribute to a culture;

acting as a source of extrinsic motivation for individuals, a pride

in the creative process that complements the intrinsic motivation

offered by the personal expression and satisfaction engendered by

the creative product. The user’s recognition of their skill is a factor

worth considering in the design of a user experience, and a reason

for further study of tracking and the demoscene subculture.

 242

 243

bibliography

Albert, R. and Runco, M. “A History of Research on Creativity”, in Handbook of Creativity (see
Sternberg, 1999). pp. 16-34.

Alty, J. 1995. “Navigating though Compositional Space: The Creativity Corridor”, in Leonardo.
28(3):215-219. Cambridge, Massachusetts: MIT Press.

Amabile, T. 1983. The Social Psychology of Creativity. New York: Springer-Verlag.

Amabile, T. 1996. Creativity in context: Update to The Social Psychology of Creativity. Boulder Co.:
Westview Press.

Amabile, T. 2006. “How to Kill Creativity” in Creative Management and Development (ed. Henry, J.).
London: SAGE Publications. Excerpt reprinted from Harvard Business Review (Sept., 1998). pp.18-24.

Armstrong, N. 2006. An Enactive Approach to Digital Musical Instrument Design. PhD Thesis.
Princeton University.

Auh, M. 2000. “Assessing Creativity in Composing Music: Product-Process-Person-Environment

Approaches”, in Proceedings of the 2000 National Conference of the Australian Association for
Research in Education. Available from: http://www.aare.edu.au [Last Accessed: Dec 2011]

Auslander, P. 1999. Liveness in a Mediatized Culture. Abingdon, UK: Routledge.

Bardzell, J. 2007. “Creativity in Amateur Multimedia: Popular Culture, Critical Theory, and HCI”, in

Human Technology, 3(1):12-33. Finland: Agora Centre, University of Jyväskylä.

Barrett, M. 2005. “Children’s communities of musical practice: some socio-cultural implications of a

systems view of creativity in music education”, in Praxial music education: reflections and dialogues
(ed. Elliott, D. J.). pp.177–195. New York, Oxford University Press.

Barrett, M. 2006. “Inventing songs, inventing worlds: the ‘genesis of creative thought and activity in

young children’s lives”, in International Journal of Early Years Education. 14(3):201-220.

Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S., Lawrance, J., Blackwell, A. and Cook, C.

2006. “Tinkering and gender in end-user programmers' debugging”, in Proceedings of CHI 2006,
pp. 231-240.

Bederson, B. 2004. “Interfaces for Staying in the Flow”, Editorial in Ubiquity (Sept 2004). ACM Press.

Beilock, S., Carr, T., MacMahon, C., and Starkes, J. “When Paying Attention Becomes

Counterproductive: Impact of Divided Versus Skill-Focused Attention on Novice and Experienced

Performance of Sensorimotor Skills”, in Journal of Experimental Psychology: Applied. 8(1):6-16.
American Psychological Association.

Bellotti, F., Berta, R., Gloria, A. and Primavera, L. 2009. "A task annotation model for SandBox

Serious Games", in Proceedings of CIG 2009. Milano, Italy. IEEE Computing Society. pp. 233-240.

Blackwell, A. 2002. “First Steps in Programming: A Rationale for Attention Investment Models”, in

Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-
10. Washington, DC: IEEE Computer Society.

Blackwell, A. 2006. “The Reification of Metaphor as a Design Tool”, in ACM Transactions on
Computer Human Interaction (TOCHI), 13(4):490-530. Association of Computing Machinery.

Blackwell, A., Britton, C., Cox, A., Green, T.R.G., Gurr,C. Kadoda, G., Kutar, M.S., Loomes, M.,

Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong, A., and Young, R.M. 2001. “Cognitive

Dimensions of Notations: Design Tools for Cognitive Technology”, in Beynon, M., Nehaniv, C.L., and

Dautenhahn, K. (Eds.) Cognitive Technology. LNAI 2117, pp. 325-341. Springer-Verlag.

Blackwell, A.F., Church, L., Plimmer, B. and Gray, D. 2008. “Formality in sketches and visual

representation: Some informal reflections”, in Sketch Tools for Diagramming (ed. Plimmer, B. and
Hammond, T.), workshop at VL/HCC 2008, pp. 11-18. IEEE Computer Society.

Blackwell, A. and Collins, N. 2005. “The programming language as a musical instrument” in

Proceedings of PPIG 2005, 120-130.

Blackwell, A. and Green, T. 2000. “A Cognitive Dimensions questionnaire optimised for users”, in

Proceedings of the PPIG 2000, 137-152.

 244

Blackwell, A., Green, T. and Nunn, D. 2000. “Cognitive Dimensions of Notation Systems”, presented

at ICMC 2000 Workshop on Notation and Music Information Retrieval in the Computer Age.
International Computer Music Association.

Blackwell, A. and Green, T. 2003. “Notational Systems – the Cognitive Dimensions of Notations

framework”, in HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science. pp.103-
134. San Francisco: Morgan Kaufmann.

Blythe, M., Light, A. and O’Neill, S. 2007. “Untitled: Emerging Cultural Forms in the Digital Age.”, in

Human Technology, 3(1):4-11. Finland: Agora Centre, University of Jyväskylä.

Boden, M. 2004. The Creative Mind: Myths and Mechanisms (2nd Edition). Abingdon, UK: Routledge.

Botz, D. 2011. Kunst, Code, und Maschine: Die Äesthetik der Computer Demoszene. (in German)
Bielefeld, Germany: transcript Verlag.

Boyd, J. 1992. Musicians in Tune: Seventy-five Contemporary Musicians Discuss the Creative Process.
New York: Simon and Schuster.

Bryan-Kinns, N., Healey, P., and Leach, J. 2007. “Exploring Mutual Engagement in Creative

Collaborations”, in Proceedings of C&C’07. 223-232. Association of Computing Machinery

Bryan-Kinns, N., and Hamilton, F. 2009. “Identifying Mutual Engagement”, in Behaviour &
Information Technology, 31(2): 101-125. London: Taylor & Francis.

Burnard, P. and Younker, B. 2002. “Mapping Pathways: Fostering creativity in composition”, in Music
Education Research. 4:245-261.

Burnard, P. 2007. “Routes to Understanding Musical Creativity”, in International Handbook of
Research in Arts Education (ed. Bresler, L.) pp.1199-1214. Dordrecht, NL: Springer.

Burnett, R. 2003. “Multimedia: Back to the Future!” in Perspectives on Multimedia: Communication,
Media and Information Technology (ed. Burnett, R., Brunstrom, A. and Nilsson, A.G.). Chichester,
UK: John Wiley & Sons. pp. 1-16.

Butler, J. 2008. “Creating Pedagogical Etudes for Interactive Instruments”, in Proceedings of New
Interfaces for Musical Expression (NIME) 2008. Genoa, Italy. pp. 77-80.

Buxton, W. 1977. “A Composer’s Introduction to Computer Music”, in Interface – Journal of New
Music Research, 16(2):57-72. Lisse: Swets and Zeitlinger.

Buxton, W. and Myers, B. 1986. A study in two-handed input. In Proceedings of CHI ’86. pp.321–326.
NY: ACM Press.

Byrne, C., MacDonald, R. and Carlton, L. 2003. “Assessing Creativity in Musical Compositions: Flow

as an Assessment Tool”, in British Journal of Music Education. 20(3):277–90.

Campbell, D. 1960. “Blind variation and selective retention in creative thought as in other knowledge

processes”, in Psychological Review. 67:380-400. American Psychological Association Journals.

Candy, L. and Edmonds, E. 2004. “Creative Expertise and Collaborative Technology Design”, in

Proceedings of APCHI 2004. Berlin: Springer-Verlag. pp. 60-69.

Card, S., Moran, T., and Newell, A. 1983. The Psychology of Human-Computer Interaction. London:
Lawrence Erlbaum Associates.

Cascone, K. 2000. “The Aesthetics of Failure: “Post-Digital” Tendencies in Contemporary Computer

Music”, in Computer Music Journal. Cambridge, Massachusetts: MIT Press. pp. 12-18.

Chafe, C. and O’Modhrain, S. 1996. “Musical Muscle Memory and the Haptic Display of Performance

Nuance”, in ICMC Proceedings 1996. International Computer Music Association. pp. 428-431.

Chaffin, R. and Limieux, A. 2004. “General perspectives on achieving musical excellence”, in Musical
Excellence (ed. Williamon. A). Oxford, UK: Oxford University Press. pp. 19-40.

Chase, W. and Ericsson, K. 1981. “Skilled memory”, in Cognitive skills and their acquisition (ed.
Anderson, J.). Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 141-190.

Church, L., Nash, C., and Blackwell, A. 2010. “Liveness in Notation Use: From Music to

Programming”, in Proceedings of PPIG 2010. pp.2-11. Universidad Carlos III de Madrid.

Clayton, M., Sager, R., and Will, U. 2004. “In time with the music: The concept of entrainment and its

significance for ethnomusicology”, in ESEM Counterpoint. 11:3-75.

 245

Cohen, A., Ivry, R. and Keele, S. 1990. “Attention and Structure in Sequence Learning”, in Journal of
Experimental Psychology: Learning, Memory and Cognition, 17:263-271.

Colley, A., Banton, L., Down, J., and Pither, A. 1992. “An expert-novice comparison in musical

composition”, in Psychology of Music, 20(2):124-137. London: SAGE Publications.

Collins, D. 2005. “A synthesis process model of creative thinking in music composition”, in

Psychology of Music. 33(2):193-216. London: SAGE Publications.

Collins, D. 2007. “Real-time tracking of the creative music composition process”, in Digital Creativity.
18(4):239-256. London: Routledge.

Collins, K. 2008. Game Sound. Cambridge, Massachusetts, MIT Press.

Collins, M. and Amabile, T. 1999. “Motivation and Creativity”, in Handbook of Creativity (see
Sternberg, 1999). pp.297-312.

Cook, E., Teasley, S., and Ackerman, M.S. 2009. “Contribution, commercialization & audience:

Understanding participation in an online creative community”, in Proceedings of ACM Group 2009.
pp.41-50.

Cross, I. & Woodruff, G. E. 2009. “Music as a communicative medium”, in The Prehistory of
Language, Volume 1 (eds. R. Botha and C. Knight). Oxford: Oxford University Press. pp. 113-144.

Crutchfield, R. 1962. “Conformity and creative thinking”, in Contemporary Approaches to Creative
Thinking (ed. Gruber, H., Terrell, G., and Wertheimer, M.). NY: Atherton Press. pp. 120-140.

Csikszentmihalyi, M. 1990. Flow: The Psychology of Optimal Experience. Australia: HarperCollins.

Csikszentmihalyi, M. 1996. Creativity: Flow and the Psychology of Discovery and Invention. New
York: Harper Perennial.

Csikszentmihalyi, M. 1998. Finding Flow: The Psychology of Engagement with Everyday Life. Basic
Books.

Csikszentmihalyi, M. 1999. “Implications of a Systems Perspective for the Study of Creativity”, in

Handbook of Creativity (see Sternberg, 1999). pp. 313-338.

Csikszentmihalyi, M. 2000. Beyond Boredom and Anxiety: Experiencing Flow in Work and Play (25th
Anniversary Edition). San Francisco: Jossey-Bass.

van Dam, A. 1997. “Post-WIMP User-Interfaces”, in Communications of the ACM, 40(2):63-67.

Association of Computing Machinery.

Davidson, L., and Welsh, P. 1988. “From collections to structure: the developmental path of tonal

thinking”, in Generative processes in music: The psychology of performance, improvisation and
composition (ed. Sloboda, J.). pp.260-285. Oxford, UK: Clarendon Press.

Dawkins, R. 1976. The Selfish Gene. NY: Oxford University Press.

Deliège, I. and Harvey, J. 2006. “How can we understand creativity in a composer’s work? A

conversation between Irène Deliège and Jonathan Harvey”, in Musical creativity: multidisciplinary
research in theory and practice (ed. Deliège, I. and Wiggins, G.). Hove, UK: Psychology Press.
pp. 397-404.

DeMarco, T. and Lister, T. 1999. Peopleware: Productive Projects and Teams (2nd Edition). NY:
Dorset House.

Desain, P., Honing, H., Rowe, R., Garton, B., Dannenberg, R., Jacobs, D., Pope, S.T., Puckette, M.,

Lippe, C., Settel, Z., and Lewis, G. 1993. “Putting Max in Perspective”, in Computer Music Journal.
17(2):3-11. Cambridge, Massachusetts: MIT Press.

Devoe, D. 1967. “Alternatives to Handprinting in the Manual Entry of Data”, in IEEE Transactions on
Human Factors in Electronics, 8(1):21-32.

Dix, A., Finlay, J., Abowd, G., Beale, R. 1998. Human–Computer Interaction, Prentice Hall, Europe.

Dix, A. 2005. “Upside-Down ∀∀∀∀s and Algorithms–Computation Formalisms and Theory”, in HCI
Models, Theories, and Frameworks: Toward A Multidisciplinary Science (ed. Carroll, J.). San
Francisco: Morgan Kaufman. pp. 381-430.

Dourish, P. 2004. Where the Action Is. Cambridge, Massachusetts: MIT Press.

 246

Dowling, W. J. 1999. “The Development of Music Perception and Cognition”, in The Psychology of
Music (ed. Deutsch, D.). San Diego: Academic Press. pp. 603-626.

Duignan, M. 2007. Computer mediated music production: A study of abraction and activity. PhD
thesis. NZ: Victoria University of Wellington.

Duignan, M. and Biddle, R. 2005. “A Taxonomy of Sequencer User-Interfaces”, in Proceedings of
ICMC 2005. International Computer Music Association.

Duignan, M., Noble, J., Barr, P. and Biddle, R. 2004. “Metaphors for Electronic Music Production in

Reason and Live”, in Proceedings of APCHI 2004.

Edge, D. 2008. Tangible Interfaces for Peripherals Interaction. PhD Thesis. University of Cambridge.
Available at: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-733.pdf [Last Accessed: Nov 2011]

Elliot, G.J., Jones, E., and Barker, P. 2002. “A grounded theory approach to modelling learnability of

hypermedia authoring tools”, in Interacting with Computers, 14:547-574. Elsevier Science.

Emmerson, S. 2007. Living Electronic Music. Aldershot, UK: Ashgate.

Ericsson, K., Krampe, R., and Tesch-Römer, C. 1993. “The Role of Deliberate Practice in the

Acquisition of Expert Performance”, in Psychological Review. 100(3):363-406. American
Psychological Association Journals.

Ericsson, K. and Kintsch, W. 1995. “Long-term working memory”, in Psychological Review, 102(2):
211-245. American Psychological Association Journals.

Ericsson, K. and Lehmann, A. 1996. “Expert and Exceptional Performance: Evidence of Maximal

Adaptation to Task Constraints”, in Annual Review of Psychology, 47:273–305. Annual Reviews.

Feldman, D. 1999. “The Development of Creativity”, in Handbook of Creativity (see Sternberg, 1999).
pp. 169-188.

Feinstein, J. 2011. “Optimal Learning Patterns for Creativity Generation in a Field”, in The American
Economic Review. 101(3):227-232. American Economic Association.

Fencott, R. and Bryan-Kinns, N. 2010 “Hey Man, you’re invading my Personal Space! Privacy and

Awareness in Collaborative Music,” in Proceedings of NIME 2010. pp. 183-203.

Fischer, G. 2005. “Creativity and Distributed Intelligence”, in Creativity Support Tools (see
Shneiderman et al, 2005). pp. 71-73.

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., and Ye, Y. 2005. "Beyond Binary Choices:

Integrating Individual and Social Creativity," in International Journal of Human-Computer Studies
(IJHCS). 63:4-5. Special Issue on Creativity (ed. Candy, L. and Edmond, E.). Duluth, MN: Academic

Press.

Fitts, P. and Posner, M. 1967. Human Performance. Oxford, UK: Brooks and Cole.

Folkestad, G. 1996. Computer Based Creative Music Making: Young People’s Music in the Digital
Age. (Göteborg Studies in Educational Sciences 104). Gothenburg: Acta Universitatis Gothoburgensis.

Fritz, B. and Avsec, A. 2007. “The experience of flow and subjective well-being of music students” in

Horizons of Psychology. 16(2):5-17.

Gabrielsson, A. 1999. “The Performance of Music”, in The Psychology of Music (ed. Deutsch, D.). San
Diego: Academic Press. pp. 501-602

Gall, M., and Breeze, N. 2005. “Music Composition Lessons: The Multimodal Affordances of

Technology”, in Educational Review. 57(4): 415-433. London: Routledge.

Gentner, D. and Nielsen, J. 1996. “The Anti-Mac Interface”, in Communications of the ACM, 39(8):70-

82. Association of Computing Machinery.

Getzels, J. 1975. “Problem finding and the inventiveness of solutions”, in Journal of Creative
Behavior, 9:12-18. Creative Education Foundation.

Getzels, J. and Csikszentmihalyi, M. 1976. The Creative Vision: A Longitudinal Study of Problem
Finding in Art. NY: Wiley.

Ginsborg, J. 2004. “Strategies for memorizing music”, in Musical Excellence (ed. Williamon. A).

Oxford, UK: Oxford University Press. pp. 123-140.

Golann, S. 1962. “The creativity motive”, in Journal of Personality. 30:588-600.

 247

Gordon, E. (1997). Learning sequences in music: Skill, content and patterns; A music learning theory.
Chicago: GIA Publications.

Graf, M. 1947. From Beethoven to Beethoven: The Psychology of the Composing Process. New York:
Philosophical Library.

Green, T. and Petre, M. 1996. “Usability Analysis of Visual Programming Environments: a ‘cognitive

dimensions’ framework”, in Journal of Visual Languages and Computing. 7: 131-174. Academic
Press.

Grout, D. and Palisca, C. 1996. A History of Western Music (5th Edition). London: W.W.Norton & Co.,

Inc.

Gruber, H. E. and Wallace, D. B. 1999. “The Case Study Method and Evolving Systems Approach for

Understanding Unique Creative People at Work”, in Handbook of Creativity (see Sternberg, 1999). pp.
93-115.

Guérin, R. 2004. Cubase SX/SL 2 Power! Boston, MA: Course Technology.

Guilford, J. 1950. “Creativity”, in American Psychologist. 5:444-454.

Guiard, Y. 1987. “Asymmetric division of labor in human skilled bimanual action: the kinematic chain

as model”, in Journal of Motor Behavior. 19(4):486-517.

Hall, P. and Sallis, F. (eds.) Twentieth-Century Musical Sketches. Cambridge, UK: Cambridge
University Press.

Hallam, S. 2002. “Musical Motivation: towards a model synthesising the research”, in Music Education
Research. 4(2): 225-244. London: Routledge.

Harding, J. 2010. “Image Line FL Studio 9”, in Sound On Sound, March 2010. Cambridge, UK: SOS

Publications.

Harvey, J. 1999. Music and Inspiration. London: Faber and Faber.

Healey, P. G. T. and Thiebaut, J.-B. 2007. “Sketching musical compositions”, in Proceedings of
Cognitive Science (CogSci) Conference, Nashville, USA.

Hennessey, B. 1989. “The effect of extrinsic constraints on children’s creativity while using a

computer”, in Creativity Research Journal, 2:151-168.

Hewett, T., Czerwinski, M., Terry, M., Nunamaker, J., Candy, L., Kules, B., and Svylan, E. 2005.

“Creativity Support Tool Evaluation Methods and Metrics”, in Creativity Support Tools (see
Shneiderman et al, 2005). pp. 10-24.

von Hippel, E. 2005. Democratizing Innovation. Cambridge, Massachusetts: MIT Press.

Holtzblatt, K.A., Jones, S. and Good, M. 1988. “Articulating the experience of transparency: an

example of field research techniques”, in SIGCHI Bulletin, ACM Press, 20(2). pp. 46-48.

Holtzblatt, K., Wendell, J., and Wood, S. 2005. Rapid contextual design: A how-to guide to key
techniques for user-centered design. San Francisco: Morgan Kaufmann.

Howe, M. 1999. “Prodigies and Creativity”, in Handbook of Creativity (see Sternberg, 1999). pp. 431-
448.

Jackson, S., and Eklund, R. 2002.”Assessing flow in physical activity: The Flow State Scale-2 and

Dispositional Flow Scale-2”, in Journal of Sport and Exercise Psychology, 24:133-150.

Jänke, L. 2006. “From cognition to action”, in Music, Motor Control and the Brain (ed. Altenmüller,
E., Wiesendanger, M. and Kesselring, J.). Oxford, UK: Oxford University Press. pp. 25-38.

Jennett, C., Cox, A., Cairns, P., Dhoparee, S., Epps, A., Tijs, T. and Walton, A. 2008. “Measuring and

Defining the Experience of Immersion in Games”, in International Journal of Human-Computer
Studies, 66(9):641-661.

John, B. and Gray, W. 1995. “CPM-GOMS: an analysis method for tasks with parallel activities”, in

CHI’95 Conference Companion. 393-394.

Johnson, D. 1980. “Beethoven’s early sketches in the ‘Fischof Miscellany’”, in Berlin Autograph.
28(1-2). Michigan: UMI Research Press. pp. 511-516.

 248

Johnson, W.L., Wilhjalmsson, H., and Marsella, S. 2005. “Serious Games for Language Learning: How

Much Game, How Much AI?”, in Proceedings of the Artificial Intelligence in Education. pp.306-313.
Amsterdam: IOS Press.

Johnson-Laird, P. 1988. “Freedom and constraint in creativity”, in The nature of creativity:
Contemporary psychological perspectives (ed. Sternberg, R.). pp.202-219.

Jones, M. 1998. “Creating Electronic Learning Environments: Games, Flow, and the User Interface”, in

Proceedings of the AECT 1998. St. Louis, MO. pp. 205-214.

Jordà, S. 2001. “New Musical Interfaces and New Music-making Paradigms” in Proceedings of New
Interfaces for Musical Expression, CHI 2001. Association for Computing Machinery. pp. 1-5.

Jordan, P. 2002. Designing Pleasurable Products. CRC Press.

Junglas, I. and Steel, D. 2007. “The Virtual Sandbox”, in DATA BASE for Advances in Information
Systems. 38(4):26-28.

Kirsh, D. and Maglio, P. 1994. “On distinguish epistemic from pragmatic action”, in Cognitive Science.
18:513-549.

Kitzmann, A. 2003. “Transparency, Standardization and Servitude: the Paradoxes of Friendly

Software”, in Perspectives on Multimedia (ed. Burnett, R., Brunstrom, A., and Nilsson, A.). Chichester,
UK: John Wiley & Sons. pp. 41-54.

Knörig, A. 2006. Free the body and the mind will follow: : An investigation into the role of the human
body in creativity, and its application to HCI. Diplom-Medieninformatiker (FH) Thesis. University of

Applied Sciences, Wedel. Available at: http://www.andreknörig.de [Last accessed: Dec 2011]

Koestler, A. 1964. The Act of Creation. London: Hutchinson & Co.

Kris, E. 1952. Psychoanalytic Exploration in Art. NY: International Universities Press.

Kratus, J. 1989. “A Time Analysis of the Compositional Processes Used by Children Ages 7 to 11” in

Journal of Research in Music Education. 37(1):5-20. MENC: The National Association for Music

Education.

Kubie, L. 1958. The Neurotic Distortion of the Creative Process. Lawrence: University of Kansas
Press.

Leman, M. 2008. Embodied Music Cognition and Mediation Technology. Cambridge, Massachusetts:

MIT Press.

Lerdahl, F. 1988. “Cognitive Constraints on Composition Systems”, in Generative Processes in Music:
The Psychology of Performance, Improvisation, and Composition (ed. Sloboda, J.). Oxford, UK:
Oxford University Press. pp. 231-259.

Lerdahl, F. and Jackendoff, J. 1983. A Generative Theory of Tonal Music. Cambridge, Massachusetts:

MIT Press.

Linson, A. 2011. “Unnecessary Constraints: A Challenge to some Assumptions of Digital Musical

Instrument Design”, in Proceedings of ICMC 2011. International Computer Music Association.

pp. 421-424.

Lubart, T. 2005. “How can computers be partners in the creative process: Classification and

commentary on the Special Issue”, in International Journal of Human-Computer Studies. 63:365-369.

Lumsden, C. 1999. “Evolving Creative Minds: Stories and Mechanisms”, in Handbook of Creativity
(see Sternberg, 1999). pp. 153-168.

MacDonald, Ronan. 2007. “Trackers!”, in Computer Music, 113:27-35. Bath, UK: Future Publishing,
ltd.

MacDonald, Raymond. Byrne, C. and Carlton, L. 2006. “Creativity and flow in musical composition:

an empirical investigation”, in Psychology of Music, 34(3):292-306. Society for Education, Music, and

Psychology Research.

MacKenzie, S. 2003. “Motor Behavior Models for Human-Computer Interaction”, in HCI Models,
Theories, and Frameworks: Toward a Multidisciplinary Science. pp.27-54. San Francisco: Morgan

Kaufmann.

Magnusson, T. and Mendieta, E. 2007. “The Acoustic, the Digital and the Body: A Survey on Musical

Instruments”, in Proceedings of NIME 2007. pp. 94-97.

 249

Mandler, G. 1995. “Origins and consequences of novelty”, in The Creative Cognition Approach (ed.
Smith, Ward, and Finke). pp.9-25. Cambridge, Massachusetts: MIT Press.

Manovich, L. 2001. The Language of New Media. Cambridge, Massachusetts: MIT Press.

Martindale, C. 1999. “Biological Bases of Creativity”, in Handbook of Creativity (see Sternberg,
1999). pp. 137-152.

Maslow, A. 1963. “The Creative Attitude” in Structuralist (ed. Bornstein). 3:4-10.

Maslow, A. 1968. Towards a psychology of being (2nd Edition). NY: D. Van Nostrand Co.

May, R. 1975. The Courage to Create. NY: W.W. Norton & Co.

Mayer, R.E. 1999. “Fifty Years of Creativity Research”, in Handbook of Creativity (see Sternberg,
1999). pp. 449-460.

McBride, N. and Brown, S. Toward Computer Systems to Support Creativity. Available at:
http://www.cse.dmu.ac.uk/~nkm/PAPERS/Toward Computer Systems to Support Creativity.pdf [Last

Accessed: Dec 2011]

McCullough, M. 1996. Abstracting Craft: The Practiced Digital Hand. Cambridge, Massachusetts:

MIT Press.

McLean, A. and Wiggins, G. 2011. “Texture: Visual Notation for Live Coding of Pattern”, in

Proceedings of ICMC 2011. International Computer Music Association. pp. 621-628.

Michael, D. and Chen, S. 2006. Serious Games: Games that Educate, Train, and Inform. Course
Technology.

Miller, R. 1968. “Response time in man-computer conversational transactions”, in Proceedings of
AFIPS Spring Joint Computer Conference. 33:267-277.

Millward, S. 2005. Fast guide to Cubase SX (3rd Edition). UK: PC Publishing.

Mohamed, F., and Fels, S. 2002. “KEYed user interface: Tools for expressive music production”, in

ICMC Proceedings 2002. pp.88-91. International Computer Music Association.

Moran, J., and Liou, E. 1982. “Effects of reward on creativity in college students of two levels of

ability” in Perceptual and Motor Skills, 54:43-48.

Nabavian, S., and Bryan-Kinns, N. (2006). “Analysing Group Creativity: A Distributed Cognitive

Study of Joint Music Composition”, in Proceedings of Cognitive Science, pp. 1856-61.

Nash, C. 2004. VSTrack: Tracking Software for VST Hosts. MPhil Thesis. Available from:

http://vstrack.nashnet.co.uk. [Last Accessed: Dec 2011]

Nash, C. 2008. “Realtime Gestural Control and Representation of Musical Polytempi”, in Proceedings
of New Interfaces for Musical Expression (NIME) 2008. Genoa, Italy. pp. 28-33.

Nash, C. and Blackwell, A. 2011. “Tracking Virtuosity and Flow in Computer Music”, in Proceedings
of ICMC 2011. International Computer Music Association. pp. 575-582.

Nash, C. and Blackwell, A. 2012. “Liveness and Flow in Notation Use”, in Proceedings of New
Interfaces for Musical Expression (NIME) 2012. Ann Arbor, MA. pp. 28-33.

Nash, C. and Blackwell, A. 2012. “Flow of creative interaction with digital notations”, in Oxford
Handbook of Interactive Audio (in press). Oxford, UK: Oxford University Press.

Newell, A. 1990. Unified Theories of Cognition. Harvard University Press.

Nickerson, R. 1999. “Enhancing Creativity”, in Handbook of Creativity (see Sternberg, 1999). pp. 392-
430.

Nielsen J. and Molich R. 1990. “Heuristic evaluation of user interfaces”, in Proceedings of the ACM
CHI '90. Association of Computing Machinery. pp. 249-256.

Nielsen, J. 1993. Usability Engineering. Cambridge, Massachusetts: AP Professional.

Nielsen, J. 1994. Response Times: The Three Important Limits, available from:
http://www.useit.com/papers/responsetime.html [Last Accessed: May 2010].

Norman, D. 1988. The Psychology of Everyday Things. NY: Basic Books.

Norman, D. 1993. Things That Make Us Smart. NY: Basic Books.

 250

Norman, D., and Draper, S. (eds.) 1986. User Centered System Design: New perspectives on human-
computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Orio, N., Schnell, N. and Wanderley, M. 2001. “Input Devices for Musical Experience: Borrowing

Tools from HCI”, presented at the ACM CHI’01 New Interfaces for Musical Expression Workshop.
Association of Computing Machinery.

Paradiso, J. and O’Modhrain, S. 2003. “Current Trends in Electronic Music Interfaces”, in Journal of
New Music Research, 32(4). London: Routledge. pp. 345-349.

Perkins, D. 1981. The mind’s best work. Cambridge, Massachusetts: Harvard University Press.

Plucker, J.A. and Renzulli, J.S. 1999. “Psychometric Approaches to the Study of Human Creativity”, in

Handbook of Creativity (see Sternberg, 1999). pp. 35-61.

Polgár, T. 2008. FREAX: The Brief History of the Computer Demoscene. Winnenden, Germany: CSW-

Verlag.

Policastro, E. and Gardner, H. 1999. “From Case Studies to Robust Generalizations: An Approach to

the Study of Creativity”, in Handbook of Creativity (see Sternberg, 1999). pp. 213-225.

Polson, P.G., Lewis, C., Rieman, J., and Wharton, C. 1992. “Cognitive walkthroughs: A method for

theory- based evaluation of user interfaces” in International Journal of Man-Machine Studies. 36: 741-
773.

Prochak, M. and Prochak, T. 2001. How to get the sound you want. Sanctuary Publishing.

Reitman, W. 1965. Cognition and Thought. NY: Wiley.

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T and Eisenberg, M. 2005,

“Design Principles for Tools to Support Creative Thinking”, in Creativity Support Tools (see
Shneiderman et al, 2005). pp. 25-36.

Rittel, H. and Webber, M. 1984. "Dilemmas in a General Theory of Planning", in Developments in
Design Methodology (ed. Cross, N.). Chichester, UK: John Wiley & Sons. pp. 135-144.

Robinson, A. (ed.). 2007. “reViSiT”, in Computer Music Special: Freeware 2007, 22:90-91. Bath, UK:
Future Publishing.

Rogers, Y. 2006. “Moving on from Weiser’s Vision of Calm Computing: Engaging UbiComp

Experiences”, in Proceedings of UbiComp 2006. Berlin: Springer-Verlag. pp. 404-421.

Rothermel, K., Cook, C., Burnett, M., Schofield, J., Green, T., and Rothermel, G. 2000. “WYSIWYT

Testing in the Spreadsheet Paradigm: An Empirical Evaluation”, in Proceedings of ICSE’00. pp.230-9.

Rubin, L. 1968. “Creativity and the Curriculum”, in Teaching for Creative Endeavour: Bold New
Venture (ed. Michael, W.). pp.74-89. Bloomington: Indiana University Press.

Runco, M. and Sakamoto, S. 1999. “Experimental Studies of Creativity”, in Handbook of Creativity
(see Sternberg, 1999). pp. 62-92.

Rutkowski. C. 1982. “An introduction to the Human Applications Standard Computer Interface, Part I:

Theory and principles”, in Byte, 7 (10):291-310.

Joel Ryan. 1991. “Some remarks on musical instrument design at STEIM”, in Contemporary Music
Review, 6(1):3–17.

Sawyer, R.K. 1995. “Creativity as mediated action: A comparison of improvisational performance and

product creativity”, in Mind, Culture, and Activity, 2:172-191.

Sawyer, R.K. 2006. “Group creativity: musical performance and collaboration”, in Psychology of
Music, 34(2): 148-65. London: SAGE Publications.

Sellen, A. and Harper, R. 2003. The Myth of the Paperless Office. Cambridge, MA: MIT Press.

Schubert, G. and Sallis, F. “Sketches and sketching”, in Twentieth-Century Musical Sketches (ed. Hall,
P. and Sallis, F.). pp.5-16. Cambridge, UK: Cambridge University Press.

Scripp, L., Meyaard, J., and Davidson, L. 1988. “Discerning Musical Development: Using Computers

to Discover What We Know” in Journal of Aesthetic Education. 22(1):75-88. University of Illinois
Press.

Shamrock, M. 1997. “Orff-Schulwerk: An Integrated Foundation”, in Music Educators Journal.
83(6):41-44. MENC: The National Association for Music Education.

 251

Sharp, H., Rogers, Y., Preece, J. Interaction Design: Beyond Human-Computer Interaction (2nd
Edition). Chichester, UK: John Wiley & Sons.

Shehan, P. 1986. “Major Approaches to Music Education: An Account of Method”, in Music
Educators Journal. 72(6):26-31. MENC: The National Association for Music Education.

Shneiderman, B. 1983. “Direct Manipulation: A Step Beyond Programming Languages”, in Computer,
August 1983:57-69, Washington, DC: IEEE Computer Society.

Shneiderman, B. 1996 “The Eyes Have It: A Task by Data Type Taxonomy for Information

Visualizations”, in Proceedings of the IEEE Symposium on Visual Languages, pp. 336-343.

Shneiderman, B. 2002. Leonardo’s Laptop: Human Needs and the New Computing Technologies.
Cambridge, Massachusetts: MIT Press.

Shneiderman, B., Fischer, G., Czerwinski, M., Myers, B., and Resnick, M. 2005. Creativity Support
Tools, NSF Workshop Report. Available from: http://www.cs.umd.edu/hcil/CST/ [Accessed: Apr.
2010].

Shneiderman, B. and Plaisant, C. 2005. Designing the User Interface (4th Edition). Addison Wesley.

Simonton, D. 1994. “Computer Content Analysis of Melodic Structure: Classical Composers and Their

Compositions”, in Psychology of Music. 22: 31-43. London: SAGE Publications. pp. 116-136.

Simonton, D. 1999. “Creativity from a Historiometric Perspective”, in Handbook of Creativity (see
Sternberg, 1999).

Sloboda, J. 1985/1999. The Musical Mind (1st/2nd Edition). Oxford, UK: Oxford Science Publications.

Sloboda, J. 2005. Exploring the Musical Mind. Oxford, UK: Oxford University Press.

Smith, J., Mould, D., and Daley, M. 2009. “Constructures: supporting human ingenuity in software”, in

Digitial Creativity, 20(1-2):79-94. UK: Routledge.

Smith, B. and Smith, W. 1994 “Uncovering Cognitive Processes in Music Composition: Educational

and Computational Approaches”, in Music Education: An Artificial Intelligence Approach (ed. Smith,
M., Smaill. A., and Wiggins, G.), pp.56–73. NY: Springer-Verlag.

Smyth, M., Collins, A., Morris, P. and Levy, P. 1994. Cognition in Action (2nd Edition). Hove, UK:
Lawrence Erlbaum Associates.

Sternberg, R. 1985. “Implicit theories of intelligence, creativity, and wisdom”, in Journal of
Personality and Social Psychology. 49: 607-627. Washington, DC: American Psychological

Association.

Sternberg, R. (ed.). 1999. Handbook of Creativity. Cambridge, UK: Cambridge University Press.

Sternberg, R. 2003. Wisdom, Intelligence, and Creativity Synthesized. Cambridge, UK: Cambridge
University Press.

Sternberg, R. and Lubart, T. 1995. Defying the crowd: Cultivating creativity in a culture of conformity.
New York: Free Press.

Sternberg, R. and Lubart, T. 1999. “The Concept of Creativity: Prospects and Paradigms”, in

Handbook of Creativity (see Sternberg, 1999). pp. 3-15.

Stowell, D., Robertson, A., Bryan-Kinns, N., and Plumbley, M. D. 2009. “Evaluation of live human-

computer music-making: quantitative and qualitative approaches”, in International Journal of Human-
Computer Studies, 67:960-975. Elsevier Science.

Swanwick, K. and Tillman, J. 1986. “The sequence of musical development: a study of children’s

composition”, in British Journal of Music Education, 3:305–339.

Sweetser, P. and Wyeth, P., 2005. “GameFlow: A Model for Evaluating Player Enjoyment in Games”,

in ACM Computers in Entertainment. 3(3):1-24.

Tanimoto, S. 1990. “VIVA: A Visual Language for Image Processing”, in Journal of Visual Languages
and Computing. Academic Press. pp. 127-139.

Tasajärvi, L. (ed.). 2004. DEMOSCENE: the art of real-time. Helsinki, Finland: EvenLakeStudios &
katastro.fi.

 252

Thompson, S., and Lehmann, A. 2004. “Strategies for sight-reading and improvising music”, in

Musical Excellence (ed. Williamon. A). Oxford, UK: Oxford University Press. pp. 143-162.

Torrance, E. 1962. Guiding creative talent. Englewood Cliffs, NJ: Prentice-Hall.

Turkle, S. and Papert., S. 1992. “Epistemological Pluralism and the Revaluation of the Concrete”, in

Journal of Mathematical Behavior. 11(1):3-33.

Venkatesh, V. 1999. “Creation of Favorable User Perceptions: Exploring the Role of Intrinsic

Motivation”, in MIS Quarterly. 23(2):239-260. University of Minnesota.

Walker, M. 1999. “Mind the Gap: Dealing with Computer Audio Latency”, in Sound On Sound, April
1999. Cambridge, UK: SOS Publications.

Wallas, G. 1926. The Art of Thought. NY: Harcout, Brace and World.

Wang, C.K.J., Liu, W.C. and Khoo, A. 2009. “The Psychometric Properties of Dispositional Flow

Scale-2 in Internet Gaming”, in Current Psychology. 28(3):194-201. Springer.

Ward, T., Smith, S., and Finke, R. 1999. “Creative Cognition”, in Handbook of Creativity (see
Sternberg, 1999). pp. 189-212.

Webster, P. 1989. “Creative Thinking in Music: The Assessment Question”, in Suncoast Music
Education Forum. pp. 1-37. Available from: http://www.eric.ed.gov [Last Accessed: Dec 2011]

Webster, P. 2002. “Creative Thinking in Music: Advancing a Model”, in Creativity and Music
Education (ed. Sullivan T. and Willingham L.). pp. 16–33. Edmonton: Canadian Music Educators

Association.

Wehner, L., Csikszentmihalyi, M., Magyari-Beck, I. 1991. “Current approaches used in studying

creativity: An exploratory investigation”, in Creativity Research Journal. 4(3):261-271.

Weisberg, R. 1993. Creativity: Beyond the Myth of Genius. NY: Freeman.

Weisberg, R. 1999. “Creativity and Knowledge: A Challenge to Theories”, in Handbook of Creativity
(see Sternberg, 1999). pp. 226-250.

Weiser, M. 1999. “The Computer for the 21
st
 Century”, in ACM SIGMOBILE Mobile Computing and

Communications Review, 3(3):3-11.

Wherry, M. 2009. “Digidesign Pro Tools 8”, in Sound On Sound. Cambridge, UK. SOS Publications
Group.

White, P. 2000. Desktop Digital Studio. Sanctuary Publishing.

White, 2001. VST Instruments and VST Effects. Sanctuary Publishing.

Wiggins, G. and Pearce, M. 2001. “Aspects of a cognitive theory of creativity in musical composition”,

in Proceedings of the ELA/02 Workshop on Creative Systems, pp.17–24. Lyon, France.

Williamon, A. 2004. Musical Excellence: Strategies and techniques to enhance performance. Oxford,
UK: Oxford University Press.

Wilson, F. 1998. The Hand: How its use shapes the brain, language, and human culture. New York:
Pantheon.

Winograd, T. and Flores, F. 1987. Understanding Computers and Cognition: A New Foundation for
Design. Addison-Wesley.

 A-1

Tracker Effects Reference APPENDIX A

This section provides a details of the pattern effects commands available in tracker

programs, along with approximate equivalent MIDI functionality and common music

notation. In addition to built-in effects; IT2, reViSiT, and Renoise also provide user-

defined effects for directly controlling MIDI or plugins.

IT2 /
reViSiT

Description FT2 Renoise MIDI Musical Score
1

Axx
2
 Set resolution or

speed to xx (fps).
Fxx

(xx<20)
F1xx - tempo direction

Bxx Jump to xx in

order list.
Bxx - - da A, B, , etc.

Cxx Jump to xx row in

the next pattern.
Dxx FB00 - (see above)

Dx0

D0x

DFx

DxF

DEx

DxE

Volume slide up/

down with speed x
 (F denotes fine,

E denotes extra fine)

Ax0

A0x

EAx

ExA

-

-

06xx

07xx

-

-

-

-

Key

aftertouch

crescendo, diminuendo

Exx

EFx

EEx

Portamento down

with speed xx
(F denotes fine,

E denotes extra fine)

2xx

E2x

X2x

02xx

-

-

Pitch bend

up
4

Fxx

FFx

FEx

Portamento up

with speed xx
(F denotes fine,

E denotes extra fine).

1xx

E1x

X1x

01xy

-

-

Pitch bend

down
4

Gxx Portamento from

previous note to that

specified in pirch

column (speed xx).

3xx 05xx -

Hxy Vibrato with

speed x, depth y.
4xy 0Fxy Pitch bend

4
 con vibrato

Ixy Mute after x frames,

for y frames.
Txy - Key

aftertouch
-

Jxy Arpeggio
(fast cycle of current

pitch, and pitches at x

and y semitones above).

0xy 00xy Manual

input

Kxx Repeat previous

vibrato with volume

slide (see Dxx).

6xx - Pitch bend
4

with key

aftertouch

(see Hxy and Dxx)

Lxx Repeat previous

portamento with

volume slide

(see Dxx).

5xx - - (see Hxy and Gxx)

 A-2

IT2 Description FT2 Renoise MIDI Musical Score
1

Mxx Set channel

volume to xx.
Cxx 0Cxx Channel

volume
4

, , , etc.

Nx0

N0x

NFx

NxF

Channel volume

slide up/down
(F denotes fine)

-

-

-

-

-

-

-

-

Channel

volume
4

crescendo, diminuendo

Oxx
(w/ SAy)

Begin sample playback

at offset yxx00h.
9xx
(-)

09xx
(-)

- -

Px0

P0x

PFx

PxF

Panning slide left/

right with speed x
(F denotes fine)

P0x

Px0

-

-

9x

Ax

-

-

Pan position
4
 -

Qxy

Q0y

Retrigger note

every y frames, with

volume macro x

Rxy

E9y

0Exy

0E0y

Manual input
(with velocity)

(for particular instruments only)

Rxy Tremolo with

speed x, depth y.
7xy - Key

aftertouch

S3x

S4x

S5x

Set waveform for

vibrato, tremolo

and panbrello
(sine, square, saw

or random)

E4x

E7x

-

-

-

-

- -

S70

S71

S72

Previous note

cut, off or fade
-

-

-

-

-

-

- sostenuto, legato,

staccato

S6x
3
 Pattern delay

(for x ticks)
EEx FDxx -

S73

S74

S75

S76

Set behaviour at

note's termination
(cut, continue, off, fade)

-

-

-

-

-

-

-

-

- sostenuto, legato,

staccato

S77

S78

Enable / disable

volume envelope
-

-

-

-

- -

S8x

S9x

Set channel pan /

depth position
8xx

-

08xx

0Axx

Pan position
4

-
-

SB0

SBx

Set start/end of

repeated section
(x times).

E60

E6x

-

-

-

SCx Cut note
(after x frames)

ECx Fx
(as volume)

Note off

SDx Delay note
(for x frames)

EDx 0Dxx Note on n/a

Sex
3
 Delay pattern

(for x frames)
- FDxx -

 A-3

IT2 Description FT2 Renoise MIDI Musical Score
1

Txx
3
 Set tempo to xx. Fxx

(xx>1F)
F0xx Tempo

change

T1x
3

T0x
3

Tempo slide up/down
(at speed x)

-

-

-

-

Tempo

change

accelerando, rallentando,

ritardando

Uxy Fine vibrato with

speed x, depth y
- - Pitch bend

4
 con vibrato poco

Vxx Set global

volume to xx
Gxx FCxx - , , , etc.

Wx0

W0x

WFx

WxF

Global volume slide

up/down at speed x
(F denotes fine)

Hx0

H0x

-

-

-

-

-

-

-

crescendo, diminuendo

Xxx Set panning position 8xx 08xx Panning

position
4

-

Wxy 'Panbrello' (panning

oscillation) with

speed x, depth y

- - Panning

position
4

-

Zxx Set filter cutoff /

resonance
- - - -

- Rounds pitch to

nearest semitone

(glissando) if x is 1

E3x - - -

- Detunes note by x cents E5x - - -

- Sets instrument

envelope position
Lxx - - -

- 'Volume Slicer' - ramps

from current volume to

x, to 0, after y ticks

- 04xy Key

aftertouch

- Set sample playback

direction (backwards if

xx = 00; forwards if 01)

- 0Bxx - -

- Stop all notes

and effects
- FF00 MIDI reset silenzio

1
 Approximate equivalences – may not hold in all situations.

2
 Note: unlike other trackers, reViSiT does not use resolution to set speed, but is instead slaved to the

host. In reViSiT, Axx is used to control the number of subrows and granularity of effect playback.
3
 Not supported in reViSiT, in order to maintain synchronisation with the host, which controls tempo.

4
 Unlike trackers, MIDI command affects the entire channel, not individual notes.

 B-1

Flow in Music Composition APPENDIX B

The existence and role of flow (Csikszentmihalyi, 1990; see Section 3.7) in music has

been widely established (Byrne et al, 2003; Chaffin and Limieux, 2004; MacDonald

et al, 2006; Fritz and Avsec, 2007; Mullett, 2010). However, the study of flow

experiences presents methodological challenges, including the disruptive influence of

observation itself or the difficult subjects have reflecting on cognitive factors which

they may not be conscious of (see Section 3.5). While the main dissertation looks at

various ways to study the flow phenomenon using technology (i.e. using video, the

internet, or interaction logging) to look at physical actions, user ability, and feedback;

it is also possible to review historical literature on the experiences of composers (e.g.

Graf, 1947; Boyd, 1992
1
; Harvey, 1999), in which many of the more subjective

qualities of flow are evident.

 This appendix provides a collection of quotes from musicians, composers, and

musicologists describing experiences corresponding to flow or one of its components.

These accounts are presented here as evidence of flow in music composition

(including notation use), but also as a reference for future biographical or case study

approaches (see Policastro and Gardner, 1993) to studying flow in the context of

musical creativity. Beyond general descriptions of flow-like experiences, quotes are

organised by corresponding flow component (see Table 4, Section 3.7 for details).

General descriptions of Flow-like experiences

[I]t's free flow of information and inspiration, it's being in an altered state. It's very

satisfying. Everything else disappears. It's like I'm part of a river and no matter what

I did, I couldn't stop the current right then.
Rosanne Cash, songwriter

(Boyd, 1992; p163)
2

I think you plug into this electricity–it's like a river in a way.
Peter Gabriel, producer

(Boyd, 1992; p170)
2

Tchaikovsky has expressed well the concentration that is often required when creative

activity seems to flow particularly well: "I forget everything and behave like a

madman. Everything within me starts pulsing and quivering; hardly have I begun the

sketch ere one thought follows another. In the midst of this magic process it frequently

happens that some external interruption wakes me from my somnambulistic state: a

ring at the bell, the entrance of my servant... Dreadful are such interruptions.

Sometimes they break the thread of inspiration for a considerable time, so that I have

to seek it again, often in vain” (From Newmarch 1906; reprinted in Vernon, 1970.)

 (Sloboda, 1985; p137)

1
 Boyd (1992) is notable for its research into the “peak experience” (see Maslow, 1968) in music, and

which can be seen as analogous to flow’s “optimal experience” (Csikszentmihalyi, 1990).
2
 Musicians’ uses of the word “flow”, and reference to rivers and currents, mirror subject responses in

Csikszentmihalyi’s early interviews that directly led to the use of the word “flow” to describe the

mental state (see Csikszentmihalyi, 2000).

 B-2

Loss of Self-Consciousness / Ego

It's the time when you're not there that things happen. It's when your ego moves out of

the way, when you create the space that music can actually come in and through. It's

what we musician's live for, those magical moments.
Richard Thompson, songwriter

(Boyd, 1992; p162)

One feels oneself a transmitter; there is a loss of ego activity. There is a greater

feeling of the unitive state where everything is possible; there is no individuation.

Jonathan Harvey, composer

(Deliege and Harvey, 2006; p31)

As the idea grows, you lose yourself.
Leoš Janáček, composer

(Harvey, 1999; p31)

While Haendel was composing, he isolated himself from the world. No visitor could

get through to him; he locked himself in so that he could be alone with his ideas. He

took notice of no one, and talked out loud to himself. He sobbed when moved by some

text. Often the servant who brought Haendel his morning chocolate found him

sobbing aloud, tears wetting the sheet of music he was writing on.
(Graf, 1947; p352)

Action-awareness merging

The world in which he ordinarily moves, and which is the scene of his activity, seems

to vanish. He feels himself transplanted to another world wherein everything that

would normally catch his interest ceases to exist: his work, his human relations, his

worries and hopes and fears, his plans and his everyday sentiments.
(Graf, 1946; p3)

Many musicians referred to a kind of mental "stillness" that is necessary for the

unconscious to make itself known through creative expression.
(Boyd, 1992; p84)

Numerous musicians described this exhilarating escape from normal consciousness

during performance, which can feel like the music has taken on a life of its own.

(Boyd, 1992; p93)

I rely completely on instinct as a player. Often, while I'm playing, there are certain

moments when I disappear.
Mick Fleetwood, guitarist and songwriter

(Boyd, 1992; p105)

Everything is in harmony both inside and out. It is the coming together of the

conscious and the unconscious and one of the rare moments when the conscious mind

is not fighting to keep the unconscious at bay.
(Boyd, 1992; p159)

 B-3

You get inside the music to such an extent that you kind of *are* the music, or the

music's you. You're thinking about it but you're not thinking about it. Sometimes I

think it's almost a flashing backwards and forwards of intellect and intuition.

Richard Thompson, guitarist and songwriter

 (Boyd, 1992; p162)

Once I've managed to transcend such things as where I am, who I'm playing with,

how I'm playing, what the temperature of the room is, how the audience is, who the

rest of the band is, that's when the real playing happens.
Ian Wallace, drummer

 (Boyd, 1992; p171)

For many composers, this process of concentration requires them to cut themselves

off completely from the everyday world, shutting the door firmly behind them: they

become absorbed in the work in progress.
(Harvey, 1999; p32)

If it's an Allegro that pursues me, my pulse keeps beating faster, I can get no sleep. If

it's an Adagio, the I notice my pulse beating slowly. My imagination plays on me as if

I were a clavier.
Franz Josef Haydn

(Harvey, 1999; p32)

The composer frequently becomes so absorbed in the piece of music that it begins, for

him, to constitute a separate, self-sufficient world. This is proved by the way in which

composers write that they 'live in' or 'inhabit' their music: Beethoven wrote that 'I live

entirely in my music', while Wagner wrote of Tristan that 'I am living wholly in this

music ... I live in it eternally."
(Harvey, 1999; p33)

Distorted Perception of Time

Time goes very quickly. It's like a suspension where one moment, it feels like it's only

seconds long. But when I come out of that moment, it feels like it's only seconds long.

I don't feel warm, I don't feel as if there's light around.
Graham Nash, songwriter

 (Boyd, 1992; p85)

I had lost myself for four hours in this experience of painting... There were no

distractions, there's just nothing else.
Rosanne Cash, songwriter (while painting)

(Boyd, 1992; p163)

An idea, when it arises, acknowledges neither spare time nor time that is tied down. It

wakes you from sleep, slows or quickens your step during a walk …
Leoš Janáček, composer

(Harvey, 1999; p31)

For Chopin, composition was such an all-consuming process that he lost any sense of

the progress of time in the outside world: “How often I take night for day and day for

night; how often I live in my dreams, and sleep in the daytime.”
(Harvey, 1999; p33)

 B-4

Focus & Concentration

By completely concentrating on the music they're playing or writing, musicians are

able to open themselves up to a peak experience. It is as if an intense concentration

can push the conscious mind away from "self-consciousness" and the unconscious is

allowed to filter through.
(Boyd, 1992; p31)

Inspiration is a state of spirit, a state of mind, and - why not? - a state of ecstasy (in

its rigorous sense of being carried away), in which all mental, psychic and spiritual

forces of the individual concur intensely for a single purpose, that of creating,

composing or investigating in a total concentration of faculties in a given direction.

We do not call all cases of concentration inspiration, but all cases of inspiration

involve concentration.
Carlos Chávez, composer

(Harvey, 1999)

Activity becomes Autotelic

I would try vainly to express in words that unbounded sense of bliss that comes over

me when a new idea opens up within me and startes to take on definite form. Then I

forget everything and behave like one demented. Everything inside me begins to pulse

and quiver: I hardly being the sketch before one thought begins tumbling over

another. There is something somnambulistic about this condition. "On ne s'entend pas

vivre." It is impossible to describe such moments.
Pyotr Ilyich Tchaikovsky

(Harvey, 1999; p31)

[M]any musicians told me that the drive to create led to their immersing themselves

completely in learning to play their instrument. What for some would have been hard

work became a joy to these fledging artists. Maslow described this aspect of creative

people's attitude toward working at their art form: "Duty [becomes] pleasure, and

pleasure merge[s] with duty. The distinction between work and play [becomes]

shadowy."
(Boyd, 1992; p71)

Haydn and Mozart composed a good deal of work in commission […] But this music

does not originate in a fantasy that dissolves all animating substances on its upward

flow from the depths of the soul to its peak. […] Even Beethoven complained, in 1823,

that he was not writing what he would have liked to, but, “for the sake of money, that

which I have to.” [In such compositions], not all the smelting furnaces of his fantasy

were working, not all cauldrons were lit, not all wheels were in motion.

(Graf, 1947; p79)

 C-1

iMPULS Questionnaires APPENDIX C

REGISTRATION FORM: This online survey was completed by all participants, joining the

experiment. In addition to providing demographic information, questions were asked to

establish levels of experience in music and relevant technology, used to correlate with

interaction data. Appendix G provides an overview of responses given.

 C-2

 C-3

 C-4

END-OF-EXPERIMENT QUESTIONNAIRE: This survey repeats questions from the

registration, for comparison with collected interaction data, and to support before/after

comparisons, to see how attitudes to reViSiT changed. The second online page also surveyed

how individuals were using their host sequencer, to help interpretation of the limited host

interaction data. However, the main objective of the survey was to analyse flow in notation

use using the Cognitive Dimension of Notations framework (Green and Petre, 1996). To

assess flow, two batteries of nine questions are presented, corresponding to statements about

the nine components of flow. These statements are derived from the dispositional flow scale

(DFS)-2 (Jackson and Eklund, 2002), a psychometric test that uses four batteries of nine

questions, reduced here to keep the survey short and accommodate additional questions on

cognitive dimensions. In the latter case, a single battery of 16 questions is presented,

corresponding to 15 standard cognitive dimensions, adapted from the Cognitive Dimensions

Questionnaire Optimised for Users (Blackwell and Green, 2000), and one additional

statement corresponding to virtuosity (“With time, I think I could become a virtuoso user of

the system.”). In each case, statements are scored on a 5-point Likert scale (Strongly

Disagree-Strongly Agree), the results from which are analysed in Chapter 9.

 C-5

 C-6

 Page 2 of 2

 C-7

 C-8

 D-1

iMPULS Interaction Event Types APPENDIX D

This appendix contains descriptions of the different events collected from users by

iMPULS (see Chapter 5). For each event, a summary of the encoding, decoding and

use is provided. All encoded numeric values are given in hexadecimal, other hex

values are denoted with an ‘h’ suffix.

Command (a), 4 bytes.

A program command that has been triggered, identified by enumerator and accompanied with a single

integer or floating-point parameter to provide additional information, depending on context. Identifies

many one-shot user actions, covering file, playback, clipboard and other editing operations. Later used

to explicitly identify commands triggered by user-remapped keyboard input (v1.1+) and operations

triggered by mouse interaction (v1.3+).

Examples
a 12 78 CMD_HOSTPLAY(12h),120(78h)

� Host playback at 120bpm
a 22 03 CMD_KEYBOARD(22h),kLoadSong(03h)

� Keyboard shortcut to Load Song
a 25 20 CMD_MOUSE(25h),kOverwrite(20h)

� Mouse operation to Drag Copy (Overwrite)

File (F), 669,203 bytes (compresses to ~1 kilobyte).

A summary of the musical content, related to a loaded/saved file. To protect the privacy of the user’s

data, the content of their files is not collected. Instead, each time a song is loaded or saved, only a brief

summary of specific aspects of the music is recorded, insofar as they relate to how the program is used

– the overall distribution of pitches and effects entered, the areas of the pattern used and the parts of the

music auditioned. Data is maintained as a static array of integer counts – incremented, for example,

when the user listens to a specific pattern. The resulting dataset is sparse (mostly 0’s), and thus

responds favourably to the subsequent (ZIP) compression of the log (~600:1). During collection, the

static, uncompressed structure (see below) is maintained to avoid dynamic memory allocations or on-

the-fly compression, which would impact program (audio) performance:

UINT patterns_total; // total patterns used in song

// for each cell (track, row), number of patterns containing data for...
UINT pitch_coverage[MAX_TRACKS][MAX_ROWS]; // ... pitch
UINT instrument_coverage[MAX_TRACKS][MAX_ROWS]; // ... instrument
UINT volume_coverage[MAX_TRACKS][MAX_ROWS]; // ... volume
UINT panning_coverage[MAX_TRACKS][MAX_ROWS]; // ... panning
UINT depth_coverage[MAX_TRACKS][MAX_ROWS]; // ... depth
UINT effectcommand_coverage[MAX_TRACKS][MAX_ROWS]; // ... effect command
UINT effectparam_coverage[MAX_TRACKS][MAX_ROWS]; // ... effect parameter

// overall distribution of...
UINT pitch_usage[MAX_INSTRUMENTS][MAX_PITCHES]; // ... notes used (by inst./pitch)
UINT instrument_usage[MAX_INSTRUMENTS]; // ... instruments used
UINT volume_usage[MAX_VOLUMES]; // ... volumes used
UINT panning_usage[MAX_PANNINGS][MAX_PANNINGS]; // ... panning/depth used
UINT effect_usage[MAX_EFFECT_COMMANDS][256]; // ... effect/params used

UINT pattern_plays[MAX_PATTERNS]; // ... patterns played
UINT row_plays[MAX_TRACKS][MAX_ROWS]; // ... pattern cells played
UINT instrument_plays[MAX_INSTRUMENTS]; // ... instruments played
UINT effect_plays[MAX_EFFECT_COMMANDS][256]; // ... effect/params played

Focus (f), 3 bytes.

The current keyboard focus, specifying enumerated values for page, tab and control. Sets the context

for future Data entries.

 Examples
f 01 00 00 PATTERN_EDITOR(01),PATTERN(00)

� Pattern Editor, Pattern
f 04 02 05 INSTRUMENT_LIST(04h),INSTR_PANNING(02h),ILUI_LOOPBEGIN(05h)

� Instrument List, Panning Tab, Envelope Loop Begin (edit box)

 D-2

Cursor (c), 8 bytes.

The position of the keyboard cursor and offset of the viewport, within the current area of the program

(see Focus). For the Pattern Editor, the original Cartesian coordinates (x,y – column, row) later

extended to include subrow cursor position, in high-definition patterns (x1|x2,y1|y2 – track|column,

row|subrow), splitting the 2 x 2-byte subscripts into 4 x 1-byte subscripts.

 Examples
c 000C 000E 0000 000A 1(0Ch=12, 12/9),3(12 mod 9),14(0Eh),(00h=0,0Ah=10)

 � Track 2, Volume column, Row 14, Offset (0 tracks,10 rows)
c 0103 010E 0000 000A 1(01h),3(03h),1(01h),14(0Eh),(00h=0,0Ah=10)

� As above, but Subrow 1

Help (s), up to 66 bytes.

Logs activity relating to the support systems, including context-sensitive popups and Windows Help

usage. When the Windows help system is called, a callback function is specified to receive updates of

user activity from the separate Windows HTMLHelp process. These callbacks detail what user actions

are taken (e.g. buttons pressed) and which help pages are viewed. Pages are identified using a local

URL, to pages embedded in the help file.

 Examples
s 01 02 HELP_TRACK(01),HHACT_TAB_SEARCH(02)

� HTML Help ‘Search’ tab selected
s 02 18 “reViSiT.chm::Credits.htm” HELP_NAVIGATE(02),“reViSiT.chm::Credits.htm”

� reViSiT Credits page displayed

Keyboard (k), 6 bytes.

A single keyboard event, including details about the context, such as modifiers (Shift, Ctrl, Alt),

up/down status, repeat count and associated final character. Note: this entry only details the key

pressed, not the command that was triggered (see CMD_KEYBOARD, under Command).

 Examples
k 61 01 00 41 00 02 ‘a’(61h),Shift(01),VKEY_NA(00),‘A’(41h),DOWN,2

� Shift-a (‘A’) pressed (2
nd

repeat)
k 00 0A 16 00 01 00 ‘’(00),Ctrl|Alt(08|02),VKEY_DELETE(16h),‘’(00),UP,0

� Ctrl-Alt-Delete released

Mouse (m), 5 bytes.

A single mouse event, detailing the pointer location and buttons (or modifier keys) depressed. In

reViSiT, the object clicked can be identified using either the previous Focus entry or, in the event the

mouse is used to change focus, the Focus entry immediately subsequent. If the mouse is used to change

a value, the value change will appear as a subsequent Data entry.

 Example
m 0064 00C4 01 (0064h=100,00C4=200),kLeft(01h)

� Left click at (100,200)

Notification (n/h), 12 bytes.

A Windows notification message. These messages represent the primary method of inter-process

communication, in Windows. As such, they are always associated with a window handle (HWND) and

contain details of operations concerning that window, including user input (e.g. keyboard, mouse),

window operations (e.g. creating, moving, sizing, gaining focus) and many other context-sensitive

functions (e.g. scrolling, user-defined messages, timers). reViSiT’s user input is recorded through its

built-in keyboard and mouse handlers (see Keyboard and Mouse), so the main benefit of logging this

data is to inspect window-related activity (moving, sizing, etc.). reViSiT also has access to the same

information for the host application – through a windows hook, which it uses to ensure it gets keyboard

input. This allows us to study an aspect of the host application – its keyboard, mouse and window

activity. Note, however, that this is simply the raw input, and contains little information about what

specific keys, clicks or windows do in the program. As such, notification entries are identified with a n

for reViSiT notifications, and an h for host (or hooked) notifications. The window associated with any

given message is identified using the last Window entry.

 Examples
n 00000003 00000000 006400C4 WM_MOVE(0003h),(64h=100,C4h=200)

� Move reViSiT window to (100,200)
h 00000201 00000001 01200045 WM_LBUTTONDOWN(0201h),MK_LBUTTON(01h),(120h=288,45h=69)

� Left Mouse Click at (288, 69) in host window

 D-3

Window Information (W), up to 546 bytes.

Summary details of a window object, associated with a given window handle (HWND) – including

position, size, window class, window styles and relation to other windows. In Windows, the central

role of window objects in both inter-process communication and user input means that developers often

use them in roles that don’t correspond to distinct UI objects, as perceived to the user. To identify

which are actually involved in the interaction, we inspect the window style, which contains bit flags

used to change the appearance or behaviour of a window, e.g. WS_VISIBLE (window is

visible), WS_MAXIMIZE (window is maximised), WS_CHILD (window appears inside the parent

window). There is little information about the role of the window, but certain standard controls and

dialogs can be recognised from the window’s class name (e.g. SCROLLBAR) – increasingly, however,

applications customise (“skin”) their interface and use custom UI toolkits with non-standard class

names.

 Example
W 04004325 04004320 05 “Mixer” 17 “SteinbergWndClass” 64 64 C4 C4 50000000 00000000

04004325h,04004320h,“Mixer”,“SteinbergWndClass”,
(64h=100,64h=100,C4h=200,C4h=200),WS_CHILD(50000000h)|WS_VISIBLE(10000000h),00000000

� Cubase child window (“Mixer”) at (100,100,200,200), currently visible

Window (w), 4 bytes.

Signals a change in the window context. This specifies the window associated with subsequent

Notification entries. It does not indicate the window focus, on the user’s desktop (which is extracted

from the Notification entries themselves – i.e. WM_SETFOCUS). Instead, the entry is simply used to

avoid having to include the window handle (HWND) in the Notification entries, which becomes

redundant for flurries of activity within a single window. The entry simply records the window handle,

which can be used to look-up more detailed information in the corresponding Window Info entry.

During logging, if the window has not previously been seen, a Window Info entry is automatically

created and added to the log, before the Window entry.

 Example
w 04004325 � Subsequent Notification entries relate to window with handle 04004325h

Version (v), up to 268 bytes.

Entered as the first entry of any log file, this entry records the manufacturer name, product name and

version number of both the plugin and host.

 Example
v 09 “Steinberg” 0A “Cubase VST” 00001FA4 “Steinberg”,“Cubase VST”,8100(1FA4h)

 07 “nashNET” 07 “reViSiT” 000003EA “nashNET”,“reViSiT”,1002(03EAh)

� Steinberg Cubase SX3, nashNET reViSiT 1.00.2

 E-1

iMPULS|IVE Visualisations APPENDIX E

This section contains images and descriptions of the visualisations supported by the

iMPULS|IVE program, used both to maintain the experiment over its 2-year run, and

to explore and test the models and analysis methods detailed in Chapters 7 to 9.

Data Summaries
These visualisations were used to monitor the uptake of both the reViSiT program

and experiment, providing a summary of data collected, broken down by day, week

or user.

Overall Summary

The root node of the data

hierarchy, labelled “iMPULS

Data”, presents a screen where

summary information about the

experiment and whole corpus

of data is display. It is designed

to indicate the progress of the

experiment, during its execution, and summarise the amount of data that has been

collected. However, it can also be used to display visualisations or summaries of data

across all users and sessions (e.g. Distraction Chart, Integrity Check).

Total Session (by Day)
Used to track uptake

and user activity during

the experiment period,

plotting the number of

sessions for each day of the experiment, since 1 December 2008. The graph shows

small spikes on weekends (when users have more time for reViSiT) and larger spikes

around new reViSiT version releases.

Total Sessions

(Day vs. User)
Used to track

uptake, and user

activity, as well

as the amount

of data for each

user and how

their activity is

distributed over the duration of the experiment, plotting time (in days, across) against

user (down). Each horizontal line represents a user’s presence in the experiment –the

more sessions they have contributed, the brighter the line (dark grey to white), with

individual session marked on the timeline in red. Users are ordered by the order they

registered with the experiment, though there can be a delay between the time of

registration and the successful first submission of session data (e.g. installation

problems, loading, distractions, loss of interest). The dense concentration of red-

speckled, brighter lines at the beginning represents some of the more frequent users,

who have been following the reViSiT project since before the experiment.

 E-2

Total Sessions (by Week)
Used to track uptake and

user activity during the

experiment period, plotting

the average number of

sessions for each week of the experiment, since 1 December 2008. Eliminates the

effect of weekend spikes, giving a more useful indication of how much the program is

used, though still showing spikes for weeks containing new releases.

Total Sessions (by User)
Plots the number of

sessions for each user

(ordered by User ID) in

the experiment, to get an idea of how many users have kept with the programme, and

provide data for longer experiences, which might show behavioural changes and

development. Sessions can potentially be very short (for example, when the loading

problems are encountered), so plotting interaction duration may be more useful.

Interaction Visualisations
These visualisations present the interaction data from users and sessions, either

aggregated or individually, and were used to provide broad overviews, based on

filtered data or abstract models, as well as close-in detail, such as the original logs.

User Summary

The primary child

nodes in the data

hierarchy represent

the individual users

in the experiment. By

default, all users are

displayed, but the

View menu can be

used to restrict those

displayed to users

who claim specific

levels of experience,

or eliminate users

that have provided

insufficient data.

 For each user, a

summary view is

available, displaying

a variety of details

concerning the user’s

registration, and the

interaction data submitted. This includes their responses to the initial experiment

questionnaire, including their stated previous experience with computers, trackers,

IT2 (a tracker) and reViSiT itself, as well as their skills with music, particular music

programs and various interaction preferences (e.g. input device preferences).

 E-3

Session Summary

As with users, sessions present

a summary of the data

contained, including time and

date, host and plugins used, the

duration of the session, the

total percentage of time with

music playing, and the number

of files opened or saved. The

left hierarchy allows the user to

drill down to individual

windows and file summaries.

Session Overview
Displays a timeline of the session, providing

an overview of its contents, marking events on

a linear timeline. An area is reserved above

the timeline for graphing filtered events,

specific metrics or activity (pictured showing

keyboard activity). The timeline uses the same

colour-coding as the Session (and User) Log, and is used as a scrub bar, showing a

cursor used to offset the starting time of the log data in such other views. The current

cursor time is shown in brackets, beside the visualisation’s caption.

Session Log

Displays the contents of a user’s interaction log(s). Entries are colour-coded,

depending on type, and can be filtered to include (or exclude) specific entries (see

below), using the iMPULS|IVE filter system. The Session Overview visualisation

(above) is used to control the starting time offset of the entries to be displayed, else

the log can be browsed using the scroll bar. An abbreviated form of the log can also

be shown (left), with each

entry as a single letter,

spaced to indicate approx.

temporal relationship to

neighbouring events. This

provides a concise overview

of the log (e.g. on one

page), and allows episodes

of high activity, or breaks in

interaction, to be quickly

identified visually.

 E-4

Uncertainty Graph

Charts the level of ‘uncertainty’ at

any given moment (or event),

during interaction (in a session,

or across all the user’s sessions).

Uncertainty (black) is calculated

as the number of data edits

made before the resulting music is

auditioned – small edits (e.g. note

entry) are differentiated from more

involved edits (e.g. selection-level

edits, such as copy-‘n’-paste, or other selection editing), which trigger a greater level

of uncertainty. Uncertainty inversely correlates to liveness, and thus should be

minimised to support greater liveness, where domain feedback should be as frequent

and immediate as possible. The ensuing analyses also collected information about

editing episodes, and displays summary statistics on the graph. Additionally, the red

line represents the number of edits/input events. Breaks in interaction are also

indicated – light grey for distractions (see Distraction Analysis), white for end of

session. The time axis can be linear, by time (scaled to fit), or ordinal, by event.

Context Chart

Visualises the contexts of keyboard

input, within a log – see Context

Analysis. Input events are bucketed

into a set interval and their frequency

over time is plotted for each context

(colour-coded), as well as overall

(black). Breaks in interaction (session

ends, distractions) are marked with a

vertical grey line. The visualisation has

two modes – absolute and relative

(pictured). The first simply plots the

frequency of events, for any one interval; the second plots the frequency relative to

total input during that interval – indicating periods of interaction that are more, or

less, characterised by specific contexts. As the images illustrate, however, the relative

mode does not account for periods when interaction is overall more dense or more

sparse, and may exaggerate the amount of activity apparent during the interaction.

User Content

Visualises summary data concerning the contents of user files.

The contents themselves are not collected, to protect the user’s

privacy, but summary information about how the pattern is

used is recorded. This view shows a schematic of the tracker

pattern and marks the locations where data (pitch, instrument,

volume, panning, and/or effect) is entered. This allows

investigation of how the viewport window is affecting musical

expression – e.g. whether users confine themselves to smaller areas in the pattern, to

avoid having to scroll or hide data. It also indicates how productive a user is, in

comparison to the amount of interaction that went into producing the content.

 E-5

Window Log

Lists the session log events associated with managing the given window – e.g.

windows notifications, such as WM_MOVE and WM_SIZE. Like the map, this view

is most helpful in debugging the detection algorithms that workout window statistics,

such as the duration of the window.

Distraction Chart

Like the Context Chart, the

Distraction Chart visualises the

contexts of key inputs, but only

those surrounding a distraction

event (a period of 10s or more

inactivity). Instead of contexts,

the general types of log entries

can also be shown. The events

are charted around a central gap,

representing the distraction, and

use the distraction data generated

by the Distraction Analysis. The

view attempts to highlight events

that are more or less associated

with (and possibly precipitate)

interruptions in interaction.

Window Map

Visualises the layout of the user’s desktop, in a session. The visualisation displays a

canvas representing the user’s screen(s) to give an idea of how screen space is used,

with red outlines for host windows, blue for reViSiT, and white for the current

selection. Mouse interaction is also shown – pixels become progressively brighter the

more they are clicked, with drags appearing as lines. Other display options include

showing unmanaged windows (static windows, used to contain individual UI

widgets). Although this display may highlight a user’s bias towards specific parts of

the screen and the density of windows in a host product, the visualisation is mainly

used to debug and verify the detection of user- and system-managed windows, used to

produce the summary statistics for a given window (see also Figure 6-4).

 F-1

reViSiT Software Updates APPENDIX F

This appendix describes updates to the reViSiT Pro software, used to maintain and

broaden interest in the experiment, subsequent to its launch.

 reViSiT 1.1 Pro user-customisable key shortcuts.

Previously, keyboard shortcuts were fixed, to allow the

experiment to study how users handle specific key

combinations and layouts, enabling easy comparisons

between individuals. However, like many aspects of

the program, these keys were based on IT2, which had

the effect of discouraging users from other tracker

backgrounds, and also introduced some non-standard

keys for common tasks, such as the clipboard. The

feature logged changes made to the key assignments,

allowing the experiment to look at which default keys

are least popular and which changes are most common.

reViSiT 1.2 Pro high-definition, high-resolution pattern editing

High-definition pattern editing addresses a widespread criticism of tracking; that

the grid-like notation inherently quantises the music to rigid divisions of time,

limiting its musical uses. In truth, trackers offer much finer timing resolution

than the displayed grid, but placing events between the rows of the pattern

involves the use of the effects column, which makes the process esoteric and

visually confusing. This update allows the user to ‘zoom’ into the space between

the rows and edit finer-grained music, using standard pattern-editing methods.

 reViSiT 1.3 Pro improved mouse support,

graphical feedback and direct manipulation

As a tracker, input methods revolve around the keyboard,

which can discourage novice users. This update attempted to

ease the initial learning curve, adding mouse-based interaction

styles with which users may already be familiar (e.g. drag-n-

drop and direct manipulation techniques – Shneiderman and

Plaisant, 2005). This included an ‘info bar’ to provide

graphical input and feedback for pattern data (e.g. a piano

keyboard for pitch; see Figure 5-1), the ability to select, move

and copy blocks of notes using the mouse, and a right-click

menu that exposes most of the editor’s functions (annotated with keyboard

shortcuts). These methods are designed as a stepping stone to more

efficient keyboard interaction methods. The features aim to improve user

retention, but also allow the experiment to compare traditional tracker

interaction with equivalent direct manipulation methods.

 reViSiT 1.4 Pro sample and instrument libraries

While reViSiT interaction focuses on the pattern editor,

where music is edited, other screens exist to handle file

loading, arrangement, and program settings. Though these

screens are ancillary to the main composition activity,

users must use them to load instruments for their song.

User feedback and experiment data suggested that

standard file dialogs were interrupting workflow. This

update integrates file management into the tracker UI,

allowing the user to browse instruments or samples on

disk, and audition them before loading. It also allows

users to look inside other tracker songs, downloaded from the Internet, and ‘rip’ the samples or

instruments for use in their own song. This helps address the fact that reViSiT is not supplied with any

such media. Such open interchange is established in the tracker tradition, and was a key

recommendation of the Creative Support Tools workshop (Resnick et al, 2005).

 G-1

Overview of sampled users and data APPENDIX G

 This appendix provides a brief overview of the user sample and

data collected, during the 2 years the experiment was running. To

gauge user backgrounds, participants completed a questionnaire

during registration (see section 5.3.1). 2,351 surveys were

completed, though interaction data from program use was only

received from 1,125 users (47.8%), likely due to local firewalls or

execution on computers not connected to the Internet.
3

21.4% US
10.8% UK
9.3% Russia
6.5% Germany
3.5% France
3.5% Finland
3.3% Canada
3.2% Netherlands
3.1% Italy
2.6% Australia

user demographic

 Figure 1 provides the breakdown of participants with respect to

location, showing an expected bias towards the English-speaking

world, Europe and other technological developed countries with

widespread Internet access. A highly pronounced gender gap was

also evident, with 97.9% male participants. Age ranges were more

balanced, showing the typical bias to young adults seen in

technology use, but stronger in over 30s, corresponding to

individuals with memories of earlier tracker and demo scenes, and

experienced music professionals.

Figure 2

Users by age

50-59 6.7% 40-49
14.8%

30-39
34.0%

25-29
24.3%18-24

15.8%

Over 60 2.0%

Under 18 2.4%

3
 This section only summarises the responses of users from which data was received, to illustrate the

background of subjects in later analyses. No significant difference, however, was noted between

responses (see Figure 4) from users with and without interaction data (based on a two-tailed Z-test of

mean survey responses, where α = .05).

Figure 1

Users by country

inset with 10 most

common locations.

 G-2

Figure 3

Users by experience

(a) Computer

0

100

200

300

400

500

0 1 2 3

(b) Tracker

0

100

200

300

400

500

0 1 2 3 4

expertnovice

(c) IT2

0

100

200

300

400

500

0 1 2 3 4

expertnovice

(d) reViSiT

0

100

200

300

400

500

0 1 2 3 4

expertnovice

 median mode mean

(a) Computer 2 2 2.16

(b) Tracker 3 3 2.42

(c) IT2 1 1 1.49

(d) reViSiT 1 0 0.96

skills and

experience
 The questionnaire also probed each user’s technological

background, including prior experience of relevant music

technologies that may influence their performance with reViSiT.

Four types of experience (summarised in Figure 3) were tested

using ordinal scales, where scores of 3 or more define significant

experience (expertise):

 • Computer Experience (48% expert) – assesses a user’s comfort

with generic computer interaction (keyboard, mouse, software,

etc.); indicating widespread, advanced computer skills, beyond

that of regular users (1), possibly the result of a higher

disposition to tracking among computer literate individuals.

• Tracker Experience (51% expert) – gauges prior exposure to

tracking concepts or programs (e.g. early trackers, Fast

Tracker, Renoise); indicating widespread skill, with a majority

of users stating significant experience.

• IT2 Experience (22% expert) – to recognise specific expertise

with Impulse Tracker 2 (see 2.2.1), which may directly benefit

reViSiT interaction; showing limited awareness or experience,

but 42 experts who still use the DOS program.

• reViSiT Experience (5% expert) – to acknowledge prior

exposure with earlier versions of reViSiT (e.g. alpha or beta

testers); indicating some awareness and playing with the

program, but significantly less developed expertise.

 Other experience with music and specific music technologies is

presented in Figure 4, along with interaction preferences. As a

survey of volunteers for the study, responses partly reflect the

backgrounds of individuals who were attracted to the reViSiT

tracker VST plugin, and interested in alternatives or extensions to

their existing setup. As the most common type of VST host,

sequencers were familiar to the majority of participants (84.3%),

with 53.1% stating expertise. As earlier, experience and expertise

of several specific trackers was also identified by participants.

 G-3

INTERACTION PREFERENCES MUSIC EXPERIENCE

Prefer Mouse 28.6% Listener 75.2%

Use Mouse Lots 51.2% Pianist 35.5%

Use Scroll Wheel 46.8% Acoustic Instrument 53.5%

Avoid Mouse 13.8% Several Instruments 36.6%

Use Mouse Most 20.8% Live Performer 32.3%

Pro Performer 8.9%

Prefer Keyboard 36.0% Composer 73.7%

Use Keyboard Lots 49.6% Pro Composer 12.2%

Can Type Quickly 46.9% Music Literate 37.5%

Can Touch-Type 24.3% Music Lessons 38.0%

Use Shortcuts 50.9%

Use Keyboard Most 17.7% MUSIC SOFTWARE

Sequencer users 84.3%

Prefer Audio/Mic 25.6% experts 53.1%

Prefer MIDI 48.6% Tracker users 57.0%

Prefer Simple and Easy 47.0% experts 34.0%

Prefer Powerful & Advanced 55.5% Audio Editor users 43.7%

Find Computers a Chore 5.8% experts 23.6%

Enjoy Computers 64.7% Notation Editor users 25.8%

Use Computers Lots 66.1% experts 6.9%

Suffer Discomfort (e.g. RSI) 6.9% Other users 10.1%

experts 3.9%

MUSIC HARDWARE users expert

Synthesizers 48.9% 24.9% Microphones 52.6% 22.5%

Control Surfaces 32.2% 14.8% Mixing Consoles 41.5% 19.5%

Samplers 23.1% 9.9% Effects 31.9% 15.0%

Sequencers 19.0% 7.0% Recording 40.4% 18.5%

Keyboards 68.5% 35.2% Live/PA 27.5% 10.6%

Controllers 35.0% 15.4% Other Hardware 4.1% 2.3%

Figure 6 – Interaction preferences and music experience. Percentage of study subjects (n=1125).

preferred

input device
 A small, but significant preference for the keyboard, compared

to the mouse, was also noted (two-tailed z-test, p < .05), reflecting the

larger role of the keyboard in tracker interaction. Correspondingly,

almost half (46.9%) of the participants claimed some typing skill,

with 24.3% able to touch-type, without relying on visual feedback.

Of those who stated a preference for the keyboard, 44.6% still

found themselves making significant use of the mouse. However,

both computer input devices were less popular than input through

more musically-oriented MIDI devices (48.6%), which allows the

user to transfer their musicianship to the digital domain.
music experience

 In Figure 5, over two thirds of the sample are shown to have

experience with some mode of performing (piano, acoustic,

or live: 69%, 9% professionally) or composing (76%, 12%

professionally). Over half (50.9%) of all performers have

experience of playing the piano, which translates well to MIDI

and tracker-based interaction. This matches the widespread use of

music keyboards (68.5% of users) in Figure 6.4. Many users also

showed familiarity with studio hardware, such as microphones

(52.6%), mixers (41.5%), effects (31.9%) and recording

equipment (40.4%). However, almost a quarter (23.5%) of all

participants had no experience with studio or hardware input

 G-4

devices, presumably focusing on computer-based editing tools and

techniques. Moreover, though most identified themselves as

composers, relatively few indicated musical literacy (37.5%) or

training (38.0%). This suggests that only around half of the

electronic musicians in this study come from formal or traditional

music backgrounds, while others simply rely on more informal,

self-taught approaches, developing technique simply through use

of software or hardware.

Figure 5 – Users by

musical experience,

with performance and

composition activities.

professional

experience

 Overall, the 1125 users who took part in the study include a

broad sample of digital musicians, including those both with and

without performing skills, studio experience, and tracker

knowledge, from professional users to desktop hobbyists. Further

user traits are discussed in subsequent sections, in context with

specific analyses, and with respect to the end-of-experiment

questionnaire, detailed in Chapter 9.
interaction

data collected

 Table 1 summarises the extent of the data collected during the 2

years, 2 months and 11 days in which the experiment was running.

Users surveyed 2351

recorded 1125

with 30 mins activity 329

with 60 mins activity 185 mean median

Sittings total 5911 5.25 2

with <1 min duration 1239 1.10 0

with 30 mins activity 1275 1.13 0

with 60 mins activity 678 0.60 0 mean median

Sessions total 13373 11.89 4 2.26 1

with <1 min duration 5077 4.51 1 0.83 1

with 30 mins activity 1195 1.06 0 0.20 0

with 60 mins activity 508 0.45 0 0.09 0 mean median

Duration total 5912h 33m 5h 15m 24m 1h 5m 15m 26m 3m

activity 2376h 30m 2h 7m 14m 24m 6m 11m 2m

in reViSiT 1102h 10m 59m 10m 11m 2m 5m (37s)

in Pattern Editor 837h 27m 45m 6m 9m 2m 4m (24s)

Sittings

total

User

Session

Table 1 – Summary of user sample. Total users, sittings, sessions and duration

recorded during the experiment, plus mean and median average per user and session.

 G-5

 (a) Users (b) Sessions

Figure 6 – Hosts used in study. Percentage of (a) users and (b) sessions run in selected hosts.

host compatibility

 Though minor bugs were identified in early releases, more users

were discouraged by compatibility problems with specific VST

plugin hosts, featuring inconsistent or incomplete implementations

of the plugin specification – where upon loading the plugin in the

host, the user soon discovers an absence of playback, song

synchronisation, or keyboard support. Though many of these

problems concern freeware, shareware, and open-source music

programs, oversights were also noted in commercial and

professional software. Figure 6 illustrates the hosts used in the

study, dominated by a handful of well-known packages, notably

Steinberg Cubase, for which reViSiT was originally developed.
 Such problems are suspected in the 5077 sessions (38% of total)

lasting under a minute and the low median session length of 3

minutes. To provide a more accurate picture of a user’s exposure

to the program, Figure 6.6 also displays figures for individual

‘sittings’, which concatenate short sessions occurring within

minutes of each other, such as when a user loads the plugin

several times in quick succession in an attempt to solve

configuration problems. With this measure, the median time a user

spends in front of reViSiT rises to 15 minutes, during which users

form an impression of the program.
novice and expert

interaction

 During the study, the tracker was run for a total of just under

6,000 hours, capturing 2,376 hours of active interaction, in both

the host and plugin, ignoring idle periods.
4
 Almost 1,200 sessions

longer than 30 minutes of interaction were captured, with half of

all users contributing 24 minutes or more. The 185 users who

persisted further (with over 60 minutes of interaction) ultimately

contributed 90% of the total data collected, and often represented

4
 Defined as any period longer than 1 minute where no activity or playback is recorded in the log.

These periods do not preclude other system activity, beyond the host and reViSiT plugin, where data is

not collected. Indeed, the interference and distraction provided by other programs (e.g. web browsers,

chat clients) potentially constitutes a significant factor in creativity and flow, affecting the user’s ability

to maintain focus. Though beyond the scope of this research, it is recommended for future study.

 G-6

individuals with previous tracker or IT2 experience, enabling

detailed study of expert interaction and tracker virtuosity. Because

of the relatively slow uptake of the program by other musicians,

the experiment duration was extended to ensuring sufficient data

was captured to study a wider demographic, and provide insight

into earlier stages of learning. In total, 391 hours of interaction

was captured from tracker novices, with 72 continuing past the

hour mark. Moreover, thresholds and normalisation are also used

as appropriate, to ensure that analyses are not biased to more

prolific or expert users.

