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Abstract

Lean premixed combustion is at present one of the most promising

methods to reduce emissions and to maintain high efficiency in com-

bustion systems. As the emission legislation becomes more stringent,

modelling of turbulent premixed combustion has become an important

tool for designing efficient and environmentally friendlier combustion

systems. However, in order to predict these emissions reliable pre-

dictive models are required. One of the methods used for predicting

pollutants is the conditional moment closure (CMC), which is suit-

able to predict pollutants with slow time scales. Despite the fact that

CMC has been successfully applied to various non-premixed combus-

tion systems, its application to premixed flames is not fully tested

and validated. The main difficulty is associated with the modelling

of the conditional scalar dissipation rate (CSDR) of the condition-

ing scalar, the progress variable. In premixed CMC, this term is an

important quantity and represents the rate of mixing at small scales

of relevance for combustion. The numerical accuracy of the CMC

method depends on the accuracy of the CSDR model. In this study,

two different models for CSDR, an algebraic model and an inverse

problem model, are validated using two different DNS data sets. The

algebraic model along with standard k-ε turbulence modelling is used



in the computations of stoichiometric and very lean pilot stabilized

Bunsen flames using the RANS-CMC method. A first order closure

is used for the conditional mean reaction rate. The computed non-

reacting and reacting scalars are in reasonable agreement with the

experiments and are consistent with earlier computations using flam-

lets and transported PDF methods for the stoichiometric flames, and

transported PDF methods for the very lean flames. Sensitivity to

chemical kinetics mechanism is also assessed.
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Chapter 1

Introduction

Energy dates back to the beginning of the first human. Primitive man used the

wood in the fire for the purpose of heating and cooking. In the later stages, he

domesticated animals to help him in agriculture and transport, as well as using

other types of energy such as wind and water power for the purpose of maritime

transport and irrigation.

Western European countries have witnessed, during the eighteenth and nine-

teenth centuries, the emergence of the industrial revolution, which shortly there-

after spread around the globe. As a consequence, scientific and technical changes

have emerged, especially in industry and transportation sectors. The actual start

of the industrial revolution with the invention of the steam engine by James Watt,

in 1769 at the University of Glasgow. The basic idea was to transform the steam

thermal energy to mechanical energy using coal as a source of energy. Steam en-

gines were used in pumping water and powering trains and ships. The invention

of electricity, by Thomas Edison in 1880, followed, by the invention of internal

combustion engine, by Rudolf Diesel in 1898, was the start to the shift to the use

of fossil fuel in its current forms. Later on, the rapid development in industry

1



1. Introduction

and transportation sectors increased the demand for fuel.

Fossil fuels are not renewable energy sources and have an impact on the envi-

ronment and mankind. Combustion can significantly disturb the natural carbon

cycle between the earth and atmosphere [7]. For example, the major products

from combustion are carbon dioxide (CO2) and water (H2O), these gases are

known as greenhouse gases. They trap the heat in the atmosphere and as re-

sult of that, the average global temperature of earth rises. This phenomenon

is widely known as global warming [8]. Also, primarily pollutant such as sulfur

dioxide (SO2) and nitric oxides (NOx) emitted by the use of fossil fuels, would

often reach the upper levels of the atmosphere and drift into areas where natu-

ral rain clouds are regularly formed and fall to the ground in the form of acid

rains. Acid rain causes severe damage to the environment and humans [9]. As

a consequence, the environmental legislation became more stringent to minimise

the environmental impact of combustion. For instance, the Clean Air Act 1956

which was introduced after London Smog in 1952. Later on, in 1993, the Charter

was updated in its current version to protect the general public from exposure to

airborne contaminants that are known to be hazardous to human health.

Although, rising oil prices and growing awareness of the global warming in

recent years has led to increase interest in bio-fuel and other forms of non-

combustible renewable energy such as solar, wind and hydro power. However, ac-

cording to European Commission statistics, renewable energy sources accounted

for 8.4 % of the EUs consumption in 2008 [10]. Certainly, it is highly unlikely

to replace fossil fuel with renewable energy in the near future. Thus, the chal-

lenge remains how to reduce emissions and their impact without compromising

the efficiency of combustion systems. This is can be achieved by developing new
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combustion technologies that meet environmental and efficiency demands. To

accomplish this we must first understand the complex physics of the combustion

process.

Combustion is traditionally classified into non-premixed and premixed com-

bustion. In non-premixed combustion, the fuel and the oxidiser enter the com-

bustion zone from two separate streams, but in the premixed situation, the fuel

and oxidiser are mixed homogeneously before entering into the combustion zone.

However, in practice neither of these two modes occur on their own, but a com-

bination of them is common. The fuel lean premixed combustion is known to

have potential to meet the environmental demands without compromising the ef-

ficiency by reducing combustion temperature [11; 12; 13; 14; 15; 16; 17]. However,

the fuel lean premixed flames are susceptible to combustion oscillations, stability

and extinction issues. For instance, lean premixed combustion is sensitive to the

quality of the mixing in unburned mixture. If the unburned mixture is not per-

fectly mixed some regions will be richer than others and form high temperature

pockets which leads to NOx formation [18]. Further more, the stability of lean

premixed flames can reduce the efficiency and the life time of the combustion de-

vice [19]. Thus, the original equipment manufacturers of combustion systems are

in constant search to develop methods, which could be used to identify avenues

to improve the stability of turbulent lean premixed flames.

Computational fluid dynamics (CFD), is embraced more in industries to iden-

tify potential ways to achieve the desired behaviour of combustion systems, since

it is cost-effective and can produce detailed information that are some times diffi-

cult and expensive to obtain from experiments. Although modelling of turbulent

combustion has been pursued for many years, a precise theoretical description to
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make the combustion models rigorous for industrial use is still evolving due to the

complexity of this subject [20]. In premixed flames, there are strong interactions

among turbulence and chemical reaction. Turbulence contains a wide range of

length and time scales [21]. The chemical reaction process also contains a wide

range of length and time scales and determining them over all reaction rates is

not a straight forward task for turbulent flames [22]. Thus, modelling turbulent

lean premixed flames is challenging. However, combustion models which are ca-

pable to address these interactions accurately with ability to predict emissions

are required in the design and development of next generation of lean combustion

systems. This requirement gives motivation for this study.

Turbulent flows are simulated using three approaches [22; 23]; direct numeri-

cal simulation (DNS), large-eddy simulation (LES) and Reynolds averaged Navier

stokes simulation (RANS). In DNS, all the length and time scales for turbulence

and chemical reactions are captured and the conservation equations (discussed

in the next chapter) are solved without any modelling using highly accurate nu-

merical methods. This method is prohibitively expensive to simulate practical

flames, because of the geometrical complexities and the range of scales involved.

Thus, this method is mainly used as a research tool to gain fundamental insights

from turbulent combustion in simple geometries or flows. In LES, the energy con-

taining scales of turbulence are captured explicitly using approximate governing

equations. Since chemical reactions occur at small scales, some sort of models

are required to represent combustion and its interaction with turbulence. These

models are known [22] as sub-grid scale combustion models. However, the nu-

merical resolution requirement for LES and the uncertainty in the sub-grid scale

modelling currently limits the use of LES for industry scale flames.
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In RANS, described in some details in chapter 2, all the scales of turbulence

and reactions are averaged and thus, the computational costs are lower compared

to the previous two approaches. However, the interaction of scales and their ef-

fects are to be included using turbulence and combustion models, discussed in

the next chapter. Since this method is developed in the past and many computa-

tional tools are readily available, the use of RANS is more common in industries,

but this may change in the next decade or so. However, as noted earlier, the

currently available combustion models are not as good as one would like to have

although RANS simulation is commonly used to model the turbulent reacting

flows since it is computationally cheaper approach compared to DNS and LES.

The main objective of turbulent combustion modelling is to provide a clo-

sure for the mean reaction rate, ω̇α, which appears in the mean species transport

equation. The reaction rate is a highly non-linear function of temperature and

species concentration, evaluating its mean value using average temperature and

scalar concentrations is known to be erroneous [24]. Flamelet based methods are

common for turbulent premixed flames [17] and these methods consider the tur-

bulent flame as a collection of laminar flames. This view is acceptable if the flame

scales are much smaller than the turbulence scales and thus the laminar flame

structure is not disturbed by turbulence. Even if the turbulence scales become

smaller than the thermal thickness of the laminar flame, the flamelet concept

can be used if the reaction zone thickness is smaller than the turbulence scale.

However, if the reaction time scale for a scalar become larger than the typical

time scale for smaller turbulence eddies then the use of flamelet based ideas to

compute that particular scalar becomes an issues [25; 26]. Pollutants such as

carbon monoxide, nitric oxides are good examples for this. Alternative methods
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such as conditional moment closure (CMC) [27; 28] and transported probability

density function (transported PDF) [29] have been proposed and developed. The

CMC, described in chapter 3 is of specific interest to this study for the following

reason. Although the CMC has been developed and successfully applied to vari-

ous non-premixed combustion systems such as hood fires [30], lifted flames [31],

bagasse-fired boiler [32], bluff-body flames [33; 34], spray ignition [35] and soot

formation [36], its application to premixed flames is not fully tested and validated

yet.

1.1 Objectives

The prime objective of this work is to study if the pollutants emitted from lean

premixed combustion can be calculated using CMC and to validate this calcula-

tions using published experimental results.

The specific objectives are:

1. To further develop CMC sub-models for premixed combustion.

2. To develop a new model for the conditional scalar dissipation rate required

in the CMC for premixed flames.

3. To validate the performance of this model with DNS data.

4. To implement the CMC sub models for premixed flames into a computa-

tional code.

5. To validate the simulation results using two different experimental data sets

[2; 3].
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The outline of this thesis is as follows.

Chapter 2 presents a brief review of the theory and background of turbulent

premixed flames. Chapter 3 describes the CMC methodology for turbulent pre-

mixed flames and chapter 4 discuses the modelling of mean and conditional scalar

dissipation rates used in this study. Chapter 5 describes the numerical methods

and the computational tool used in this study. The chosen test cases are described

briefly in chapters 6 and 7 along with the simulation results. The conclusions of

this study are summarised in the final chapter along with some suggestion for

future directions for the CMC modelling of turbulent premixed flames.
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Chapter 2

Background on Turbulent

Premixed Combustion

The scope of this chapter is to present a comprehensive but a concise, overview of

turbulent premixed combustion modelling that appears in the literature [16; 22;

23; 25; 26; 37; 38; 39]. The well known modes of combustion are; non-premixed

and premixed combustion, the second type is the focus of this study, as noted in

chapter 1.

Non-premixed flames are also called diffusion flames, the oxidiser and the

fuel streams are completely separated as shown in Fig 2.1. The fuel and oxidiser

diffuse simultaneously towards the reaction zone by molecular diffusion to sustain

the combustion. The classical examples for non-premixed combustion include the

compression ignition engines, furnaces and fires.

In premixed combustion the fuel and oxidiser are homogeneously mixed in a

desired proportion prior to combustion and a suitable ignition source, e.g. spark,

provides sufficient energy needed to initiate combustion. Exothermic reactions
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2. Background on Turbulent Premixed Combustion

release energy in the flame front which propagates normal to itself to consume

the available reactant mixture with a flame propagation speed S◦L. The burnt

gases and fresh gases are separated by a thin flame with a thickness, δ◦L, of about

0.5 mm. The structure of a laminar premixed flame is presented in Fig 2.2.

However, in practical combustion devices the combustion occurs in mixed mode

having characteristics of both non-premixed and premixed combustion due to in-

complete mixing between fuel and oxidiser causing large local fluctuations in the

equivalence ratio. This mode of combustion is called partially premixed combus-

tion [26].

The occurrence of turbulence in practical combustors is inevitable and thus

one must consider turbulent combustion in modelling. The major challenge in

turbulent combustion modelling is due to the interaction of turbulence and chem-

ical reactions. This has been studied in the past and these studies, specifically

on turbulent premixed flames, are reviewed briefly in the rest of this chapter.

This chapter is organised as follows. Since the governing equations are the

starting point for the modelling studies, the instantaneous conservation equa-

tions for mass, momentum, energy and species mass fractions are discussed in

section 2.1 along with other constitutive relations required. The modelling of

instantaneous reaction rate is noted briefly in section 2.1.2. The three simulation

paradigms are briefly discussed to present their essential features, advantages and

disadvantages in section 2.2. Since RANS methodology is used in this study, this

methodology and related turbulence modelling are discussed in sections 2.3 and

2.4 respectively in some detail. The background studies on turbulent premixed

combustion and its modelling are discussed in section 2.5.
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Figure 2.1: Structure of a laminar diffusion flames.

Figure 2.2: Structure of a laminar premixed flames.

2.1 Governing Equations

2.1.1 Fluid Flow Equations

These equations are given by the conservation of mass, momentum, species mass

fractions and energy in Cartesian coordinates of a reacting system with N species

and I reactions [22; 23; 37; 38].

• Conservation of mass
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2. Background on Turbulent Premixed Combustion

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (2.1)

The first and second terms on the LHS of Eq. (2.1) are local temporal change of

ρ and its convective transport respectively inside a control volume.

• Conservation of momentum

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

+Fi. (2.2)

The first and second terms on LHS of Eq. (2.2) are the unsteady and advective

terms respectively. The first and third terms on the RHS represent the

contribution of the pressure gradient and body force in the ith coordinate

direction respectively to the force balance. The second term on the RHS is due

to the viscous forces, where τij denotes the viscous stress tensor,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij, (2.3)

where µ is the dynamic viscosity and δij is the Kronecker delta.

• Conservation of mass fraction of species α

∂(ρYα)

∂t
+

∂(ρuiYα)

∂xi
= − ∂Jαi

∂xi
+ ω̇α (α = 1, 2, ..., N). (2.4)
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The first and second terms on the LHS of Eq. (2.4) are local rate of change of Yα

and convective transport respectively. The first and second terms on the RHS are

molecular diffusion flux of species α in the ith coordinate direction and the total

rate of mass production by chemical reaction respectively. The diffusion flux is

represented by Fick’s first law as

∂Jαi
∂xi

= − ∂

∂xi

(
ρDα

∂Yα
∂xi

)
= − ∂

∂xi

(
µ

Scα

∂Yα
∂xi

)
(2.5)

where Dα is the molecular diffusivity of species α relative to other species and

Scα is the Schmidt number of species α.

• Conservation of energy

The enthalpy, h, of a reactive mixture is defined as the sum of the specific

enthalpies hα of species α

h =
n∑

α=1

Yα hα. (2.6)

The absolute enthalpy, hα, is equal to the sum of enthalpy of formation, h◦f,α, of

species α at a reference temperature and sensible enthalpy, hs, so that

hα = h◦f,α + hsα. (2.7)
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The sensible enthalpy, hs, of an ideal gas is equal to

hsα =

∫ T

Tref

cpα(T ) dT, (2.8)

where T is the absolute temperature. By assuming low Mach number flow, the

simple form of the energy conservation equation can be written as [22]

∂(ρh)

∂t
+
∂(ρuih)

∂xi
=
∂p

∂t
+

∂

∂xi

(
λ

cp

∂h

∂xi

)
+ SR. (2.9)

The two terms on the LHS have their usual meaning. The first term on the RHS

represents the pressure gradient while the second and third terms represent the

diffusion of enthalpy and the source or sink term due to radiative heat exchange

respectively.

• State equation

The pressure, p, is obtained from the equation of state as

p = ρ R T

n∑
α=1

Yα
Wα

. (2.10)

It is common to use two additional equations, the reaction progress variable and

mixture fraction equations in turbulent combustion modelling and simulation

studies. These two equations are presented next.

• Progress variable

The progress variable, c, is required for turbulent premixed combustion mod-

elling which measures the reaction progress in premixed combustion. The progress
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variable can be defined based on temperature, T , or using fuel mass fraction, Yf ,

[17] as

CT =
T − Tu
Tb − Tu

, (2.11)

where Tu and Tb respectively denote the temperature of unburnt and burnt mix-

ture in adiabatic laminar flames, and

Cf = 1− Yf
Y u
f

. (2.12)

If the Lewis numbers, define as the ratio of thermal diffusivity to mass diffusivity,

of the mixture is unity then Cf = CT [22]. An alternative choice using the sensible

enthalpy is also possible [40]:

c =
hs − hsu
hsb − hsu

. (2.13)

The subscripts b and u denote the burnt and unburnt mixtures respectively. For

this study, c based on fuel mass fraction is used and it is governed by

∂(ρc)

∂t
+
∂(ρuic)

∂xi
− ∂

∂xi

(
ρDc

∂c

∂xi

)
=ρ ω̇c. (2.14)

in the usual nomenclature.

• Mixture fraction

The mixture fraction is a passive scalar which describes the stoichiometry of

the reacting mixture. It takes a value of 0 in the oxidiser stream and 1 in the fuel
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stream. The instantaneous transport equation for Z is given by

∂(ρZ)

∂t
+
∂(ρuiZ)

∂xi
− ∂

∂xi

(
ρDZ

∂Z

∂xi

)
= 0. (2.15)

2.1.2 Reaction Rates

Consider a set of I elementary reactions, which can be expressed in symbolic form

as

N∑
α=1

ν ′α Mα ⇐⇒
N∑
α=1

ν ′′α Mα. (2.16)

The net rate of chemical reaction k is given by

ω̇k = kfk

N∏
α=1

(
ρYα
Wα

)ν′αk

− kbk

N∏
α=1

(
ρYα
Wα

)ν′′αk

, (2.17)

where kfk and kbk are the forward and backward rate coefficients respectively and

Wα is the molecular weight of species α. The exponent ν ′αk and ν ′′αk denote the

forward and backward stoichiometric coefficients respectively. The forward and

backward rate coefficients are expressed using Arrhenius form as

k = AT n exp (−Ea/RT ) , (2.18)

where A is the pre-exponential factor and Ea is the activation energy. It should

also be noted that the backward rate is related to the forward rate through the

equilibrium constant. Now, the chemical reaction rate, on a mass basis, for species

α is given by
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ω̇α = Wα

I∑

k=1

ω̇k (ν ′′αk − ν ′αk). (2.19)

2.2 Three Simulation Paradigms

In the simulation of turbulent premixed flames, the above conservation equations

are solved with or without additional models depending on the methodology to

be followed. As noted in chapter 1, there are three methods used commonly, and

these methods are DNS, LES and RANS. The essential features, advantages and

disadvantages of these methodologies are briefly discussed below.

2.2.1 DNS

In direct numerical simulation, the full set of the instantaneous Navier-Stokes

equations discussed in section 2.1 are solved without any turbulence models.

It resolves all spatial and temporal scales in turbulent flows and simulates the

problem in detail with specified initial and boundary conditions. Thus, DNS

can produce detailed information which may not be available from experimental

measurements due to the cost involved.

However, unfortunately there are restrictions in applying the method to real-

istic turbulent flows, due to the non-linearity in the governing equations and the

wide range of length and time scales in such flows [16]. For instance, to resolve

all the spatial and temporal length scales, the integral length Λ and Kolmogorov

length ηk scales must be captured by the simulation grid. This is can be achieved
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only when

L = N. ∆x > Λ and ∆x =
L

N
6 ηk, (2.20)

where L is the domain size, ∆x is the grid spacing and N is the number of

grid points in each direction in the physical space. Since the turbulent Reynolds

number, Ret, is related to the turbulent length scales by [22]

Re
3/4
t =

Λ

ηk
, (2.21)

then the maximum number of grid points used in DNS simulation must obey

N > Re
3/4
t [22]. Therefore, the DNS simulation is prohibitively expensive for

realistic flows with Reynolds number of order of 106 [16].

For turbulent reacting flows this situation is even more complex, because

chemical reactions introduce further length and timescales. In some cases, these

scales are smaller then the turbulence scales. This situation requires further

resolution to resolve all the range of the scales involved in the combustion process.

Therefore, DNS is used only in laboratory scale for research purposes to study the

physics of combustion [41; 42; 43], or for a flow with low Reynolds number [44].

The chemistry used in DNS, has an influence on the complexity of the DNS by

increasing the number of differential equations needed to be solved. Thus, DNS

of turbulent combustion is simplified by using a single global chemical reaction

or limited sets of elementary reactions.
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2.2.2 LES

LES is considered to be an intermediate tool between DNS and RANS. In this

approach, only the large scale eddies are resolved using the filtered form of the

governing equations shown in section 2.1, while the effect of small scales eddies,

which are the most expensive computational wise, are represented by models

[45; 46; 47; 48; 49]. This technique reduces the restriction in the domain size

and the computational expenses in DNS simulation that makes LES applications

to practical systems possible. The filter retains eddies with lengths greater than

the filter width, ∆, to be resolved on the grid such that ∆x ≈ ∆ . On the other

hand, the small scales are removed and modelled by sub-grid scales (SGS). The

filtered quantity φ is defined as

φ(x, t) =

∫
φ(x, t) F [(x− x′); ∆] dx′, (2.22)

where F is the filtering function and it can have a different prescribed shapes

[22]. The values of F is close to zero when x− x′ exceeds the filter size ∆.

2.2.3 RANS

Since this approach is used for this study, the next section describes this method

in some detail.

2.3 RANS Methodology

In this method, the instantaneous governing equations are averaged and then

solved. Since the governing equations are non-linear, the averaging process in-
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troduces additional unknown terms. This can be seen clearly in the following

example. By decomposing an instantaneous quantity φ as its mean and fluctuat-

ing parts, φ(x, t) = φ(x, t) + φ′(x, t), the mass conservation equation gives

• Conservation of Mass

∂ρ

∂t
+

∂

∂xi

(
ρui + ρ′u′i

)
= 0, (2.23)

where the over bar denotes an averaging procedure, which can be either spatial or

temporal depending on the flow characteristics. The averaging procedure yields

additional term (ρ′u′i), which arises from the correlations between the velocity

and the density fluctuations and it needs to be modelled. To avoid these kind

of correlations terms involving density fluctuations, Favre or density weighted

averaging is used for flows involving large density variation, such as combustion.

The instantaneous quantity is decomposed as φ(x, t) = φ̃(x, t) + φ′′(x, t), where

φ̃ = ρφ/ρ and φ̃′′ = 0. It is well known that applying Favre averaging to the

governing equations in section 2.1, gives additional terms, such as ũ′′i u
′′
j , ũ

′′
i Y

′′
α ,

etc. Applying Favre averaging to the instantaneous governing equations gives

• conservation of mass

∂ρ

∂t
+
∂ρũi
∂xi

= 0, (2.24)

• conservation of momentum

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xi
=− ∂p

∂xj
+

∂

∂xi

(
τij − ρu′′i u

′′
j

)
+ Fi, (2.25)
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where, ρu′′i u
′′
j is the Reynolds stress and its closure is discussed in section 2.4.

• conservation of mass fraction of species α

∂(ρỸα)

∂t
+

∂(ρũiỸα)

∂xi
=

∂

∂xi

(
ρDα

∂Yα
∂xi

− ρu′′i Y ′′
α

)
+ ω̇α (α = 1, 2, ..., N). (2.26)

Closures for the turbulent fluxes, ρu′′i Y ′′
α , and mean reaction rate, ω̇α, are dis-

cussed later in sections 2.4 and 2.5 respectively.

• conservation of energy

∂(ρh̃)

∂t
+
∂(ρũih̃)

∂xi
=
∂p

∂t
− ∂

∂xi
(ρũ′′i h′′)+

∂

∂xi
(
λ

cp

∂h̃

∂xi
). (2.27)

• progress variable equation

∂(ρc̃)

∂t
+
∂(ρũic̃)

∂xi
=

∂

∂xi

(
ρDc

∂c

∂xi
− ρu′′i c′′

)
+ ω̇c, (2.28)

A closure for the turbulent scalar flux, ρu′′i c′′, and the mean reaction rate are

discussed later.

• mixture fraction equation

∂(ρZ̃)

∂t
+
∂(ρũiZ̃)

∂xi
=

∂

∂xi

(
ρDZ

∂Z

∂xi
− ρu′′iZ ′′

)
. (2.29)
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In addition to the governing equations for the mean progress variable and mix-

ture fraction, transport equations for their variances must also be solved. These

equations are [16; 22]

∂(ρc̃′′2)
∂t

+
∂(ρũic̃′′2)
∂xi

=
∂

∂xi

(
ρDc

∂c′′2

∂xi
− ρu′′i c′′2

)
− 2ρu′′i c′′

∂c̃

∂xi

−2ρε̃c + 2c′′ω̇c, (2.30)

and

∂(ρZ̃ ′′2)
∂t

+
∂(ρũiZ̃ ′′2)

∂xi
=

∂

∂xi

(
ρDZ

∂Z ′′2

∂xi
− ρu′′iZ ′′2

)
− 2ρu′′iZ ′′

∂Z̃

∂xi

−2ρε̃Z . (2.31)

The contribution of the turbulent fluxes, dissipation rates and chemical reactions

in the above two variance equations are to be modelled. The modelling of turbu-

lent fluxes are discussed in the next section and the modelling of reaction related

terms are discussed in chapter 3. The dissipation rate of the mixture fraction

variance is given by ρε̃Z = ρDZ(∂Z ′′/∂xi)(∂Z ′′/∂xi) and it is modelled using the

classical model [22] given by

ε̃Z ≈ CD(
ε̃

k̃
) Z̃ ′′2, (2.32)

where CD is a model parameter which takes a value of about 0.9 to 1.0. The

modelling of the dissipation rate, ρε̃c = ρDc(∂c′′/∂xi)(∂c′′/∂xi), is discussed in

details in chapter 4.
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2.4 Turbulence Models

2.4.1 Turbulent Reynolds Stress Model

The transport equations presented in the previous section are unclosed and mod-

els are required for Reynolds stresses, turbulent transport, mean reaction rates,

and dissipation rates. In this section, the turbulence modelling is reviewed very

briefly and the k− ε models used in this study for turbulent premixed flames are

discussed in some detail [22; 23]. The Reynolds stress, ρũ′′i u
′′
j , are modelled using

the turbulent viscosity hypothesis, and according to this hypothesis the Reynolds

stress is proportional to the mean rate of strain [22; 23]:

ρ ũ′′i u
′′
j = − µt

(
∂ũi
∂xj

+
∂ũj
∂xi

− 2

3
δij
∂ũk
∂xk

)
+

2

3
ρ k̃ δij, (2.33)

involving the turbulent viscosity, µt, which needs to be modelled. Many ap-

proaches [50] have been proposed in the past for this modelling. In the sim-

plest possible approach proposed by Prandtl, the eddy viscosity is given by

µt = ρ l2mix |S̃|, where S̃ is the mean stress tensor defined as S̃ij =
(
∂ũi

∂xj
+

∂ũj

∂xi

)
/2,

and lmix is the mixing length. This model is known as mixing length or zero equa-

tion model.

In another approach [50], the eddy viscosity is modelled as µt = ρ Cµ lm k̃
1
2 ,

where k̃ is the turbulence kinetic energy obtained from the solution of its transport

equation and Cµ is a model parameter.

It is known from many past studies [51] that the eddy viscosity obtained using

the solution of k̃ and its dissipation rate, ε̃, transport equations give an acceptable

level of accuracy for a range of flows. This approach, is widely used in RANS
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simulation and is called the k - ε [51] model. The turbulent viscosity is given by

µt = ρ Cµ (k̃2/ε̃). (2.34)

The transport equations for k̃ and ε̃ are written as [52]

∂(ρk̃)

∂t
+

∂(ρũik̃)

∂xi
=

∂

∂xi

[
(µ +

µt
σk̃

)
∂k̃

∂xi

]
+ Pk − ρε̃. (2.35)

and

∂(ρε̃)

∂t
+

∂(ρũiε̃)

∂xi
=

∂

∂xi

[
(µ +

µt
σε

)
∂ε̃

∂xi

]
+ Cε1

ε̃

k̃
Pek − Cε2ρ

ε̃2

k̃
. (2.36)

where the source term Pk is given as Pk = −ρũ′′i u′′j (∂ũi/∂xi)−u′′i ∂p/∂xi+p′u′′i /∂xi.
The Reynolds stresses, ρũ′′i u

′′
j , are determined from equation Eq. (2.33) and the

standard model constants [16] are Cµ = 0.09, σk = 1, σε = 1.3, Cε1 = 1.44 and

Cε2 = 1.92. The pressure related terms are to be modelled and their contributions

can be significant for turbulent premixed flames in enclosed geometries [53] and

can be ignored for open flames. In this study, these terms are neglected.

In another approach, known as the Reynolds stress method (RSM), transport

equations for the individual components of the Reynolds stress are solved with

additional models [54; 55; 56]. This model is expected to provide improved

accuracy for complex flows but with relatively high computational cost. Also, the

Reynolds stress equations are stiff causing difficulties while finding their numerical

solution [22].
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2.4.2 Turbulent Scalar Flux Model

To solve the progress variable, c̃, transport equation shown in section 2.1, the

turbulent scalar flux, ũ′′i c′′, needs to be modelled, where the symbols, u′′i and

c′′, are the Favre fluctuation of velocity vector and progress variable, respectively

[57]. This term is often modelled using the classical gradient transport hypothesis

based on the eddy viscosity [58] given as

ρ ũ′′i c′′ = ρu′′i c′′ = − µt
Scc

∂c̃

∂xi
, (2.37)

where µt is the turbulent eddy viscosity and Scc is the turbulent Schmidt number.

According to the gradient assumption, turbulent flux transport is analogues to

molecular transport. However, theoretical analysis [59; 60], experimental [61; 62;

63; 64; 65] and DNS [57; 66; 67] studies pointed out the existence of both gradient

and counter gradient fluxes in turbulent premixed flames. The transition from

gradient type to counter gradient type is influenced by the ratio u′/S◦L and the

heat release factor τ [66], where u′ is the rms of turbulence velocity fluctuations

and S◦L is the laminar flame speed. According to the DNS analysis in [66], the

counter gradient transport occurs when the flow field is dominated by thermal

expansion due to the heat release, while the gradient transport occurs when

the flow field is dominated by turbulence, ie., when the ratio u′/S◦L is large.

The physical mechanism responsible for counter-gradient transport in turbulent

premixed flames is explained by Bray-Moss-Libby model [59], where the turbulent

scalar flux is given by

ρ ũ′′i c′′ = ρc̃(1− c̃)(uib − uiu) (2.38)
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where, uib and uiu are the conditional mean velocity for burnt and unburnt gases,

respectively. Since the density of the burnt gases, ρb, is lower compared to un-

burnt gases, ρu, thus, the pressure gradient due to the heat release accelerates

preferentially more the burnt gases compared to the unburnt gases that makes

uib > uiu. This situation will promote counter gradient flux which contradicts the

gradient assumption given in Eq. 2.37. A transport equation for the turbulent

flux can be solved to account for the occurrence of gradient and counter gradient

fluxes as has been done in [68] and explained in [16]. A simple algebraic model

has also been proposed in an earlier study [66] to include the gradient and non-

gradient scalar flux transports in premixed flames. However, it is not uncommon

to use gradient flux model in calculations of high Reynolds number turbulent

premixed flames and this model is used in this work.

2.5 Premixed Combustion Sub-Models

The main objective of turbulent combustion modelling is to provide models for

the mean reaction rate term ω̇α which appears in the species transport equation.

The average reaction rate ω̇α cannot be easily expressed as a function of averaged

mass fractions Ỹf , Ỹo, mean density ρ and mean temperature T̃ due to the non-

linearity associated with this term. If one assumes a single step reaction then the

mean reaction rate can be expressed as [22].

ω̇f = −A ρ2 T̃ n Ỹf Ỹo exp

(
−Ta
T̃

) 
1 +

(
Ta

T̃

)2
T̃ ′′2

T̃ 2
+

Ỹ ′′
f Y

′′
o

Ỹf Ỹo
+ ....


 .(2.39)
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This expression also involves a number of higher order correlations which must

be retained, at least up to 20th order, to maintain accuracy [24] and this is

impractical. Furthermore this will introduce a large set of modelling parameters.

In another words, trying to find a closure model for the mean reaction rate using

this approach is not practical. Hence, alternative approaches have been proposed

in the past and have been discussed elaborately in [17; 20; 22; 52]. It is not

possible to review all of these approaches here. Furthermore, the interest of

this work is on turbulent premixed combustion and thus the related combustion

modelling are reviewed in this section.

The mean reaction rate models involve statistical relationships among fluctu-

ating quantities in turbulent flames. These relationships, or the models, depend

on the structure of the small scales lost due to averaging. Furthermore, the

models depend on the relativity between the scales of turbulence and that of the

flame. Damköhler [69] identified two limiting scenarios; flamelet and non-flamelet

combustion.

In flamelet combustion, the flame scales are much smaller than the turbulence

scales and vice-verse for non-flamelet combustion. These concepts are explained

better using a combustion regime diagram.

The turbulent scales range from the Kolmogorov length scale, ηk, with a char-

acteristic velocity u′k to the integral length scale, Λ, with characteristic velocity

u′. Thus, the integral time scale, τt, and the Kolmogorov time scale, τk, are

defined respectively as

τt =
Λ

u′
, τk =

ηk
u′k
. (2.40)
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The combustion scales are typically represented by flame front thickness, δ, and

speed, SoL. Thus, the chemical time scale, τc, is defined as

τc =
δ

SoL
. (2.41)

The ratio of the integral turbulence time scales to the chemical time scale is

defined as the Damköler number

Da =
τt
τc

=
Λ/δ

u′/SoL
. (2.42)

The Karlovitz number is defined as the ratio of the chemical time scale to the

small-scale turbulence time scale

Ka =
τc
τk

=
δ2

η2
k

. (2.43)

The turbulence Reynolds number can also be written [70] as

Re =
u′/SoL
δ/Λ

, (2.44)

if ν = δSoL. The relationship among these three non-dimensional numbers are

commonly represented using the combustion regime diagram [16; 70; 71], which

is used to classify the turbulent premixed combustion. Such a diagram is shown

in Fig. 2.3.

If the thickness of the flame front is smaller than the integral eddies then

chemical time scale, τc, is faster compared to the integral turbulence time scale,

τt, in high Re turbulence. In this situation, turbulence cannot enter the flame
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front and its structure remains close to laminar flame. This flame front is simply

wrinkled by turbulence. This situation is denoted on the regime diagram by

Da > 1 and is known as flamelet combustion regime. When the thickness of the

flame front is larger than the size of integral eddies then turbulence time scale, τt,

is faster compared to chemical time scale, τc, disturbing its internal structure if

the turbulence level is large. The turbulent eddies can penetrate the flame front

and continuously mixing reactants with products. This regime is denoted on the

regime diagram by Da < 1 and is known as perfectly stirred reactor regime.

Karlovitz number is used to further subdivide the flamelets regime depend-

ing on the role played by the small-scale eddies. When the flame scales are

much smaller than the turbulence small-scales then the internal structure of the

flamelets are not disturbed by the small scales of turbulence also. This situa-

tion is simply denoted by Ka < 1 in the regime diagram and Ka = 1 is called

the Klimov-Williams line signifying the δ = ηk situation. When Ka > 1 but

Ka < 100, the reaction zones of the flamelets are intact but the small eddies

disturb the preheat zone structure which enhances the heat and mass transport

in that zone. This situation is known as thin reaction zones combustion [70] as

marked in Fig. 2.3. Most of the practical combustion is expected to span between

corrugated and thin reaction zones regime. The review by Driscoll [13] suggests

that the evidence for non-flamelet behaviour is sparse. With these understand-

ings, a brief review of the existing modelling for premixed turbulent combustion

is presented in the following subsections.
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Figure 2.3: The premixed combustion regime diagram.

2.5.1 Eddy Break-Up Model

As proposed by Spalding [72] the Eddy Break Up (EBU) model is used for flames

with high Re and Da numbers. The basic idea of the model that the reaction

zone is described as pockets of unburnt and burnt gases and the turbulent eddies

will mix these pockets. Correspondingly, the reaction rate is mainly controlled

by this turbulent mixing rate and it is given by

ω̇ = CEBUρ

√
c̃′′2

τt
, (2.45)

where, CEBU is the model constant and τt is the turbulent time scale which is

equal to k̃/ε̃. An estimation for c̃′′2 based on the assumption of infinitely thin

flame yields c̃′′2 = c̃(1 − c̃). The EBU model is typically limited to one-step

chemistry.
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2.5.2 Bray-Moss-Libby Model

Bray-Moss-Libby model (BML) is based on a statistical approach using the prob-

ability density function (PDF) of the progress variable, c, which is defined to be

zero in the reactant and 1 in the product [73; 74; 75]. In order to simplify the

analysis the combustion is taken to occur at constant pressure with unity Lewis

numbers under adiabatic conditions and the mixture is made of ideal gases. The

turbulent premixed flame is taken to be a collection of thin flamelets separating

reactants from products implying that at a specific location inside the flame brush

and time, reactants are detected for a while and then products are detected for

the rest of the time [70; 71]. This view allows us to express the PDF of c at a

given location to be two delta functions, one at c = 0 and another at c = 1 with

respective weights of α and β, and a contribution from the burning parts. Thus,

p(c = ζ;x, t) = α(x, t)δ(ζ) + β(x, t)δ(1− ζ) + γ(x, t)f(ζ), (2.46)

where, ζ is the sample space variable for c and α + β + γ = 1. For high Re

and Da numbers, the flame front is thin and the probability of finding burning

gases is very low compared to finding unburnt or burnt mixture therefore, the last

term in Eq. (2.46) is neglected. The coefficients α and β can be determined from

the Favre mean progress variable which is obtained from its transport equation,

Eq. (2.28) as follows:

ρc̃ =

∫ 1

0

ρ(ζ) ζ p(ζ) dζ = ρbβ, (2.47)
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after using Eq. (2.46) with γ ' 0. The coefficients α and β can now be written

as [74]

α =
1− c̃

1 + τ c̃
; β =

(1 + τ)c̃

1 + τ c̃
, (2.48)

where τ = (ρu/ρb) - 1. Now, the mean density is given [58] by ρ = ρu/(1 + τ c̃)

and c = (1− τ)c̃/(1 + τ c̃). Since the burning mode part of the PDF is neglected

(γ = 0) in the BML approach, an alternative methodology is required to close

the mean reaction rate. Bray [75; 76] showed that

ω̇c = 2
ρε̃c

2cm − 1
, (2.49)

in the limit of γ → 0 by noting the relationship between c̃ and c̃′′2. The model

constant cm is given by

cm =
cω̇c

ω̇c
=

∫ 1

0
ζω̇c p(ζ) d(ζ)∫ 1

0
ω̇c p(ζ) d(ζ)

, (2.50)

and its typical values vary from 0.7 to 0.8. The mean scalar dissipation rate, ε̃c,

in Eq. (2.49) is defined as

ρε̃c = ρD
∂c′′

∂xi

∂c′′

∂xi
. (2.51)

Models such as ε̃c = c̃′′2/τt have been used in the past studies, where τt = k̃/ε̃.

Recent developments of this approach for non-negligible γ have been discussed

elaborately by Bray in reference [16].

Another approach to close the mean reaction rate is based on the flame cross-
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ing frequency analysis. Bray and Libby [77] observed that the mean reaction rate

at a given location depends on the frequency at which the flame front crosses this

location in turbulent flow. In this analysis, the mean reaction rate is expressed as

the product of the flame crossing frequency, fc, and the reaction rate per flame

crossing, ω̇f , [77] as .

ω̇c = ωffc. (2.52)

The flame crossing frequency, fc, can be estimated as

fc = 2
c(1− c)

τc
, (2.53)

where τc is the mean period of a telegraphic signal, which is used to represent

the instantaneous c. This period can be estimated from a turbulence time scale

τt = k̃/ε̃. The reaction rate per flame crossing, ω̇f , is modelled as

ω̇f =
ρuS

0
L

δ0
L/tt

, (2.54)

where tt is the transit time and is defined as the time required to cross the flame

front [77].

Bradley [78] suggested that

ω̇c =

∫ ∫
ω̇(c, a) p(c, a) dc da, (2.55)

by assuming that the local flamelets are stretched by turbulent eddies. The

stretching effects include the influences of straining and bending of the flame front

by turbulent eddies. The symbol a denotes the turbulent stretch and ω̇(c, a) rep-
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resents the reaction rate in stretched flamelets. Recently, an equivalent approach

using the scalar dissipation rate, instead of the stretch rate, has been developed

[79; 80].

2.5.3 Flame Surface Density Model

The flame surface density (FSD) model was originally proposed [81] for non-

premixed flames and was developed later [82; 83] for premixed flames. This

approach assumes that the flame propagates locally as a laminar flame and thus

the mean reaction rate is expressed as

ω̇c = ρuSLΣ, (2.56)

where Σ is the flame surface area per unit volume and SL is the local laminar

flame speed accounting for the turbulent stretch. This flame speed is typically

expressed as SL = I0S
0
L, where I0 is known as the stretch factor [84] and its

typical values range from 0.9 to 1.

One can estimate the flame surface density Σ either from algebraic expressions

or by solving exact balance equation for Σ with suitable closure. A balance

equation for Σ was first proposed by [81] for non-premixed flames followed by more

concrete mathematical derivation based on geometrical [82; 85] and statistical

analysis [83; 86]. Pope [83] showed that Σ associated with a specific iso-surface

of progress variable, c = c∗, as

Σ(c∗; x, t) =
〈
| 5 c||c = c∗

〉
p(c∗; x, t), (2.57)
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where,
〈
| 5 c||c = c∗

〉
is the conditional average of | 5 c| for c = c∗ and p(c∗; x, t)

is the PDF.

A balance equation for Σ can be written [82; 83; 85] as

∂Σ

∂t
+

∂

∂xi
(〈ui〉s Σ) +

∂

∂xi
(〈sdni〉s Σ) =

〈
(σij − ninj)

∂ui
∂xi

〉

s

Σ +

〈
sd
∂ni
∂xi

〉

s

Σ,

(2.58)

where sd is the flame surface displacement speed and is defined as

sd =

(
1

| 5 c|
Dc

Dt

)

c=c∗
(2.59)

(σij − ninj) is the tangential strain rate and ni is the ith component of the

unit vector normal to the flame surface. The modelling of the various terms in

Eq. (2.58) has been the subject of many past studies and the important results

have been summarised in the books [16; 20; 22; 84] and review paper [17].

2.5.4 The Probability Density Function

The Probability Density Function based approach is a statistical description of

the problem. For a given location, x, and time, t, in the flame, the PDF measures

the probability to find a variable ψ within [ψ − 4ψ/2, ψ + 4ψ/2] and satisfies

the condition.

∫

ψ1,ψ2,..ψN

p(ψ1, ψ2, ..ψN) d(ψ1, ψ2, ..ψN) = 1, (2.60)
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where ψ1, ψ2, ..ψN are the sample space variables for the density, temperature,

mass fraction, velocity, etc. The mean reaction rate can be written as

ω̇c =

∫

ψ1,ψ2,..ψN

ω̇(ψ1, ψ2, ..ψN) p(ψ1, ψ2, ..ψN) d(ψ1, ψ2, ..ψN), (2.61)

where ω̇(ψ1, ψ2, ..ψN) is the functional form of the instantaneous reaction rate.

The mean value of, say, ψ1 can be simply obtained as

ψ1 =

∫

ψ1,ψ2,..ψN

ψ1 p(ψ1, ψ2, ..ψN) d(ψ1, ψ2, ..ψN). (2.62)

The challenge now is how to determine the joint PDF, p. Two different approaches

are commonly used.

The first approach is to solve a transport equation for the joint probability

density function [29; 87]. The advantage of this approach is that the chemical

reaction does not require any modelling. However, one major drawback is the

computational expense in solving the PDF transport equation, which is written

[29; 87] as

∂ρ p̃ (ψ)

∂t
+

∂

∂xi

[
ρ ũi p̃ (ψ)

]
+

n∑
α=1

∂

∂ψα

[
1

ρ
ω̇α(ψ) ρ p̃(ψ)

]
=

− ∂

∂xi

[〈
u′′i |ψ

〉
ρp̃(ψ)

]
+

n∑
α=1

∂

∂ψα

[〈
1

ρ

∂Ji,α
∂xi

| ψ
〉

ρ p̃ (ψ)

]
. (2.63)

The first, second and third terms on the LHS of Eq. (2.63) are respectively the

rate of change of p̃ (ψ), convective transport and the flux of the PDF in the

sample space due to chemical reaction. The first and the second terms on the

RHS represent turbulent convection and molecular diffusion effects respectively.
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The vector ψ represents (Y1, Y2, ...YN , T ). The terms on the LHS are closed.

The turbulent flux is usually closed using gradient assumption. The molecular

diffusion term requires a closure, several mixing models are proposed in past

studies. The details of this approach has been reviewed recently by Haworth

[88] and Haworth & Pope [89]. The application of this approach for turbulent

premixed flames has been discussed in detail by Lindstedt [90].

In the second approach, a shape for the PDF is presumed and it is usually for

the marginal PDF of the progress variable. A presumed shape for the joint PDF

has also been attempted in the past [91] but involves a number of uncertainties.

The BML PDF in section 2.5.2 is a good example for the presumed PDF approach.

It is also typical to use a β−function [16] for given values of mean and variance.

The Favre β-PDF is given by

p̃(ζ) =
ζa−1 (1− ζ)b−1

β(a, b)
, (2.64)

where,

a = c̃

(
1− g

g

)
, b = (1− c̃)

(
1− g

g

)
, (2.65)

where g = c̃′′2/c̃(1− c̃) is the variance parameter and

β(a, b) =

∫ 1

0

ζa−1 (1− ζ)b−1 dζ. (2.66)

The values of c̃ and c̃′′2 are usually obtained by solving their respective transport

equations. The Favre PDF, p̃, is related to the Reynolds PDF through pρ = ρp̃

[16].
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2.5.5 G-Equation Model

The G-equation model is based on the flamelet modelling assumption, whereby

the chemical reaction occurs within the flame front, which separates the unburned

and burned mixtures and moves with a burning velocity normal to the front ST .

In this approach, the flame propagation is described as the propagation of an

iso-surface of G(x, t). A transport equation for G is derived [24] to track the flame

propagation by considering an arbitrary iso-scalar value G0 with G < G0 repre-

senting the unburnt mixture and G > G0 representing the burnt mixture. This

method has been developed and discussed elaborately by Peters [70]. Basically,

a transport equation for the mean G-field, written as,

∂ρG̃

∂t
+
∂ρũiG̃

∂xi
= ρST |∂G̃

∂xi
| − ρDtκ|∂G̃

∂xi
|, (2.67)

is solved with models for ST , Dt and κ along with a transport equation for G̃′′2.

The detail of this method is discussed by Peters [70] and Peters and Bray [92].

This formulation is valid only for the corrugated flamelets regime of combustion

[93].

2.6 Summary

All the methods described above are used in modelling turbulent premixed com-

bustion but choosing the right method is essential. For example, in the EBU

model the reaction rate is controlled by mixing and finite rate chemistry effects

are not typically included in the model. The laminar flamelet models are based

on the assumption that the flame scales are smaller than the turbulence scales.
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This assumption becomes invalid if one considers some minor species and pollu-

tants. The transported PDF models depend on many variables that make the

method computationally expensive.

Conditional moment closure [27; 40] is an alternative approach showing a

good potential to predict minor and pollutant species of engineering interest with

moderate computational cost as one shall note from this study. This method has

been used widely for non-premixed flames and it is development and application

to premixed flames is sparse. Hence, this method is chosen for this study and is

described in detail in the next chapter.
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Chapter 3

Conditional Moment Closure

This chapter presents a review of the main features of the conditional moment

closure (CMC). The first section begins by presenting the concept and fundamen-

tals of this method . The second and third sections focus on CMC for premixed

combustion followed by premixed CMC sub-models.

3.1 CMC Methodology

As shown in section 2.5, an accurate closure for the mean reaction rate cannot

be found using the conventional moment method. This is because, the fluctu-

ations of various scalar concentrations and temperature over the mean are very

large. This large fluctuation along with the strong non-linearity in the reaction

rate mainly renders the moment method to be of less use to obtain a closure for

the mean reaction rate. However, as Bilger [27] pointed out, the philosophy of

the moment method can be adopted if one uses conditional moments rather than

the unconditional moments. This is because the fluctuations over the conditional
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mean are small compared to the unconditional fluctuation level. This point is

depicted in Fig. 3.1, showing the scatter plot of temperature and OH mass frac-

tion in mixture fraction space. The corresponding conditional averages are also

shown on the left. The solid lines represent the solution of fully burning strained

laminar diffusion flame in counter-flow configuration with a strain rate parameter

of 5 s−1. It is seen in the scatter plot that the fluctuations in T , YOH and Z are

large. If one constructs conditional averages, to be defined below, then the fluc-

tuations levels become small as shown on the right hand side of Fig. 3.1. Here the

main hypothesis of CMC is that the fluctuations of temperature and scalar mass

fraction values are closely associated to the fluctuation in one or two key scalar

quantities. Thus, if one constructs averages conditional upon a particular value

for the key scalars then there is a hope to find an accurate closure for the mean

reaction rate using the concept of moment methods. The mixture fraction and

progress variable are good conditioning variables for non-premixed and premixed

flames respectively [40].

In CMC, transport equations for the conditional averages are derived and

solved along with other moment equations subject to appropriate initial and

boundary conditions. First, the instantaneous value of, say mass fraction of

scalar α, is decomposed into its conditional mean,Qα , and fluctuation, y′′α, over

Qα as

Yα(x, t) = 〈Yα|Z = η〉+ y′′α(x, t) = Qα(η; x, t) + y′′α(x, t), (3.1)

where the angled brackets denote ensemble averaging subject to the condition on

the right of the vertical bar and this average is defined as conditional average.

Substituting this decomposition into Eq. (2.4) and then taking the conditional
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average of the resulting equation gives a transport equation for Qα. The detail

of this derivation is presented clearly by Bilger [27] and Klimenko and Bilger

[40]. An appropriate joint PDF transport equation, see for example Eq. (2.63),

can also be used to obtain the transport equation for Qα as shown by Klimenko

[28]. The similarities and differences between the decomposition and joint PDF

methods to obtain Qα transport equation are discussed in detail by Klimenko

and Bilger [40] and interested readers are referred to that study. However, both

of these methods led to almost the same transport equation for Qα, which will

be presented in the next section. As one shall see in that section, this transport

equation involves some terms, primarily the conditional averages of velocities,

reaction rates, and scalar dissipation rate of the key conditioning scalar, requiring

closure models. Many models have been developed in past studies and the CMC

have been successfully applied to various non-premixed combustion systems such

as bagasse-fired boiler [32], hood fires [30], bluff-body stabilised[33; 34] and lifted

jet flames [31], spray autoignition [35] and soot formation [36]. The application of

CMC to premixed flames is not fully tested and validated yet. Despite some initial

results reported in [94; 95; 96], the main difficulty in applying CMC to turbulent

premixed flames is associated with modelling of conditional scalar dissipation

rate, 〈Nc|c = ζ〉 = 〈Dc(∇c · ∇c)|ζ〉, of the key conditioning scalar, the progress

variable c.

Many studies [16; 79; 97; 98; 99] have attempted to shed more light on this

dissipation rate and its modelling, which encourages to explore CMC for premixed

flames.
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3. Conditional Moment Closure

Figure 3.1: Scatter plots of instantaneous and conditional averages for the tem-
perature and OH mass fraction at x/D =20 and r/D = 1.7 (◦) ; 1.4 (¤); 1.1 (4)
[1]. Solid line represents fully burning strained laminar flame result.
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3. Conditional Moment Closure

3.2 Premixed CMC Method

As noted earlier, the CMC method is based on the hypothesis that the fluctuations

of species mass fractions, temperature and enthalpy are associated only with the

fluctuation of a key scalar [40], which is the progress variable, c, for premixed

combustion. The progress variable is a reactive scalar and it can be defined

based on temperature, Eq. (2.11), or using the fuel mass fraction, Eq. (2.12) [17].

An alternative definition using sensible enthalpy is also possible [40]. Here, it

is defined as θ = Yf/Y
u
f using the fuel mass fraction, where Y u

f is the unburnt

fuel mass fraction value. This is a progress variable and is used as conditioning

variable. The value of θ = 1 implies that the mixture is unburnt and θ = 0

implies that the mixture is completely burnt.

Transport equations for conditional mean scalar values, Qα, are derived by

substituting, as noted earlier in Eq. (3.1)

Yα(x, t) = Qα(ζ;x, t) + y′′α(x, t), (3.2)

in the transport equation for the instantaneous scalar value Yα, Eq. (2.4) [27]. It is

to be noted that density weighted conditional averaging [40] must be used, which

is given by Qα(ζ;x, t) = 〈ρYα|ζ〉/〈ρ|ζ〉, where ζ is the sample space variable for

θ. A full derivation of the CMC transport equation is given in the Appendix A.

It is to be noted that the decomposition method is used because of its simplicity,

although one can follow the joint PDF approach of Klimenko [28]. Both of these

approaches essentially yield the same transport equation for Qα which is written

as [40; 96]
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3. Conditional Moment Closure

〈ρ|ζ〉∂Qα

∂t
+ 〈ρui|ζ〉∂Qα

∂xi
− Leθ

Leα
〈ρNθ|ζ〉∂

2Qα

∂ζ2
= 〈ω̇α|ζ〉 − 〈ω̇θ|ζ〉∂Qα

∂ζ

−1

p̃

∂

∂xi
[〈ρu′′i y

′′
α|ζ〉〈ρ|ζ〉p̃] + eQα , (3.3)

where Leα is the Lewis number of species α and p̃ is the Favre PDF of c. The

physical meaning of various terms in Eq. (3.3) is as follows. The first and second

terms of Eq. (3.3) respectively denote the unsteady and convective changes of

Qα. The third term represents the diffusion of the conditional average in the

sample space ζ, which is modulated by the non-unity Lewis number effects. The

fourth term is the conditional chemical reaction rate for species α. Since θ is a

reactive scalar, its influence on the evolution of Qα is given by the fifth term in

Eq. (3.3). The sixth term represents the contribution of conditional fluctuation

y′′α to Qα evolution, which comes from the convective term of eyα given in Eq. 16

of Appendix-A. The last term represents contributions of molecular diffusion in

the physical space and differential diffusion effects. The explicit from of eQα is

given in Eq. 17 of the Appendix-A.

The CMC transport equations are to be solved along with other governing

and modeling equations discussed in sections 2.3 for the RANS methodology.

One must also not forget that appropriate initial and boundary conditions are

required for the CMC transport equation and these conditions will be discussed

while presenting the numerical methods in chapter 5. In the next section closures

for the unclosed terms in Eq. (3.3) are discussed.
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3. Conditional Moment Closure

3.3 Premixed CMC Sub-Models

The quantities 〈u′′i y′′α|ζ〉, p̃, 〈ui|ζ〉, 〈ω̇α|ζ〉, 〈ω̇θ|ζ〉, eQα , 〈ρ|ζ〉 and 〈Nθ|ζ〉 require

suitable models. The PDF, p̃, is modelled using a presumed shape with a Beta

function, Eq. (2.64).

The conditional turbulent scalar flux, 〈u′′i y′′α|ζ〉, is generally closed using gradi-

ent transport hypothesis for non-premixed flames [40], although it is also possible

for this conditional flux to be counter-gradient [100] and new modelling methods

are to be developed to account for this. However, the adequacy of the gradi-

ent flux model for this study can be judged from the results to be presented in

chapter 6, and it is written as

〈u′′i y′′α|η〉 = − µt
Scα

∂Qα

∂xi
, (3.4)

where Scα is the turbulent Schmidt number for species α, which is typically taken

to be 0.7. This model is reasonable for high Re flows and it has been used in the

past for RANS and LES simulations [32; 80] and [101].

The conditional mean reaction rate, 〈ω̇α|ζ〉, for species α in Eq. (3.3) is closed

using a first order CMC closure [40]. According to this closure, the conditional

mean reaction rate has the functional dependence on the conditional mean as the

instantaneous reaction rate has on the instantaneous scalar values. Hence,

〈ω̇α|ζ〉 = ω̇α(〈ρ|ζ〉,Qα, QT ), (3.5)
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3. Conditional Moment Closure

where QT is the conditional mean temperature. This first order closure is shown

[40] to be accurate for non-premixed flames when there is no local extinction or

ignition events present in the flow. A prior analyses [96] using DNS data showed

that this closure is also accurate for premixed flames and thus it is used in this

study. Since the transport equations for Qα are solved along with appropriate

initial and boundary conditions, an arbitrarily complex chemical kinetics can be

included in the CMC.

The closure of 〈ω̇θ|ζ〉 is based on the definition of θ. Since θ is defined based

on the fuel mixture fraction

〈ω̇θ|ζ〉 =
〈ω̇f |ζ〉
Y u
CH4

. (3.6)

The conditional mean velocity components are closed using a linear model

[40], which has been used for non-premixed flames. This model is given by

〈ui|ζ〉 = ũi +
ũ′′i θ′′

θ̃′′2
(ζ − c̃), (3.7)

where, ũi is the unconditional Favre mean velocity, ũ′′i θ′′ is the correlation be-

tween the velocity fluctuations and the progress variable fluctuations, θ̃′′2 is the

variance of the progress variable fluctuations. This model showed good agreement

with DNS results [96] for turbulent premixed flames. Although other modellings

are possible [96], this linear model is used because it is simple and sufficiently

accurate.
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From the Eq. 17 of Appendix A,

eQα ≡
〈
∂

∂xi

(
ρDα

∂Qα

∂xi

)
+ ρDα

∂θ

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
|ζ

〉
+

〈
∂Qα

∂ζ

∂

∂xi

[(
1− Leα

Leθ

)
ρDα

∂θ

∂xi

] ∣∣∣ζ
〉
, (3.8)

The molecular diffusion contributions are negligible for high Reynolds number

flows and the differential diffusion effect, the third term in Eq. (3.8) remains as

the dominant term [96]. Thus,

eQα =

(
1− Leα

Leθ

)
∂Qα

∂ζ

[
ρDα

∂θ̃

∂xi

]
(3.9)

eQα =

(
1− Leα

Leθ

)
∂Qα

∂ζ

1

p̃

∂〈Nθ|ζ〉p̃
∂ζ

. (3.10)

The second part of Eq. (3.10) is obtained after using the inter-relationship be-

tween the conditional diffusion and conditional dissipation in high Re turbulent

flames [40; 96]. It is apparent that the contribution of eQα depends on Leα, if

Leα/Leθ = 1, this contribution is zero. It is to be noted that this closure re-

quires a model for the conditional dissipation rate 〈Nθ|ζ〉, which is discussed in

chapter 4.

The conditional density, 〈ρ|ζ〉, is obtained using the state equation and the

conditional temperature, QT , through

〈ρ|ζ〉 =
P

R QT

, (3.11)
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3. Conditional Moment Closure

where R is the characteristics gas constant.

As noted earlier in section 3.1, the modelling of the conditional and uncondi-

tional dissipation rate of the progress variable offer significant challenges, since

the progress variable is a reactive scalar. This is discussed in the next chapter.
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Chapter 4

Scalar Dissipation Rate

The effect of turbulence on premixed flames is to increase the flame surface area

by wrinkling the flame front [24]. In premixed flames, mixing of cold reactants

and hot products on the flame surface, is crucial to sustain the combustion. This

mixing phenomenon is characterised by the scalar dissipation rate, Nθ, which

may be broadly defined as the rate of mixing at a molecular level. This term

appears in many turbulent combustion models such as flamelets [102], probability

density function [29] and conditional moment closure [40] and requires an accurate

model. A considerable amount of experimental and modelling literature has been

published on the scalar dissipation rate for non-premixed [17; 103; 104; 105; 106]

and for premixed [79; 97; 98; 107; 108] combustion. Nevertheless, in premixed

flames, a sensible model for the scalar dissipation rate must account for the

interaction between turbulence, chemical reaction and molecular diffusion and

thus using turbulent time scale alone proved to be insufficient [97; 109].

Recent development in the modelling of the mean dissipation rate is explored

briefly in section 4.1. The modellings of unconditional dissipation rate are dis-
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4. Scalar Dissipation Rate

cussed in section 4.2. The validation of these models are presented in section 4.3,

before choosing a suitable model for the CMC calculation.

4.1 Mean Scalar Dissipation Rate

An exact transport equation for the dissipation rate has been derived and analysed

to alleviate these issues [97]. This analysis and the insights obtained using this

transport equation in a number of studies have been summarised by Chakraborty

et al., [110]. For the purpose of this study, the final result, an algebraic model

for the mean scalar dissipation rate, ε̃θ = ρDθ(∇θ′′ · ∇θ′′)/ρ, is employed. This

algebraic model [98] is obtained by analysing the closure models proposed in

[99] for the leading order terms of the mean scalar dissipation rate transport

equation, when the Damköler number is large. This model, validated using DNS

and experimental data [99], is written as

ε̃θ =
1

β′

[
(2K∗

c − τC4)
S0
L

δ0
L

+ C3
ε̃

k̃

]
θ̃′′2 , (4.1)

where, β′ = 6.7, K∗
c = 0.85τ for hydrocarbon-air flames, C4 = 1.1/(1 + Ka)0.4

and C3 = 1.5
√
Ka/(1 +

√
Ka). The Karlovitz number is defined as

Ka =

{
1

2(1 + τ)0.7

(
u′

S◦L

)3 (
δ◦L
Λ

)}0.5

. (4.2)

The Favre averaged turbulence kinetic energy and its dissipation rate are denoted

by k̃ and ε̃ respectively.
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4. Scalar Dissipation Rate

4.2 Conditional Mean Scalar Dissipation Rate

The conditional mean scalar dissipation rate, 〈N |θ〉, is related to the uncondi-

tional mean dissipation rate through

ε̃θ =

∫ 1

0

〈Nθ|ζ〉 p̃(ζ) dζ. (4.3)

Thus, a closure for 〈Nθ|ζ〉 can be obtained from ε̃θ using two different approaches;

one is based on physical understanding and the other one is by directly solving the

integral equation in Eq. (4.3). Both of these are explored below, before choosing

a model for the CMC calculations.

4.2.1 Algebraic Model

It is well known that the turbulent stretch influences the local reaction rates in

premixed flames. Thus, the local scalar gradients will also be clearly influenced

by the stretch rate since the scalar gradients are produced predominately by

chemical reactions in premixed flames. If one considers the local flame front as

stretched flamelets then Kolla and Swaminathan [79] showed that the dissipation

rate in the stretched flamelets, subject to a stretch rate a, can be expressed as

N(θ, a) = N(θ∗, a)f(θ), where θ is the conditioning variable and θ∗ is its value at

the inner reaction zone. The inner reaction zone is defined as the location where

the fuel molecule will be attacked by a hydrogen atom and the typical value of

θ∗ is about 0.3 for common hydrocarbon fuels.

If one considers the turbulent flame-brush as a collection of stretched laminar
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4. Scalar Dissipation Rate

flames then the mean dissipation rate is given by

ε̃θ =

∫ 1

0

∫ ∞

0

N(θ, a) p(θ, a) da dθ, (4.4)

ε̃θ =

∫ 1

0

〈N |θ〉 p̃(θ) dθ, (4.5)

ε̃θ = 〈N |θ∗〉
∫ 1

0

f(θ) p̃(θ) dθ. (4.6)

Replacing 〈N |θ∗〉 = 〈N |θ〉/f(θ) one gets

〈N |θ〉 =
ε̃ f(θ)∫ 1

0
f(θ′)p̃(θ′)d(θ′)

, (4.7)

as a model for the conditional dissipation rate [79]. The function f(θ) obtained

from the unstrained laminar premixed flame is shown to be a very good approx-

imation by Kolla and Swaminathan [79]. If one knows θ̃ and θ̃′′2 then 〈N |θ〉 can

be obtained by presuming the PDF, p̃, as in Eq. (2.64), and using Eq. (4.1) for

ε̃θ. The validation of this model will be discussed in section 4.3.

4.2.2 Inverse Model

The second method to obtain the conditional scalar dissipation rate is based on

finding a solution [111] for the ill-posed integral equation in Eq. (4.3). Ill-posed

problems arise in many science and engineering applications, which have a non-

unique and/or an unstable solution. To explain this, let’s consider a Fredholm

integral equation of the first kind as

F (y) =

∫ b

a

K(x, y)G(x)dx, c ≤ y ≤ d, (4.8)
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4. Scalar Dissipation Rate

where, G(x) is unknown function, F (y) and the kernel K(x, y) are approximately

known functions. It can be written in matrix form as

KG = F, (4.9)

where K is the n× n matrix, F is n× 1 matrix and G is n× 1. The solution for

Eq. (4.9) would be given by

G ' K−1 F, (4.10)

and if the problem is well-posed then a unique solution will exist. But these prob-

lems are characterised as ill-posed system when the solution G is very sensitive to

small changes or errors in F (y) or K(x, y), because the matrix K may have local

singularities. For these situations, a regularisation method is adopted usually

to find a stable and meaningful solution. Out of several regularisation method

available Tikhonov regularisation algorithm [111] is used in this study to find an

approximate solution for the conditional scalar dissipation rate from Eq. (4.3).

This regularisation method translates the problem into a minimisation prob-

lem written as

min
{|p̃Nα

θ − ε̃θ|2 + α|(Nα
θ −Nα−1

θ )|2)} , (4.11)

where, α ≥ 0 is the regularisation parameter. The notation Nα
θ implies the value

of Nθ obtained with regularisation parameter α. The value of this parameter

evolves as αj = e αj−1 while solving the above minimisation using an iterative

technique, where j is the iteration index and 0 < e < 1. Thus, the final converged
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solution for Nθ will strongly depend on its initial guess value and the behaviour

of the kernel p̃.

4.3 Model Validation

4.3.1 DNS Database

The above two models are validated using two different sets of DNS database

having different thermo-chemical and turbulence conditions. A brief discussion

of these databases is presented first before discussing the validation results.

Direct numerical simulations of turbulent premixed V-flames of methane-air

mixture of equivalence ratio 0.58 with preheated reactant temperature of 600K

[112]. The V-flame simulations were carried out using the fully compressible,

three-dimensional DNS code SENGA2. The chemical kinetics was simulated [112]

using a single irreversible reaction with kinetic parameters giving a value of about

0.6 m/s for the unstrained laminar flame speed and about 0.4 mm for the thermal

thickness. The Lewis number was taken to be unity.

The domain is cubic with sides Lx = Ly = Lz = 29.7δ◦L. Non-reflecting out-

flows are specified on the downstream and transverse faces, and the remaining

direction is periodic. Turbulence is supplied at the inlet from a pre-computed

frozen solution of fully developed, homogeneous isotropic turbulence at the ap-

propriate turbulence intensity. Once inside the V-flame domain, the turbulence

freely decays as it interacts with the flame and is convected downstream with

the mean velocity. The flame is stabilised at the flame holder by imposing prod-

uct mass fractions over a small cylindrical region at x = 3.48δ◦L from the inlet
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boundary; equivalent to a catalytic wire aligned in the periodic direction.

Once initial transients have decayed, the simulations are run for one complete

flow-through time, τD = Lx/ūin where ūin is the mean inlet velocity, during which

data are saved at regular intervals. All mean quantities are then time and space

averaged from ensembles of the saved snapshots and over all points in the periodic

direction. To capture the spatial development of the flame, two locations down-

stream from the flame holder are considered: X1 = 16.7 δ◦L and X2 = 27.9 δ◦L, at

which the influence of the flame holder is known to be negligible. The relevant

parameters of these two V flames are given in table 4.1 and the combustion is in

the corrugated flamelets and thin reaction zones regime of turbulent combustion

as noted in Fig. 4.3.

Flame u′/S◦L Λ/δ◦L Re Da Ka t∗an
R2a 0.85 78.0 106.8 91.8 0.2 1.0
R2c 3.40 19.5 106.2 5.7 3.2 2.5

VA 2.0 3.62 37 1.81 1.49 1.0
VB 6.0 3.43 92 0.57 7.94 6.0

Table 4.1: Inlet parameters for the selected DNS flames. t∗an is in terms of the
initial eddy turnover for R2a & R2c flames, it is in term of flow through time for
V flames.

The second set of DNS data considered includes turbulent premixed flames of

H2-air turbulent premixed flames propagating in three-dimensional homogeneous

isotropic turbulence developed at Tokyo Institute of Technology [113; 114] are

considered. In this DNS, stoichiometric premixed H2-air flames with preheated

reactants at Tu = 700K were simulated using a multiple-step detailed kinetic

mechanism involving 27 reactions and 12 reactive species. These two simulations

denoted as R2a and R2c were in the wrinkled flamelets and thin reaction zones
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Figure 4.1: The variation of the Favre averaged PDF of the progress variable,
p̃(ζ), at θ = 0.5 inside the flame brush of flames R2a and R2c.

regimes of turbulent combustion as shown in Fig. 4.3. The relevant parameters

of these two data sets are listed in table 4.1.

The last column of table 4.1 shows the time of analysis for the H2-air data

set and the sampling time for the V flames. This time is normalised using the

initial large eddy turn over time of the turbulence for H2-air flames and the flow

through for the V flames. These data sets are analysed to validate the models for

the conditional dissipation rate discussed in the previous section. Note that the

results from V flames are obtained at two different axial locations in the flame;

x1 = 16.7δ◦L and x2 = 27.9δ◦L.

Figs. 4.1 and 4.2 show the Favre PDF of the progress variable θ̃ for flames

R2a and R2c at θ = 0.5 and flames VA and VB at θ = 0.6.
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Figure 4.2: The variation of the Favre averaged PDF of the progress variable,
p̃(ζ), at θ = 0.6 inside the flame brush of flames VA and VB.
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Figure 4.3: The premixed combustion regime diagram showing the selected DNS
flames.

4.3.2 Results and Discussion

The code used to determine the solution for the minimal least squares norm,

Eq. (4.11), is developed at Moscow State University [115]. The regularization

parameter set to be 1.001 to give the smallest value of residual with 560 number

of iterations. The initial solution is specified from the results obtained using

algebraic model, Eq. (4.7).

Figures 4.4 and 4.5 show the variation of the conditional mean scalar dissipa-

tion rate, 〈Nθ|ζ〉+, with sample space, ζ, at θ̃ = 0.5 for flames R2a and R2c and

θ̃ = 0.6 for V flames. The results are obtained using algebraic model, Eq. (4.7),

and inverse model, Eq. (4.11), and compared to DNS results. The results ob-

tained are normalised using SoL and δoL. As shown in the figures, both the inverse

model Eq. (4.11) and the algebraic model Eq. (4.7) have predicted the peak of

conditional mean scalar dissipation rate. The values of 〈Nθ|ζ〉+ obtained by the
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Figure 4.4: The typical variation of the conditional scalar dissipation rate,
〈N |ζ〉+, calculations obtained by, Eq. (4.7) and Eq. (4.11) with ζ in flames R2a
and R2c. The values are non-dimensionalised using SoL and δoL.

algebraic model are in good agreement with the DNS data for flame R2c and

slightly under predicts flame R2a, while values obtained by the inverse model

are over-prediction. As noted earlier, the inverse model requires an initial esti-

mate for the conditional mean scalar dissipation rate and the model was found

to be very sensitive to the initial estimate. For example if the initial estimate is

increased by 30% then the model will deviate drastically from the DNS value.
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Figure 4.5: The typical variation of the conditional scalar dissipation rate,
〈N |ζ〉+, obtained by, Eq. (4.7) and Eq. (4.11) with ζ in flames VA and VB at two
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Chapter 5

Mathematical Model

This chapter presents a summary of the numerical methods used to simulate

turbulent flows, since these methods are well established in the literature now.

The discretisation of the CMC equation using the finite volume methodology

is described in some detail, and this methodology follows an earlier study [32]

where the CMC code for non-premixed flames was developed. The modifications

to the code needed for premixed flames are described in section 5.2. The solution

methodology and the interaction of RANS and CMC equations are described in

section 5.3.

5.1 Discretisation of the CMC Equation

The stationary form of the governing equations given in section 2.3 for the mean

fields are discretised by finite volume methodology of Patankar [116] using a power

law scheme [116] for the spatial derivatives. In Cartesian coordinates (x, y, z), the

conservative form of CMC transport equation is discretised [32] over a physical
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Figure 5.1: Control volume in a finite volume method.

space control volume as shown in Fig. 5.1. The point P is at the center of the

control volume and the neighbouring cells are designated as west, east, south,

north, up and down. The walls of the cells are represented by lower case letters.

In the progress variable space, the neighbouring points are designated as left and

right. The conservative form of Eq. (3.3) is written as

∂

∂xi

(
γ〈ui|ζ〉Qα − γDt

∂Qα

∂xi

)
− Leθ

Leα
γ〈Nθ|ζ〉∂

2Qα

∂ζ2
= γ〈ω̇α|ζ〉 −

∂

∂ζ
[γ〈ω̇θ|ζ〉Qα] , (5.1)

where, γ = 〈ρ|ζ〉 p̃(ζ). Integrating equation Eq. (5.1) over the control volumes in

real and progress variable spaces and dividing by γV∆ζ yields

γeAe
γV

(
〈ui|ζ〉Qα −Dt

∂Qα

∂x

)

e

− γwAw
γV

(
〈ui|ζ〉Qα −Dt

∂Qα

∂x

)

w
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+
γnAn
γV

(
〈uj|ζ〉Qα −Dt

∂Qα

∂y

)

n

− γsAs
γV

(
〈uj|ζ〉Qα −Dt

∂Qα

∂y

)

s

+
γuAu
γV

(
〈uk|ζ〉Qα −Dt

∂Qα

∂z

)

u

− γdAd
γV

(
〈uk|ζ〉Qα −Dt

∂Qα

∂z

)

d

−Leθ
Leα

〈Nθ|ζ〉
∆ζ

[(
∂Qα

∂ζ

)

r

−
(
∂Qα

∂ζ

)

l

]
=
γV

γV
〈ω̇α|ζ〉 − γV 〈ω̇θ|ζ〉

γV∆ζ

[
Qr −Ql

]
(5.2)

The face values of the conditional quantities, Qα, in the advection terms of

Eq. (5.2) are written as

Qe = feQE + (1− fe)QP (5.3)

and

Qw = fwQW + (1− fw)QP , (5.4)

where the subscripts e and w represent the east and west walls of the cell and

the subscripts E and W represent the east and west neighbouring cells. The

weighting factor f is giving by

f ≡ 1

Pe

(
1− (1− 0.1Pe)5

)
, (5.5)

according to the power-law scheme of Patankar [116]. Accordingly, the total flux

across each face in the positive and negative x-directions are

Je =
γeAe
γV

[
〈ui|ζ〉eQe − Dt(QE −QP )

(δx)e

]

=
γeAe
γV

[
(QE −QP )

(
fe〈ui|ζ〉e − Dt

(δx)e

)
+ 〈ui|ζ〉eQP

]
, (5.6)
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and

Jw =
γwAw
γV

[
〈ui|ζ〉wQw − Dt(QP −QW )

(δx)w

]

=
γwAw
γV

[
(QW −QP )

(
fw〈ui|ζ〉w − Dt

(δx)w

)
+ 〈ui|ζ〉wQP

]
, (5.7)

Defining the coefficients, aE, Fe, aW and Fw as

aE =
γeAe
γV

(
−fe〈ui|ζ〉e +

Dt

(δx)e

)
, (5.8)

Fe =
γeAe〈ui|ζ〉e

γV
, (5.9)

aW =
γwAw
γV

(
fw〈ui|ζ〉w +

Dt

(δx)w

)
, (5.10)

and

Fw =
γwAw〈ui|ζ〉w

γV
. (5.11)

The total fluxes in the positive and negative directions in the physical space are

written as

Je = aE(QP −QE) + FeQP , (5.12)

Jw = aW (QW −QP ) + FwQP . (5.13)

The same principle is used for the other faces.

In progress variable space, the advection terms of Eq. (5.2) are written as

Qr = frQR + (1− fr)QP , (5.14)
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Ql = flQL + (1− fl)QP . (5.15)

where the subscripts L and R represent the left and right neighbouring grid points

in the progress variable space ζ. Accordingly, the total fluxes are defined as

Jr =
Leθ
Leα

〈Nθ|ζ〉
∆ζ(δx)r

(QR −QP )− 〈ω̇θ|ζ〉
∆ζ

Qr, (5.16)

=
(QR −QP )

∆ζ

(
−fr〈ω̇θ|ζ〉+

Leθ
Leα

〈Nθ|ζ〉
(δx)r

)
− 〈ω̇θ|ζ〉

∆ζ
QP ,(5.17)

and

Jl =
Leθ
Leα

〈Nθ|ζ〉
∆ζ(δx)l

(QL −QP )− 〈ω̇θ|ζ〉
∆ζ

Ql, (5.18)

=
(QL −QP )

∆ζ

(
−fl〈ω̇θ|ζ〉+

Leθ
Leα

〈Nθ|ζ〉
(δx)l

)
− 〈ω̇θ|ζ〉

∆ζ
QP .(5.19)

By defining the coefficients, aR and aL as

aR =
1

∆ζ

(
−fr〈ω̇θ|ζ〉+

Leθ
Leα

〈Nθ|ζ〉
(δx)r

)
, (5.20)

aL =
1

∆ζ

(
−fl〈ω̇θ|ζ〉+

Leθ
Leα

〈Nθ|ζ〉
(δx)l

)
. (5.21)

The total fluxes in the positive and negative directions of ζ co-ordinate are written

as

Jr = aR(QR −QP ) +
〈ω̇θ|ζ〉QP

∆ζ
, (5.22)
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and

Jl = aL(QP −QL) +
〈ω̇θ|ζ〉QP

∆ζ
. (5.23)

Now the total flux balance equation is written as

Je − Jw + Jn − Js + Ju − Jd = (Jr)− (Jl) + 〈ω̇α|ζ〉

+QP (Fe − Fw + Fn − Fs + Fu − Fd) . (5.24)

Substituting the total fluxes in Eq. (5.24), and after some arrangement yields the

final discretised CMC transport equation, which is written as

∑
anbQP −

∑
anbQnb = 〈ω̇α|ζ〉. (5.25)

A first order closure of the chemical source term is obtained by linearising it with

respect to Q. This algebraic equation is solved in the CMC part of the computer

code.

5.2 Implementation for Premixed Flames

The original version of the research code was designed for non-premixed flames

with two separate streams [117], fuel and oxidiser, with their mixing being de-

scribed by solving a transport equation for Favre averaged mixture fraction, which

is a passive scalar, see Eq. (2.29). In contrast, the pilot stabilised premixed flames

involve more than two streams, the premixed reactant stream, the pilot stream

and the ambient air stream. Note that, some cases can have more than one pilot

stream, as noted in chapter 7. For these reasons, the code has been modified
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to include more than two streams along with appropriate transport equations to

track the fluids emerging from these various streams. The transport equations

for the Favre averaged progress variable θ̃ and its variance θ̃′′2, Eqs. (2.28) and

(2.30) are also included. Furthermore, one must also include additional variables

which are passive scalars, to account for the mixing among streams. The simple

mixing rules used in this study are explained while presenting results for the test

flames in the following chapters. The source term, ω̇θ, in Eq. (2.28) is closed in

a manner consistent with CMC methodology as

ω̇θ =

∫ 1

0

〈ω̇θ|ζ〉 p dζ. (5.26)

The dissipation rate, ε̃θ, of the variance θ̃′′2 in Eq. (2.30) is closed using Eq. (4.1)

and the chemical source term is modelled using

c′′ω̇θ =

∫ 1

0

ζ〈ω̇θ|ζ〉 p dζ − θ̃

∫ 1

0

〈ω̇θ|ζ〉 p dζ. (5.27)

The solution to CMC equations requires initial conditions. For this purpose,

steady flamelet equations written as

Leθ
Leα

ρNθ
∂2Yα
∂ζ2

+ ω̇α − ω̇θ
∂Yα
∂ζ

= 0, (5.28)

with appropriate boundary conditions at ζ = 0 and ζ = 1 for Yα, are solved.

This equation is also implemented in the code for this purpose by comparing

its solution with that obtained using Chemkin for a freely propagating laminar

premixed flame. The variation of Nθ with θ obtained from Chemkin was supplied

to this flamelet equation and the chemical kinetics was modelled using GRI-mech.
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Figure 5.2: Interaction of CMC and RANS equation in the simulation.

3.0. The premixed CMC transport equation is closed using the models discussed

in section 3.3

5.3 Computer Model and Sequence

The Favre averaged, continuity, momentum and enthalpy equations are solved

along with transport equations for θ̃, θ̃′′2 , Z̃, k̃ and ε̃.

The flow chart shown in Fig. 5.2 describes the computational sequence and

the interaction between RANS and CMC equations. A SIMPLER approach [116]

is used to couple the velocity and pressure fields inside the computational domain.

These discretised equations are solved using an iterative algorithm using under

relaxation factors, given in table 5.1. The mean flow and turbulence quantities

obtained from the fluid dynamics solver are passed to the CMC solver. A steady
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P u v w k ε h µ ρ T θ̃ θ̃′′2 Z̃ Z̃ ′′2

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1

Table 5.1: Under-relaxation factors.

flamelet solution is used to specify the initial and the boundary conditions for

the CMC equations as noted in section 5.2, and the CMC equations are solved to

get a converged solution. Then the mean density, ω̇θ and θ′′ω̇θ calculated using

the respective conditional means obtained from the CMC solver are fed back to

the fluid dynamics part. These processes are iterated, until convergence criteria

are met for all quantities of interest as shown in Fig. 5.2. This convergence

criteria is set to be 5E-5 for the fluid dynamics and CMC. Further detail on the

computational tool used in this study can be found in [32; 117] as that study

validated this tool for bagasse-fired boiler involving a non-premixed flame.

From the converged solution, the various mean quantities, required for com-

parison with experimental measurements, are obtained as

Ỹα =

∫ 1

0

Qα p̃ dζ. (5.29)

The computational results obtained using the numerical methods described

above are compared to experimental measurement of pilot stabilised turbulent

premixed flames for range of thermochemical and turbulence conditions. These

comparisons are discussed in the following chapters.
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Chapter 6

Stoichiometric Premixed Flame

Calculation

6.1 Computational Details

The test flames used in this chapter are the pilot stabilised turbulent Bunsen

flames of Chen et al. [2], which is shown schematically in Fig. 6.1 along with the

computational domain and boundary conditions used. These flames have been

investigated in earlier studies to validate various premixed turbulent combustion

models such as transported PDF model [68; 118], flame surface density approach

[119], strained flamelets [79] and G-equation [120]. Recently, these flames have

also been computed using large eddy simulation with the thickened flame model

[121]. Stoichiometric methane-air flames with a fuel nozzle diameter D = 12 mm

and a pilot diameter dp = 68 mm were considered. Three flames designated as

F1, F2, and F3, were investigated in the experiments. The bulk mean velocity,

Uo, at the exit of the fuel nozzle is 65, 50 and 30 m/s for flames F1, F2 and F3
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respectively. The Reynolds number, Re, based on D and Uo, for these flames are

52000, 40000 and 24000 respectively. The hot stoichiometric products from the

pilot flames were flowing with a uniform velocity of 0.2 m/s, and this value is

obtained from the reported [2] volumetric flow rate at the burner exit.

As shown in the turbulent combustion regime diagram, Fig. 6.2, flames F1 and

F2 are in the thin reaction zones regime and flame F3 is on the border between the

thin reaction zones and the flamelets regimes. In the current study these flames

are computed using the RANS-CMC approach, with a specific interest on carbon

monoxide since the suggested [40] contribution of the CMC for premixed systems

is expected to be in the prediction of species with slow time scales including

pollutants.

Since no explicit assumptions on the influence of turbulent eddies on the flame

front structure were made while deriving the CMC equation, Eq. (3.3), the CMC

may hold in all regimes of premixed combustion although its successful application

would be determined by the accuracy of the closure models and the assumptions

used to obtain them. The conditional scalar dissipation rate, 〈Nc|ζ〉, is important

from this view-point since the progress variable gradient is strongly determined by

chemical reaction, molecular diffusion and their interaction in premixed flames.

However, as [40] noted, the contribution of CMC for premixed combustion would

be on the prediction of species with slow time scales, including the effects of

turbulence on the chemical structure. Using one time or length scale related

to the fast chemical process, typically used to construct the regime diagram,

may be insufficient to argue the applicability of the CMC in various premixed

combustion regimes. Careful studies using DNS data with complex chemical

kinetics in three dimensions and laser diagnostics data on the progress variable
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Figure 6.1: Schematic diagram of the burner setup [2] and the computational
domain along with BCs.
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Figure 6.2: The premixed combustion regime diagram showing flames F1, F2 and
F3.

gradient information and multi-species measurements are very much required to

address this open question.

The Favre averaged, continuity, momentum and enthalpy equations are solved

along with transport equations for θ̃, θ̃′′2 , Z̃ and Z̃ ′′2 . Although the mixture

fraction variance is included, for the calculation of partially premixed flames in

future, its solution is not used in this study. The mean mixture fraction must be

seen as a marker for the reacting mixture from the main jet and pilot, and it is

set to be unity in these two streams at the burner exit. This marker is used to

account for the mixing between the jet fluid and surroundings air as discussed by

[79]. The value of the total enthalpy computed using its transport equation at a

grid point is written as

h̃ = cp,mix

(
T̃ − To

)
+ ∆hof,mix, (6.1)
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where cp,mix = Z̃
∑
Ỹα θp,α + (1 − Z̃)θp,air, and ∆hof,mix = Z̃

∑
Ỹα ∆hof,α + (1 −

Z̃)∆hof,air, to obtain the average temperature T̃ . The enthalpy of formation for

the air is taken to be zero.

The turbulence is modeled using a standard k-ε model with changes to Cε1

(from 1.44 to 1.52) to account for round jet anomaly [122]. The boundary condi-

tions reported by [2] for the mean flow and turbulence quantities are used at the

burner exit (see Fig. 6.1) for the calculations reported in this study. A small uni-

form velocity of 0.2 m/s is specified to account for the ambient air entrainment.

The mean progress variable is specified to be one in the main jet and zero in the

pilot and ambient air streams. The variance of the progress variable is specified

to be zero in all the streams entering the computational domain. The conditions

at other computational boundaries are marked in Fig. 6.1.

A computational domain of size 1000 mm in the axial direction, x, and 270 mm

in the radial direction, r, is used with refined grid near the fuel exit. The smallest

cell size is 0.5×1.0 (in mm) and the CFD computational domain has 80×80×120

cells in y, z, x directions, for turbulence and mean quantities. For the CMC

calculations, 500 non-uniform cells are used in ζ space to resolve the very strong

gradients near the hot side (ζ = 0 in Figs. 6.8 and 6.9 to be discussed later) and

to obtain meaningful and smooth variations of conditional averages of major and

minor species involved in the chemical mechanism. Two cells in each physical

direction of the main grid for the fluid dynamics variables are combined to create

the physical space grid for the CMC equations, since the conditional averages are

expected to vary slowly in the physical space. These grids gave solutions with

negligible sensitivity to any further changes in the physical or CMC grids. Thus,

the results reported here are for the above grids.
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In order to assess the influence of chemical kinetics mechanism and eQα term

on the reacting flow results, three simulations were performed for flame F1 using

two different chemical mechanisms for methane-air combustion. In the first case,

the GRI-mechanism [123] is used, which consists of 325 reactions and 53 species.

In the second case, the skeletal mechanism of [124] involving 25 elementary chem-

ical reactions and 16 species is used. The effect of chemical kinetics mechanism

is studied by comparing these two cases. To evaluate the influence of eQα , see

Eq. (3.3), on the evolution of Qα, a third simulation is conducted using the GRI-

mech and including eQα given in Eq. (3.10). The other two flames, F2 and F3,

are simulated using the GRI-mechanism excluding the contributions from eQα .

A steady flamelet solution is used to specify the initial and the boundary con-

ditions for the CMC equations as noted in section 5.2. A single three-dimensional

simulation took about 336 hours wall clock time in a 3.5 GHz, 8GB RAM, intel

Xeon desktop computer to get a converged solution. This computational time can

be reduced significantly by using parallel computation techniques, which are yet

to be implemented in this computer code. The computed solutions are compared

to experimental data reported by [2]. These comparison are discussed next.

6.2 Results and Discussion

6.2.1 Non Reacting Flow

The non-reacting flow were simulated first to assess the turbulence models and

the flow boundary conditions used. Figures 6.3 and 6.4 show the normalised mean

velocity and turbulence kinetic energy results in non-reacting flow for flames F1,
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F2 and F3. The turbulence kinetic energy, k̃o, at the centre line of the fuel

nozzle exit are 12.7, 10.8 and 3.82 m2/s2 for flames F1, F2 and F3 respectively.

These results are shown for five axial locations, the symbols are the experimental

measurements and the lines are the computational results. The good agreement

shown here for the mean velocity suggests that the spread rate of the cold jet

is captured in the simulations and the boundary conditions used describe the

experimental conditions well.

The normalised mean turbulence kinetic energy profiles for flame F1 are in

excellent agreement with the measurements at the centre line for locations close

to the nozzle exit, while further down-stream, it is slightly over predicted. In the

radial direction, the computed k̃ is slightly over predicted at all locations in flame

F1.

Almost similar levels of agreement in the mean velocity and turbulent kinetic

energy are observed for flames F2 and F3 as shown in figures 6.3 and 6.4. The

normalised mean turbulent kinetic energy agrees well with the measurements at

the center line for all axial locations. In the radial directions, it is in good agree-

ment with the measurements for all axial locations except, at location x/d = 10.5,

it is slightly over predicted in the radial direction. In general, the results from

the cold flow are typical for k-ε model, and they are satisfactory and acceptable.

The radial variation of Z̃ at different axial distances is shown in Fig. 6.5

for flame F1. Unfortunately, there is no experimental data for this comparison,

however, the spread of this marker variable is as expected in this type of flow.

Since Z̃ = 1 in the fuel jet and pilot, the center-line value does not drop from

unity for the stream-wise locations noted.
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pared to the the experimental measurements (symbols) for flames F1, F2 and
F3.
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Figure 6.5: Computed radial variation of Z̃ in cold flow simulation at five axial
locations for the conditions of flame F1.

6.2.2 Conditional Scalar Dissipation Rate

The typical values of conditional dissipation rate obtained in the CMC calcula-

tion of flame F1 are shown in Figs. 6.6 and 6.7. Note that the model used in

this calculation is the algebraic model, Eq. 4.7. These values obtained at axial

locations x/D = 4.5 and 8.5 for different θ̃ inside the flame brush. these values

are non-dimensionalised using SoL and δoL. As shown in the figure, the charac-

teristics variation of 〈N |ζ〉+ with ζ is observed in the CMC calculation. This

is because the chemical reactions occur towards the hot side of the flame front,

which is denoted by low value of ζ, the progress variable. Unfortunately, there is

no experimental data for this comparison, however, if one compares the values of

〈N |ζ〉+ of flame F1 to the DNS flames shown in chapter 4, these values appear to

be larger because the turbulence level in flame F1 is large compared to the DNS

flames. Also as seen from the results the variation of 〈N |ζ〉+ with different θ̃ and

axial locations are very small.
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Figure 6.6: The typical variation of the conditional scalar dissipation rate,〈N |ζ〉+,
obtained in CMC calculations by, Eq. (4.7), with ζ in flame F1 at different loca-
tions inside the flame brush at x/D = 4.5. The values are non-dimensionalised
using SoL and δoL.
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Figure 6.7: The typical variation of the conditional scalar dissipation rate,〈N |ζ〉+,
obtained in CMC calculations by, Eq. (4.7), with ζ in flame F1 at different loca-
tions inside the flame brush at x/D = 8.5. The values are non-dimensionalised
using SoL and δoL.
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6.2.3 Terms in CMC Transport Equation

After neglecting the unsteady term in Eq. (3.3), the steady CMC transport equa-

tion can be written as

Conv.−Diff.− reac.+ reacθ − eQα = Imb. (6.2)

The typical variation of these terms with ζ for a few species is shown in Fig. 6.8

using GRI-mech. The results are shown for few representative scalars from flame

F1 at θ̃ = 0.55 and x/d = 4.5. Note that ζ = 0 is the burnt side and ζ = 1 is the

unburnt side. Since the values shown in Fig. 6.8 do not include the algebraic sign

in Eq. (6.2), a positive value indicates a source and a negative value implies a sink

for the terms related to the reactions and eQα . Since the four species shown in

Fig. 6.8 are produced by the chemical reactions in methane-air flames, the values

of the “reac.” term is positive. The reactive nature of the conditioning variable is

making a sink contribution to these scalars. Also as observed in Fig. 6.8, there is a

predominant balance between the convective and the diffusive terms and reaction

rate of species α is balanced by the “reacθ” and eQα terms in the reactive zone.

The Lewis number for the conditioning variable is unity. The magnitude of eQα is

dictated by ∂Qα/∂ζ and the value of Lewis number for species α, see Eq. (3.10).

However, if Leα is close to unity then one can see that eQα = 0 unless ∂Qα/∂ζ

is singular. The negligible value of eQα is noted in Fig. 6.8 for CO, since LeCO

= 1.084. The contribution of eQα for H2O is smaller then the reactive terms

but non-negligible because LeH2O = 0.78. However, for the atomic and molecular

hydrogen the contribution of eQα is as big as the reactive term in Eq. (3.10) since

the Lewis number for these species are small (LeH = 0.172,LeH2 = 0.293). Finally
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Figure 6.8: Typical variation of different terms of the CMC transport equation,
Eq. (6.2) , with ζ in flame F1 at θ̃ = 0.55. The results are shown for few repre-
sentative scalars.
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Figure 6.9: The variation of the conditional mean mass fraction with ζ for major
and minor species in flame F1 at θ̃ = 0.55 and x/d = 4.5.
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Figure 6.10: The variation of the conditional mean mass fraction with ζ for major
and minor species in flame F1 at θ̃ = 0.55 and x/d = 8.5.

the numerical errors represented by the “imb.” in Eq. (6.2) are observed to be

very close to zero in Fig. 6.8 indicating that the equations are solved with small

errors.

The typical variation of conditional mean mass fractions of representative

major and minor species is shown in Figs. 6.9, 6.10 and 6.11 for flame F1. The

results are shown for θ̃ = 0.55, the middle of flame brush at x/d = 4.5, 8.5

and for the two kinetics mechanisms used. It is clear that the influence of the

chemical kinetics mechanism on the computed values of the major species is
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Figure 6.11: The variation of the conditional mean mass fraction with ζ for major
and minor species in flame F1 at θ̃ = 0.55 and x/d = 10.5.

minimal. However, as one would expect the intermediate and the minor species

values are strongly influenced by the kinetics mechanism. The results suggest

that the skeletal mechanism gives lower values of Qα compared to the GRI-mech.

This is because of the additional chemical pathways available for the formation

of the intermediate species in the GRI-mech. As seen from the calculated results

that they have identical values at different axial locations x/d = 4.5, 8.5 and

10.5. This is supported by the CMC hypothesis that conditional mean quantities

have weaker spatial dependence than unconditional quantities. Thus, CMC has

a coarse grid compared to RANS, as indicated in section 6.1 .

6.2.4 Comparison to Experimental Results

To compute the mean values using Eq. (5.29), one requires the marginal PDF of

the conditioning variable. As noted earlier, this PDF is obtained by presuming

its shape as a Beta function, see Eq. (2.64), and using the computed values of θ̃

and θ̃′′2. The PDF obtained thus in the CMC calculation is shown in Fig. 6.12 for

flame F1. The typical bimodal shape, a well known characteristics of turbulent
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Figure 6.12: The variation of the Favre averaged PDF of the progress variable,
p̃(ζ), at three locations in the flame brush of flame F1.

premixed flames, is seen in this figure for all locations shown.

Typical contours for the calculated Favre averaged θ̃, θ̃′′2, Z̃ and T̃ are shown in

Figs. 6.13 and 6.14 for flame F1 for visual inspection and the expect behaviour

is seen clearly. The results from the reacting flow calculations are shown in

Figs. 6.15 to 6.24 for up to five axial locations, the symbols are the experimental

measurements and the lines are the computational results.

Figure 6.15 shows the radial variation of the normalised mean velocity and

turbulent energy for five axial locations for flame F1. The results are shown

for GRI-mech and Smooke’s skeletal mechanism. The influence of eQα is also

shown. In general, the computed mean velocity agrees well with the measured

values. The values computed using GRI-mech are closer to the experimental

data, compared to the values obtained using Smooke’s mechanism. The differen-

tial diffusion effects denoted by eQα do not seem to influence the mean velocity

values. However, the computed values of the turbulent kinetic energy show some
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Figure 6.13: Contours of the mean progress variable and its variance for flame
F1
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Figure 6.14: Contours of the mean mixture fraction variable and temperature for
flame F1

88



6. Stoichiometric Premixed Flame Calculation

sensitivity to the chemical kinetics mechanism and the differential diffusion ef-

fects. At x/d = 2.5, the Smooke mechanism seem to work very well while the

GRI-mech over predicts the turbulent kinetic energy. However, the contribution

of eQα seem to correct this over prediction. For all the axial locations studied in

Fig 6.15, the turbulent kinetic energy computed using Smooke mechanism and

GRI-mech with eQα compares well with the measured values up to r/d ' 0.5 for

flame F1. By comparing the results obtained using GRI-mech with and without

eQα contribution, one notes that the effects of eQα is large up to r/d = 0.8 in the

near field and this region started to move slowly inward (toward the jet center) as

x/d increases. This suggests that the differential diffusion effects are important

near the central core region. This is consistent with our expectation, since the

turbulence is produced by the shear production mechanism and the turbulence

in the jet is small.

The computed values of mean mass fraction of methane and normalised mean

temperature are compared to the experimental data in Fig. 6.16 for flame F1. The

agreement in the mean mass fraction of methane is very good and its sensitivity to

the chemical kinetics mechanism is negligible. The mean temperature is over pre-

dicted in the near field and the agreement improves with down-stream distance.

Except for x/d = 2.5, the computed mean temperature is weakly sensitive to

the chemical kinetics mechanism and differential diffusion effects. There is some

uncertainty in the temperature boundary condition for the pilot stream as has

been noted in many previous studies [68; 79; 119; 120; 121] using this experiment

and thus one must be careful while interpreting the results for the mean temper-

ature at x/d = 2.5. However, the general agreement between the computed and

measured values is satisfactory and the computed values show negligibly small
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Figure 6.15: The normalised mean velocity and turbulent kinetic energy from
the CMC calculations (lines) at five axial locations are compared to experimental
results (symbols) for flame F1.
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sensitivity to the chemical mechanism and the eQα contribution. This observa-

tion also applies to the major species mass fraction reported in Fig. 6.17. The

agreement for H2O and O2 is better than for CO2 as shown in Fig. 6.17 and these

relative behaviours (between the computations and measurements) is similar to

these reported in earlier studies using other combustion modelling methods.

The radial variation of mean mass fractions of CO, OH and H2 are compared

to the experimental measurements in Fig. 6.18 for five axial locations for flame

F1. As one would expect the computed values are sensitive to the kinetics scheme,

however, the influence of eQα is observed to be small as in Fig. 6.18. The peak

values of the averaged mass fraction of these species are larger for GRI mechanism

compared to Smooke mechanism and the values obtained using Smooke mecha-

nism are closer to the experimental data. The agreement between the computed

and measured values are good for OH and H2 as shown in Fig. 6.18. However

for CO, there seems to be large discrepancies and the reason for this is unclear

at this stage. The peak values and the radial variation of mean mass fraction of

CO computed using CMC in this study are similar to those reported earlier using

other modelling approaches for premixed flames.

The flames, F2 and F3, are simulated using the GRI-mechanism excluding the

contributions from eQα . Figures 6.19 and 6.20 show the radial variation of the

normalised mean velocity and turbulent kinetics energy for flames F2 and F3. The

level of agreement between the computed and measured values of these quantities

for flames F2 and F3 is similar to that shown for flame F1. At the center line,

the computed mean velocity and turbulent energy are in excellent agreement

with the experimental measurements for all axial locations for both flames F2

and F3. In the radial direction, the computed mean velocity agrees well with
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Figure 6.16: The normalised mean temperature and CH4 mass fraction × 100,
from the CMC calculations (lines) at five axial locations are compared to exper-
imental results (symbols) for flame F1.

92



6. Stoichiometric Premixed Flame Calculation

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
H

2
O

r/D

x/D = 10.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
C

O
2

r/D

x/D = 10.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
O

2

r/D

x/D = 10.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
H

2
O

r/D

x/D = 8.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
C

O
2

r/D

x/D = 8.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
O

2

r/D

x/D = 8.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
H

2
O

r/D

x/D = 6.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
C

O
2

r/D

x/D = 6.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
O

2

r/D

x/D = 6.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
H

2
O

r/D

x/D = 4.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
C

O
2

r/D

x/D = 4.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
O

2

r/D

x/D = 4.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
H

2
O

r/D

x/D = 2.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
C

O
2

r/D

x/D = 2.5
GRI
eQ

α

Smook
Exp.

0

0.05

0.1

0.15

0.2

0.25

0 0.4 0.8 1.2 1.6 2

Y
O

2

r/D

x/D = 2.5
GRI
eQ

α

Smook
Exp.

Figure 6.17: The mean mass fractions of H2O, CO2 and O2 from the CMC
calculations (lines) at five axial locations are compared to experimental results
(symbols) for flame F1.
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Figure 6.18: The mean mass fractions of CO× 10, OH× 75 and H2× 100 from
the CMC calculations (lines) at five axial locations are compared to experimental
results (symbols) for flame F1.
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the measurement values for flame F2, while flame F3 shows some discrepancies

particularly at r/d > 0.8. The turbulent energy is slightly over predicted in the

near field and the agreement improves with down stream distance for flames F2

and F3.

The computed values of mean mass fraction of methane and normalised mean

temperature of flames F2 and F3 are compared to the experimental data in

Figs. 6.21 and 6.22. The level of agreement between the computed and mea-

sured values of the mean temperature and mass fraction of CH4 improves slightly

as turbulence Reynolds number decreases (ie. from flame F1 to F3). As shown

in the figure, the mean mass fraction of methane agrees well with experimen-

tal values and the mean temperature is over predicted in the near field and the

agreement improves gradually in down stream direction. The computed values

of the mean mass fraction of the major species of flames F2 and F3 are shown

in Fig. 6.23. The major species are in good agreement in the near field and the

agreement improves with down stream distance. The computed values of mean

mass fractions of CO, OH and H2 are compared to the experimental values in

Fig. 6.24 for flames F2 and F3. The results are shown as radial variations at a

few down stream locations. The relative behaviours between the calculated and

measured values are similar to that for flame F1 for all species studied. The peak

CO values measured for a given x/d location seem to be weakly sensitive to the

changes in the Reynolds and Damköhler numbers (compare the peak value, for

example for x/d = 8.5 among F1, F2 and F3 flames), but the CMC results shows

a gradual drop in the peak CO value as the Damköhler number increases. This

is consistent with our expectation.
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Figure 6.19: The normalised mean velocity from the CMC calculations (lines) at
five axial locations are compared to experimental results (symbols) for flames F2
and F3.
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(symbols) for flames F2 and F3.
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Chapter 7

Lean Premixed Flame

Calculation

7.1 Flames Details

The second test case used in this study is the pilot stabilised lean premixed

flames of Dunn et al. [3], which is shown schematically in Fig. 7.1. This jet

burner (PPJB) used in the experimental study [3] consists of a central jet of

a lean premixed methane-air mixture with equivalence ratio of 0.5 and initial

temperature of 300 K, and a pilot of a hot stoichiometric premixed methane-

air products. The central jet and the hot pilot have diameters of 4 and 23.5

mm, respectively. These two streams are surrounded by a hot co-flow from lean

premixed laminar H2-air flames with equivalence ratio of 0.43. The diameter

for this hot co-flow stream is 197 mm. The pilot and the hot co-flow streams

were flowing with small uniform velocities of 0.8 and 0.7 m/s, respectively [3].

Four flames were considered in the experimental study [3] designated as PM1-
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Figure 7.1: Schematic diagram of the premixed Bunsen burner from [3; 4].
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Stream D (mm) U0 (m/s) T (K) φ mixture
Jet 4 50 - 200 300 0.5 CH4 − air (reactant)

Pilot 23.5 0.8 2280 1 CH4 − air (products)
Co-flow 197 0.7 1500 0.43 H2 − air (products)

Table 7.1: The properties of the streams of flames PM1-50 and PM1-200.

50, PM1-100, PM1-150 and PM1-200 with central jet bulk mean velocities, Uo,

of 50, 100, 150 and 200, respectively. The Reynolds number, Re, based on the

central jet velocity, diameter, D, are 12500, 25000, 37000 and 50000, respectively.

A small uniform velocity of 0.2 m/s is specified to account for the ambient air

entrainment. The characteristics of these streams are summarized in table 7.1.

As shown in the turbulent combustion regime diagram, Fig. 7.2, these flames

are in the distributed combustion regime. In this regime, scales of the chemical

length and time scales are larger than the turbulence. Hence, applying flamelets

based methods to these flames may be inappropriate. Note that the values of Λ/δ

for flames PM1-50 and PM1-200 are 2.4 and 1.8, respectively and the values of

u′ are 15 and 54, respectively as reported by Dunn et al.[125]. The laminar flame

speed is SoL = 0.051 m/s. These flames have been used in earlier studies to validate

premixed turbulent combustion models such as a transported PDF models [6] and

joint velocity-turbulence frequency-composition VFJPDF method [5] and large

eddy simulation [126]. In the current study, these flames are computed using the

RANS-CMC approach discussed in earlier chapters of this thesis.
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Figure 7.2: The premixed combustion regime diagram showing the stoichiometric
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7.2 Computational Details

A schematic of the computational domain for this flame is shown in Fig 7.3.

It must be noted that the three streams have different composition and equiv-

alence ratios as given in table 7.1, and thus more than one passive scalar (fluid

marker variable) is required to account for the mixing of these streams. Thus,

in addition to the Favre averaged transport equations used for the stoichiometric

premixed flames discussed in chapter 6, additional transport equations for two

passive scalars, Z̃2 and Z̃3, are implemented to track the fluids emerging from the

hot pilot and hot co-flow streams and to account for the effects of mixing of these

streams with the main jet and with the entrained air. Thus, each stream has its

own designated markers, Z̃1, Z̃2 and Z̃3 and their values are set to be unity at

the inlet of appropriate streams as shown in Fig 7.3. These markers are used in

105



7. Lean Premixed Flames Calculation

the following manner to obtain the average temperature T̃ . The total enthalpy

computed using its transport equation at a given grid point in the physical space

is written as

h̃ = hs + ∆hof,mix, (7.1)

=
∑
i

[
Z̃1Ỹα + Z̃2Ỹα,2 + Z̃3Ỹα,3 +

(
1− Z̃1 − Z̃2 − Z̃3

)
Ỹα,air

]
θpi

(T̃ − T0)

+
∑
i

(
Z̃1Ỹα + Z̃2Ỹα,2 + Z̃3Ỹα,3

)
∆hofα

, (7.2)

where Ỹα is the mass fraction of species α at the grid point. Ỹα,2 and Ỹα,3 are

the mass fractions of species α in the streams 2 and 3 at the inlet. ∆hofα
is the

enthalpy of formation for species α and the enthalpy of formation for air is taken

to be zero. From the above equation, one can easily verify that the temperature

of the incoming streams are recovered by using the boundary values for Z̃1, Z̃2

and Z̃3 marked in Fig 7.3.

The inlet velocity profile is specified using the bulk mean value as u(r)/U0 =

(1− r/R)1/7, where R is the radius of the main jet port. Uniform velocities of 0.8

and 0.7 m/s are specified as initial values for the pilot and hot co-flow streams. A

small uniform velocity of 0.2 m/s is specified for the surroundings air. A uniform

value for the mean turbulent kinetic energy, k̃o, at the center line of the fuel

nozzle exit, is obtained from I = u′/U0 =
√

2k/3/U0. The axial rms velocity,

u′, for the cold and reacting flows for both selected flames are reported in the

experiment [3], see u′, Figs. 7.4 and 7.5. The initial value for dissipation rate, ε̃o,
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Figure 7.3: Schematic diagram of the burner setup and the computational domain
along with BCs.
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at the center line of the fuel nozzle exit, is obtained using ε̃o = Cuk̃
3/2
o /Λ.

The computational domain is 600 mm long in the axial direction, x, and

300 mm in the radial direction, r. The CFD computational domain has 150 cells

in the axial direction and 100 cells in the radial direction. The domain is refined

non uniformly near the fuel, pilot and co-flow streams, where the smallest cell

size is 1 × 1.6 (in mm). As for the stoichiometric flame, the CMC grid has 500

non-uniform cells in ζ space, which were required to resolve the strong gradients

in the progress variable space. Two cells in each direction of the physical space

grid for the RANS equations are combined to create the physical space grid for

the CMC equations. The sensitivity of the computed solution to the grid size is

tested by doubling and halving the size of the smallest cell, while retaining the

grow the rate for the cell size. The solution showed a weak sensitivity and thus,

the grid resolution noted above is used for the results reported in this chapter.

The values of various model parameters in the turbulence and other models

discussed in earlier chapters are kept to be the same as those used for stoichio-

metric flame studied in chapter 6, except for Cε1 = 1.6. The chemical kinetics is

modelled using the GRI-mechanism [123] and a steady flamelet solution is used as

an initial solution and to specify the boundary conditions for the CMC equations.

The computed solutions are compared to the experimental data reported in [4; 6]

in the following discussion.

7.3 Results and Discussion

Turbulence models and boundary conditions used in this calculation are assessed

first by comparing the non-reacting flow results for both flames, PM1-200 and
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Figure 7.4: The calculated (lines) normalised mean axial velocity and rms ve-
locity from non-reacting and reacting flows are compared to experimental data
(symbols) for flame PM1-200.

PM1-50 selected for this study. Figures. 7.4 and 7.5 compares the calculated mean

and rms axial velocity. The values are normalised using the bulk mean velocity,

U0, at the jet exit. The non-reacting and reacting flows are denoted by the letter

N and R, respectively in these figures. The normalised mean axial velocity for

both of these flames are in excellent agreement with the measurements. A very

good agreement for the normalized rms velocity is observed. These comparison

clearly indicated that the boundary conditions used in the simulations mimic the

experimental conditions well. Note that the u′ is obtained from the calculated k̃

as explained in the previous section, while the experimental results is obtained

using

u′ =

√∑i=n
i=1 [u(ti)− U ]2∆ti∑i=n

i=1 ∆ti
, (7.3)

where n is taken to be the number of realisations and ∆ti is the gate period in

the measurements for the ith realisation of the velocity.
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Figure 7.5: The calculated (lines) normalised mean axial velocity and rms ve-
locity from non-reacting and reacting flows are compared to experimental data
(symbols) for flame PM1-50.

7.3.1 Conditional Mean Mass Fractions

The conditional mean mass fraction, Qα, is obtained by solving the CMC equa-

tion, Eq. (3.3). The typical variation of conditional mean mass fractions for some

selected representative major and minor species is shown in Figs. 7.6, 7.7 and

7.8 for flame PM1-200. The results are shown for θ̃ = 0.55, the middle of flame

brush at axial location x/D = 4.5, 8.5 and 10.5. ζ = 0 is the product side and

ζ = 1 is the reactant side. Note that, the values of H2 and OH are multiplied by

40 and 20, respectively for plotting purpose. The unstrained laminar premixed

flame is computed using CHEMKIN-II package along with GRI-mech. The vari-

ation of conditional averages of major species in the sample space is very close to

those found in the unstrained laminar flame. However, the representative minor

species variation with ζ in the CMC calculation is similar to those observed in

the laminar flame, except for the molecular hydrogen. In the laminar flame, the

hydrogen mass fraction varies little with a sharp drop near ζ = 0 and ζ = 1, but
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Figure 7.6: The variation of the conditional mean mass fraction with ζ for major
and minor species for flame PM1-200 at θ̃ = 0.55 and x/D = 4.5.

the conditional mean value for the hydrogen shows a peak near ζ ≈ 0.16. For the

PM1-50 flame, the variation of conditional means are similar to those shown in

Fig. 7.6. As seen from the calculated results that they have identical values at

different axial locations x/d = 4.5, 8.5 and 10.5. This is supported by the CMC

hypothesis that conditional mean quantities have weaker spatial dependence than

unconditional quantities.

7.3.2 Comparison to Experimental Results

The typical variation of the conditional dissipation rate for the flames, PM1-

200 and PM1-50 is shown in Figs. 7.9, 7.10 and 7.11 at θ̃ = 0.55 and axial

locations x/D = 4.5, 6.5 and 10.5. The turbulence level for flame PM1-200

is higher compared to flame PM1-50, and thus the mean dissipation rates are

larger in flame PM1-200. The variation of 〈Nθ|ζ〉+ shown in Figs 7.9 , 7.10

and 7.11 are similar to that observed in Fig 6.6 for the stoichiometric flame and

the magnitudes are different because of the difference in the thermo-chemical
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Figure 7.7: The variation of the conditional mean mass fraction with ζ for major
and minor species for flame PM1-200 at θ̃ = 0.55 and x/D = 8.5.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

Q
s

ζ

H2O− CMC
H2O− Laminar

O2 − CMC
O2 − Laminar
CH4 − CMC

CH4 − Laminar
CO2 − CMC

CO2 − Laminar

0

0.003

0.006

0.009

0.012

0.015

0 0.2 0.4 0.6 0.8 1

Q
s

ζ

40 × H2 − CMC
40 × H2 − Laminar

20 × OH − CMC
20 × OH − Laminar

CO − CMC
CO − Laminar

Figure 7.8: The variation of the conditional mean mass fraction with ζ for major
and minor species for flame PM1-200 at θ̃ = 0.55 and x/D = 10.5.
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θ̃ θ̃′′2 Z̃1 Z̃2 Z̃3

0.9 0.027 0.971 0.026 0.0025
0.8 0.063 0.931 0.061 0.006
0.7 0.097 0.894 0.094 0.011
0.6 0.129 0.857 0.126 0.015
0.5 0.161 0.821 0.158 0.020
0.4 0.193 0.784 0.190 0.024
0.2 0.145 0.635 0.308 0.055

Table 7.2: Values of θ̃, θ̃′′2, Z̃1, Z̃2 and Z̃3 in flame PM1-50 for the PDFs shown
in Fig. 7.12.

and turbulence conditions of these flames. Also it obvious from the results that

the conditional scalar dissipation rate changes slowly in the axial direction. Its

magnitude is increased about 5% in the down stream direction.

The marginal PDF of the progress variable, obtained using the presumed

Beta function for the given Favre mean and variance is shown in Figs. 7.12 and

7.13 for flames PM1-50 and PM1-200, respectively. The Favre mean, θ̃, and

variance, θ̃′′2, are obtained from their respective transport equations. Unlike

for the stoichiometric flames discussed in chapter 6, these PDFs are not bimodal

across the flame brush. These PDFs are shown for seven different radial locations,

denoted by θ̃, at a given axial location x/D = 4.5. The values of θ̃′′2, Z̃1, Z̃2 and

Z̃3 at these locations are given in tables 7.2 and 7.3 respectively for flames PM1-

50 and PM1-200. The value of the Favre variance for the bimodal PDF limit

given by θ̃′′2 = θ̃(1− θ̃) is observed only for low values of θ̃. At location very close

to the burnt side of the flame brush, ie. θ̃ ≤ 0.15, bimodal PDFs are observed for

both flames PM1-50 and PM1-200. The mono-modal behaviour of this marginal

PDF is typical of distributed combustion regime.

The radial variations of Z̃1, Z̃2 and Z̃3 at six axial locations in flame PM1-200
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obtained in the CMC calculation for flames PM1-50 and PM1-200 at θ̃ = 0.55,
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Figure 7.13: The variation of the Favre PDF of the progress variable, p̃(ζ), at
selected locations of the flame brush of flame PM1-200.

θ̃ θ̃′′2 Z̃1 Z̃2 Z̃3

0.9 0.030 0.964 0.0181 0.017
0.8 0.051 0.925 0.035 0.039
0.7 0.094 0.883 0.054 0.062
0.6 0.143 0.848 0.069 0.081
0.5 0.141 0.809 0.087 0.103
0.4 0.205 0.761 0.101 0.136
0.2 0.155 0.620 0.126 0.252

Table 7.3: Values of θ̃, θ̃′′2, Z̃1, Z̃2 and Z̃3 in flame PM1-200 for the PDFs shown
in Fig. 7.13.
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Figure 7.14: Computed radial variation of Z̃1 from the hot flow simulation at six
axial locations for the conditions for flame PM1-200.

are shown in Figs. 7.14, 7.15, 7.16 and 7.17 respectively. Since these fields are non-

reactive, convective and diffusive fields, they are expected to spread with down

stream distance. The results in Figs. 7.14 to 7.17 clearly shown this behaviour.

However, Z̃3 does not seem to decrease below one for 10 ≤ r/D ≤ 20 for the axial

locations shown in Fig. 7.17, this is because x/dp2 = 0.91 for x/D = 45. To see

any significant drop from unity for 10 ≤ r/D ≤ 20, one must go beyond 100D

axial distance. This point is clearly from Fig. 7.18, showing a colour map of Z̃3.

The spatial evolution of Z̃1 and Z̃2 is shown in Fig. 7.19. From these results,

one observes that the mixing of these three streams is captured well. Figure 7.20

shows the spatial variation of θ̃ and θ̃′′2. Since the variance θ̃′′2 is produced by

the chemical reaction and 5θ̃, one will observe a sharp increase in θ̃′′2 inside the

flame brush. This behaviour is clearly in Fig.7.20

The variation of the center-line value of the mean and rms values of the axial

velocity is shown in Figs. 7.4 and 7.5 respectively. These values are normalised
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Figure 7.15: Computed radial variation of Z̃1 from the hot flow simulation are
compared to PDF calculations [5] for flame PM1-200.
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Figure 7.16: Computed radial variation of Z̃2 from the hot flow simulation at six
axial locations for the conditions for flame PM1-200.
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Figure 7.17: Computed radial variation of Z̃3 from the hot flow simulation at six
axial locations for the conditions for flame PM1-200.

Figure 7.18: Contours of Z̃3 for flame PM1-200
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Figure 7.19: Contours of Z̃1 and Z̃2 for flame PM1-200
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Figure 7.20: Contours of the mean progress variable and its variance for flame
PM1-200
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using the bulk mean value at the main jet inlet, U0. The computed values are

compared to the measurements in these figures. The agreement in the mean

values at locations close to the fuel nozzle is excellent. Further down stream,

particularly for x/D > 20, the computed values are over-predicted for flame

PM1-200, while the agreement is improved for flame PM1-50 which has a lower

Re number. The rms values for both flames show some discrepancies at all axial

locations.

In the radial direction, the computed mean velocity using the CMC for flame

PM1-200 is over predicted for all axial locations as shown in Fig. 7.21. A good

agreement is observed for x/D = 5 and 55. However, for flame PM1-50, a good

agreement with the experimental measurements is observed for all axial loca-

tions as shown in Fig. 7.22. The rms velocity for flame PM1-200 is shown in

Fig. 7.23, and the CMC values are in reasonable agreement with the experimen-

tal measurements. While, for flame PM1-50 there are some discrepancies with the

experimental measurements as in Fig. 7.24. These are typical for k-ε turbulence

model used in the calculations. These behaviours for the computed velocities are

very similar to those reported by Dunn et al. [6] and Dunn [4] using transported

PDF modelling. This comparison is also shown in Figs 7.21 to 7.24.

Figures 7.25 and 7.26 show the radial variation of mean temperature from the

CMC calculations of flames PM1-200 and PM1-50, respectively. The influence

of the pilot gases on the main jet mixture is well captured. The adiabatic flame

temperature u1480 K, is predicted well inside the flame brush at r/D = 0.7 at

x/D = 2.5, and it is consistent with these reported in the experiment [6]. The

high temperature between r/D = 1 to 2.5, indicate that the reaction of the main

jet is influenced mainly by the hot pilot temperature. Also, the effect from the
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lean hot co-flow stream is well captured at r/D = 2.8 and beyond. This effect

is captured as a drop in the temperature between the stoichiometric pilot and

the lean co-flow streams. The drop in the mean temperature to a value of about

1300K near r/D = 3 for x/D = 2.5 could be due heat loss to the burner, which is

not included in the CFD model. This heat loss effect is shown clearly by Rowinski

and Pope [5], however, it is also noted in that study that the sensitivity of the

computed results at locations beyond x/D = 25 is small.

The radial variation of the mean temperature shown here for PM1-200 is very

similar to that shown by Rowinksi and Pope [5], Dunn et al. [6] and Dunn

[4] computed using different approaches and modellings for transported PDF

methodology. The radial variation of the calculated mean temperature is shown in

Fig 7.26 for flame PM1-50 and the agreement with the measured values is observed

to be very good, when compared to the PM1-200 flame. This is not surprising

because the turbulence model used in this study seems to predict the turbulence

quantities better for PM1-50 flame as noted earlier. Since the CMC sub-models

feed on the predicted turbulence quantities, one observes a good prediction for

flame PM1-50. The relative behaviour of the computed and measured mean

temperature for flame PM1-50 is very similar to that reported by Rowinksi and

Pope [5], Dunn et al. [6] and Dunn [4]. This comparison is also shown in Figs 7.25

to 7.26

The radial variation of the mean mass fractions of CO and OH computed

using the CMC are compared to the experimental measurements and PDF com-

putations [4; 6] in Figs. 7.27, 7.28, 7.29 and 7.30. Note that the values of CO

and OH are multiplied by 103 and 106, respectively. Except for the near field

location, x/D = 2.5, the mean CO and OH mass fractions are over predicted for
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flame PM1-200 at all axial location as in Fig 7.27 and 7.29. The radial variation

of the mean CO and OH mass fractions are captured well for flame PM1-50. The

mean CO mass fraction for PM1-50 is in very good agreement with the exper-

imental measurements except for location x/D = 25, while the mean OH mass

fraction is in good agreement only in the near field location, x/D = 2.5. The

comparisons between the CMC and measured values are similar to those observed

for transported PDF calculations, as noted in Figs 7.27 to 7.30

The comparison of computed and measured CO shown in Fig 7.28 for flame

PM1-50 is slightly better than those shown by Rowinksi and Pope [5], Dunn et al.

[6] and Dunn [4] from calculations using the PDF methodologies. However, the

comparison shown here for flame PM1-200 is somewhat similar to that reported

in [5] and [4; 6]. It is interesting to note a similar behaviour for the reactive scalar

mean mass fractions and temperatures, despite a vast difference in the modelling

methods used. There is gross over prediction of mean CO and OH mass fractions

and temperature for flame PM1-200. Rowinksi and Pope [5] showed that this is

because the reaction rates in flame PM1-200 are reduced and the reaction rates

have to be slowed down by a factor of 5 in their PDF calculation to obtain a

good match with measured mean mass fraction values and temperature. This

observation seem to apply for the CMC calculations reported here, but further

calculations are required to verify this.

124



7. Lean Premixed Flames Calculation

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

e U U
o

r/D

x/D = 45

CMC
Exp.
PDF, k-ε
PDF, k-ω

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
e U U
o

r/D

55

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

e U U
o

r/D

25

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

e U U
o

r/D

35

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2

e U U
o

r/D

5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2

e U U
o

r/D

15

Figure 7.21: The mean velocity from the CMC calculations at six axial locations
are compared to the experimental data [4] and PDF calculations, k-ε and k-ω [6]
for flame PM1-200.
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Figure 7.22: The mean velocity from the CMC calculations at four axial locations
are compared to the experimental data [4] and PDF calculations, k-ε and k-ω [6]
for flame PM1-50.
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Figure 7.23: The mean rms velocity from the CMC calculations at six axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] for flame PM1-200.
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Figure 7.24: The mean rms velocity from the CMC calculations at four axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] for flame PM1-50.
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Figure 7.25: The mean temperature from the CMC calculations at four axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] and VFJPDF [5] for flame PM1-200.
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Figure 7.26: The mean temperature from the CMC calculations at four axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] and VFJPDF [5] for flame PM1-50.
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Figure 7.27: The mean C̃O×103 from the CMC calculations at four axial locations
are compared to the experimental data [4] and PDF calculations, k-ε and k-ω [6]
and VFJPDF [5] for flame PM1-200.
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Figure 7.28: The calculated mean C̃O × 103 mass fraction from CMC calcula-
tions at four axial locations are compared to the experimental data [4] and PDF
calculations, k-ε and k-ω [6] and VFJPDF [5] for flame PM1-50.
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Ỹ
O

H
∗

1
0

6

r/D

x/D = 45

CMC
Exp.
PDF, k-ε
PDF, k-ω

0

200

400

600

800

1000

0 1 2 3 4 5
Ỹ
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Figure 7.29: The calculated mean OH× 106 from CMC calculations at five axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] for flame PM1-200.
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Ỹ
O

H
∗

1
0

6

r/D

x/D = 15

CMC
Exp.
PDF, k-ε
PDF, k-ω

0

300

600

900

1200

1500

0 1 2 3 4 5

Ỹ
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Figure 7.30: The calculated mean OH× 106 from CMC calculations at four axial
locations are compared to the experimental data [4] and PDF calculations, k-ε
and k-ω [6] for flame PM1-50.
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Chapter 8

Summary and Conclusions

8.1 Conclusion From This Work

The over all aim of this study was to explore the conditional moment closure

method for turbulent lean premixed flames. Specifically, to predict pollutants

such as NOx, CO in turbulent lean premixed flames. These species have slow

time scales and thus flamelet type approach may be insufficient. The CMC and

the transported JPDF are alternative approaches. In this study, the CMC is

considered, which was used and validated mainly for non-premixed flames in the

past studies [30; 31; 32; 33; 34; 35; 36]. The main difficulties in applying CMC

to premixed flames is due to the conditional scalar dissipation rate in the CMC

transport equations, see Eq. 3.3. This term is crucial in the CMC method and the

accuracy of the method depends on accurate modelling for this term. The scalar

dissipation rate signifies the local mixing rate of reacted and unreacted mixtures

inside the turbulent flame brush and this mixing rate will dictate the chemical

reaction rate.

In this study, two methods to find a closure for the conditional scalar dissi-

pation rate was tested in chapter 4. One method, see Eq. 4.11, is based on the
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mathematical techniques for finding a solution for ill-posed problem and involves

an integral equation relating the mean dissipation rate to the conditional dissi-

pation rate. The second method uses a simple algebraic model, proposed in an

earlier study [79]. These two models were validated using two different DNS data

sets; one for stoichiometric and another one for lean turbulent premixed flames.

The results showed that the simple algebraic model was in better agreement with

the DNS data and the results obtained using the first method showed a high

sensitivity to the initial values for the conditional dissipation rate. Thus, the

algebraic model is chosen as a closure for the conditional scalar dissipation rate

in this study.

The CMC sub-models for the premixed flames, discussed in chapter 3, were

implemented along with the conditional scalar dissipation rate model in a three-

dimensional CFD code. The CFD code is based on the RANS approach using

the standard k-ε turbulence modelling. This code, originally developed for non-

premixed combustion [127], was modified for the premixed flames by including

transport equations for the progress variable, c̃, and its variance c̃′′2 along with

suitable closures for the source/sink terms, ω̇c, c′′ω̇c and the mean scalar dissipa-

tion rate ε̃c. The closures used for the terms related to the chemical reactions are

consistent with the CMC methodology as described in section 5.2. The RANS-

CMC equations are solved using finite volume methodology. The details are

presented in chapter 5.

The RANS-CMC method is used to compute stoichiometric [2] and lean pilot

[3] stabilized Bunsen flames, five flames in total. A first order closure is used

for the conditional mean reaction rate. The PDF of the progress variable is

obtained using a presumed shape with a Beta function. The GRI-mech. 3.0 and
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the skeletal mechanism of Smooke are used for modelling the chemical kinetics

for the stoichiometric flames to study the effects of chemical mechanisms on the

computed results. The results are presented in chapter 6. The GRI-mech 3.0 is

used for the lean flames and the results are discussed in chapter 7. The turbulence

models and the boundary conditions used are assessed first by simulating the non-

reacting flow where the computed mean velocity and turbulent kinetic energy

agree reasonably well with the measurements for all the flames studied. As for

the reacting flow, the mean velocity and mean turbulent kinetic energy were

satisfactory and acceptable for both stoichiometric and lean flames. The influence

of chemical kinetic mechanism and eQα term on the reacting flow were assessed

using three simulations for the flame F1 of Chen et al.[2]; one using the skeletal

mechanism, the second simulation using the GRI-mech and, the third simulation

using GRI-mech and including eQα term. The results showed that the effect of

eQα was in general negligible and the effect of chemical mechanism was significant

only for minor species.

For the stoichiometric flames reported in [2], the computed mean mass frac-

tion of methane and normalised temperature are in reasonable agreement with

measurements for all the three flames. The predicted major species mass fractions

are also in reasonable agreement with the experimental data. However, the level

of agreement improves as the overall Damköhler number increases. As for the mi-

nor species reported in the experiments are concerned, CO is over predicted, H2

is under predicted and OH is observed to agree quite well with the measurements

at all axial locations for all the three flames in [2]. The reason for the discrepan-

cies observed for CO mass fraction is unclear, although the level of disagreement

is similar to that reported in earlier studies [68; 79; 118; 119; 120; 121] using
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other combustion modelling approaches for these experimental flames. This gives

confidence on the models and methodology used in this study.

A comparison of peak CO values at a given axial location show a weak sensi-

tivity to the turbulence Reynolds and Damköhler numbers, at least for the range

considered in the experimental studies, but the CMC results suggest a drop in

this value as the Damköhler number increases, which is in agreement with our

expectation.

Although the sensitivity of CO to the choice of the progress variable was

shown to be small in an earlier study using flamelets based modelling [79], the

effects of changing the conditioning variable definition on the CMC results are yet

to be explored. The effects of other modelling, for example the counter-gradient

scalar flux, on the CMC prediction need to be studied.

For the lean flames, the computed mean temperature is in good agreement

for the flames PM1-50 for all axial locations. As for the flame PM1-200, the

agreement was better near the fuel exit, while in the down stream distance, the

agreement was less. However, the influence of the pilots gases and the adiabatic

temperature were well captured. The predicted minor species CO and OH mass

fractions were in reasonable agreement in the flame PM1-50, and the agreement

was less for the flame PM1-200. The observed agreement for the PM1-200 flame

was similar to those observed in earlier studies using transported joint PDF ap-

proach [3; 4] and [5].
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8.2 Future Work

There are several points, which can be explored in future studies, some of these

points are:

1. The unconditional and conditional turbulent scalar flux is modeled using

the classical gradient transport hypothesis in this study. As theoretical

analysis and experimental studies pointed out the existence of both gradient

and counter gradient fluxes and their co-existence in turbulent premixed

flames. It is worthwhile to explore CMC with scalar flux models which can

include, both gradient and counter gradient fluxes.

2. The progress variable based on fuel mass fraction is used as the conditioning

variable in this study. Thus, the effects of changing the conditioning variable

would be of some interest.

3. The standard k-ε turbulence model is used in this study. Hence, it is worth

to explore the effects of other turbulence modelling, such as RNG k-ε [128],

k-ω SST, Reynolds stress equation, etc., on the CMC prediction.

4. The effects of radiative heat loss on the CMC prediction.

5. Alternative models for the unconditional and conditional mean scalar dis-

sipation rate for the conditioning variable.

6. Effects of alternative shapes for the PDF of the conditioning variable.

7. Effects of flame geometries on the CMC prediction.
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8. This study examined the premixed CMC for laboratory scale flames. Since,

this gave encouraging results, it is worth to explore this methodology for

practical combustion systems such as stationary gas turbine combustors.

9. Finally, implementing the premixed CMC in LES framework could prove

to be worthwhile, since LES-CMC has been used in many previous studies

for non-premixed flames.

Availability of mean species, temperature and velocity measurements with

clearly specified errors and uncertainties from fully characterised premixed

burners would be instrumental in validating and further developing models

for turbulent lean premixed flames, and to support or unsupport the obser-

vation on the applicability of the CMC across the combustion regimes.
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Appendix A

CMC equation for premixed combustion

In this section the conditional moment closure equations are derived using the

decomposition method [40]. The instantaneous mass fraction of species α is

decomposed into conditional mean, Qα, and a fluctuation, y′′α, as

Yα(xi, t) = Qα(ζ;xi, t) + y′′α(xi, t), (1)

where the conditional average is defined as, Qα(ζ;xi, t) = 〈Yα|c = ζ〉, the ensem-

ble average subject to the condition c = ζ. The instantaneous progress variable

is denoted as c, which is governed by

ρ
∂c

∂t
+ ρui

∂c

∂xi
=

∂

∂xi

(
ρDc

∂c

∂xi

)
+ ω̇c (2)

in the usual notation. The transport equation for the instantaneous scalar value,

Yα, in the usual notations is

ρ
∂Yα
∂t

+ ρui
∂Yα
∂xi

=
∂

∂xi

(
ρDα

∂Yα
∂xi

)
+ ω̇α. (3)
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Substituting Eq. (1) into Eq. (3) gives

∂Yα(xi, t)

∂t
=

∂Qα

∂t
+

∂Qα

∂ζ

∂c

∂t
+

∂y′′α
∂t

, (4)

∂Yα(xi, t)

∂xi
=

∂Qα

∂xi
+

∂Qα

∂ζ

∂c

∂xi
+

∂y′′α
∂xi

, (5)

∂

∂xi

(
ρDα

∂Yα
∂xi

)
=

∂

∂xi

[
ρDα

(
∂Qα

∂xi
+

∂Qα

∂ζ

∂c

∂xi
+

∂y′′α
∂xi

)]
(6)

=

1︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂Qα

∂xi

)
+

2︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂Qα

∂ζ

∂c

∂xi

)
+

3︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂y′′α
∂xi

)
(7)

The second term can written as

2︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂Qα

∂ζ

∂c

∂xi

)
=

4︷ ︸︸ ︷
∂Qα

∂ζ

∂

∂xi

(
ρDα

∂c

∂xi

)
+

5︷ ︸︸ ︷(
ρDα

∂c

∂xi

)
∂

∂xi

∂Qα

∂ζ
(8)

The fifth term can written as

5︷ ︸︸ ︷(
ρDα

∂c

∂xi

)
∂

∂xi

∂Qα

∂ζ
=

6︷ ︸︸ ︷
ρDα

(
∂c

∂xi

∂c

∂xi

)
∂2Qα

∂ζ2
+

7︷ ︸︸ ︷
ρDα

∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
(9)

Now the diffusion term in Eq. (3) is the sum of the terms 1, 3, 4, 6 and 7

∂

∂xi

(
ρDα

∂Yα
∂xi

)
=

1︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂Qα

∂xi

)
+

4︷ ︸︸ ︷
∂Qα

∂ζ

∂

∂xi

(
ρDα

∂c

∂xi

)
+
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6︷ ︸︸ ︷
ρDα

(
∂c

∂xi

∂c

∂xi

)
∂2Qα

∂ζ2
+

7︷ ︸︸ ︷
ρDα

∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
+

3︷ ︸︸ ︷
∂

∂xi

(
ρDα

∂y′′α
∂xi

)
(10)

Substituting Eqs. (4), (5) and (10) into Eq. (3) yields

ρ
∂Qα

∂t
+ ρui

∂Qα

∂xi
− ∂

∂xi

(
ρDα

∂Qα

∂xi

)
− ρDα

(
∂c

∂xi

∂c

∂xi

)
∂2Qα

∂ζ2
−

ρDα
∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
+

∂Qα

∂ζ

[
ρ
∂c

∂t
+ ρui

∂c

∂xi
− ∂

∂xi

(
ρDα

∂c

∂xi

)]
+

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρDα

∂y′′α
∂xi

)
− ω̇α = 0. (11)

After some arrangement, the progress variable equation, Eq. (2), is rewritten as

ρ
∂c

∂t
+ ρui

∂c

∂xi
− ∂

∂xi

(
ρDα

∂c

∂xi

)
=

∂

∂xi

[
ρ (Dc −Dα)

∂c

∂xi

]
+ ω̇c. (12)

Substituting Eq. (12) into Eq. (11) yields

ρ
∂Qα

∂t
+ ρui

∂Qα

∂xi
− ∂

∂xi

(
ρDα

∂Qα

∂xi

)
− ρDα

(
∂c

∂xi

∂c

∂xi

)
∂2Qα

∂ζ2
−

ρDα
∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
+

∂Qα

∂ζ

[
∂

∂xi

[
ρ (Dc −Dα)

∂c

∂xi

]
+ ω̇c

]
+

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρDα

∂y′′α
∂xi

)
− ω̇α = 0. (13)

Taking conditional average of Eq. (13) yields,

〈ρ|ζ〉∂Qα

∂t
+ 〈ρui|ζ〉∂Qα

∂xi
−

〈
ρDα

∂c

∂xi

∂c

∂xi

∣∣∣ζ
〉
∂2Qα

∂ζ2
=

〈[
∂

∂xi

(
ρDα

∂Qα

∂xi

)
+ ρDα

∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
− ∂Qα

∂ζ

∂

∂xi

(
ρ (Dc −Dα)

∂c

∂xi

)] ∣∣∣ζ
〉
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−
〈[

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρDα

∂y′′α
∂xi

)] ∣∣∣ζ
〉

+ 〈ω̇α|ζ〉 − ∂Qα

∂ζ
〈ω̇c|ζ〉. (14)

It is to be taken that density weighted conditional averaging [40] is used and

the rules of differentiating the conditional averages as ex-positional in [129] are

employed. Rearranging the above equation gives

〈ρ|ζ〉∂Qα

∂t
+ 〈ρui|ζ〉∂Qα

∂xi
− Lec

Leα
〈ρNc|ζ〉∂

2Qα

∂ζ2
= 〈ω̇α|ζ〉 − 〈ω̇c|ζ〉∂Qα

∂ζ
+

eyα + eQα , (15)

where

eyα ≡ −
〈[

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρDα

∂y′′α
∂xi

)] ∣∣∣ζ
〉

(16)

and

eQα ≡
〈
∂

∂xi

(
ρDα

∂Qα

∂xi

)
+ ρDα

∂c

∂xi

∂

∂xi

(
∂Qα

∂ζ

)
|ζ

〉
+

〈
∂Qα

∂ζ

∂

∂xi

[(
1− Leα

Lec

)
ρDα

∂c

∂xi

] ∣∣∣ζ
〉
, (17)

The conditional dissipation rate is given by Nc = 〈Dc(∇c · ∇c)|ζ〉 and 〈ρNc|ζ〉 =

〈ρ|ζ〉〈Nc|ζ〉 [130]. The Lewis number of species α is denoted by Leα.
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