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Privacy engineering for social networks
Jonathan Anderson

In this dissertation, I enumerate several privacy problems in online social
networks (OSNs) and describe a system called Footlights that addresses them.
Footlights is a platform for distributed social applications that allows users to
control the sharing of private information. It is designed to compete with the
performance of today’s centralised OSNs, but it does not trust centralised in-
frastructure to enforce security properties.

Based on several socio-technical scenarios, I extract concrete technical prob-
lems to be solved and show how the existing research literature does not solve
them. Addressing these problems fully would fundamentally change users’ in-
teractions with OSNs, providing real control over online sharing.

I also demonstrate that today’s OSNs do not provide this control: both user
data and the social graph are vulnerable to practical privacy attacks.

Footlights’ storage substrate provides private, scalable, sharable storage us-
ing untrusted servers. Under realistic assumptions, the direct cost of operating
this storage system is less than one US dollar per user-year. It is the founda-
tion for a practical shared filesystem, a perfectly unobservable communications
channel and a distributed application platform.

The Footlights application platform allows third-party developers to write
social applications without direct access to users’ private data. Applications run
in a confined environment with a private-by-default security model: applica-
tions can only access user information with explicit user consent. I demonstrate
that practical applications can be written on this platform.

The security of Footlights user data is based on public-key cryptography,
but users are able to log in to the system without carrying a private key on
a hardware token. Instead, users authenticate to a set of authentication agents
using a weak secret such as a user-chosen password or randomly-assigned 4-
digit number. The protocol is designed to be secure even in the face of malicious
authentication agents.

v



vi



ACKNOWLEDGEMENTS

I gratefully acknowledge the sponsorship of the Rothermere Foundation.
The 2nd Viscount Rothermere, first Chancellor of Memorial University of New-
foundland, endowed the Rothermere Fellowship to aid Memorial students in
their pursuit of higher degrees in the United Kingdom. Without this generous
support, I would not have been able to pursue my PhD in Cambridge.

I am also grateful for the sponsorship I received from the Natural Sciences
and Engineering Research Council of Canada (NSERC). The US Defence Ad-
vanced Research Projects Agency (DARPA) supported projects that I was in-
volved with during my PhD, although that work is not part of this dissertation.

I thank my supervisor, Frank Stajano, for his guidance and mentorship dur-
ing my PhD. You gave me freedom to explore my research horizons but kept me
grounded in reality when I needed to communicate those ideas or even when
I needed to Just Finish. I remember clearly the advice you gave me on the first
day I sat in your office; I hope to share it with my own students one day.

They say it takes a village to raise a child. My development as a researcher
has been immeasurably spurred by collaborations and conversations with many
colleagues. Joseph Bonneau, Claudia Diaz and I collaborated on the work that
grew into this dissertation’s subject. Robert Watson once poked his head in my
office door to ask, “have you ever hacked OS kernels?”; the subsequent collab-
oration has greatly influenced my thinking about operating systems and ap-
plication confinement. Luke Church helped open my eyes to alternative view-
points on security, as well as the existence of users as people rather than rhetor-
ical devices. I am grateful to co-authors Ben Laurie, Kris Kennaway, George
Danezis, Sören Preibusch and all of the CTSRD team. My thinking on both se-
curity and the nature of research has been aided immeasurably by early advice I
received from Ross Anderson, Bruce Christianson and Saar Drimer. I have also
received very helpful feedback on drafts of this dissertation from Ross Ander-
son, Robert Watson, Joseph Bonneau, Anil Madhavapeddy, Richard Clayton,
Wei Ming Khoo and Bjoern Zeeb. Thank you all.

vii



I would also like to thank my friends Tom & Julie and Will & Jackie, whose
footprints along the doctoral road helped me trace the path to my own PhD.

Thanks to Mom & Dad for buying me Lego and for having patience when
I took things apart and couldn’t put them back together again. You’ve always
supported my creative and academic pursuits, encouraged me to follow my
dreams and believed that I could get there. Thank you.

I also thank Earl & Barbara and Russell & Cara for believing in me and en-
couraging us to go to Cambridge, even though it took Chrissy so very far away.

Finally, to Chrissy, my wife: thank you for your love, support, encourage-
ment and constant companionship. When I wasn’t sure I could finish this work,
you were there with words of comfort, strength and purpose. I can’t imagine a
better friend. I’ve loved every day we’ve spent together, and I look forward to
loving every day we spend together in the years to come.

Soli Deo gloria.

viii



AUTHOR PUBLICATIONS

JOURNALS

[1] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY. A
taste of Capsicum: practical capabilities for UNIX. Communications of the
ACM, 55(3):97, Mar. 2012. doi:10.1145/2093548.2093572.

CONFERENCES

[2] J. ANDERSON, C. DIAZ, J. BONNEAU, AND F. STAJANO. Privacy-enabling
social networking over untrusted networks. In WOSN ’09: Proceedings
of the Second ACM Workshop on Online Social Networks. ACM, Aug. 2009.
doi:10.1145/1592665.1592667.

[3] J. ANDERSON AND F. STAJANO. Not that kind of friend: misleading
divergences between online social networks and real-world social pro-
tocols. In SPW ’09: Proceedings of the Seventeenth International Workshop
on Security Protocols, Apr. 2009. URL: http://www.cl.cam.ac.uk/~jra40/
publications/2009/SPW-misleading-divergences.pdf.

[4] J. ANDERSON AND F. STAJANO. On storing private keys "in the cloud".
In SPW 2010: Proceedings of the Eighteenth International Workshop on
Security Protocols, Mar. 2010. URL: http://www.cl.cam.ac.uk/~jra40/
publications/2010/SPW-key-storage.pdf.

[5] J. ANDERSON, F. STAJANO, AND R. N. M. WATSON. How to keep bad
papers out of conferences (with minimum reviewer effort). In SPW 2011:
Proceedings of the Nineteenth International Workshop on Security Protocols,
Mar. 2011. doi:10.1007/978-3-642-25867-1_34.

[6] J. ANDERSON AND R. N. M. WATSON. Stayin’ alive: aliveness as an alter-
native to authentication. In SPW 2012: Proceedings of the Twentieth Interna-

ix

http://dx.doi.org/10.1145/2093548.2093572
http://dx.doi.org/10.1145/1592665.1592667
http://www.cl.cam.ac.uk/~jra40/publications/2009/SPW-misleading-divergences.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/SPW-misleading-divergences.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/SPW-key-storage.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/SPW-key-storage.pdf
http://dx.doi.org/10.1007/978-3-642-25867-1_34


AUTHOR PUBLICATIONS

tional Workshop on Security Protocols, Apr. 2012. URL: http://www.cl.cam.
ac.uk/~jra40/publications/2012/SPW-stayin-alive.pdf.

[7] J. BONNEAU, J. ANDERSON, R. J. ANDERSON, AND F. STAJANO. Eight
friends are enough: social graph approximation via public listings. In
SNS ’09: Proceedings of the Second ACM EuroSys Workshop on Social Network
Systems, pages 13–18. ACM, Mar. 2009. doi:10.1145/1578002.1578005.

[8] J. BONNEAU, J. ANDERSON, AND G. DANEZIS. Prying data out of a social
network. In Proceedings of the 2009 International Conference on Advances
in Social Networks Analysis and Mining (2009), pages 249–254, 2009. doi:
10.1109/ASONAM.2009.45.

[9] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY.
Capsicum: practical capabilities for UNIX. In Proceedings of the 19th
USENIX Security Symposium. USENIX Association, Aug. 2010. URL:
http://portal.acm.org/citation.cfm?id=1929820.1929824.

WORKSHOPS (NO PROCEEDINGS)
[10] J. ANDERSON. Psychic routing: upper bounds on routing in pri-

vate DTNs. In Hot Topics in Privacy Enhancing Technologies (Hot-
PETS), 2011. URL: http://petsymposium.org/2011/papers/hotpets11-
final9Anderson.pdf.

[11] J. ANDERSON, J. BONNEAU, AND F. STAJANO. Security APIs for online
applications. In ASA-3: Third International Workshop on Analysing Security
APIs, July 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/
2009/ASA-security-apis-for-online-applications.pdf.

[12] J. ANDERSON, J. BONNEAU, AND F. STAJANO. Inglorious in-
stallers: security in the application marketplace. In WEIS ’10: The
Ninth Workshop on the Economics of Information Security, pages 1–47,
2010. URL: http://www.cl.cam.ac.uk/~jra40/publications/2010/WEIS-
inglorious-installers.pdf.

x

http://www.cl.cam.ac.uk/~jra40/publications/2012/SPW-stayin-alive.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2012/SPW-stayin-alive.pdf
http://dx.doi.org/10.1145/1578002.1578005
http://dx.doi.org/10.1109/ASONAM.2009.45
http://dx.doi.org/10.1109/ASONAM.2009.45
http://portal.acm.org/citation.cfm?id=1929820.1929824
http://petsymposium.org/2011/papers/hotpets11-final9Anderson.pdf
http://petsymposium.org/2011/papers/hotpets11-final9Anderson.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/ASA-security-apis-for-online-applications.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/ASA-security-apis-for-online-applications.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/WEIS-inglorious-installers.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/WEIS-inglorious-installers.pdf


AUTHOR PUBLICATIONS

[13] J. BONNEAU, J. ANDERSON, AND L. CHURCH. Privacy suites: shared
privacy for social networks (poster). In SOUPS ’09: Symposium on Usable
Privacy and Security, 2009. URL: http://cups.cs.cmu.edu/soups/2009/
posters/p13-bonneau.pdf.

[14] L. CHURCH, J. ANDERSON, J. BONNEAU, AND F. STAJANO. Privacy sto-
ries: confidence in privacy behaviors through end user programming
(poster). In SOUPS ’09: Symposium on Usable Privacy and Security, 2009.
URL: http://cups.cs.cmu.edu/soups/2009/posters/p3-church.pdf.

[15] R. N. M. WATSON AND J. ANDERSON. Connecting the dot dots:
model checking concurrency in Capsicum. In International Workshop
on Analysing Security APIs, July 2010. URL: http://www.cl.cam.ac.uk/
~jra40/publications/2010/ASA-capsicum-dot-dots.pdf.

[16] R. N. M. WATSON, P. G. NEUMAN, J. WOODRUFF, J. ANDERSON, R. J.
ANDERSON, N. DAVE, B. LAURIE, S. W. MOORE, S. J. MURDOCH,
P. PAEPS, M. ROE, AND H. SAIDI. CHERI: a research platform decon-
flating hardware virtualization and protection. In RESoLVE’12: Run-
time Environments, Systems, Layering and Virtualized Environments, Mar.
2012. URL: http://www.dcs.gla.ac.uk/conferences/resolve12/papers/
session1_paper3.pdf.

MAGAZINE ARTICLES

[17] R. N. M. WATSON, J. ANDERSON, B. LAURIE, AND K. KENNAWAY. Intro-
ducing Capsicum: practical capabilities for UNIX. ;login:—The USENIX
Magazine, 35(6):7–17, Dec. 2010. URL: https://www.usenix.org/system/
files/login/articles/watson.pdf.

WHITE PAPERS, BLOG POSTS AND PRESS RELEASES

[18] J. BONNEAU AND J. ANDERSON. Think of the children [online]. Dec. 2008.
URL: http://www.lightbluetouchpaper.org/2008/12/12/think-of-the-
children/.

xi

http://cups.cs.cmu.edu/soups/2009/posters/p13-bonneau.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p13-bonneau.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p3-church.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/ASA-capsicum-dot-dots.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2010/ASA-capsicum-dot-dots.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session1_paper3.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session1_paper3.pdf
https://www.usenix.org/system/files/login/articles/watson.pdf
https://www.usenix.org/system/files/login/articles/watson.pdf
http://www.lightbluetouchpaper.org/2008/12/12/think-of-the-children/
http://www.lightbluetouchpaper.org/2008/12/12/think-of-the-children/


AUTHOR PUBLICATIONS

[19] J. BONNEAU, J. ANDERSON, R. J. ANDERSON, AND R. CLAY-
TON. Democracy theatre on Facebook [online]. Mar. 2009. URL:
http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-
facebooks-terms-of-service/.

[20] J. BONNEAU, J. ANDERSON, A. LEWIS, AND F. STAJANO. At-
tack of the zombie photos [online]. May 2009. URL: http://www.
lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/.

[21] J. BONNEAU, J. ANDERSON, F. STAJANO, AND R. J. ANDERSON. Face-
book consultation as much of a sham as their democracy. Light
Blue Touchpaper, Apr. 2009. URL: http://www.cl.cam.ac.uk/~jra40/
publications/2009/facebook-press-release.pdf.

[22] J. BONNEAU, S. PREIBUSCH, J. ANDERSON, R. CLAYTON, AND R. J. AN-
DERSON. Comments on Facebook’s proposed governance scheme [on-
line]. Mar. 2009. URL: http://www.cl.cam.ac.uk/~jra40/publications/
2009/LBT-facebook-governance.pdf.

[23] J. BONNEAU, S. PREIBUSCH, J. ANDERSON, R. CLAYTON, AND R. J. AN-
DERSON. The curtain opens on Facebook’s democracy theatre [online].
Apr. 2009. URL: http://www.lightbluetouchpaper.org/2009/04/17/the-
curtain-opens-on-facebooks-democracy-theatre/.

xii

http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-facebooks-terms-of-service/
http://www.lightbluetouchpaper.org/2009/03/29/commentary-on-facebooks-terms-of-service/
http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.cl.cam.ac.uk/~jra40/publications/2009/facebook-press-release.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/facebook-press-release.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/LBT-facebook-governance.pdf
http://www.cl.cam.ac.uk/~jra40/publications/2009/LBT-facebook-governance.pdf
http://www.lightbluetouchpaper.org/2009/04/17/the-curtain-opens-on-facebooks-democracy-theatre/
http://www.lightbluetouchpaper.org/2009/04/17/the-curtain-opens-on-facebooks-democracy-theatre/


CONTENTS

Author Publications ix

1 Introduction 1

1.1 A socio-technical problem . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 CBSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Application developers . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Sophie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 13

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Explicit expressions of user intent . . . . . . . . . . . . . . 16

2.2.2 Multi-faceted identity . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 High availability . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Untrusted infrastructure . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Social applications . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.7 Linkability and anonymity . . . . . . . . . . . . . . . . . . 21

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Encryption within OSNs . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Distributed social networks . . . . . . . . . . . . . . . . . . 24

2.3.3 Solutions out of context . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Privacy policy specification . . . . . . . . . . . . . . . . . . 28

xiii



CONTENTS

3 Antisocial networks 31
3.1 User data privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Forced open: evolving defaults in privacy settings . . . . . 32
3.1.1.1 Use of default settings . . . . . . . . . . . . . . . . 32
3.1.1.2 A history of changing defaults . . . . . . . . . . . 33

3.1.2 Failed open: advertisers and private information . . . . . 41
3.1.3 Left open: application access to private user data . . . . . 42

3.2 Social graph privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Public search listings . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Public listings model . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Graph data . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Approximations of graph characteristics . . . . . . . . . . 51

3.2.4.1 Reachability and shortest paths . . . . . . . . . . 51
3.2.4.2 Centrality and influence . . . . . . . . . . . . . . 53

3.2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 57

4 Sharable storage 59
4.1 Route of trust to root of trust . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Content-Addressed Store . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Immutable blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Mutable names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 A root by any other name . . . . . . . . . . . . . . . . . . . 76
4.5.2 Cross-filesystem sharing . . . . . . . . . . . . . . . . . . . . 77
4.5.3 Writing to shared filesystems . . . . . . . . . . . . . . . . . 78
4.5.4 Garbage collection . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Pre-cacheing and traffic analysis . . . . . . . . . . . . . . . . . . . 82

xiv



CONTENTS

4.8 Covert communication . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8.1 Link hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.2 Message forwarding . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.10 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 97

5 Distributed Social Applications 99
5.1 Model of computation . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Securing user data . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 Social DRM . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.3 Footlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.1 Unprivileged application context . . . . . . . . . . . . . . . 108

5.2.1.1 Visual container . . . . . . . . . . . . . . . . . . . 108
5.2.1.2 Intra-application communication . . . . . . . . . 110
5.2.1.3 Static content . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Privileged supervisor . . . . . . . . . . . . . . . . . . . . . 112
5.3 Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1.1 Distribution . . . . . . . . . . . . . . . . . . . . . 116
5.3.1.2 Initialisation . . . . . . . . . . . . . . . . . . . . . 118
5.3.1.3 File services . . . . . . . . . . . . . . . . . . . . . . 118
5.3.1.4 Ajax service . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.3 Static content . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4 Kernel API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.4.1 Files and directories . . . . . . . . . . . . . . . . . 123
5.3.4.2 Powerboxes . . . . . . . . . . . . . . . . . . . . . . 128
5.3.4.3 Synchronous communication . . . . . . . . . . . 129

5.3.5 Persistent key-value store . . . . . . . . . . . . . . . . . . . 130
5.4 Example applications . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.1 Basic demo . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 Malicious demo . . . . . . . . . . . . . . . . . . . . . . . . . 133

xv



CONTENTS

5.4.3 Tic-tac-toe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.4 Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.5 File manager . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 140

6 Distributed authentication 141
6.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 The assertion problem . . . . . . . . . . . . . . . . . . . . . 142
6.1.2 Weak secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.1.3 Location independence . . . . . . . . . . . . . . . . . . . . 143
6.1.4 Limited trust . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.1.5 Plausible deniability . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.1 Insiders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.2 Outsiders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.1 Trusted third party . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.2 Semi-trusted storage . . . . . . . . . . . . . . . . . . . . . . 148
6.3.3 Secret sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.4 Collision-rich password hashing . . . . . . . . . . . . . . . 150

6.3.4.1 Large-M attack . . . . . . . . . . . . . . . . . . . . 151
6.3.4.2 Impostor identity disclosure attack . . . . . . . . 151

6.3.5 Collision-rich identity hashing . . . . . . . . . . . . . . . . 152
6.4 Passwords and probabilities . . . . . . . . . . . . . . . . . . . . . . 152

6.4.1 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . 154
6.4.2 Non-uniform distribution . . . . . . . . . . . . . . . . . . . 155
6.4.3 Outsider dictionary attack . . . . . . . . . . . . . . . . . . . 158

6.4.3.1 Uniform password distribution . . . . . . . . . . 158
6.4.3.2 Non-uniform password distribution . . . . . . . 161

6.4.4 Insider dictionary attack . . . . . . . . . . . . . . . . . . . . 163
6.4.4.1 Uniform password distribution . . . . . . . . . . 163
6.4.4.2 Non-uniform password distribution . . . . . . . 164

xvi



CONTENTS

6.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5 Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.7 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusions 175
7.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2 Footlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A Content Delivery Networks 185

Bibliography 189

Other References 219

xvii



CONTENTS

xviii



LIST OF FIGURES

1.1 High-level overview of the Footlights social platform. . . . . . . . 7

2.1 Direct and indirect access to user data. . . . . . . . . . . . . . . . . 20

3.1 Facebook privacy timeline . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 A sampled graph Gk with k = 1. . . . . . . . . . . . . . . . . . . . 49
3.3 Route lengths and reachability in university networks. . . . . . . 51
3.4 Route length approximation under k-sampling (Columbia). . . . . 52
3.5 Betweenness centrality in four university networks. . . . . . . . . 54
3.6 Attacker influence over messages in the Harvard network. . . . . 55

4.1 Footlights and its static storage layers. . . . . . . . . . . . . . . . . 60
4.2 A block with three links and 3,210 B of user data. . . . . . . . . . . 68
4.3 Binary representation of a CAS link. . . . . . . . . . . . . . . . . . 69
4.4 Resolving a canonical name. . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Bytes required to store photos in the Footlights filesystem. . . . . 80
4.6 Cost of operating the Footlights storage service. . . . . . . . . . . 80
4.7 Cost of basing Footlights on Amazon Web Services. . . . . . . . . 81
4.8 Embedding covert content in random padding. . . . . . . . . . . . 85
4.9 Block upload/download is equivalent to multicast messaging. . . 88
4.10 Random padding viewed as spare message-carrying capacity. . . 88

5.1 Today’s OSN as an application platform. . . . . . . . . . . . . . . . 103
5.2 Footlights applications run locally. . . . . . . . . . . . . . . . . . . 105
5.3 Applications are split into front-end and back-end components. . 107
5.4 An application’s front-end context. . . . . . . . . . . . . . . . . . . 108
5.5 Creating a UI element with the DOM and Footlights APIs. . . . . 109
5.6 Communication over a multiplexed HTTP channel. . . . . . . . . 111
5.7 Two ways of displaying the user’s name. . . . . . . . . . . . . . . 115
5.8 A Footlights powerbox. . . . . . . . . . . . . . . . . . . . . . . . . . 115

xix



LIST OF FIGURES

5.9 Sharing a directory with another user. . . . . . . . . . . . . . . . . 129
5.10 A basic demo application. . . . . . . . . . . . . . . . . . . . . . . . 132
5.11 A Tic-Tac-Toe demo application. . . . . . . . . . . . . . . . . . . . 134
5.12 A basic photo manager. . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.13 A basic file manager. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.14 Sharing a directory with the File Manager application. . . . . . . . 137

6.1 Password domain, distribution and equivalence classes. . . . . . . 153
6.2 Possible presentation of a random word from a small dictionary. . 155
6.3 Frequency of RockYou passwords v. a power law distribution. . . 156
6.4 Probability distribution of hM values for RockYou passwords. . . 157
6.5 Probability of successfully attacking a uniform distribution. . . . 160
6.6 Probability of successfully attacking the RockYou distribution. . . 162
6.7 The RockYou distribution, sampled for several values of M. . . . 165
6.8 Attacking the sampled RockYou distribution. . . . . . . . . . . . . 166

xx



LIST OF TABLES

3.1 Basic statistics from early Facebook networks. . . . . . . . . . . . 50
3.2 Increase in shortest-path route lengths caused by k-sampling. . . 53
3.3 Node compromises required to influence socially-routed messages. 56

A.1 Pricing of Amazon S3 and CloudFront services. . . . . . . . . . . . 186
A.2 Pricing of Google App Engine storage and content delivery. . . . 186
A.3 Pricing of Rackspace storage and content delivery. . . . . . . . . . 187
A.4 Pricing of NetDNA content delivery. . . . . . . . . . . . . . . . . . 187

xxi



LIST OF TABLES

xxii



ABBREVIATIONS

ACL access control list; a specification of privileges granted to principals

API application programming interface

ASCII American standard code for information interchange; a scheme for en-
coding characters required by the English language

CAS content-addressed store; a storage system that names files according to
their contents (see URN)

CDN content delivery network; a global network used to deliver data to geo-
graphically disparate locations with low latency

DES data encryption standard; an historic block cipher

DHT distributed hash table; a CAS spread across a P2P network

DOM document object model; an API for interacting with web pages

DRM digital rights management; a set of techniques for preventing users from
copying content (e.g. games, music, videos)

DSL digital subscriber line; a technology for home Internet service

DTN delay tolerant network; a network that does not require end-to-end con-
nectivity between hosts in order to forward messages

FBML Facebook markup language; formerly used by Facebook applications to
describe web content and user information

FQL Facebook query language; a SQL-like language used by applications to
retrieve information about users from Facebook

HTTP hypertext transfer protocol; used for communicating web content

xxiii



LIST OF TABLES

HTTPS HTTP over SSL; a security extension to HTTP

IP internet protocol; the protocol used to communicate among computers on
the internet or the address used for this communication

IPC inter-process communication; an explicit protocol for communication
among programs that are separated from each other and therefore cannot
use implicit protocols (e.g. function calls)

JAR Java archive; a format for bundling Java programs and other application
content into a single file

JSON JavaScript object notation; a widely-used scheme for encoding data

JVM Java virtual machine; software that runs programs written in the Java pro-
gramming language

MAC mandatory access control; an enforcement mechanism that allows sys-
tem administrators to specify system security policies

MLS multi-level security; a MAC policy that prevents confidential information
from flowing to unauthorised principals

NFS network file system; a file system shared between users on a network and
hosted on a centralised server

OS operating system; low-level system software that mediates application ac-
cess to underlying resources such as physical hardware

OSN online social network

P2P peer-to-peer; a network topology that has no central control point

PDF Portable Document Format; a file format for document interchange

PET privacy enhancing technology

PGP pretty good privacy; a protocol for asymmetric-key encryption and trust
management

xxiv



LIST OF TABLES

PIN personal identification number; a short, numeric password

RSA an asymmetric cryptography scheme developed by Rivest, Shamir and
Adleman [209]

SQL structured query language; a language for interacting with databases

SSL secure sockets layer; a technique used for securing a variety of internet
protocols, including HTTP; now named TLS

TCB trusted computing base; the portions of a system that users and applica-
tions must trust; see the definition of “Trust” on page 15

TLS transport layer security; the modern replacement for SSL

UI user interface; a channel through which a user and system communicate,
e.g. visual “windows” manipulated with a keyboard and mouse

UID user identifier; a string that uniquely identifies a user

URI uniform resource identifer; a standardised format for naming network-
accessible objects

URL uniform resource locator; a URI that describes an object’s location (e.g. a
file name on a particular Web server)

URN uniform resource name; a URI that names an object by an intrinsic prop-
erty of the object (e.g. its content)

UX user experience; a holistic view of user interaction with a system

xxv



LIST OF TABLES

xxvi



1
INTRODUCTION

“ I wanted to create an environment where people could share what-
ever information they wanted, but also have control over whom
they shared that information with.

Mark Zuckerberg, September 2006 [310]”Today, hundreds of millions of people communicate via Online Social Networks
(OSNs) such as Facebook, Google+ and Renren. These services allow users
to express personal attributes and relationships, as well as communicate with
other users in front of a virtual audience. Users can manage events, sending in-
vitations to them, hosting discussion before them and providing a repository for
photographs during and after them. They can share photographs and tag them
with locations and identities, often assisted by OSN-provided facial recogni-
tion. They can “check in” to locations, declaring their presence and that of oth-
ers with them; this facilitates spontaneous offline meetings and enriches users’
daily routines. Social applications enrich the experience by integrating others’
activities: “your friends have read this article, would you like to read it too?”

Hundreds of millions have flocked to these services, sharing private infor-
mation with the services and their friends. In some cases, however, their infor-
mation has been shared more widely than they intended. Private information
has been shared with third-party applications and with advertisers, sometimes
against the expressed intentions of users. On Facebook, advertisers can use
“Sponsored Stories” to remind my friends again and again that I once expressed
positive sentiments about a chain of taco restaurants. Those same “friends”,
who include my family, co-workers and possibly my future employers, can see
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things I’ve done and places I’ve been, sometimes without my involvement or
permission: by default, a single authorisation gives friends the power to tell
each other where I am. Unless I take steps to prevent it, all of my “friends”
can read things that I once said within a private context, organised in a near-
public timeline that stretches back to the day of my birth. Applications used by
my “friends” can access information that I shared with Facebook on the under-
standing that it would be visible to no-one. The developers of those applications
can harvest my personal information and sell it to third-party data aggregators.
As Chapter 3 will show, some already have; there is no technical protection to
stop this behaviour, nor is there a technical remedy once it is done.

This dissertation considers these problems and more, then demonstrates that
the status quo is not the only way of doing online social networking. While it
is not a trivial task — as Section 2.3, “Related work” will show — it is pos-
sible to build online social networks that do not require users to give up their
privacy, place absolute faith in service providers or suffer from peer-to-peer per-
formance penalties. Users can rely on centralised infrastructure to provide the
availability they expect without trusting it to enforce their intentions for sharing.

The thesis of this dissertation is that practical online social networking is
possible without mandatory privacy or performance penalties: users can choose
their own privacy–performance trade-offs. I demonstrate this by describing a
hybrid centralised–distributed OSN called Footlights that improves on the state
of the art in user data protection. Footlights allows users to choose their own
privacy and performance trade-offs and enjoy the benefits of social applications.
Its prototype implementation is open-source, available under the permissive
Apache License [24] from https://github.com/trombonehero/Footlights.

This technical contribution allows users to adopt a new kind of OSN with a
new business model, one in which one US dollar per user-year of direct costs
must be recouped via privacy-preserving advertising, direct payment or some
other method. However, I do not claim to have “solved” the complex socio-
technical issue of privacy in social networking. Instead, I provide a technical
system that allows users to more effectively direct the flow of their private in-
formation according to their own social and economic choices.
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A SOCIO-TECHNICAL PROBLEM

1.1 A SOCIO-TECHNICAL PROBLEM

“There’s no technical solution for gossip.

Matthew Ringel, LiveJournal user, 2003 [352]”Many approaches can be taken to the study of privacy in online social networks.
This dissertation will not explore legal or ethical dimensions of the problem,
nor will it propose technical “quick fixes” to social problems. As I have argued
elsewhere, the attempt to impose simplistic technical models on complex social
systems has caused some of the current mismatches between the behaviour of
OSNs and users’ expectations [3]. This dissertation begins by considering mis-
matches between users’ expressions of sharing intent and the actual behaviour
of online social networks. These mismatches are illustrated with several real-life
scenarios. In these scenarios, technology alone would not solve the problem,
but there is a technical part to be played in the socio-technical system.

1.1.1 JACK

An early example of divergence between user expectation and reality comes
from the blogging site LiveJournal. In 2003, the website SecurityFocus reported
that security issues with the site had led to private information becoming pub-
lic [352]. In one particular example, a user referred to as “Jack” experienced
an account compromise, in which an attacker re-posted private LiveJournal en-
tries publicly, revealing sensitive information about Jack’s friends, including a
discussion with one friend about her relationship with her employer. Jack’s ac-
count may have been compromised by a password-sniffing attacker — at the
time, LiveJournal authentication was unencrypted — but one of Jack’s friends
may have simply guessed Jack’s password. Technical measures can be used to
prevent the former scenario: it has become an industry standard for websites to
provide their users with encrypted connections, as announced by Twitter [338]
and Google’s search [324] and GMail [356] teams, even if it is not always en-
abled by default as on Facebook [299]. The latter compromise scenario is more
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complicated, however: technology can provide additional authentication fac-
tors such as hardware tokens or personal knowledge questions, but their use is
subject to non-technical considerations such as cost and shared experience.

1.1.2 CBSA
There is less causal ambiguity in the 2007 case of Canada Border Services

Agency (CBSA) recruits whose photographs leaked from Facebook, as reported
by the Canadian Broadcasting Corporation [269, 268]. In that case, photos and
comments were posted on Facebook which were described by the Minister of
Public Safety as “simply not acceptable”. There is no evidence of technical
failure on the part of Facebook: it seems that the photos were simply posted
with permissive access controls. In this case, better technology may not have
changed users’ decisions to make the comments or post the photos, but it may
have been able to better capture users’ intent as to how widely that content
should be shared. However, the decision to deploy such technology instead of
permissive default settings is not a purely technical decision; it is grounded in
the economics of the OSN business.

1.1.3 FACEBOOK

The opposite problem can be observed in the next scenario. In 2009, Face-
book disregarded the explicitly-expressed privacy preferences of its users and
decided to make all users’ friend lists public [302]. Since “the overwhelming
majority of people who use Facebook already make most or all of this informa-
tion available to everyone” — the default setting — the change only affected
those users who had taken explicit action to express restrictive privacy prefer-
ences and limit the sharing of their friend lists. The subsequent user backlash
led to Facebook providing a new visibility control that allowed friend lists to
be hidden from other users’ view, but the information is “still publicly avail-
able [...] and can be accessed by applications” [296]. This case features a simple
technical change: a handful of privacy controls were disabled. The controversy
came about because Facebook made the change against the express wishes of
those affected by it: those whose information is now shared publicly.
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1.1.4 APPLICATION DEVELOPERS

In 2010, the Wall Street Journal found that several developers of popular so-
cial applications were transmitting user information to third-party advertisers
and commercial data aggregators [282, 275]. In this case, applications contra-
vened Facebook’s terms of service, but the contravention was not rectified until
the Wall Street Journal made the application behaviour public. This leakage of
user information beyond the intent of the OSN came about because of the trust
structure of today’s OSNs: third-party application developers must be trusted
with private data in order for applications — as they are currently structured —
to perform useful tasks.

1.1.5 SOPHIE

The final scenario is that of “Sophie”, a person with whom I have corre-
sponded personally. Sophie is technically apt, a facile computer user with a PhD
in science, but she does not trust centralised online services with her personal
data. As a result, she cannot take advantage of the services or social applica-
tions offered by centralised OSNs, nor can she converse easily with those who
use OSNs as their primary mode of communication.

1.2 CONTRIBUTIONS

The scenarios in the previous section provide windows into a complex socio-
technical system. In this dissertation, I do not attempt to “solve” social prob-
lems by pressing them into the mold of graph theory or other easily-expressed
mathematical and computer science concepts. Rather, in Chapter 2, I extract
from the above scenarios a set of technical problems whose solutions would
allow users to change the balance of the overall complex system that is online
privacy. In this section, I outline my solution to these problems.

In this dissertation, I demonstrate some of the privacy problems with to-
day’s online social networks and show how social networking could be done
differently, providing solutions to the problems enumerated in Section 2.2 and
potentially allowing users to change the outcomes they would experience in the
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real-life scenarios of Section 1.1. I show in Section 2.3 that existing proposals in
the research literature do not address all of these problems.

In Chapter 3, I show that there is a cost to today’s nominally free services.
Privacy is sacrificed, both for individual users (Section 3.1) and the social graph
as a whole (Section 3.2). OSNs dictate terms and conditions under which they
can change their users’ implicit privacy contract, pushing users into ever-less-
private social interaction (§3.1.1). Services have a history of leaking users’
private information both to advertisers (§3.1.2) and to application developers
(§3.1.3). OSN operators unilaterally decide that some personal information
must be visible to the world, driving growth but sacrificing privacy for all par-
ticipants in the social graph (Section 3.2).

In order to address the problems in Section 2.2, I present Footlights, a
privacy-enabling platform for untrusted social applications that does not trust
centralised infrastructure. Not only are applications and intrastructure un-
trusted, even core parts of the system — both software and protocols — are
open for inspection and verification. Users do not even need to trust Footlights
itself, as will be discussed in the definition of “Trust” on page 15.

The name “Footlights” comes from Goffman’s theatrical analogy for social
interaction [115], itself based on Shakespeare’s declaration that “all the world’s
a stage, and men and women merely players” [215]. In a theatre, footlights de-
fine the conventional physical boundary between the stage and the audience;
in my work, the Footlights system helps users to create performances or def-
initions of self which are displayed to an audience chosen by the performer.
Some users are invited to Goffman’s metaphorical backstage, to see behind the
scenes of differing or contradictory performances, but those seated in the au-
dience should not be able to see any evidence that the performer is hanging
from wires or that the backdrop is made of cheap black stuff. This analogy is
the source of the name Footlights, but it should also be seen as homage to the
Cambridge Footlights, a real-world theatrical ensemble that has launched some
of the world’s leading acting careers.

Footlights uses an architecture that is radically different from today’s OSNs,
yet still practical. It provides the features afforded by today’s OSNs and com-
petes with their performance but does not impose their privacy costs. A high-
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Application
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Distributed 
Authentication
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Commodity Storage 
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Figure 1.1: High-level overview of the Footlights social platform.

level diagram of Footlights is shown in Figure 1.1.

The Footlights storage substrate provides private, scalable, sharable storage
using untrusted servers (Chapter 4). Under realistic assumptions, the direct cost
of operating this storage system is less than one US dollar per user-year. It is
the foundation for a practical shared filesystem, a perfectly unobservable commu-
nications channel and a distributed application platform.

The Footlights application platform (Chapter 5) allows third-party develop-
ers to write social applications without direct access to users’ private informa-
tion. Distributed applications run under a very different model of computa-
tion from today’s OSNs: applications execute in a confined environment under
the user’s control. The application security model is private by default: ap-
plications can only access user information with user consent. This consent is
inferred from natural user actions, rather than “cancel or allow” prompting.
Within this constrained environment, the platform provides traditional Operat-
ing System services to applications, allowing them to perform useful computa-
tion; I demonstrate how practical applications can be written for this platform.

The security of Footlights user data is based on cryptography, so no cen-
tralised service must be trusted to enforce users’ security policies. Unlike exist-
ing approaches to cryptographic authentication, however, Footlights does not
require users to remember strong passwords or carry private keys on hardware
tokens. Instead, I leverage the distributed social system: users authenticate to
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a set of authentication agents using a weak secret such as a user-chosen pass-
word or a randomly-assigned 4-digit number (Chapter 6). Even in the face of
malicious authentication agents guessing these weak secrets, users can choose
parameters for the authentication scheme to provide a chosen level of security.

1.3 PUBLICATIONS

In the course of my PhD research, I have co-authored nine peer-reviewed
papers, one in Communications of the ACM. I have also co-authored seven contri-
butions to workshops and poster sessions without proceedings, one magazine
article and six contributions to the Security Group blog, Light Blue Touchpaper.

I started my PhD in 2008 examining “virtual worlds”, of which online social
networks are a subset. Early on, I began examining the security of OSNs and
was joined by Joseph Bonneau in work that led to several publications. In 2008,
we detailed numerous privacy failings in a social network designed for chil-
dren in a posting to the Security Group blog [18]. In 2009, we used data from
Facebook in two publications: “Eight friends are enough”, a study of the in-
formation leaked by Facebook’s Public Listings feature published at the Second
ACM EuroSys Workshop on Social Networks Systems (SNS) [7] and “Prying
Data out of a Social Network”, a summary of various methods that we used to
extract information from the service, published at the 2009 International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM) [8].
I have based much of Chapter 3 on the work that I did for these papers: the col-
laborative work that we undertook in extracting data from the social network,
the individual work that I did exploring the Facebook application API and the
individual analysis that I performed approximating two characteristics of the
publicly-sampled social graph (Section 3.2).

During this time I also co-authored several Light Blue Touchpaper articles on
the subject of Facebook’s proposed new governance models with Joseph Bon-
neau, Sören Preibusch, Ross Anderson and Frank Stajano [19, 21, 22, 23]. These
were collaborative works, in one case driven by a request from the Open Rights
Group to provide comments on their behalf, and Joseph Bonneau was the lead
author. I also assisted Joseph, along with Andrew Lewis and Frank Stajano, in
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testing the revocation properties of various OSNs’ content delivery networks,
which was discussed in a 2009 post on Light Blue Touchpaper [20].

Based on all of this study, I published a paper at the 2009 International Work-
shop on Security Protocols (SPW), describing some of the misleading diver-
gences between online and real-world social networks and proposing design
principles to mitigate the problems in existing OSNs [3]. I developed these ideas
further into a software architecture and partial prototype that was published
later in 2009 at the second ACM Workshop on Social Networks (WOSN) [2].
This work was the product of many collegial debates with co-authors Claudia
Diaz, Joseph Bonneau and Frank Stajano. This architecture would eventually
develop into Footlights, a system that I have been building ever since.

As the Footlights architecture developed, I explored ideas around its per-
fectly unobservable communications channels at the 2011 Hot Topics in Privacy
Enhancing Technologies (HotPETs) workshop [10]. This work has influenced
my thinking about the covert channels described in Chapter 4, but its material
has not been directly included in this dissertation.

I developed the ideas in Chapter 6 after a conversation with Sonja Buchegger
of the PeerSoN project [65] in which we discussed PeerSoN’s need for a form of
authentication that was reliant neither on centralised infrastructure nor users’
ability to memorise or carry long private keys. This work was published at the
2010 International Workshop on Security Protocols (SPW) [4]; Chapter 6 is an
expansion of these ideas with a more in-depth evaluation.

I discussed the Footlights security API in a presentation, co-authored with
Joseph Bonneau, given at the third annual Analysing Security APIs workshop
(ASA) [11]. I explored the security and privacy differences between OSNs and
traditional application marketplaces, assisted by Joseph and Frank Stajano, at
the 2010 Workshop on the Economics of Information Security (WEIS) [12]. Nei-
ther of these papers have been directly included in the dissertation, but they
have influenced Footlights design decisions detailed in Chapter 5.

I have also collaborated with Luke Church and Joseph Bonneau to produce
two posters for the 2009 Symposium on Usable Privacy and Security. One of
these posters, of which Luke was the primary author and I was the secondary
author, focused on applying user programming techniques to the problem of
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privacy policy specification and included a pilot user study [14]. The other, of
which I was the third author, described the idea of “privacy suites”, expert-
supplied default privacy settings that could be applied by OSN users [13]. Nei-
ther of these posters’ material is included in this dissertation.

I also published other papers during my PhD that have little to do with
online social networks directly but which have influenced my thinking about
security issues generally.

In 2010, I joined Robert Watson’s Capsicum project, exploring how the capa-
bility model of security could be applied to traditional UNIX operating systems.
This work was published at the 2010 USENIX Security Symposium, where it
won a Best Student Paper award [9]. We also summarised the work for USENIX
;login: magazine [17] and explored a particular security API problem that we
encountered at the fourth Analysing Security APIs workshop [15]. This work
was collaborative in nature, but Robert Watson was the initiator, chief archi-
tect and primary programmer for the project. We have since merged Capsicum
into mainline FreeBSD, and Capsicum has been featured as a research high-
light in the March 2010 issue of Communications of the ACM [1]. The constraints
imposed on Capsicum by current hardware architectures led to the four-year
CTSRD project to re-consider aspects of hardware design that affect security. So
far, the CTSRD project has resulted in one workshop paper describing a new
CPU architecture called CHERI (Capability Hardware Enhanced RISC Instruc-
tions); this was presented at the 2012 Runtime Environments, Systems, Layering
and Virtualized Environments (RESoLVE 2012) workshop [16]. Although it is
not directly included in this dissertation, my work on Capsicum and CTSRD
have significantly influenced my thinking on application confinement, which is
a major focus of Chapter 5.

I have also published two additional papers at the International Workshop
on Security Protocols (SPW). The first, co-authored in 2011 with Frank Stajano
and Robert Watson, considers how automated analysis of citation graphs might
help members of Programme Committees to better focus their time when re-
viewing submissions to conferences and journals [5]. The second, co-authored
with Robert Watson and presented at the 2012 workshop, describes modifica-
tions to the Kerberos protocol that could allow users to eschew traditional au-
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thentication mechanisms in certain situations, instead presenting evidence to
authentication servers that the user is “a person who is currently alive” [6].
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2
BACKGROUND

This dissertation assumes a general computer science background for the
reader. In addition to this background, readers will require a functional famil-
iarity with cryptographic hash functions, symmetric-key encryption and public-
key encryption and signatures. Readers unfamiliar with these cryptographic
primitives may wish to consult Katz and Lindell’s Introduction to Modern Cryp-
tography [140] or Menezes, van Oorschot and Vanstone’s Handbook of Applied
Cryptography [174].

Beyond these cryptographic primitives, the reader will find in this chapter
some definitions of terms (Section 2.1) used throughout the dissertation and an
enumeration of specific technical problems (Section 2.2) to be addressed by any
system attempting to supplant today’s online social networks (OSNs). As stated
in Section 1.1, addressing these problems will not “solve” privacy, but solutions
would provide a technical framework in which users can change the parameters
of the socio-technical system that is privacy in online social networks.

Finally, I provide an overview of some of the related work in this area (Sec-
tion 2.3) and show why it does not solve the problems in Section 2.2.

2.1 DEFINITIONS

This section defines several terms which appear frequently in the discourse
around privacy and online social networks. Many of these terms will figure in
this dissertation, but I begin with a term that purposefully does not.

Social media A term that confuses meaning by conflating several scarcely-
related concepts while excluding very-related others. Common use of the
phrase “social media” encompasses Twitter and Facebook, which have radi-
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cally different usage models, but not blogs and e-mail, which are both media
and social in nature. Instead of this phrase, I use the more specific terms de-
fined below.

Personal broadcast medium A communications medium which affords ev-
ery user the ability to broadcast to a large, potentially global audience. This
includes online social networks and microblogs as well as more traditional me-
dia such as blogs, mailing lists, Internet Relay Chat (IRC) and Usenet. Such
media often provide a way to initiate a two-way conversation with readers, but
their primary usage is broadcast and “everyone has a microphone” [349].

Online Social Network (OSN) An online experience that centres around the
sharing of digital artefacts such as public messages (“wall” posts), photographs
and group events. Users can discuss and collaboratively edit the experience
according to an access control scheme that is based on stable identities. This
definition excludes most blogs and microblogs, but includes those blogs that
allow users to comment on articles based on stable identities and permit the
limiting of viewership.

Facebook The current OSN market leader. This dissertation will describe is-
sues around OSNs abstractly, but many examples will be drawn from Facebook.
Steve Jobs overstated the case only slightly when he said, “we talk about social
networks in the plural, but I don’t see anybody other than Facebook out there.
Just Facebook, they are dominating this” [272]. Facebook is the dominant player
in the market, so the way that it treats user data is more significant than the
ways that other networks do, and the practices that have fueled its explosive
growth deserve particular scrutiny. Where Facebook’s practices are unique or
of particular interest, I highlight them as such, but wherever possible, I describe
the behaviour of Facebook and its competitors abstractly, using the term OSN.

Privacy Privacy is a complex social good with no single agreed definition.
From Warren and Brandeis’ “right to be let alone” [228] to the German con-
stitutional court’s “right to informational self-determination” [133], there are
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varying interpretations of what privacy means and how it interacts with other
rights. When does my right to informational self-determination override oth-
ers’ right to free speech? These legal questions have not been uniformly set-
tled across jurisdiction and are well outside my domain of expertise. Instead
of considering them further, therefore, this dissertation focuses on aspects of
the problem where clear technical contributions can be made: keeping a user-
driven distinction between private and public information, as defined below.

Public Accessible by any person or computer without special authorisation.
This includes information that is restricted to users of a particular system if no
authorisation is required to become a user. It also includes information that is
technically available but labelled with a restrictive information-flow label, e.g.
covered by a robots.txt file [323] or available under contractual restrictions.

Private Information that a user intends to be non-public. This definition does
not require users to explicitly label information as private. The question of in-
tent also steers clear of legal definitions of Personally Identifiable Information
(PII) or Personal Data, most of which were written in a time before Big Data
and the ability to identify users from an “anonymised” social graph as shown
by Backstrom et al. [35], Narayanan et al. [188, 189] and Wondracek et al. [233].

User It is sometimes said in coffee breaks at academic security workshops that
“social networks are for people who don’t care about privacy” or that “they
get what they ask for”. This has not been the finding of research by Acquisti,
boyd, Gross, Krishnamurthy and others into actual use of privacy settings over
time [26, 59, 125, 147], nor has it been my experience in speaking with OSN
users. For the purposes of this dissertation, I assume that the User is a person
who uses an OSN’s information-sharing capabilities and who may choose to
create Private information (as defined above).

Trust I adopt the definition of trust recorded by Christianson and Harbison: to
say that A trusts B is to say that “B has the ability to violate A’s security policy”,
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or more intuitively, “B has the power to get A sacked” [74]1. In particular, trust
is about power and choice rather than truth: a user may choose or be forced to
trust an untrustworthy system or a system may be designed around untrusted
parties who are in fact trustworthy. Trust is also separable from reliance: a user
may rely on a server to perform a service, but that need not imply trust if the
user can independently verify that the service was performed correctly. This
definition of trust is quite different from that implied by the famous Russian
proverb, “trust but verify” [320].

Honest but curious A model of behaviour for a protocol participant who is re-
lied on but not trusted. This model was first introduced under a different name
in 1987 by Goldreich, Micali and Wigderson [116]. They described a “passive
adversary” who would perform a protocol correctly but “try to compute more
than their due share of knowledge”. In 1995, Beimel and Chor coined the label
above: they modeled participants in a secret-sharing scheme as honest (“they
follow their protocols”) but curious (“after the protocol has ended some of them
can collude and try to gain some partial information on the secret”) [38].

2.2 PROBLEMS

Based on these definitions, I define several technical problems to be solved
by a privacy-enabling online social network. Solving these problems will not
guarantee a different outcome for the subjects of all the scenarios in Section 1.1,
but it will allow the users in those scenarios to realise more desirable outcomes.

2.2.1 EXPLICIT EXPRESSIONS OF USER INTENT

In today’s OSNs, user actions can have hidden dependencies, using the Cog-
nitive Dimensions nomenclature described by Blackwell, Green et al. [50, 122]:
clicking a button may both express a sentiment (e.g. “I like this”) and confer
invisible privilege to the author of the application containing the button. The

1Christianson credits Robert Morris with introducing the security policy definition at the
first Security Protocols Workshop in 1993 [73]. The “getting-sacked” variant, in inverted form,
is credited by Ross Anderson to another comment made by Roger Needham at the same work-
shop [29]. Unfortunately, the transcripts of this workshop have been lost.
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fact that the user clicked the button may be visible to many more people than
the user would have chosen to reveal the fact to. The application author may
be permitted to alter the user’s profile and advertise to their “friends”. By con-
trast, a privacy-enabling OSN should seek clear and explicit expressions of user
intent. Service providers, advertising platforms and third-party application de-
velopers should only see a user’s private information if the user expresses a
decision to share it.

These expressions of intent may be — and in Footlights, are — translated
into cryptographic operations, but users should not need a grounding in cryp-
tography or computer security to use the system. Wherever possible, users’
sharing intent should be inferred transparently, using existing user actions rather
than new prompts or dialogues.

A solution to this problem would change the outcome of scenario “Face-
book” on page 4, in which users’ private information was made public, whether
automatically through permissive defaults or accidentally through a user inter-
face that failed to capture user intent.

2.2.2 MULTI-FACETED IDENTITY

In the case of the CBSA recruits whose private photos leaked to the public
(scenario “CBSA” on page 4), a different outcome may have been experienced if
the recruits were better able to segregate their personal and professional online
personas. Today’s OSN users may segregate different facets of their identities
by using different OSNs for different roles [346], but difficulties arise when there
is overlap between friends, family, co-workers, supervisor and supervisees.

Instead of a coarse partitioning between OSNs, a privacy-enabling OSN
should support a fine-grained expression of user identity: users should be able
to express different facets of an online persona within different contexts. Users
must be able to assert these facets of identity — e.g. “I post this comment in
response to that photo” — without leveraging trusted authentication infrastruc-
ture or requiring users to carry hardware cryptographic tokens. Furthermore,
a user’s various “audiences” should not be able to infer the existence of other
audiences or content, as observed by Greschbach et al. [123].

Multi-faceted identity must not impose a burden of explicit key manage-
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ment on users: cryptography must be “under the hood”, implemented as a
mapping from higher-level concepts such as “users” and “accounts”.

2.2.3 HIGH AVAILABILITY

When users share content with other users, it must be reliably stored and
readily accessible to authorised users. Content must be available in terms of
both uptime and access time. It should be possible for future OSNs to achieve
the elusive “five nines” of uptime (99.999% uptime, or about five minutes of
downtime per year). It should be possible for users to store content indefinitely,
though perhaps at a cost (see problem “Cost” on page 20).

Users must also be able to access content quickly: storage should be acces-
sible via caches or high-throughput Content Delivery Networks (CDNs), not
dependent on the upload speeds of residential DSL lines. The time required to
access content should scale linearly with the size of the content, not with the
total size of all content in the system.

If a privacy-enabling OSN does not provide these availability properties,
the majority of users who require and expect their OSN to “Just Work” will stay
away. Users like Sophie who are willing to use the new network would there-
fore lose any benefits of cover traffic that might come from a large user base,
discouraging even privacy-motivated individuals from adopting the service.

2.2.4 UNTRUSTED INFRASTRUCTURE

In a privacy-enabling OSN, the providers of software and infrastructure
should not be trusted. According to the definition of “Trust” on page 15,
providers may be relied on to perform a service and provide availability, but they
should not be be trusted to implement users’ security policies. Integrity proper-
ties, including those provided by software, should be verifiable. Confidentiality
claims should be grounded in something other than trust in a provider.

Solving this problem would allow a privacy-enabling OSN to change the
outcome for the scenario subjects above who were upset by Facebook’s decision
to declare some private information as public (scenario “Facebook” on page 4).
In a privacy-enabling OSN, it would not be within the power of the provider to
make this policy change, since the provider is not trusted to enforce the user’s
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confidentiality policy.

2.2.5 SOCIAL APPLICATIONS

Today’s online social networks are not merely repositories of data: they
are platforms that allow developers to create social applications. Future
privacy-preserving OSNs should be designed with extension and adaptation
in mind. As researchers such as boyd have shown, it will occur even if not
planned for [58], so designers should provide application programming inter-
faces (APIs) that allow the OSN to be extended without compromising the pri-
vacy properties of the system.

Changing the outcome in scenario “Sophie” on page 5 requires that social
applications be available on a privacy-enabling OSN, not just today’s OSNs:
otherwise, Sophie will be unwilling to use them. Developers should be able
to write applications in well-known, widely-accepted languages. The platform
that runs these social applications must provide applications with typical Op-
erating System services such as reliable storage and inter-application commu-
nication. Applications must be able to manage their own namespaces of stored
user data, but the security of user information should not depend on the quality
of application code.

The platform’s API should encourage developers to refer to personal infor-
mation à la Felt and Evans’ “privacy by proxy” [103]. For instance, Figure 2.1
on the next page shows two approaches to inserting the user’s name in a UI
element. It is preferable for an app to specify that “the opponent’s name goes
here” as in Listing 2.1 on the following page rather than require direct access
to user data as in Listing 2.2 on the next page. Indirect use of user data should
require no special permissions.

It may be possible for applications to request direct access to user data
through a security API, especially if they compartment themselves into least-
privileged components. Felt and Evans’ survey of 150 Facebook applications
found that only seven actually processed users’ private information, perform-
ing functions such as choosing from a set of horoscopes based on the user’s
birthday [103]. On a privacy-enabling social application platform, a horoscope

19



CHAPTER 2: BACKGROUND

Listing 2.1: High-level social abstractions.

ui.opponent.appendPlaceholder(’opponent’, ’name’)
Listing 2.2: Low-level implementation.

for (var user : game.players()) {var name = user.name();if (name != my_name) {ui.opponent.appendChild(document.createTextNode(name));break;}}
Figure 2.1: Direct and indirect access to user data.

application might still request direct access to the user’s birthday for this pur-
pose; such a request could certainly be honoured if the app actually ran as two
applications, one with access to the birth date and one with access to the net-
work, with a one-way information channel between them. Otherwise, user per-
mission would be required. The path of least resistance, however, should be to
refer to private information in abstract, indirect terms.

With user permission (see problem “Explicit expressions of user intent” on
page 16), applications should be able to communicate with other applications,
websites and users. Wherever possible, these privileges should derive from
user actions rather than lists of permissions. For instance, rather than granting
a “may open local files” permission when installing an application, applications
should request access to local files via an Open File dialog that is rendered by
the platform and only grants access to files that the user chooses.

Finally, the behaviour of social applications should be visible to users so that
experienced users can examine application behaviour and critique it on behalf
of the wider user community.

2.2.6 COST

Today’s OSNs are nominally gratis — no direct financial obligation is placed
on users — but they do have a cost. In order to pay for OSNs, user data is bro-
kered, often indirectly but occasionally directly (see Chapter 3). Hundreds of
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millions seem willing to make this exchange of personal information for OSN
services, but no alternative contract is being offered: no currently-available al-
ternatives can offer the services of today’s OSNs at a competitive scale.

Unlike in today’s OSNs, the cost of providing a privacy-enabling OSN
should be exposed to users. That cost might be paid in any number of ways —
advertising, premium text messages, direct payment — but it should be low and
it must not be hidden behind the exploitation of personal information. The plat-
form should provide a payment interface that allows the use of arbitrary settle-
ment mechanisms, creating a secondary market for privacy-preserving adver-
tising — proposed independently by Bilenko et al. [48], Guha et al. [126], Pearce
et al. [196] and Toubiana et al. [224] — or Chaum’s anonymous e-cash [71].

The direct payment option might be particularly attractive to corporations,
non-governmental organisations, etc. that wish to accrue the benefits of a shared
data and application platform without the confidentiality costs of today’s OSNs.

As in problem “High availability” on page 18, a solution to this problem
would allow a privacy-enabling OSN to be practical for the current ranks of
OSN users who, unlike “Sophie”, have chosen practical systems over privacy-
enabling ones.

2.2.7 LINKABILITY AND ANONYMITY

A practical, performant and scalable application platform may not be im-
mune to traffic analysis: a malicious storage provider might link some possibly-
encrypted data with client IP addresses. However, the system should be com-
patible with anonymity for users who wish to pay a cost: those who are willing
to suffer higher latencies and lower bitrates should be able to communicate in
ways that defy traffic analysis.

If a privacy-enabling OSN solved this problem, it would allow even “So-
phie” to use the OSN for sensitive communications.

I have claimed in Section 1.2 that Footlights addresses all of these problems.
Before I describe that system, however, I will first show that the existing re-
search literature does not fully address these problems.
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2.3 RELATED WORK

This section is not the only discussion of related work in this dissertation:
each technical chapter contains a more detailed survey of work related to its
specific remit. This section provides a high-level overview of systems that have
attempted to solve privacy problems in online social networks.

The research literature contains many proposals to address the privacy prob-
lem in online social networks. There are new architectures: some encrypt
user data within existing, centralised OSNs (§2.3.1) and some distribute user
data over decentralised, peer-to-peer networks (§2.3.2). Despite some technical
merit, these architectures fail to entirely solve the problems outlined in Sec-
tion 2.2. Other proposals are apparently simply oblivious to the larger socio-
technical context, providing technical solutions to entirely the wrong problems
(§2.3.3). The literature also contains proposals to improve the user experience of
privacy policy specification (§2.3.4). Further work in this area could allow user
intent to be better captured as a formal policy (problem “Explicit expressions of
user intent” on page 16), but policy alone does not provide privacy: mechanism
is also required.

2.3.1 ENCRYPTION WITHIN OSNS

Over the past three years, there have been several proposals to add informa-
tion hiding to existing OSNs, maintaining ties to large extant user bases while
keeping user data hidden from OSN operators, advertisers and application de-
velopers. The most prominent feature of these proposals, the ability to interop-
erate with and be embedded within an existing OSN, is also their tragic flaw. A
service so tightly coupled to extant OSNs cannot protect the social graph: the
graph of users and the relationships among them.

The first proposal of this kind is Lucas and Borisov’s flyByNight [165],
which performs public-key cryptography in JavaScript, translating messages
and other user data into opaque ciphertext that can be embedded in the usual
social channels. In flyByNight, private keys are stored within the OSN itself for
usability reasons, so a curious OSN operator could decrypt the traffic but other
users, search engines and advertisers could not. A similar approach, which
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leverages the key management infrastructure of PGP, is Beato, Kohlweiss and
Wouters’ Scramble! [37]. Since Scramble! uses the PGP infrastructure, private
keys are never visible to the OSN operator, but this system carries all of the
usability problems inherent in PGP [231]. Other variations on this theme have
been proposed based on Shamir secret sharing (Atrey et al. [33]), attribute-based
encryption (Braghin et al. [61]) and group cryptosystems (Zhu et al. [247]).

Encryption-based approaches to information hiding carry the risk that the
OSN operator might enact a “no blobs of ciphertext” policy. Luo, Xie and Hen-
gartner’s FaceCloak [167] avoids this particular risk by populating the user’s
Facebook profile with plausible-looking data, while keeping real information on
another server that only FaceCloak users are aware of. Lockr, by Tootoonchian
et al. [223] uses social relationships defined by OSNs to control access to infor-
mation stored outside the network: users share “social attestations”, tokens that
represent a relationship, via a social network, and produce attestations to con-
tent servers which check them against “Social ACLs”. Integration with services
such as Flickr involve placeholders and external content storage services like
FaceCloak. Guha, Tang and Francis’ NOYB [127] uses the clever approach of
storing real data, in plaintext, on the profiles of other NOYB users; the location
of a user’s actual data is given by a keyed permutation. NOYB does not address
the key management problem.

The weakness common to all of these approaches is that they protect user
data without addressing the most important problem: protecting the social
graph. As I will show in Section 3.2, it does not matter if one hides their love of
classical music from an untrustworthy OSN: the musical preferences of others
in the social graph give them away [157, 181, 237, 246]. Similarly, encrypting
a profile photo provides no protection from Jagatic’s social phishing attack, in
which information about the social graph is used to increase the effectiveness
of phishing by making it appear to come from friends [136]. In such an attack,
what matters is that some of the target’s friends have made their names and
photos available to the phisher. In contrast to schemes that achieve differential
privacy [96], encrypting one’s own profile data in an OSN does almost nothing
to shield them from this attack; risks are produced by the actions of others.
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2.3.2 DISTRIBUTED SOCIAL NETWORKS

There have been several proposals in the research literature for distributed
online social networks that do not trust or rely on a centralised service provider,
but none fully address all of the technical problems in Section 2.2.

HelloWorld was a 2009 proposal by Ackerman et al. to build a distributed
social network in which users sent encrypted messages to each other over e-
mail or Freenet [76]. User identities in HelloWorld consisted of mappings from
a global namespace on helloworld-network.org to user-uploaded public keys.
This architecture both relied on public infrastructure such as e-mail servers to
perform their functions correctly and also trusted them not to observe the social
graph as encrypted messages traversed them.

A more mature proposal for e-mail–based social networking is Fescher et
al.’s “Mr Privacy” [105]. This system uses e-mail as a transport mechanism to
support collaborative social applications. Like HelloWorld, protection of the
social graph is based on trust in the underlying e-mail provider.

A related proposal is Yong et al.’s Mailbook [242]. Mailbook uses e-mail
servers to store content that is shared with other users via a peer-to-peer meta-
data layer. This combines the observability of centralised systems with the un-
reliability of P2P networks: the mail server can observe all accesses to content
and the P2P network in question has been found to be unreliable by Buchegger
et al. [65].

Mannan and van Oorschot have proposed a Kerberos-like system that uses
instant messenger services to distribute capabilities for accessing private Web
pages [168]. This allows user content to be distributed across many servers, but
as in the above mail-based systems, the central IM server is not just relied on but
trusted with the complete social graph. This approach seems to place no more
trust in the IM server than in general IM usage, but this is not actually the case.
The question to ask is not, “do you trust your IM server with your contacts?”
but “would you continue to trust your IM server with your personal details if it
became the gatekeeper for all of your online social interaction?”

Persona [36] uses attribute-based encryption to protect user data. This al-
lows users to set up friend-of-friend groups, i.e. Alice can encrypt a message to
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“anyone that Bob has labelled with the attributes friend and Cambridge”, but
it is orders of magnitude slower than existing public-key techniques. For this
multiplicative increase in computational cost, it provides no discernible secu-
rity improvements. For instance, an example given by the Persona authors is
that Alice can encrypt content for Bob’s friends without Bob needing to entrust
Alice with his list of friends. To take advantage of this affordance, however,
Alice must send confidential information to a set of people whose membership
she neither controls nor understands. Alice must trust Bob absolutely, since Bob
can provide absolutely anyone with the friend attribute, or else Alice’s message
must not be very confidential. If the message is not very confidential, it is un-
clear why Alice would use a computationally-expensive encryption scheme to
protect it rather than existing, efficient schemes.

Buchegger et al.’s PeerSoN [65] is a distributed social network based on a
Distributed Hash Table (DHT) [201]. The authors rightly recognise that “the use
of a DHT in itself [...] does not provide any security or privacy to the users”;
the work initially concentrated on functionality rather than security, although
broadcast encryption has subsequently been proposed as a mechanism to pro-
vide confidentiality properties [52]. At the time of writing, PeerSoN has no
security implementation, so it remains to be seen whether a simple layering of
encryption on top of PeerSoN’s P2P network will satisfy the privacy problems
in Section 2.2. The authors claim that PeerSoN will “utilize social trust — which
is not present in most traditional DHTs — to make the DHT reliable” [65], but
have not described how this will be done without revealing social graph infor-
mation.

Safebook [79, 80, 81] provides access control via a set of nested rings called
a matryoshka within an overlay network above a peer-to-peer overlay network.
These rings consist of concentric circles of friendship relations: close friends,
friends of close friends, etc. In order to access a user’s content, it is necessary
to find a path through this matryoshka to a node in the network that holds the
data in question. This approach suffers from two problems: a lack of availabil-
ity and a lack of a clear security model. On availability, churn in the underly-
ing P2P network increases the difficulty of finding a suitable path through the
matryoska. Cutillo et al. define “available” user data as that which can be ac-
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cessed via the system with 90% probability; this falls well short of the commer-
cial standards of centralised OSNs. On security, the matryoska system embeds
unwarranted assumptions about trust. For instance, it assumes that each user
will have a set of friends who are trusted with all information — this conflicts
with problem “Multi-faceted identity” on page 17. Safebook also assumes that
friends-of-friends are more trustworthy than friends-of-friends-of-friends, etc.
Also, since Safebook stores protected data on friends’ computers, the trust re-
lationship is not simply that “I believe this person to be trustworthy” but also
“I believe this person to be a competent system administrator who will keep
their trusted node free of malware”. The correct operation of the P2P overlay
requires a “Trusted Identification Service” to guard against Sybil attacks [93]
and impersonation. The authors claim that “this does not contrast [sic] our goal
of privacy preservation through decentralization” [81] because “this service’s
jusrisdiction [sic] is limited to the purpose of authentication” [80], but the TIS
is capable of violating the policy that “only trusted contacts of a node are able
to link” that node’s user ID and P2P node ID. Either this policy is important or
it is not; the authors of Safebook want to have it both ways. This hazy trust
model provides no clear basis for reasoning about security properties. Finally,
Safebook provides no application model to allow third-party extension as re-
quired by problem “Social applications” on page 19: the authors refer to the
system itself as a “social networking application” [81].

Aiello and Ruffo’s LotusNet [28, 27] is based on the Likir variant of the
Kademlia DHT. In this variant, security properties are claimed based on a bind-
ing between DHT nodes and persistent identities, verified by a trusted Certifi-
cation Service. Although LotusNet is called a distributed OSN, it is dependent
on global identities and the trusted global name authority for correct operation
at its lowest levels.

The open-source Diaspora* project [276] is a federated social network. Users
can create “pods”, each of which hosts some number of users like a conven-
tional, centralised OSN would. These pods can communicate to provide func-
tionality at a larger scale. This architecture changes the parameters of trust
somewhat, since users can choose which pod to trust with their data, but a pod
must still be trusted just as a centralised OSN is trusted today. Diaspora* does
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not currently provide an application API: all code is curated by a centralised
team of developers.

Narayanan et al. criticise distributed approaches to “personal data architec-
tures” based on technical, economic and cognitive grounds [187]. The technical
arguments are that distributed systems are more challenging to build than cen-
tralised ones and that decentralisation requires standardisation, which is a chal-
lenging process. These arguments are based on true premises, but neither need
preclude the design of distributed social networks — they only preclude naïve
designs. The authors also point out that economies of scale are important and
switching costs are real, leading to the valid point of guidance that new OSN
architectures should take economic considerations into account. Finally, the au-
thors conflate several orthogonal cognitive considerations in social networks
generally, describing them as problems with “decentralised systems”. For in-
stance, the authors state that “more control over personal data almost inevitably
translates to more decisions, which leads to cognitive overload”, but this is not
a reason to avoid decentralised architectures. Centralised services such as Face-
book provide very detailed and fine-grained control over some personal data,
capable of causing just as much cognitive overload as an equivalent decision
matrix in a decentralised system. What Facebook does not have is an incentive
to explore alternative schemes for privacy policy configuration [13, 14] if those
schemes hinder a “free flow of information” within the network [310]. In con-
trast, a distributed system that does not extract monetary value from user data
has every incentive to combat cognitive overload by accurately capturing user
intent, reducing decision fatigue and improving the user experience of privacy
management. While the authors of this critique raise some important issues,
their case against decentralised data architectures is greatly overstated.

Distributed architectures for online social networks could overcome the
challenges described by Narayanan et al., but none of the current approaches
solve all of the technical problems described in Section 2.2.

2.3.3 SOLUTIONS OUT OF CONTEXT

The encryption- and P2P-based approaches described above do not satisfy
all of the requirements of Section 2.2, but many of these approaches do have a
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coherent model of the OSNs that they are meant to supplement or the larger
socio-economic context that they are meant to operate in. Not all proposals in
the research literature show evidence of this contextual understanding.

An example of a technical solution that fails to consider its social context
is Maximilien et al.’s “Privacy as a Service” architecture [169]. This system is
a centralised reference monitor [160] that users control by declaring a privacy
policy with manually-assigned “privacy levels” for individual user data. Con-
ceptually, this is exactly what Facebook already does: the difference is that Face-
book does not make a “privacy risk index” salient to users via a “Privacy-aware
Marketplace”. The authors appear to consider the problem of privacy in OSNs
to be solved, discussing in their future work section how their algorithmic com-
plexity might be improved, not how users might overcome Whitten’s secondary
goal property — privacy and security are typically not a user’s primary reason
for using a system [230]. This is, how can users be convinced to spend their
time manually assigning “privacy levels” to content? The authors do not seem
to consider that the lack of privacy salience in today’s OSNs may not be due
to a lack of inventiveness or technical ability on the part of OSN providers but
because of a desire for a “free flow of information” [310].

Similarly, Li, Alessio and Zhou’s 2010 OST (Online Social Trust) model at-
tempts to fit numerical trust models from OSNs onto CDNs in preparation for a
coming convergence of the two [156], apparently oblivious to the fact that Face-
book made a business decision several years ago to use CDNs with absolutely
no access control, as illustrated by the 2009 study that Joseph Bonneau, Andrew
Lewis, Frank Stajano and I performed on photo remanence in social network
CDNs [20].

2.3.4 PRIVACY POLICY SPECIFICATION

Several works in the research literature attempt to improve user control of
information sharing through improvements to the user experience of privacy
policy specification. These proposals are independent of the underlying policy
enforcement mechanism: they could apply equally well to any reference moni-
tor [160] driven by a user-specified security policy.

Besmer et al. performed a user study in which Facebook installation dia-
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logues were supplemented with additional information about the application’s
behaviour and the installation decisions taken by their Facebook friends [46].
Instead of the current “take-it-or-leave-it” model, users were permitted to spec-
ify what information would be shared with an application. The authors found
that “motivated” users did modify their behaviour based on the extra informa-
tion, but others did not.

In 2009, I co-authored a poster with Luke Church and Joseph Bonneau that
proposed end-user programming techniques for the privacy policy specifica-
tion problem [14]. In particular, we allowed users to create their own abstrac-
tions around subjects and objects, which could be expressed in natural language
called “Policy Stories”. In a preliminary study, our two users expressed confi-
dence in their understanding of what they had specified using the system.

Other approaches to improving the user experience of policy specification
include selectable, expert-supplied defaults [13] and machine learning of pref-
erences to inform new policies generated on demand [101]. These approaches
have the potential to aid users in clearly expressing their privacy preferences,
informing the OSN “reference monitor” what should be shared. This approach
is independent of the sharing mechanism.

These techniques could contribute to a larger privacy solution for online so-
cial networks, but policy alone does not solve problem “Explicit expressions of
user intent” on page 16: a mechanism to enforce the policy is also required.
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3
ANTISOCIAL NETWORKS

“People have really gotten comfortable not only sharing more infor-
mation and different kinds, but more openly and with more people.
That social norm is just something that has evolved over time.

Mark Zuckerberg, January 2010 [350]”Today’s centralised online social networks (OSNs) are trusted to make access
control decisions on behalf of users, but those decisions do not always align
with users’ intentions. In some cases, technical flaws lead to data leakage con-
trary to the wishes of both users and operators. In other cases, there is a mis-
match between user understanding of privacy settings and the actual protec-
tions afforded by the system. In many cases, however, the interests of the user
and the network are simply not aligned. In these cases, when users’ data must
be safeguarded by operators without the incentive to do so, private information
has a history of leaking out.

In this chapter, I consider how extant OSNs have revealed a great deal of
their users’ private information to third parties, often without permission (Sec-
tion 3.1), and how, in some cases, sites may be revealing more than they them-
selves intend (Section 3.2).

3.1 USER DATA PRIVACY

Online social networks can be used to share information with friends, but
the OSNs themselves can also share information beyond users’ intentions.
This disclosure has occurred through regular churn in OSNs’ privacy settings
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(§3.1.1), explicit leakage of personal information due to less-than-vigorous pro-
tection around advertising (§3.1.2) and by providing third-party applications
with access to information that users within the network cannot see (§3.1.3).

3.1.1 FORCED OPEN: EVOLVING DEFAULTS IN PRIVACY SETTINGS

Much unintended disclosure in OSNs stems from permissive, ever-changing
default privacy settings. Default settings are important for two reasons. First,
as shown in §3.1.1.1, many users never customise their privacy settings, so their
security policy is exactly what the default settings dictate. Second changes in
default settings over time can affect even those users who have specified a non-
default sharing policy: users’ expressed intentions may be disregarded as new
defaults are created. §3.1.1.2 will show that when some new features were in-
troduced to world’s most popular OSN, all users were given the same default
settings, whether those users were previously very private or very public. Even
more strikingly, as the language used to express privacy policies changed over
time, user-customised settings were lost and replaced with new, default set-
tings. After these substitutions, a user who once expressed a very private shar-
ing policy could end up with a quite permissive policy.

3.1.1.1 USE OF DEFAULT SETTINGS

OSN users have, over time, become increasingly willing to spend time ad-
justing privacy settings to match their sharing intentions. Nonetheless, default
settings are still used by many users today.

Gross, Acquisti and Heinz performed a study in 2005, the early days of Face-
book, and found that within a university “network” — a Facebook mechanism
for separating users from different institutions — users engaged in very high
rates of personal information disclosure [125]. 90.8% of user profiles displayed
a photo to all Facebook users in the university, 87.8% displayed a birth date,
50.8% a current residence and 39.9% a phone number. Facebook profiles con-
tained, by a small margin, more personally identifiable information than the
competing, less exclusive OSN Friendster. In a later study, Acquisti and Gross
found that 77% of users had no desire to change the default searchability set-
tings [26]. Gross, Acquisti and Heinz speculated that exclusivity in an OSN is
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inversely proportional to voluntary disclosure.

This speculation was borne out in a 2008 study by Krishnamurthy and
Wills [147], which found that profile visibility in Facebook “networks” varied
from 51% to 93%, depending on network size. In large networks, users were
more likely to hide their profile information, whereas in smaller networks, users
were most often content to leave their profile at the default visibility. These
numbers contrast with the statistics that Krishnamurthy and Wills found for
Twitter, a personal broadcast medium, in which over 99% of users employed
default (public) privacy settings.

A 2010 survey study by boyd and Hargittai [59] found that user interac-
tion with Facebook’s privacy settings increased dramatically between 2009 and
2010, but the majority of “occasional” Facebook users have interacted with their
privacy settings three or fewer times and only 53% of “frequent” users had in-
teracted with their settings four or more times.

Based on these results, it is reasonable to assume that more and more OSN
users will modify their privacy settings over time, customising them from the
OSN-provided defaults to settings that better meet their privacy and sharing
goals. Nonetheless, it also seems prudent to assume that there will always be a
population of users who keep the default settings.

Still, the fact that many users express their privacy and sharing intent within
an OSN does not completely insulate them from future disclosure: if the OSN
changes its default settings or the language that privacy settings are expressed
in, actual patterns of disclosure may not match users’ intent.

3.1.1.2 A HISTORY OF CHANGING DEFAULTS

In today’s OSNs, when a user modifies her privacy settings, expressing her
intent about who she wishes to share with, she can only express policies in a
language made available by the OSN. This language is typically a list of rules
that state “items of class X may be shared with users of class Y”, where X might
be “all photos” or “this photo album” and Y might be a friend list or an individ-
ual. A user may be able to express the policy “only share photos from the party
last weekend with people I have explicitly designated”, but she cannot control
how her name will be used by a not-yet-developed OSN feature: the language
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affords no means of expressing it. An OSN could provide the vocabulary to ex-
press the concept “and any other use which I have not explicitly described”,
but that has not been the practice of today’s OSNs. On the contrary, as I will
demonstrate in this section, the world’s most popular OSN tends to roll out
new features with mandatory information disclosure, then provide an opt-out
facility after user outcry.

Even if users rigorously restrict their current privacy settings, a steady
stream of new features provides a corresponding stream of new switches to
be turned off, and most of these switches default to “on”. An OSN account at
rest, with no forces acting on it other than the OSN itself, tends to become more
publicly-accessible over time.

I will illustrate this tendency by considering the case of Facebook, summa-
rized in Figure 3.1 on the facing page. This figure shows a timeline of Face-
book’s development, including new features, privacy-related developments,
newsworthy events and public statements.

Facebook, which is currently the world’s most popular OSN, opened to the
general public on 26 Sep 2006 [284]. Prior to that, users were required to have
a verifiable e-mail address from a “network” such as a university. Suppose a
University of Cambridge student named Alice created a Facebook account in
August 2006 and immediately limited the sharing of all personal information to
direct “friends” only, but left her “searchability” setting at “Everyone” so that
friends could search for her and send friend requests. Without this setting, it
was very difficult for real-life friends to find each other on Facebook: it was im-
possible for two users with the most restrictive searchability settings to “friend”
each other, which discouraged users from choosing such settings.

Here is a history of how Facebook’s changing default settings would have
affected Alice’s sharing policy from then up to the time of writing, assuming
that she made no further changes to her own privacy settings:

15 Aug 2006 The Facebook development platform is introduced [286], allowing
users to install applications which access their private data and provide
services such as social games. Alice’s friend Bob installs an application,
granting it access to his profile and any information shared with Bob by
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his friends, including Alice. Whatever personal details Alice has shared
with Bob are sent to an application server run by the application’s main-
tainer, rather than Facebook. This data is public according to the definition
of “Public” on page 15: no technical restrictions are imposed by Facebook
on what the application maintainer can do with Alice’s data.

5 Sep 2006 News Feed and Mini-Feed are introduced [301]: information that
was previously available to users who looked for it (e.g. “Alice is not in a
relationship”) is now broadcast to them (“Alice is no longer in a relation-
ship with Charlie”). Users protest, leading founder Mark Zuckerberg to
declare that the incident is just a misunderstanding: no privacy settings
have changed [311]. Three days later, he admits that the switch from ac-
cessible information to broadcasted information is, in fact, a significant
change; new privacy controls are both required and available, but on an
opt-in basis [310].

5 Sep 2007 Public Search Listings are introduced [287]. People who are not
signed in to Facebook — as well as search engine robots — can now view a
page containing selected information about Alice such as her name, photo
and a subset of her friends. This information both disambiguates Alice
from other Alices on Facebook and shows external viewers that this par-
ticular Alice and her friends are using Facebook.

6 Nov 2007 Facebook Pages and Social Ads are introduced [297]. Brands ac-
quire the ability to create pages that look like user profiles, but rather than
“friending” a brand, users can declare that they are a “fan” of one. This
information is then used in Social Ads, where users’ names and likenesses
are used to advertise the brand in question to their friends, e.g. “Alice is a
fan of Brand X” or “Bob wrote a review of Local Restaurant Y”.

9 Nov 2007 Beacon is introduced [300]. The actions of logged-in Facebook users
are tracked on external websites and announced within Facebook, e.g.
“Alice just bought Security for Ubiquitous Computing by Frank Stajano from
Amazon.com”. User outcry leads Mark Zuckerberg to apologise, both for
making Beacon opt-out rather than opt-in and for failing to respond to
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user complaints in a timely way [312]. Beacon becomes opt-in, then two
years later, is shut down entirely as part of a legal settlement [281].

27 Apr 2009 The Open Stream API is released [292]. Alice’s favourite newspa-
per, which requires readers to log in before they can read all stories or post
comments, starts using Facebook Connect for authentication. Alice now
logs into her news site by clicking the Facebook Connect button rather
than entering a username and password: she appreciates the opportunity
to remember one less password. With the Open Stream API, that news
site can now publish items in her Facebook News Feed such as “Alice
just commented on story X” without Alice’s permission: to stop this be-
haviour, Alice must explicitly opt out.

2 Jun 2009 Facebook begins phasing out regional networks [295]. Events and
groups that were once restricted to a regional network are now open to
everyone, and Alice’s profile acquires a “Current City” field, which is au-
tomatically populated as “Cambridge”.

29 Oct 2009 Applications (including sites using Facebook Connect for authen-
tication) are now able to require that Alice provide her e-mail address in
order to use their services [289]. Since Alice does not want to lose all of
the comments, history and other content which she has built up on her
favourite newspaper’s website, she clicks “OK”.

9 Dec 2009 While announcing “new tools to give you even greater control over
the information you share”, Facebook announces that “a limited set of ba-
sic information that helps your friends find you will be made publicly
available”. Facebook publicly discloses Alice’s name, photo, networks
and her previously-private friend list [302]. Alice’s list of Facebook friends
is now visible to all Internet users and search engines.

10 Dec 2009 Facebook provides a mechanism for users to opt out of having
their friend lists displayed publicly [296]. Without active intervention,
Alice’s friend list — which was once hidden even from her friends — re-
mains public. Bob opts out of the publicly-viewable friend list, but the

37



CHAPTER 3: ANTISOCIAL NETWORKS

setting does not have the effect he expected: his friend list is no longer
displayed on his Facebook profile page, but the list itself “is still publicly
available, however, and can be accessed by applications” [296].

19 Apr 2010 Some textual profile fields become “connections” to new Facebook
Pages [294]. The next time Alice logs in, she is prompted with a dialog
asking if she wants to link to the University of Cambridge page, since
her university affiliation was automatically inserted into her profile when
network-based access control was deprecated. If she clicks the default
button, thinking “that’s accurate information” rather than “I want this in-
formation to be shared publicly”, her university affiliation will become a
“Connection”, considered “public information” that cannot be hidden by
any privacy setting.

21 Apr 2010 Application policy is changed to permit applications storing user
data indefinitely (up from 24 h) and using it “in any way you believe pro-
vides a richer experience for your users” in order for application develop-
ers to “build a closer relationship” with users [285]. Websites that Alice
has logged into with her Facebook credentials and required her e-mail ad-
dress as a condition of use begin sending her daily e-mails that Facebook
can neither monitor nor stop.

The same day, the “Like” button goes global: actions taken on external
websites, such as clicking a “Like” button, appear in the internal Face-
book News Feed [291]. Echoes of Beacon ring clearest when Alice makes
a comment on a news website, in the context of a discussion around a par-
ticular article, and it appears in the Facebook News Feeds of people Alice
does not know. This is later restricted to the feeds of Alice’s friends [290],
most of whom were not part of the original discussion’s context.

Instant Personalisation is also announced, though it is not yet known by
this name [313]. When Alice visits the review site Yelp, it is informed by
Facebook that Alice is visiting and shown her connection to the University
of Cambridge, as well as connections to any local restaurants that Alice
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has already “liked”. Later, Alice views a PDF file containing membership
rules for a Cambridge society on the document sharing site Scribd. As a
trusted Instant Personalisation partner which has been “carefully chosen,
reviewed and ... contractually required to respect people’s privacy pref-
erences” [290], Scribd has immediate access to Alice’s friend list, which
it uses to acquire Bob’s e-mail address and sign him up for an account
with no clear opt-out mechanism, informing him that Alice has signed
him up [347].

26 May 2010 Facebook no longer requires all connections to Pages to be public
and provides opt-out facilities for both the Facebook Platform and Instant
Personalisation [315]. As a casual user who does not follow Facebook’s
press releases Alice is unaware of the opt-out mechanism. Alice’s connec-
tions continue to be publicly-visible, and Facebook’s Instant Personalisa-
tion features continue to provide her profile details to partner websites.

30 Jun 2010 Facebook launches a new application authorisation process [305].
As Facebook had promised the Canadian Office of the Privacy Commis-
sioner in August 2009 [270, 271], a dialogue box appears when applica-
tions are installed to inform the user what personal information the appli-
cation requires and to present “Allow” and “Don’t Allow” options. Con-
trols are also provided in Alice’s privacy settings page to restrict what in-
formation Bob and other friends can disclose to applications on her behalf,
should she be aware of and choose to actively manage them.

19 Aug 2010 The Places feature is introduced [303]. Users now have the ability
to “check in” (register their position) at real-world locations. By default,
check-ins are visible to all friends. Alice never checks in to Places herself,
but when she and Bob visit a local coffee shop together, Bob checks in and
declares that he is with Alice; “it is as if [she has] checked in at that place
[herself]” [303]. The first time this happens, Alice is asked for authorisa-
tion. Because of implied social pressure and because it seems innocuous,
Alice chooses the default option (“Allow”). From then on, no authorisa-
tion is required for such check-ins unless Alice opts out of the service.
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6 Oct 2010 Facebook provides closed-by-default groups and an application
dashboard to illuminate what applications are authorised to access Face-
book information [314]. By clicking an “Edit” link, users can also see what
information applications require and what is optional.

13 Oct 2010 Facebook users’ names and likenesses start appearing in Mi-
crosoft’s Bing search results [306]. Now, when Bob searches on Bing, he
will see Alice’s name and photo endorsing products or websites that Alice
has expressed a “liking” for.

25 Jan 2011 Facebook introduces Sponsored Stories [274, 326], in which adver-
tisers can pay for Alice’s activities, already published in her News Feed, to
be promoted as advertisements. When Bob visits a local coffee shop with
Alice and other friends, his “check-in” declaring their real-world-position
may be used as an advertisement for that coffee shop and shown to Alice’s
friends. This is a paid-for advertising feature; no opt-out is provided.

26 Jan 2011 Facebook introduces opt-in HTTPS for all Facebook content as well
as “Social Authentication”, in which users coming from unusual IP ad-
dresses are required to identify faces of their friends while logging in [299].
Users may now opt in to Transport Layer Security (TLS) protection of their
Facebook sessions, but Alice, using the default settings, is still using Face-
book unencrypted in her local Cambridge coffee shop.

In 2006, Alice configured her Facebook privacy settings to be restricted but still
practical. If she then left them alone and accepted whatever default “Allow”
buttons she was presented with, she would hardly recognise her privacy set-
tings five years later. Information that she once declared private, such as the
list of her friends, would now be visible to the world and indexed by search en-
gines. Her name and likeness would appear in advertising, not just on Facebook
itself, but next to products and websites in Bing search results. Her activities,
such as commenting on a story on a newspaper’s website, would appear as ad-
vertisements within Facebook, as would the fact that she visited a popular local
coffee shop yesterday, even though she herself did not tell Facebook that she
was there. Her friends’ details have been relayed to “partner” websites, which
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have signed them up to services and mailing lists that they have no interest
in and that are difficult to opt out of. Facebook provides more privacy controls
today than it did in 2006. By default, however, Alice does not benefit from them.

In summary, changing defaults in OSNs are not a matter of purely academic
interest. When a user signs up for an OSN, they enter into an agreement in
which the user provides sensitive personal information and the OSN protects
that information according to a sharing policy specified by the user. When the
OSN changes the policy’s vocabulary, without revisiting the policy or even pro-
viding notice that the vocabulary has changed, the user’s original intent can be
lost. Alice set a restrictive policy in the 2006 vocabulary. In the 2012 vocabulary,
however, she is as open as Facebook wants her to be.

3.1.2 FAILED OPEN: ADVERTISERS AND PRIVATE INFORMATION

Personal information can leak from social networks when users fail to explic-
itly forbid it via opt-out mechanisms, but this is not the only leakage channel.
The private information of users — OSNs’ product — has been explicitly leaked
to advertisers — OSNs’ paying customers [342].

In 2009, Krishnamurthy et al. [148] identified the leakage of Personally Iden-
tifiable Information (PII) from several online social networks via request URIs,
referrers, etc.. Some of this leakage may have resulted from simple careless-
ness. For instance, at the time of Krishnamurthy et al.’s study, Facebook used
user IDs embedded in the URI query string, so if users clicked a link to an ex-
ternal site, their UID would be exposed in the HTTP Referrer header. This has
since been rectified so that, as of September 2011, a user who clicks a Facebook
advertisement will present an opaque binary Referrer header to the target site.

Other instances of PII leakage are more more overtly intentional: Krishna-
murthy et al. discovered that some OSNs explicitly encoded user age, gender
and even postal code in advertising request URIs. Even more egregious are the
third-party applications described in June 2009 by Bonneau [343] that encoded
user ID, user name, profile photo and a list of friends in advertising request URIs.

In July 2010, Korolova demonstrated [145, 146] that Facebook’s advertising
platform can be abused to learn private information about users with very re-
strictive privacy settings. Any information uploaded to Facebook may be used
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to select which advertisements are shown to users; users cannot use privacy
settings to control Facebook advertising. Korolova found that advertisers could
specify such precise targeting that the ad will only be shown to one Facebook
user, often using only publicly-available information. Facebook then reported
“aggregate” statistics, such as impression count, based on that one user. An at-
tacker can target an ad to one user and then vary a parameter of interest (e.g.
age, birthday, sexual orientation), watching to see which values generate im-
pressions and which do not. Facebook released a fix within a week of notifi-
cation, namely to block ads which do not reach at least 20 users, but such a
simplistic defence can easily be defeated by the tracker attack, introduced in
1979 by Denning et al. [88] or — even more simply — by creating 20 accounts
that match the targeted characteristics of the query subject [146].

No matter what is claimed by vocal elements of the press [277, 278], Face-
book does not directly sell user data to advertisers. Others OSNs have, however,
and a lack of technical protection around user data has allowed third-party ap-
plication developers to sell user data to advertisers. Weak protections also allow
advertisers to learn users’ private details via microtargeted advertisements.

3.1.3 LEFT OPEN: APPLICATION ACCESS TO PRIVATE USER DATA

In this section, I will show how private information has also been shared
with third-party OSN applications, both by surveying the work of others and
by describing research performed by myself and colleagues at the University
of Cambridge. We found that some applications can access more private infor-
mation when they run than the user who they are nominally running on behalf
of.

Today’s OSNs provide rich platforms for third-party social applications. Ap-
plication functionality is supported by private user information, often served in
greater quantities than actually required. Safeguards against misuse rely heav-
ily on legal rather than technical protection. Felt and Evans, in their 2008 study
of 150 Facebook applications [103], found that 90% of applications had no need
of private user data, but were being given it anyway. Several applications used
information in ways that contravened Facebook’s Terms of Service, making in-
formation visible to users who would normally be unable to view it.
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Listing 3.1: Example Facebook Markup Language (FBML) tags — now deprecated.

<fb:name id="[$id]"> <!-- Name of specified user. --><fb:friend-selector> <!-- Drop-down friend selector. --><fb:visible-to-friends><!-- Visible only to friends of the user. --></fb:visible-to-friends>

Of the 150 applications studied, 141 accessed user data for the sole purpose
of displaying it to the user. Felt and Evans proposed that OSNs adopt a privacy-
by-proxy design pattern, providing named placeholders that applications can
use to manipulate user information indirectly. For instance, an application
might instruct the Facebook UI to insert a user’s name in a particular place
without the application learning the user’s name. In fact, as the paper points
out, Facebook had such a mechanism, called the Facebook Markup Language
(FBML), which allowed developers to insert indirect references to user data as
shown in Listing 3.1. Its use was optional, however, used purely as a perfor-
mance optimisation to reduce the number of round-trip messages between ap-
plication servers and Facebook. FBML was subsequently deprecated in in 2010
in favour of newer APIs [288] and was deactivated entirely in 2012 [298].

In 2009, Facebook was investigated by the Office of the Privacy Commis-
sioner of Canada in response to a complaint, an unsatisfactory response and a
second complaint [270]. Following the second investigation, Facebook agreed
to provide more user control over application behaviour [271]. User consent
is now sought before applications can obtain personal information: users are
prompted with a dialogue that describes the information sought and provides
an opportunity to cancel application installation. Such cancel-or-allow ap-
proaches have been rightfully criticised by Yee as “security by admonition”
for “forc[ing] security and usability into conflict” [241] rather than learning
the user’s intent. Furthermore, once divulged, no technical safeguards exist
to prevent misuse of private user information (see the definition of “Public” on
page 15).

Facebook provides applications with programmatic access to user data via
the Graph API [253] and the Facebook Query Language (FQL) [252, 304], which
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Listing 3.2: A Facebook Graph API response.

{ "id": "516792779","name": "Jonathan Anderson","first_name": "Jonathan","last_name": "Anderson","username": "jonathan.robert.anderson","locale": "en_GB"}

Listing 3.3: Sample FQL query: what friendships exist among two sets of users?

SELECT uid1,uid2 FROM friend WHERE uid1 IN (u1,u2,...) AND uid2 IN(u3,u4...)

is a restricted variant of the standard Structured Query Language (SQL). The
Graph API is a Web service: applications use HTTP to retrieve data formatted
with the JavaScript Object Notation (JSON) [258]. For example, the data visi-
ble at the URL https://graph.facebook.com/jonathan.robert.anderson is the
public profile of the author, shown in Listing 3.2.

While writing collaborative papers with Joseph Bonneau, Ross Anderson
and Frank Stajano in 2009 [7, 8], before the new application restrictions were
introduced, I used FQL queries of the form shown in Listing 3.3 to exhaustively
query the “friend” relations among 18,000 users in the orignal Harvard Univer-
sity user ID space (users with IDs below 35,647) and among 15,000 users in the
early Stanford University ID space (between 200,001 and 225,615). We found
that Facebook would not reply to requests involving very large user lists, but
by limiting each user list to 1,000 users, we were able to exhaustively query the
relevant spaces’ friend relations.

Later, approximately three months after announcing that an agreement had
been reached with the Office of the Privacy Commissioner of Canada, Facebook
announced that some user data, including the list of one’s Facebook friends,
would become public information — users would no longer be able to hide
their Facebook social connections [279]. The next day, amidst user complaints,
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Listing 3.4: A simple FQL query: are two users friends?

SELECT uid1,uid2 FROM friend WHERE uid1=X AND uid2=Y

Facebook provided an option for users to make their list of friends appear pri-
vate again [280]; users can conceal their list of friends from all other users, but
friendship information is not kept hidden from third-party applications.

In September 2011, even with Facebook’s new application restrictions in
place, I confirmed that a Facebook application can still issue an FQL query to
discover whether or not there is a “friend” relation between two specific users
or among two sets of users. Using an FQL query very much like the example in
Listing 3.4, I found that an application running with the credentials of a throw-
away user account could ascertain whether or not there was a “friend” relation
between any two users, even if both users have configured their privacy settings
to keep their friend lists secret.

The risk of application misbehaviour is not purely academic: in October
2010, the Wall Street Journal discovered [282] that popular applications such
as Zynga’s FarmVille, which at the time had 59 million users, shared informa-
tion about users and their friends with data brokers [308] such as Rapleaf [275].
These brokers build user profiles to link user identities across platforms and
sell the data to customers such as online retailers who use it to personalise mass
e-mails and other “marketing experiences”. Rapleaf can furnish firms with cus-
tomer information such as their family status and home market value for $.01
USD per e-mail address [316]. Other fields, such as consumer loan-to-value ra-
tio, are no longer publicised on Rapleaf’s website but are still accessible through
the Rapleaf API, as shown in Listing 3.5 on the next page. At the time of the Wall
Street Journal story, Rapleaf advertised OSN identifiers for sale [275], though
their spokesman declared that “We do not sell Facebook IDs to ad networks”.

In the days after the Wall Street Journal story broke, Facebook issued a se-
ries of statements [283, 308, 309] describing three new features. The first was
a new UID encryption feature: Facebook UIDs were encrypted with the sym-
metric key of the application receiving the UID in order to mitigate the risk of

45



CHAPTER 3: ANTISOCIAL NETWORKS

Listing 3.5: Response to a Rapleaf API query (pre-purchase) [319].

{ "household_income": "Data Available","loan_to_value_ratio": "Data Available","invested_assets": "Data Available","gender": "Male","length_of_residence": "Data Available","children": "Data Available"}

accidental disclosure. Second, a new third-party UID was created to be used
by applications that share unique identifiers with third parties. Third, an ex-
plicit prohibition was enacted on applications passing user information to data
brokers [307]. These measures did nothing to prevent intentional disclosure
by applications, however. In this case, Facebook punished several application
developers, which it described as “fewer than a dozen, mostly small develop-
ers, none of which are in the top 10 applications on Facebook Platform” — at
odds with the Wall Street Journal’s allegations about Zynga, one of Facebook’s
largest third-party application developers. Facebook banned these developers
from the Platform for six months, and required them to “submit their data prac-
tices to an audit in the future” [308]. Facebook continues to assert the safety of
user information given to third parties, not based on technical protections but
on contractual compliance. That is, according to the definition of “Public” on
page 15, information shared with third-party application developers is public.

3.2 SOCIAL GRAPH PRIVACY

Explicit disclosure, whether discretionary permissive defaults or mandatory
public information and advertiser access, is not the only way in which users’
private information reaches the outside world. Specific data items about OSN
users, such as personal interests and favourite cultural artefacts, is valuable to
plausible attackers such as scammers. However, the social graph is also valu-
able, and OSNs may leak more information about it than they intend.

In many attacks, the confidentiality of a user’s profile data is irrelevant. Ja-
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gatic’s social phisher [136] does not need to know my favourite book or West
End show, he needs the names and profile photos of my friends. Even when the
private details of individual profiles are relevant, many of them — from politi-
cal views to sexual orientation — can be probabilistically inferred from those of
friends [157, 181, 237]. Finally, specific details about a user can almost always
be obtained through a targeted attack, e.g. “spear phishing”; the difficulty for
the attacker is in determining, at a very low unit cost, which potential target is
worth the cost of a targeted attack, as demonstrated by Herley [131].

Because of this, it is insufficient for a social network to protect user data
without protecting the social graph. In this section, I consider the protection of
the social graph in the context of public search listings.

3.2.1 PUBLIC SEARCH LISTINGS

As described in §3.1.1, Facebook introduced Public Listings in September
2007 to “help more people connect and find value from Facebook” [287]. By ex-
posing some user information to the public Internet, Facebook could encourage
non-users to join the service. For instance, a non-user Nancy might see that her
friend Bob uses Facebook, as do Bob’s friends — some of whom might be mu-
tual friends. This information might encourage Nancy to sign up for her own
Facebook account.

Furthermore, by exposing Public Search Listings to search engines, peo-
ple searching for Bob would find Bob’s Facebook page, raising the profile of
Facebook as a communication medium for first contact. Other OSNs such as
LinkedIn are even more aggressive about search listings: whereas Facebook al-
lows users to opt out of Public Search Listings, LinkedIn does not.

Publicly exposing all data held by a service would remove the incentive for
non-users to join the OSN (to say nothing of the reaction of current users); the
premise of search listings must therefore be that some limited information from
the social graph can be exposed without revealing all user information. In this
section, however, I demonstrate that, while it is possible to shield user details
from search engines, exposing almost any information about the social graph
allows adversaries to approximate important graph characteristics closely.
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3.2.2 PUBLIC LISTINGS MODEL

In early 2009, Joseph Bonneau, Ross Anderson, Frank Stajano and I studied
the problem of social graph privacy in the presence of limited disclosure [7]. We
were motivated by, and modelled the problem on, Facebook’s usage of public
listings. As of January 2009, this feature provided a set of eight friends for each
public listing — since then, public listings have exposed more data. The set
of friends that is displayed seemed to be a function of the viewer’s location:
repeated queries from a Tor exit node [91] yielded the same eight friends, and
the set of revealed friends depended on the geographic location of the node —
the authors’ public search listings contained primarily North American friends
when querying from a North American exit node but more European friends
when querying from a European exit node. Those in Cambridge, UK viewing
a public search listing might be more swayed by the presence of UK users than
Canadian users, since they are more likely to be mutual friends.

Public listings are intended to be indexed by search engines. We encoun-
tered no technical measures to limit the rate of queries: we retrieved approx-
imately 250,000 public search listings per day from a desktop computer con-
nected to JANET, the UK’s Education and Research Network. This figure comes
from a rather simplistic approach to crawling: we dispatched work to a few tens
of crawlers from a single, contended relational database where all query results
were stored. A focussed engineering effort would certainly yield better results,
so it is safe to assume that the complete set of public search listings is available
to motivated parties — or contractual partners. This has been demonstrated
by Microsoft, which includes publicly-visible Facebook information in its Bing
search results [306].

This section uses a model of public search listings depicted in Figure 3.2 on
the next page. A social graph G consists of vertices V, representing OSN users,
and edges E, representing one-way “friend” or “follower” relations among
them. This graph is sampled to produce a graph Gk =< V, Ek > which shares
vertices V with G, but in which Ek ⊆ E is a set of edges produced by randomly
selecting k outgoing edges from each vertex v ∈ V.

We computed several functions that might be of interest to attackers over the
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Figure 3.2: A sampled graph Gk with k = 1.

sampled graph, e.g. betweenness centrality, which identifies highly-connected
users who are in a position to influence the spread of rumours and other mes-
sages (see §3.2.4.2). We compared the results to those that would be obtained
from the complete graph in order to determine how close an approximation of
these functions an attacker could develop from sampled public search listings.

Our model assumed that sampled edges are available for all vertices in the
graph, that is, no users have opted out of public search listings. This assumption
is based on an ad-hoc exploration at the time of the study, in which we found
that fewer than 1% of users in the Cambridge network had opted out.

3.2.3 GRAPH DATA

In order to evaluate the effect of sampling on a graph’s properties, we re-
quired a social graph that we could treat as ground truth and from which
we could derive a sampled graph. Public search listings provide an already-
sampled graph, and crawling within the Facebook network was ineffective —
as shown in §3.1.1, not all users expose their profiles to non-friends. Instead, we
built a Facebook application using the FQL feature described in §3.1.3 to iden-
tify users and friend relations. We derived our data from well-defined user ID
spaces for universities with early access to Facebook. These Facebook networks,
shown in Table 3.1, have contiguous, densely populated user ID spaces.
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Table 3.1: Basic statistics from early Facebook networks.

Network ID Space Nodes Edges |E|/|V|

Harvard 0–35,647 18.2 k 1.06 M 58

Columbia 100,000–127,322 15.4 k 620 k 40

Stanford 200,000–225,615 15.0 k 945 k 63

Yale 300,000–317,759 10.5 k 639 k 61

Since our network-crawling application relied on FQL rather than public
search listings, it was subject to rate-limiting. Friendship discovery among
users required O(n2) queries, where n is the number of users in a network. Ap-
plications were not permitted to query complete friend lists for all users even
in 2009, but rather had to employ the techniques shown in §3.1.3. Nonetheless,
we were able to exhaustively search spaces of 25,000–35,000 user IDs for ac-
tive Facebook accounts, and to query for friend relations among 10,000–18,000
active users in less than 12 h.

We performed our study before Facebook applications were subject to fine-
grained privacy controls [293], so the only way to conceal particular data items
from an application was to opt out of the Facebook Platform entirely. In 2009,
this option was rarely taken. For instance, out of approximately 500 users
known to exist in the Stanford user ID space, only three were not visible to
our FQL-based application.

Our data sets only included relations between users within a UID range.
That is, we captured relationships among users attending the same university,
but not friendships with people outside the university. These social graphs are
incomplete and therefore may not be representative of the complete network,
but they do provide views into real social graphs rather than simulated data.
We did not use them to characterise the social networks themselves, but to
characterise an attacker’s ability to approximate certain graph statistics when
presented with a partial view of those graphs.
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Figure 3.3: Route lengths and reachability in university networks.

3.2.4 APPROXIMATIONS OF GRAPH CHARACTERISTICS

In our study, we demonstrated how several important characteristics of a
social graph can be approximated. In this dissertation, I have only included
those characteristics for which I did the analysis work. This leads to a rather
obvious omission — I do not discuss the approximation of users’ degree. I do,
however, discuss the reachability of and shortest paths between nodes (§3.2.4.1)
as well as centrality and its potential use by attackers to influence messages in
a social network (§3.2.4.2).

3.2.4.1 REACHABILITY AND SHORTEST PATHS

A key characteristic of social networks is connectedness: can every person in
the network reach every other person via short social paths? This connectedness
can be measured via the lengths of the shortest paths through the network. If
some nodes are disconnected from the rest of the network entirely, then some
shortest-path routes will not exist at all: they have infinite length. A connected
graph will have finite lengths for all routes.

The lengths of shortest-path routes through the four target networks are
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Figure 3.4: Route length approximation under k-sampling (Columbia).

shown in Figure 3.3 on the preceding page. This figure shows, for l ∈ [0, 12],
how many shortest-path routes of length l exist from any node i to any other
node j. The top figure shows the total number of such (directed) paths, whereas
the bottom figure shows the total number of routes of length l or less as a frac-
tion of the total number of shortest routes |V|2.

Figure 3.4 shows the effect of k-sampling, as described in §3.2.2, on the
Columbia University network. This figure shows a frequency count of the pos-
sible differences in path length between true and sampled values. For all illus-
trated values of k, some paths have a non-zero difference in length between the
true and sampled graphs. This effect is least pronounced in the k = 32 case, in
which over 75% of paths have a difference of zero, but even then, some paths
are longer than in the complete graph. A tabular summary of this information
is shown in Table 3.2.

For k > 1, almost all shortest-path routes in the sampled graph are longer
than the unsampled graph by a small integer number of hops. In the k = 8 case
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Table 3.2: Increase in shortest-path route lengths caused by k-sampling.

k Increase in route length
0 1 2 3 4 5 6

32 73.1% 99.9% 1
16 43.5% 97.2% 99.996% 1
8 15.3% 72.3% 99.4% 99.99999% 1
4 2.59% 17.7% 65.2% 97.3% 99.98% 99.9998% 1
2 0.55% 1.63% 5.45% 17.5% 45.5% 80.2% 97.0%
1 0.28% 0.32% 0.37% 0.44% 0.51% 0.58% 0.67%

— the original motivation for this work — 99.4% of all shortest-path routes are
lengthened by two hops or fewer and an attacker can approximate true route
lengths by simply subtracting 1.

3.2.4.2 CENTRALITY AND INFLUENCE

Another important metric in social network analysis is centrality, which is a
measure of the importance of members of the network based on their position
in the graph. Social graph members with high centrality are in a position to
wield influence disproportionate to their degree, because they are not merely
connected to other nodes, they are efficiently connected. Highly central nodes
may be sought out by e.g. marketers searching for “connectors” to trigger a
“tipping point” [114]. The validity of the Tipping Point theory is not assumed
here; what matters is that attackers influenced by it may attempt to discover the
centrality of nodes in the social graph.

I employed the betweenness centrality metric in equation (3.1), as defined by
Freeman [108] and calculated using Brandes’ linear-time algorithm [62]. Here,
σst is the number of shortest paths (geodesics) from vertex s to t and σst (v) is the
number of such paths which contain the vertex v. A vertex’s centrality can be
viewed as a “potential [...] for control of information” [108]; it is the probability
that a given vertex will lie on a random geodesic.

CB (v) = ∑
s 6=v 6=t∈V

σst (v)
σst

. (3.1)

Betweenness centrality is the probability that a given node in a network lies
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Figure 3.5: Betweenness centrality in four university networks.

on the shortest path from one randomly-selected node to another. Thus, a node
with high betweenness centrality is one that can observe or influence many
communication paths through the network. These communication paths are
important, not because the OSN uses them to route traffic, but because real-life
social networks can use them to route information via gossip. A highly cen-
tral node is able to influence much of the information flowing through a social
network in this way.

I used betweenness centrality to measure the effectiveness with which an at-
tacker might influence information moving through a social network. Suppose
an attacker can compromise N nodes in a social graph and use them to influ-
ence information that passes through them. If the attacker can choose which N
nodes to compromise, the optimal attack strategy is to choose the most central
nodes in the network, yielding the highest probability of being able to influence
any communication path. If the attacker has imperfect centrality information,
the probability of successful attack will be reduced. The question is, how suc-
cessful can an attacker be with incomplete centrality information?
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Figure 3.6: Attacker influence over messages in the Harvard network.

Figure 3.5 on the facing page shows values of betweenness centrality for the
four target Facebook networks. In all four networks, the shape of the centrality
curve is similar: a shallow decline in centrality across the ~5,000 most central
users in each network, followed by a sharper decline across the remaining, least
central users. The bottom graph shows the percentage of shortest paths in the
network that involve any of the first N nodes by decreasing centrality.

To simulate the attack, I sampled two of the sub-network data sets using
several values for the sampling parameter k. For each value of k, the attacker
compromised N nodes according to their centrality in the sampled graph. That
is, the attacker looked at a limited view of the network and chose to compromise
the N nodes that appeared to be the most central.

Figure 3.6 shows the influence which the attacker would have in this sce-
nario over messages routed over shortest paths via social links. A random re-
sult is also provided for comparison: this simulates the attacker selecting nodes
to compromise without any centrality information (k = 0).

If an attacker randomly chooses N nodes to compromise, the number of
shortest-path message routes that can be influenced increases linearly with N.
If any centrality information is provided, however, his influence grows super-
linearly. In the k = 8 case, the attacker needs to compromise 2,100

18,273 = 11.5%
of the network in order to influence 50% of the shortest-path message routes
through them. Compromising 5,596

18,273 = 30.6% of the network allows 75% of all
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Table 3.3: Node compromises required to influence socially-routed messages.

k N required for % route influence
10% 25% 50% 75% 90% 95% 99%

∞ 96 466 1,794 4,736 8,788 12,419
32 103 494 1,919 5,048 9,217 12,796
16 107 514 1,980 5,226 9,572 13,193
8 113 559 2,100 5,596 10,210 13,916
4 126 660 2,492 6,440 11,355 14,859
2 186 921 3,175 7,605 12,774 16,419
1 823 2,137 5,089 8,951 16,668 17,994

such routes to be influenced. These values of N are just 16–17% higher than if
the attacker had full centrality information.

3.2.5 RELATED WORK

Nagaraja has studied the problem of evaluating community detection algo-
rithms when given edges from a small subset of nodes [186]. This is related
to the work above, which studies some edges sampled from all nodes, but is
concerned with a different model: evolving covert networks under continuous
“decapitation” attacks.

In a somewhat–spuriously-titled 2011 paper, Zhan describes how it is pos-
sible to compute some properties of a social graph properties under homomor-
phic encryption [245]. That work was concerned with the ability to compute
such values in a privacy-preserving way; in contrast, this work is about demon-
strating just how much information about the graph leaks under apparently-
controlled disclosure.

3.2.6 SUMMARY

Using data from university sub-networks within Facebook, I have demon-
strated that an attacker viewing a publicly-sampled social graph is able to
closely approximate key characteristics of the true, unsampled social graph.

These characteristics include the length of shortest-path routes through the so-
cial graph: for sampling parameter k = 8 (as in Facebook’s original public
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search listings), an excellent approximation for true route length can be found
by simply subtracting 1 from the apparent route length.

The other characteristic I approximated is betweenness centrality, a measure of
how connected a node is within a graph. I have shown that an attacker seeking
influence over messages traversing a social graph is scarcely worse off when
viewing publicly-sampled information than if he were to learn the complete
social graph. When k = 8, this attacker needs to choose 16–19% more nodes to
compromise than if he had access to the complete social graph.

This demonstrates that the decision by an OSN operator to reveal a limited
subset of information — just eight friends for each user — may in fact reveal
more information than was intended. This is part of the motivation for explor-
ing alternative architectures for online social networking.

3.3 SUMMARY OF CONTRIBUTIONS

In this chapter, I presented qualitative and quantitative analyses of the pri-
vacy practices of today’s online social networks (OSNs), showing how they
have revealed private information about users and the social graph beyond
users’ expressed sharing intentions.

The qualitative analysis demonstrates three ways in which the behaviour of
OSNs does not conform to the expectations and wishes of their users. First, I
detailed a history of changing privacy settings in Facebook, which is currently
the world’s most popular OSN. These changes mean that a user who config-
ured their Facebook profile in 2006 with very restrictive settings would today
have a very public profile, unless active steps were taken to counter automatic
changes. Second, I surveyed literature on advertiser access to private user data,
demonstrating that this access has been less free than some reporters claim but
less restrictive than OSNs claim. Third, I demonstrated how applications can
use Facebook’s APIs to retrieve information that users themselves cannot view.

My quantitative analysis centres on social graph privacy. I argue that the pri-
vacy of users’ profile information requires the social graph also be kept pri-
vate. I show how attackers can use sampled graphs provided by OSNs as public
search listings to approximate important properties of the complete graph.
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OSNs today have a demonstrated history of sharing private user informa-
tion more widely than users’ expressed preferences would dictate. The ability
for OSNs to unilaterally share private user data means that users must trust
their OSNs (as in the definition of “Trust” on page 15). In the rest of this dis-
sertation, I describe an alternative social networking system called Footlights
that puts users in control of information sharing, addressing problem “Explicit
expressions of user intent” on page 16. I begin by describing a sharable stor-
age service built on untrusted infrastructure that provides a foundation for a
distributed filesystem.
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“That’s all you need in life, a little place for your stuff.

George Carlin”Current online social networks (OSNs) may not have good confidentiality prop-
erties — as shown in Chapter 3 — but they do provide their users with some
integrity and availability guarantees. If Alice authenticates to an OSN using a
combination of passwords, geography and social context [142, 240], the OSN
can make integrity assertions to Bob such as, “Alice uploaded this exact photo”.
For availability, today’s OSNs deliver static content such as photos through
globally-available Content Delivery Networks (CDNs) [20]. Any system that
improves on the confidentiality properties of today’s OSNs by replacing them
must also compete against their integrity and availability properties.

In Section 1.2, I proposed a distributed social application platform called
Footlights to run general-purpose social applications without privileged access
to user information. That platform is built on top of a global distributed storage
system for private content. This storage system, together with the confidential-
ity and integrity properties it provides, is the topic of this chapter.

The threat model for the system is based on the behaviour of today’s OSNs,
described in Chapter 3. I assume that all centralised infrastructure behaves ac-
cording to the definition of “Honest but curious” on page 16. That is, centralised
infrastructure is relied on to faithfully perform its observable duties (such as
storing content) while attempting to learn “more than [its] due share of knowl-
edge” [116]. Specifically, the only computer that the Footlights system trusts to
perform access control is the user’s computer.
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Figure 4.1: Footlights and its static storage layers.

Instead of relying on centralised OSN servers to perform access control, the
Footlights storage substrate uses cryptography to achieve its confidentiality
and integrity goals. Users make local access control decisions — which users
and applications to share information with — that are projected into a global,
untrusted storage network (Section 4.1). The substrate provides availability
properties via commodity CDNs: its storage and data transfer capabilities are
bounded only by the constraints of providers such as Amazon and Rackspace.

The Footlights storage system, depicted in Figure 4.1, works by storing files
as small blocks of ciphertext in a content-addressed store (Section 4.2). This
store is based on commodity storage purchased from an untrusted provider.
Any participant in the system may validate the integrity of any block, but in-
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spection of the relationships among blocks is only possible through explicit
sharing of decryption keys. These keys are not shared with the storage provider;
the provider cannot read user information and has no semantics of user identity.

The basic structure of data is a graph of encrypted, immutable blocks (Sec-
tion 4.3). The entire graph is private by default, but snapshots of arbitrary sub-
graphs can be trivially shared with others using a constant-size communication
of a name and a key, possibly via an indirect, mutable name (Section 4.4). Un-
like some social sharing schemes, the decision to share content with another
user implies no set-up cost or hidden changes to access control rules. Also,
the system’s users cannot observe how much content has not been shared with
them, except in the most trivial sense that anyone may know the total volume
of content stored by all users in the global network.

These primitives are used as the basis for a distributed filesystem (Sec-
tion 4.5). Unlike centralised network filesystems, the Footlights filesystem can-
not rely on garbage collection by the storage provider: filesystem semantics are
not exposed to the provider. Instead, users purchase the right to store content
blocks for a period of time. This is only marginally more expensive than the
paid-with-privacy model of today’s centralised OSNs: the cost of storing a re-
alistic amount of user content with a current commercial storage provider is on
the order of 1 USD/year (Section 4.6).

A key design goal of the system is to be compatible with privacy and perfor-
mance optimisations at the network layer (Section 4.7). Users can choose their
own privacy–performance trade-offs. Some will choose to access the cloud stor-
age service via Privacy-Enhancing Technologies (PETs) in order to hide their
identity from service providers. Others, more interested in low-latency, high-
bitrate communication than anonymity, will find that distributed caches and
CDNs allow the system’s performance to compete with centralised OSNs.

For better or for worse, this network agnosticism means that the system is
also compatible with traffic analysis. If users require anonymity properties in
addition to privacy, the system also provides cover traffic for a communications
channel that is perfectly unobservable (Section 4.8).
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4.1 ROUTE OF TRUST TO ROOT OF TRUST

“Wise men put their trust in ideas and not in circumstances.

Forbes Magazine, Vol 143, 1989 [267]
misattributed to Ralph Waldo Emerson, 1803–1882 [97]”In today’s centralised OSNs, confidentiality and integrity properties are claimed

on the evidence of user authentication. The provision of these properties relies
on users accessing the OSN through an interface that can restrict access accord-
ing to social access control lists. As a performance optimisation, authentica-
tion and access control decisions may be cached with tokens such as cookies.
When these decisions are translated into the policy languages of performance-
enhancing content delivery services, however, their substance can be lost.

In 2009, Joseph Bonneau, Andrew Lewis, Frank Stajano and I showed that
Facebook’s CDN failed to correctly revoke access to photos that were deleted
by their owners [20]. The access control change requested by a photo’s owner
was effective when users browsed the Facebook website, but not when they vis-
ited previously-obtained CDN URLs that cached the result of an earlier access
control decision. This discrepancy persisted through February 2012 [273].

The problem is that an access control decision was made in a centralised
context — Facebook’s data centres — but not translated into the language of
the distributed CDN serving the content. Facebook could check access control
rules when the user visited the OSN website itself, but the CDN could not. Not
deleting old photos is a very obvious failure mode, but more subtle changes,
such as modifying an access control list, can also be lost in translation between
the centralised and distributed services. OSN access control is coupled to a
centralised context, with access to social graphs and ACLs, making it difficult to
distribute enforcement to services that do not have this access. The correctness
of enforcement thus depends on the route by which a user reaches the protected
object: whether or not a request goes through servers with access to the social
information required to make the correct access control decision.
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In order to improve the enforcement of confidentiality properties, many
have proposed revisiting the current mix of centralised and decentralised sys-
tem components. Some, like the Diaspora project [276], are partly decentralised:
they break one centralised OSN into several federated ones. Others such as
Safebook [79] are fully decentralised: they eschew centrally-maintained storage
and instead distribute user content through peer-to-peer networks. This class
of systems is different from centralised OSNs in many ways, but still exhibits
the property identified above: the effectiveness of access control depends on
the route by which content is reached. Diaspora’s access control operates across
a Web interface that is conceptually the same as centralised OSNs’. Safebook
claims some of its confidentiality properties by virtue of its routing protocol,
which forces accesses to go through several layers of a “matryoska” surround-
ing a user’s data (see Section 2.3).

In these systems, the route-dependence property does not cause a break-
down in confidentiality, since users can only reach content via routes that al-
low access control to be properly enforced. Instead, route-dependence causes a
breakdown in availability. For instance, one paper about Safebook explores the
trade-offs between network churn and matryoska size, with a goal of main-
taining a 90% probability that a path through the matryoska will exist [81].
This path may not have low latency or be capable of carrying large amounts
of traffic: it is a path, and there is a 10% chance that it will not exist at all.
This availability raises serious doubts about the ability of fully-decentralised
services to compete with professionally-managed, centralised ones. OSNs tend
not to release uptime statistics, but for comparison, Amazon, Google and Mi-
crosoft start refunding customers if their hosted application availability dips
below 99.9% [318, 321, 327].

In both centralised and decentralised cases, privacy and performance seem
to be at war. Facebook’s access control (such as it is) breaks down when it uses
CDNs to improve performance. Safebook claims to improve privacy, but does
not provide the availability required of a serious Facebook competitor. I claim,
however, that is it possible to have both privacy and performance in an OSN, as
long as the system treats privacy as an end-to-end requirement [210] rather than
a property of the route by which users reach content. While the availability of
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content might be a property of the network’s core (or “the cloud”), confidential-
ity and integrity must be guaranteed by the edges, from end-node to end-node.

Footlights uses cryptography to project access control decisions made on lo-
cal end-nodes into a global storage substrate. Information is stored on a shared
cloud infrastructure, paid for as described in Section 4.6. This storage and deliv-
ery platform provides the availability Footlights requires. Confidentiality and
integrity are rooted in a private key which represents a user’s identity, rather
than the route by which a user reaches the storage provider.

Private keys can be bound to real-world people in order to prevent the im-
personation and social engineering possible in centralised OSNs or the Sybil
attacks possible in anonymous peer-to-peer networks1. If it is important to
know that “the user I am speaking with” corresponds to “the person in the next
office”, keys can be bound to identities via a real-life exchange of key finger-
prints or CryptoIDs [197] or over channels that are authentic — but not neces-
sarily confidential — with mutual authentication protocols such as Hoepman’s
φKE [132] or Wong and Stajano’s MANA-III variant [234].

Assuming users can authenticate private keys using one of these schemes
and that keys can be revoked if necessary, as discussed in Section 6.5, client
software can perform end-to-end cryptography to assure users of confiden-
tiality and integrity properties. This allows Footlights to decouple authenti-
cation from content storage and delivery. Footlights can take full advantage of
professionally-managed commodity storage providers without trusting those
providers to perform access control. This allows the best of both worlds: the pri-
vacy properties of a completely distributed system (end-to-end cryptography)
with the availability of a completely centralised system (the storage platform).

The price of this new trade-off is rigidity. Centralised OSNs, which use
rolling software updates and hide internal representations, can change storage
formats at any time. Footlights interoperability, however, requires that formats
be standardised. As shown below, this need not be complex or formal: two

1Douceur’s Sybil attack refers to an attacker overwhelming a network with a flood of
apparently-independent nodes under his control [93]. Yu et al.’s SybilGuard and Sybil-
Limit [243, 244] as well as Mislove et al.’s Ostra [180] defend against this attack by exposing
social graph information. This approach is not suitable for a privacy-enabling system such as
Footlights.
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binary storage formats must be specified, which could be done by a single RFC-
like document; the Footlights storage system is more a protocol than a product.

4.2 CONTENT-ADDRESSED STORE

“ I cannot say the crow is white,
But needes must call a spade a spade.

Humfrey Gifford, “A delectable Dreame”, 1580 [112]”The Footlights storage substrate holds data on behalf of many users, and the
system must prevent users from modifying or removing each others’ content.
It is undesirable for the substrate to maintain an Access Control List (ACL) for
every file, as in distributed filesystems such as OceanStore [49] (discussed in
Section 4.9). Privacy is a primary goal for the Footlights storage system, so
the centralised part of the system should not be trusted to check credentials or
maintain content–owner/content–reader mappings. Instead, users should be
able to upload content without revealing any identity information. The sys-
tem may require authorisation (e.g. a token representing a micro-payment, as
in Section 4.6), but it must not require authentication.

If the system were to partition user data into per-user namespaces, it would
have to identify users in some way. Even if users’ globally-meaningful names
are not supplied, some identifier must be used to disambiguate Alice’s /photos/
albums/Christmas from a different object that Bob names the same way. This
identifier might be a public key, as in self-certifying path names [170], but even
that identification is unacceptable: it creates an identifier–content mapping that
could be used to track the activity of individuals over time. This tracking can-
not be mediated by network-level PETs, as required by problem “Linkability
and anonymity” on page 21, because it is end-to-end: the server’s behaviour
depends on the user doing the uploading, not the communications channel be-
ing used.

If the system is not to partition the content namespace into user-specific
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namespaces, then all content must be placed in a global namespace that affords
no special (e.g. short and human-readable) names to any user. Users should
not be identifiable via the pattern of names that they use. Users should also be
able to create batches of object-creation operations: Alice might create a photo
album on the train, where she does not have Wi-Fi access, and let it automati-
cally upload when she gets home. These batch operations, by definition, should
not require multiple round trips to the server in order to ask, “what will this file
be called?”. Neither should Alice be required to pre-reserve part of the names-
pace: that would provide an opportunity for the system to track her via her use
of the reserved names. Instead, Footlights mediates access to its globally-shared
namespace by using a Content-Addressed Store.

A Content-Addressed Store (CAS) names files according to their content,
rather than storage location. In Footlights’ CAS, files are broken into immutable
blocks, each named by a cryptographic hash of its contents.

4.3 IMMUTABLE BLOCKS

The Footlights CAS is based on encrypted, deterministically-named, im-
mutable blocks. It is oblivious to the semantics of user files. Files are mean-
ingful to applications, but there is no need for low-level storage mechanisms
to be aware of them. Instead, the CAS works on the basis of fixed-size blocks2,
out of which files may be assembled. This distinction has previously been recog-
nised by the CASPER system [222], a distributed filesystem that represents a file
as a “recipe”: a list of blocks that are stored on a backing server but may also
be cached in a local CAS. This is also the design philosophy behind traditional
filesystems: a filesystem is, in essence, a mapping from application-meaningful
names onto hardware-meaningful disk blocks via system-meaningful objects
such as inodes [173].

2The block format (Figure 4.2 on page 68) allows block size to be any power of two, but
Footlights currently only uses 4 kiB blocks.
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4.3.1 NAMING

Blocks in this store are named by a cryptographic hash of their content.
If the hash in question admits no collisions, i.e. it is infeasible to find two
blocks that hash to the same value [202], this technique provides a flat, global
block namespace with deterministic names. Block names are Uniform Resource
Names (URNs) [260], a special case of the generic Uniform Resource Identifier
(URI) [255] that explicitly describes the content rather than location or meta-
data. The integrity of a block can be checked without decrypting it: if the block
hashes to the name used to retrieve it, it is the correct block.

Footlights blocks named in this way are immutable; this helps solve the con-
sistency problem that generally afflicts distributed filesystems. A filesystem
that allows disconnected operation [143] such as Coda must explicitly resolve
conflicts created when clients perform inconsistent writes to a shared names-
pace [149, 150]. Even the apparently-synchronous NFSv3 actually has weak
cache consistency, so several clients can have inconsistent versions of the same
file [195]. In Footlights, however, if the content of a block changes, its name
must also change; it is a different block. The old block can continue to exist
as a snapshot (subject to the payment model of the service), so data — such
as a certain snapshot of Alice’s profile — will always be consistent. The prob-
lem becomes: how can users and applications maintain consistent metadata?
Which snapshot of Alice’s profile is the current one? The consistency problem
is reduced to the version control problem; this is discussed in Section 4.4.

Immutability simplifies the design and implementation of the Footlights
block store because it allows sharing without co-modification. A particular
block URN will always refer to the same content. This is verifiable because
the name–content mapping is easily checked by any participant, so blocks can
be delivered via CDN or Tor and cached anywhere in the network. The cost of
this simplicity is the garbage collection problem, discussed in Section 4.5.
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N Total length of block: N = log2 l
L Number of links.

offset Offset of user content within block [B].
length Length of user content [B].

Figure 4.2: A block with three links and 3,210 B of user data.
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Figure 4.3: Binary representation of a CAS link.

4.3.2 STRUCTURE

A Footlights block, shown in Figure 4.2 on the facing page, contains three
things: links, content and padding. A link is a pointer to another block. It con-
tains a name and a decryption key and is represented with the binary format
shown in Figure 4.3. Links provide a mechanism for structuring data into di-
rected acyclic graphs such as hierarchical filesystem trees. Links are agnostic to
the overall structure of the graph with one important exception: it is compu-
tationally infeasible to construct a cyclic graph. The name of the target block
is the hash of its ciphertext, so the ciphertext must be known in order to name
it. For block A to link to block B, the contents of B must be fixed before A is
constructed, including all of B’s outgoing links. To construct a circular graph
would require finding a pre-image for a cryptographic hash; this is assumed to
be infeasible for cryptographic hash functions [202].

This sharing mechanism makes it possible for users to share a snapshot of
large quantities of data without any synchronisation costs beyond that of con-
structing the blocks in the first place. The cost of sharing is linear in the num-
ber of “things” (i.e. graphs of immutable blocks) shared, be they photos, al-
bums or entire profiles; it is constant with respect to the size of the shared con-
tent. This property reduces the public-key cryptography burden involved in
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integrity checking: the graph of blocks and links is a Merkle tree [175], so sign-
ing one block protects the integrity of an arbitrary quantity of shared content3.

The second component of a block is user content. Since files are broken into
small blocks, slices of the file can be downloaded independently in parallel as
in BitTorrent [77] or the earlier Jigdo (Jigsaw Download) tool [340].

The final component of a block is padding. The total size of a block in bytes
must be exactly a power of two: the length of a block is l = 2N (or l = 1 << N),
where N is a byte in the previously-shown binary block structure. Most files will
not fill an integer number of such blocks precisely, leaving 2N −

(
S mod 2N)

byte unfilled, where S is the file size. Filling these bytes with random padding
provides an opportunity for covert communication, and is an important part
of the Footlights design. As described in problem “Multi-faceted identity” on
page 17, users should be able to portray different facets of their online identity to
different people. By hiding encrypted information in padding bits — ciphertext
which is indistinguishable from its random surroundings — users can present
different information to different people via the same profile root. The use of
these covert bits is described in Section 4.8.

4.3.3 ENCRYPTION

Footlights blocks are encrypted with Douceur et al.’s convergent encryption
construction [95], in which a cryptographic hash of the plaintext is used to gen-
erate a symmetric encryption key. All users who create the same block of plain-
text will generate the same encryption key, yielding the same ciphertext. If the
Footlights CAS is used for backing up similar files, this de-duplication effect
will result in users needing to upload less information. Since the plaintext of
a block includes links, no keychain is required to store the decryption keys of
linked blocks.

Intuitively, convergent encryption cannot provide standard security guaran-
tees such as indistinguishability under chosen plaintext attack (IND-CPA) [41]:
when the attacker knows the encryption key, IND-CPA requires randomisation
of encryption. This lack of indistinguishability is shared with Bellare et al.’s

3Strictly speaking, it is a directed acyclic graph (DAG) rather than a tree, but the simplicity
and performance of the Merkle tree apply in all but the most pathological cases.
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deterministic encryption [39], a public-key construction in which an encryption
algorithm’s randomising coins are generated from the plaintext itself. Bellare
et al. proved that deterministic encryption provides a notion of privacy when
the input plaintext has high min-entropy and does not depend on the public
key. In deterministic encryption, however, there is a relationship between the
encryption key and the plaintext: one is the cryptographic hash of the other.

The only formal treatment of convergent encryption in the literature is in
Douceur et al.’s extended technical report version of their work [94]. In this
report, a proof is offered in the random oracle model that an attacker can-
not output the plaintext of a given ciphertext with probability Ω (1/nε) unless
that attacker can a priori output the plaintext with probability Ω

(
1/n2ε

)
. This

proof relies on non-standard assumptions and nothing is proven in the stan-
dard model, but such analysis is left for future work. For the purposes of the
Footlights storage system, I assume that a practical attacker is unable to reverse
a convergent encryption without brute-force guessing of the plaintext. Further-
more, I assume that plaintext collisions — if they exist in the hash function used
to generate the key — will not result in ciphertext collisions: even if the same
key is used, different plaintext will produce different ciphertext.

Since links are embedded within plaintext blocks, storage servers cannot see
the structure of the block graph. The structure might be inferred by the provider
via traffic analysis, however: a server might notice that whenever users down-
load block A, they quickly come back for blocks B and C. This traffic analysis
might be used to improve the quality of the provider’s service through pre-
emptive cacheing for data locality [211], but users who consider it to be an un-
acceptable privacy compromise are able to confuse it by constructing patholog-
ical graphs such as linked lists encrypted using an all-or-nothing strategy like
Rivest’s package transform [208]. This is discussed further in Section 4.7.

In 2008, Wilcox–O’Hearn — an author of the Tahoe filesystem [232] —
showed that convergent encryption was vulnerable to a “Learn Partial Informa-
tion” attack [358]. That is, if an adversary knows all but n bits of a file encrypted
using convergent encryption, that adversary can encrypt 2n possible plaintexts
and compare the results against the ciphertext being targeted. If one of them
matches, the 2n bits of formerly-secret information are revealed. In Footlights,
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however, blocks are padded with random bytes. In a large file — e.g. a photo or
video — the de-duplication provided by convergent encryption is highly desir-
able, as it reduces the amount of storage that the user must pay for. Smaller files
— e.g. private messages — can contain large quantities of random padding. Im-
plementations of the Footlights client software should ensure that small files are
not left with a small amount of padding (shorter than a symmetric key of de-
sired security). Such content should be split over two properly-padded blocks.

Storing small files within fixed-size blocks will cause an overhead cost, as
discussed in Section 4.6, but this cost can be amortised across several small files
if they are stored together within a block as long as they are meant to be dis-
tributed to the same recipients.

The Footlights encryption model of immutable ciphertext does not lend itself
to revocation: once a user has learned a block’s key, that block can always be re-
downloaded and re-decrypted. I have argued elsewhere that this is consistent
with real-life social sharing, and thus OSNs should not make the false promise
of being able to revoke access to shared content [3]. Instead, Footlights can
support Fu’s “lazy revocation” model: rather than promising to immediately
revoke access to a file, Footlights can simply not give access to the next file or
version of the file [109]. Again, this is consistent with a social sharing model:
I cannot make my friend forget a secret that I have already told him, but I can
avoid sharing secrets with him in the future.

4.4 MUTABLE NAMES

“A complete commitment to immutability is
a commitment to never building anything real.

Yaron Minsky, “OCaml for the masses”, 2011 [179]”Notwithstanding the benefits of immutable storage, applications will always
require some volatile objects with stable names. Footlights provides such names
through cacheable, forwardable JSON objects backed by standard Web servers.
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A Footlights user’s shared information can be represented as a consistent,
static graph of content-addressed data blocks. This information is a snapshot,
however, leading to the question: how can other users find the most up-to-date
snapshot? This is the version control problem alluded to in Section 4.3. If Alice
tells Bob in January that her personal information is in a tree whose root is x,
Bob cannot be confident in February that x is still the root of her information;
Alice’s profile is very likely to have diverged from this immutable snapshot to
a new value x′. In order for Bob to continue receiving updates from Alice, more
communication is required whenever Alice updates her profile.

If Alice had a secure out-of-band channel over which she could communi-
cate x′ to Bob, the version control problem would be solved. However, reliable
one-way communication channels such as e-mail use the same model of cen-
tralised access control as centralised OSNs; such a solution will not address
problem “Untrusted infrastructure” on page 18.

Rather than depending on the security of external mechanisms, Footlights
defines an end-to-end mechanism for translating stable names into mutable ref-
erences to immutable data. Users may access this service via caches or proxies,
choosing a trade-off among latency, freshness and privacy that suits their needs.
Security guarantees are provided by cryptography rather than the trustworthi-
ness of secondary channels.

In Footlights, URLs [256] can be used as mutable names. Such a URL names
a mutable document that maps to an immutable block’s URN (Section 4.3). The
URL is a canonical, stable representation of an object such as the root of Alice’s
profile or the current version of a software library. The URL does not change
whenever Alice updates her profile or the library vendor produces a new ver-
sion, but the content that the URL references does. The example shown in List-
ing 4.1 on the following page is a JavaScript Object Notation (JSON) object that
names an immutable block, a block-specific symmetric decryption key and a
signature block.

This JSON object can be stored on any service for which URLs are well-
defined, such as HTTP or FTP. This scheme is designed to be compatible with
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Listing 4.1: A mutable pointer to immutable data (Base32-encoded [259]).

{ "name": "Alice’s Profile","fingerprint": "urn:sha-1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S","key": "AES:Z237XZFGLPANNQVRUSLHYVEL4I======","signature": "urn:sha-1:EGWBEOS2CBF7C4S7LB5ZESW7VYUMZVWN"}

http://server.com/apps/tictactoe/v1.7

Cacheing 
Proxy

server.com

GET /apps/tictactoe/v1.7

hash = urn:sha-256:FD70...
ttl = 3600 s
signature = ...

resolve http://server.com/...

hash = urn:sha-256:FD70...
ttl = 1892 s
signature = ...

Figure 4.4: Resolving a canonical name.

widely-deployed cacheing systems to improve performance, privacy or both.
As illustrated in Figure 4.4, name resolution does not require direct commu-
nication with the host serving the name resolution information. Caches can re-
member a URL→JSON mapping and serve it directly to clients. Cacheing might
be used to improve performance, eliding long-distance round-trip communica-
tion with local cache hits, or to improve privacy: name resolution requests can
be forwarded through anonymising proxies or peers à la Crowds [206].

The inclusion of a decryption key renders the linked block effectively public,
but the indirection stops an honest-but-curious CAS server from reading the
target without significant effort: the URL → URN mapping is not reversible.
An honest-but-curious CAS provider combined with a Web spider will be able
to read this plaintext; I thus apply the term effective plaintext, meaning blocks
whose decryption keys have been made public elsewhere. Nonetheless, the
CAS provider alone cannot trivially read ciphertext blocks without discovering
their URL→ URN mappings. URL→ URN mappings could be made secret by
encrypting them with standard public-key methods, but the current Footlights
implementation does not support this functionality.
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No security properties are guaranteed by the URL’s host: nothing prevents
a malicious server or cache from serving modified URNs. Rather than trust the
server, Footlights only accepts URNs that it can verify by reading the signa-
ture block pointed to by the URL → URN mapping. This verification can use
standard public-key signature algorithms. For instance, when viewing Alice’s
profile, Bob will only follow those URL → URN mappings which have been
signed by Alice’s signing key.

The use of caches might provide a malicious party with the opportunity
to attack the consistency of the storage system. According to Brewer’s theo-
rem [63, 113], a distributed system cannot maintain both perfect consistency
and perfect availability in the presence of network partitions: a trade-off must
be chosen. In the Footlights storage system, an attacker in control of a URL →
URN cache could force a partitioning of the network, reducing consistency or
availability. Footlights makes end-to-end confidentiality and integrity guaran-
tees with cryptography, so a malicious cache cannot poison a user’s profile. A
cache could refuse to reply to requests — an attack on availability — but its
users can find another source of URL → URN data, such as resolving the URL
itself. A more subtle attack would be a replay attack, an attack on consistency in
which the attacker serves an old mapping rather than the current one.

A URL→ URN mapping cannot vouch for its own currency, but the system
can achieve Li et al.’s fork consistency [155]. That is, for a malicious server to
hide the existence of a fresh URL → URN mapping from user Alice, it must
also hide all content from her that refers to the new mapping. Hiding all such
content will create an Alice-specific “fork” of the system state, presenting her
with a view of the system’s global state that is inconsistent with other views. In
order to remain internally consistent, this fork must necessarily diverge rapidly
from the view seen by other users, so it is easily detected by humans (“why
haven’t you replied to my message?”) or by software performing a consensus
protocol such as Byzantine fault tolerance [68, 151].

Name resolution information will normally be publicly available: users need
not trust the access control of Web services, and making data available to the en-
tire Internet allows users to resolve names via caches or proxies. The scheme can
compose with other access control mechanisms, however: a user could generate
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Listing 4.2: A filename, relative to an explicit directory block.

urn:sha-1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S/relative/path

a URL which is only resolvable by e.g. members of an educational institution or
users of a corporate VPN. The URL could not be cached by proxies outside of
the institution, but that constraint would complement policies of the institution
that the user is relying on for their access control.

4.5 FILESYSTEM

The purpose of the Footlights storage system is to provide a storage API to
distributed social applications. This API must be accessible to developers who
are specialists in neither privacy nor distributed systems.

In order to meet this requirement, I have built a simple filesystem on top of
the Footlights block storage CAS that can map user- or application-meaningful
hierarchical names to files of arbitrary length. The details of the API, which
should be familiar to Java programmers, are described in Chapter 5, but this
section describes how the filesystem provides a natural unit of information for
storage and sharing. That unit is a hierarchical subtree of directories based at
an implicit or explicit root.

4.5.1 A ROOT BY ANY OTHER NAME

Since the Footlights CAS is a globally-shared medium, there can be no uni-
versal agreement on a directory for all users: participants cannot be relied on
to make the agreement and the shared medium cannot enforce it because it is
unable to look inside the encrypted blocks that the filesystem is built on.

Because of this, a filesystem must be rooted in a specific directory, which is it-
self composed of CAS blocks. An example of such a path is shown in Listing 4.2,
where a relative component (/relative/path) is appended to an absolute di-
rectory URN. This mechanism allows users to have individual filesystems for
content, keys, application settings, etc. without interference. The root does not
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always need to be explicit, however: an application might use root directories
implicitly, as in "/absolute/path/to/file", so long as the application platform
keeps track of a root directory for each application. This allows different appli-
cations to use completely virtualised filesystem namespaces even when those
applications are run by the same user on the same application host.

4.5.2 CROSS-FILESYSTEM SHARING

It is of little use for applications to have private scratch spaces if they are
never able to share content with applications run by other users — the purpose
of an OSN is to enable social sharing. Sharing content should not necessarily
imply future sharing, however: access to one version of a photo album need not
imply access to future versions. Footlights should not preclude ongoing shar-
ing, but neither should the basic primitive for inter-user and inter-application
sharing imply it.

The basis of sharing in Footlights is the immutable directory snapshot. Since
the Footlights CAS is based on immutable blocks, snapshots are inexpensive:
when saving a new version of a file, the system simply needs to not throw away
the link to the old version. This property is shared with the ZFS file system [55]
and the Git revision control system [161], both of which also use hashes to name
blocks of content. The cost of this approach is seen in garbage collection, dis-
cussed in §4.5.4.

Time-varying content can be shared via indirection through a mutable URL
(Section 4.4) or explicit publishing of updates. This is different from filesystems
that share the one-logical-root-per-application property of Footlights, such as
Plan 9’s /proc filesystem [199, 200], inspired by Killian’s ProcFS [141]. In the
/proc filesystem, as implemented by Plan 9, Solaris, the BSDs and Linux, some
particulars of every process on the system are exposed via paths such as /proc
/{PID}/fd. Delegating access to a portion of this filesystem necessarily implies
ongoing access to up-to-date information. If a system like Capsicum [9] is used
to delegate the /proc/17/environ directory to an untrusted process, that pro-
cess will always be able to read the environmental variables of the process with
PID 17. There is no way to delegate a snapshot of only the current environmen-
tal variables without copying. By contrast, the Footlights sharing mechanism
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uses immutable snapshots by default. It is possible to provide ongoing access
to changing content, but the default is to share content as it currently exists.

4.5.3 WRITING TO SHARED FILESYSTEMS

Since each application instance is the master of its own filesystem, no other
application has the authority to modify its contents. This provides predictable
semantics to the application: no other application will concurrently modify con-
tent. The filesystem is not required to mediate conflicting writes to the dis-
tributed filesystem. Mediation would imply a burden for application develop-
ers: distributed filesystems such as Coda that support concurrent writes need
application-specific conflict resolvers [149, 150].

On the other hand, the ability to modify shared content is a desirable fea-
ture. If application A shares a subset of its private filesystem with application
B, then B cannot directly write into A’s filesystem: it is an immutable snapshot.
B can, however, modify a local version of the shared filesystem and send A an
immutable snapshot of the changes that B would like to see incorporated. A
can then decide whether or not to incorporate the changes and update other
applications with the new version. This is similar to the development model
employed by the distributed development service Github [82]: users can triv-
ially fork an existing Git project — an immutable tree named by a cryptographic
hash of its contents — and modify a local copy, then submit “merge requests”
back to the authors of the original project. This allows a locally-mutable filesys-
tem to be incorporated into a globally-immutable filesystem snapshot.

4.5.4 GARBAGE COLLECTION

The Footlights CAS cannot inspect the content of filesystem blocks, nor do
users supply it with metadata such as reference counts. Together, these proper-
ties prevent the underlying storage provider from deleting stale blocks; that is,
it cannot perform garbage collection.

Instead of performing garbage collection, the underlying provider of Foot-
lights block storage can resort to a fee-for-service model, in which users pay
the provider for de-duplicated storage of encrypted blocks for a fixed period
of time. This model is plausible because the costs of storage are so low, as de-
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scribed in Section 4.6.

4.6 COST

The plausibility of a privacy-preserving storage and sharing service depends
on the cost of operating the service. Current OSNs pay for data storage and
transport with targeted advertising. Privacy-preserving advertising schemes
have been proposed [48, 75, 126, 137, 196, 224] which are technically sound, but
it is currently unclear how much revenue they will be able to generate. The
question is, how much revenue is required?

The Footlights storage service uses a commodity provider of storage and
content distribution. I have estimated the costs of running Footlights on top
of Amazon, Google App Engine or Rackspace storage, using either the storage
service’s content delivery network or the NetDNA CDN. The costs published
by these services are given in Appendix A, “Content Delivery Networks”.

Google App Engine provides both storage and distribution services on the
basis of a fixed rate, minus a free monthly quota [336]. Rackspace provides
a similar service, but with a lower rate and no free quota [330]. In both cases,
content delivery can be performed by an external content delivery network such
as NetDNA, which offers tiered rates based on total volume [337]. Amazon
provides tiered rates for both storage and content delivery, but as shown below,
its cost structure is unsuitable for Footlights.

Before answering the question of how much the Footlights storage service
would cost to run, I first turn to the question of how much storage is required.
In February 2012, the world’s largest OSN — Facebook — reported that it had
845 M active users and stored 100 PB of photos and videos [333]. On average,
this is just 113 MiB of photo and video content per user. I assume that these
values will be similar for Footlights users: as Figure 4.5 on the next page shows,
a photo management application (§5.4.4) storing photos in the filesystem in-
curs an overhead of 2% (80 B/block) plus a constant 48 kB, according to a least-
squared regression.

To estimate the cost of running the Footlights storage system, I assume that
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Figure 4.5: Bytes required to store photos in the Footlights filesystem.
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Figure 4.6: Cost of operating the Footlights storage service.

each user will store 4× 113 MiB in the CAS, including de-duplicated photos and
videos, other user data (e.g. text) and a margin for expansion. I also assume that
each user will download one profile worth of other users’ data each month.

Based on these assumptions, the cost of running the Footlights storage ser-
vice in several provision scenarios is shown in Figure 4.6. When the Footlights
OSN is very small, Google App Engine’s free quota makes it more economi-
cal than Rackspace, but Rackspace’s lower fixed costs make it more economical
once the service has more than approximately 100 users. The use of a third-
party CDN reduces total costs, particularly as the number of users increases

80



COST

101 102 103 104 105 106 107 108 109

Total users

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

$ 
/ u

se
r y

ea
r

Cost per User
Total
Requests
Storage
Transfers

Figure 4.7: Cost of basing Footlights on Amazon Web Services.

past 10,000, although this difference is more pronounced in the Rackspace case,
since Google App Engine’s free quota means that the use of a CDN will increase
costs when there are few users.

Not shown in Figure 4.6 on the preceding page is the cost of Footlights pro-
vision based on Amazon Web Services. Amazon charges a fixed rate for HTTP
requests (per 1,000 PUT or 10,000 GET operations) [317]. Footlights splits files
into 4 kB blocks, each of which requires an independent GET operation, so in
the Amazon case — or the new Google Cloud Drive — the cost of HTTP GET
requests dominates that of storage and data transfer. This is illustrated in Fig-
ure 4.7.

All of these costs are based on publicly-available figures, which do not pro-
vide complete information about the market. Amazon does not disclose its
highest-volume tier prices publicly, and other major CDNs such as Akamai and
Limelight do not disclose any prices. These undisclosed prices will be lower
than the publicly-available ones, further reducing the cost of running the Foot-
lights storage system.

Furthermore, if Footlights grew to serve millions of users, an even more
efficient platform might be built to serve static content. Current commodity
storage platforms allow variable-sized, mutable content. A system that mapped
fixed-size, immutable, content-addressed blocks directly to physical blocks in a
storage array might prove more efficient to build and operate than a general-
purpose storage platform.

Even without such optimisations, however, it is feasible to provide a Foot-
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lights storage service based on existing infrastructure for less than one US dollar
per user-year. Users might pay such costs directly, perhaps through a premium
text message service, but it is also plausible that these costs might be borne
through privacy-preserving advertising.

4.7 PRE-CACHEING AND TRAFFIC ANALYSIS

Storing user content as a sea of opaque ciphertext blocks accomplishes a
confidentiality goal: it prevents the storage provider from reading content that
has not been explicitly shared with it. It also reduces the amount of informa-
tion that is available for performance optimisation. This information loss is part
of the cost of improving online privacy, but it can be offset by clients: volun-
tarily in exchange for reduced latency or involuntarily through traffic analysis.
Traffic analysis can be defeated, however: clients are able to trade latency for
anonymity, sacrificing performance in order to prevent traffic analysis.

Scellato et al. showed that the social graph can be used by Content Distribu-
tion Networks (CDNs) to improve performance via pre-cacheing [211]: if Alice
is looking at Bob’s photo album, there is an increased probability that Alice’s
and Bob’s mutual friends will look at the same album in the near future. This
information can be used to pre-cache the album in locations close to these mu-
tual friends and reduce the latency with which they can retrieve the content.
This source of metadata is removed by Footlights: the storage provider cannot
read metadata such as who is looking at which blocks or how they are linked.
This confidentiality gain has the potential to cause performance costs.

It is clear that information about user intent can improve cacheing decisions.
It is also clear that Scellato’s social cascade detection is one way of inferring
intent probabilistically. However, this is not the only way of obtaining infor-
mation about users’ intent for future data accesses. In 1995, Patterson, Gibson
et al. considered the cacheing problem in an economic sense: every cache hit
provides a benefit, but every full cache buffer implies an opportunity cost —
that buffer cannot be used for other information [194]. This economic perspec-
tive might be extended to consider the costs of both computation and access
to private information. In this view, socially-informed pre-cacheing has a pri-
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vacy cost: it requires the lives of users to be laid open and bare before the CDN.
Scellato et al. did not compare the costs and benefits of socially-informed pre-
cacheing with other sources of information about user intent. Sources of intent
information compatible with a privacy-preserving storage system include:

Explicit declaration Client software, when downloading content from a Foot-
lights CDN, could simply state explicitly which blocks it wishes to download
before it downloads them. This is analogous to the application practice of
declaring I/O hints to the operating system which Patterson et al. found “al-
ways increases throughput” [194]. This explicit declaration of intent will not
improve the cache hit rate for the first block that a client downloads, but it may
improve the hit rate for subsequent blocks. Assuming that the CDN is able to
transfer data more quickly internally than clients can download them — a rea-
sonable assumption, as this is the raison d’être of a CDN — the CDN should be
able to pre-cache all but one of the blocks requested by the user.

Traffic analysis CDN providers could also infer likely future access patterns
through traffic analysis. CDNs could store patterns such as “when block X is ac-
cessed by any IP address, that IP immediately accesses block Y”, each of which
is associated with a probability. Such a strategy carries a clear algorithmic cost:
the CDN must store traffic information, compute probabilities, etc. This cost is
not new, however: it is simply a translation of the non-monetary cost to privacy
that was previously treated as nil.

In addition to performance enhancement, traffic analysis can also be used
to identify users and their social graph [34, 182, 205]. If a storage provider and
CDN wished to identify Footlights users, it could record all accesses to content
and identify which IP addresses access the same content, as well as which IP
address uploaded that content. Such traffic analysis could easily identify cliques
of stable IP addresses, but users can obfuscate their activities.

Taking lessons from the security economics literature [30], the user seeking
protection should not depend on other users taking costly obfuscation actions.
When downloading content, the user who wishes to frustrate traffic analysis can
choose to download via systems like Crowds [206] and Tor [91] which hide the
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identity of the downloader. This action has a cost — using relays will slow the
download — but it is borne by the user seeking to frustrate the traffic analysis.
The user chooses the trade-off.

Similarly, when uploading content, a user may wish to hide its structure.
The sea-of-blocks technique hides overt structure, but a malicious storage
provider could perform traffic analysis to infer structure. If a directory contains
two files, those files’ encrypted blocks will often be requested immediately after
those of the directory. Once again, obfuscation comes at a cost: a user’s blocks
could be organised pathologically, e.g. in a linked list rather than a tree and
packaged with an all-or-nothing transform.

Rivest introduced all-or-nothing encryption as a method of slowing brute-
force attacks even when using “marginal” key lengths such as DES’ 56 b or the
40 b imposed by US export restrictions at the time [208]. Rivest’s initial all-
or-nothing encryption mode, the package transform, applied an inner counter-
mode encryption to plaintext, the key to which was appended to the pseudo-
message (the transformed plaintext) but XOR’ed with hashes of the preceeding
pseudo-message blocks. The pseudo-message was then encrypted in the con-
ventional way, so an attacker guessing the outer key would need to decrypte
the entire message rather than a single block; this added a significant work fac-
tor to brute-force attack. Boyko later proved (in the random oracle model) that
the Optimal Assymetric Encryption Padding (OAEP) algorithm constituted an
all-or-nothing transform whose security could not be substantially bettered by
any other such transform [60].

The application of an all-or-nothing transform to the plaintext of Footlights
blocks would increase the burden of creating them — such transforms have a
computational cost — but it would especially increase the cost of downloading
them, as clients would need to download an entire profile before they could
decrypt any part of it. As in the downloading case, however, the choice to
obfuscate is made by the user who requires protection, and no client with a
desire to take shortcuts is in a position to undermine it.

Users can thus choose to trade off performance for privacy, obfuscating ac-
cess patterns to frustrate traffic analysis. The choice to perform obfuscation lies
with the user who wants to be protected from traffic analysis. These mecha-
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Figure 4.8: Embedding covert content in random padding.

nisms will make traffic analysis more difficult, but not impossible. In order to
construct a perfectly unobservable communications channel, users must employ
more costly techniques from Section 4.8.

4.8 COVERT COMMUNICATION

In order to support multi-faceted identity (problem “Multi-faceted identity”
on page 17), it is important that users be able to share limited content without
revealing that the sharing is limited. That is, there should be no “known un-
knowns”: Bob should not be able to determine that Alice has published a piece
of content unless she has chosen to share it with him.

As described in Section 4.3, Footlights blocks are padded to a fixed length
with random data. Assuming that the system is implemented with encryption
primitives that can be modeled as pseudo-random permutations [40], i.e. an at-
tacker cannot distinguish between ciphertext and random data, block padding
can be used to hide covert information.

The technique is illustrated in Figure 4.8. When hiding information, the
block’s creator Alice chooses an arbitrary offset o within the padding. This off-
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set allows her to hide multiple covert messages at different locations within
the random padding. She then uses a stream cipher to produce a keystream of
length o + lC, where lC is the length of the covert content. Finally, she XORs the
covert content with keystream[o:o+lc] and embeds the resulting ciphertext at
offset o within the padding. In order to recover the covert content, the receiver
Bob uses the shared key to generate keystream of the same length as the block’s
padding. He then XORs these together and searches for meaningful content
embedded in the random padding.

The stream cipher key may be randomly-generated, in which case Alice
must communicate it covertly to Bob. Alternatively, it may be established by
a Diffie-Hellman exchange [90], using parameters specified by Alice and Bob in
their respective profiles.

This protocol involves no explicit message authentication code (MAC). This
is unusual for a protocol that uses a stream cipher for encryption: a similar
design choice in IEEE 802.11’s original Wired Equivalent Privacy (WEP) led to
exploitable vulnerabilities and the eventual introduction of the Michael mes-
sage integrity code [235]. The protocol described here is not vulnerable to these
attacks, however.

In the WEP attacks, an attacker could modify all ciphertext bits, leading to
linear changes in both content bits and the linear CRC32 checksum. This al-
lowed attackers to modify the content of messages without detection [57]. In
the Footlights case, however, a block is named by a hash of its contents; if an
attacker changes any ciphertext content, it will be detected because the content
will not hash to the same value. Even if an attacker finds a second pre-image
for the hash function, the malicious block must pass a second integrity check.
After decryption, the block’s entire plaintext is hashed and the result must be
equal to the decryption key which was used to decrypt the ciphertext.

This technique for embedding content within a block’s random padding can
be used to hide covert links (§4.8.1) or content (§4.8.2) within otherwise-overt
Footlights blocks.
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4.8.1 LINK HIDING

Footlights can support multi-faceted identity by hiding links within random
padding using the technique described above. By using different offsets and
different keys, a block’s creator can embed one link to be read by Alice and
another to be read by Bob within the same Footlights block. This allows a user
to express different profiles to different friends using the same root block, and
neither Alice nor Bob can detect facets that are not shared with them.

A user may wish to hide more links than will fit in the padding of one block,
but links can be hidden in any number of overt blocks, and the structure of the
block graph is entirely under the control of the user’s client software. A shared
key that is used to hide links could also be distributed to multiple users in an
implicit group, reducing the number of links that must be hidden without re-
vealing the grouping to any user. Footlights cannot stop users from comparing
notes with each other, examining the differences between what has been shared
with each of them. I do not consider this to be a technical problem, however,
but a social one: it is as if my friends met physically to reveal and compare ev-
erything that I tell them. No technical measure in an OSN can stop people from
gossiping.

However, the differences between the blocks that Alice downloads and the
blocks that Bob downloads may be visible to a malicious provider of underlying
storage who performs traffic analysis. In order to hide content not just from
friends but from the provider, a similar technique can be used to hide content
rather than links.

4.8.2 MESSAGE FORWARDING

A sea of immutable blocks with random padding provides an opportunity
to set up a perfectly unobservable communications channel. This channel can be
used to relay covert messages through a social graph without detection.

I pessimistically assume that the underlying storage provider is always able
to link uploads and downloads to a particular user, identified by a static IP
address, and that this channel is the only communications channel available to
users. That is, the storage provider is the global passive adversary [89, 205].
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Whenever a block is uploaded by a user S and downloaded by a set of users
R, the global passive adversary can link the upload and download transactions
together and interpret the result as a multicast message from sender S to recip-
ients R. The equivalence of these two views is illustrated in Figure 4.9. Even
though users hide the content of messages from the global passive adversary,
traffic analysis reveals the structure of communications and thus the structure
of the social network.

Inside this overt communication graph, however, the random padding at the
end of each block can be used as excess capacity for carrying covert messages.
These messages may be hidden links as in §4.8.1, but they can also be packets to
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be routed around the network. If the random padding in each block is viewed
as a channel from one node in the social network S to all block recipients R,
a flow network as described by Ford and Fulkerson [107] can be constructed
through the overt Footlights blocks, as shown in Figure 4.10 on the facing page.

If users enqueue covert messages to be embedded opportunistically in the
future, then this communications channel can be perfectly unobservable. As long
as the decision to send a message is not influenced by covert messaging re-
quirements, the overt communications graph will be the same whether or not
it carries covert packets. The only difference in the two graphs is the content of
the blocks, given in equations (4.1) and (4.2).

B = {CO + R}k=h(CO+R) (4.1)

B′ = {CO + CC}k=h(CO+CC)
(4.2)

In these equations, CO is the overt content of a block, CC is covert content, R
is random padding and h is a cryptographic hash function. The results, B and
B′ are the ciphertexts of a block without covert content and a block with covert
content. Under the random oracle assumption4, an adversary inspecting B or B′

will gain no information about the plaintext CO + R or CO + CC. The adversary
cannot distinguish between the plaintext with embedded covert content and the
plaintext without it; the channel over which the covert content is communicated
is perfectly unobservable.

This perfect unobservability is in contrast to privacy-enhancing technologies
such as mixes [70, 84] and Tor [91], the use of which can be regarded as a “some-
thing to hide” signal. It is also different from steganographic systems [32, 198],
in which detection is a probabilistic affair and “security level” is based on an
arbitrary choice of acceptable false-positive and false-negative rates [198]. In
steganographic systems, knowledge of the cover image exposes the stegano-
graphic payload; in Footlights, random block padding means that knowledge

4Proving indistinguishability between B and B′ in the standard model may be a difficult task,
since each uses a different key but both keys are related to the plaintext. Constructing such a
proof is left for future work.
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of overt plaintext does not imply knowledge of the resulting block’s ciphertext.

Unlike traditional steganographic file systems such as StegFS [172], the Foot-
lights covert channel is stable: covert content cannot be unwittingly overwritten.
McDonald and Kuhn’s StegFS is inspired by Anderson, Needham and Shamir’s
description of a theoretical steganographic file system [31]. Both systems ad-
mit to the presence of one level of encrypted content, but hide the presence
of further levels. Users unlock levels (“directories”) of hidden information by
supplying passphrases, but can plausibly deny the existence of further levels of
secrets. This plausible deniability comes at a cost. Just as it is impossible (under
the assumption of block cipher indistinguishability) for an inspector to deter-
mine that further covert content exists, so it is impossible for the filesystem to
avoid overwriting locked covert information. The filesystem reduces the proba-
bility of overwriting through replication, but it is still a probabilistic guarantee.
This guarantee, predicated on complete control over how much content is writ-
ten relative to the size of the host partition, cannot scale to a storage medium
shared by millions of users and backed by an untrusted cloud provider. In con-
trast, Footlights uses immutable, content-addressed, encrypted data that can be
verified by any party in the system, so it provides a stable shared medium in
which covert messages will never be overwritten, though they may expire.

Covert messages can be routed through the network of overt messages us-
ing a routing scheme appropriate to opportunistic, one-way delay-tolerant net-
works (DTNs). DTNs, as named by Fall [99, 100], are store-and-forward networks;
they route communication among their nodes without requiring that all the
links in a route be available at the same time. Most DTNs are either opportunis-
tic or one-way: opportunistic schemes assume that two high-bitrate radios will
be in close proximity for some period of time, whereas one-way communication
is typically used with predictable contact, e.g. space vehicles whose positions
can be predicted. The perfectly unobservable channel afforded by Footlights,
however, is both opportunistic and one-way. Designing a routing protocol that
performs well under these constraints is left for future work.
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4.9 RELATED WORK

Blaze’s Cryptographic File System (CFS) [51] allowed Unix users to trans-
parently encrypt a local filesystem mounted at /crypt. The resulting ciphertext
could be stored on networked filesystems such as NFS and AFS, protecting user
information from other users of the same distributed filesystem. Authority was
concentrated in a per-directory key: sharing encrypted content between users
required the sharing of keys. CFS was the first filesystem to use this abbrevia-
tion. Confusingly, both Cedar and Chord — described below — later re-used
the acronym without citation, apparently unaware of Blaze’s work.

Grolimund’s Cryptree is a scheme for managing keys in cryptographic
filesystems [124]. Cryptree uses the term “link” in a subtly different way from
Footlights: in Cryptree, a link is a construction that allows one key (e.g. of a
subfolder) to be calculated from another key (e.g. of a parent folder). The exact
construction is not specified, but the authors cite work such as Chien and Jan’s
hierarchical key assignment [72]; this work relies on tamper-resistant hardware
to translate keys, but a standard key derivation procedure would also work.

The Cedar filesystem [111] used immutable files to eliminate the cache co-
herency problem in a network file system. Cedar was primarily used to support
programming, so it had a strong focus on source code. Files were named with
an explicit version number, so the problem of distributed cache coherency was
translated into the problem of version control, a natural problem for program-
mers. It seems to have been influential for distributed revision control systems
such as Git [161], which uses the same model of immutable files but goes a step
further with immutable snapshots of directory trees, as well. Cedar required
trusted file servers, which Footlights seeks to eliminate, and it was also vulner-
able to accidental misuse: users could write to CFS (Cedar File System) files via
non-CFS mechanisms, violating the assumption of immutability. Footlights, in
contrast, uses a naming scheme that permits content-based integrity checks.

In 1998, Anderson, Needham and Shamir described two theoretical stegano-
graphic filesystems [31]. The first relied on linear combinations of random data:
a k× n matrix was constructed, where n was the size of a file or directory, and k
the number of random cover files in the system. Users could store up to m ≤ k/2
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files in this matrix by XOR’ing cover files specified by a strong passphrase P,
computing an XOR difference D between the result and the desired file, then
XOR’ing D into the matrix of cover files. By using a k× k extraction key matrix,
the user could build a linear hierarchy of security levels, each of which provided
no information about the next level up. Users unlocked levels (“directories”)
of hidden information by supplying passphrases, but could plausibly deny the
existence of further levels of secrets. This technique was vulnerable to a known-
plaintext attack, however, and it had poor performance properties: to save a
covert file would require writing 16–50 times more data than a normal file.

In the second concept, which inspired McDonald and Kuhn’s StegFS [172],
covert data was encrypted and written to disk in pseudo-random locations.
Blocks of data were replicated in several locations to reduce the probability that
all copies of a file might be overwritten. This system chose a different set of
trade-offs: it required ~5× redundant writes rather than 16–50×, but at a cost of
a lower load factor (space utilisation). In this system, lower security levels could
not know where higher-level files might be stored, so overwriting of covert data
was a probabilistic risk.

Both of these steganographic filesystems assumed absolute control of the
underlying storage medium. Since any new file might be written to any bit of
the k× n matrix or any location in a Linux partition, the ability to write covert
content implied complete trust by the owner of the filesystem. Users could
not share a steganographic filesystem. In contrast, Footlights provides a stor-
age medium which can be shared among mutually distrusting users, in which
writes performed by one user cannot degrade the security of others. Instead,
one user’s content will enhance the security of others’ in all but the most patho-
logical cases by providing cover traffic.

In 1998, Gopal and Waters thought that traditional filesystems were reach-
ing the limits of usability, and sought to integrate “content-based access” into a
hybrid filesystem which they called HAC (“Hierarchy and Content”) [120]. The
terminology used by this paper is very different from its use in this dissertation,
however; some disambiguation may aid clarity of thought for readers who are
familiar with similar work from this era. Gopal and Waters, in keeping with
Gifford et al.’s Semantic File Systems concept [110], used the term “content” to
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refer to a semantically rich understanding of file attributes and contents. The
Semantic File System (SFS) incorporated “transducers” that could parse and
describe source code, mail files and New York Times articles. HAC took this
concept further, allowing query “directories” to be more than read-only snap-
shots of query results, but it too required the system to have deep knowledge
of file contents in order to be useful. As any screen-scraper knows, scouring
New York Times articles to apply semantically-meaningful names can be a brit-
tle activity. In Footlights, by contrast, the term “content-addressed” is used to
refer to a very shallow semantic: the bytes in a ciphertext block. The storage
substrate is prevented by cryptography from reading deeper into content, but
cryptographic hashes provide a robust naming scheme. Applications are ex-
pected to interpret their own data, encouraging lock-step co-development of
formats and parsers5.

A content-addressed store, in the sense that Footlights uses, was created by
FilePool NV in the late 1990s and later acquired by EMC. A FilePool patent
filed in 1999 describes how files could be identified by a cryptographic hash
of their contents and collated together with an ASCII representation called an
“e-Clip” [67]. This patent has not been cited by the later research literature.

OceanStore [49, 207] is a model proposed as a “true data utility”. It is based
on the premise that “information must be divorced from location”: it uses semi-
trusted replica servers to store and distribute information. Service is paid for by
a monthly fee, although explicit costs are not discussed. Like Footlights, users’
data is stored encrypted on the utility’s servers, so only users — not service
providers — can read plaintext.

Also like the Footlights storage system, OceanStore names objects with cryp-
tographic hashes. Unlike Footlights, however, OceanStore names are hashes of
an owner signing key and an owner-specified name — Mazières et al.’s self-
certifying path names [170, 171]. This means that users storing content in the
system must identify themselves via a signing key.

This identification is taken a step further when dealing with shared, writable
content. OceanStore names are mappings to mutable content; they can be mod-

5The authors also used the term “fingerprint” in a very different sense from later CAS work:
one of the authors had an interest in biometrics.
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ified if a user’s signed update command is accepted by a Byzantine agreement
protocol among “primary tier” OceanStore replicas. These replicas are not
trusted with plaintext, so objects’ Access Control Lists (ACLs) must be public.
Whereas Footlights ensures that each client can choose its own security/perfor-
mance trade-offs, OceanStore publishes ACL entries publicly. These entries are
only for object writers and they refer to signing keys rather than identities, but
Footlights eliminates this publishing requirement — and the trust placed in pri-
mary tier replicas — by using completely untrusted content-addressed storage.

The idea of self-certifying path names — though not the name — is used by
Graffi et al. in their discussion of encryption within peer-to-peer–based social
networks [121]. This work recognises that a system “must be compatible to [sic]
common replication mechanisms and caching mechanisms” in order to provide
the availability properties that users expect. In this system, users can determine
how many users’ public keys a file has been encrypted to; this conflicts with
problem “Multi-faceted identity” on page 17.

The idea of content-addressed storage was developed by Freenet [76], which
named content with “content-hash keys” plus an indirection mechanism with
signed namespaces. Ratnasamy et al.’s Content Addressed Networking pa-
per [204] further develops the content addressing idea by proposing the dis-
tributed hash table mechanism. The paper cites Freenet as an example of a file
sharing system, but fails to note Freenet’s content-hash keys as an example of
content addressing.

The third CFS is the Cooperative File System [83]. CFS is a read-only filesys-
tem built on top of a block store called DHash, which is itself built on the
Chord distributed hash table [221]. CFS can use content addressing or certi-
fied namespaces à la OceanStore, above. CFS-on-Chord is conceptually similar
to Footlights-on-Amazon, but not in the details: CFS does not tolerate malicious
participants in the system, nor does it provide lookup anonymity. The authors
state, “it is expected that anonymity, if needed, would be layered on top of the
basic CFS system”.

Quinlan et al.’s Venti archival system (2002) [203] used many of the same
low-level techniques as the Footlights block store, including immutable blocks
of data named by a hash of their contents, block de-duplication at the back end
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and trees of content that can be represented by a single “pointer” block. Venti
provided an archival block store that could be safely shared by multiple clients
without co-ordination or mutual trust and which provided implicit integrity
checks. Footlights’ demo file manager (§5.4.5) is functionally similar to Venti’s
vac: it converts files of arbitrary size into hash references of fixed length. Foot-
lights takes the Venti work a step further: rather than providing a trusted block
store which can be shared by untrusted clients, Footlights allows untrusted stor-
age providers to supply back-end storage for mutually suspicious clients.

Muthitacharoen et al.’s Ivy [183, 184] is a writeable filesystem built on the
DHash block store from the Cooperative File System (CFS) described above.
Ivy is a log-structured filesystem: users append immutable entries to their own
logs which reflect changes to the filesystem state. A particular user’s view of
the filesystem can be calculated by combining trusted logs together. Users can
create a shared filesystem by generating a “view block” that certifies the shared
filesystem as a defined set of user logs. The Ivy filesystem was found by its
authors to be 2–3 times slower than NFS. Like Ivy, the Footlights storage sys-
tem requires individual users to maintain their own filesystem namespaces but
allows namespaces to be viewed collectively as a shared filesystem. Unlike Ivy,
Footlights is based on current snapshots: retrieving the current state of a filesys-
tem involves block retrieval, not log replay and block retrieval. Ivy does allow
snapshot blocks to be periodically constructed, but in Footlights, it is the cur-
rent snapshot which is the first-class primitive; logs of a filesystem’s history are
a construction based on snapshots.

Tolia et al.’s CASPER system (2003) [222] used a content-addressed store
to opportunistically improve the performance of a remote file system accessed
via Wide-Area Network (WAN). CASPER viewed files as “recipes” containing
lists of CAS blocks. These blocks could be cached anywhere in the network,
leading to latency improvements if a client did not need to contact the remote
file server directly. The blocks themselves contained pure content, necessitating
the “recipe” indirection. In Footlights, by contrast, less structural information is
revealed to the (potentially adversarial) storage service: encrypted blocks which
contain links are indistinguishable from those that do not. CASPER does not
address encryption directly, although the paper does suggest that convergent
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encryption [95] could be used for de-duplication of CAS blocks.

The SUNDR network file system created by Li et al. [155] is an example of
a shared file server that is verified by clients using public-key cryptography.
SUNDR names blocks according to their SHA-1 hashes, like OceanStore, CFS
and Venti. Like the Ivy filesystem, SUNDR relies on clients signing the actions
they take to modify the shared filesystem. Unlike Ivy, SUNDR centralises the
activity log and block store for performance and to commit to an ordering of
operations: its authors claim that Ivy’s distributed logs do not provide order
consistency. SUNDR allows clients to interact with a fork consistency model
(described in Section 4.4), but its access control model is otherwise conventional,
with users and groups administered by a superuser on a centralised server. The
server is not trusted to maintain the integrity of the filesystem, but it is trusted
to maintain confidentiality.

Busca et al.’s Pastis [66] is a read-write distributed filesystem based on the
Past DHT. Like Ivy, it relies on users signing filesystem transactions which are
backed by a content-addressed store. Unlike Ivy, it allows servers to update the
inode blocks that point to content blocks. This mechanism is more reminiscent of
OceanStore, but unlike OceanStore, the updates are based on certificates rather
than public ACLs. This allows content owners to distribute authority to modify
content without publishing information about potential writers.

Like Venti, Ivy, CASPER and SUNDR, Pastis deals with plaintext. Servers
are trusted to maintain confidentiality properties; keeping secrets from servers
requires extra-filesystem encryption: “users may encrypt files’ contents to en-
sure data confidentiality if needed” [66].

The Tahoe filesystem [232] stores files as encrypted shares using Reed-
Solomon codes. File contents are stored as Merkle trees of immutable blocks, as
in Footlights, but files can also be mutable. Mutable files require an ephemeral
public/private key pair that can be used to sign or verify the file. Directories
contain lists of read-only capabilities to children in the clear, as well as en-
crypted read-write capabilities. Unlike Footlights, the original Tahoe design
maintained a mapping of users to ciphertext files. This was necessary for ac-
counting purposes, but the original storage provider allmydata.com could ob-
serve all user activity. This design was not compatible with network-level op-
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Listing 4.3: The root of a Footlights profile as a MAGNET-URI.

magnet:?xt=urn:sha1:XH2ZD25QPHXDARTSANUHT7VF2FWIK52S

timisations for either privacy (e.g. Crowds, Tor) or performance (e.g. CDNs).
Subsequently, Tahoe evolved into a purely software-based project that provided
no storage space [335]. Tahoe now provides scripts for users to use when setting
up their own backends, but there is no globally-shared infrastructure.

HydraFS is a filesystem built on the Hydra content-addressed store [225].
It is built on immutable blocks, but the similarities to Footlights end there, as
HydraFS is not designed to provide the security properties which Footlights is
intended to provide. HydraFS deals in plaintext, giving the CAS full visibility
into block content and references and permitting server-side garbage collection.

The MAGNET-URI project encourages file-sharing software to name content
with URIs that are both URNs and relative URLs [261]. This scheme is entirely
compatible with Footlights: Alice’s profile in Listing 4.1 on page 74 could be
encoded as the MAGNET URI in Listing 4.3, which is suitable for parsing as an
HTTP query or as a URN. In this way, existing file-sharing networks could be
used to provide transport for Footlights data. The availability problems of P2P
networks would still apply, but the transport would cost no money.

4.10 SUMMARY OF CONTRIBUTIONS

In this chapter, I have described how untrusted commodity storage can be
used to provide a secure, scalable, available distributed filesystem for social
applications. I exploit commodity storage for availability and cryptography for
end-to-end confidentiality and integrity.

The system organises immutable content in a content-addressed store, re-
quiring constant-size communication to share arbitrary-sized snapshots. Mu-
table names refer to signed, versioned snapshots of content, allowing the con-
struction of a writable filesystem with semantics that will be familiar to appli-
cation developers.
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The cost of running this storage system, based on public information about
centralised OSNs and cloud storage providers, is expected to be low: on the
order of one US dollar per user-year. Such a system could be supported by
direct payment or a privacy-preserving advertising system.

This end-to-end system is compatible with network-level optimisations for
both privacy and performance. Most users are expected to prefer performance
optimisations to privacy optimisations: such users’ data will be safe from con-
fidentiality threats, but traffic analysis could reveal access patterns of a user’s
IP address. Users seeking assurance of anonymity can use apparently-random
padding bits in overt Footlights blocks to carry covert messages over a perfectly
unobservable communications channel.

Footlights’ scalable storage system provides a storage medium decoupled
from privacy and performance optimisations, allowing users to choose what
degree of each they would like. This system can be used as a substrate for the
social applications described in Chapter 5, “Distributed Social Applications”.
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5
DISTRIBUTED SOCIAL APPLICATIONS

“ It’s the apps, stupid!

Peter O’Kelly, Lotus Development Corp. 1993 [354]”Platforms matter. Popular, centralised online social networks (OSNs) are not
just websites, they are ecosystems. Facebook, Google+, Twitter, LinkedIn, even
Yahoo! provide APIs which application developers use to enhance users’ online
social networking experience. If Zittrain’s hypothesis [248] is to be believed —
and I believe that it is — then the key driver of technological staying power is
generativity, the ability to create new and unexpected things out of existing tech-
nology. The developers of Compuserve and Nokia OS produced compelling
features, but they could never compete with all of the creativity wielded by the
world’s collective developers — generative platforms won.

Today’s centralised OSNs have applications, but as Chapter 3 showed, those
applications have been used to share private user information beyond the intent
of users. Distributed social networks have been proposed as a remedy to the
privacy shortcomings of traditional OSNs but almost all lack support for third-
party applications (see Section 5.5). Without third-party applications, the OSN’s
developers must create all functionality that users might ever desire. This is
analogous to requiring Facebook’s in-house developers to develop all popular
applications such as FarmVille [334], Spotify [331] and Draw Something [332],
some of which use Facebook as little more than an authentication provider.

In this chapter, I present the Footlights social application platform. This
platform demonstrates the practicality of unprivileged distributed social ap-
plications that are developed in a similar way to today’s client-server social
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applications. Footlights allows developers to enhance the social networking ex-
perience with applications that are constrained by users’ choices. I will motivate
the features provided to Footlights applications by considering the needs of the
lately-popular Draw Something application [332].

This application is a game in which players alternate drawing and guessing
what the other player has drawn. The game is asynchronous: one player draws
a picture, then sends it to a Facebook friend by uploading the picture to a third-
party cloud service and notifying the friend that it is their turn. Later, the other
player downloads the drawing, guesses what it is then takes a turn at drawing.
The essential characteristics of this application are an ability to interactively
input some state (the drawing or the guess) from a user, upload it to a storage
service, share it with another user, keep statistics and display basic information
such as a name and a thumbnail for each player.

Footlights provides the ability to perform these actions. Although I have not
replicated the Draw Something app, I will demonstrate the ability of the Foot-
lights API to provide the required features by presenting several basic proof-of-
concept applications that run on the Footlights platform.

On the Footlights platform, unprivileged applications run locally on users’
computers, where they can be confined and their behaviour can be observed
(Section 5.1). Applications are written in familiar languages: UI components are
written in ECMAScript 5 using a DOM-like API (Section 5.2) and back-end com-
ponents can be written in any JVM-compatible language (Section 5.3). The secu-
rity API presented to applications is designed to make the easiest way of imple-
menting an application a privacy-preserving way; the ability to construct func-
tional, privacy-preserving applications is demonstrated with several proofs of
concept (Section 5.4). Finally, I conclude with a discussion of related attempts to
provide alternative OSNs and techniques for implementing privacy-preserving
social applications (Section 5.5).

5.1 MODEL OF COMPUTATION

In order to confine application behaviour, preventing applications from
sharing user information more widely than users desire, it is necessary to
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choose a different model of computation from existing OSNs. This model is
radically different because it returns to an older model: application code exe-
cuting in a local context, operating on local data. This model allows Footlights
— unlike today’s OSNs — to take advantage of useful protection technologies
that have been developed over the past decades.

The last several decades have seen many security technologies transferred
from experimental, research and military/intelligence contexts into consumer
software. This transition has increased the protection of users’ private infor-
mation from malicious applications, but today’s OSNs cannot leverage these
advances in data protection because they use an incompatible model of com-
putation. Instead, they are only compatible with Digital Rights Management
(DRM) schemes.

5.1.1 SECURING USER DATA

Over the past decades, several security technologies from the realms of re-
search have been adopted by commodity operating systems to protect users’
private data. In 2010, I co-authored a paper with Joseph Bonneau and Frank
Stajano describing how this occurs in several application markets [12]; this sec-
tion will summarise a few relevant highlights from that work.

Mandatory Access Control (MAC) is the imposition of a system-wide secu-
rity policy on the behaviour of users and software. It originated in the US mili-
tary [249] and intelligence community [217], where it was used to enforce Multi-
Level Security (MLS) [98] and integrity [47] policies. More recently, however,
MAC has appeared in widely-deployed commodity operating systems such as
Linux [163], FreeBSD [226] and Mac OS X [325]. In these operating systems,
MAC is used to confine applications, preventing a malicious or compromised
application from accessing users’ private information. This protection of user
data is possible because the OS kernel which mediates all application I/O is the
same kernel that is responsible for enforcing the security policy: no communi-
cation occurs outside its purview.

Similarly, capability systems have developed from a 1970s research agenda,
starting with work by Needham et al. [191] and Feiertag and Neumann [102],
to inspire the design of modern programming languages such as Java and EC-
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MAScript 5 [117, 176, 177]. In 2010, Robert Watson, Ben Laurie, Kris Kenn-
away and I incorporated capability concepts into the FreeBSD operating sys-
tem, improving the security properties of common applications such as gzip
and Chromium through the Capsicum project [1, 9, 17].

Capabilities are shareable, unforgeable tokens of authority. Examples in-
clude references in object-oriented languages such as Java or JavaScript: soft-
ware cannot invent new references to existing objects, it must acquire a ref-
erence from something that already holds one. When combined with a least-
privileged — or sandboxed — model of execution, software can be run without
access to any data that the user has not explicitly shared with it. For instance, in
the CapDesk environment [227], a text editor would have no authority to open
text files. Instead, it would request that the operating system draw a dialogue
box prompting the user to choose a file; only a capability to this file would be
returned to the editor. This technique generalises to the concept of powerboxes
— dialogues that delegate user authority to applications via trusted operating
system components as described by Yee [241]. Applications can only leverage
the authority of the user if that user makes an explicit expression of intent.

Private user information can be protected by Mandatory Access Control, ca-
pability discipline or other techniques such as Mysers and Liskov’s Distributed
Information Flow Control [185] — dubbed “Sticky Policies” by Pearson and
Mont — but all of these techniques have a common requirement: a trusted
monitor that mediates all activity in the system. This aligns well with tradi-
tional software execution environments — desktops, mainframes and mobile
phones — but it does not fit well with the structure of current OSN applica-
tion platforms. In today’s OSNs, applications perform computation on private
information on developer-owned computers, outside the control of both users
and the OSN itself. This precludes the use of any of the useful advances out-
lined above for the protection of user information. Instead, protecting user data
from today’s social social applications resembles the problem of Digital Rights
Management (DRM).
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Figure 5.1: Today’s OSN as an application platform.

5.1.2 SOCIAL DRM

Today’s OSN applications are structured as shown in Figure 5.1: users in-
teract with both the OSN itself and third-party applications through a Web
browser. Applications request information about users directly from the OSN
and may be permitted to store copies of user data [285].

OSNs may impose terms and conditions on application developers, but tech-
nical enforcement of systemic security properties is impossible, since user data
is transmitted from a platform that the OSN controls (the OSN’s data centre) to
one that it does not (the application host). The lack of OSN-controlled infras-
tructure underneath the application means that techniques such as Mandatory
Access Control, Information Flow Control and capability-oriented sandboxing
cannot be applied to these applications.

Instead, this model of computation resembles digital rights management
(DRM). In this model, sensitive information is transmitted to a platform run-
ning untrusted software; the untrusted software is permitted to use the infor-
mation for one purpose (e.g. displaying a video) but not others (e.g. copy-
ing the video). DRM often takes the form of distributing copyrighted infor-

103



CHAPTER 5: DISTRIBUTED SOCIAL APPLICATIONS

mation in encrypted form separately from the relevant decryption key. Keys
may be distributed to authorized players via broadcast encryption [53, 104] or
even Virtual-Machine–based techniques [144]. Hardware players may incorpo-
rate self-attesting trusted components to manage decryption keys, but software-
based players must, at some point, hold decryption material in memory that is
visible to the computer’s owner. Fundamentally, a principal cannot both pos-
sess a decryption key and also not possess the decryption key, so DRM schemes
that do not rely on trusted hardware must instead rely on a high subversion ef-
fort. That is, if the effort required to extract a decryption key is very high, then
unauthorized use may be limited for a period of time.

Most DRM schemes developed by major industries to protect copyrighted
content eventually fall prey to the distributed effort of individuals. From the
weak cryptography employed by DVDs [357] to the stronger cryptography em-
ployed by HD-DVD and Blu-Ray [355] to Blu-Ray–specific virtual machine tech-
niques [341], no DRM scheme has long withstood scrutiny. Once a single key is
recovered, all copies of a physical disc can be decrypted.

It might be possible for social application platforms to employ a DRM-like
protection scheme: private user data could be transmitted encrypted to appli-
cation hosts, which are permitted to use the data for providing service to the
user but not for selling the user’s data to third-party aggregators, as in §3.1.3.
The question is, what OSN would implement such a scheme, and if it did, what
is to be done with the decryption key?

Unlike major motion-picture studios, OSN providers have little incentive
to keep user information from application developers. Users have an inter-
est in keeping their private information private, but the proposals for users to
encrypt, permute, scramble or otherwide hide information within an unmodi-
fied OSN [37, 127, 165, 167, 223] fail to protect the social graph from either the
OSN provider or applications (see Section 2.3). If users did employ a DRM-like
scheme, they could not make use of social applications in conventional OSNs
without providing the relevant keys, but by providing such keys, all protec-
tion would be lost. If the protection scheme required trusted hardware, as in
Conrado et al.’s personal DRM scheme [78], it would introduce startup and
maintenance costs but still be vulnerable to the attacks employed against com-
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Back end Front end

10:53:57 FINE     ClasspathLoader.<init>         Initialized with classpaths: WrappedArray(file:/Users/jon/
10:53:59 FINE          Keychain$.importKeyStore Loaded 123 KeyStore entries
10:53:59 INFO          CASClient.apply          Retrieving CAS setup defaults from http://footlights.me/set
10:53:59 INFO      Bootstrapper$.apply          Searching 7 classpaths for UIs...
10:54:00 INFO              WebUI.init           Using TCP port 4567
10:54:00 INFO      Bootstrapper$.apply          Loaded UI Thread[me.footlights.ui.web.WebUI,5,main]
10:54:00 INFO      Bootstrapper$.apply          Starting 'me.footlights.ui.web.WebUI' UI
10:54:00 FINE      Bootstrapper$.apply          Waiting for me.footlights.ui.web.WebUI to end
10:54:00 FINE          CASClient.apply          CASClient uploadURL: https://upload.footlights.me/upload
10:54:00 FINE          CASClient.apply          CASClient downloadURL: https://s3-eu-west-1.amazonaws.com/m
10:54:05 FINE     ClasspathLoader.apply          Dependency for file:/Users/jon/Footlights/Client/Demos/Bas
10:54:05 INFO     file:/Users/jon/Footlights/Client/Demos/Basic/target/classes.init           Loading me.fo
10:54:05 FINER             Store.store          Stored 2 blocks in CASClient
10:54:05 FINE         Filesystem.save           saved 'Encrypted File [ urn:sha-256:MZ5CVNKQLWHDGQ3YPI4DQMK
10:54:05 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushing 2 bloc
10:54:05 FINE              Store.flush          CASClient: flushing 2 blocks
10:54:05 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushed 2 block
10:54:05 FINER             Store.store          Stored 1 blocks in CASClient
10:54:05 FINE         Filesystem.save           saved dir 'Directory(keychain, short-name, root/)'
10:54:05 FINER             Store.store          Stored 1 blocks in CASClient
10:54:05 FINE         Filesystem.save           saved dir 'Directory(file%3A%2FUsers%2Fjon%2FFootlights%2FC
10:54:05 INFO         Filesystem.me$footlights$core$data$store$Filesystem$$setNewRoot Updated root: Directo
10:54:05 FINER             Store.store          Stored 1 blocks in CASClient
10:54:05 FINE         Filesystem.save           saved dir 'Directory(apps/, identities/)'
10:54:05 FINE           Keychain.exportKeyStore Exporting to Java KeyStore...
10:54:06 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushing 3 bloc
10:54:06 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushed 3 block
10:54:06 FINE           Keychain.exportKeyStore Saved 124 symmetric keys to Java KeyStore
10:54:06 FINER             Store.store          Stored 2 blocks in CASClient
10:54:06 FINE         Filesystem.save           saved 'Encrypted File [ urn:sha-256:AY3FXDCU3OZF6SNKCXDHK7F
10:54:06 FINER             Store.store          Stored 2 blocks in CASClient
10:54:06 FINE         Filesystem.save           saved 'Encrypted File [ urn:sha-256:QHPBPC5CBQYS6RICUZMZOXP
10:54:06 FINER             Store.store          Stored 1 blocks in CASClient
10:54:06 FINE         Filesystem.save           saved dir 'Directory(keychain, short-name, root/)'
10:54:06 FINER             Store.store          Stored 1 blocks in CASClient
10:54:06 FINE         Filesystem.save           saved dir 'Directory(file%3A%2FUsers%2Fjon%2FFootlights%2FC
10:54:06 INFO         Filesystem.me$footlights$core$data$store$Filesystem$$setNewRoot Updated root: Directo
10:54:06 FINER             Store.store          Stored 1 blocks in CASClient
10:54:06 FINE         Filesystem.save           saved dir 'Directory(apps/, identities/)'
10:54:06 FINE           Keychain.exportKeyStore Exporting to Java KeyStore...
10:54:06 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushing 7 bloc
10:54:06 FINE              Store.flush          DiskStore { /Users/jon/.footlights/cache }: flushed 7 block
10:54:06 FINE              Store.flush          CASClient: flushed 2 blocks, 10 remain
10:54:06 FINE              Store.flush          CASClient: flushing 10 blocks
10:54:06 FINE           Keychain.exportKeyStore Saved 125 symmetric keys to Java KeyStore
10:54:08 FINE              Store.flush          CASClient: flushed 10 blocks, 0 remain

User's computer

Figure 5.2: Footlights applications run locally.

mercial DRM. Finally, unlike the motion-picture scenario, users would have no
means to tell whether or not the DRM scheme were even working: whereas so-
called “pirates” upload cracked videos to public file-sharing services, malicious
application developers sell user data privately [282].

Thus, the only known protection mechanism that is applicable to the OSN
model of computation — DRM — would be ineffectual. Rather than attempting
to employ social DRM, Footlights adopts a different model of computation.

5.1.3 FOOTLIGHTS

Footlights demonstrates that a new model for social applications is possi-
ble. This model fuses new, explicit expressions of user intent with a traditional
model of computation: applications execute on users’ computers, operating
on user data stored on those same computers. This does not preclude highly
available, scalable shared storage: Chapter 4 describes how distributed cryp-
tography can be combined with centralised storage to provide secure, globally-
available distributed filesystems. This model is about allowing applications’
computation and communication to be confined and observed.

Applications running on the Footlights platform are split into two parts, as
shown in Figure 5.2: a UI component suitable for interactivity and a backend
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component suitable for richer computation. Both are written in familiar lan-
guages such as JavaScript in the UI front-end and Java, Scala or any other lan-
guage that compiles to JVM bytecode in the back-end. It is possible for applica-
tions to exist as purely one or the other, but most full-featured applications will
require both. All execution is local: central servers only store encrypted blocks
(see Chapter 4).

Local execution allows applications to be confined: they run in an unpriv-
ileged environment, starting with no authority to access user information or
communicate with other applications. Application confinement is, in computer
science terms, a very old concept: its “meta-theory” was described by Lampson
in 1969 [152]. Nonetheless, as Chapter 3 demonstrated, applications in today’s
OSNs are unconfined: once user information has been shared with them, no
technical restrictions are placed on the flow of that information. User informa-
tion is public according to the definition of “Public” on page 15. In Footlights,
confinement is based on existing Web and Java Virtual Machine (JVM) technolo-
gies. Applications can be granted capabilities to user data or communication
sockets, but many operations can be performed indirectly, without privilege.

Local execution also allows applications to be observed: it is possible to check
them at runtime for undesired behaviour, e.g. leaking private user data. Users
can benefit from this observability even if they do not do the observation them-
selves. Experts can observe the behaviour of applications and share their find-
ings with others, describing the behaviour of particular applications that have
well-defined names (Section 4.4) and can thus can be reliably identified as “the
same application code that I am running”.

This architecture allows applications to perform arbitrary computation, but
interaction with users, their data and the outside world can be strictly con-
trolled. It also reflects a natural alignment with existing computation patterns:
an application like Draw Something uses a centralised OSN to connect users to
each other, but computation and user interaction is done locally. The Footlights
architecture reinforces this natural separation of concerns.

A more detailed view of this front-/back-end split is shown in Figure 5.3 on
the next page. Each of the two components runs atop a trusted substrate. In
the front end (Section 5.2), the substrate is a collection of ECMAScript objects
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Figure 5.3: Applications are split into front-end and back-end components.

collectively called the supervisor. The supervisor proxies application access to
standard Web technologies such as asynchronous JavaScript (Ajax) and the Web
browser’s Document Object Model (DOM). In the back end (Section 5.3), the
substrate is JVM bytecode that confines application bytecode, mediating access
to resources such as user information and local files. Communication between
application components is mediated by the supervisor and the kernel.

5.2 FRONT END

The primary Footlights UI is a Web front-end. Other platforms could also be
supported — I have explored Swing and Android UIs — but the current target
is the Web browser. This environment is designed to be familiar to users of
today’s centralised OSNs.

The Footlights web front-end uses the features of ECMAScript 5 [251] and
Google Caja [351] to confine untrusted application code. ECMAScript 5’s strict
mode provides an environment that is amenable to sandboxing and capability-
oriented delegation [178]: access to global variables is restricted and shared ob-
jects can be made read-only. Whereas ECMAScript 3 was described as “one of
the hardest [object-oriented] languages to secure” by Mark Miller, a Caja devel-
oper and member of the ECMA standards committee, ECMAScript 5 is “one of
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proxy DOMWindow
root:

context:

ajax: function(message, callback)
context.ajax('foo/(x,y)', callback) GET /<context>/ajax/foo/(x,y)

this.exec(callback(result))

exec: function(code)
context.exec('context.log("foo")') cajaVM.compileModule(code)(

  { 'context': this })

load: function(js_file_name)
context.load('foo.js') GET /<context>/static/foo.js

this.exec(result)

appendElement: function(type)
context.root.appendElement('img')

HTTP request Privileged codeTranslations:

proxy(node.appendChild(
  document.createElement('img')
))appendPlaceholder: function(name)

getChild: function(predicate)
...

Figure 5.4: An application’s front-end context.

the easiest [object-oriented] languages to secure” [177].
Based on this foundation, Footlights executes application code within a

sandboxed context (§5.2.1). Application code starts with access only to a se-
curity API that it can use to make requests of a privileged supervisor (§5.2.2).
This API has been designed to closely approximate today’s web UI APIs.

5.2.1 UNPRIVILEGED APPLICATION CONTEXT

Every application runs within its own unprivileged execution context. This
context has no access to global browser objects such as document or window. In-
stead, it is provided with one read-only reference, context, that provides a secu-
rity API partly illustrated in Figure 5.4. Through this security API, application
front-ends can manipulate a delegated portion of the Footlights UI or commu-
nicate with their respective back-ends.

5.2.1.1 VISUAL CONTAINER

On instantiation, an application front-end is assigned a visual container.
This container is represented by the Web browser as a DOM (Document Ob-
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Listing 5.1: Creating a child node with the standard DOM API.

var node = document.createElement(’img’);container.appendChild(i);
Listing 5.2: Creating a child node with the Footlights proxy API.

var proxy = container.appendElement(’img’);
Figure 5.5: Creating a UI element with the DOM and Footlights APIs.

ject Model) object; the DOM represents a web page as a tree of objects that can
be manipulated to change the page’s appearance. The Footlights web UI super-
visor provides each application with a proxied DOM object that represents the
root of the application’s visual container. This proxy is shown as the root object
in Figure 5.4 on the preceding page.

Proxying the application’s visual container allows applications to create or
manipulate child nodes without access to the global Document object. In the
DOM specification, every document (HTML or XML) has exactly one Document
object, to which every document element (e.g. HTML tag) has a reference, Node
.ownerDocument [254]. Access to the Document object, also usually provided to
JavaScript through a global variable document, implies an ability to access any
element in the document. Applications must clearly not be given this privilege.
However, access to the Document is also required to allocate new document ele-
ments, through factory methods such as createElement() and createTextNode
(). The Footlights web supervisor allows applications to create UI elements
without access to the Document object by creating a proxy that wraps a DOM ob-
ject, including access to the Document object. This allows applications to create
arbitrary UI components without being able to interfere with — or even name
— UI components outside of their visual sandboxes. The difference between
using the DOM API and the Footlights proxying API to create child elements is
shown in Figure 5.5.
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5.2.1.2 INTRA-APPLICATION COMMUNICATION

An application’s front-end can also communicate with its back-end via the
context.ajax(message,callback) method. This allows a front-end to send
asynchronous JavaScript (Ajax) requests to its back-end.

Listing 5.3: Ajax request from an application context.

context.ajax(’foo’, function callback(response) {context.log(’Received response: ’ + response);
// Expecting a JSON-encoded response.context.log(’Protocol v’ + response[’protocol’].version);context.globals[’foo’] = response[’x’];context.globals[’bar’].style.opacity = response[’y’];...});

Ajax requests from all active front-ends are multiplexed over a single Ajax
channel between the supervisor and the Footlights back-end. If the applica-
tion calls context.ajax(’foo’), as in Listing 5.3, that request is translated by
the supervisor into a request for ’/<context_name>/ajax/foo’. This request is
handled by the back-end as described in §5.3.1.4.

The asynchronous response may be in the form of code or data. In either
case, the front-end making the Ajax request can specify a callback to handle the
response. If the response is code, it will be passed as a string to the callback
function; the front-end can execute it later within the sandbox using context.
exec(). No callback needs to be provided to handle code; the default action is
to execute the ECMAScript within the sandbox using context.exec(). If the re-
sponse is data, a callback is required to interpret the data, as in Listing 5.3. This
data will be encoded according to the JavaScript Object Notation (JSON) [258].

Application front-ends can also receive asynchronous events from their
back-ends. These events are ECMAScript and are executed within the appli-
cation context. Asynchronous events can be used to notify the front-end that
e.g. the opponent in a game has taken a turn and the UI needs to be refreshed.
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Figure 5.6: Communication over a multiplexed HTTP channel.

Through Ajax requests and asynchronous events, application front-ends can
communicate with code running in the back-end. Front-ends can also com-
municate with the Footlights back-end in order to serve static content such as
images or script files, as described below.

5.2.1.3 STATIC CONTENT

Applications can also load static files such as images and ECMAScript files.
These files can be stored in either the application file itself or the Footlights CAS.
The back-end handling of these requests is described in §5.3.3.

Applications are distributed as JAR (Java ARchive) files (see §5.3.1). These
files can contain code to execute on the Footlights back-end, but they can also
contain static content such as images and scripts. Images are loaded by assign-
ing to a proxied DOM element’s src property; the proxy translates this request
into an HTTP request for the path /<context_name>/static/<filename>. This
is an example of API taming as described by Stiegler, Miller, Wagner and Trib-
ble [219, 227]: providing a safe subset of a commonly-used API rather than
developing completely new APIs from scratch. Assigning to an image’s src
property corresponds exactly to the standard DOM API, but with the caveat

that the Footlights supervisor will reject path names containing "..".

Images from the Footlights CAS can be loaded by assigning a URI to the
filename property of a DOM proxy instead of src. This allows developers to
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package images separately from code and — if using indirect names as in Sec-
tion 4.4 — change the visual appearance of applications after release without
modifying any code.

Script files are executed by explicitly calling the context.load() method:
this retrieves the script’s content from the application’s JAR file and executes it
with context.exec() as in the Ajax case above. This allows application devel-
opers to write JavaScript files with conventional tools and examine their loading
using conventional Web debuggers.

These three classes of functionality — UI, Ajax and static content — are pro-
vided to unprivileged applications by the privileged supervisor described next.

5.2.2 PRIVILEGED SUPERVISOR

The supervisor portion of the web UI is made up of approximately 200 lines
of ECMAScript that provide Ajax and sandboxing functionality, initialise the
root context for the top-level sandbox and import several Google Caja script
files (approximately 1,300 lines of uncompressed ECMAScript, some of which
are workarounds for incomplete browser implementations of ECMAScript 5).

The initialisation of the UI supervisor is shown in Listing 5.4 on the next
page. The root domain is a privileged security domain that can access the global
collection of sandboxes and whose root DOM proxy represents the top-level
div containing the entire UI. However, this domain is run in a sandbox like
any untrusted application: it acquires elevated privileges when it is explicitly
passed powerful references in lines 27–35 of Listing 5.4 on the facing page.

One of the functions provided by the supervisor is the proxying of Ajax,
static and CAS file requests. An application context’s ajax method is actually a
closure set up by the supervisor that does two things: it builds a request URL
out of the context’s name and the parameter supplied by the application, then
forwards the resulting URL to the supervisor’s low-level Ajax function. This
is how e.g. a context.ajax(’foo’) call is translated into the HTTP request /<
context name>/ajax/foo, allowing one Ajax channel to be multiplexed for use
by several applications. Similar closures are used to translate the application
requests for static content described in §5.2.1.3 into requests that can be handled
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Listing 5.4: Supervisor initialisation.

1 ’use strict’;
2 initSES(window, whitelist, atLeastFreeVarNames);
3

4 (function init()
5 {
6 // Set up logging (nice user-visible log box).
7 var status = document.getElementById(’status’);
8 status.log = function logToStatusDiv(t) {
9 var update = document.createElement(’p’);

10 this.insertBefore(update, this.firstChild);
11 var dateStamp = document.createElement(’div’);
12 dateStamp.appendChild(document.createTextNode(new Date().toUTCString()));
13 dateStamp.className = ’timestamp’;
14 update.appendChild(dateStamp);
15 update.appendChild(document.createTextNode(t));
16 };
17

18 function log(message) {
19 console.log(message);
20 status.log(message);
21 }
22

23 var rootContext = sandboxes.wrap(’footlights’, log);
24 rootContext.root = proxy(document.getElementById(’root’), rootContext);
25

26 // The root context has no inherent privileges: pass special things in.
27 rootContext.globals[’sandboxes’] = sandboxes;
28 rootContext.globals[’window’] = window;
29 [’content’, ’status’, ’launcher’].forEach(function(name) {
30 rootContext.globals[name] = proxy(
31 document.getElementById(name), rootContext
32 );
33 }
34 );
35

36 // A function which sets up a channel for asychronous events.
37 function setupAsyncChannel() {
38 setTimeout(function openAsyncChannel() {
39 rootContext.ajax(’async_channel’);
40 }, 0);
41 }
42

43 rootContext.globals[’setupAsyncChannel’] = setupAsyncChannel;
44

45 sandboxes[’footlights’] = Object.freeze(rootContext);
46

47 rootContext.ajax(’init’);
48 })();
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by the Footlights back-end as described in §5.3.3.

Another function of the supervisor, shown in lines 36–43 of Listing 5.4 on
the previous page, is to set up a channel over which asynchronous events can
be forwarded to application front-ends. This is done by sending a privileged
Ajax request to the /async_channel path, whose back-end handler blocks until
there are events to be dispatched (see Section 5.3).

The supervisor also provides the placeholder service, which allows applica-
tions to insert private user information into the UI indirectly, without the ability
to actually read the data itself. This service, inspired by Felt and Evans’ “pri-
vacy by proxy” design [103], is conceptually similar to the original Facebook
Markup Language (FBML). FBML once allowed application developers to in-
sert SGML tags such as <fb:name id="[$id]"> into their UIs. This provided a
performance-enhancing indirection: Facebook could pre-populate FBML fields
when serving them to clients. This indirection was deprecated in 2010 [288] and
disabled in 2012 [298]. More details about FBML, as well as how it fits within
the larger narrative of Facebook application privacy, can be found in §3.1.3.

The use of placeholders is shown in Figure 5.7 on the facing page, which
illustrates two ways of displaying the user’s name in an application UI. The
first, in Listing 5.5 on the next page, is to request access to the user’s name
via the application back-end, which can make a request to Footlights’ back-end
security API, then to append that information to the UI itself. Along the way,
however, the application has learned information about the user that it does
not need to know, opening the door to potential misuse. The code in Listing 5.6
on the facing page, on the other hand, uses the context.appendPlaceholder
method, causing the supervisor to issue a fill_placeholder Ajax request on
the application’s behalf. The supervisor then places the user data into a proxied
element within the sandboxed UI without leaking any private information.

A second service provided by the privileged supervisor is the powerbox ser-
vice. Traditional dialogue boxes become powerboxes when they are used to
confer authority to sandboxed applications, as described by Stiegler, Miller and
Yee [219, 241]. For example, the dialogue shown in Figure 5.8 on the next page
is not drawn by the currently-running application: applications have no au-

114



FRONT END

Listing 5.5: Displaying the user’s name without placeholders.

// Create UI element to hold the user’s name.context.globals[’name_element’] = some_ui.appendChild(’span’);
// Ask the back-end to request user name from security API.context.ajax(’get_value/self.name’, function callback(json) {// Append the retrieved value to the UI element.context.globals[’name_element’].appendText(json.response);

// Potentially do something malicious with the private data?context.globals[’sell_to_rapleaf’](’name’, json.response);});
Listing 5.6: Displaying the user’s name with placeholders.

some_ui.appendPlaceholder(’self’, ’name’);
Figure 5.7: Two ways of displaying the user’s name.

thority to enumerate other applications. Rather, this dialogue is drawn with the
authority of trusted software (the Footlights core) to ask the user what authority
(sending a directory to an application) should be granted to untrusted software.
The provision of the powerbox service is described in §5.3.4.2.

Like the placeholder service and multiplexed Ajax service, the powerbox

Figure 5.8: A Footlights powerbox.
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service depends on communication with the Footlights back-end. That back-
end, which also hosts application back-ends, is described next.

5.3 BACK END

The back-end of a Footlights application is hosted on a Java Virtual Machine
(JVM) based platform. The JVM supports a rich, fully-featured programming
environment in which applications can perform efficient byte-level computa-
tion. Applications can be written in any language that targets the JVM: core
Footlights interfaces are specified in Java, the lowest-common-denominator lan-
guage for the JVM, although some support libraries are also provided in the
Scala language [193]. The JVM also provides a mechanism for executing un-
trusted, compiled bytecode in a constrained environment; Footlights uses this
mechanism to confine application code.

5.3.1 APPLICATIONS

Application back-ends run as untrusted bytecode on the JVM. They are con-
fined as described in §5.3.2 to prevent them from directly interacting with user
data or the outside world. These interactions are all mediated by the security
API [11] described in Section 5.3.4.

In this section I describe how applications are distributed (§5.3.1.1) and ini-
tialised (§5.3.1.2) and provide services to other applications (§5.3.1.3).

5.3.1.1 DISTRIBUTION

Footlights applications are distributed as JAR (Java ARchive) files in the
Content-Addressed Store (CAS) described in Chapter 4. An application JAR
must contain a manifest file in the conventional location META-INF/MANIFEST.MF
that describes the basic structure of the application. An example of a Footlights
application manifest is shown in Listing 5.7 on the facing page. This mani-
fest declares that the application’s main class is me.footlights.demos.good.
GoodApp, which can be found in the conventional location within the JAR file
(/me/footlights/demos/good/GoodApp.class).
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Listing 5.7: An example manifest file for a Footlights application.

Manifest-Version: 1.0Class-Path: http://footlights.me/demo/library-v1Footlights-App: me.footlights.demos.good.GoodApp

Listing 5.8: Initialisation of a sample Footlights application.

package me.footlights.demos.good;
import scala.Option;import me.footlights.api.*;
public class GoodApp extends me.footlights.api.Application{ public static GoodApp init(KernelInterface kernel,ModifiablePreferences prefs, Logger log){ log.info("Loading " + GoodApp.class.getCanonicalName());return new GoodApp(new DemoAjaxHandler(kernel, log));}/* ... */private GoodApp(AjaxHandler ajax){ super("Basic demo");this.ajax = ajax;}}
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The manifest also declares that the application depends on a library named
by the URL http://footlights.me/demo/library-v1. Like standard JAR files,
this dependency is declared using the Class-Path entry name. Unlike standard
JAR files, however, the dependency is not specified with a local filename. In-
stead, it is named with a Footlights CAS name. The dependency can be on a
JAR file which hashes to an exact value; such a name is given as the hash of
an immutable file, which implicitly provides integrity protection (Section 4.3).
Alternatively, the dependency can be named by a mutable URL that refers to
such a name indirectly (see Section 4.4). This approach provides more flexibil-
ity — the app will always use an up-to-date library — but the integrity of the
referenced URL must be protected through other means.

5.3.1.2 INITIALISATION

This main class must have a static init method like that in Listing 5.8 on
the previous page. init is to a Footlights application what main is to a C ap-
plication: a linkage point where execution can begin. The parameters of init
are three references: the Footlights kernel (Section 5.3.4), a persistent key-value
store (§5.3.5) and a java.util.logging.Logger instance for logging messages.

On invocation, init must return a subclass of the Footlights-provided ab-
stract class me.footlights.api.Application, shown in Listing 5.9 on the facing
page. This class provides three optional services that may be overridden: a file-
opening service and a directory-opening service, both described in §5.3.1.3, as
well as an Ajax handler, described in §5.3.1.4.

5.3.1.3 FILE SERVICES

Applications can provide file- or directory-based services to other applica-
tions by overriding the methods Application.open(File) and Application.
open(Directory) in Listing 5.9 on the next page. This allows other applications
to share content with them, directed by the user according to the techniques
described in §5.3.4.2. An example of how this sharing can be used in practice is
illustrated by the File manager application in §5.4.5.

Future versions of Footlights might also allow applications to advertise the
services they provide in a registry, using a description like a MIME Content-
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Listing 5.9: The abstract Application class.

package me.footlights.api;
import scala.Option;Applicationsimport me.footlights.api.ajax.AjaxHandler;
public abstract class Application{ public Application(String shortName) { ... }

/** Open a file from another application. */public void open(File file) {}
/** Open a directory from another application. */public void open(Directory directory) {}
/** A handler for Ajax requests from the Web UI. */public Option<AjaxHandler> ajaxHandler() { ... }
...}

Type [265, 257]. Such a registry would be conceptually similar to those provided
by Android [329], D-Bus [164], launchd [322] and even inetd [348].

5.3.1.4 AJAX SERVICE

In order to communicate with its front-end, an application can provide an
AjaxHandler by overriding the Application.ajaxHandler() method.

The abstract class AjaxHandler is illustrated in Listing 5.10 on the following
page. It or its subclasses can respond to a request issued by the front-end with
an AjaxResponse. This response can be a JavaScript object representing code
to execute in the front-end’s sandboxed context or a JSON object representing
data to pass to a front-end callback. This allows the application front-end to
communicate with the back-end in response to UI events, JavaScript timers, etc.

When an application is started, the back-end is first initialised, then the
front-end visual context is created (§5.2.1.1). Once this is complete, the front-
end supervisor initialises the UI by sending an Ajax request string "init" to
the back-end. The response to this request is expected to provide a JavaScript
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Listing 5.10: A simplified version of the AjaxHandler class.

/** An object that can process Ajax requests. */public abstract class AjaxHandler{ public AjaxResponse service(WebRequest request){ return new JavaScript();}
public void fireAsynchronousEvent(JavaScript code) { /* */ }
/* ... */}

object representing the code required to initialise the UI.

When an AjaxHandler wants to send unsolicited messages to its front-end,
it can call its own fireAsynchronousEvent() method. This method enqueues
a JavaScript object to be delivered via the Web UI’s asynchronous channel.
As described in §5.2.2, this is a multiplexed channel, shared by all sandboxed
UI contexts. This channel allows application back-ends to send event notifica-
tions to their front-ends when directories are shared with the application, long-
running tasks are completed, etc.

5.3.2 CONFINEMENT

Confinement of application back-ends is based on the Java security model,
which allows the JVM to run different bytecode with different permissions as
described by Gong et al. [119] These permissions are assigned by the Class-
Loader that loads the bytecode, so Footlights has a custom ClassLoader.

The Footlights back-end is divided into three key components: the Boot-
strapper, which contains a custom ClassLoader, the Kernel, which supports ap-
plications and a UI, which manages the Footlights front-end. The Bootstrapper
is responsible for loading both the Kernel and any UIs (Web, Swing, Android
or other), and it assigns them the java.security.AllPermission when it does.
This permission allows trusted code to access files, network sockets, draw to
the UI, etc. subject to certain constraints discussed in the next paragraph. Any
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code loaded after the Kernel and UI is treated as entirely unprivileged; it can-
not perform these operations. One of the few “system” privileges available to
unprivileged code is the ability to read the system time; if the JVM provided
a means to control this via the same privilege system, Footlights could close
covert channels among malicious applications, as described by Lipner [159].

In the Java security model, privilege is not always applied automatically.
Before performing a privileged operation such as opening a local file, the JVM
checks the call stack to ensure that only privileged (and thus trusted) code is
involved in the operation. This prevents trusted code from being abused with
a confused deputy attack. A confused deputy, as illustrated by Hardy, is privi-
leged code that is tricked into using its privilege in an unintended way [130].
The JVM’s stack-checking scheme prevents confused deputy attacks like the
return-to-libc attack by Peslyak (a.k.a. Solar Designer) [353]. Privileged code can,
however, explicitly perform privileged operations by calling java.security.
AccessController.doPrivileged(). This allows privileged code to assert that it
is being called through well-defined interfaces and that it accepts responsibility
for sanitising input appropriately. In this case, the JVM will only look at the
call stack between the privileged operation and the most recent doPrivileged
invocation by privileged code.

Footlights exposes an explicit security API to applications (Section 5.3.4), so
all use of JVM privilege can be represented by a single Scala trait. This trait acts
as a privilege-adding wrapper around the Footlights security API. The trait is
illustrated in Listing 5.11 on the next page; it has been simplified beyond what
the Scala compiler accepts in the interest of readability.

5.3.3 STATIC CONTENT

As described in §5.2.1.3, application front-ends can refer to static content
located either in the application JAR file or the Footlights Content-Addressed
Store (CAS). For instance, static images can be rendered as part of the sand-
boxed Web UI.

Application JAR files can contain static content such as images for display in
the UI. When the Footlights Web UI receives a request for such content, it comes
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Listing 5.11: A simplified version of Footlights’ KernelPrivilege trait.

trait KernelPrivilege extends Footlights {def open(name:URI) = sudo { () => super.open(name) }def openLocalFile() = sudo { () => super.openLocalFile() }def open(link:Link) = sudo { () => super.open(link) }/* ... */}
object Privilege {/*** Execute a function with JVM privilege.

** The name "sudo" is meant to be evocative of privilege in
* general; it does not refer specifically to system
* privilege as conferred by sudo(8).
*/private[core] def sudo[T](code:() => T) =try AccessController.doPrivileged[T] {new PrivilegedExceptionAction[T]() {override def run:T = code()}}catch {case e:PrivilegedActionException => throw e getCause}}
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as a request for a path such as /<contextname>/static/me/footlights/foo.png.
This request is parsed by the Web UI back-end, which retrieves from the kernel
the application named by the given context name.

From the application, the Web UI can retrieve the application-specific Foot-
lights ClassLoader used to instantiate it (§5.3.2). This ClassLoader can open
resources from its class path, given a relative name that identifies a file within
the application’s JAR bundle. The static content can then be served by the Web
UI on behalf of the application. In this way, applications can refer to arbitrary
static content bundled with the application. Practical uses of this capability in-
clude the script files and image files essential to a web-based application UI.

Applications can also refer to static content contained in the Footlights con-
tent addressed store (CAS). Immutable content is named by its URN (Sec-
tion 4.3) or indirectly through a mutable URL (Section 4.4). When the Web UI
receives a request for CAS content, it simply retrieves the binary File from the
kernel as shown in §5.3.4.1 and serves it to the application. This allows content
such as image files to be stored in the CAS and displayed in the UI, reducing the
amount of content that must be distributed with the application. For instance,
an application can bundle static bytecode in a JAR file but rely on a mutable
URL to direct users to up-to-date graphics.

5.3.4 KERNEL API
The Footlights kernel can be accessed by applications via the API shown

in Listing 5.12 on the following page. This API currently demonstrates two
kinds of services: operations on files (§5.3.4.1) and interactions with the user
(§5.3.4.2). A more complete future API could also provide tools for synchronous
collaboration among applications (§5.3.4.3).

5.3.4.1 FILES AND DIRECTORIES

As described in Chapter 4, the Footlights storage system provides a mutable
shared filesystem based on immutable structures. This construct is provided to
applications for two purposes. The first purpose is compatibility: today’s appli-
cations store hierarchical information in platform-provided filesystem names-
paces, so a similar Footlights offering will make the application development
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Listing 5.12: Footlights kernel interface.

/** An application’s interface to the Footlights kernel. */public interface KernelInterface{ /** Save data to a logical file. */public Either<Exception,File> save(ByteBuffer data);
/** Open a file by its URN. */public Either<Exception,File> open(URI name);
/*** Open a file using a hierarchical directory namespace.
** The name given can be rooted in either a URN
* (e.g. "urn:foo/some/path/to/file") or an
* app-specific root (e.g. "/my/path/to/a/file").
*/public Either<Exception,File> open(String name);
/** Open a mutable directory (wraps immutable dir). */public Either<Exception,Directory> openDirectory(String n);
/** Open a file on the local machine (user chooses). */public Either<Exception,File> openLocalFile();
/** Save data into a local file. */public Either<Exception,File> saveLocalFile(File file);
/** Ask the user a question. */public Either<Exception,String>promptUser(String prompt, Option<String> defaultValue);
/** Convenience method with no default value. */public Either<Exception,String> promptUser(String prompt);
/** Share a {@link Directory} with another user. */public Either<Exception,URI> share(Directory dir);
/** Open a file with another app. */public Either<Exception,File> openWithApplication(File f);
/** Open a directory with another app. */public Either<Exception,Directory>openWithApplication(Directory dir);}
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environment familiar to developers. The second purpose of the filesystem ab-
straction is to provide a natural unit of sharing: anything that can be expressed
by an application as a directory hierarchy can be trivially shared with other
users or applications.

A Footlights file, shown in Listing 5.13 on the next page, is an immutable
quantity of binary data. Its contents can be read via a Java InputStream as in
the Java file API. This could be augmented in the future with Java NIO primi-
tives [250] to allow asynchronous transfers and the performance they bring, but
the current API demonstrates compatibility with existing API expectations.

Because files are based on a Content-Addressed Store (CAS), every im-
mutable file can have a globally-unique name derived from a hash of its con-
tents. This name, as returned by File.name(), is a Uniform Resource Name
(URN): it identifies content rather than storage location. If the content of the
file were to change, it would not be the same file any more by the CAS defi-
nition. To modify a file, an application must copy it into a MutableFile, which
can be modified and then frozen into a new immutable File, or else copy the
file’s current contents into a mutable buffer via File.copyContents(). An ap-
plication can then convert the modified buffer into a new immutable file via
KernelInterface.save(ByteBuffer).

When an application saves data as a file, the decryption key for that file is
saved in an application-specific keychain maintained by the Footlights kernel.
This keychain is simply a serialisable in-memory mapping to keys from the
names of the blocks they decrypt. The application can later access the file by
name, implicitly using this keychain to decrypt the file. Applications never
access cryptographic keys: they are always managed implicitly via a directory
hierarchy or the application keychain.

The interface of a directory is shown in Listing 5.14 on page 127. Every ap-
plication receives its own virtual filesystem, which can be accessed by calling
openDirectory("/") on its KernelInterface reference. As in traditional filesys-
tems, a Footlights directory contains a set of entries which map an application-
chosen name to a file or directory [173]. Unlike traditional filesystems, however,
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Listing 5.13: A Footlights file.

/*** A logical file.
** Files are immutable; to modify a file, you must call
* {@link mutable()}, which returns a {@link MutableFile},
* modify that, and {@link MutableFile.freeze()} it.
*/public interface File {public interface MutableFile{ public MutableFilesetContent(Iterable<ByteBuffer> content);

public File freeze() throws GeneralSecurityException;}
/*** The file’s name.
** Client code should treat filenames as opaque identifiers;
* they are certainly not guaranteed to be human-readable.
*/public URI name();
/*** The content of the file, transformed into an
* {@link InputStream}.
*/public InputStream getInputStream();
/*** The content of the file.
* Calling this may be unwise for large files!
*/public ByteBuffer copyContents() throws java.io.IOException;}
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Listing 5.14: A Footlights directory.

/*** A mapping from application-specified names to {@link File}
* and {@link Directory} objects.
** A {@link Directory} is mutable from an application
* perspective, but maps onto immutable structures behind
* the {@link KernelInterface}.
*/public interface Directory{ public interface Entry{ public boolean isDir();public String name();public Either<Exception,Directory> directory();public Either<Exception,File> file();}
/** Name of current snapshot (an immutable directory). */public URI snapshotName();
// Operations on directory entriespublic Iterable<Entry> entries();public Option<Entry> get(String name);public Either<Exception,Directory> remove(String name);
/** Files (not directories) in this directory. */public Iterable<Tuple2<String,File>> files();
/** Direct sub-directories of this directory. */public Iterable<Tuple2<String,Directory>> subdirs();
/** Open by relative name, underneath this directory. */public Either<Exception,File> open(String name);public Either<Ex...,Directory> openDirectory(String name);
/** Save to this directory (direct child). */public Either<Ex...,Entry> save(String name, File file);public Either<Ex...,Entry> save(String name, ByteBuffer b);public Either<Ex...,Entry> save(String name, Directory dir);
/** Create a new subdirectory (fails if already exists). */public Either<Exception,Directory> mkdir(String name);
/** open() if subdir exists, mkdir() if it doesn’t. */public Either<Exception,Directory> subdir(String name);}
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the underlying objects being mapped to are content-addressed, so a directory
mapping is also implicitly a hash tree. At any point in time, a Footlights direc-
tory is also an immutable snapshot: updating a directory’s entry set creates a
new directory and notifies the directory’s owner of the change.

In the case of subdirectories, the owner is the parent directory. Modifying a
subdirectory results in the parent directory being notified so that it can update
its own entry map to point at the new subdirectory. Notifications propagate up
the tree until they reach the root directory of the working tree, which must be
able to handle the update specially.

In the current implementation of Footlights, an application’s virtual filesys-
tem is a directory within a larger per-user filesystem. Change notifications from
application directories propagate upwards to a single root directory kept by
the user’s Footlights instance. This root directory is instantiated with a callback
that saves the directory’s encryption key to a local keychain and then atomically
saves the directory’s name to a file in the local filesystem.

5.3.4.2 POWERBOXES

Applications can interact with the user by manipulating the Web UI’s Docu-
ment Object Model (DOM) as described in Section 5.2. This allows applications
to render objects and attach event handlers for e.g. mouse clicks, but it does not
allow applications to ask users questions such as, “which file would you like to
open?”, or “which user would you like to share this photo with?”

These interactions are done via the back-end KernelInterface API. For in-
stance, a photo-sharing application will need to open photos from the local
filesystem. An unsandboxed application might access the filesystem, list the
photos present and prompt the user with a dialogue box to choose one of them.
A Footlights application has no authority to do this, however. Instead, a Foot-
lights application’s back-end can call kernel methods such as openLocalFile()
and saveLocalFile(). The kernel displays a powerbox, the user chooses a file
and a read-only File is returned to the Footlights application. In this way, the
user directs a privileged component (the Footlights kernel) to delegate limited
authority to an unprivileged component (the Footlights application).

Applications can also call the KernelInterface API in order to share con-
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Figure 5.9: Sharing a directory with another user.

tent with other applications or to share content with other users, resulting in a
powerbox like that in Figure 5.9. In both cases, the kernel uses its privilege (to
enumerate running applications or friends of the user) to present the user with
options, then lets the user direct who or what the application-specified content
is shared with.

5.3.4.3 SYNCHRONOUS COMMUNICATION

A third set of kernel methods would provide applications with primitives
for synchronous communication. These methods have not been implemented
in the current Footlights prototype.

In order to support applications with a real-time component such as gam-
ing or Borisov et al.’s Off-the-Record instant messaging [56], a complete so-
cial application platform should provide synchronous messaging primitives.
When applications running on the same host collaborate, the Footlights plat-
form could transport JSON objects between them as it does between application
front- and back-ends. When applications running on different hosts collaborate
— as in the case of two users playing a real-time game — the users’ Footlights
clients could set up a communication channel between them using established
“hole punching” techniques identified by Ford et al. [106] or Signposts as de-
veloped by Chaudhry et al. [344, 345]. Once this is accomplished, application
channels can be multiplexed over the top using the same mechanisms as local
application communication.

129



CHAPTER 5: DISTRIBUTED SOCIAL APPLICATIONS

Listing 5.15: The ModifiablePreferences class.

public interface ModifiablePreferences extends Preferences{ public Preferences set(String key, String value);public Preferences set(String key, boolean value);public Preferences set(String key, int value);public Preferences set(String key, float value);
public Preferences delete(String key);}

Listing 5.16: The Preferences class.

public interface Preferences{ public enum PreferenceType {STRING, BOOLEAN, INTEGER, FLOAT };public Iterable<Map.Entry<String,PreferenceType>> keys();
public Option<String> getString(String key);public Option<Boolean> getBoolean(String key)public Option<Integer> getInt(String key);public Option<Float> getFloat(String key);}

5.3.5 PERSISTENT KEY-VALUE STORE

Having described the first argument to an application’s init method — a
reference to a KernelInterface object — I will now describe the second: a refer-
ence to a persistent key-value store.

The key-value store allows applications to store non-hierarchical informa-
tion. For instance, a game can store user preferences and statistics (e.g. which
game board to draw, how many games the user has won) in the key-value store,
letting it do the work of type checking and serialisation.

The interface of this store is shown in Listing 5.15 (which references List-
ing 5.16). It currently handles only primitive types, although it could easily be
extended to cover arbitrary binary content stored in the Footlights CAS. This
would allow applications to eschew the file system altogether in favour of a
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Listing 5.17: Manifest file for the Basic Demo application.

Manifest-Version: 1.0Class-Path: http://footlights.me/demo/library-v1Footlights-App: me.footlights.demos.good.GoodApp

non-hierarchical store.

Updates by applications to the Footlights key-value store are atomic, but
there is no transaction mechanism yet to ensure consistency when updating
multiple entries.

By providing these APIs to confined bytecode, untrusted applications can
perform useful work and operate indirectly on user data. I have evaluated
this claim by building several demonstration applications that exercise the Foot-
lights APIs. These applications are described in Section 5.4.

5.4 EXAMPLE APPLICATIONS

I have built several basic applications to demonstrate the functionality of
the Footlights APIs (both front-end and back-end). Each is small and none are
complex or production-worthy, but together they demonstrate the suitability of
the Footlights APIs to support larger, more complex applications.

5.4.1 BASIC DEMO

The Basic demo application is designed to exercise several important aspects
of the Footlights front- and back-end APIs. It does not constitute a practical ap-
plication to satisfy a user need, but it does demonstrate how such applications
could be built on the Footlights APIs. A screenshot of this application running
on the Footlights platform is shown in Figure 5.10 on the following page.

On receiving its first Ajax message, "init" (see §5.3.1.4), the application re-
sponds with JavaScript code to do two things: add some simple text to the
sandboxed UI and send another Ajax request back to the back-end. Using this
work-and-callback pattern, several discrete blocks of functionality are chained
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Figure 5.10: A basic demo application.

together to form a complete demo.

In the next test block, the demo exercises the Footlights class loader. The
Helper class, part of the Basic Demo bundle, contains both static and instance
methods. These are both tested, along with Helper instantiation.

The next block of tests loads a static JavaScript file using the front-end
method context.load(’text.js’). This file is bundled as part of the demo’s
JAR file and handled by the static file loading mechanism described in §5.3.3. It
is compiled by the front-end supervisor and exercises the context API. It adds
UI elements, including a placeholder for the user’s name and a static image
(bundled with the application). This image is given event handlers that modify
the visual appearance of various sandboxed UI elements when the mouse cur-
sor moves over or off of the image or the user clicks it. The UI is also given a
box which the user can click to send an Ajax request that triggers an Open File
dialogue as described in §5.3.4.2.

The next test block saves a string of bytes (the ASCII representation of
“Hello, world!”) to a Footlights file and outputs the file’s CAS name.

In the final block of tests, the demo exercises class path dependency resolu-
tion by calling code in a library. This library is declared as a dependency by the
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Basic Demo manifest file, as shown in Listing 5.17 on page 131. The demo calls
static and instance methods of a class called Library, including methods which
themselves exercise Footlights API classes.

Together, these tests demonstrate that applications can perform many useful
activities without any special privilege.

5.4.2 MALICIOUS DEMO

I have also developed a malicious application to demonstrate Footlights’
confinement properties. This application tests the Footlights ClassLoader by
attempting to load code from sources that it should not be able to access and to
load its own packaged code into sealed packages. Sealed packages have been
declared complete by their authors; if malicious code were loaded into them,
that code would be able to access package-internal data.

The application also tests the Java security policy installed by Footlights: it
attempts to access remote servers and Footlights-internal classes as well as cre-
ate a new ClassLoader. ClassLoader objects are part of the Trusted Computing
Base (TCB) — the computing foundation that is able to violate arbitrary security
policies — because they are responsible for conferring privileges on bytecode.
Untrusted applications must not be permitted to do this, as they could then
confer more privileges than they possess, a form of privilege escalation.

Finally, the application legitimately loads a malicious JavaScript file to test
the security API of the Web UI supervisor. This file attempts to contact remote
servers, access global JavaScript objects such as document and window, write to
read-only context variables and insert privileged HTML objects such as <iframe
/> and <script/> elements. These elements would be able to access global
document and window objects, so they may not be instantiated. Instead, appli-
cation front-ends can use the context.load method, which applies all of the
protections described in Section 5.2.

The malicious demo application fails in all of these actions, demonstrat-
ing that even a rich application API can provide the confinement properties
required to protect user privacy.
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Figure 5.11: A Tic-Tac-Toe demo application.

5.4.3 TIC-TAC-TOE

The Tic-Tac-Toe application depicted in Figure 5.11 demonstrates how an
application developer can build an interactive game on the Footlights platform.
The platform features used by the application are a strict subset of those used by
the basic demo in §5.4.1, but they are used to construct a more plausible demo.

The Tic-Tac-Toe application uses the sandboxed UI features of the Web UI to
draw an interactive game board. Users alternate clicking squares on this board,
which sends event notifications to the application back-end via Ajax requests
(see §§5.2.1.2 and 5.3.1.4). The back-end maintains the state of the game, sends
game updates to the UI and records play statistics in the persistent key-value
store described in §5.3.5.

The demo does not support playing games against other users: that would
require the synchronous IPC features sketched in §5.3.4.3. If these features were
implemented, extending the game to play against a remote rather than local
opponent would be straightforward.

Tic-Tac-Toe is a straightforward game with a straightforward implementa-
tion. Building the game on the Footlights platform required 158 lines of Scala,
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Figure 5.12: A basic photo manager.

147 lines of Java and 93 lines of JavaScript.

5.4.4 PHOTOS

The Photos application, shown in Figure 5.12, manages a set of photo albums
that can be shared with other users or applications.

The application uses loads photos from the local machine’s filesystem ac-
cording to user direction, as described in §5.3.4.2. The contents of these photos
are converted into CAS files, which are stored in the hierarchical namespace
afforded by the Footlights filesystem. Images are displayed in the Web UI us-
ing the mechanisms described in §§5.2.1.3 and 5.3.3: the application front-end
simply assigns to the filename attribute of a proxied image element as shown
in Listing 5.18 on the following page; the name value is derived from an album
maintained in the back-end, as shown in Listing 5.19 on the next page.

The Photos application provides users with the ability to share albums with
other users or applications. A screenshot of the former is shown in Figure 5.9
on page 129 in §5.3.4.2; one use of the latter is described in the next section.

The implementation of this application requires 265 lines of Scala and 144
lines of JavaScript.
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Listing 5.18: Displaying an image: front-end code.

context.globals[’new_photo’] =function new_photo(name, deleteCallback){ /* ... */var i = container.appendElement(’img’);i.filename = name;i.style[’max-height’] = ’150px’;i.style[’max-width’] = ’150px’;i.style[’vertical-align’] = ’middle’;/* ... */}

Listing 5.19: Displaying an image: back-end code.

override def service(request:WebRequest) ={ request.path() match {/* ... */case OpenAlbum(URLEncoded(name)) =>app album name map { album =>/* ... */setStatus { "Opened album ’%s’" format name } ::(album.photos map addPhoto toList)} fold (ex => setStatus("Error: " + ex),actions => actions reduce { _ append _ })/* ... */}}
private def addPhoto(filename:String) =new JavaScript append "context.globals[’new_photo’](’%s’, %s);".format(filename,JavaScript ajax RemoveImage(URLEncoded(filename).encoded)asFunction)
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Figure 5.13: A basic file manager.

Figure 5.14: Sharing a directory with the File Manager application.

5.4.5 FILE MANAGER

The File Manager demo, pictured in Figure 5.13, allows the user to manipu-
late any directory hierarchy that he or she chooses to open.

The File Manager demonstrates how explicit powerbox-driven sharing can
be used to delegate partial authority to unprivileged applications. The File
Manager itself is an ordinary application with no special privileges: when it
starts running, it only has access to its own virtual filesystem. The user can
instruct it to modify this private namespace, creating or destroying subdirecto-
ries, uploading, downloading or deleting files. By default, no access is granted
to other parts of the user’s larger filesystem.

The user can, however, choose to open other parts of the filesystem with
the File Manager. For instance, Figure 5.14 shows a powerbox triggered by the
user sharing an album from the Photos application. If the user chooses the File
Manager application from this powerbox, that album’s directory will be shared
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with the File Manager and the user will be able to manipulate it. The user
can download or delete photos, upload new ones or open them with another
application.

The File Manager demo application is implemented with 258 lines of Scala
and 35 lines of JavaScript.

5.5 RELATED WORK

Very little work has been done to date on confining social applications. Sec-
tion 2.3 discussed numerous proposals to either encrypt content within an ex-
isting OSN or to distribute data in a peer-to-peer network. The pure encryption
approaches do not alter the application model of their host OSN, and very few
of the distributed OSN schemes provide any API for third-party applications.

The confinement problem was first formalised by Lampson in 1973 [153],
but his description was based on the prior experiences of both himself [152] and
others, such as Schroeder and Saltzer [214]. This problem was: how can an ap-
plication user be sure that the application is not leaking information? Lampson
identified three classes of channels for leaking information: storage channels, le-
gitimate channels (such as a bill) and covert channels, “i.e. those not intended
for information transfer at all”. The goal of social application confinement is
to prevent private user information from leaking through storage or legitimate
channels; covert channels are less tractable a problem in commodity systems.

In 1975, Lipner noted that if an application were only provided with a “vir-
tual time” rather than real time, it would even be possible to close covert chan-
nels among applications [159]. Unfortunately, Footlights’ JVM foundation al-
ways permits applications to ask the time.

Various degrees of application confinement has been achieved on many con-
ventional computation platforms. Some examples are given in Section 5.1, but I
will highlight three more here.

Stiegler et al.’s Polaris [218] took capability-oriented lessons from the earlier
CapDesk project [219] and applied them to a conventional operating system:
Microsoft Windows. Polaris sandboxed applications by executing them from a
restricted user account and used powerboxes to supply user-driven authority to
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the unprivileged applications. This allowed unmodified applications to execute
with some degree of confinement, subject to Windows’ ability to sandbox the
applications of restricted users — Watson, Laurie and Kennaway and I have
found that Windows lacked some key enforcement primitives [9].

Second, Watson et al. brought capability-oriented sandboxing to FreeBSD
through the Capsicum project [1, 9, 17]. This allowed applications to run risky
code such as HTML renderers and JavaScript interpreters inside a sandbox with
sound OS foundations. This work solidified the boundaries between privileged
and unprivileged processes in sshd and Chromium and created new separation
in gzip and tcpdump. In all of these cases, Capsicum protections would pre-
vent malicious code from accessing system or user data if it compromised the
application’s internal logic, e.g. decompression or network packet parsing.

Third, lessons from the CapDesk project and its E programming language
have also been applied to Google Caja [351] and ECMAScript 5 [177, 178], both
under the influence of CapDesk contributor Mark Miller. Caja, whose imple-
mentation is greatly simplified when running on ECMAScript 5, is designed to
separate Web scripts from different sources and protect user data from mali-
cious scripts. Footlights’ Web UI uses Caja extensively.

Turning from traditional platforms to online social networks, however, there
has been much less work done to address the confinement problem.

Baden et al.’s Persona provides its functionality via applications [36], but
they are not not confined in the fully-untrusted sense that Footlights uses. In
Persona, applications are PHP/MySQL components of a web site. Applications
perform cryptography themselves and are not confined by the system. Applica-
tions have access to metadata about encryption and are trusted to enforce secu-
rity policies (e.g. “the Profile application allows only the registered user to write
onto the Doc page”). The authors leave as future work an alternate design that
splits applications into trusted and untrusted components, running the trusted
parts only in the user’s browser. When Persona was presented, Footlights was
already confining applications, although the API these early apps were given
was not as useful or complete as the current one.

Fescher et al.’s “Mr Privacy” allows social applications to be developed
without relying on a centralised OSN database [105]. Instead, Mr Privacy uses
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e-mail to transport information among users. The system is not designed for
confinement, however, and content is sent in the clear — the underlying e-mail
provider is trusted. A system like Mr Privacy could implement controls around
which applications can access what data, but authorisation has not been de-
scribed yet. The applications themselves run on a standard platform such as a
mobile phone or Web browser, so confinement is a task for the platform.

One notable paper amidst the social confinement dearth is Felt and Evans’
work on protecting users from malicious social applications [103]. This work
studied the behaviour of 150 popular Facebook applications, finding that over
90% had no need of the user data that they were given. The authors also pro-
posed a “privacy by proxy” mechanism inspired by the Facebook Markup Lan-
guage (FBML) that would allow applications to reference user data indirectly.
This is the inspiration for Footlights’ placeholders mechanism, described in
§5.2.2. Felt and Evans also proposed an encrypted user ID scheme like the one
eventually adopted by Facebook in the wake of scenario “Application develop-
ers” on page 5.

5.6 SUMMARY OF CONTRIBUTIONS

I have described a platform that demonstrates the viability of distributed
social applications. These applications are split into front-end and back-end
components, both of which are untrusted and unprivileged, but together they
can perform arbitrary computation, manage a UI and interact indirectly with
private user data to accomplish user goals via APIs that are familiar to today’s
application developers.

Application behaviour can be both confined and observed. Applications have
no access to user data by default, but can reference data indirectly without any
special permissions. Direct access to user data only occurs with explicit expres-
sions of user intent.

Applications can create information and share it with other users or appli-
cations, but this sharing is always under the control of the user. This allows
users to be in control of their social sharing without sacrificing the benefits of a
generative platform.

140



6
DISTRIBUTED AUTHENTICATION

“ It’s not what you know, it’s who you know.

Workers of Cramps’ Shipyard, 1918 [266]”In today’s online social networks, integrity is provided by a central party: the
Online Social Network (OSN) operator. The operator first authenticates users
with a combination of passwords and social graph data, then labels content
according to user actions during their authenticated sessions. Users rely on the
operator to authenticate other users correctly: a user may talk about “Alice’s
photo”, but a more complete and accurate name for the content would be “a
photo that the OSN operator asserts was uploaded by Alice”.

In order to move to a decentralised model, indirect certification by a trusted
third party must be replaced with direct self-certification. Instead of referencing
content as, “what the OSN asserts that Alice said”, client software must instead
reference “what Alice asserts that she said”. I define this to be the assertion prob-
lem. It is a natural fit for public-key cryptography, where users’ client software
can make cryptographic assertions that can be verified by anyone.

Public-key cryptography alone does not solve the assertion problem, how-
ever. Part of the appeal of OSNs is that they are ubiquitously available: a user
can log into a centralised OSN from any computer, anywhere, using a pass-
word and some social context which may be implicit or explicit. For instance,
logging in from an IP address that has been recently and frequently used by
a friend conveys some implicit social context — the user is logging in via a
friend’s computer or network. Social context can also be established explicitly,
by e.g. identifying friends in photographs as described by Kim et al. [142]
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Decentralised, public-key–based social networks require an authentication
mechanism that is not merely as rigorous as centralised password authentica-
tion — trivial for a public-key system — but is also as portable, mobile and
usable. As described below, these three requirements preclude traditional ap-
proaches to the security of private keys.

This chapter, based on a publication co-authored with Frank Stajano [4], de-
scribes a solution to the assertion problem. This solution provides a distributed
authentication facility that allows users to retrieve a private key from several
authentication agents. These agents are software services run by parties who are
honest but curious: they are assumed to run the authentication protocol correctly,
but they are not trusted with confidential plaintext. An offline dictionary attack
against this protocol by a malicious authentication agent is infeasible, even if
the user’s authentication password is very weak e.g. a 4-digit number or dictio-
nary word. Furthermore, the protocol does not allow an attacker to determine
if a particular user has registered with an authentication agent, because the au-
thentication agent does not need to know the identity of the user.

6.1 PROBLEMS

6.1.1 THE ASSERTION PROBLEM

As described in Chapters 1, 4 and 5, the goal of the Footlights system is to
provide a platform for distributed social applications based on untrusted cen-
tralised infrastructure. This alternative social network must provide a means of
asserting to a user Alice that a digital artefact was created or authorised by the
person she knows as Bob.

Assertions can be made with public-key cryptography, assuming that Bob
has ready access to a private key that is kept secret and whose corresponding
public key is known to Alice. The problem therefore becomes, “how can Bob
access his private key at all times, even when using a friend’s computer rather
than his own, in order to digitally sign artefacts shared via the OSN?”

In order to solve this overarching problem, the protocol specified in this
chapter allows Bob to store his private key with one or more software authenti-
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cation agents. Bob can authenticate to a set of these agents from any computer,
demonstrating knowledge of a secret to re-gain access to his private key.

In order to do this, the protocol must solve several sub-problems. It must
allow for the use of weak secrets from any location, require limited trust in
authentication agents and provide plausible deniability to users.

6.1.2 WEAK SECRETS

If users could reasonably be expected to memorise cryptographically strong
secrets, there would be no need for distributed authentication. This protocol is
predicated on the assumption that users cannot memorise cryptographic keys.

The need for this protocol might also be obviated if users always carry a
hardware token — such as a mobile phone — that carries cryptographic keys or
performs cryptographic operations on the user’s behalf. In many cases, how-
ever, the user will prefer a friend’s large screen to her own small one, so she
must either copy her private key to her friend’s computer (if the hardware token
merely carries keys) or be able to reliably tether her token to her friend’s com-
puter (if the token itself performs the relevant cryptography). I claim that these
requirements are onerous enough to justify developing an alternative scheme.

For the purposes of this protocol, I require that users must be able to retrieve
their private keys without memorising strong secrets such as cryptographic
keys or carrying them on hardware tokens.

6.1.3 LOCATION INDEPENDENCE

Footlights users must be able to retrieve their keys using any computer.
Users may choose to access Footlights from a shared computer. Authenti-

cating via any computer places some trust in that computer: any authentication
protocol that relies on a shared secret is vulnerable to malware. This property
is not unique to Footlights. When using a friend’s computer, the malware as-
sumption also breaks Facebook’s Social Authentication scheme: the malware
can learn the user’s password and the owner of the computer is one of the “in-
siders” ideally placed to identify faces of the user’s friends via a Man-in-the-
Browser (MITB) attack as described by de Barros [85, 128].

When using a computer in a shared computer lab, Internet café, etc., the
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user would be well-advised not to enter their primary authentication password
as a matter of security hygiene. As an alternative, sub-keys could be configured
in advance to convey limited authority for a limited time. For instance, before
going on vacation, the user might publish a signed notification that “key X may
be used to sign messages that contain no URLs until 2 August 2012”.

6.1.4 LIMITED TRUST

Users who engage in the distributed authentication protocol should not
need to fully trust any participant. Authentication agents should not be able
to determine the user’s weak secret through offline dictionary attacks. Un-
less there is widespread collusion, attackers who are also authentication agents
should have only marginal advantage over those who are not.

6.1.5 PLAUSIBLE DENIABILITY

Attackers should not be able to determine that a particular user has stored
keys with an authentication agent. Similarly, attackers must not be able to deter-
mine which users have enlisted the aid of any particular authentication agent.

6.2 PRINCIPALS

Bob, B, is a user of a distributed online social network such as Footlights or
PeerSoN [65]. This network has no central, trusted authority to certify Bob’s
digital identity, so his client software proves who he is using Bob’s private key.

Wishing to access the network from abroad, Bob prepares a temporary pri-
vate key K−1

B which he advertises to his peers along with a set of constraints.
For instance, Bob could prepare one key per calendar week and declare them
valid for sharing photos but not publishing applications. This would ensure
that, if a key is compromised by an untrustworthy computer, the damage that
can be done is limited. He then enlists software principals Alice, Alexa, Alicia,
etc. (A0, A1, A2, . . . ) to act as authentication agents on his behalf: each will store
some portion of the private key or keys, which will only be given out to Bob
later if he authenticates himself with the weak password kB.

I assume that Bob is able to recover his public key KB and those of his agents

144



PRINCIPALS

KA0 , KA1 , . . . from a public but untrusted source such as a key server. As an
untrusted service, it provides keys for confidentiality of communications, not
authentication of principals. The only secret used for authentication is kB.

6.2.1 INSIDERS

I assume that Alice, Alexa, etc. are honest-but-curious according to the def-
inition of “Honest but curious” on page 16. I also assume that insiders — or
the malware they are infected with — will not collude en masse, following the
example of Beimel and Chor [38]. The distributed authentication protocol will
make it difficult for insiders to identify each other and so collude. Nonetheless,
in order to minimise the chance of collusion, Bob might choose agents who are
in different social cliques or are business competitors.

A malicious agent may attempt to impersonate Bob to other agents. In this
situation, an insider acts as the outsider described below, but with the advan-
tage of the information that it is storing for Bob.

6.2.2 OUTSIDERS

I assume that there is a malicious outsider, Mallory. His goal may be to learn
Bob’s private key or simply to map his usage of the system by determining
which agents — if any — are storing key material for Bob.

Mallory is modeled as the powerful Dolev–Yao attacker [92]. He can eaves-
drop on communication between Bob and his authentication agents, so the con-
tent of these communications must be protected. He can initiate communica-
tion with any agent, so he can attempt to impersonate Bob to an authentication
agent. He can also intercept messages, so he can attempt to impersonate an
authentication agent to Bob.

The key limitation on the outsider is the dictionary attacks he performs
against Bob’s password must be online. When Mallory impersonates Bob to an
authentication agent, the agent will impose a mandatory timeout between each
authentication attempt. This timeout may be static or a time-varying function,
such as an exponential back-off from a fixed initial timeout, but authentication
agents impose it to keep outsiders from becoming de facto insiders.

As a matter of practicality, a blind exponential timeout provides an attacker
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with an opportunity to perform a Denial of Service (DoS) attack: by repeatedly
guessing Bob’s password and driving up the timeout, Bob himself might be pre-
vented from logging in. This threat might be mitigated by intrusion detection
mechanisms, proposed by Denning [87], which probabilistically detect or block
attacks. It might also be mitigated by using secondary communication channels,
analogous to the fallback authentication described by Just and Aspinall [138, 139]
or Schechter et al. [212, 213], to restore Bob’s access during attacks. These mech-
anisms could be used to combat denial of service attacks and enhance availabil-
ity, but they are not trusted to provide confidentiality or integrity properties.

6.3 PROTOCOLS

I present several security protocols, beginning with a straw-man that relies
on a trusted third party and building towards a protocol that addresses all of
the problems in Section 6.1. As introduced above, I use the following notation:

kB Bob’s weak secret (password)
Kx A public key associated with the name x

K−1
x The private key corresponding to public key Kx

Kt A temporary public key, generated for use in session set-up{
M
}

Kx
A message M encrypted under public key Kx with NM-CPA [41]

Non-malleability of the encryption mechanism is required to prevent an ac-
tive attacker from creating new authentication tokens from old ones. These
tokens consist of information derived from a secret, concatenated with a nonce
to prove freshness; an ability to construct related tokens could allow challenges
to be re-used with new nonces.

None of the protocols below use explicit integrity mechanisms such as dig-
ital signatures. In particular, the veracity of KA is not known to the supplicant,
so signing information with KA would not yield useful integrity guarantees. In-
stead, supplicants assume that messages encrypted to Kt have been generated
by a principal to whom Kt has been given.
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6.3.1 TRUSTED THIRD PARTY

The first protocol is trivial: Bob stores his private key in plaintext on a trusted
server. After retrieving Alice’s public key from the public key server introduced
above, the protocol is simply:

B→ A : {B, Kt}KA
(6.1)

A→ B : {n}Kt
(6.2)

B→ A : {kB, n}KA
(6.3)

A→ B :
{

K−1
B

}
Kt

(6.4)

in which kB is Bob’s weak authentication secret, Kt is a temporary key used by
Bob to provide confidentiality until he recovers his private key K−1

B and n is
a nonce selected by Alice, which prevents Mallory from performing a replay
attack should he later learn the value of Kt.

This protocol is analogous to a common practice in fallback authentication:
if Bob loses his password to a Web service, he can have a reset token sent to his
e-mail account. The e-mail provider is trusted implicitly.

The protocol bears a resemblance to the Kerberos protocol described by
Newman et al. [192, 264]: a supplicant (Bob) proves his identity to a trusted
system (Alice), which releases a token (Bob’s private key) that can be used to
obtain other services (interaction with other users). It is different from Ker-
beros, however, in that the authentication agent is not a source of authority: it
does not generate or certify keys, it merely stores them.

Attacks Eavesdropping attacks, as defended against in the Kerboros realm by
Bellovin and Merritt’s original Encrypted Key Exchange (EKE) protocol [43], do
not apply because the message

{
B, Kt

}
which Bob sends to Alice is entropy-rich.

The presence of Kt confounds offline dictionary attack by eavesdroppers.

The protocol also prevents active outsiders (§6.2.2) from conducting success-
ful online dictionary attacks, since Alice can limit the rate of incoming password
guesses. Because of the rate-limiting of Mallory’s online dictionary attack, Bob’s
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password can be as weak as an English word.

There are, however, two very obvious attacks against the system. First, in-
sider Alice can simply read Bob’s private key and password in the clear. Sec-
ond, outsider Mallory can impersonate Alice in order to learn Bob’s password
in message (6.3). Bob can download a KA from the public-but-untrusted key
server which is attributed to Alice but, without a shared secret or trusted au-
thority, he has no way to verify that it is actually Alice’s key.

6.3.2 SEMI-TRUSTED STORAGE

A slight improvement on the Trusted third party scheme is the Semi-trusted
storage scheme. In this scheme, Alice does not hold Bob’s password and private
key in the clear. Instead, she holds a cryptographic hash1 of the password h (kB)

and Bob’s private key encrypted using his weak password kB,
{

K−1
B

}
kB

. The

protocol is very similar to that of the Trusted third party scheme:

B→ A : {B, Kt}KA
(6.5)

A→ B : {n}Kt
(6.6)

B→ A : {h (kB) , n}KA
(6.7)

A→ B :
{{

K−1
B

}
kB

}
Kt

(6.8)

After receiving message (6.7), Alice verifies that h (kB) matches her stored
copy, then sends Bob

{
K−1

B

}
kB

in message (6.8).

Attacks This protocol prevents a truly disinterested Alice from reading Bob’s
secrets, but it does little to stop a curious Alice or a clever Mallory.

Alice can clearly mount an offline dictionary attack against the stored pass-
word — the number of iterations in the password hash affects only the cost of
the attack, not the ability to do it. Since the password is assumed to be weak, an
offline dictionary attack should be expected to succeed with high probability.

1As a password hash, it would be salted and iterated; the details are left to implementation.
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Furthermore, if Mallory impersonates Alice, Bob will send him the same
hash that Alice stores — this occurs in message (6.7). Based on this hash, Mal-
lory can mount the same offline dictionary attack as Alice.

6.3.3 SECRET SHARING

A logical and straightforward extension to this protocol is for Bob to spread
his private key across several agents Alice, Alexa, Alicia, etc. using a k of n
secret sharing scheme2 as proposed by Shamir [216]. In this case, Alice stores
h
(
KAi |kB

)
, which is a hash of kB personalised to her. Instead of the private key

K−1
B she stores Di, which is one portion of the key K−1

B shared according to the
secret sharing scheme. The protocol between Bob and an agent is now:

B→ Ai : {B, Kt}KAi
(6.9)

Ai → B : {n}Kt
(6.10)

B→ Ai :
{

h
(
KAi |kB

)
, n
}

KAi
(6.11)

Ai → B : {Di}Kt
(6.12)

Attacks This addition to the protocol prevents Alice, Alexa, etc, from reading
Bob’s private key. If the secret sharing scheme provides semantic security, a ma-
licious agent will not be able to use it in an offline dictionary attack. However,
there is nothing to prevent her or impostor Mallory from attacking the weak
password by brute force and, once successful, impersonating Bob to other key
recovery agents.

This distinction does not change the parameters of the model — it still fits
the definition of “Honest but curious” on page 16 — but there may be a social
value in the difference. It requires a different degree of brashness for Alice to
impersonate Bob than for her to peek at a value that Bob has asked her to keep
secret. As a technical difference, however, it does not limit the trust which Bob
must place in his authentication agents; problem “Limited trust” on page 144 is
not solved by this protocol.

2For the purposes of describing the high-level protocol, no specific scheme is specified.
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6.3.4 COLLISION-RICH PASSWORD HASHING

This protocol can be further improved by using collision-rich hash functions
as previously used by Lomas and Christianson [162] (see Section 6.6, “Related
work”, for further details). These functions can be built by discarding some of
the output of cryptographic hash functions, as in equation (6.13):

hM (x) = h (x) mod M . (6.13)

This modified hash function introduces collisions as long as M � 2N/2, where
N is the output size of hash function h.

Collision-rich hash functions frustrate dictionary attacks because they en-
large the equivalence classes of inputs that map to the same output. If a large
number of salted passwords map to the same output hashes, then an offline dic-
tionary attack against a hash will only discover the equivalence class of possi-
ble inputs. Checking these inputs requires an online consultation of some other
password oracle.

For the purposes of this protocol, I define the collision-rich hash function
hM,i for agent Ai according to equation (6.14), where h (x) is a cryptographic
hash function:

hM,i (kB) = hM
(
KAi |kB

)
= h

(
KAi |kB

)
mod M . (6.14)

The protocol now becomes:

B→ Ai : {B, Kt}KAi
(6.15)

Ai → B : {n, M}Kt
(6.16)

B→ Ai : {hM,i (kB) , n}KAi
(6.17)

Ai → B :

{Di}Kt
if hM,i (kB) correct

{random}Kt
otherwise

(6.18)

where M is a number chosen by Bob when he enlists Alice as a key recov-
ery agent. This technique reduces the trust that must be placed in authenti-
cation agents, satisfying problem “Limited trust” on page 144. The degree to
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which this trust is reduced is governed by M, which balances attacks by insid-
ers against attacks by outsiders. As M increases, it becomes more difficult for an
attacker to randomly guess a hM,i (kB) that satisfies Alice. This is the Outsider
dictionary attack in §6.4.3. On the other hand, the larger the value of M, the
smaller the equivalence class of kB. This facilitates the Insider dictionary attack
in §6.4.4.

6.3.4.1 LARGE-M ATTACK

Alice stores the value hM,i (kB), where M is decided by Bob when he recruits
Alice as an authentication agent. As log2 M increases, hM has fewer collisions.
If Mallory impersonates Alice, he could send a large value of M to Bob in equa-
tion (6.16). If Bob were to reply with the message h (KM|kB), Mallory would be
able to conduct an offline dictionary attack and learn kB.

Rather than responding with a collision-poor hash, Bob should ignore some
values of M. The test might be user-driven: the value of M could be displayed
to Bob or used to influence his UI in some recognisable way. If Bob observes
a different value of M from what he usually sees, he can cancel the login at-
tempt. It could also be automated, rejecting values of M that lie outside of some
reasonable range related to the strength of his password. Finally, all authentica-
tion agents could be required to use the same value of M. In that case, Mallory
would need to impersonate all of Bob’s authentication agents in order to con-
vince him of a false value of M. Otherwise, Bob’s client software could observe
the partitioning of M values and abort the authentication attempt.

6.3.4.2 IMPOSTOR IDENTITY DISCLOSURE ATTACK

If Mallory impersonates Alice, he will not be able to learn Bob’s password
easily for the reasons given in §6.4.4, “Insider dictionary attack”. Neither will
he be able to perform a completely successful middleperson attack, since the
hash h (kB|KA) is bound to Alice’s public key. He would, however, learn that
Bob has stored his private key with Alice by virtue of the fact that Bob has at-
tempted authentication. This information is probabilistic in nature: since Bob
has not authenticated, Mallory cannot be sure that it was Bob authenticating
rather than some impersonator. If such impersonations occur regularly, how-
ever, Bob’s plausible deniability is limited.
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6.3.5 COLLISION-RICH IDENTITY HASHING

In order to prevent identity disclosure in the face of the Impostor iden-
tity disclosure attack (§6.3.4.2), one more layer of complexity can be added:
collision-rich hashing of Bob’s identity. To prevent these hashes from acting as
de facto persistent identifiers, Bob should send each agent a collision-rich hash of
his identity and the agent’s when registering, using a very low modulus of his
choice. If the agent cannot disambiguate him from other users that she provides
the authentication service to, he can try again using a different modulus.

B→ Ai : {h (Ai|B)mod N, N, Kt}KAi
(6.19)

Ai → B : try again (6.20)

B→ Ai :
{

h (Ai|B)mod N′, N′, Kt
}

KAi
(6.21)

Ai → B : {n, M}Kt
(6.22)

B→ Ai : {hM,i (kB) , n}KAi
(6.23)

Ai → B : :

{Di}Kt
if hM,i (kB) correct

{random}Kt
otherwise

(6.24)

This protocol gives the same probability of successful dictionary attack by
insider or outsider, and it also counters the Impostor identity disclosure attack
for the same reasons. It does not mitigate the potential for traffic analysis: a
technically competent adversary could observe that Bob has connected to Alice.
However, I consider traffic analysis to be beyond the scope of this distributed
authentication protocol, except to say that the protocol is not incompatible with
anonymity technologies such as Tor [91].

6.4 PASSWORDS AND PROBABILITIES

In this section, I evaluate the probability of an attacker learning Bob’s pass-
word. This attacker may be an insider — a curious authentication agent — or
an outsider. Before evaluating these probabilities, I must first provide a more
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Figure 6.1: Password domain, distribution and equivalence classes.

rigorous definition of “weak password”.

The security of this distributed authentication protocol must not rely on Bob
memorising a strong password (see problem “Weak secrets” on page 143). In-
stead, Bob’s password will either be a randomly-assigned word from a small
dictionary or a user-chosen password from a known password distribution.

Bob’s password is drawn from a password distribution which is assumed
to be known to the attacker. This distribution is a function over a domain of
possible passwords, as shown in Figure 6.1. The distribution shown in this
figure does not cover all possible passwords: some passwords in the domain
have a probability of zero.

If Alice’s identity is Ai, she holds the value hM,i (kB). I assume that she is
able to perform an offline dictionary attack in order to determine a set or equiva-
lence class of passwords that hash to the same hM,i (kB) as kB. Under the random
oracle assumption, the size of this equivalence class of passwords will be Σ/M

on average, where Σ is the size of the password domain. If Alice can learn other
authentication agents’ equivalence classes, she might be able to find a small in-
tersection among them, as shown in Figure 6.1, revealing Bob’s password with
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Listing 6.1: Random words from a 10,000-word English dictionary.

aside crypt curd driest finitefunding morale nimbler oven pasta

Listing 6.2: Filtering words from a SCOWL word list.

./mk-list english 35 \ # SCOWL list, recommended size| grep "^[a-z]\{4,7\}$" \ # keep 4-7 letter words| grep -v "\(ed\)\|\(s\)$" \ # drop "pained", "pains"...| head -n10000 # keep exactly 10,000 words

high probability.

I will now consider two realistic distributions that Bob’s password might be
drawn from: a discrete uniform distribution over a small domain and a user-
chosen distribution over a large domain.

6.4.1 UNIFORM DISTRIBUTION

If Bob’s password is drawn from a uniformly random distribution, the size
of the password distribution will necessarily be equal to the size of the pass-
word domain Σ. kB must be drawn from a small dictionary in order to aid
memorability: the protocol will not require Bob to memorise random strings
such as "NBu6#Z4NI:", a feat whose difficulty has previously been demonstrated
in password research by Yan et al. [238, 239]

Listing 6.1 shows a set of ten words randomly chosen from an English dictio-
nary of 10,000 common words. This dictionary was created by filtering a longer
list from Atkinson’s SCOWL (Spell Checker Oriented Word Lists) project [339],
which is the basis for the GNU Aspell spelling checker. My filtering, shown in
Listing 6.2, restricts the dictionary to words that are 4-7 letters long and contain
only unaccented Latin letters. It also excludes some very similar word pairings
such as plural versions of words and past participles (e.g. “pain” and “pained”).

The resulting words are simple and frequently-used. Some of the psychol-
ogy literature [45, 64, 129] suggests that low-frequency words may be easier to
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Figure 6.2: Possible presentation of a random word from a small dictionary.

recognise than high-frequency words, but this protocol depends on recall: bring-
ing a particular word out of long-term memory, not recognising it in a list. For
such a task, I have filtered for high-frequency words, but low-frequency words
could be filtered for just as easily. Empirical evaluations of the experimental
psychology of recall are beyond the scope of this work.

Whether high- or low-frequency words are easiest to recall, the underlying
mechanism is the same: a random number is chosen from the range [0, 9999]
and used as an index into the dictionary. Several dictionaries could be used
concurrently, as shown in Figure 6.2, possibly increasing memorability: the user
need only remember one of several equivalent words.

6.4.2 NON-UNIFORM DISTRIBUTION

The other possible source of a weak secret is a user-chosen password. The
empirical evaluation of user-chosen passwords has recently been given new life
through studies of real-life password data, e.g. Dell’Amico et al.’s recent work
on password cracking [86] and especially the RockYou data set, a collection of
32 M user passwords leaked in 2010 and previously studied by Weir et al. [229]
and Bonneau [54]. I have used this data set to illustrate the effect of collision-
rich hashing on user-chosen password distributions.

Figure 6.3 on the following page shows the frequency distribution of pass-
words in the RockYou corpus. The comparison to a power-law distribution
is for visual reference only: this reference is not an empirically-fitted distribu-
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Figure 6.3: Frequency of RockYou passwords v. a power law distribution.

tion. The plot illustrates a large variation in password frequencies, which means
that an attacker employing an optimal guessing strategy will require much less
work than bruce-force search to learn a password with probability α < 1 (see
Bonneau’s Gα metric [54]). The effect of a collision-rich hash on this distribu-
tion is to redistribute unlikely passwords into the same password equivalence
classes as likely ones, flattening the probability mass function (pmf).

Figure 6.4a on the next page illustrates the effect of M on the distribution
of hM values. The complete password distribution shows a wide variation in
probabilities: approximately five orders of magnitude. The distribution of cor-
responding collision-rich hashes, however, is greatly flattened: the smaller the
value of M, the more even the distribution of equivalence classes.

Figure 6.4b on the facing page shows a more detailed view of the most prob-
able hM values. If x is a randomly-chosen password from the RockYou corpus
and Xi is the ith most common password, then Pr [h64 (x) = X0] is 53.6% greater
than 1/64 (the probability of a uniformly random password with n = 64) and
Pr [h64 (x) = X1] is only 11.9% greater than 1/64. In the original distribution,
the most-frequent password occurred orders of magnitude more often than the
least-frequent. In the collision-rich distribution with M = 64, the spread be-
tween the most- and least-likely equivalence classes is less than a factor of two.

The use of a collision-rich hash function to create equivalence classes among
passwords yields a probability distribution that reduces the advantage an opti-
mal attacker has over brute-force guessing.
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Figure 6.4: Probability distribution of hM values for RockYou passwords.
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In Section 6.3, I developed an authentication protocol that uses collision-rich
password hashes. Having introduced two password dictionaries — one with
10,000 equally-likely words and one chosen by real users — I now turn to the
evaluation of attack success probability using this authentication protocol.

6.4.3 OUTSIDER DICTIONARY ATTACK

In order for an outsider, Mallory, to obtain Bob’s credentials, he must con-
vince at least k authentication agents to reveal their true secret shares.

As described in §6.2.2, I assume that each authentication agent imposes a
timeout between guesses that may itself be a function of time, e.g. exponential
back-off. Under this assumption, time can be viewed as a discrete quantity: the
maximum number of guesses that an attacker can have submitted to each au-
thentication agent. I assume the attacker sends guesses in parallel to all agents.

6.4.3.1 UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is chosen from a uniformly random distribution, attacker
Mallory has no information about which passwords he should attempt to guess
first. Furthermore, assuming that each portion of the shared secret is indistin-
guishable from random, Mallory is unable to learn partial information from any
single authentication agent: the only way to determine that he has guessed the
correct values of hM,i (kB) is to successfully re-assemble Bob’s private key. Thus,
the optimal guessing strategy is to send random guesses of hM,i (kB) to each au-
thentication agent until k genuine secret shares have been recovered — a brute
force attack.

Since Mallory has no information about Bob’s password, each of the M
guesses that he might send to an authentication agent is equally likely to be cor-
rect: the probability is 1

M . Thus, the cumulative distribution function (CDF) for
any particular agent having revealed her genuine secret share at time t is simply
t

M . Mallory’s interaction with each authentication agent is independent of his
other interactions, so each can be considered a Bernoulli trial. The probability
that Mallory will have assembled k shares of the secret from n authentication
agents is thus given by the binomial CDF in equation (6.28).
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pr (k, n, t, M) = Pr (X ≥ k) |p= t
M

(6.25)

= 1− Pr (X ≤ k− 1) |p= t
M

(6.26)

= 1−
k−1

∑
i=0

(
n
i

)
pi (1− p)n−i |p= t

M
(6.27)

= 1−
k−1

∑
i=0

(
n
i

) (
t

M

)i (M− t
M

)n−i
. (6.28)

The effect of varying M, k and n is shown in Figure 6.5 on the next page.
Varying M or n creates a shift on the logarithmic success plots: if M is dou-
bled, the attacker’s success probability will be reduced by a factor of ~100 for a
given number of authentication attempts. A similar shift is observed when n is
halved. The more interesting variation, shown in Figures 6.5c, 6.5d and 6.5e, is
that of varying k. Unlike M and n, which cause a shift on the log-log attack suc-
cess plot, a linear variation in k changes the slope of the attack success plot. The
effect of varying k overwhelms that of other parameters, such as n: it is more
difficult for an attacker to randomly authenticate 10 times out of 50 (Figure 6.5e)
than 5 out of 5 (Figure 6.5c) or 6 out of 12 (Figure 6.5d).

Using these graphs, Bob can choose a desired level of security as the pair
(pr, t): a desired maximum probability of attacker success after a certain num-
ber of time intervals. This pair represents a point on the graphs in Figure 6.5 on
the following page, which can be used to select values of M, k and n.

Suppose Bob registers 12 authentication agents and distributes an 8-of-12
secret share to them. An outsider performing an online dictionary attack can
expect to achieve a success probability α = 10−4 (equivalent to guessing a ran-
dom 4-digit PIN with one attempt) after ~10 parallel online authentication at-
tempts if M = 64. If M = 256, it will take ~50 attempts to reach this probability
of success, but if M = 1024, it will take ~2,000 attempts. If each authentica-
tion attempt triggers an exponential back-off, more than ~20 attempts may be
prohibitive: a five-second timeout that doubles on each failure will consume 60
days of real time. In this scenario, 50 attempts would require ~35 million years.

159



CHAPTER 6: DISTRIBUTED AUTHENTICATION

100 101 102 103 104

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2

Pr
ob

ab
ili

ty

k = 8, n = 12

M=64

M=128

M=256

M=512

M=1024

(a) Effect of varying M.

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

k = 8, M = 256

n=16

n=14

n=12

n=10

n=8

(b) Effect of varying n.

100 101 102 103

Attempts

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

Pr
ob

ab
ili

ty

n = 5, M = 256

k=1

k=2

k=3

k=4

k=5

(c) Effect of varying k (small N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty
n = 12, M = 256

k=4

k=6

k=8

k=10

k=12

(d) Effect of varying k (medium N).

100 101 102 103

Attempts

10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

Pr
ob

ab
ili

ty

n = 50, M = 256
k=10

k=20

k=30

k=40

k=50

(e) Effect of varying k (large N).

Figure 6.5: Probability of successfully attacking a uniform distribution.
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6.4.3.2 NON-UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is chosen from a non-uniform distribution, it is easier for
the attacker to guess, but M, n and k can be chosen to frustrate practical attacks.

In this case, the attacker still proceeds by sending likely hM values to each
authentication agent and attempting to combine k of n responses into a valid
public key. Unlike the uniformly random case, however, the cumulative distri-
bution function is non-linear. Rather than the simple ratio t/M, where t is the
discrete time, the CDF is given by actual password frequencies in the distribu-
tion that Bob’s password is drawn from.

I use the CDF of the RockYou corpus with collision-rich hashing as the prob-
ability that any independent authentication agent will have revealed her true
secret share to the attacker at time t. This data-driven approach does not yield a
closed-form solution for the attacker’s combined CDF as in equation (6.28), but
it is still a binomial distribution as shown in equation (6.31).

pr (k, n, t, M) = Pr (X ≥ k) (6.29)

= 1− Pr (X ≤ k− 1) (6.30)

= 1−
k−1

∑
i=0

(
n
i

)
pi (1− p)n−i |p=CDFM(t) . (6.31)

Figure 6.6 on the next page shows the attack success probabilities in this sce-
nario. All of these plots show higher success probabilities than the uniformly
random case, but the effect is most pronounced in the k = 10 line in Figure 6.6e.
Here, the minimum attack success probability of approximately 10−8 is much
higher than the corresponding value of 10−16 in Figure 6.5e. Nonetheless, prac-
tical values of M, n and k can be chosen (e.g. k = 8, n = 16, M = 256) that keep
the attacker’s success probability below 10−4 until time t = 20, which §6.4.3
showed might correspond to 60 days of real attacker time.
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Figure 6.6: Probability of successfully attacking the RockYou distribution.
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6.4.4 INSIDER DICTIONARY ATTACK

I will now evaluate the probability that an insider Alice or a successful mid-
dleperson Mallory (see §6.2.2) will be able to exploit the collision-rich hash of
Bob’s password with Alice’s public key in order to learn Bob’s password.

If Alice performs an offline dictionary attack against hM,i (kB), she will learn
the equivalence class [kB] for which equation (6.32) holds:

hM,i (x) = hM,i (kB) ∀x ∈ [kB] . (6.32)

Under the random oracle assumption, this equivalence class will be a uni-
formly random sample of the original password distribution whose size, on av-
erage, will be |X|/M where |X| is the size of the password domain X. Alice can
test passwords in this equivalence class according the optimal ordering given
by the original password distribution; she simply needs to impersonate Bob to
at least k other authentication agents, requesting secret shares and checking to
see if they combine to form Bob’s private key.

As stated in §6.2.1, I assume that the authentication agents do not collude,
according to precident in the literature. In that section I also suggest measures
to reduce the likelihood of such collusion, making the assumption plausible.

6.4.4.1 UNIFORM PASSWORD DISTRIBUTION

If Bob’s password is drawn from the uniform distribution, then each of his
possible passwords are equally likely. If |X|M ≤ M, Alice can try each of the |X|/M

possible password classes against the other n− 1 authentication agents. If n−
1 ≥ 2k, she can even query multiple sets of agents in parallel. The probability
that Alice will successfully learn Bob’s password is, therefore:

p (t) = t
M
|X| ·

⌊
n− 1

k

⌋
. (6.33)

This is a linear function of the discrete time t, governed by the number of pos-
sible passwords (|X|/M) and the number of parallel queries which can be exe-
cuted,

⌊
n−1

k

⌋
. For instance, if M = 128, |X| = 104, n = 30 and k = 10, then

p (t) = 2.56× 10−2 t. If |X| = 106, however, corresponding to a 6-digit PIN,
then p (t) = 1.28× 10−4 t as long as k > n−1

2 . After 15 discrete-time guess at-
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tempts (two days of exponential back-off from 5 s), the probability that insider
Alice will have guessed Bob’s password is 1.92× 10−3.

If k > n−1
2 , the tunable parameters available to Bob are M and |X|. Increasing

the password space obviously decreases the attacker’s probability of success,
but so does reducing the value of M. This is a fundamental trade-off: smaller
values of M increase the difficulty of the Insider dictionary attack and decrease
the difficulty of the Outsider dictionary attack.

6.4.4.2 NON-UNIFORM PASSWORD DISTRIBUTION

In the case where Bob chooses his own password from a distribution like
the RockYou distribution, the Insider dictionary attack’s success probability is
almost identical to that of the Outsider dictionary attack.

If Alice (or middleperson Mallory) learns hM (kB), she can perform an offline
dictionary attack in order to learn a set of |X|/M passwords that includes Bob’s
password. Unlike the case of the uniform password distribution above, how-
ever, the overall size of the password space means that narrowing the problem
down to |X|/M possibilities does not give the attacker much advantage: |X|/M is
still much larger than M.

Figure 6.7 on the facing page shows the RockYou password distribution
compared with several sampled distributions drawn from it using different sev-
eral values of M. The overall shapes of the sampled curves in Figure 6.7a on the
next page are largely the same as the original distribution. More importantly,
the number passwords with frequency f > 1 is larger than M, so Figure 6.7b on
the facing page looks very similar to its analogue in Figure 6.4 on page 157.

The PMF of the hM values for sampled RockYou distributions are visually
similar to those of the original distribution, owing to the vast size of the original
distribution. This leads to a Figure 6.8 on page 166 similar to Figure 6.6 on
page 162: the insider has little advantage over the outsider.

6.4.5 SUMMARY

Using a uniform password distribution drawn from a small password space
(e.g. 4-digit PINs), the parameters of this protocol can be tuned to provide cho-
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Figure 6.7: The RockYou distribution, sampled for several values of M.
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Figure 6.8: Attacking the sampled RockYou distribution.
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sen resistance against malicious outsiders. Insiders have an advantage over
outsiders, in that they have fewer potential passwords to check, but insider at-
tack success probabilities on the order of 10−3 can be maintained over short time
periods (approximately two days): even if a list of passwords to check is short,
an online dictionary attack is very slow.

If user Bob chooses his own password, outsider Mallory is in a slightly bet-
ter position, as he can attack password hashes in order of likelihood. The use of
collision-rich hashes confounds him, however, flattening the probability distri-
bution of the various possible hM values so that an attack success probability of
10−4 can be maintained over extended periods of time. Interestingly, in this case
the insider has almost no advantage over the outsider: a user-chosen password
from a real distribution may be a better defense against insiders simply because
it is drawn from a much larger space of possible passwords. Of course, this ad-
vantage may not hold if the distribution of user-chosen passwords is known to
be weaker than that contained in the RockYou data set, but empirical evaluation
of password selection within different communities is left to others.

6.5 REVOCATION

Any scheme that employs public-key cryptography must provide a mech-
anism for revoking keys. In the case of Footlights, revocation should be very
infrequently-required, but the subject must be addressed nonetheless.

As described in Section 6.2, a Footlights user can create a constrained, time-
limited key for purposes such as vacations, but in fact, the delgation of limited
authority is a generally-wise practice that Footlights client software should per-
form transparently. Short-term, purpose-limited signing and encryption keys
should only be accepted because they are signed by longer-term keys and so
up, up a hierarchy to the user’s “root” private key. This delegation of authority
ensures that the damage that can be done by a leaked key is limited and that
— with one important exception — there is always a higher-level authorisation
key available to declare a lower-level key invalid.

The exceptional case is that of the user’s “root” private key. Compromise
of such keys should be very infrequent: they should only rarely be manipu-
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lated in the clear, on the user’s most personal devices. If a user’s root key is
compromised, however, existing techniques such as the Online Certificate Sta-
tus Protocol (OCSP) [262] can be used to query revocation state from any server
— or servers — the user identifies. Revocation might be presented to users
as a “permanently delete account” command, implemented as a signature of a
revocation message with the private key in question.

6.6 RELATED WORK

Distributed protocols for authentication have existed since Needham and
Schroeder described their seminal 1978 protocol [190]. Until this work, how-
ever, password authentication has required that the supplicant either trust the
authentication server not to perform offline dictionary attacks or choose a pass-
word strong enough to resist such attacks.

The Needham–Schroeder protocol inspired the Kerberos authentication pro-
tocol as described by Neuman [192], which in its original form was vulnerable
to offline dictionary attack by impersonators and network eavesdroppers. This
weakness led to Kerberos “pre-authentication” in later versions of the proto-
col [263]. In the original protocol, a supplicant asked the authorisation server
(AS) for a ticket-granting ticket (TGT, a cryptographic capability) without pro-
viding any authentication data. The server responded with a TGT encrypted
under a key derived from the user’s password. A user with knowledge of
the password could decrypt this ciphertext to obtain the TGT, but so could an
attacker performing an offline dictionary attack against the user’s password.
Kerberos pre-authentication allows the AS to challenge the supplicant, requir-
ing them to submit evidence of password knowledge, e.g. the current time en-
crypted under the user’s key. This prevents an impersonator from trivially ob-
taining the material required to perform a dictionary attack but an eavesdrop-
per can still obtain the timestamp encrypted under the user’s password and at-
tack it instead. Furthermore, the AS must be trusted with the user’s password-
derived key.

In 1993, Gong et al. considered the problem of protecting “poorly chosen se-
crets” from dictionary attack when using network protocols [118]. These proto-
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cols, including a variant of the Kerberos protocol, were designed to protect user
passwords from eavesdroppers on the network, but they were still based on the
assumption that centralised servers would be trusted with the user’s password.
This is not compatible with the trust requirements of Footlights: no principal
apart from the user should need to be trusted with the user’s password.

Bellovin and Merritt’s original Encrypted Key Exchange (EKE) protocol al-
lowed two principals to negotiate a session key based on knowledge of a shared
secret without exposing the negotiation to a dictionary attack by an eavesdrop-
per [43]. More precisely, an eavesdropper would be forced to mount a dictio-
nary attack against a randomly-generated key pair rather than the password.
Instead of sending plaintext encrypted by the shared secret, the protocol is ini-
tiated by sending a public key encrypted with the shared secret. If the public
key is encoded to be indistinguishable from random, an eavesdropper will not
be able to perform an offline dictionary attack against the secret. This protected
both the password itself and the session key from computationally feasible at-
tacks by eavesdroppers, but it required both parties to store the password; an
attacker capable of compromising one host or the other could learn the pass-
word and impersonate either party.

Augmented Encrypted Key Exchange (A-EKE), by the same authors, per-
formed the same protocol with a one-way hash3 of the password h (p) substi-
tuted for the password p, followed by an additional proof of knowledge of p by
one principal [44]. A-EKE is more explicitly a client–server protocol: a stolen
h (p) allows an attacker to impersonate one principal but not the other. This
protocol provides strong authentication properties, but it is not suitable for the
Footlights case: an attacker who steals h (p) — or a malicious authentication
agent who is given it — can perform an offline dictionary attack against it to
learn p, so any party who possesses a verifier must be trusted.

Lucks’ Open Key Encryption (OKE) protocol allows principals to negotiate
a session key based on knowledge of a shared secret, as in EKE, but OKE does
not require a new public-private key pair to be generated for every negotia-
tion [166]. When Alice initiates the protocol, instead of sending an ephemeral

3This “password-hashing operation” need not be a cryptographic hash function: in a public-
key–based model, p can be a private key and h (p) the corresponding public key.
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key encrypted under the shared secret, she sends a public key E and a nonce
m. Bob replies with his own nonce µ and a proof of knowledge of the secret
(a hash of E, m, µ and the shared secret) that has been combined with a strong
randomly-chosen secret encrypted under E. This combination can be done with
any invertible group operation: Alice will be able to retrieve the encrypted
strong secret only if she can invert the operation using her knowledge of E, m, µ

and the shared weak secret. This strong secret can be used to generate a session
key. Like EKE, the OKE protocol trusts both principals to hold the shared secret
(e.g. a user-chosen password), so it is not suitable for the Footlights setting.

Another closely-related protocol is Jablon’s SPEKE (simple password expo-
nential key exchange) [135]. This protocol is effectively a Diffie-Hellman key
exchange [90], but instead of a public generator g as the base for the session key
k = gxy, a function f is parameterised by the secret password, so k = f (p)xy.
Like EKE, SPEKE has an extended variant in which only one party needs to
know the password; this is called B-SPEKE [134]. Like A-EKE, this is a verifier
protocol: the additional proof of password knowledge can be verified by the
party that does not hold the password. B-SPEKE uses a Diffie-Hellman variant
for its verification stage: the verifying party creates a challenge gX based on a
public generator g and a random value X. Knowledge of the password p allows
the supplicant to reply with

(
gX)p

= gXp. The verifying party holds a verifier
gp, allowing it to test that (gp)X = gXp. As in A-EKE, this prevents supplicant
impersonation, but the password can still be attacked using a stolen verifier as
a password oracle: for candidate password p′, an attacker can test if gp′ = gp .

Wu’s secure remote password (SRP) protocol [236] is inappropriate for the
Footlights scenario for the same reason. SRP provides one-way or mutual au-
thentication using modular-exponentiation–based password verification. Like
A-EKE and B-SPEKE, it provides no protection against offline dictionary at-
tacks by insiders. SRP is a verifier-based protocol, and a verifier is a password
oracle that can be queried offline. SRP discards the password-derived hash
x = h (salt, P) because Wu describes it as “equivalent to the plaintext pass-
word P”, but for the purposes of an offline dictionary attack, so is the verifier
v = gx that SRP requires. A hash and an exponentiation have different com-
putational costs, but they are both one-way operations that serve as password
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oracles. SRP could treat this exponentiation differently from a salted hash if it
were done with respect to a small modulus, creating a collision-rich operation
as this chapter describes, but SRP prescribes exponentiation in the conventional
manner: with respect to a large prime number. To introduce intentional col-
lisions leads inexorably to a multi-party protocol such as the one described in
this chapter: collisions make online attacks easier, so they must be balanced by
a requirement to carry out several successful attacks.

The cryptographic community has contributed further work to this prob-
lem, later known as Password-Authenticated Key Exchange (PAKE): proving
the correctness of existing protocols, as in the work of Bellare et al. [42], as well
as proposing new theoretically-grounded generic constructions as in the work
of Catalano et al. [69]. In all of these cases, however, a password verifier can be
used to conduct an offline dictionary attack, just as in earlier work.

ISO 11770-4 also contains techniques for authenticating with weak secrets:
“balanced” password-authenticated key agreement, augmented key agreement
and password-authenticated key retrieval [25]. As above, however, nothing pre-
vents a malicious verifier from conducting an offline dictionary attack against
the weak secret.

Laurie’s Nigori is a protocol for storing secrets such as Web passwords on
remote servers [154]. It is conceptually an online password vault, where users
authenticate to the vault with one password-derived key and store secrets that
have been encrypted and MACed with other password-derived keys. It is as-
sumed that the three keys (authentication, encryption and MAC) cannot be used
to determine the user’s master password; that is, that the password is resistant
to offline dictionary attack. In contrast, the distributed authentication protocol
presented in this chapter is designed to provide reasonable security properties
even with weak passwords. Nigori allows a secret sharing scheme to be used
with several severs in order to reduce the “trust or burden” required of any
one of them. Nigori’s description notes that “this is likely to be a poor defence
unless [the user] uses different passwords at different servers”. This weakness
could be overcome, however, by an authentication protocol that uses collision-
rich hashes, such as the one in this chapter.

Another related vein of cryptographic work is Stinson’s universal hash-
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ing [220], which randomises the use of hash functions in order to reduce the
probability of collision among adversary-supplied keys. The work described
in this chapter is a kind of inverse of universal hashing: rather than reducing
collisions, my distributed authentication protocol defeats adversaries by inten-
tionally introducing collisions that confound attacks.

Lomas and Christianson have previously used collision-rich hash functions
with weak passwords for integrity checks on trusted computing bases [162].
In the Lomas–Christianson protocol, a user powers on a stateless workstation,
which retrieves an OS kernel across an untrusted network and boots it. Before
the kernel boots, its integrity is checked by hashing it together with the user’s
password using a collision-rich hash function and comparing the result to a
user-specific public checksum stored alongside the kernel. Because the check-
sum incorporates a collision-rich hash of the user’s password, the attacker can-
not perform an offline dictionary attack to determine the password: he can only
calculate a set of candidate passwords. This set of candidate passwords can be
used to generate a set of checksums for the modified kernel, but the attacker has
no way of knowing which one of these will be accepted. The use of collision-
rich hash functions in this work has influenced the protocols in this chapter.

6.7 SUMMARY OF CONTRIBUTIONS

In this chapter, I have described a protocol that allows a user to authenti-
cate to a cloud of peers using only a weak password (problem “Weak secrets”
on page 143). This authentication can be done via any computer on which
the user is willing to type his password (problem “Location independence” on
page 143). Authentication agents, which are assumed to be honest-but-curious,
are unable to learn the user’s password via offline dictionary attack; they do not
need to be trusted (problem “Limited trust” on page 144). Finally, attackers are
unable to determine either which authentication agents provide their services to
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a particular user or which users are served by a particular authentication agent
(problem “Plausible deniability” on page 144).

The weak password used in the protocol can be chosen from a uniformly
random distribution over a small space (e.g. a 4-digit PIN) or by the user from
a large password space. In the former case, resistance to outside attackers is
excellent, providing low attack success probabilities over an extended period of
time (months). It is significantly less resistant to insider attacks, however. In
the latter case, a compromise is struck that reduces outsider attack resistance
in exchange for the freedom and flexibility to choose one’s own password. In
this case, insiders gain almost no advantage over outsiders when attacking the
weak password. The sheer size of the password space means that even though
an insider can narrow down the set of possible passwords by a factor of 64, 128
or even 1024, the remaining passwords must be checked as an outsider would:
using an online dictionary attack.

This protocol allows users to retrieve a private key from untrusted agents
with only weak passwords for authentication. The private key can be used to
provide message integrity in the context of a decentralised social network such
as Footlights, solving the larger assertion problem: the ability of users to assert
who said what without relying on a trusted third party.
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7
CONCLUSIONS

Today’s online social networks (OSNs) provide users with an incredible ar-
ray of affordances, allowing them to tap into a social realm wider than their
physical circle of friends, facilitating the spread of information across continents
and reducing the cost of group formation so much that bagpipe photography
enthusiasts around the globe can discuss their passion more easily than mem-
bers of a political party can assemble within a single constituency. The outcome
of these networks is a more connected world, but that connectedness comes at
a cost to confidentiality and user privacy.

7.1 PROBLEMS

Chapter 1 described the socio-technical problem that is privacy in online so-
cial networks, illustrating it with concrete scenarios. These scenarios featured
user data in contemporary OSNs being shared more widely than the users in-
volved wanted or expected it to be. I made the point that a technical system
alone cannot “solve” privacy, but technical contributions could be made that
would allow users to change their own privacy outcomes. Chapter 2 distilled
several concrete technical problems out of the scenarios:

Intent (problem “Explicit expressions of user intent” on page 16) — sharing
should be driven by users’ expressions of intent.

Identity (problem “Multi-faceted identity” on page 17) — users should be able
to present different facets of identity to different audiences without reveal-
ing the existence of other facets.

Availability (problem “High availability” on page 18) — the system must com-
pete with commercial providers, so its availability (both uptime and bi-
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trate) should be of commercial standard.

Trust (problem “Untrusted infrastructure” on page 18) — users should not
need to trust any infrastructure to enforce their desired sharing policies.

Applications (problem “Social applications” on page 19) — the system should
provide an API to allow extension of the social experience via rich appli-
cations that operate on user data indirectly by default.

Cost (problem “Cost” on page 20) — the cost of using the system should be
exposed to users, who should have a choice of how to defray it without
sacrificing privacy.

Anonymity (problem “Linkability and anonymity” on page 21) — users should
be able to choose their own privacy–performance trade-offs: it should be
possible to achieve some degree of anonymity at decreased performance.

I have demonstrated some of the ways today’s OSNs do not meet these stan-
dards: they have exposed users’ private information, sharing it more widely
than users’ expressed intent. Chapter 3 demonstrated practical threats to user
privacy, in terms of both user data privacy and social graph privacy. The for-
mer class of threats is illustrated by a qualitative description of how user data
has been leaked via changing default settings, advertiser access and application
platforms. This was based on both literature survey and original research. The
second class was illustrated with a quantitative analysis of how releasing a sam-
pled subset of social graph information allows attackers to closely approximate
important characteristics of the entire graph.

7.2 FOOTLIGHTS

In Chapter 4 I started to describe the Footlights system. Footlights is a
privacy-enabling online social network that explores a new mix of centralised
and distributed elements to provide users with performant functionality with-
out paying a privacy penalty. Its name is derived from Goffman’s description
of social interaction as a theatrical performance [115] and is also a homage to
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the Cambridge Footlights theatrical troupe. Footlights is an architecture, a set
of protocols and a proof-of-concept implementation that demonstrates the vi-
ability of a new kind of social network. The prototype code is available from
https://github.com/trombonehero/Footlights under the Apache License [24].

Chapter 4 describes the sharable storage system that underpins Footlights.
This system allows users to store private-by-default encrypted data as a sea of
4 kB ciphertext blocks on a commodity storage provider. Blocks are encrypted
with block-specific symmetric keys; their content is only readable by princi-
pals which possess the relevant keys. Blocks in the encrypted store contain
explicit links to other blocks, which are only visible to principals that possess
the block’s symmetric key. The choice of a content-addressed store (CAS) en-
sures that global caching will be efficient, never requiring freshness checks for
static content, and that users will never need to download the same content
twice or perform deep searches for fresh content on trees of already-seen data.
The projected cost of operating the storage component of Footlights is less than
one US dollar per user-year. The system also provides opportunities for covert
communication, including a low-bitrate perfectly unobservable communications
channel.

This global shared filesystem is exposed to social applications via an API
described in Chapter 5, “Distributed Social Applications”. Footlights is genera-
tive [248]: it provides an API that developers can use to craft as-yet-unimagined
social applications. Users maintain control of their data: by default, applica-
tions operate indirectly on user data. Footlights applications are written on two
platforms: a browser-based UI and a JVM-based backend. In the browser, UI
elements are sandboxed, but manipulate a rich visual context using a proxy that
resembles the JavaScript DOM API. This UI front-end can communicate with
a corresponding back-end via an Ajax channel. The backend can be written
in any JVM language. The Footlights API provides back-ends with access to
the Footlights filesystem and local user files via the “security by designation”
model described by Yee [241]: a photo-sharing application may read photos
from the user’s hard drive, but only because the user has selected which files to
open in an “Open File” dialog. Encryption is handled at the level of the storage
substrate, so even malicious applications are incapable of transparently leaking
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user data. With explicit user authorisation, applications can share content with
each other or other users.

Finally, Chapter 6 describes a distributed authentication framework that
allows users to access the Footlights distributed system from untrusted com-
puters without losing control of their digital identity. Footlights ultimately
relies on public-key cryptography for confidentiality and integrity, but prob-
lem “Multi-faceted identity” on page 17 requires that the system be accessible
“without leveraging trusted authentication infrastructure or requiring users to
carry hardware cryptographic tokens”. To solve this problem, I describe a pro-
tocol that allows users to retrieve a strong secret (a private key) from a set of
authentication agents using a weak secret (a random PIN or user-chosen pass-
word) without allowing the agents to determine the value of the secret, even
with an offline dictionary attack.

Together, these three components of the Footlights system could be used to
change the outcomes of all the scenarios given in Chapter 1.

In scenario “Jack” on page 3, a LiveJournal user named “Jack” had private
details from his account re-posted as public ones, likely a result of password
compromise. If “Jack” had used the Footlights distributed authentication pro-
tocol instead, his password would be safer from technical attacks. If, however,
his problem was that a friend successfully guessed his password — a plausible
explanation — the Footlights authentication protocol would not solve the prob-
lem. It would, however, provide him with a technical measure that could be
imposed at a cost: “Jack” could forego the distributed authentication approach
and carry his private key with him. This would allow him to use the storage
system and application platform with high security, but the decision to adopt
that approach is more economic than technical.

In scenario “CBSA” on page 4, photos and comments were posted to Face-
book by new recruits of the Canada Border Services Agency and subsequently
viewed by members of the public and the media. Facebook’s default settings
and privacy UI failed to capture the sharing intent of the CBSA recruits; Foot-
lights would have allowed them to share the content as widely as they desired,
but its private-by-default model would have made accidental disclosure of this
kind less likely.
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In scenario “Facebook” on page 4, Facebook imposed a policy change in
which certain parts of a user’s profile such as name, friends and connections
became “public information”. This change was undertaken despite the fact that
some users had taken care to make this information private. In Footlights, such
a policy change could never be enforced: sharing decisions are made by users,
not the providers of centralised infrastructure.

In scenario “Application developers” on page 5, several developers of third-
party Facebook applications were caught sharing private user data with data
brokers, who in turn sold the information to their customers. In the Footlights
application ecosystem, this sharing would not have been permitted by default:
Footlights applications can only access user data with explicit user authorisa-
tion. Even if applications had asked for — and received — such authorisation,
Footlights applications are observable : users would be able to detect the data
leak from locally-excuted Footlights more easily than the Wall Street Journal
did with remotely-executed Facebook applications.

Finally, scenario “Sophie” on page 5 describes the plight of an OSN non-
user. “Sophie” is a skeptic: her concerns about the privacy practices of today’s
OSNs lead her to forego the benefits of social applications. “Sophie” could be a
privacy advocate concerned about her personal information or a corporate con-
sumer concerned about confidential competitor information. In either case, us-
ing Footlights instead of Facebook would allow “Sophie” to be assured that her
confidentiality requirements are being met: rather than trusting a centralised
provider to enforce her security policy, she could verify the cryptographic pro-
tocols and software implementation herself, or rely on an external auditor or
certifier to do this on her behalf.

7.3 FUTURE WORK

The research described in this dissertation has revealed many paths that beg
exploration, but I could not walk them all as one traveller. These include:

Implementation In this dissertation, I presented a design and prototype im-
plementation. I argue that the system will scale well, but the proof of
the pudding is in the eating. It is beyond the scope of this dissertation
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to implement all of the APIs required to drive mass adoption, but it is
my hope that publicly-available, royalty-free specifications and an open-
source prototype will encourage adoption by vendors seeking to securely
integrate online social elements into their platforms.
Specific implementation tasks include the integration of mutual authenti-
cation protocols as described in Section 4.1, the development of the inter-
process communication primitives described in §5.3.4.3 and the imple-
mentation of the distributed authentication protocol in Chapter 6.

Security proofs Footlights relies on techniques whose security has not been
proven in the standard model. Some difficulties can be obviated under
the random oracle assumption, but proofs in the standard model would
be a natural direction to pursue. It is desirable to prove that, first, con-
vergent encryption provides indistinguishability when random padding
is used and that, second, the construction in Section 4.8, “Covert commu-
nication” creates ciphertext blocks that are indistinguishable to an attacker
who does not know the block’s random padding or the covert content to
be hidden within it.

User experience Footlights has been designed with security usability consid-
erations in mind, but I am not a user experience designer. Footlights’
aesthetic appeal also leaves much to be desired. User adoption of Foot-
lights will require a focus on usability and aesthetics: if the system is not
pleasing to use, it will not be used.

Funding Networks and storage substrates are not free. Current social networks
are indirectly paid for by user data; future distributed systems will require
alternative payment schemes. I have argued that the storage backend of
Footlights could be supported by direct payment (e.g. via occasional pre-
mium text messages) or privacy-preserving targeted advertising. One im-
portant question is, how can such an advertising scheme be run without
privileged access to the TCB? Today’s advertisements rely on privilege in
order to resist “click-fraud”: they employ schemes such as frame-busting,
which breaks out of browser containers to prevent encapsulation and redi-
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rection, in the same way that malware attempts to escape virtual machine
encapsulation. If Footlights does not allow such techniques, how much
will it deminish the perceived value of a targeted advertisement?

Consent How can researchers study social networks when users are in charge
of their own data? Today, researchers have such ready access to large
corpora that discussions of informed consent often do not happen. If users
are given full control over their personal information, how can researchers
obtain data and understand biases? These issues have been considered
within the realm of traditional social sciences, but how can those lessons
be applied to studies of millions of users, rather than dozens?

DTN routing Footlights creates a new kind of Delay-Tolerant Network (DTN),
one that relies on one-way communication and opportunistic contact. This
network also has more stringent privacy requirements than other DTNs:
neither sender nor recipient should need to make their address globally
known. What constitutes a good routing algorithm for such a DTN? Are
there essential trade-offs between routing efficiency and information rev-
elation by participants? Can classes of routing algorithms be tuned for the
privacy of sender, recipient or intermediaries according to need?

DTN congestion The global utility of a covert DTN is derived from routing
decisions made by individual users, each with their own goals and incen-
tives. This problem sounds familiar, but it is not the well-known Tragedy
of the Commons: in Footlights, each node has exclusive control over its
own patch of the network. Rather, the problem resembles that of conges-
tion on the Internet, but the solutions employed there (point-to-point peer-
ing agreements, entrusting network stacks to a few privileged individuals)
will not apply to a fully-fledged distributed system like Footlights. How
can costs and incentives be employed to make the Footlights covert DTN
usable? Since no one principal will be in a position to set costs, how can
the protocol be made self-enforcing?

Ecosystem The Footlights architecture and prototype constitute an extensible
core for a new online social network. That network will only flourish if
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others use it and build on it. To succeed, Footlights must have an ecosys-
tem of both users and application developers: people must be able to find
their friends and have something to do together. This requires a more
rigorous treatment of API expressibility and usability.
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7.4 SUMMARY

““You’re not the customer. The ad service buyer is the cus-
tomer. You’re the commodity.”

liorean, forum user, on the 2004 introduction of
GMail [158]”The claim is often made that, to use online social networks, users must give

up their privacy. In this dissertation, I have argued that this cynicism is un-
warranted: it is possible to build a new kind of online social network that lets
users enjoy all the activities and functions they have grown accustomed to in
today’s OSNs, with comparable levels of performance, but without having to
place absolute faith in the companies operating the disks and networks.

Privacy and performance need not be forever locked in conflict. It is possible
to rely on centralised infrastructure to provide the availability that users expect
without trusting it to enforce users’ intentions for sharing. I have described an
architecture and prototype implementation of a hybrid centralised–distributed
OSN called Footlights that allows users to choose their own privacy and per-
formance trade-offs and enjoy the benefits of social applications. Source code is
available from https://github.com/trombonehero/Footlights under the open-
source Apache License, version 2.0 [24].

The cost of operating Footlights’ centralised storage foundation is expected
to be less than one US dollar per user-year, recoupable directly or via privacy-
preserving advertising.

This alternative business model is not guaranteed to succeed: it is hard to get
anyone to join an empty social network. What Footlights demonstrates, how-
ever, is that this alternative model is possible. The way that today’s OSNs do
business is just one way of doing business. Privacy is not inherently incompat-
ible with social networking.
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A
CONTENT DELIVERY NETWORKS

The argument for a system like Footlights is predicated on the plausibility of
the economics: Footlights can only work if someone pays for it. The plausibility
of the Footlights cost structure is addressed in problem “Cost” on page 20 in
Chapter 4, “Sharable storage”. This appendix contains raw data concerning the
costs of the commodity providers that the Footlights storage system could be
built on.

In this appendix, I show the advertised costs of storage and data trans-
fer on several providers’ platforms. Three providers (Amazon, Google and
Rackspace) provide combined storage and content distribution platforms. A
fourth provider, NetDNA, specialises in content delivery services; if using a
pure CDN like NetDNA, content must be backed by storage from another party.

The costs of Amazon’s Simple Storage Service (S3) and CloudFront delivery
service [328] are shown in Table A.1. Amazon is unique among the surveyed
providers in that it charges its clients according to storage volume, data transfer
volume and number of HTTP PUT and GET requests which act on stored data.
Since Footlights divides files into small (4 kB) blocks, this HTTP request cost
is the most significant portion of the potential cost of running the Footlights
storage system on Amazon (see problem “Cost” on page 20).

Table A.2 shows the cost of storage and content delivery using the Google
App Engine platform [336]. This cost structure is very simple: there is a small
quota of free usage, above which a fixed rate applies. This structure is simple,
but the marginal rate for both storage and data transfer is high.

Rackspace [330] has an even simpler cost structure than Google: it eliminates
the quota of no-charge usage. As shown in Table A.3, there is one marginal rate

185



CHAPTER A: CONTENT DELIVERY NETWORKS

Table A.1: Pricing of Amazon S3 and CloudFront services.

(a) Storage

Volume Marginal cost
Up to 1 TB $125 / TB·month

1–50 TB $105 / TB·month
50–500 TB $95 / TB·month

500 TB–1 PB $90 / TB·month
1–5 PB $80 / TB·month

Above 5 PB $55 / TB·month

(b) HTTP requests

Request type Cost
GET $10 / Mrequest
PUT $1 / Mrequest

(c) Data transfer (out)

Volume per month Marginal cost
Up to 1 GB 0
1 GB–10 TB $120 / TB

10–50 TB $90 / TB
50–150 TB $70 / TB
150–500 TB $50 / TB

Above 500 TB not specified

Table A.2: Pricing of Google App Engine storage and content delivery.

(a) Storage

Volume Marginal cost
Up to 5 GB No charge
Above 5 GB $130 / TB·month

(b) Data transfer (out)

Volume per day Marginal cost
Up to 1 GB No charge
Above 1 GB $120 / TB
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Table A.3: Pricing of Rackspace storage and content delivery.

(a) Storage

Volume Marginal cost
Any volume $100 / TB·month

(b) Data transfer (out)

Volume per month Marginal cost
Any volume $180 / TB

Table A.4: Pricing of NetDNA content delivery.

(a) Storage

Volume Marginal cost
Not available –

(b) Data transfer (out)

Volume per month Marginal cost
Up to 10 GB $60 / TB

10–50 TB $50 / TB
50–150 TB $40 / TB
150–350 TB $35 / TB
350–650 TB $30 / TB

650–3 PB $20 / TB
Above 3 PB $10 / TB

for any volume of storage or data transfer.
Finally, Table A.4 shows the cost of delivering content via the NetDNA con-

tent delivery network [337]. These costs are much lower than comparable data
transfer costs for any of the storage providers, but they do not include the cost
of extracting the data from disks. Thus, to use a pure CDN in conjunction with
a storage provider would result in some “double-billing”: the storage provider
would charge to provide data to the CDN and the CDN would charge to repli-
cate and distribute it around the world.
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