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Abstract

Holographic sensors are photonic layered structures contained in an-

alyte sensitive films that upon illumination produce monochromatic

reflections (λ). The present work reports the fabrication of oxygen and

ammonia sensors in Nafion membranes and hydrocarbon and volatile

organic compound sensors in poly(dimethylsiloxane) (PDMS) films. A

holographic recording technique was developed to suit these materials

consisting of the in situ formation of nanoparticles of ∼18nm average

diameter and their subsequent ordered ablation with a 300mJ laser.

The wavelength of the monochromatic reflections depends principally

on the refractive index of the resulting layers (n) and the separation

between them (Λ). Changes in these parameters are generated by the

analyte-sensor interactions and their magnitude can be correlated to

the analyte concentration. The strength of these interactions is deter-

mined by the thermodynamic properties of the analytes, such as the

cohesive energy density (δ2), and this, was coupled with a photonic

model for the prediction of the holographic response. After exposure

to different concentrations of the analytes, the kinetics of the responses

were determined and the lowest detection limits (LDL) established as

follows: Hydrocarbons in PDMS holograms 1% (v/v) in ∼3s for a

range of concentrations from 0-100%; ammonia in Nafion holograms

0.16% in ∼100s in the 0-12.5% range; the LDL for oxygen sensing

could not be determined although the response was recorded down

to 12.5% and up to 100% in ∼100s. Holographic sensors show com-

petitive responses comparable to commercially available gas sensors

for biomedical diagnostics and industrial process monitoring because

of their facile fabrication and their shared sensing platform allowing

multiplexing.
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Introduction

Gaseous substances in the environment play a key role in the chemostasis of many

biological processes, from respiration in animals to photosynthesis in plants. Our

atmosphere is, in fact, conformed by a mixture of highly concentrated gases like

oxygen, nitrogen, carbon dioxide and water vapour; other types of gases are also

present in minor quantities. The concentration and abundance of atmospheric

gases varies for certain regions and times of the year [1]; for example, ozone and

carbon dioxide concentrations in the stratosphere differ from those in other atmo-

spheric layers [2–4]. In fact, with industrialization and increased consumption of

gas products for daily use, certain gas molecules accumulate in cities and indoor

environments [5].

Numerous human activities including industries, healthcare facilities and homes

require a continuous supply of certain gases. For example, methane, propane and

butane are commonly used as domestic comburants for cooking and heating or

as a fuel for vehicles. Other gases such as ammonia or noble gases are widely

used in refrigeration processes. Thus, gases are extensively used, in aerosols, as

chemical reactants, in compression systems and scientific instruments, amongst

others [6].

Undesired changes in the concentration of gaseous substances can be catas-

trophic. For example, controlled oxygen atmospheres in plane cabins ensure that

the right concentration is delivered to the crew and passengers, since even slight

increments or decrements can result in lethal events. Carbon monoxide or carbon

dioxide resulting from the combustion of fossil fuels can accidentally accumulate

in enclosed environments and thereby endanger individuals. Reactive gases such

as oxygen can cause a number of problems when dissolved in water and can

drastically affect the fauna and flora in the surroundings. Oxygen’s reactivity

can affect industrial processes and uncontrolled concentrations impose danger to
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1. Introduction

human health [7]. Industrial gases are often transported and stored in different

locations; Thus, leaks are likely to occur, changing the local concentration, and

putting operators and economic revenue at risk. Hence, there is a need to avoid

these undesirable changes and, moreover, to develop technologies that measure

accurate concentrations of gases in the atmosphere. Gas monitoring has also

grown in importance in biomedical diagnostics, particularly, in the non-invasive

detection of disease via breath analysis [8]. Several studies have pointed out the

correlation between the incidence of gas molecules in exhaled breath with certain

pathologies and show that it is possible to extract a fingerprint of gases in breath

for a non-invasive health diagnosis [9]. Another common use for gases in the

biomedical sector is respiration apparatuses that deliver oxygen to patients and

require continuous accurate monitoring of concentrations [10].

Thus, not surprisingly, there is a major concern for some toxic or noxious

gas molecules and their impact on human wellbeing or industrial processes. For

instance, ammonia, oxygen, ozone, hydrogen sulphide, hydrogen, nitrogen oxides,

carbon oxides, sulphur oxides, aromatics, hydrocarbons and other volatile organic

compounds (VOCs) are often used and considered as potential threats [11, 12].

Volatile compounds have attracted interest as potentially harmful substances to

human health as indoor pollutants originating from domestic products such as

building or furnishing materials, paints, adhesives and solvents for cleaning, also

from road transport and other industrial processes [13].

1.1 Gas sensors

The chemical sensors market for medical, industrial and environmental applica-

tions is estimated to be worth £31.6 billion per annum, divided among the key

sectors at 66%, 21% and 9% respectivelya. The sole gas sensors market estimated

in £421.1 million in 2005 is expected to reach £586.6 million by the end of 2012

with a 4.9% growth over that period [15]. This figure is for the internal sensing

components only, whilst the market for the completed instruments is estimated at

£1.5 billion per annum [14–17]. Industrial safety, fire and domestic gas detection

are the most profitable sectors with an anual market size of £160 million; gas

aPercentages of market share from US data only [14].
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Figure 1.1: Market demand for gas sensors by application and analyte. (A) Market
share by gas-sensing applications. (B) Number of available sensors by analyte. Data
collected from [18] and [15].

sensors targeting safety and securitya occupy 76% of the total gas-sensing market

(see Figure 1.1A) [15].

The gas sensor market distributed by analyte is shown in Figure 1.1B. Data

was collected from a global search engine for industrial products from the section

‘Gases’ in ‘Sensors and Transducers’ [18]. Only six different analytes account for

50%b of the total market, being, in order of importance, O2, hydrocarbons, H2,

H2S, CO and NH3.

1.1.1 Current sensing technologies

Gas sensors vary in type depending on the analyte and the sensing mechanism.

The vast majority of sensors use solid state technology or semiconductors because

aComprises: fire and domestic, industrial safety and security, and military applications.
bThe other species accounting for the remaining 50% are SO2, Cl2, CO2, NO2, O3, rep-

resented in Figure 1.1 A, and AsH3, Br2, ClO2, B2H6, F2, GeH4, HCl, HCN, HF, H2Se, Hg,
NxOx, PH3, SiH4, SF6, and H2O vapour as others. All data is shown in Table A.1 in the
Appendix.
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they are easy to fabricate and abundant in the market place. These devices detect

changes in the semiconductor component as gas molecules are absorbed, thereby

generating an electrical signal that is then converted to a concentration value; ex-

amples of these semiconductor components are transistors and capacitors [12,19].

Other technologies involve spectrophotometers, thermometers, potentiometers or

electromechanical devices [12]. Table 1.1 shows a comparison of the technolo-

gies with the physical phenomena involved. These phenomena, or sensing mech-

anisms, have different sensing modes depending on the type of analyte-sensor

interaction and, according to Yamazoe [12], can be classified as: ‘Equilibrium’,

‘steady state’, ‘complete reaction’ or ‘accumulation’. Table 1.2 illustrates exam-

ples of physical processes and sensors for each type of sensing mode, together

with commercial sensor examples. The ‘accumulation’ mode is not ideal since it

requires the replacement of a sensor once it has been used. They often require

special disposal or additional cleaning methodologies. The ‘complete reaction’

mode has the disadvantage of consuming or chemically modifying the analyte,

and it is often not preferred for sensor designs. Regardless of the sensing mode, a

generalized version of a sensor can be deduced from these classifications. A sensor

configuration that applies to all types contains two elementary components: The

recognition component (RC) and the transducer (T) are shown in Figure 1.2. The

gaseous analyte (A) interacts with the sensor at the recognition component and

generates a change. The nature of this change is known as the sensing mechanism

(M) and it is governed by the analyte sensor interactions (I), and in combination,

the change is interpreted by the transducer generating a measurable signal (S).

Understanding these key factors is paramount for developing new sensors. Once

an analyte is known to interact with a recognition component, the sensing plat-

form can be designed, whose success depends on how specific the interactions are,

and how strong they correlate with the sensing mechanism; the rest of the sensor

construction is solely an engineering challenge. Therefore, designing new sensors

relies mostly on understanding the sensing mode, the analyte interactions with

the recognition component, and the change observed in the sensing mechanism.

Since that is the scope of this work, particular attention will be paid to these

factors and to the physical properties of the analytes and materials used in the

sensor components.
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Table 1.1: Examples of gas-sensing technologies and the sensing mechanisms involved.

Technology Sensing Mechanism
Semiconductors Changes in resistance

Piezo-electric crystals, surface resonators Acoustic interference
UV-Visible-IR Spectrophotometers Optical absorption

Cantilevers Stress or mass changes
Electrochemical potentiometers Electrochemical reactions

Thermometry Energy of combustion or catalysis

Table 1.2: Sensing modes or analyte-sensor interactions, physical process examples
and commercial sensor examples.

Sensing Mode Physical process example Commercial sensor example
Equilibrium Absorption Humidity

Steady state Redox reactions pH
Complete reaction Combustion Flammables

Accumulation Strong binding Toxics (disposables)

S

RC T
MI

A

Figure 1.2: Sensor components. A: analyte, I: analyte-sensor interactions, RC: recog-
nition component of the sensor, M: sensing mechanisms, T: transducer, S: readable
signal.
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1.1.2 A bio-approach to gas sensor design

Accurate technologies require the use of sophisticated and expensive signal pro-

cessing equipment, electronics and, in some cases, a high degree of operator ex-

pertise. These technologies evolve as their components become more accurate,

inexpensive or miniaturized, imposing limitations and constraining both innova-

tive gas sensor design and the improvement of current sensors. Mass produced

devices inhibit the introduction of new developments to compete in the mar-

ket [20]. As suggested in reference [21], efforts should be directed at improving

materials selection, affinity constants, sensor construction and the exploration of

novel sensing mechanisms for the successful production of sensors.

New sensing mechanisms are not easy to discover, although the best examples

are posed by nature. There is a wide range of naturally available recognition

components selective for most natural molecules. Enzymes, antibodies, binding

proteins, membrane receptors, porphyrins and aptamers, specifically bind to their

counterpart analyte. This is why biomolecules are often included as recognition

components in sensors. Some of these molecules can also be engineered to suit

particular binding or sensing applications [22–24], whilst others have been syn-

thetically conceived to mimic naturally occurring structures, or to simulate the

spacial configuration and type of interactions present in natural binding struc-

tures [25–27]. Moreover, the sensing molecules can be incorporated into nano-

scaled constructions, such as modified surfaces, nanowires, conductive polymers

and nanoparticles to enhance the binding signals [28–34]. This insight on how

molecules selectively bind in natural biochemical processes is also important for

innovative gas sensor design. Intermolecular interactions in nature comprise re-

versible processes in equilibrium or steady state reactions driven by intermolecular

forces, namely, coulombic, electrostatic, Van der Waals’ and other apolar forces.

The nature of the interactions should be taken into consideration to understand

and improve the performance of gas sensors.

1.1.3 Target analytes and their detection

As discussed in §1.1, certain gaseous analytes represent key targets for gas sensor

design and are commonly used in daily human activities. In general, as the
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analytes become important for anthropogenic uses, the sensors that detect and

monitor them become also important [35]. This work focuses primarily on three of

the most important gaseous analytes: Oxygen, gaseous and volatile hydrocarbons,

and ammonia.

1.1.3.1 Oxygen

Gaseous oxygen or dioxygen, O2, is a reactive gas in its stable molecular from.

It is frequently represented as two oxygen atoms bound by two bonds. Oxygen’s

reactivity as a basic oxidizing agent is related to its unpaired electrons associated

with free radical reactions [7, 27]. Oxygen in the atmosphere, nevertheless, is

essential to life on Earth and plays an essential role in processes such as respi-

ration, photosynthesis, fermentations and combustion. It is also commonly used

in pure or mixed form as a reactant in industrial processes, as a combustion en-

hancer, and for patient care in hospitals. Food quality, for instance, is ensured

by packaging raw materials in low oxygen environments [36].

Oxygen is traditionally measured by redox reactions on electrode surfaces that

consume it in the process and are, thus not ideal for some applications [37]. Other

methods use fluorescence quenching with dyes, transition metal complexes or

oxygen scavenging materials [27,38–44]; these seem to be a suitable approach for

reversibly binding oxygen. Scavenging is a reasonable option only if the analyte is

in excess and can be consumed without interfering with the measurement. Metal

complexes or dyes, on the other hand, require the use of synthetic molecules

that are produced at small scale with complex chemical reactions [27]; moreover,

incorporating these molecules into a sensor is challenging and the extraction of a

readable signal will depend upon weak interactions. Fluorescent signals can be

easily detected from this type of molecules; however, the use of sensitive dyes or

fluorescent quenching molecules only works under specific light conditions and

requires special fluorimetric instruments [45].

1.1.3.2 Hydrocarbons and volatile organic compounds

Hydrocarbon gases, widely used as combustibles, include alkanes, alkenes and

alkynes with a maximum of five carbons in the aliphatic chain. Longer hydrocar-

bons are considered volatile liquids under atmospheric pressure and temperature.
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Butane, propane and methane, for instance, are the main constituents of fuel

gas for domestic uses or transportation. Structural isomers and derivatives of

hydrocarbons such as alcohols, ketones and other VOCs are also used in many

consumer products and are commonly released into the atmosphere. There is

growing concern that these products may be imposing a risk to human health in

indoor environments [13]. Therefore, measuring hydrocarbon gases and volatiles

in the environment is becoming an important consideration for the design of

sensors for the gas-sensing markets [19].

Current technologies for real time sensing of hydrocarbon gases and VOCs

often classify them non-specifically as flammables or toxics [12]. Other, sensi-

tive techniques, such as gas chromatography coupled with mass spectroscopy or

flame ionization detectors, have been hampered by the need for expensive and

sophisticated equipment, time and a high degree of operator expertise [46,47]. Al-

though these technologies have proven applicability in many industrial processes,

the need for real time sensors capable of distinguishing molecular differences in

gases, locally and remotely, is as yet, unfilfilled.

1.1.3.3 Ammonia

Ammonia, NH3, is a highly reactive gas and the most abundant alkaline con-

stituent of the atmosphere. It is widely used for the production of explosives,

fertilizers, resins, nylon and semiconductors, for waste-water treatment plants,

and as a refrigerant for industrial processes [48]. Ammonia plays a major role

in the soil and atmospheric chemistry, and, in its ionic form NH4OH, neutralizes

atmospheric acids and is a constituent of the aerosol responsible for water vapour

nucleation and precipitation [49]. At high concentrations, ammonia may be toxic

and caustic to the respiratory tract. Reported values for the Immediate Danger

to Life Limit (IDLL) or fatal exposure dose are shown in Figure 1.3, which was

assembled from different sources, and shows the limits and risks imposed by high

ammonia concentrations [50–52]. The worldwide ammonia emission is estimated

as more than 20Tg/year [52].

As in the case of oxygen detection, ammonia is usually measured with poten-

tiometric electrodes that require the consumption or solubilization of the analytes

or absorbent semiconductors [52]. Other more sophisticated devices include in-
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a) Permissible exposure limit (PEL) - Detectable by smell
b) Maximum exposure 15min - Breathing support required
c) Maximum exposure limit (MEL)
d) Immediate danger to life limit (IDLH)
e) Fatal after short exposures, < 30min
f) Fatal immediatly
g) Full body protection required
h) Low flammable limit (LFL)
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Figure 1.3: Ammonia concentrations in air by threshold limits [50].

frared gas analyzers, mass spectroscopy or gas chromatographs which offer more

sensitivity at the cost of expensive and bulky equipment and require trained users

to analyze and process the results [53,54]. Ammonia sensors are easily exhausted,

requiring substitution after measuring large quantities of ammonia; furthermore,

typical ammonia sensors cannot measure high concentrations of ammonia and

exhibit a maximum detection limit of 100ppm [55]. Therefore, these sensors are

not suitable for high concentration environments where special protection and

fast continuous monitoring is required.

1.1.3.4 Other gases

There are other gas molecules that can be detected using most of the techniques

mentioned above, although the challenges of producing a selective, sensitive and

reversible sensor still remain. Therefore, as discussed in §1.1.2, not only are

the intermolecular interactions important, but also their integration into a sensor

device that can transform them into strong reliable signals, and their combination

into a final product are essential ingredients of an effective gas sensor.
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1.1.4 Optical techniques for detection of analyte-sensor

interactions

Optical techniques are a popular and effective way of transducing sensor inter-

actions into readable signals [56]. These techniques measure optical properties

which include, but are not limited to, absorption spectra, reflectance spectra,

luminescence intensity, evanescent waves, surface plasmon resonance and inter-

ferometry [56–62]. In order to detect changes in the sensor, optical methods

rely on physical changes in the component materials. Such changes include in-

dex of refraction or dielectric constant, absorption coefficient, reflectivity, scatter

coefficient, photon emission or photon transfer; all of which are caused by the

interactions with the analytes.

Optical techniques are usually preferred over others because of their capacity

for remote sensing. Although some techniques require proximity to the analyte

in order to measure the changes, it is possible to detect optical changes from

large distances [63]. Moreover, the visual display of the optical change can be

easily observed with the naked eye as a change in coloration, intensity or opacity.

There are many technological gadgets that emulate the human vision (e.g. digi-

tal cameras, photodiodes, spectrometers) and can be used in combination to take

accurate readings of optical changes in sensor materials. If these readily available

detectors were combined with inexpensive mass-fabricated sensors, the require-

ment for sophisticated apparatuses would not exist, representing a competitive

advantage in the mass-produced electronic sensors market.

Optical gratings, in particular, have been used for gas detection. An optical

grating gives colourful reflections visible to the naked eye and can be inexpensively

fabricated. There are several examples in the literature that use gratings as

sensor transducers: Self-assembly of colloidal crystals in hydrogels; fibre optics

with recorded gratings; vapour deposition of layer-by-layer photonic crystals and

other gratings produced by nano-fabrication methods [64–69]. The variety of

fabrication techniques for optical gratings allows more materials to be used for

sensing, thus expanding the sensing potential to several other analytes. However,

each technique has its own limitations and new challenges appear: Durability and

large scale manufacturing hurdles are yet to be overcome.

Photonic structures have been suggested for gas-sensing but are limited to
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light absorption properties of gas molecules in the IR-Visible range of the spec-

trum [70, 71]. These constructions use the reflected wavelength and intensity of

the multilayeres for modulating the signal rather than for sensing [72–74]. Holo-

graphic gratings have been used as sensors for analytes in solution but not for

gaseous analytes, until now. This work reports the first attempt and successful

production of holographic gas sensors.

1.2 Background on holography

The theoretical analysis of the holographic sensors couples physicochemical and

optical phenomena. The physicochemical interactions will vary depending on the

analyte-sensor types. However, the optical phenomena remain the same regardless

of the chemical properties. Understanding the way holograms exhibit colourful

reflections is important to exploit their use as sensors.

1.2.1 Light interference with matter

Light traveling through objects, its reflection and refraction, have been studied

for centuries and the mathematical formulations describing that physical phe-

nomena have also changed through the progress of Science. Foucault and Fizeau

discovered in the 1850s that light waves travel with different frequencies in wa-

ter [75]. Then, several other studies were conducted, and mathematical models

developed, to understand the deviation of light’s path when traveling through

transparent media. This deviation is called refraction and different materials will

give different degrees of deviation, or will have a distinctive index of refraction.

From a Euclidean geometry point of view, when light interacts with a transparent

medium it will experience linear deformations in its path: Consider a thin film

as shown in Figure 1.4, and an incident ray of light νi which strikes the surface

of the film at an angle θi, whence a portion of the light is reflected back and

another portion travels through the medium experiencing a change in speed and

direction. Some of this penetrating light is transmitted to the other side of the

film and some is reflected back by the final film-air interface. Light waves that

experience a change in velocity νr and angle θr when traveling through a medium

are called ‘refracted’. This refraction phenomena was first described by Snell who
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Incident ray

Reflected rays

Transmitted rays

n d

film

θi

υr
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υi

θr
r

I

T

R

Figure 1.4: Refraction of light when traveling from a medium with refractive index ni
to a medium with refractive index nr. Example of a thin film with thickness d; incident
light is either reflected R or transmitted T .

determined a formula tho show that the ratios of velocity, index of refraction and

sine of the angle of incidence are equal for light in two mediaa.

When this refraction phenomenon occurs in structures with more than one

layer the situation extrapolates, and, if the structure contains periodically or-

dered layers, an optical effect is observed. In 1887, Rayleigh first studied periodic

structures containing alternating layers of material with varying refractive index,

realizing that the reflected light is filtered, and only certain wavelengths are al-

lowed to proceed from one layer to the next [76]. This filtering effect is observed

only when the periodicity occurs at wavelength scales of hundreds of nanometers

and it is referred to as the ‘band gap’. This band gap is characteristic of stacks

of layers with periodic order in one dimension, appearing to the naked eye as

a bright monochromatic reflection. Contemporary to Rayleigh, Maxwell formu-

lated the theory of electromagnetism and light as electromagnetic waves and this

helped to understand the transformations of lightwaves when traveling through

media. Maxwell used the concept of dielectric constant, related to the refractive

index of the materialb, to describe the optical properties of the medium. Optics

in periodic structures are well understood nowadays thanks to these formulations.

aSnell’s equations: ni sin θi = nr sin θr, or, sin θi
sin θr

= νi
νr

. see Figure 1.4.
bThe dielectric constant ε, used in the Maxwell’s equations, is the square of the complex

refractive index ε = N2 = (n+ ik)2.
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The general phenomenon is known as optical interference and when it happens

at optical wavelength scales it is termed ‘photonic’. The study of these photonic

structures has been generalized to include interference effects in 1, 2 or 3 dimen-

sions, and as nanotechnology advances, it is now possible to fabricate complex

structures that exhibit the same phenomena in 1D, 2D or 3D. These constructs

are known as photonic crystals and exhibit one or more band gaps for different re-

gions of the electromagnetic spectrum [77,78]. The importance of these studies is

that the band gap can be calculated, for example, with the use of algorithms that

compute solutions to Maxwell’s equations for a given structure, thereby giving

an accurate mathematical description of the phenomena [79,80].

1.2.2 The origin of holography and standard holographic

recording techniques

Parallel to the study of optical interference, the contributions that made hologra-

phy possible were also developed. ‘Holography’ is an invented word, conceived by

Gabor in 1949 for what he initially called ‘wavefront reconstruction’ [81]. Gabor

developed a theory and mathematical formulae to reconstruct objects, visually,

in three dimensions, calling them ‘holograms’. The theory explains how it is pos-

sible to store three-dimensional information from an object by recording reflected

wavefronts.

The proposed theory required that the recorded wavefronts produced layers

of varying index of refraction in the recording material. By using wavefronts

reflected from an object it is possible to create a field of view recorded within the

thin material, resulting in embedded layers separated by hundreds of nanometers.

Holograms, in fact, are examples of stacks of ordered layers in one dimension, or

1D photonic crystals, also called Bragg mirrors or Distributed Bragg Reflectors

(DBRs)a [82].

When the theory of holography was proposed, it was already possible to pro-

duce nanoscaled layers of particles with varying optical properties. Lippmann

invented a method for recording light waves using silver halide photochemistry,

aBecause at a certain angle the light incurs maximum reflectivity, this is an analogy for the
so-called Bragg condition of X-ray diffraction in crystal latices, when waves reflected by different
planes interfere constructively a peak in radiation is observed. Similarly, peak wavelengths are
observed in holographic reflections (see §1.2.3).
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further known as the colour photographic method [83–85]. The recording of

holograms required, however, the use of monochromatic light for the wavefront

reconstruction. Single wavelength light sources were not available at the time

and it was only after Einstein’s studies on the creation and conversion of light

and the stimulated emission of radiation [86, 87], that it was possible to build

the first monochromatic light source, the laser [88]. Shortly after this, the first

real hologram was produced using Lippmann’s silver halide photographic tech-

niques [89,90]; the result was a monochromatic three-dimensional reconstruction

of the recorded objects. Optics for the holographic reflections, angles of recon-

struction, the type of light sources and formulation of recording materials have

been described theoretically [91]. The recording of holograms is not now limited

to silver particle gratings made with silver halide emulsions, since other formula-

tions and photosensitive materials have been subsequently developed.

Traditionally, holographic recording materials are fabricated with silver halide

salts in hydrogels which, on exposure to laser light, are photo-reduced to pro-

duce metallic nanoparticles [89]. The silver halide salts are used in combination

with photosensitizing compounds selected for the specific wavelength of the laser.

Photosensitizing the material ensures an even reduction of the silver salts and

homogeneous formation of silver grains. The optical set-up to record holograms

consists of a laser pointing at a reflective object passing through a transparent

recording film. The waves are reflected from the object’s surface and interfere

with the incident waves forming standing waves with nodes and anti-nodes, as

illustrated in Figure 1.5. The total energy accumulated in the nodes and anti-

nodes is different, higher energy being concentrated in the nodes than in the

anti-nodes [89]. The energy differences in the standing waves are used to photo-

reduce the silver salts differentially in the recording material, resulting in a film

containing fringes of metallic particles. Although the fringes are spaced by the

wavelength of the laser used, there is a smooth transition in the local concentra-

tion of metallic silver particles from one layer to the next. The resulting periodic

structure produces a bright reflection of colour when illuminated with white light,

characteristic of one-dimensional photonic structures.

Photo-reduction processes used in traditional holographic techniques are wa-

ter based; aqueous solutions are also used to fix and stop the rest of the silver

salts from further reduction [92]. Therefore, the hydrogel has to allow water
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Standing wave

Recording medium

Reflective surface

λ

Figure 1.5: Sketch of a typical holographic recording set-up. A recording film is placed
between a reflective surface and an incident laser beam, the laser beam is reflected from
the reflective surface forming standing waves, the standing waves form nodes and anti-
nodes that differentially photo-reduce silver salts, forming fringes of metallic particles.
The film is placed at an angle so that the recorded fringes are not parallel to the surface.
Drawing not to scale.

penetration at all times, be stable enough both to undergo such transformations,

and hold the periodic structure of silver particles. Common holographic film sup-

ports are emulsions made with gelatin; however, there are a plethora of other

hydrogel-like materials, polymers or plastics that can be used [93–95]. The silver

salts that produce the layers are also chosen to suit the properties of the support

material, although the production of layers is not limited to silver; metals such

as gold, copper, iron, nickel, amongst others can be used to form fringes [96, p.

223] [97–99]. Furthermore, it is not only metals which can give a contrast in re-

fractive index; the degree of cross-linking or polymerization in polymers can also

provide this contrast. Other methods to produce a photonic effect that do not

require photo-reduction use polymer beads and other nanoparticles [69,100–102].

In this work, the exploration and use of non-hydrogel-like materials for the pro-

duction of holograms and methods for the inclusion of silver nano-particles in

them are reported.
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Figure 1.6: Model of a thick hologram grating as proposed by ref [103]. Where
thickness is d containing angled fringes and notations for a stack of q layers L with N
complex refractive indices, K the grating vector, R the reference wave, τ the emerging
wave, Λ the fringe spacing, θ and φ are angles with ϑ = φ− θ.

1.2.3 Mathematical models for light interference in

periodic structures and holographic gratings

As discussed previously, it is possible to model the propagation of light waves

through periodic structures and the underlying band gap phenomena caused by

constructive interference of the reflecting waves.

Kogelnik [103] proposed the first theoretical analysis for thick hologram grat-

ings using the scalar wave equation of the electric field. The study considers that

only coupled waves I and τ are present in the grating as shown in Figure 1.6.

As stated in the original paper, this theory is analogous to Phariseau’s investi-

gation of acoustic gratings [104] and Bragg’s investigation of X-ray diffraction in

crystals [103]. The theory utilizes the concept of ‘Bragg angle’ or ‘Bragg condi-

tion’ which is, in this case, the angle at which an incident wave incurs maximum
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reflectivitya. Figure 1.6 shows the grating planes perpendicular to the grating

periodicity vector K which is inclined at an angle φ with respect to the depth of

the film d along the z axis. The incident wave I hits the surface at an angle ϑ

with respect to the normal of the hologram’s surface. The study defines a vector

K of length

K = 2π/Λ (1.1)

perpendicular to the fringe planes where Λ is the period of the grating or the

distance between fringes. An average propagation constant β is introduced, for

most wavelengths through the medium, and can be written as

β = 2πn/λ (1.2)

where n is the average real refractive index and λ the wavelength. At the angle

of incidence with maximum reflectivity θB, the propagation vectors for the waves

equal the propagation constant, resulting in the following expression

cos(φ− θ) = K/2β (1.3)

where θ is, in this case, the Bragg angle θB and the difference φ − θB = ϑB.

From here, an expression that includes λ as a function of the hologram’s intrinsic

parameters n, Λ and φ can be deduced by combining equations 1.1 and 1.2 into

1.3:

cos(ϑB) =
λ

2nΛ
(1.4)

or solving for λ,

λ = 2nΛ cosϑB (1.5)

This equationb is often used as a quick reference for the study of the reflected

aAn optical grating is the assumed diffraction element, in analogy with Bragg’s theory, and
its behaviour is consistent with that of its X-ray counterpart [105].

bSometimes confused with the Bragg’s law of diffraction, however mathematically similar,
they were deduced for different physical phenomena (see footnote a on page 13 and footnote a
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wavelength in holographic gratings but has its limitations. Kogelnik’s theory

assumes fully uniform holographic gratings with sinusoidal fringe patterns; it is

inadequate for explaining volume holograms with variations in fringe patterns

or local refractive indices. The assumption that the refractive indices, the film

surface and the fringe spacing do not change through the media is untrue in

some practical cases and this limits its applicability, especially when holographic

recording leads to shrinkage and swelling of the layers. The external refractive

index on either side of the film is also not taken into consideration. However, this

simple expression offers accurate estimates for reflected wavelengths in volume

holograms and has been successfully applied in some studies [100]. There are

mathematical models that provide extensions to Kogelnik’s theory to include

variations in the refractive index of the individual layers and outside media [106].

Similarly, there are simple expressions derived for the calculation of reflectivity

from stratified media. An expression that calculates the reflection coefficient

for wavelengths satisfying the Bragg conditiona was deduced by Sheppard for a

medium with m number of alternating refractive index layers [107]:

rz =
nin

2m
2 − nsn2m

1

nin2m
2 + nsn2m

1

(1.6)

where rz is the reflection coefficient, ns the refractive index of the substrate

or outermost medium, subindices 1 and 2 denote the values for the alternating

layers of material. The refractive index values used in these formulas and from

here onwards correspond to the average refractive index for visible wavelengths.

Care should be taken when using this values indiscriminately for all types of

materials because there is a strong refractive index dependanceb to wavelength

on page 17).
afor a quarter of the wave thickness layers, as in the case of holograms.
b The refractive index dependance on wavelength can be estimated by the Sellmeier equa-

tion: n(λ) =
√

1 +
∑
j

αjλ2

λ2−βj
, where αj and βj are empirically determined coefficients for each

type of material [82, 108]. The temperature dependent refractive index for non-magnetic me-

dia is given by n(T ) ≡
√
ε(T ) = nT0

+ (T − T0)dn/dT , where ε(T ) is the permittivity of

the medium, nT0
is the refractive index of the material at temperature T0 and dn/dT is the

thermo-optic coefficient [109]. Mathematical expressions for the refractive index relationship on
wavelength and temperature together are not generalized but have been proposed for different
materials [110–114].
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and temperature [108,110–113].

The approximations forR and λ just mentioned always seek validation by com-

paring their results with more general and widely used methods for the analysis

of periodic structures. These extended methods directly calculate the reflectance

spectrum of multilayer systems by applying a matrix formalism approach to the

Maxwell’s equations. One of these theories is the matrix method proposed by

McLeod [115]; it calculates wave propagation through assemblies of any number

of films or layers. As illustrated in Figure 1.6, for a stack of q layers L with

varying complex refractive index N and spaced apart by Λ, the electromagnetic

wave traveling from the first layer to the q layer can be described by[
B

C

]
=

{
q∏
r=1

[
cos δr (i sin δr)/ηr

iηr sin δr cos δr

]}[
1

ηm

]
(1.7)

where

δr =
2πNrΛr cosϑr

λ
(1.8)

and

ηr = ΥNr cosϑr, ηm = ΥNm cosϑm (TE) (1.9)

ηr = ΥNr/ cosϑr, ηm = ΥNm/ cosϑm (TM) (1.10)

where N is the complex refractive index with imaginary part ik:

N = n− ik (1.11)

and B is the normalised electric field amplitude of the wave, C the normalised

magnetic field amplitude, Υ the optical admittancea, ϑ = φ − θ the angle of

incidence, the suffix r denotes the values at the layer number r, and m denotes

the values at the emergent medium as denoted in the Figure. Equations 1.9 and

1.10 are employed for the transverse electric or s-polarised wave (TE) and the

aThe optical admittance of free space is a constant, Υ = 1/Z0 = (ε0/µ0)1/2 = 2.6544 ×
10−3ohms−1, where Z0 is the impedance of free space in ohms, ε0 the permittivity and µ0 the
relative permeability. The refractive index can also be defined in terms of ε and µ as n =

√
εrµr,

where εr is the permittivity of the medium and µr the relative permeability.
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transverse magnetic or p-polarised wave (TM).

The total reflectance at the incidence point for a certain wavelength λ is

calculated as the ratio of the reflected intensity to the incident intensity at the

boundary layer L0; it will depend upon the number of r layers q and it is defined

as

R =

(
η0 − C

B

η0 + C
B

)(
η0 − C

B

η0 + C
B

)∗
(1.12)

where the suffix 0 denotes the value at the incidence medium, which in this case

can be assumed equal to the value at the emerging medium η0 = ηm, and *

denotes a complex conjugate.

Another method that uses a matrix formalism is proposed in reference [116, p.

165] by Yeh; it models the light interaction using a periodic structure of alternat-

ing layers of material with different refractive indices. The layers have thickness

a and b with refractive indices n1 and n2. Considering the geometry illustrated in

Figure 1.6, a and b correspond to alternating layers Lr (Lr−2, Lr, Lr, Lr+2, ... for

a; Lr−1, Lr+1, Lr+3, ... for b), and n1 and n2 correspond to alternating refractive

indices nr (nr−2, nr, nr, nr+2, ... for n1; nr−1, nr+1, nr+3, ... for n2).

This method uses Maxwell’s equations in the periodic form known as the Bloch

theorem, to which exact solutions can be calculated. The equations written in

matrix notation are (
I

R

)
=

(
W X

Y Z

)q(
τ

0

)
(1.13)

where q is the number of layers, I, R and τ are the amplitudes of the incident

and reflected and transmitted waves respectively (see Figure 1.6), with

W = eik1a
[
cos k2b+

1

2
i

(
k2

k1

+
k1

k2

)
sin k2b

]
(1.14)

X = e−ik1a
[

1

2
i

(
k2

k1

− k1

k2

)
sin k2b

]
(1.15)

Y = eik1a
[
−1

2
i

(
k2

k1

− k1

k2

)
sin k2b

]
(1.16)

Z = e−ik1a
[
cos k2b−

1

2
i

(
k2

k1

+
k1

k2

)
sin k2b

]
(1.17)
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for the transverse electric or s-polarised wave (TE) waves and

WTM = eik1a
[
cos k2b+

1

2
i

(
n2

2k1

n2
1k2

+
n2

1k2

n2
2k1

)
sin k2b

]
(1.18)

XTM = e−ik1a
[

1

2
i

(
n2

2k1

n2
1k2

− n2
1k2

n2
2k1

)
sin k2b

]
(1.19)

YTM = eik1a
[
−1

2
i

(
n2

2k1

n2
1k2

− n2
1k2

n2
2k1

)
sin k2b

]
(1.20)

ZTM = e−ik1a
[
cos k2b−

1

2
i

(
n2

2k1

n2
1k2

+
n2

1k2

n2
2k1

)
sin k2b

]
(1.21)

for the transverse magnetic or p-polarised wave (TM) waves, where k1 and k2 are

a function of the refractive index of each layer (n1, n2) and the resulting angle

for each layer (θ1, θ2) [78, 116–118]a,

k1,2 =
(n1,2ω

c

)
cos θ1,2 (1.22)

where

nw/c = 2π/λ (1.23)

ω is the angular frequency of the wave, and c the speed of light in vacuum

2.99×108ms−1. At the incident layer n=1.00, whence ω/c = 2π/λ. θ1 and θ2

can be derived using Snell’s equations (see footnote a on page 12), assuming the

incident media to be air with n = 1.00,

θ1 = sin−1

(
θ

n1

)
(1.24)

θ2 = sin−1

(
n1 sin θ1

n2

)
(1.25)

where θ is the angle of incidence as depicted in Figure 1.6.

The reflectivity can be calculated in terms of the coefficient of reflection rq,

defined as the ratio of the reflected wave amplitude R to the incident wave am-

aYeh p.10, 166; Jackson p.385, 296; Joannopoulos p.31.
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plitude I

rq =
R

I
(1.26)

Applying the solutions for the Bloch wave matrix equations above, the reflectivity

formula becomes

|rq|2 =
|Y |2

|Y |2 +
(

sinKΛ
sin qKΛ

)2 (1.27)

where

KΛ = cos−1

[
W + Z

2

]
(1.28)

as with the previous models, the reflection spectrum is a function of the refractive

index pair n1, n2, the angle of incidence θ, the number of layers q, and the

thicknesses of the layers a and b which in this case a=b=Λ/2.

Matrix methods have been applied successfully in several experimental stud-

ies [119]; however, these methods have important limitations, for example, as-

suming that the dimensions and the refractive indices of the layers are known.

The methods also suggest a manual adjustment of these parameters in order to

predict the experimental results. Hence, these assumptions can lead to idealistic

situations that require accurate experimental designs for their proper use [79].

Nonetheless, with the correct experimental conditions in place, these methods

can be successfully applied to volume holographic gratings.

There are other analytical methods that predict the reflectivity of light in

periodic structures, such as fibre optics or waveguides [120,121]. These methods

are derived for those particular experimental designs, thus limiting their applica-

bility. Other methods provide a more general solution for periodic structures in

more than one dimension; for example, the one in reference [80] uses a ‘quantum

mechanics’ approach and a vectorial algorithm to compute Maxwell’s equations in

three dimensions. This method works for arbitrary periodic dielectric structures

and can be applied to the particular case of one dimensional photonic crystalsa.

aSolution available as software MIT Photonic Band Gaps at http://ab-initio.mit.edu/
mpb/
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Recapitulating from the different models above mentioned, the intensity and

wavelength of the reflected light in periodic structures depend on three main fac-

tors: The geometry of the structure; the angle of observation; and the intrinsic

material properties. The material properties give differences in refractive index n

affecting the light path and speed and are affected by the chemical nature of the

reactants used in fabrication: Metallic nano-particles and type of polymeric film

support. The angle of observation, fringe dimensions and spacing Λ are deter-

mined by the fabrication methods and experimental set-ups; i.e. the wavelength

of the recording laser and angle of recording.

1.3 Holographic sensors

A hologram integrates all the components required for a sensor to function. The

analogous elements to Figure 1.2 (S, T, M & RC) in a holographic sensor are: λ

or R as the signal; the periodic structure as the transducer; changes in Λ or n as

the sensing mechanisms; and the film or particles as the recognition components.

Considering that a flat hologram reflects wavelengths (λ) at fixed angles of

incidence and observation and this λ is a function of Λ and n (i.e. λ = f(n,Λ)).

Then, changes in Λ and n will drive the sensor response. This is the sensing

principle of a holographic sensor which has been harnessed to produce angle,

position and fingerprint sensors by measuring the interference of mechanical forces

with the objects [122–124].

Changes in Λ can be originated by expansion or contraction of the support

material. This expansion and contraction is caused by the chemical interactions

with the analytes. The fringes are made of metallic particles that are unlikely

to swell or contract. However, changes in refractive index can be triggered by

physicochemical modifications of the fringes or support materials. For instance,

metallic particles can undergo chemical transformations that modulate their re-

fractive index upon reduction or oxidation with chemical analytes [125]. The

polymers or hydrogels of the support material can also change their optical prop-

erties upon interaction with chemical agents or analytes. In summary, the princi-

ple of holographic chemical sensing consists in transducing chemical interactions

between analytes and hologram materials. The chemical changes ultimately cause
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Figure 1.7: Holographic sensing principle. Changes in the optical properties of the
materials and hologram geometry are caused by chemical interactions with the analytes
or mechanical stimuli. Overall, a change in reflectivity R of the reflected wavelength λ
is detected.

a change in the reflectivity or wavelength as illustrated in Figure 1.7. Because of

this, the chemistry of the hologram materials plays a key role in the recognition

chemical analytes.

Examples of holographic sensors are reported in literature. Holograms recorded

in gelatin by traditional methods have been used for sensing proteases, water-

solvent mixtures, alcohol content and humidity [94, 126–133]. Also, in aqueous

solutions coupled with biomolecules, cells or organisms expand their capabilities

and detection ranges [134–138]. Holograms produced in polymer hydrogels, such

as acrylate, acrylamide and vinyl alcohol, have been used for holographic sens-

ing of glucose, lactate, toluene, pH and different types of ions by introducing

extra functional groups [25,139–144]. Polymers in general have been explored as

potential sensor components due to their flexibility in terms of chemical modifi-

cations. Including functional groups in the polymers is a way of enhancing the

chemical and physical interactions with the analytes, thereby conferring improved

sensitivity and selectivity [145].

The use of hydrogel holographic sensors is limited to aqueous solutions or

aqueous environments due to the requirements of the holographic recording tech-

niques. This work explores the fabrication of holograms in non-hydrogel materials

for their use in non-aqueous environments or without interference from water.
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Aims of the project

The work described in this dissertation aims to:

• Produce holographic sensors for gaseous analytes; preferably, for hydro-

carbons, volatile organic compounds, oxygen and ammonia. Holographic

gratings will be used as transducers of chemical interactions between holo-

gram materials and gaseous analytes. The resulting changes in the bulk

will provide a replay wavelength change readable as a colourful signal.

• Propose holographic recording methodologies for non-conventional holo-

graphic recording materials; such materials are polymers that will provide

sensitivity to the targeted gas types. The current use of holographic sen-

sors is limited to hydrogels in aqueous solutions or aqueous environments;

therefore, the exploration and use of non-hydrogel materials for inclusion

of silver nano-particles and recording of holograms will be investigated.

• Understand how changes at the molecular level caused by gas-polymer in-

teractions affect the bulk properties of the holographic films. The concen-

tration and type of gas will be correlated to the strength of the molecular

interactions with the sensor components. The resulting changes in the holo-

graphic films will be translated to holographic reflection measurements of

wavelength and intensity.
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Materials and Methods

The sections below describe the materials and methods involved in the design,

construction, and testing of the holographic gas sensors. All reactants used were

of technical grade purchased from Sigma-Aldrich, UK unless otherwise specified.

3.1 PDMS films for holographic recording

Poly(dimethylsiloxane) (PDMS) films were prepared with the Dow Corning Syl-

gard 184 kit (from Farnell, UK), the instructions provided by the manufacturer

were followed to form thin PDMS films on glass slides. A 10:1 (v/v) ratio of

PDMS elastomer and curing agent solution were mixed thoroughly in a weighing

boat using a glass rod. The mixture was then deposited onto clean microscope

slides (75mm x 25mm) fixed on an even leveled surface. The glass slides were

coated with the polymer mixture using a Mayer rod no. 14 to obtain ∼ 32µm

thick films [146, 147]. Finally, the pre-formed unpolymerized films were cured in

a preheated oven at 70◦C for 2h. Optical microscopy in transverse sections was

performed to corroborate thickness. Alternatively, 0.8mm thick PDMS films were

prepared by depositing a volume of solution into a flat glass petri dish and cured

as previously described. The thickness can be controlled by varying the volume

of PDMS.

3.1.1 Nanoparticle formation in PDMS films

Conventional holographic recording techniques cannot be used to record holo-

grams in PDMS because of its immiscibility in aqueous solutions. The silver salts

need to be solubilized in hydrophobic solvents compatible with PDMS that cause

as much swelling in the elastomer as water does in hydrogels. In this way the sil-
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3. Materials and Methods

ver salts are transported into the film matrix by diffusion of the solvent solution.

There are several solvents that cause the PDMS to swell; for example, xylene,

chloroform, pentane, ether, hexane and tetrahydrofuran (THF), with THF caus-

ing the fastest swelling [148]. A silver salt that can be dissolved in THF is silver

pentafluoropropionate (AgPFP) and a reducing agent that can be used in com-

bination with AgPFP in THF is hydroquinone (HQ); this pair was selected to

introduce silver particles into PDMS films. Unfortunately, this type of silver salt

is not photosensitive enough and photosensitizing solutions for standard hologra-

phy will not work for this hydrophobic construct. Therefore, the approach was to

first produce the silver particles homogeneously distributed throughout the film,

and then reduce their size in an ordered fashion using laser ablation. This was

possible because of the high energy laser source available and because it has been

demonstrated elsewhere that high energy laser radiation can reduce the size of

large silver particles [149–152] (detailed in §3.3).

In situ formation of silver nanoparticles was accomplished as follows: 200µL

solutions varying in concentration from 0.01M to 0.4Ma AgPFP in THF were

deposited on top of different cured PDMS slides together with 200µL of a 0.1M

solution of reducing agent HQ in THF. The AgPFP and HQ solutions were simul-

taneously spread and mixed on the surface of the films with the help of a pipette

tip. HQ reacts with AgPFP as the solutions diffuse through the film, leaving

metallic silver that triggers the formation of metallic nanoparticles as shown in

Figure 3.1b. Subsequently, the films were dried with a hot air flow at ∼50◦C for

60s to remove the remnants of solvent. The films were rinsed thoroughly with

deionized water and ethanol to remove excess particles on the surface and dried

once again with an air flow. Additionally, a 4mm thick sample was prepared for

studying the perfusion of the silver nanoparticles in the PDMS matrix; the sam-

ple was prepared by depositing 5mL of the elastomer and curing agent mixture

into a flat 10mL glass petri dish and cured overnight, subsequently 0.2M AgPFP

and 0.1M HQ were deposited on the surface to form nanoparticles as described

above.

aconcentrations used [M]: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4
bthe molecular weight of HQ=110.11 g/mol, of AgPFP=271.90 g/mol
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Figure 3.1: Reduction of silver penta-fluoropropionate (AgPFP) with hydroquinone
(HQ) in a tetrahydrofuran solution (THF) yielding metallic silver nanoparticles.

3.2 Nafion membranes for holographic

recording

Nafion (tetrafluoroethylene-persulphonic acid copolymer) membranes were pur-

chased in sections of 15x15cm from AlfaAesar, UK. Two types with different

cation exchange capacitiesa were used: N-117, 0.180mm thick with 0.9meq/g and

NE-1035, 0.09mm thick with 1meq/g; designated, henceforth, as low exchange

capacity and high exchange capacity respectively (the latter is discontinued from

the fabricant).

3.2.1 Nanoparticle formation in Nafion membranes

The cation selective transport through the membrane allows only cations in so-

lution to permeate into the pores. Therefore, it was necessary to develop a novel

way of introducing the silver nanoparticles beneath the surface, specifically, for a

holographic recording process as described below.

Segments of the membrane (8mm x 22mm approx.) were purified by submerg-

ing them into 50mL of constantly stirred concentrated HNO3 (∼68%) at 45◦C

for 18h. This step removes organic impurities existing during the manufacturing

process [153]. After this, the membranes were washed in 50mL of stirred deion-

ized water at 50◦C for 25min. The purified and washed membranes were then

transformed to the ionic formb Na+ by soaking the membranes in a 0.25M NaOH

aCEC, measured in mili-equivalents of protons per gram of membrane (meq/g)
bNegative charges of sulphonic groups paired with positive Na+ ions
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Table 3.1: AgNO3 concentration in 0.1M NaNO3 and [Na+]:[Ag+] molar ratio.

AgNO3 [M] 0.001 0.004 0.007 0.01 0.025 0.05 0.06
Na+ : Ag+ 1000:1 250:1 142:1 100:1 40:1 20:1 15.5:1

cont... 0.09 0.1 0.14 0.2 0.3 0.4 0.5
11.1:1 10:1 7.1:1 5:1 3.3:1 2.5:1 2:1

solution for 24h. By transforming the membrane into its ionic form, the sulphonic

groups interact in equilibrium with sodium cations and all the ionic clusters are

occupied by them. Hence, silver cations can be loaded at a controlled rate by

substituting the sodium cations because of their difference in electronegativity.

After being conditioned with NaOH, the membranes were washed in deionized

water for 10min, then transformed to the Ag+ form by immersing them in 0.1M

AgNO3 for 30 min. The loading of Ag+ ions into the membrane is a diffusion

mediated process that depends on the concentration gradient provided by silver

ions in the surrounding solution and the loading time. It has been shown that

a 30min incubation ensures 100% loading of Ag+ ions (i.e. equilibrium) for

concentrations higher than 0.02M AgNO3 [154].

To control the Ag+ content in the membranes from 0% to 100%, it is possible

to either change the concentration of AgNO3 for a given time, or to change the

contact time with the AgNO3 solution for a given concentration. If the process

does not reach equilibrium, the distance that the silver diffuses into the mem-

brane might be different for the given conditions, thus affecting the holographic

recording process. In order to reach controlled loading, AgNO3 solutions of var-

ious concentrations were equilibrated with a 1.0M NaNO3 solution prior to the

Ag+ loading step. This yielded different concentration ratios of Ag+ and Na+

ions as shown in Table 3.1, and helped to find the optimal concentration required

for the formation of holographic gratings.

Once the Ag+ ions were loaded in the membrane, it was necessary to reduce

them to metallic silver Ag 0. The cation selective membrane with nano-metric

pore sizes cannot be reduced using customary holographic reducing solutions,

imposing a challenge for the nanoparticle formation process. Silver can sponta-

neously photo-reduce after long periods of exposure to light but not in the mem-

brane form Nafion-Ag +. To accelerate the process, a 0.1M solution of sodium
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borohydride NaBH4 was used; the strong reducing properties of NaBH4 reduce

Ag+ ions to Ag 0 forming a layer of BH –
4 ions on the surface that prevents the leak-

age of Ag+ ions from inside the membrane [155]. This process allows some NaBH4

to enter the membrane reducing silver beneath the surface to a distance up to

15µm [155]; this distance is enough to contain a few grating layers of a hologram.

The membranes were submerged in the NaBH4 solution and gently agitated to

avoid saturation of particles on the surface, then washed with deionized water

and wiped with a wet tissue. After the nanoparticle formation the membranes

were kept hydrated in deionized water. In addition, it has been shown that the

presence of nanoparticles in Nafion membranes does not affect their cation trans-

port properties, the sulphonic groups remain functional to provide ionic exchange

and sensing capabilities in the holographic sensor [155].

3.3 Optical grating formation by laser ablation

Contrary to typical holographic recording protocols the previously formed silver

particles were ablated to produce a holographic grating using a frequency doubled

Nd:YAG (Nd-Yttrium-Aluminum-Garnet) pulsed laser (Quantel, France). It has

been proven that high energy laser radiation can reduce the size of metallic par-

ticles to nano-metric scales [149–152, 156]. The laser energy output was 300mJ

with a 532nm wavelength and a 258 µs Q-switch delay (i.e. max. power). The

set-up for the recording is shown in Figure 3.2, the nodes of the standing waves

provide concentrated energy to ablate the preformed silver particles. In this set-

up, the laser beam from the source (A) is diverted using dichroic mirrors (B, C,

E) and a spreader lens (D) to finally strike the recording material (H). In order to

form the fringes at an observable angle, the recording material was placed at a 7◦

inclination from a mirror-like surface (G) with the help of a supporting rod (F).

The small angle is fixed to a known value for the corresponding angle φ shown

in Figure 1.6; this allowed a different angle for the reflection of the incident light

and the holographic reflections satisfying the Bragg angle ϑB. The laser spot was

fixed to 1cm in diameter and the assembly of recording material (H), mirror (G)

and support (F) were displaced accordingly to ablate the whole surface of the

recording material.
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Figure 3.2: Set-up for holographic recording by ablation. A Nd:YAG pulsed laser ‘A’
produces a laser beam deviated by dichroic mirrors ‘B’, ‘C’ and ‘E’ and a spreader lens
‘D’. The beam is reflected by a mirror-like surface ‘G’ through the recording material
‘H’ inclined at an angle given by the support ‘F’. The nodes of the standing waves
concentrate enough energy to ablate the preformed silver particles as sketched; drawings
not to scale.

PDMS films containing nanoparticles are flat after being cured on glass slides

and were shot twice with the laser at its maximum power immediately after the

nanoparticle formation. Nafion membranes on the other hand, present undulated

surfaces and are not completely flat with a tendency to curl in free form. The

holographic recording process requires the membranes to be flattened down onto

a transparent surface for exposure to laser radiation. In order to achieve that, the

membranes were dried with a hot air flow (∼ 50◦C) for 2min and then submerged

in an index-matching liquida that facilitates the laser light transmission through

the material avoiding reflections that diminish the quality of the recording. The

samples were washed with ethanol to remove the index-matching substance and

the edges of the membranes were fixed to microscope slides using clear tape

(Scotch R©, 3M). The use of transparent layers of material during the holographic

recording process introduces refractive index differences that affect the path and

wavelength of the light, thus altering the final outcome. Once fixed and flattened,

the Nafion membranes were also shot twice at the same laser power output. The

adecalin (decahydronaphthalene) n=1.47-1.48 or mineral spirit n=1.41-1.44
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distance from node to node of the standing waves corresponds to half of the

wavelength of the laser radiation used, and dictates the distance of the grating

period Λ. Contrary to standard holographic techniques the bright fringes were

formed where the laser energy is concentrated and the particles ablated; the

dark fringes, or the fringes containing particles, were formed in the anti-nodes as

depicted in Figure 3.2.

3.3.1 Optimization of Nafion hologram recordings

In further experiments, the recording methodology described in §3.2.1 was op-

timized for brighter and more responsive holograms by modifying the following

steps: Low exchange capacity membranes (Nafion-117) were exposed to 9:1 (v/v)

ethanol-water solutions of AgNO3 for 3s and to 1:1 ethanol-water solutions of

NaBH4 for 2min; using ethanol increases the swelling and penetration of the so-

lutions [157]. One side of the membrane was blocked by attaching it onto an

impermeable surface of tape or ethyl-cyanoacrylate resin prior to the loading of

Ag+ ions; having particles on both sides makes the recording process less effec-

tive and surface reflection artifacts might appear due to local reflections between

the interfaces when exposed to the laser radiation. The laser spot size was also

changed to determine the optimal exposure area that yielded brighter holograms

with fewer surface effects. In view of the fact that the heating and cooling sys-

tems of the laser were variable, it was more reliable to keep the Q-switch delay

constant for a maximum power output fixing it to 258ms. The laser spot changed

according to Table 3.2; as shown in Figure 3.3D, the spot was not completely cir-

cular due to the angle of the mirrors and lenses; its dimensions are reported in

Table 3.2 together with the conditions and orientations used during the recording

(Figure 3.3 A-C). The configuration shown in Figure 3.3C is the only one that

does not contain boundary layers between the standing waves reflected on the

hologram surface and was, therefore, preferred.
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Figure 3.3: Different ablation set-ups and spot size variation. (A) Lateral view of
recording film clamped between two glass slides for flatness with silver layer facing
laser beam. (B) Lateral view showing the side of the film containing the silver particles
facing the laser beam, (C) Lateral view showing the side of the film containing the
silver particles facing the reflective surface. (D) Frontal view of the slide and hologram
showing the dimensions of the resulting laser spot.

Table 3.2: Spot size variation for Nafion holographic recordings.

Sample 1 2 3 4 5 6 7 8 9 10 11
Index matching Yes Yes Yes Yes Yes Yes Yes Yes Air Air Air

No. of shots 1 2 1 1 2 2 2 1 1 2 5+
Configuration A A C C C C C C B B C

Y[cm]= 1.2 1.2 1.7 1.8 1.8 2.0 1.7 1.2 1.2 1.2 1.2
X[cm]= 1.4 1.4 1.9 1.9 1.9 2.5 1.9 1.4 1.4 1.4 1.4
?conditions described in §3.3 and configurations A, B, C in Figure 3.3.
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3.4 Analytical techniques for understanding

grating formation by laser ablation

3.4.1 Refractive index measurements

The refractive index of the films was measured using an ATAGO 4T Abbé refrac-

tometer. The samples were placed between two glass windows of the instrument.

After calibration, the windows were firmly closed to compress the samples to en-

sure full contact between the interfaces. An oil-based refractive index matching

liquid of n=1.62 (Rayner, UK) was used to ensure there were no air interfaces

between the instrument glass and samples; the index of the matching liquid was

required to be higher than the sample. Readings were taken using an optical scale

with accuracy of ±0.001. The temperature variation was accounted as ±0.003

refractive index units per degree Celsius. The temperature recorded on the refac-

tometer thermocouple was 25.4◦C during all measurements.

3.4.2 Absorption spectrometry of ablated and

non-ablated membranes

The PDMS and Nafion membranes loaded with nanoparticles were analyzed by

UV-visible spectrometry using a Perkin-Elmer Lambda 35 spectrophotometer.

Segments of the hologram were fitted in a 1cm cuvette fixed perpendicularly to

the spectrophotometer beam path. The cuvette was filled with water to reduce

beam mismatch between the interfaces. Absorption spectra were recorded at

240nm/min for wavelengths in the range of 300nm-900nm with a slit aperture of

2nm. The membrane samples were analyzed before and after ablation.

3.4.3 Microscopy

The resulting images were analyzed using image analysis software Fijia [158].

The Fiji software allows to automatically set the scale of the image and measure

distances, angles, areas, etc. It also contains scripts for particle size and colour

value analysis.

aa distribution of ImageJ available at http://fiji.sc
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3.4.3.1 Optical microscopy

Optical microscopy photographs were recorded with a Nikon Digital Sight DS-

2MV CCD detector mounted on a Nikon microscope. Surface photographs were

taken by placing holograms on the slide holder of the microscope. Transverse

sections of the hologram were analyzed by placing the slides or sections of thick

holograms at a 90◦ angle with respect to the microscope slide holder. Slanted view

photographs were taken by placing an inclining support under the microscope

slide to give a final angle of inclination of 45◦.

3.4.3.2 Electron microscopy

Transmission Electron Microscopy (TEM) was performed on a 200kV JEOL

200CX and a FEI Philips CM100 microscopes. The PDMS and Nafion samples

were mounted on epoxy resin to produce ∼100nm cross sections, and mounted

on Cu clip grids for the TEM sample holder. Since the metallic nanoparticles

should produce enough contrast on their own, no contrast agents were used on

the samples; thin and thick samples were analyzed.

Scanning Electron Microscopy (SEM) of PDMS samples was performed using

a JEOL 5800LV SEM equipped with a UTW X-ray detector and back scatter

diffraction camera. Segments of the samples (3mm x 0.6mm) were mounted

sidewise on an aluminum support and coated with a thin layer of Pt (∼100nm)

using a electro-sputter; the coating ensures the reflection of electrons from the

sample into the back scatter detector. Also, a Zeiss X-beam Focused Ion Beam

(FIB) /SEM was used to further analyze the samples; a section of the sample was

mounted on a silicon disc on a stainless steel support and coated with a thin layer

of gold (∼100nm). Milling of the sample with the FIB was executed at low ion

current at 50pA in an area of 30µm x 10µm, and observed with 2.0kV electron

density. The Fiji software was used for particle size measurements and particle

counts.

3.4.3.3 Atomic force microscopy

The PDMS samples were also analyzed using a NanoScope Atomic Force Micro-

scope (AFM) (Digital Instruments, Inc). The samples were used as formed on
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the microscope slides, whence the resulting holograms were washed with concen-

trated ethanol, dried with Nitrogen gas, kept upside down in dust free containers

to avoid contact with particles, and finally placed on the AFM sample holder for

analysis in scanning mode.

3.5 Holographic signal measurement

The holographic signal measurements were carried out in a dark room with spe-

cially designed movable fume extractors. All spectrophotometric measurements

were performed in the dark under the fume extractor flow. The results standard

error indicated by error bars for the sections below corresponds to the standard

deviation (1σ).

3.5.1 Sample preparation for exposure to analytes

For gaseous analytes, the PDMS holograms recorded on to glass slides were sec-

tioned with a diamond pen in 8mm x 25mm portions and fixed inside a 3mL glass

cuvette sealed with a flow-through cap. The cap was attached with polyacrylate

resin. Nafion holograms were fixed flat onto glass slides during the recording

process and the resulting holograms were enclosed in a flow-through chamber

specifically designed for flattened samples. The flow-through chamber designs for

containing the samples are shown in Figure 3.4; both chambers were tested for

leaks before exposure to gaseous analytes by using a continuous air flow.

For liquid analytes, the flow-through cap of the cuvette was removed for test-

ing the interaction of PDMS holograms with liquid substances. In the case of

Nafion holograms, it was preferable to fix them on transparent polystyrene 55mm

x 14mm petri dishes where the liquids were deposited on top of the samples.

3.5.2 Replay wavelength: Experimental setup

The flow-through cuvette for PDMS samples was mounted in a temperature con-

trolled cuvette holder; the holder allows for the adjustment of the front angle

of the hologram to capture the holographic reflection. A lens-terminated torch

(E10x12 lamp, 3.7V, 300mA, RS - UK) was used as the white incident light and
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Figure 3.4: Flow-through chamber designs. (A) Vertical configuration in glass cu-
vette. (B) Horizontal configuration on flat glass. Dashed lines represent internal cham-
bers represented, dotted lines fixing tape and ‘h’ represents the hologram surface.

a Oriel CCD reflectometer as the collector of changes in reflected wavelength;

Figure 3.5A shows the geometry of the set-up. Andor MCD software provided

with the spectrophotometer was configured to capture the percentage of holo-

graphic reflectance. The spectrophotometer program code was modified to pick

the maximum reflectivity peaks for wavelengths in the visible range. Calibra-

tion of the instrument was performed by subtracting the background signal with

the torch switched off in the dark; a reference signal was acquired with the torch

switched on over a hologram surface at a non-satisfying angle (i.e. no holographic

reflections); finally, the light source and detector were fixed at a ∼25◦ angle with

respect to the normal (ϑ). The Bragg angle was found by adjusting the angles in

the cuvette holder. The holographic response of PDMS holograms was measured

as a function of time for as long as it took to reach a stable maximum response

(i.e. equilibrium). The cuvette holder was connected to an automated water

bath to regulate or maintain the temperature for the temperature dependence

experiments.

The flow-through chamber for Nafion samples was positioned and fixed on a

flat-bed fibre optic spectrophotometer Avaspec-ULS2048-SLIT-25-VC (Avantes,

UK) with a halogen white light source Avalight-Hal-S (Avantes, UK) shown in

Figure 3.5B. The setup was connected to a computer via a USB using spectrum

analyzing software AvaSoft 7.2 in reflectance mode and configured to record the

peak reflectivity for wavelengths, also in the visible range. The calibration was

performed by subtracting the signal over a hologram surface at a non-satisfying
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angle, the ‘blank’; then, the fibre optic directing the light source was placed at

a ∼25◦ angle and adjusted to find the holographic reflections. Since the sample

holder does not offer a variable angle, the reflections satisfying the Bragg condi-

tion were found by changing the fibre optic positions. The holographic response

of Nafion holograms was also measured as a function of time long enough to

detect a maximum response at equilibrium.

For both cases PDMS and Nafion, a change in R and λ was expected upon ex-

posure to the analytes as the Bragg angle was kept fixed during the experiments.

The molecular analyte-hologram interactions are expected to generate a change

in the local Λ and n affecting R and λ values that are measured over time by

the spectrophotometer. The peak intensity values and their corresponding wave-

length were extracted and plotted against the analyte concentration or physical

parameter tested. In the case of a linear dependance, the data was fitted to a

linear model for which the correlation coefficient was given by rxy
a.

3.5.3 Proof of concept: Holographic response to stimuli

The holographic signal was recorded from PDMS and Nafion holograms respond-

ing to known external stimuli as a positive control and proof of the holographic

sensing principles; both types of hologram were tested to prove that it is actu-

ally possible to detect a reflected colour change when fringe spacing or refractive

indices are changed.

Nafion samples in petri dishes were exposed to deionized water 30s after ob-

taining a baseline since the refractive index of water differs from that of air and

the holographic materials (i.e. polysulphonic acid copolymer and metallic silver

nanoparticles). Therefore, a change in reflected wavelength and light intensity

were expected. This experiment required extra precautions, as changes in the

local environmental humidity and temperature could affect the performance of

the sensor due to its hydrophilicity. A relative humidity and temperature monitor

(Ebro, EBI20-TH, ±0.5◦C, ±3%RH) was used to monitor the drying of a pre-

wetted hologram: The hologram was wetted with deionized water and wiped-dry

with a tissue, then fixed in the monitoring chamber and exposed to a constant

aThe Pearson’s correlation coefficient equals N
∑
xiyi−

∑
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∑
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N
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Figure 3.5: Hologram interrogation setup. (A) Top view of vertical cuvette holder
setup for PDMS holograms: The variable resistance ‘a’ controls the light intensity pro-
duced by the lens-terminated torch ‘b’, the light is focused with ‘c’ on the frontal surface
of the hologram inside the cuvette holder ‘d’, the horizontal and vertical angles are po-
sitioned with ‘f’ to deviate the holographic reflections to the CCD detector through a
spreader lens ‘e’. (B) Frontal view of horizontal flat-bed setup for Nafion holograms:
The halogen light source ‘a’ directs the light through a lens-terminated fibre optic ‘b’ to
the hologram surface on the flat-bed ‘d’, the fibre optic heads are adjusted to capture
the holographic reflections with ‘c’ which are detected by the spectrophotometer unit
‘e’.
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flow of N2 and O2 gas for 1min (30mL/s) while recording the temperature and rel-

ative humidity at the outlet. The room under climate control was also monitored

for 24h to understand possible variations in the local humidity; the temperature

and humidity data logger was placed in the centre of the room 3m away from the

air conditioning unit.

PDMS, contrary to Nafion, is a hydrophobic elastomeric material; thus, changes

in the internal geometry of the contained hologram can be caused by simply

stretching or compressing the films. To prove this concept, a large 60mmx80mm

PDMS hologram was prepared without Mayer bar coating, the final measured

thickness was set to 0.76±0.04mm by pouring a certain volume over a rectan-

gular surface. The hologram was interrogated by stretching and compressing it

using the fibre optic AvaSpec spectrophotometer in a vertical position, the fibre

optics were separated by a ∼20◦ angle and adjusted to match the Bragg angle.

The force and pressure applied to the hologram were calculated by using known

weights as shown in the force diagrams of Figure 3.6. The hologram was stretched

evenly by clamping its extremes to a support and weights respectively, the effec-

tive stretched area was 60.1mm x 22.2mm. Additionally, the hologram on a flat

bed configuration was compressed by adding different weights over a circular area

of 1cm in diameter Φ. Knowing that F = m̄g where F is the applied force, m̄

the mass of the weights used and g the gravity constant 9.81m/s2; the changes

in reflectivity were related to changes in the geometry caused by the stretching

force. Similarly, P = F/A where P is the pressure, F the calculated force and

A the area on which that force was applied A = π(Φ/2)2; therefore, changes in

reflectivity, in this case, were related to changes in the geometry caused by the

compression of the hologram.

3.5.4 Exposure of PDMS holograms to gaseous analytes

High purity n-butane, 1-butene, 1-butyne, iso-butane, propane, propene, propyne,

ethane, ethene and ammonia gases used in this work were purchased in lecture

bottles (97%-99.5%) from CK-Gases, UK and Intergas Ltd, UK. High purity

ethyne (≥99%) and stabilized propyne in propadiene (48% propyne, 23% propa-

diene, 27% propene (v/v)) were obtained from a welding gas kit from MacKay,

Camb. UK. Oxygen, nitrogen and carbon dioxide were purchased from BOC
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Figure 3.6: Force diagrams and schematic representation of stretched and compressed
holograms. (A) Large hologram clamped on its edges evenly stretched in the direction
of the force F . (B) The hologram mounted on a transparent support and compressed
in the direction of the force F over an area A of 1cm diameter.

Ltd, UK in high purity cylinders (≥99.99%). The concentrations displayed in the

results chapters below were volume percentages from the known values of gas in

the lecture bottles and atmospheric air, unless otherwise specified.

For testing the performance of PDMS holographic sensors, the gases were

pumped into the sealed cuvettes using a 60mL plastic syringe. The gases were

collected into a syringe from the lecture bottles using a pressure regulator (4bar)

and a valve; the syringe fabricant specifies that for a taken volume V , there

is an error of 1±0.015V% [159]. For the following experiments, and given the

maximum volume taken of 60mL, an error of ∼2% prevails. After establishing a

constant baseline for 5s the gases were pumped in the cuvette at 12mL/s for 5s;

the signal was collected every second for 30s for the different hydrocarbons. In

a similar way, a flow of 6mL/s was pumped into the cuvette and stopped after

10s when the signal reached equilibrium to measure the signal decay, whence,

one of the cuvette orifices was opened to the atmosphere removing the syringe

connections. Data for the decay signal measurement was collected every 3s for

17 min while the gas diffused out.

For testing the concentration dependence, different hydrocarbon gases were
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mixed with air at different volume percentages directly from the lecture bottles.

The mixture was pumped in from the containing syringes into the sealed cuvette

at 10mL/s until a maximum response was reached, and then, washed with a

vigorous airflow. O2, N2, CO2, water vapour and air were measured in the same

manner as negative controls; the measurements were repeated for different gas

concentrations and a baseline was recorded for 5s prior to exposure.

For proving the repeatability and reversibility of the measurements, the gases

were pumped in at 10mL/s and an air flow of the same magnitude was used

to clear the gas from the chamber after reaching equilibrium. All the exposure

measurements were carried out at 40◦C, 22◦C and 4◦C (±0.5◦C) for each gas

and concentration using the self-controlled water bath connected to the metallic

cuvette holder with plastic tubing. The water bath flow was left on for 30min to

reach equilibrium before the experiments started; the temperature at the holo-

gram surface was measured by inserting a thermometer into the cuvette holder

while the reflectance data was recorded.

3.5.5 Exposure of Nafion holograms to gaseous analytes

High exchange capacity Nafion membranes were removed from the deionized wa-

ter flasks, blotted dry, and mounted on the air-tight chamber for gas exposure.

N2, CO2 and O2 (99.9%) were pumped into the chamber after a baseline was

recorded for 60s, a flow of 60mL/min (0.5bar relative to atmospheric pressure)

was used for 60s. In a second experiment for oxygen gas, the membranes were

exposed to the same gas flow for 45s in 4 intervals; after the signal recovered

its initial position the cycle was repeated to show the reversibility of the sensor

response. The response to ammonia was also tested; the holograms were exposed

to 10mL/min flow after a baseline was recorded for 60s; then, the recovery of the

response was recorded for 48h until a stable baseline appeared and repeated.

Unfortunately, the high exchange capacity membranes (NE-1035) were no

longer supplied by the fabricant, and thus low exchange capacity membranes (N-

117) were used for the following experiments. N2 (99.99%) , NO (99.9%) , CO2

(99.99%), O2 (99.99%), a mixture of hydrocarbons (65:35, butane-propane), and

0.19% (v/v) NH3 were tested on the low exchange capacity membranes under the

same conditions detailed for the high exchange capacity membranes above. The
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Table 3.3: Blot-dried membranes pre-exposed to a gas flow for testing oxygen dilutions
in different gases.

Sample pre-exposed to O2 dilutions
1 water in Air
2 Air in Air
3 Air in N2

4 N2 in N2

5 O2 in N2

repeatability for N-117 membranes was tested by exposing them to a 60mL/min

gas flow in repeated cycles after obtaining a stable baseline for 20min. These

experiments were performed on the flat-bed configuration spectrophotometer at

room temperature (23.5±0.5◦C). These set of experiments included membranes

recorded by the non-optimized method only (see end of §3.3.1).

The holograms recorded using the optimized method, also sensitive to water,

were exposed to O2 gas under different controlled conditions: The holograms

were blotted dry before fixing them into the air-tight chamber, the holograms

were pre-exposed to either water, a flow of air and then left to equilibrate for

72h, a flow of O2 or a flow of N2 for 10min, the dilutions of oxygen were made

either with atmospheric air or with N2. Since Nafion membranes are sensitive

to humidity, it is necessary to extract the real response to O2 by discarding a

possible false response caused by the gas flow drying the water in the hologram.

One sample was wetted with deionized water, the others were pre-exposed to air,

oxygen or nitrogen as shown in the Table 3.3. After a baseline was recorded for

60s each sample was exposed to different oxygen concentrations in air or nitrogen

as noted in the table. The gaseous mixtures were injected at 1mL/s gas flow

during 1min, in completion the flow was stopped and the signal was continuously

recorded while a constant maximum signal was reached, indicating equilibrium.

This process was repeated three times for the construction of the calibration

curves. The integration time in the spectrophotometer for these experiments was

100ms.

These improved Nafion holograms were also exposed to different concentra-

tions of gaseous NH3 up to 18% (v/v) in air using a 20mL/min flow. The samples

were exposed to the gas for 3min while measuring light intensity and wavelength,
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the recording was stopped after a maximum response was registered. All the

samples exposed to NH3 were blotted dry and let to rest under room conditions

for 18h (23.5◦C and 40% RH). To prove the repeatability and reversibility of the

sensor response, holographic signals were continuously measured in cycles. Each

cycle consisted of: 1min recording of a baseline, 1 min of a 1mL/s flow of 0.19%

(v/v) NH3, and 20 min of the chamber open to the atmosphere. The cycle was

repeated four times, continuously recording light intensity and peak wavelengths.

3.5.6 Exposure of PDMS and Nafion holograms to liquid

analytes

Exposure of PDMS holograms in liquid substances, such as water, volatile organic

compounds or solvents, was performed in the same cuvette configuration. The

hologram surface was covered with liquid filling the cuvette cell after the cap was

removed; after a 5s baseline was recorded, the signal was continuously measured

in 1s intervals until equilibrium was reached.

Nafion samples exposed to liquids were placed in the centre of flat and trans-

parent petri dishes. First, the holograms were fully covered with 5mL deionized

water until the signal reached equilibrium; then a baseline was recorded for 60s.

Salt solutions of 1.0M NaCl, 0.5M NH4Cl and 1M NH4OH were tested by in-

jecting 1mL into the deionized water using an accurate glass syringe (±10µL).

The signal recovery time varied for the three different salts. When the signal was

stable, another milliliter was added to the solution; this was repeated 6 times

or until no change was detected. In addition, a control experiment consisted on

injecting 1mL of water to the initial 5mL and continuously recording.

3.5.7 Temperature dependence

The temperature on the surface of the PDMS holograms was controlled with

an automatic water bath connected to the cuvette holder. A thermometer was

inserted to acquire the temperature values at the hologram’s surface. The cu-

vette was cooled and heated in repeated cycles for temperature ranges from 12◦C

to 63◦C. In the case of Nafion holograms, the flat-bed spectrophotometer was

heated up using a hot air flow. The temperature was measured by attaching a
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thermometer to the top surface of the hologram from 24◦C to 90◦C.

3.6 Molecular modeling

As mentioned earlier, the interaction between sensor components and analytes

can be indirectly measured by quantifying the holographic reflections. There are

limited experimental techniques to measure intermolecular forces directly, and

thus there is a motivation for simulating them at a molecular level. Atomistic

simulation of Molecular Dynamics (MD) helps to comprehend the influence of

the molecular structure properties in the bulk polymer. MD models have been

successfully applied and validated for solvent mixtures in PDMS membranes,

for hybrid polymer membranes containing inorganic compounds or nanoparticles

and for structural analysis of persulphonic acid membranes in fuel cells [160–

164]. In this work, MD simulations were used for the reconstruction of polymer

molecular structures in the holographic films. The simulations were carried on

using ‘Materials Studio’ software, Newton energy minimization methods [165]

and COMPASSa force fields [166].

PDMS membrane simulations required building a cubic cell of the cross-linked

PDMS matrix as follows: First, prepolymer and cross linker chains consisting of

17 [−Si(CH3)2 −O−] units were built atom by atom (see §4.1.1); then, one cross-

linker was attached to 4 evenly separated prepolymer units and mixed with 10

free prepolymer units; the resulting cross-linked PDMS chains were packed into

a cubic cell of (47Å)3; finally, molecular dynamics were applied to the atomistic

model with a 5000-step energy minimization and cut-off distances of 9.5Å. The

PDMS cell was used to calculate the sorption of different gas molecules; this

simulation used 45000 equilibration steps. In order to find the sorption sites for

the analytes in the PDMS matrix, the calculation included electrostatic and Van

der Waals’ potential energies.

aCondensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies
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Holographic Sensors for

Hydrocarbons and VOCs

4.1 Materials selection

Hydrocarbons and VOCs have aliphatic chains that interact with themselves via

hydrophobic interactions. These interactions are known as Van der Waals’ or

London dispersion forces and are caused by differences in electronegativity of

the neighbouring atoms in the carbon chains [167]. These differences generate

induced dipoles that attract the molecules together. Hydrophobic interactions

are ideal to trigger sensing mechanisms because they are reversible and governed

by equilibrium processes. Thus, the design of holographic sensors for VOCs and

hydrocarbons focused on using these interactions.

The recognition component of the sensor had to be able to form reversible

hydrophobic interactions with the analytes, i.e. it also has to be hydrophobic.

This material not only had to be compatible with the analyte but also comply

with the holographic recording process. In other words, the material had to

be hydrophobic, optically transparent and light sensitive for recording the laser

wavefronts.

There are several hydrophobic transparent materials, most of which are plas-

tics [168]. However, not all of them remain unmodified upon interaction with

VOCs. For example, in a test experiment, dissolution or deformation occurred

with polystyrene and prolypropylene. A cross-linked and elastic material that

does not dissolve or deform was a preferred matrix. A readily available material

that complied with these characteristics is poly(dimethylsiloxane) (PDMS). This

silicon elastomer is optically transparent and hydrophobic, and therefore ideal for

the construction of holographic sensors [146].
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4.1.1 Poly(dimethylsiloxane) (PDMS)

The polymer formulation consisted of a prepolymer and a cross-linker solution

containing a platinum-based catalyst. The prepolymer and cross linker reacts

to form entangled polymer chains, as depicted in Figure 4.1. The PDMS for-

mulation used was Sylgrad 184 with molecular weight of 55000g/mol, viscos-

ity of 5150cp, 16-18 monomera units for the prepolymer, and 8-9 for the cross

linker [146, 169–171]. Taking into consideration the molecular weight of the

monomer, the mass of a single strand was calculated to be 1119.6g/mol. Cross-

linked PDMS is optically transparent, inert, thermally stable, has low perme-

ability to water, and high permeability to atmospheric gases [146, 171]. These

properties, combined with the fact that it is a hydrophobic material, make it an

ideal construction material for hydrocarbon-VOCs sensors. PDMS is, however,

not sensitive to laser radiation, and thus light sensitivity has to be introduced

with external agents. Traditionally, light sensitivity is introduced in hydrogels by

soaking them in solutions of silver salts. However, aqueous solutions do not inter-

act or mix with hydrophobic materials; hence, an alternative method was needed.

The process of introducing light sensitivity was engineered for hydrophobic envi-

ronments as described in §3.1.1 and the results are in §4.2.

4.2 Film formation and nanoparticle perfusion

in PDMS films for holographic recording

First, it was necessary to form flat films on glass slides with a uniform thickness.

The Mayer bar used for coating the samples on glass slides yielded thickness of

∼23.7±0.6µm and not the nominal thickness 32µm; this due, perhaps to the

viscosity of PDMS or the cross-linking. However, the thickness was maintained

homogeneous as confirmed by optical microscopy in transverse sections of 4 sam-

ples. Figure 4.2A shows a transverse cross cut of the sample showing the glass

slide, the polymer layer and the air interface. Figure 4.2B shows the measured

thickness; it was obtained using the Fiji image analysis software by measuring

the distance with contrast in grey values.

a−Si(CH3)2O−
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Figure 4.1: PDMS cross-linking reaction and resulting polymer matrix of entangled
chains. (A) Primary reaction x = 16 − 18, y = 8 − 9. (B) Subsequent reactions. (C)
Sketch of entangled chains from multiple cross-linking [169,170]

.
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10µm

glass                                 film                                 air

A

23.1μm
B

Figure 4.2: Holographic thickness measurement. (A) Optical microscopy image of a
transverse section of a PDMS film on glass slide; the yellow line indicates the position
of the measurement in B. (B) Thickness measurement using grey scale contrast values;
the graph was generated by the image analysis software and the distance was taken
from the peaks of the grey value changes.
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THF was used for preparation of the silver salt and reducing agent solutions.

This solvent is known to cause significant swelling in PDMS membranes which is

necessary for improved perfusion [148]. By spreading the solutions on the surface

of the films, the silver salt and the reducing agent react as they perfuse in. The

solutions travelled through the films reacting and forming silver nanoparticles;

it is known that this process commences with the formation of nucleation sites

around which the nanoparticles grow [172]. After the solvent evaporated com-

pletely, the diffusion of the nanoparticles in formation, and the swelling of the

polymer ceased. After washing the films to remove excess silver, they appeared

as brown or green semi-translucent films. This coloration is indicative of the

formation of metallic silver nanoparticles (<100nm in diameter) [173].

The diffusion process limits the homogeneity of the concentration of particles

through the film. There is a gradient concentration that decreases with increasing

distance beneath the surface. Figure 4.3 shows a micrograph of a thick film used

to study this particular limitation. As noticed, there is a higher concentration

of particles near the surface than deeper inside the polymer. However, there is a

region near the surface where the concentration remains more or less constant for

a depth of ∼20µ (see Figure 4.3B). The 24µm thick films used for the recording

of holograms are within this reasonably uniform region.

4.3 Grating formation in PDMS films by

ablation

It was found that concentrations between 0.1M and 0.2M AgPFP were suitable

for holographic recordings. The 0.1M AgPFP solution yielded a hologram not as

bright as the one of the 0.2M AgPFP solution. Concentrations lower than 0.1M

produced fewer nanoparticles, and hence the contrast in refractive indices was

insufficient to produce a hologram. On the other hand, concentrations higher

than 0.2M were too concentrated to permit the laser light to pass trough and

form the fringes. Therefore, the optimum concentration chosen for the subsequent

recordings was 0.2M AgPFP.

Figure 4.4 shows a PDMS hologram after ablation. The typical holographic

green reflection can be seen when placed at the correct angle of incidence. Af-
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PDMSAir

B

A

Figure 4.3: Micrograph of a thick PDMS film after in situ formation of silver nanopar-
ticles. (A) Transverse cut of the film showing the distribution of silver particles as a
gradient which appears homogeneous ∼20µm beneath the surface; yellow line indicates
the position of the measurement in B. (B) Grey values showing the diffusion profile of
the silver salts through the film.

51



4. Holographic Sensors for Hydrocarbons and VOCs
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Figure 4.4: Photographs of holographic reflections and ablation spot area. (A) Portion
of a hologram showing the ablation area at the Bragg angle of incidence. (B) Same
hologram as A at a non-satisfying angle. (C) Full slide before sectioning; only a spot
reflection is seen because the illumination source was a spot-light. (D) Size comparison
of the ablation spot. (E) Magnification of the hologram’s surface showing the ablated
region and holographic reflection; λ ≈540nm.

ter ablation, the translucency of the samples increased and showed patches of

the randomly ablated particles. This uneven ablation pattern is perhaps caused

by a broad distribution of particle sizes; suggesting that only certain particle

sizes were ablated. Another plausible explanation is that the polymer film was

substantially cross-linked in those areas, and thus there were restrictions on the

growth or nucleation of the nanoparticles. Only a few nanoseconds of laser ex-

posure were required to form a bright grating. Therefore, the possibility of rapid

mass-producible holographic sensors is a significant advantage for holographic

sensors of this type.

It was observed that the films comprising a homogeneous flat surface formed

brighter holograms, since a flat surface generates less random reflection and re-

fraction, and therefore increases the uniformity and definition of the fringes. Well

defined fringes are paramount for the brightness and quality of holograms [174].
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Nevertheless, the final outcome of the laser recording also depends on the optical

set up, the laser quality, the efficiency of lenses and mirrors, and the efficiency

of the ablation process per se. The ablation of particles inside the holographic

film changes the homogeneity of the nanoparticles, and therefore determines its

quality and brightness [175]. All the factors mentioned above impose limitations

on the hologram quality, and thus the use of laser-based holography might not be

the optimum procedure for recording photonic gratings. Other grating fabrication

techniques such as controlled layer-by-layer assemblies or deposition could help to

optimize the brightness [176,177]. Notwithstanding these issues, the holographic

fabrication by ablation gives sufficient brightness to produce sensors.

In contrast to traditional holography, the fringes in the ablated holograms were

generated in the nodes of the standing waves. However, this geometry might not

be the one expected for a given laser wavelength. As light travels through the

material, it experiences transformations in the path due to differences in refractive

index. During the recording process the wavelength, direction and matching of

the standing waves are affected by the refractive index of the PDMS films and

silver nanoparticles. These changes are taken into account in the equations given

in §1.2.3.

The ablation of particles with high energy pulsed lasers has been applied for

the first time to silver nanoparticles in PDMS films. Therefore, comparable refrac-

tive index data is scarce. However, it is possible to estimate the content of silver

per PDMS slide knowing the salt concentrations, the density of metallic silver

(10.49g/mL) and the final volume of PDMS per slide (56µL). The stoichiometry

of the silver reduction reaction is shown in Figure 3.1; HQ is the limiting reactant

(0.1M) and AgPFP (0.2M) is in excess. Assuming that the reaction is 100% com-

plete for the limiting reactant, the maximum amount of metallic silver is 5.43mg

per slide. This mass corresponds to 0.009% in volume of silver nanoparticles in

the PDMS polymer. However, considering that the reaction is unlikely to be

100% complete, that not all the reduced silver formed nanoparticles, and that

most of the silver was cleared from the surface, then the fraction of silver that is

retained could be orders of magnitude lower. Thus, one of the limitations of this

hologram making methodology is the limited amount of silver available to form

fringes. Fringes with a few particles have a lower refractive index contrast, and

therefore limited brightness.

53



4. Holographic Sensors for Hydrocarbons and VOCs

Commercially available emulsions for the brightest high-resolution holograms

contain 20-30g/L of silver [178]. Optimum concentrations of 1.1 g/m2 in 10µm

thick films have been reported [178]; these values comprise 10.48mL/L or 0.01%

(v/v). Therefore, if most of the silver is transformed and retained in the PDMS,

and the particles are homogeneously sized and distributed, then PDMS holograms

by ablation can be as bright as the optimized commercial ones.

4.4 Analytical techniques for studying of

PDMS holographic films

In order to understand the fringe formation process, cross sections of the samples

were analyzed using different microscopy techniques. Image analysis of the film

micrographs also provided fruitful insights into the fringes.

4.4.1 Transmission electron microscopy

TEM imaging with the PDMS films is problematic. PDMS is a soft elastic ma-

terial that can be easily deformed due to local degrees of cross-linking. The

microscope electron beam can break these bonds and thereby degrade the poly-

mer. After processing the samples for TEM, it was found that the polymer with

nanoparticles absorbed electrons from the electron beam: The polymer became

‘charged’ and showed signs of degradation; thus, it was not possible to observe a

definitive structure.

Figure 4.5 shows different samples before and after ablation. Thin 200nm

cross sections were cut and embedded in epoxy resin. The thin samples curled and

bent because of the PDMS elasticity and electron beam power. The epoxy resin

also contains solvents that could have made the PDMS films swell and deform.

In consequence, it was difficult to observe fringes, although the nanoparticles

were detected and measured in several regions of the films. One solution to the

charging and degradation issues could be to reduce the voltage of the electron

beam. It has been shown that polymer samples can be imaged in detail at low

voltage in ultra-thin samples [179]. However, the elasticity of the PDMS film does

not allow thin samples to maintain their shape. Therefore, the preparation of a
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Figure 4.5: Transmission electron microscopy images of PDMS films with nanopar-
ticles. The thin samples curled and bent because of the PDMS elasticity and electron
beam power. Images were taken in the Philips TEM at 80kV for 700X direct mag-
nification, the scale bar measures 2 µm for all samples, and arrows highlight the Ag
nanoparticles.
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50nm500nm

A B
Figure 4.6: Bright field transmission microscopy image of PDMS films with nanopar-
ticles. (A) 15000X direct magnification; large particles were observed through the thick
film edge. (B) 100000X magnification; the high voltage destroyed the films but con-
glomerates of particles showed individual amorphous silver crystals. Images taken with
the JEOL TEM at 200kV.

thick sample seemed to be the only alternative to image the fringes with TEM: A

sample 20µm thick was prepared for this purpose. The sample was held in place

in the TEM chamber with clips on copper grids. Once again, the samples showed

‘charging’ due to the attraction of electrons making difficult the observation and

causing the polymer chains to degrade. The film thickness did not allow the beam

to pass through the sample. Therefore, only images of the edges were collected

and shown in Figure 4.6. The individual nanoparticles can be seen, counted, and

measured in the images; however, no fringes were identifiable. Figure 4.6B is a

magnification of a conglomerate of particles after the surrounding polymer was

etched away by the electron beam. The shape of the particles was not perfectly

spherical and showed random irregularities on the surface.

It was possible to record the diffraction patterns for the silver particles in

these samples using the selected area of diffraction mode of the JEOL TEM.

The recorded pattern was not conclusive about the crystal structure, although it

is similar to silver patterns reported in the literature [180, 181]. Its irregularity

suggests that there is a non-uniform array of the crystal planes [181,182]. Figure

4.7 shows a comparison between the diffraction pattern of the particles in the
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A B

Figure 4.7: Dark field selected area of diffraction pattern of silver nanoparticles in
PDMS. (A) Diffraction pattern of the amorphous crystals showing characteristic pattern
for silver particles. Image taken with JEOL TEM dark field, digitalized from a negative.
(B) Sketch of a typical non-spherical silver particles selected area of diffraction pattern
[180,181].

hologram with a typical silver diffraction pattern of irregular nanoparticles.

4.4.2 Scanning electron microscopy

In another attempt to image the holographic fringes, a transverse section of a

2mm thick hologram was analyzed by SEM. The aim was to image the fringes

on a side view looking for protuberances of particles on the cut, and also to

determine the distribution of silver beneath the surface using X-ray scattering.

To avoid electron absorption, the sample was fixed to an aluminum holder with

conductive tape, however it was not possible to identify a fringe pattern. Figure

4.8 shows the SEM sample preparation and results highlighting the position of

particle protuberances. The silver diffusion gradient can be observed near the

surface (Figure 4.8B), whilst a close magnification of this area is shown in Figure

4.8D. The lines visible along the surface were caused by the cutting blade.

X-ray scatter detection corroborated that, indeed, there were silver particles

embedded in the PDMS matrix. Figure 4.9 shows the energy distribution of the

back-scattered counts and the corresponding chemical element. The figure shows

peaks corresponding to C, O and Si from PDMS, Al from the support and Pt

from the coating layer. Most importantly, the peaks corresponding to the Ag

particles were also detected.
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Figure 4.8: Scanning electron microscopy of PDMS holograms. (A) Sample prepara-
tion attached with conductive tape to avoid electron absorption; top image shows the
platinum covered tape and sample, the insert corresponds to the sample alone showing
the scale. (B) Micrograph of sputtered sample with a thin layer of platinum covering a
portion of the transparent film, and the silver diffusion gradient in amber color running
in the top-rigth to bottom-left direction. (C) Low magnification of the edge of the
sample containing the nanoparticle gradient. (D) High magnification of the sample in
C; protuberances highlighted by arrows may correspond to the silver particles.
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Figure 4.9: SEM X-ray back-scatter detector counts from JEOL SEM. The element
peaks are indicated at their corresponding energy distributions in keV.

4.4.3 Scanning electron microscopy with focused ion

beam

SEM allowed to observe a cross-section cut of the holograms, however the surface

showed features corresponding to the blade and not necessarily the silver particles.

Focused ion beam was an alternative preparation method and produced a flat

surface on a transverse cut. It allowed to image individual nanoparticles on

an etched cross-section under SEM, as shown in Figure 4.10. The sample was

mounted on a silicon disc and coated with a thin layer of gold; it was carved in

the middle from the top surface to expose a transverse view. The SEM showed

a flat surface and nanoparticle protuberances; however, no fringes were detected

because of the particles spatial distribution. At low magnifications the particles

could not be observed and at high magnifications it is not possible to see their

distribution on the fringes. Nevertheless, it was possible to count and measure

the individual particles on the edged cross-sections.
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A B

C D

Figure 4.10: Focused Ion Beam etching SEM of PDMS hologram. (A) Sample prepa-
ration mounted on a silicon disc and coated with a thin layer of gold. (B) Beginning
of the etching process with FIB; light areas are caused by the electron beam; the dark
rectangle exposes the PDMS under the surface. (C) 45◦ angle view of the edged surface.
(D) Magnification of the side view, scale bar provided. Features that give contrast to
the image under SEM correspond to metals, thus the nanoparticles should correspond
to the features highlighted with arrows.
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4.4.4 Particle size distribution from electron microscopy

.

The image analysis software allowed the counting and measuring of large

numbers of particles from the different electron microscopy images. The PDMS

holograms showed a broad distribution of particle sizes after ablation with an

average diameter of 19.2nm: The results are summarized in Figure 4.11. The

particle counts are relatively small compared to other experimental work because

of the difficulties in imaging the PDMS films. It is probable that particles in

a certain range of sizes are ablated whilst others are not. The plots in Figure

4.11 correspond to counts after ablation and show that there is a region with

lower particle counts around 50nm in diameter. Since a normal distribution was

expected, it can be hypothesized that particles of ∼50nm in diameter were more

susceptible to ablation. The size could also be limited by the reduction reactions;

larger nanoparticles appear more often because of the low particle counts or the

magnification at which they were imaged. It was not possible to draw a final

conclusion from these results. It can be hypothesized that particles in the 50nm

range are more susceptible to ablation since an even distribution of sizes was

expected before ablation.

4.4.5 Atomic force microscopy

Another attempt at imaging the particles was using AFM for scanning the sur-

face exposing the embedded nanoparticles, either from the front surface or a

cross-section. AFM can resolve not only the presence of protuberances that may

correspond to the particles, but also the dimensions of said particles down to the

atomic level [183]. It was thought that the nanoparticle fringes could be notice-

able as bulges projecting off the front surface of the film. The results corroborated

that there were observable features on the surface. However, there was no ordered

profile from the suspected nanoparticles and the presence of dust interfered with

the observation; dust particles are easily attracted to the surface of PDMS, not

cross-linked bonds on the surface may cause the strong attraction of dust parti-

cles or debris. After scanning different areas of the surface, it was not possible to

measure a difference in the particle arrangement along the sample; whence, the
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Figure 4.11: Particle counts from TEM and SEM experiments for samples after abla-
tion. (A) TEM. (B) SEM-FIB. (C) The area of observation differs in both techniques,
some particles may not be visible by one of the techniques. To obtain an average
size distribution the both counts A & B were treated together giving 19.2nm average
diameter.
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fringes could not be defined with this method. Figure 4.12 and Figure 4.13 show

the AFM results and the 3D reconstruction.

4.4.6 Optical microscopy

To date, it has not proven possible to extract information relating to the fringe

formation in PDMS holograms using TEM, SEM or AFM techniques. This might

be explained by the low distribution of particles through the film: A cross-cut

only gives access to a thin section of the whole thickness. In consequence, the

particles appear randomly distributed and highly spaced across the cut making it

difficult to distinguish the fringes. An alternative method for imaging the fringes

is optical microscopy. However, there is a resolution limit when using optical

methods to image small objects. Two objects that are separated by a distance

below the diffraction limit cannot be distinguished as separate objects [184]. The

diffraction limit can be calculated for most optical microscopes as:

dl =
λ

2n sinα
=

λ

2NA
(4.1)

where n sinα is the numerical aperture NA. Depending on the optical set up the

limit is usually around 200nm. For the microscope used in the following exper-

iments it was possible to calculate the diffraction limit using Equation 4.1.The

values of α and n were provided by the fabricant as 1.5 and 65◦ respectively [185].

For the calculations, an average wavelength of 550nm was used, giving NA=2.72

and dl=202.3nm. Without considering the effect of refractive index, the separa-

tion of the standing waves should give fringes separated by ∼266nm. Therefore

it is theoretically possible to image the fringes optically. However, the sample

has to be cut in a way that the light travels through the fringe planes without

interference; which was not possible in this case.

Looking at the geometry of the hologram in Figure 4.14, the separation

between the fringes on the surface of the hologram h must be visible. Since

sin Φ = Λ/h, Λ=266nm and Φ=7◦; then h=2.28µm and should be visible with

the microscope.

In order to image the fringes, the sample was placed at an angle for the light to

travel through the edge showing the separation. Figure 4.15 shows photographs of
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A

B

Figure 4.12: AFM scan of a PDMS hologram surface. (A) Height measurements. (B)
Phase measurements.
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Figure 4.13: AFM scan of the surface of a PDMS hologram in perspective.
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Figure 4.14: Sketch of the fringe geometry. (A) Fringe separation on the surface
is larger due to angled planes. The centre of the dark fringe is represented as a line
for illustration of the geometry. (B) Planar geometry of the fringe planes used for
calculations.
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the edge of the hologram and the fringes. The focal plane was not perfectly aligned

with the fringes. However, it can be seen that the lines are evenly separated along

the edge. A raw image shown on Figure 4.15A shows the position of the fringes

at the edge; the same image was digitally enhanced in Figure 4.15B to highlight

the dark fringes.

The image dimensions and position of the fringes were measured with the im-

age processing software. Figure 4.16A shows the fringes highlighted with dashed

lines and the lines where the measurement was taken. Figure 4.16B shows the

grey values profile measured and the distance in micrometers. The separation

between the fringes was 3.07±0.16µm for a fringe spacing Λ of 374nm and fringe

thicknesses a and b of 187nm. This measurement was within 25.7% of the cal-

culated value. However, whilst indicative, it was not conclusive for determining

the fringe separation because there was a large variation in the angle of measure-

ment and the angle of the cut which were difficult to controla. Furthermore, the

presence of silver particles is likely to affect the local refractive index of the film,

and, fringe formation by ablation can generate portions of the film with differ-

ent refractive indices. Overall, these local refractive index variations may have

changed not only the average refractive indices, but also affected the amplitude

of the wavelength of the laser [186, 187]; thus, the fringe patter could have also

changed dimensions.

4.4.7 Absorption spectroscopy

Absorption spectroscopy has often been used for characterization of nanoparticle

formation [188]. Thus, it could give additional information about the ablation

process. It has been shown that the surface plasmon resonance of silver nanopar-

ticles changes for different particle sizes and spatial distribution in the polymer

films [188,189]. The typical Surface Plasmon Resonance (SPR) absorption of sil-

ver nanoparticles shows a peak value near 410nm [190–193]. In this work, a colour

change was observed after particle formation and ablation. Figure 4.17 shows the

characteristic absorption spectra. Interestingly, the peak shifted from 410nm to

near 400nm after ablation. Comparing these results with the absorption profiles

of commercially available nanoparticles reported elsewhere [194], the peak posi-

acorrecting for a cut angle of 50.6◦ the perpendicular distance in the image is 2.37µm.
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20μmA

B

Figure 4.15: Optical imaging of PDMS hologram indicating the presence of fringes.
(A) Raw image indicating the presence of fringes at the edge of the cut highlighted
by the arrows. (B) Same as A with an superposition of an enhanced contrast image
to highlight the dark fringes. The large dark particles are optical artifacts from the
microscope lens. Scale bars are 20µm.
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B

10μm

A

Figure 4.16: Measurement of the fringe spacing in PDMS holograms by optical mi-
croscopy. (A) Enhanced contrast image of the fringes with dashed lines used for defining
the geometry. (B) Measured grey values in the direction of the yellow lines for deter-
mination of the fringe spacing; the sharp peaks correspond to the inserted dashed lines
and the image features in the background. Images taken with the mounted digital
camera on the Nikon microscope.

68



4. Holographic Sensors for Hydrocarbons and VOCs

O
D 

[a
.u

.]

0

1

2

3

Wavelength [nm]
300 400 500 600 700 800 900

Clear PDMS
PDMS film + Ag0 n.p. Ablated
PDMS film + Ag0 n.p.

Figure 4.17: Absorption spectrometry of a PDMS film containing silver nanoparticles
before and after ablation. The typical absorption peak due to the surface plasmon
resonance of silver nanoparticles was shifted after ablation. The graph shows plots for
two samples. Ag 0 n.p. stands for metallic silver nanoparicles.

tion after ablation corresponds to a reduction of size from 35nm to 15nm, similar

to what was inferred based on Figure 4.11.

There are factors that affect the absorption profiles of nanoparticles in polymer

films: The space between the particles, their shape, and their sizes affect the

absorption peak profiles [188, 189, 194]. Nevertheless, it was clear that for the

PDMS holograms a change in the absorption profile occurred before and after

ablation. Surface plasmon resonance and related light absorption phenomena are

important to consider for the holographic signal reading. The light interference

or absorption with the particles in the gratings may cause the holographic signal

to change. Although, the change can be very small to be considered if compared

wit the large intensity values of the holographic reflections.

SEM, TEM, AFM and optical imaging techniques used for understanding the

physical nature of the PDMS holograms encountered problems defining the fringe

pattern or the presence, sizes, or the spatial distribution of the silver nanoparti-

cles. Optical imaging of an edge of the hologram proved to be able to show the

presence of fringe-like features on the surface, which dimensions correspond to

the ones expected for the holographic fringes. Nevertheless, further studies are
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Figure 4.18: Signal measurement and background correction for PDMS holograms.
(A) Hologram reflection and background light raw spectra. (B) Extracted hologram
peak only.

recommended to fully understand the fringe formation in PDMS. Imaging the

fringes in other materials could be an alternative (see §5.3)

4.5 Holographic signal measurements

The holographic signal was taken as the peak wavelength of the reflected light

from the holograms. The reflections were recorded with a spectrophotometer

as photon counts in the visible range. The wavelength at which the count was

the highest corresponds to the holographic signal. The spectrophotometer mea-

surements are described in §3.5. The signal measured after holographic recording

showed characteristic peaks near the wavelength of the recording laser of∼532nm.

The recorded spectra are shown in Figure 4.18A, which also includes the back-

ground reflections from the incident light on the cuvette surface. Subtracting

this background signal from the total holographic reflection leaves a corrected

holographic signal shown in 4.18B. This calibration procedure was repeated for

all subsequent experiments and model fitting.
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4.5.1 Mathematical models for reflection spectra

The wavelength of the characteristic reflection peak of the PDMS holograms was

near that of the recording laser. This was expected, on the assumption that

the value of the product n cosϑB ≈ 1 and that the value of Λ is ∼ λ0/2 from

the standing waves, in which case, Equation 1.5 can be simplified to λ = 2Λ,

whence, λ ≈ λ0. This approximation, however useful, is too simplistic and does

not give more information about the peak position and intensitya. An extended

mathematical model that predicts intensity for the whole spectrum has been

introduced in §1.2.3. This model requires knowledge of the refractive indices of the

layers, their number, and spacing in order to predict the holographic reflections

for any given angle of observation.

The fringes generated by ablation do not have uniform refractive indices; in

fact, it is difficult to draw the boundary between the dark fringes and light fringes.

The dark fringes have a higher refractive index in the centre, whereas the light

fringes have a lower refractive index. The transition between the two is a gradient

rather than a fixed value due to the nature of the standing waves (see Figure 1.6).

Therefore, in order to use the models effectively, average refractive indices were

assumed for the geometry in Figure 1.6.

According to some publications, transparent PDMS should give a refractive

index of 1.44 for the curing times used in this study [186]. Others have cal-

culated that the refractive index of composite polymer films loaded with silver

nanoparticles increases up to 2.0, depending on the shape and size of the par-

ticles [187]. For the concentration of 0.01% used in this work, a value of 1.5 is

expected for wavelengths in the visible range [187]. In consequence, the resulting

average refractive index of the ablated fringes should lie below this value. It has

been reported elsewhere that the refractive index of silver particles dispersed in a

polymer matrix increases by 0.1 unit for every 10nm reduction in diameter [195].

Assuming that the ablated nanoparticles were reduced to 30nm in diameter, as

suggested by the electron microscopy and absorption spectroscopy results (§4.4.4

and §4.4.7); then, the refractive index for the ablated region should be 1.47. This

aThe assumption that n cosϑB ≈ 1 is not necessarily valid for all cases; for n ∈ [1.33, ..., 1.50]
and ϑB ∈ [5◦, ..., 45◦] the product n cosϑB ∈ [0.94, ..., 1.49]. The assumption is completely valid
for traditional gelatine holography where: n=1.538 and ϑB=45 [96, p239].
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refractive index contrast is necessary for the photonic effect to occur. Another

way of estimating this value is averaging the average refractive indices of the

polymer composite and cured PDMS; the result also gives a refractive index of

1.47.

In order to corroborate the estimated and reported values, the refractive in-

dices of the films were measured using an Abbe refractometer. The refractive

index of clear PDMS was 1.438 and the film with nanoparticles was measured

as 1.502; both values are consistent with those reported in literature [186, 187].

However, there are no reported values for the ablated regions, nor was it possi-

ble to measure them directly. A possible solution could be to ablate the films

a second time in the position of the dark fringes to ensure a uniform ablation

throughout the film. This would leave a film with no optical grating and in order

for this to happen the position of the film should be controlled nanometrically. If

this movement was performed at random, the ablated particles could be ablated

again and affect the overall measurement.

Calculated and estimated values were input in Equation 1.13 to model the

photonic effect mathematically. The model also required knowledge of the number

of fringes which were estimated from the microscopy results. It was determined

that up to a depth of 27.3µm beneath the surface of the holograms, a total of 150

effective fringe layers contributed to the reflection.

The final values included in the mathematical models were: 150 fringe layers;

1.50 refractive index of dark fringes; 1.47 refractive index of light fringes; 20◦

and 25◦ angles of observation for the different experiments; and 187nm fringe

thickness. The photonic model prediction proposed by Yeha described in §1.2.3

[116], and the experimental data for a non-exposed PDMS hologram are plotted

in Figure 4.19. The maximum photon counts of R were normalized to match

|rq|2. Variations in the sharpness of the peak in Figure 4.19 may be due to the

normalization, the calibration with the light source, or lower brightness of the

PDMS holograms compared to other grating systems.
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Figure 4.19: Experimental data compared to mathematical model of holographic
reflection spectra in PDMS holograms.

4.5.1.1 Photonic model implementation and sensitivity

In order to test the sensitivity of the model, different input parameters were

tested to compare the final outcome. Figure 4.20 shows the results of these trials;

the initial values for the input were n1=1.45, n2=1.49, L=50, Λ/2=150nm and

θ=25◦. Then, higher and lower values for n2, L, Λ/2 and θ were respectively

inserted into the model without changing the other initial values.

The model was noticeably sensitive to variations in the input parameters:

For example, a change of 0.2 units in the refractive difference index produced a

∼5nm and ∼50% change in λ and |rq|2 respectively; removing 25 layers halved

the intensity but did not affect the peak position; a change of 5◦ in the angle of

observation resulted in a ∼10nm wavelength shift; and a change of 15nm in the

layer’s thickness shifted the peak position by ∼30nm. The effect of these changes

is shown in Figure 4.20.

For the actual experimental data, the number of layers and the angle of ob-

aEquation 1.27 using a Mathematica R© snippet [196]. The computing code is given in
Program A.3 in the Appendix.
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Figure 4.20: Sensitivity of the mathematical model to variations in the input param-
eters. The plots show variations in angle θ, number of layers L, difference in refractive
indices |n1 − n2| and fringe thickness Λ/2. Solid lines represent the same values for all
different colours: n1=1.45, n2=1.49, L=50, Λ/2=150nm and θ=25◦. The dashed and
dotted lines correspond to variations in the values of the parameters indicated by the
legend. Curves are plotted for the TE wave only; TM waves were roughly in the same
position.
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servation were fixed. Therefore, changes in wavelength were mainly caused by

changes in fringe thickness, and changes in reflection intensity by the refractive

index differences. The model predicted the peak wavelength position of the TM

and TE waves roughly at the same position with respect to the experimental

values. The model fit deviated by <1nm from the experimental data.

One of the disadvantage of the model is that it does not consider the quality

of reflection in the fringes, which in this case, is given by the amount of silver

particles referred to as the reflection efficiency. For this reason, the model could

not account for changes in reflection intensity that were not caused by changes in

refractive index. When stretching the holograms, for example, the space between

the silver particles also changes, thus reducing the quality of the interfaces and the

reflection efficiencya. Nevertheless, a conclusion can be drawn from these results:

The mathematical model agreed with the peak position in the experimental data

as seen in the plot of Figure 4.19.

4.5.2 Proof of concept: Response to mechanical stimuli

The expected response of the holographic gratings when exposed to gaseous an-

alytes would be a change in λ caused by a change in Λ or n as predicted by the

model. In the case of PDMS holograms, VOCs are partitioning into the film as

chemical reactions with the metallic nanoparticles are not be expected a change

in the refractive index of the particles would also be unlikely. The presence of

the VOC may, however, change the refractive index value of the polymer. This

change if present would be insignificant compared to the change caused by the

swelling of the polymer. In order to confirm that the reflected wavelength can be

altered by changing the spacing of the fringes, a thick hologram was stretched and

compressed while recording the holographic signal. These external stimuli caused

a bulk deformation which, in turn, resulted in a change in the fringe spacing.

Figure 4.21 shows the reflection spectra of a PDMS hologram as it was com-

pressed, including the background signal. The wavelength and intensity decreased

as the hologram was compressed by applying pressures up to 671 kPa. The ex-

periment was repeated adding and removing pressure; Figure 4.22 shows a plot of

aThe space between the particles increases and the fuzzy line between the dark fringe and
light fringe is less distinguishable. Thus, there is more transmittance in the direction of the
vector K and, as a result, less incoming light is reflected reducing the reflection efficiency.
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Figure 4.21: PDMS hologram response to compression. Raw spectra recorded for
applied pressures in the range of 0-671 kPa. The pressures were calculated knowing
the mass applied over a 1cm diameter circular area.
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Figure 4.22: Correlation of peak wavelength and applied pressure for a PDMS holo-
gram. The values correspond to the peak wavelengths of raw spectra as in Figure4.21.
Pronounced error bars (standard deviation, 1σ) are caused by hysteresis due to com-
pressing and decompressing.
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Figure 4.23: Continuous recording of the peak wavelength during a compression-
decompression experiment. The changes were reversible over longer periods of time
but not for the short duration of the experiment.
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Figure 4.24: Response to stretching of a PDMS hologram. Raw spectra recorded
for stretching forces in the range 0.62N to the maximum available load of 5.75N. The
forces were calculated by knowing the mass applied in the direction of the stretching
(see methodology).
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Figure 4.25: Correlation between peak wavelength, intensity, and applied force for a
PDMS hologram. The values correspond to the peak wavelengths of raw spectra as in
Figure 4.24. There was no noticeable hysteresis in this case.

replay wavelength versus pressure. This result was highly influenced by the elastic

properties of the PDMS film; for example, there was high variability for certain

values because of the hysteresis caused by the slow relaxation of the polymer. The

response changed at a rate of 58kPa per nanometer but it did not return to the

initial λ value immediately after relaxing the compressed films. Figure 4.23 shows

a countinous measurement increasing and decreasing pressure showing hysteresis.

Figure 4.24 shows the reflection spectra of a stretched PDMS hologram. There

was a reduction of the peak intensity and wavelength as the stretching force

increased to 5.75N. There was no noticeable hysteresis within this force range.

The linear correlation of force against wavelength change and intensity is shown

in Figure 4.25. The total change was 27nm with a rate of 5nm/N and ∼60%

reduction of intensity.

The hologram dimensions were measured before and after stretching to com-

pare the results with the mathematical model. H, w, l and V are the height,

width, thickness, and volume of the hologram respectively (see Figure 3.6). The

initial dimensions were 22.10mm x 60.10mm x 0.76mm and 24.69mm x 60.08mm
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x 0.68mm when stretched at 5.75N. Assuming that the total volume does not

change, the distance between the fringes can be calculated using the relation:

V1 = V2 or H1w1l1 = H2w2l2. Substituting the measured values, the ratio l1/l2

was 1.11. Assuming the geometry of the fringes, the thickness of the layers in the

hologram will change accordingly, and thus for Λ1=187nm, Λ2=168nm. These

values were used in the model to compare with the experimental data; the results

are shown in Figure 4.26. The value of ∆λ predicted by the model was 20nm

larger than expected.

Stretching the hologram contracts the fringes in one dimension but expands

them in another one. This resulted in a reduction of the fringe spacing but an

increase in the spatial separation of particles within the fringes. In other words,

there are fewer particles per unit area on the fringe planes. This could cause

changes in the local refractive indices which could account for the 20nm offset

shown in the model. Furthermore, the Bragg angle and the light spot are in

different positions after stretching. Even though small changes in the angle of

the fringes are negligible, the intensity and wavelength of the peak could have

changed. Nevertheless, the model predicts the same type of shift towards shorter

wavelengths. Stretching and compressing the hologram proved to affect directly

the fringe spacing and, therefore, the reflectivity and wavelength.

In an attempt to link the elastic properties of the hologram to the reflection

results, the measurements of the dimensions were combined with a strain-stress

model. This made it possible to link the mechanical properties to the photonic

effect, such that a change could be predicted when the hologram was mechanically

stimulated, in other words, to predict a colour change for a given stretching or

compressing force. The elastic properties of the hologram are defined in terms

of the stress and strain which are given by ε = u/H and σ = Eε respectively.

These values are related to the applied force by F = A0σ, where ε is the tension

or strain, σ is the stress, E is the Young’s modulus, u is the length gained after

stretching H2−H1 and A0 is the area of the film before stretching (see Figure 3.6).

For these experiments E=36.9kPa, which is lower than the reported values for

this formulationa. This discrepancy could arise because of the presence of silver

particles in the film or the solvent treatment during the perfusion of the silver

aE for Sylgard 184 with 10:1 mixing ratio is 1.84MPa at 23◦C; see references [197,198].
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Figure 4.26: Mathematical prediction and experimental values of holographic re-
sponse to stretching in PDMS holograms. The experimental data is normalized and
corresponds to the hologram with 0 load and stretched with a 5.75N force as indicated
in the legend. The model predicted a larger shift.
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or the curing times and temperatures used or, most likely, the breakage of linked

polymer chains during the ablation process. It has been shown that, despite

its optical transparency, PDMS can be completely ablated using high energy

lasers [199,200]. Despite the difference in the elastic properties, the mathematical

model can be used as a predictor of the behavior of the sensor, at least for

predicting the direction of the shift. The aim of these set of experiments was

to prove that a change can be inflicted in the holographic reflection by applying

external stimuli, and thus prove holographic sensing principle, as it was shown.

4.5.3 Proof of concept: Response to thermal stimuli

In order to prove that the expansion of the polymer matrix can also give a change

in the holographic signal, energy was given to the system in the form of heat. As

the temperature raised, a change in the molecular conformations of the PDMS

chains is expected due to thermal expansion of the polymer. Figure 4.27A shows

the wavelength changes for temperature increments over time. The temperature

of the surface was kept constant while recording each data point with variations

no higher than ±0.5◦C.

There were no significant variations for small temperature changes; the tem-

perature change affected the hologram by 0.25nm/◦C (Figure 4.27B), which is not

significant compared to the analytical signal (§4.6.1). It was also noted that there

was no hysteresis, this is important to consider for the rest of the experiments

with this system. The response to thermal stimuli confirms again the holographic

sensing principle for the expansion of the fringes. A change in refractive index

may also affect the overall wavelength shift, since refractive index is dependent of

temperature, however this change would not be enough to affect the shift caused

by change in the fringe spacing.

4.6 Holographic sensing of hydrocarbons and

VOCs

A holographic sensor uses the molecular interactions with analytes to generate

a change in either Λ or n. Hydrocarbons and VOCs do not cause chemical
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Figure 4.27: Holographic response to thermal stimuli in PDMS holograms. (A) Peak
wavelength over time as the system was heated and cooled. (B) Linear correlation
between peak wavelength and temperature with a change rate of 0.25nm/◦C.
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changes in the silver particles when in contact with them. Furthermore, there is

no evidence of chemical reactions between the silver particles and hydrocarbons

which could change their refractive index. Therefore, hydrocarbons and volatile

compounds will only cause changes in the fringe spacing because of polymer

swelling or concentration. These substances are usually gaseous but some can be

found in the liquid state under ambient conditions. Results for gases and liquids

are reported separately in the sections below.

4.6.1 Gases

The PMDS holograms were placed in the test cuvettes with the spectrophotome-

ter configurations described in the Materials and Methods. The experiments

were designed to test the sensing capabilities of the films, such as repeatability,

reversibility, sensitivity, detection limits and hysteresis. The results showed that

for all holograms fabricated in PDMS films the signal change was, in fact, re-

peatable, reversible and continuously recordable. For example, Figure 4.28 shows

the response to 99.5% (v/v) iso-butane followed by purging with air. The gas

was injected, as indicated by the arrows in the Figure, and then flushed out

of the chamber after reaching a maximum response. This cycle was repeated

continuously at least three times without affecting the level or response.

In order to prove the usability of the holograms as sensors, different concen-

trations of the hydrocarbon gas were injected into the cuvette to measure the

holographic response. Figure 4.29A shows the response to different concentra-

tions % (v/v) of n-butane. The gas was continuously added and purged with

air allowing the hologram to recover its initial state. The peak position shifted

to a different wavelength for each concentration tested. Plotting the wavelength

against concentration gives a linear correlation; as shown in Figure 4.29B. Similar

results were obtained for all the other gaseous hydrocarbons. These results indi-

cate that a holographic grating in PDMS can effectively be used for the sensing

of hydrocarbons.

The hologram was not only operated in continuous cycles of exposure, but

also displayed no hysteresis. Figure 4.30A shows how different concentrations

can be tested in repeated cycles for n-butane and Figure 4.30B shows a concen-

tration cycles from high to low and low to high for 1-butene. It was difficult
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Figure 4.28: Holographic response to 99.5% (v/v) iso-butane gas. The gas inlet
is indicated by the arrows; air was used to flush the gas out of the cuvette after a
maximum value was reached.

to detect wavelength changes below 5% due to the relatively small changes in

the fringe spacing and the sensitivity of the spectrophotometer; this value cor-

responds to a 1.5nm wavelength shift. The sensitivity of the hologram depends

principally on the intensity of the reflected wavelength and the detection limits of

the spectrophotometer. The Oriel spectrophotometer used in these experiments

can resolve down to 0.3nm, equivalent to a sensitivity of 1% (v/v) in concentra-

tion. The sensitivity, thus, depends primarily on the quality of the holographic

reflections, which in turn is given by the sharpness of the wavelength peak and

the reflectivity in combination. Nevertheless, the detection range that can be

measured extends from 5% up to 100% (v/v), which is advantageous for some

industrial applications and is still significantly broader than the commercially

available sensors with fixed concentration limit (i.e. for limits within regulations,

non-variable) [12].

The wavelength shift for some of the gases resulted in an obvious change in

colour that could be potentially read by ‘eye’. Figure 4.31 shows photographs

of the hologram when exposed to different concentrations of 1-butyne. A colour

change can be seen from 0 to 98%; however, the colour transition at intermediate

concentrations may not be discernible by the human eye (see §4.9 for further

explanation and analysis of the colour change in these images).
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Figure 4.29: Holographic response to different concentrations of n-butane. (A) Con-
tinuous recording of the response cycles for air-gas injections of different concentrations.
(B) Linear correlation of maximum wavelength values and n-butane gas concentration
in % (v/v).
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Figure 4.30: Repeatability and reversibility of the holographic response to hydro-
carbon gas concentrations. (A) Cycles of exposure to concentrations of n-butane and
repetitions. (B) Cycles of exposure from high concentration to low concentration and
vice-versa for 1-butene.

Figure 4.31: Photographs of the hologram reflection when exposed to 1-butyne. Green
colour at 0% (v/v) and red colour at 98% (v/v). Digital images were taken with an
SLR camera with a CMOS sensor; colour transition may not be obvious due to color
perception, digital image processing and printing (see §4.9).
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Figure 4.32: Mathematical prediction of holographic reflection peaks for exposure to
n-butane. The model was adjusted to a 60nm wavelength shift to calculate the fringe
swelling ∆Λ.

The mathematical model was used to estimate the swelling of the polymer

based on the wavelength shift ∆λ. Assuming that n1 and n2 do not change, the

contribution ∆λ is related to a change in ∆Λ only. Figure 4.32 shows the fit of the

experimental parameters with the the wavelength allowed to vary for the 60nm

shift for 99.5% (v/v) n-butane. The model showed that for this shift, a change of

20.5nm in thickness for the a and b layers (Λ/2) was required; this gives a total

∆Λ of 41nm. Considering the original dimensions of the films and fringes, the

hologram gained 0.204µL in volume according to the modela. This volume should,

in principle, be occupied by the total amount of gas held by the hologram at that

given point. Thus, assuming that the absorption contributes to the swelling of

the polymer so that the total volume of gas is preserved, and that it behaves as

an ideal gas; 8.5x10−9mol of butane would be retained in that volumeb equaling

aInitial dimensions were 8mm x 25mm x 0.0237mm with 187nm fringe spacing, see §4.2.
The number of fringes across the slide was calculated to be 147 from the total thickness of
27.3µm and vertical spacing of 187nm(cos 7◦); this gives a thickness of 147x20.5=3015nm. The
final volume is then 8mm x 25mm x 0.0237+0.003mm.

bVolume per mol of ideal gas is Vm = RT/p, where the measured temperature
T=23◦C, atmospheric pressure p=101kPa and the universal constant R=8.314 J/molK, giving
Vm =24.3L/mol [201].
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3.7% (v/v) of n-butane in the film matrix. Only a portion of the molecules in the

gas flow diffused into the film to interact with the polymer chains, and, according

to the results, this amount is expected to vary with concentration.

A summary of the response of the sensor to all gases and concentrations is

shown in Figure 4.33 and Figure 4.34; the results are expressed as a change in

wavelength (∆λ) for the corresponding dilution from the lecture bottles. The

figures include the results for different temperatures: 8◦C, 22◦C and 40◦C, and

even though the holographic response per se is not significantly affected by tem-

perature, the interaction of the gases with the film may be. In fact, the response

is at least 2-fold greater when the temperature is decreased by 14◦C for all the

hydrocarbons tested. The hologram being colder than the gas effluent might have

helped to increase the interaction time and swelling.

Figure 4.35 includes the correlations between the holographic response and

gas concentration for the three different temperatures tested. The plots show an

obvious increase in ∆λ at colder temperatures and a decrease at higher temper-

atures. It is also important to notice that there is a linear correlation between

concentration and holographic response; all correlation coefficients for the lin-

ear fits were >0.95 except 1-butyne. The graph for 8◦C (Figure 4.35A) shows

that n-butane and 1-butyne followed an exponential increase for higher concen-

trations (>60%) and not the linear trend observed for lower concentrations. The

value corresponding to 100 % (v/v) n-butyne exceeded the detection range of the

spectrophotometer, and at that temperature and concentration the butyne gas

condensed on the hologram surface causing an apparent exponential increase in

the signala. The liquid form of the gas might have interacted considerably more

with the polymer causing extra swelling. Unsaturated hydrocarbons also exhib-

ited higher responses than their saturated counterparts at lower temperatures;

similarly, higher molecular weight hydrocarbons exhibited greater responses than

lower molecular weight ones. Thus, the holographic response is closely related to

the molecular structure of the test molecules.

Figure 4.36 shows a more detailed view of the kinetic processes including the

decay of the holographic signal when the gas was diffused out of the test chamber.

In these experiments, the cuvette chamber with the hologram was left open to

a1-Butyne boiling point is 8.08◦C [202]; just above the experimental temperature.
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Figure 4.33: Holographic signal response to 1-butyne, 1-butene, n-butane and iso-
butane at different temperatures and concentrations. Graphs grouped by analyte and
temperature in rows and columns respectively. The signal reached equilibrium in no
more than 5s of exposure for all concentrations, gas types and temperatures.
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Figure 4.34: Holographic signal response to propane, propene, ethane and ethene at
different temperatures and concentrations. Graphs grouped by analyte and tempera-
ture in rows and columns respectively. The signal reached equilibrium in no more than
5s of exposure for all concentrations, gas types and temperatures. Ethyne was scarce
and only measured at the concentrations and temperatures shown.
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and (C) 40◦C. The release kinetics were monitored without external air flow perturba-
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Figure 4.37: Holographic sensor response rate and equilibrium for gaseous hydrocar-
bons for maximum concentration at 22◦C. Numerical differentiation by centered finite
differences shows equilibrium: d∆λ/dt = 0, after 6s of exposure for all species.

the atmosphere after exposure to the gas; the gas was allowed to diffuse natu-

rally out of the cuvette. The maximum response was reached in no more than 5s

of exposure to the gas, and the signal stayed constant thereafter. Likewise, the

wavelength returned to its original position in <300s. All types of gases reached

maximum response at similar times: ∼2s for 40◦C, ∼3s for 22◦C and ∼5s for

8◦C. Notwithstanding, smaller molecules took less time to diffuse out, and unsat-

urated hydrocarbons displayed a faster initial decay in wavelength. For higher

temperatures there was a steep decay compared to that of lower temperatures,

which was mainly noticeable for higher molecular weight hydrocarbons.

The holographic signal kinetics show response and decay profiles characteristic

of absorption, desorption or diffusion processes [203–211]. This data could be

coupled to models for those phenomena in further research to obtain information

about the relation of the analytes with the physical properties of the materials.

Figure 4.37 shows the rate of response to hydrocarbon gases for the maximum

concentration (> 99.5% (v/v)) at 22◦C. The plot was acquired applying a finite

central-difference derivative approximation to the values in Figure 4.36. The re-

sponse rate varied for different types of hydrocarbons showing a general tendency
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Figure 4.38: Holographic response to atmospheric gases at different temperatures.
No significant responses were observed for O2, N2, CO2, air and water at 8◦C, 22◦C
nor 40◦C. Response to propyne is included for comparison.

to increase for high molecular weight hydrocarbons or unsaturated gases. An

important observation to emerge from the data comparison was that all hydro-

carbons reached equilibrium (i.e. d∆λ/dt = 0) in <6s. This response rate is at

least two orders of magnitude faster than other holographic sensors and as fast

as commercially available gas sensors [134, 212]. These direct measurements can

be taken in real-time for all concentrations and types of hydrocarbons. However,

it was faster for higher temperatures and slower for lower temperatures.

The holographic sensors were neither responsive to common atmospheric gases

(O2, N2, CO2) nor to water. Figure 4.38 shows the response to the control gases

and water for different temperatures; small variations for water were observed

due to the refractive index differences at the interfaces. However, variations of

less than 2nm are not significant compared to those caused by the hydrocarbon

gases. Since the sensor is unresponsive to water, it becomes evidently suitable to

operate in humid environments or aqueous solutions. Therefore, it can be coupled

with biomedical devices for breath or other biological fluids, industrial processes

or gas-enriched atmospheres.
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Figure 4.39: Holographic response versus temperature for all gaseous hydrocarbons.
All plots correspond to the maximum concentration of gas (> 99.5% (v/v)). 1-Butyne
at 8◦C exceeded the spectrophotometer detection range.

Figure 4.39 summarizes the holographic response at different temperatures. It

is apparent that the differences between hydrocarbon types, their number of car-

bons, or double or triple bonds generated different holographic responses. There

is a trend in the increase of ∆λ with respect to a decrease in temperature.

Since larger molecules and low temperatures caused greater shift in replay

wavelength (∆λ), it is likely that the sensor response is related to the thermo-

dynamics of the gases in contact with the hologram’s matrix. The boiling point

is a physical property that can be related to the thermodynamics of the system

for each type of molecule. Figure 4.40A shows the correlation for wavelength

shift (∆λ) and boiling points at standard temperature and pressurea; there is an

aValues from RSC chemical database [213].
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exponential increase in wavelength shift as the boiling point decreases. Three

groups of data points can be distinguished in the figure and correspond to gases

with 2, 3 and 4 carbon atoms in their aliphatic chains.

Hydrocarbons form hydrophobic interactions with the surrounding molecules

due to differences in polarity. The larger the molecule, the larger the volume and

surface area to form interactions. Thus, the correlation with size and volume is

more a correlation with the number of hydrophobic interactions that transfer the

information of the gas type and concentration to the polymer. A physical prop-

erty used to estimate the hydrophobicity of molecules is the octanol-water parti-

tion coefficient, Kow. Partition coefficients relate to the polarity of the molecules

according to their partition between two immiscible solvents with different po-

larities, in this case, octanol and water [213]. Figure 4.40B shows the sensor

response as a function of Kow. Not surprisingly ∆λ increased as the number of

carbons in the hydrocarbons increased, and was distinct for the homologous series

of alkanes, alkenes and alkynes. Therefore, the holographic response is related

to the molecular structure of the analytes and their hydrophobicity. Although,

this relationship applies to the hydrocarbon gases, it is not always valid for other

volatile organic compounds in the liquid state (see §4.6.2 and Table A.2); thus,

the relationship with the thermodynamics of the system should include other

parameters or a more direct measurement of the interactions.

4.6.2 Liquids

The holographic sensor was able to detect a plethora of VOCs and distinguish be-

tween their molecular differences. Figure 4.41 shows the level of response to liquid

analytes: Branched and unbranched alcohols, −OH; polyols, (−OH)x; molecules

with carbonyl groups >C−−O; and controls. Different types of molecules showed

different levels and rates of response, as expected due to their molecular differ-

ences. In this case, there was no direct correlation between the molecular size,

boiling point, or Kow, and the wavelength shift. The introduction of functional

groups affected the response in an ordered fashion: For example, primary alcohols

increased the response with the number of carbons in the aliphatic chain up to

three, and then decreased. Molecules with more than one −OH group showed no

response at all, presumably because when the apolar surface of the molecule is
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surrounded by polar moieties, hydrophobic interactions are reduced. Tertiary and

secondary alcohols, however, conserve their hydrophobicity when the −OH group

is near the aliphatic chains and showed an increase in the holographic response;

the same applied to cyclic alcohols.

High molecular weight ketones, alcohols and hydrocarbons in the liquid state

such as n-pentane, 1-pentene, 1-pentyne, hexane, heptane, octane, decane, 4-

methyl-2-pentanone, heptanone, hexanol, heptanol, iso-amyl alcohol and tert-

amyl alcohol were also detected by the sensor. However, the replay wavelength

response expanded rapidly beyond the visual range into the infrared and the

signal lost intensity; thus, the maximum shift could not be detected under the

selected test conditions. The detection range for high degrees of swelling could be

improved using a different support material, increasing the cross-linking of PDMS

to reduce its swelling or the holographic grating could be recorded at 266nm for

the swelling to fall within the visual range.

VOCs in the liquid form had longer interaction times with the hologram’s

surface, which resulted in increased diffusion into the polymer film than was

the case with the hydrocarbon gases. It should be noted that for most of the

molecules with alkyl and alcohol groups, the holographic replay wavelength in-

creased, whilst for molecules with more than four carbon atoms in the aliphatic

chain it decreased. However, the correlation seems to be not only affected by size,

volume or available surface area, but also by the nature of the interactions.

Oxygen, hydrogen and carbon have different electronegativities when they

form covalent bonds. These differences result in a net polarity differentially dis-

tributed across the surface of the molecules. These differences in charges on

the surface are called electrostatic potentials and it has been shown that the

hydrophobic free energy, which causes the hydrophobic interactions, is strongly

correlated to them [214]. Since hydrophobic interactions cause the PDMS chains

to swell, then surface electrostatic potentials generate the holographic response.

In other words, not only the volume and geometry of the molecule affect the re-

sponse, but also the type of atoms in the molecules. Therefore, the sensor should

be able to identify differences in the molecular structure of the analytes when in

the pure form.

In terms of the response kinetics, liquid analytes were slower than the gaseous

analytes. For most VOCs, the response reached 90% of the maximum after 120s of

98



4. Holographic Sensors for Hydrocarbons and VOCs

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e
n
ta

n
o
l 

B
u
ta

n
o
l 

P
ro

p
a
n
o
l

E
th

a
n
o
l

M
e
th

a
n
o
l

P
ro

p
a
n
-2

-o
l

Is
o
-B

u
ta

n
o
l 

Is
o
-P

e
n
ta

n
o
l 

T
e
r-

b
u
ta

n
o
l 

M
e
th

y
lc

y
c
lo

p
e
n
ta

n
o
l 

C
y
c
lo

h
e
x
a
n
o
l 

C
y
c
lo

h
e
p
ta

n
o
l 

C
y
c
lo

o
c
ta

n
o
l 

A
c
e
ta

ld
e
h
y
d
e
 

A
c
e
to

n
e
 

B
u
ta

n
o
n
e

W
a
te

r 

2
,3

-b
u
ta

n
e
d
io

l 

E
th

y
le

n
e
G

ly
c
o
l 

G
ly

c
e
ro

l 

P
D

M
S

 m
o
n
o
m

e
r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e
n
ta

n
o
l 

B
u
ta

n
o
l 

P
ro

p
a
n
o
l

E
th

a
n
o
l

M
e
th

a
n
o
l

P
ro

p
a
n
-2

-o
l

Is
o
-B

u
ta

n
o
l 

Is
o
-P

e
n
ta

n
o
l 

T
e
r-

b
u
ta

n
o
l 

M
e
th

y
lc

y
c
lo

p
e
n
ta

n
o
l 

C
y
c
lo

h
e
x
a
n
o
l 

C
y
c
lo

h
e
p
ta

n
o
l 

C
y
c
lo

o
c
ta

n
o
l 

A
c
e
ta

ld
e
h
y
d
e
 

A
c
e
to

n
e
 

B
u
ta

n
o
n
e

W
a
te

r 

2
,3

-b
u
ta

n
e
d
io

l 

E
th

y
le

n
e
G

ly
c
o
l 

G
ly

c
e
ro

l 

P
D

M
S

 m
o
n
o
m

e
r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e
n
ta

n
o
l 

B
u
ta

n
o
l 

P
ro

p
a
n
o
l

E
th

a
n
o
l

M
e
th

a
n
o
l

P
ro

p
a
n
-2

-o
l

Is
o
-B

u
ta

n
o
l 

Is
o
-P

e
n
ta

n
o
l 

T
e
r-

b
u
ta

n
o
l 

M
e
th

y
lc

y
c
lo

p
e
n
ta

n
o
l 

C
y
c
lo

h
e
x
a
n
o
l 

C
y
c
lo

h
e
p
ta

n
o
l 

C
y
c
lo

o
c
ta

n
o
l 

A
c
e
ta

ld
e
h
y
d
e
 

A
c
e
to

n
e
 

B
u
ta

n
o
n
e

W
a
te

r 

2
,3

-b
u
ta

n
e
d
io

l 

E
th

y
le

n
e
G

ly
c
o
l 

G
ly

c
e
ro

l 

P
D

M
S

 m
o
n
o
m

e
r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

OH

O
H

OH

O
H

O

O
H

O
H

O
H

O
H

O

O
H

O

O
H

O
H

O
H

O
H

O
H

H
2
O

O
H

O
H

S
i
O

O
H

O
H

O
H

O
H

!" [nm]

0

1
0

0

2
0

0

!" [nm]

0

1
0

0

2
0

0

3
0

0

T
im

e
 [

s
]

0
5

0
1

0
0

T
im

e
 [

s
]

0
5

0
1

0
0

P
e
n
ta

n
o
l 

B
u
ta

n
o
l 

P
ro

p
a
n
o
l

E
th

a
n
o
l

M
e
th

a
n
o
l

P
ro

p
a
n
-2

-o
l

Is
o
-B

u
ta

n
o
l 

Is
o
-P

e
n
ta

n
o
l 

T
e
r-

b
u
ta

n
o
l 

M
e
th

y
lc

y
c
lo

p
e
n
ta

n
o
l 

C
y
c
lo

h
e
x
a
n
o
l 

C
y
c
lo

h
e
p
ta

n
o
l 

C
y
c
lo

o
c
ta

n
o
l 

A
c
e
ta

ld
e
h
y
d
e
 

A
c
e
to

n
e
 

B
u
ta

n
o
n
e

W
a
te

r 

2
,3

-b
u
ta

n
e
d
io

l 

E
th

y
le

n
e
G

ly
c
o
l 

G
ly

c
e
ro

l 

P
D

M
S

 m
o
n
o
m

e
r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 m
o

n
o

m
e

r

!" [nm]

0

1
0
0

2
0
0

!" [nm]

0

1
0
0

2
0
0

3
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

T
im

e
 [
s
]

0
5
0

1
0
0

P
e

n
ta

n
o

l 

B
u

ta
n

o
l 

P
ro

p
a

n
o

l

E
th

a
n

o
l

M
e

th
a

n
o

l

P
ro

p
a

n
-2

-o
l

Is
o

-B
u

ta
n

o
l 

Is
o

-P
e

n
ta

n
o

l 

T
e

r-
b

u
ta

n
o

l 

M
e

th
y
lc

y
c
lo

p
e

n
ta

n
o

l 

C
y
c
lo

h
e

x
a

n
o

l 

C
y
c
lo

h
e

p
ta

n
o

l 

C
y
c
lo

o
c
ta

n
o

l 

A
c
e

ta
ld

e
h

y
d

e
 

A
c
e

to
n

e
 

B
u

ta
n

o
n

e

W
a

te
r 

2
,3

-b
u

ta
n

e
d

io
l 

E
th

y
le

n
e

G
ly

c
o

l 

G
ly

c
e

ro
l 

P
D

M
S

 p
re

p
o

ly
m

e
r

F
ig
u
re

4
.4
1
:

H
o
lo

gr
ap

h
ic

re
sp

o
n

se
to

vo
la

ti
le

or
ga

n
ic

co
m

p
ou

n
d

s
an

d
li

q
u

id
co

n
tr

ol
s.

T
h

e
p

lo
ts

in
th

e
fi

gu
re

ar
e

gr
ou

p
ed

b
y

an
a
ly

te
ty

p
e:

to
p

-l
ef

t,
u

n
b

ra
n

ch
ed

a
lc

oh
ol

s:
p

en
ta

n
ol

,
b

u
ta

n
ol

,
p

ro
p

an
ol

,
et

h
an

ol
,

m
et

h
an

ol
;

to
p

-r
ig

h
t,

b
ra

n
ch

ed
al

co
h

ol
s:

te
rt

-b
u

ta
n

o
l,

p
ro

p
an

-2
-o

l,
is

o-
b

u
ta

n
o
l,

is
o
-p

en
ta

n
ol

;
b

ot
to

m
-l

ef
t,

cy
cl

ic
al

co
h

ol
s:

m
et

h
y
l-

cy
cl

op
en

ta
n

ol
,

cy
cl

o-
h

ex
an

ol
,

cy
cl

o-
h

ep
ta

n
o
l,

cy
cl

o
-o

ct
an

o
l;

b
o
tt

o
m

-r
ig

h
t,

ca
rb

on
y
l
gr

ou
p

s,
p

ol
yo

ls
an

d
co

n
tr

ol
s:

et
h

an
al

,
p

ro
p

an
on

e,
b

u
ta

n
on

e,
d

im
et

h
y
le

n
e

gl
y
co

l,
et

h
y
le

n
e

g
ly

co
l,

w
a
te

r
a
n

d
n

o
n

-c
ro

ss
li

n
ke

d
P

D
M

S
.
T

h
e

co
rr

es
p

on
d

in
g

m
ol

ec
u

la
r

st
ru

ct
u

re
s

ar
e

in
cl

u
d

ed
in

ea
ch

p
lo

t
fo

r
re

fe
re

n
ce

.

99



4. Holographic Sensors for Hydrocarbons and VOCs

d(Δλ)
dt  [nm]

0204060

d(Δλ)
dt  [nm]

0204060

Ti
m

e 
[s

]
0

5
10

15
20

25
30

Ti
m

e 
[s

]
0

5
10

15
20

25
30

Pe
nt

an
ol

 
Bu

ta
no

l 
Pr

op
an

ol
Et

ha
no

l
M

et
ha

no
l

Pr
op

an
-2

-o
l

Is
o-

Bu
ta

no
l 

Is
o-

Pe
nt

an
ol

 
Te

r-b
ut

an
ol

 
M

et
hy

lcy
clo

pe
nt

an
ol

 
Cy

clo
he

xa
no

l 
Cy

clo
he

pt
an

ol
 

Cy
clo

oc
ta

no
l 

Ac
et

al
de

hy
de

 
Ac

et
on

e 
Bu

ta
no

ne
W

at
er

 
2,

3-
bu

ta
ne

di
ol

 
Et

hy
le

ne
G

lyc
ol

 
G

lyc
er

ol
 

F
ig
u
re

4
.4
2
:

H
ol

og
ra

p
h

ic
se

n
so

r
re

sp
o
n

se
ra

te
an

d
eq

u
il

ib
ri

u
m

to
V

O
C

s.
N

u
m

er
ic

al
d

iff
er

en
ti

at
io

n
b
y

ce
n
te

re
d

fi
n

it
e

d
iff

er
en

ce
s

sh
ow

s
eq

u
il

ib
ri

u
m

(d
∆
λ
/d
t

=
0)

af
te

r
1
20

s
of

ex
p

os
u

re
fo

r
m

os
t

ty
p

es
.

F
ig

u
re

sh
ow

s
d

et
ai

l
u

p
to

30
s.

100



4. Holographic Sensors for Hydrocarbons and VOCs

Δλ
 [n

m
]

0

20

40

60

Time [h]
0 10 20 30 40

PDMS prepolymer

Figure 4.43: PDMS holograms response to PDMS prepolymer.

exposure. The rate of response was different for each VOC, with higher responses

(∆λ) showing faster initial rates. A plot of the rates of response for all VOCs in

Figure 4.41 is included in Figure 4.42. Larger molecules took longer to reach the

maximum response compared to the smaller ones.

Figure 4.43 shows the response to PDMS prepolymer with the response contin-

uing to increase at a slower rate for over 40h. This response was slower than all the

other compounds, perhaps because the size of the prepolymer chains was larger

and the analytes took longer to diffuse in. Expansion of the PDMS films and,

therefore, the grating spacing, is a complex process that depends on the porosity

of PDMS, the diffusion rate of the analytes; the absorption of the analytes on the

polymer matrix, and the swelling of the polymer chains after absorption. Once

the molecules travel into the film matrix, the polymer chains absorb them mo-

mentarily via Van der Waals’ forces, particularly London dispersion forces. These

forces transmit kinetic energy from the analytes when mixed with the polymer,

making the chains swell as it will be explained in §4.7. Polymer swelling could

contribute to the expansion of the intermolecular spaces, thereby assisting the

diffusion and absorption of the analytes. These three phenomena, absorption,

diffusion and swelling, in combination, form the basis for the holographic sens-

ing of hydrocarbons and VOCs. Cyclopentanol, for example, showed a two-step

swelling behaviour that might be caused by a combination of these phenomena;
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4. Holographic Sensors for Hydrocarbons and VOCs

however, further investigation is required to confirm this.

A PDMS holographic sensor is thus capable of detecting, not only different

concentrations of hydrocarbon gases, but also different types of VOCs. The sensor

response depends on the type of molecule and type of interactions between the

PDMS polymer chains and the analytes. These interactions cause the polymer

chains to swell, and the swelling causes the holographic replay wavelength to

change. Therefore, it is important to understand the mechanisms of polymer

swelling to correlate the sensor response with the interaction of the analytes.

The results presented in this section must be interpreted with caution because

the analytes were tested separately and not as part of a mixture. Even though it

is relatively easy to distinguish between two components in isolation (see §4.8),

it might not be the same for a complex mixture including different types and

concentrations of analytes. There are various ways for distinguishing between

different species in complex mixtures, some reported in literature include neural

networks for sensor arrays, or Principal Component Analysis (PCA) algorithms

to discriminate between the sets of kinetic data [215, 216]. An attempt of the

latter is included in §A.1 in the Appendix.

4.7 Mechanisms of polymer swelling

There is substantial ‘empty’ space between the polymer molecules that can be

temporarily occupied by smaller analyte molecules. During this momentary per-

meation, the molecules interact with the polymer chains via electrostatic interac-

tions and the mixture behaves collectively as a different material for as long as the

interactions are present [217]. These interactions result in swelling or contraction

in the bulk caused by changes in the local molecular conformations.

In the case of holograms, this change affects the grating dimensions, resulting

in different wavelengths being reflected by the photonic structure. Therefore, the

photonic effect can be related to the phenomena of polymer swelling by looking

at the thermodynamics of the polymer-analyte mixing process.
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4. Holographic Sensors for Hydrocarbons and VOCs

4.7.1 Thermodynamics of PDMS-analyte interactions

To understand the thermodynamics of polymer-analyte interactions, it is neces-

sary to understand first the thermodynamics of the single molecules, particularly

the polymers. Single covalent bonds that link the atoms in the molecules are

flexible, can rotate and rearrange in numerous spatial conformations [218]. Poly-

mers, in particular, have long chains of bonded atoms which increase the possible

number of conformations; thus, probabilistic approaches may be applied to esti-

mate a final arrangement of polymer chains in space [218]. Although in theory

all conformations are possible, the thermodynamics of the system may limit their

number. Boltzmann described matter using ‘statistical mechanics’ to incorporate

the mechanical properties of molecules and atoms [219]. He suggested that the

entropy of a system is related to the probability of the system having certain

arrangements or conformations: S = κ ln Ω, S is the total entropy, κ the Boltz-

mann’s constant (1.38×10−23JK−1) and Ω the total number of ways of arranging

the system [218].

When two or more molecules come close together and there are significant

attractive forces between them, an interaction or a change will occur. In the

case of polymer-analyte interactions, the polymer chains experience a change in

conformation when mixed with the analytes. This change can be understood as

a change in entropy, also called the ‘entropy of mixing’:

∆Sm = κ ln Ω (4.2)

In this case, Ω is the total number of spatial conformations for the mixture

of polymer and analyte. Flory and Huggins developed a theory to calculate the

polymer conformations by arranging the polymer chains in grid lattices [218].

They defined the total number of molecules Nt as the sum of the number of

polymer molecules and the analyte molecules N2 and N1 respectively. The Flory-

Huggins solution theory was formulated for solvents and polymer mixtures; in

this work, the ‘solvents’ are also the analytes. The permutations of the possible

arrangements in the lattice can be calculated as: Ω = N !/(N1!N2!) [218]. This

calculation can be performed for segments of the polymer or per molecule.

During the mixing process, not all the analyte molecules will interact with the
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polymer segments; polymer-polymer interactions and analyte-analyte interactions

are also present. The energy of the mixing process is only influenced by the

polymer-analyte interactions; this energy is expressed as the enthalpy of mixing.

Flory and Huggins proposed a expression for the enthalpy of mixing based on

their lattice model:

∆Hm = κTχ12N1υ2 (4.3)

where υ2 is the volume fraction of the polymer in the mixture, T is the tempera-

ture and χ12 is an energy parameter called the Flory interaction parameter. χ12

characterizes the rearrangement of the polymer chains due to the polymer-solvent

interactions and is related to the energy per solvent molecule. It is also inversely

proportional to temperature [218].

There should be free energy from the mixing process to allow the polymer to

swell. This free energy of mixing (∆Gm) is given by

∆Gm = ∆Hm − T∆Sm (4.4)

The cross-linking of the polymer in the PDMS chains reduces the molecular

motility and leaves a porous material in which the intermolecular spaces can be

in-filled with analyte molecules. When a cross-linked polymer is mixed with a

solvent, the molecules tend to distribute homogeneously within the total volume.

This results in the film expanding and filling itself with solvent molecules, in

this case with the analytes. The distance that is gained between the molecules

is the product of the forces pushing and pulling the polymer chains away from

their original positions. This mechanical work occurs because there is ‘free energy’

available. Substituting Equations 4.2 and 4.3 in Equation 4.4 gives the Gibbs free

energy of mixing ∆Gm in terms of the polymer-analyte interaction parameter χ12:

∆Gm = κT (χ12N1υ2 − ln Ω) (4.5)

According to this equation, the main contributions to the free energy for

swelling are temperature, volume fraction and the interaction parameter. This

relationship strongly agrees with the experimental results presented in this work:

Temperature, concentration and type of molecule were the main factors affecting

the holographic response.
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In the Flory-Huggins theory, a positive ∆Gm indicates that dissolution will not

occur, whereas a negative ∆Gm indicates that dissolution will occur and there will

be available energy for swelling [218]. For a given concentration and temperature,

the only term that affects ∆Gm is χ12. Larger values of χ12 will decrease the

total free energy for swelling, and smaller values will favour it. In summary, the

swelling of the polymer, therefore the holographic response, depends primarily

on the value of χ12.

One question that needs to be asked, however, is whether it is possible to

measure the molecular interactions to calculate χ12 for each polymer-analyte pair.

The answer is no; measuring forces at the molecular scale for all the possible

polymer-solvent combinations is practically impossible. However, it is possible to

calculate them indirectly. Let Ec be the sum of all the individual intermolecular

forces that keep molecules together. The strength of these attractive forces can

be determined inversely by measuring the total energy required to separate the

molecules completely. This means, to put all the molecules in an ‘ideal gas’

state with no contacts or interactions between them. In other words, the energy

required to break all interactions should be proportional to the total number

of interactions and their strength. This energy is defined as the molar energy

of vaporization and can be calculated experimentally for each molecule via the

heat of vaporization ∆Hv. ∆Hv is related to the cohesive energy density Ec by

Ec = (∆Hv − RT )/Vm; where Vm is the molar volume. Furthermore, Scatchard

and Hildebrand proposed an equation for ∆Hv in terms of Ec by defining the

solubility parameter of a substance δ as the square root of the cohesive energy

density:

δ =
√
Ec =

√
∆Hv −RT

Vm
(4.6)

the equation is:

∆Hm = Vt(δ1 − δ2)2υ1υ2 (4.7)

where Vt is the volume of the mixture, δ1, δ2, υ1 and υ2 the solubility parameters

and volume fractions for the solvent and polymer respectively [218,220,221].

By equating the equations for ∆Hv, it is possible to relate χ12 to Ec

χ12 =
Vt
RT

(δ1 − δ2)2 (4.8)
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where δ1 and δ2 are defined as the solubility parameters for analyte and polymer

respectively.

There are theories that allow the calculation of δ using information from the

molecular structure of the mixing components [218]. Different chemical groups

in a molecule have different molar attractions that can be added up to calculate

δa. Knowing δ for both polymer and analytes should give an accurate prediction

of the level of interaction and, thereby, the holographic response of the sensor.

As discussed previously, for a fixed temperature and concentration, the only

contribution to the free energy of swelling is χ12. χ12 depends mostly on the

difference between δ1 and δ1 values for the analyte and PDMS. Hence, by substi-

tuting Equation 4.8 in 4.5 with constant concentration, temperature and number

of conformations, the free energy of swelling is a function of the difference in

solubility parameters (δ1 − δ2). Since the solubility parameter of the polymer δ2

will not change, the free energy for swelling is mainly dependent on δ1 which is

renamed as δ for simplicity. Then, ∆Gm = f(δ).

Since the relationship between the intermolecular forces and the polymer

swelling has been established, the only relationship to be found is the one be-

tween ∆λ and δ. Thus, an empirical approach was used to link the experimental

data to the thermodynamics of swelling. Values of δ for all the analytes were

calculated or collected from different sources, as specified in Table A.2 in the

Appendix.

Figure 4.44 shows a plot of the holographic response (∆λ) against the solubil-

ity parameters (δ). The figure includes the molecular structures of the analytes,

in order to relate to previous discussions on molecular interactions and molec-

ular geometry. The figure also includes different values of δ found for PDMS

prepolymer with an average of 16.2 MPa1/2 [146,222,223].

The experimental data strongly agrees with the thermodynamic theory for

polymer swelling. Thus, it is facile to establish a correlation between the holo-

graphic response and intermolecular interactions. The following relations were

found: δ = 10.81∆λ0.05484 for most gaseous hydrocarbons and δ = 43.63∆λ−0.1358

for all liquid VOCs. Molecules with similar values of δ to those of PDMS exhib-

ited higher responses. Likewise, substances with dissimilar values of δ, such as

afor example −CH3, −CH2− and = CH− have different molar attraction values Fi that
affect the value of δ as δ =

∑
i=1 Fi/Vm.
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water or glycerol, displayed limited or no holographic response.

In conclusion, there is a strong correlation between the holographic response

and the solubility parameters. Thus, these parameters can be used to predict

the sensor response to any organic molecule with relatively good accuracy by

interpolating them in the plot of Figure 4.44.

4.7.2 Molecular dynamics simulations

The solubility parameters are an indirect measurement of the intermolecular in-

teractions which depend on the surface electrostatic potentials of the molecules.

The electrostatic potential is determined by the differences in electronegativity

in the atoms or radical groups in a molecule. These differences are caused by

charge perturbations by the electrons in the atoms and bonds that can be mod-

eled using molecular dynamics simulations. Moreover, there is extensive research

work on how to calculate or estimate cohesive energy densities based on molecular

dynamic simulations [224].

Molecular dynamics simulations allow the capture of a snapshot of the molecules

at equilibrium. Molecules are in constant movement, always occupying the empty

intermolecular spaces. Inter-molecular force fields pull the molecules together

while their relative velocities keep them apart; these two factors preserve the dis-

tance between the molecules in equilibrium. The result of molecular dynamics

simulations is a visualization of the spatial arrangement of the molecules and

their intermolecular spaces.

Figure 4.45 shows the results for different visualizations of a single 18 unit

poly(diemethylsiloxane) chain: Figure 4.45A is the randomly arranged 18 unit

chain; Figure 4.45B shows the same chain after energy minimization for finding

the best conformation; Figure 4.45C shows the atoms as spheres with Van der

Waals’ radii; and Figure 4.45D shows the Van der Waals’ surface in solid colour

and the solvent accessible surface dotted. The Van der Waals’ surface separates

the Van der Waals’ spheres from the outer space and the ‘solvent accessible sur-

face’, also known as the Connolly surface, represents the points at which a solvent

sphere can touch the Van der Waals’ surfacea. The latter was used for the simu-

aA solvent probe with a fixed radius of 1.4Å is used to surround the Van der Waals’ surface
and draw the solvent accessible surface ASAS [225].
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A B

C D

Figure 4.45: Visualizations of a single 18 unit PDMS chain. Si atoms in yellow,
O atoms in red, C atoms in grey, and H atoms in white. (A) Randomly arranged
chain. (B) Best conformation with bond lengths and orientations corrected after energy
minimization. (C) Atoms as spheres with Van der Waals’ radii. (D) Van der Waals’
surface in solid colour and solvent accessible surface in dots.
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lation of interactions between the PDMS polymer matrix and the analytes.

The PDMS polymer chains were assembled to produce an atomistic model

of the cross linked PDMS films as described in the methodology (§3.6). The

number of chains and lengths used matched the ones reported in the literature

[146,169–171]. The prepolymer and cross-linker chains were built separately and

then linked randomly at a 10:1 ratio using the defined attachment points. Figure

4.46 shows the different steps taken and the final cross-linked PDMS chains.

In order to create a more realistic simulation, the cross-linked PDMS unit

from Figure 4.47A was packed into a 4.7nm side cube shown in Figure 4.47B.

The cube contained 10 cross-linked units displayed in Figure 4.47C with a total

of 8530 atoms of the 7 types used. Figure 4.47D shows the atoms as Van der

Waals’ spheres and their respective surface. The resulting lattice conformation

was optimized by applying a 5000 iteration energy minimization. The final result

was a PDMS cell of cross-linked polymer shown in Figure 4.47E. The PDMS cell

can also be visualized as a solvent accessible surface shown in Figure 4.47F. The

surface area was calculated to be 13122Å2 with a 80861Å3 occupied volume and

23239Å3 free volume. The free volume on the outer side of the surface is the one

available for the analytes to fill in the polymer film and interact with the polymer

chains.

Once the polymer matrix was constructed, simulations were carried out to

obtain information about the interactions with the analytes. Analyte molecules

were loaded into the cross-linked PDMS cell; the model takes into account the

interaction parameters of the analytes and calculates the sorption sites in the

cubic cell. This results in a subsequent rearrangement of the polymer matrix.

Figure 4.48 and Figure 4.49 show the final results for loading molecules with

5000 steps of energy minimization. Butane, butanol and butanone were chosen

for these simulations; the figures show the changes when loading one molecule and

the maximum number of molecules allowed per cell. The maximum number that

was loaded depended on various parameters: The strength of the interactions

or absorption with the polymer chains; the polarity of the molecule; the kinetic

energies of the molecules; etc. The number of molecules loaded is included in the

Figure captions. There was a direct correlation between the number of molecules

absorbed and an decrease in free volume. This volume change is the one that

affects the bulk swelling of the polymer which is responsible for fringe expansion,
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+Si CH CH2 Si H O Si O Si 
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Figure 4.46: Molecular modeling of a PDMS cross-linked chain. (A) Cross-linker
chain and attachment points in purple. (B) Prepolymer with cross-linking reaction
sites in purple. (C) The cross-linking reaction with colour coded atoms [169]. (D) 10:1
ratio of prepolymer to cross-linker molecules with cross-linking sites in purple. (E)
Final cross-linked PDMS chain with the backbone highlighted in purple.
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A B

C

E F

D

Figure 4.47: Packing of PDMS cross-linked units into a ∼104nm3 cell. (A) Cross-
linked PDMS unit used for the packing highlighted with a green ellipsoid. (B) 4.7nm
side cube packed with the cross-linked units. (C) The trimmed cube allowed 10 cross-
linked units to be packed, shown as green ellipsoids. (D) Atoms represented as Van
der Waals’ spheres with the Van der Waals’ surface. (E) Cubic lattice after energy
minimization; atoms and bonds represented as sticks. (F) Cubic lattice showing Van
der Waals’ and solvent accessible surfaces; inner surface in grey and outer surface in
blue.
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Table 4.1: Geometry results for the molecular simulations of solvent accessible surface,
occupied volume and free volume. Values for the PMDS cell without molecules are:
13122Å2 for surface area, 80861Å3 for inner volume and 23239Å3 for free volume.

Solvent accessible surface Butane +1 Butanol +1 Butanone +1
Area [Å2] 4048 4037 4018

Free Volume [Å3] 3392 3381 3381
Inner Volume [Å3] 100708 100517.57 100718

Butane +41 Butanol +35 Butanone +34
Area [Å2] 572 520 727

Free Volume [Å3] 259 229 335
Inner Volume [Å3] 104841 103870 103764

Butane only Butanol only Butanone only
Area [Å2] 249 265 250

Inner Volume [Å3] 324 354 332

and therefore the change in reflected wavelength of the hologram. Table 4.1

summarizes the results for the calculated surface area, occupied volume and free

volume after loading butane, butan-1-ol and butanone; it also includes the values

for the individual molecules.

It was possible to estimate the number of molecules per unit cell from the

holographic response using the previously calculated volume gain from the ex-

perimental data. For 99.5% (v/v) n-butane the volume gained per slide was

0.204µL, corresponding to 3.7% (v/v); this corresponds to 10 molecules of bu-

tane in the cubic cell. This value is obviously lower than the maximum possible

load because the absorption of butane molecules depends, not only on the concen-

tration of butane, but also on the rate of diffusion into the film, the swelling and

the absorption. A further study with more focus on these physical phenomena

and their relation with the holographic response kinetics is, therefore, suggested.

4.8 VOC sensing applications

Since the sensing capabilities of a PDMS hologram for hydrocarbons and VOCs

have been demonstrated, it is possible to use the sensor in an appropriate ap-

plication. A common problem with VOCs is their presence in water as pollu-

tants [226]; in fact, some VOCs are highly toxic and cause severe environmental
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A B

C D

Figure 4.48: Molecular simulation of loading butane molecules into the PDMS poly-
mer matrix. (A) Loading of a single butane molecule per cubic cell, in yellow. (B)
Solvent accessible surface for the loading of one butane molecule, in green. (C) Load-
ing of 99 butane molecules to the calculation yielded a maximum of 41 per unit cell.
(D) Solvent accessible surface for the maximum load of butane molecules.
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A B

C D

Figure 4.49: Molecular simulation of loading butanol and butanone molecules into
the PDMS polymer matrix. (A) Solvent accessible surface for the loading of a single
butanol molecule, in green. (B) Loading of 99 butanol molecules to the calculation
yielded a maximum of 35 per unit cell. (C) Loading of one butanone molecule. (D)
Loading of 99 butanone molecules to the calculation yielded a maximum of 34 per unit
cell.
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Figure 4.50: Holographic detection of toluene in water at ppb concentrations. The
stepped plot is due to the minimum detection of the spectrophotometer of 0.3nm.

damage. PDMS is inert to water and it has been shown that it can be used to

separate VOCs from aqueous samples in a process known as pervaporation, in

which minor components of a liquid mixture are preferentially transported by

partial vaporization into permselective membranes [160,227]. The same principle

can be applied to sense VOCs using PDMS holograms.

A typical water contaminant is the organic compound toluene, which imposes

several risks to human health and aquatic life if found in excessive concentrations.

The maximum limit of concentration in water proposed by the UK environment

agency is 74µg/L and the one established by the US environmental protection

agency is 1mg/L [228,229]. Toluene was selected to test the efficacy of the PDMS

holographic sensor in an aqueous mixture. Figure 4.50 shows that the sensor was

able to detect toluene below the concentrations proposed by both the UK and US

agencies. Although accurate concentration readings took more than 300s to give

a maximum response, the presence of the contaminant was detected within 10s

of exposure to the hologram. These results are encouraging for using the sensor

in the detection of VOC contaminants in water.

Mixtures of analytes could also be tested for particular applications. For

example, to detect differences in fuels, volatiles in furnishing materials or the

detection of contaminants in transport pipes for gases or liquids. However, the
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selectivity should be improved, such that the concentrations of a complex mixture

in which all species interact, can also be measured. Turning the sensor into a

more selective and sensitive system could be achieved by incorporating specific

ligands, adding plasticizers, increasing the level of cross-linking, including reacting

compounds in the PDMS chains, or modifying the silver particles in the fringes

to make them chemically selective. Interactions with the Ag0 particles would

appear as a change in refractive index and, consequently, a change in diffraction

efficiency. Nevertheless, a way of improving selectivity or sensitivity could be

to include triple bonded ligands on the silver metal surface, red-ox reactions or

covalently attaching metal-organic compounds to the particles.

4.9 Holographic signal measurement by RGB

colour image analysis

The ultimate goal and principal advantage of using a holographic sensor is that

an end user could read the sensor signal by ‘eye’. Human vision and perception

could, of course, introduce subjectivity in the analysis of the results. However,

there are inexpensive daily-use devices that emulate human vision and can be

used instead. Nowadays, there are several devices that integrate light detectors

in their functions, such as digital cameras and mobile phones, which have inbuilt

light sensors for recording images. These devices process photons as red, green

and blue colours to produce digital images. Expensive spectrophotometers and

software can, therefore, be replaced by these mobile devices. An application may

be written to read the holographic sensor response by taking a photograph of

its surface and thereby improving the analytical collection of data from the user.

This section shows the results for extracting gas concentration information from

digital images. The holographic reflections were analyzed by extracting the pixel

counts for the three digital colour channels.

As reported in §4.6.1, it was possible to measure a direct real-time response of

the hologram to varying concentrations of hydrocarbon gases. Furthermore, the

response can be seen as a colour change in the holographic reflection. This change

is, however, neither obvious to the human eye, nor to digital image processing.

Thanks to the invention of CCD and CMOS sensors, which are the elements
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that process the light in digital cameras and spectrophotometers, it is possible to

collect colour or wavelength information digitally.

Wavelength and colour, if well correlated with each other, are not complete

synonyms; a good explanation of these phenomena can be found in reference [230,

§4.3]. The naked eye processes light radiation into neural signals that the brain

interprets as colours. The wavelengths perceived as green include a broader part

of the electromagnetic spectrum than the ones perceived as yellow or red, for ex-

ample. The human ability to discern between colours is limited to the abundance

of light-sensitive cells in the eyes. Likewise, electronic light sensors are limited

in their efficiency by their size and the semiconductor materials used in their

construction. Both, human eyes and electronic sensors have better absorption

efficiency at wavelengths that corresponds to green (∼490nm-580nm). Thus, it

is easier for human eyes to perceive green than other colours. Figure A.4 in the

Appendix shows the absorption spectra for the rods and cones of the eye and the

quantum efficiency spectra for two types of camera sensors.

The images of the hologram collected by the camera showed the slight differ-

ences in colour which could be seen by ‘eye’, or from a computer screen, or on a

printed page. Therefore, the data in the digital image was collected as an array of

pixels with three colour channels: Red (R), green (G) and blue (B). The sensor of

the digital SLR camera uses a CMOS sensor which is more efficient in capturing

colour than common CCDs, although it is less effective than the special CCDs

found in spectrophotometers [231]. A spectrophotometer uses a light splitting

grating for counting the photons at high resolution, i.e. the equivalent of having

thousands of colour channels.

The total count for each channel was plotted separately for each concentration

measured; the results are shown in Figure 4.51. Rows A, B and C show the

histograms for the red, green and blue channels respectively; row E shows the

RGB values in three dimensions where the x, y and z axes are red, green and

blue respectively; row D shows the average values which were used to correlate

the concentration of the tested gas with the RGB data. In this particular case,

a difference in colouration appears obvious to the naked eye only after a 50 nm

wavelength shift due to the processing of the wavelengths to colours. However,

it was possible to detect the subtle differences in green from 12.2% to 61.2%

with the RGB analysis. The tested gas was 1-butyne and the concentrations
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Figure 4.52: Determination of 1-butyne gas concentration with RGB values from
a digital camera. The light detected by the sensor in the camera is split into three
channels: Red, green and blue; the difference at the edge of each channel separation
result more obvious than in the middle of it, as it can be seen for the green channel.

were in % (v/v). The average values between 36.7% and 49.7% do not show an

obvious difference when observing only at the green channel; however, a difference

is apparent when viewing the blue and red channels. Therefore, comparing the

values of the three channels can give a reading of the holographic signal.

An advantage of using digital photographs is that the response can be col-

lected from large distances depending on the lenses. This eliminates the need for

wiring or placing electronics at the source of the measurements. In other words,

the sensor can also operate in a process that requires remote sensing or real-time

monitoring. Furthermore, both holograms and digital cameras are relatively in-

expensive.

4.10 Summary

Holographic sensors fabricated in PDMS have been shown to address the need

for a real-time sensor capable of distinguishing concentrations and, in some cases,
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molecular differences, in hydrocarbons and VOCs. The sensor can be read con-

tinuously and remotely without great interference from temperature, moisture,

or the presence of other atmospheric gases, thus satisfying the needs for many

industrial and biomedical sensing applications.

Consideration of the nature of the intermolecular interactions has assisted in

the understanding of the nature of the holographic sensor response at the molecu-

lar level. The integration of those interactions as readable signals in a holographic

sensor was successfully achieved. However, the challenges of producing a more

selective and sensitive sensor still remain.

Holographic gratings were successfully used as transducers for quantifying

chemical concentrations: The signals were produced by transforming the swelling

or contraction of the polymer matrix into a difference in reflected wavelength.

These changes were read by a spectrophotometer or a digital camera for deter-

mining the concentration of the analytes.

Furthermore, it was shown that the light reflection of the hologram can be

predicted mathematically with good agreement by knowing the grating param-

eters Λ, n, ϑb and L. Changes in Λ appeared to be the only contribution to

the holographic signal change in this case, and were caused by the swelling or

contraction of the polymer chains in the PDMS films.

The polymer-analyte interactions were affected by the diffusion and absorp-

tion of the analytes into the films, and the consequent swelling of the polymer

chains. This swelling was empirically predicted using the experimental data and

the thermodynamics of polymer-analyte mixing: The free energy for swelling

∆Gm depends on the interaction parameter χ12, which is defined by the differ-

ences in cohesive energies Ec. The relationship between the molecular interaction

parameters and the swelling of the polymer could also be predicted mathemati-

cally and can be compared with the empirical model to predict the sensor response

∆λ.

In conclusion, there was a strong correlation between the holographic response

and the strength of the intermolecular interactions. Moreover, merging the pho-

tonic and thermodynamic models, the sensor response to any analyte could be

entirely predicted mathematically.
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Holographic Sensors for

Ammonia and Oxygen

5.1 Materials selection

Keeping in mind that the holographic sensor response is a function of the grating

spacing Λ and the refractive index n, a material sensitive to oxygen or ammonia

should produce conformational changes that affect Λ or chemical changes that

affect n. Furthermore, the selected material has to be transparent and able to

form flat films for the holographic recording process.

The unpaired electrons in the oxygen molecule confer a partial negative charge

to form weak dipole interactions, and hence with its capacity to form hydrogen

bonds [7]. Similarly, ammonia has an induced dipole and forms ions in solution

which produce coulombic interactions. Both, ammonia and oxygen can also form

covalent bonds upon interaction with nearby molecules due to these partial charge

changes [52, 232]. Thus, a sensor aiming to exploit the nature of the molecular

interactions in O2 and NH3 should investigate the charges in the molecules. There

are several examples of ammonia and oxygen sensors that use charge related

chemical properties at an electronic level to generate readable signals [9,52,233].

These sensors often face the same challenges, i.e. those related to the reactivity

of the gases.

The high reactivity of oxygen is often problematic for sensor design because

most of its reactions are irreversible or form new compounds that inhibit the

sensing [234]. It has been demonstrated that, in Nature, reversible oxygen-binding

reactions are mediated by enzymes with metallic cores, and most likely, Nature

possesses the optimum conditions for reversible oxygen binding [27,41,232]. These

reversible reactions have been studied in molecules that partially accept electrons,
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usually fluorescent molecules or porphyrins with metallic cores [38–40, 42, 43].

Oxygen sensors often seek to mimic these types of interactions. The key problem

is that these interactions are weak and that conformational or optical changes

occur at the molecular level and are difficult to scale to the bulk. Furthermore,

polymeric materials with metal-core porphyrins or oxygen-binding fluorescent

cores are not yet available as flat films for holographic recording.

Ammonia on the other hand is more reactive than oxygen. Ammonia sensors

are commonly made with dye molecules which change colour upon binding to

catalytic metal capacitors, or chemisortive metal oxides [52]. Similar problems

might be expected to arise when trying to apply these types of interactions to

holographic sensors because the changes are small and only detectable at the

molecular level.

Hence, a sensor material for oxygen and ammonia should selectively accept

charged or partially charged molecules and generate molecular changes that affect

the bulk properties, such as refractive index, swelling or contraction. A careful

review of the literature pointed to ion-exchange membranes; these membranes

are flat, transparent, and selectively interact with charged or partially charged

molecules. Thus, they are suitable for holographic recordings. Proton Exchange

Membranes (PEMs) for H+ ions are nowadays common, particularly for their use

in H2 fuel-cells as alternatives to fossil fuels [235]. A popular material for PEMs

is tetrafluoroethylene persulphonic acid copolymer (Nafion). This material is

commercially available as membranes that are known to experience swelling or

changes in optical properties when in contact with oxygen and ammonia [232,

236–239]. Therefore, this material maybe considered to be the ideal candidate

for the construction of holographic oxygen and ammonia sensors.

5.1.1 Tetrafluoroethylene-Perfluorosulphonic acid

copolymer

Nafion R© is the commercial name of persulphonic acid derivates of tetrafluoroethy-

lene which is also known as Teflon R© (Dupont, Inc). The molecular structure of

Nafion co-polymer is shown in Figure 5.1A; the teflon copolymer length y has

5-12 units of tetrafluoroethylene monomers and the persulphonic acid length x

is usually 1 unit [157, 240]. Several studies have showed that the sulphonic acid
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functional groups aggregate in continuous regions of ion clusters or cavities inside

the membrane as shown in Figure 5.1B [157,240,241]. These regions are hydrated

upon exposure to humidity, whilst protons dissociate from the SO –
3 counter ion

allowing the transport of cations through the membrane [240].

Nafion membranes contain a network of inter-connected channels with cavities;

some models in the literature based on X-ray scattering have proposed a geometry

as shown in Figure 5.2. Their findings based on X-ray scattering and crystallog-

raphy suggest that the core of the cavities is separated by 9nm, their diameters

are ∼4nm, and the channels connecting them are 1nm thick [155, 232, 241–244].

These features are important because their geometry will dictate the amount

and size of silver particles that can be loaded into the membrane. Studies that

have achieved nanoparticle formation in the ionic clusters conclude that particles

can grow to 2-40nm in size depending on the type of membrane [155]. It has

also been suggested that the size is not affected by the amount of metal ions in

the solutions but by the geometry of ionic clusters and channels [155]. Nafion

117, for example, showed nanoparticle mean sizes of 15±3nm in one study, and

13.4±2.2nm in another [154, 155]. It has also been shown that the cavities are

flexible enough to accommodate larger silver particles in the range of 10-18nm in

diameter [244]. The presence of particles also affects the optical properties of the

membrane which are important for hologram formation. The reported refractive

index of clear Nafion-117 without particles is ∼1.38 [245,246]; however, depending

on the stress conditions and relative humidity the refractive index may increase

in value up to 1.41 [247]. Membranes with nanoparticles show refractive indices

around 1.42 [248].

5.2 Nanoparticle formation and ablation in

Nafion membranes

The Nafion membranes were purchased as films and had to be flattened for the

holographic recording process. The main challenge, however, was to produce

a homogeneous distribution of silver particles beneath the surface. This had

to be accomplished under the constraints of the cation permselectivity of the

membranes. The process described in detail in the methodology included the
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Figure 5.1: Molecular structure of Nafion and sketch of its porous matrix showing
the exposed sulphonate acid charges. (A) Tetrafluoroethylene(TFE)-perfluorosulphonic
acid copolymer molecular structure, y =5-10, x = 1. (B) Sketch of entangled matrix
with negative charges oriented towards the pores. Teflon backbone towards the entan-
gled matrix [240,241].
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Figure 5.2: Model of the geometry of ion-exchange cavities in Nafion [242–244].

A B C D E F E* F*

Figure 5.3: Nafion membrane transformation from purification to ablation. (A) Mem-
brane as provided by the fabricant. (B) Purified membrane. (C) Na+ form. (D) Ag+

form. (E) Ag 0 formation with 0.1M Ag+. (F) Ag 0 formation with 0.02M Ag+. An
asterisk denotes the same membranes after ablation.

following steps: First, the membranes were purified in concentrated HNO3; then,

transformed to the Na+ form; then, to the Ag+ form; and finally, Ag+ cations

were reduced to Ag 0 with the concentrated reducing agent NaBH4 (see §3.2.1).

The membranes were then flattened between glass slides and shot with the laser.

Photographs of the membranes during the transformation steps from purification

to ablation are included in Figure 5.3.

The membranes in Figure 5.3 were analyzed by absorption spectrometry. Fig-

ure 5.4 shows the shift of the peak from 400nm to near 410nm; the typical SPR

of silver nanoparticles in solution is ∼410nm [190–193]. The figure includes spec-

tra for different steps of the membrane transformation process. Similar to what

occurred with PDMS membranes, the typical absorption peak of silver nanopar-

ticles shifted to higher wavelengths after ablation. It has been shown that the

characteristic SPR can be tuned for different particle sizes and spatial distribu-
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Figure 5.4: Absorption spectra of Nafion membranes during the nanoparticle forma-
tion process.

tion in polymer films [188,189]. The ablation process appears, thus, to affect the

sizes or distribution of the particles in the films.

The loading of silver particles in Nafion depends on the permeation of the

charged particles and their transport through the hydrophilic network of channels.

Large conglomerates of particles were formed on the surface where the channels

begin. Microscopy images of the surface before and after ablation are shown in

Figure A.5 in the Appendix.

Membranes E∗ and F∗ in Figure 5.3 did not show holographic reflections. The

concentration of silver was too high to allow the laser light to reflect back from

the mirror surface and form standing waves. These results only show that the

methodology for loading silver nanoparticles into the membrane was successful.

The next step was to optimize the required concentration of silver to produce

bright holographic reflections. Table 5.1 summarizes the results of this opti-

mization. Figure 5.5 includes photographs of the different concentrations and

a subjective evaluation of the holographic reflections, together with absorption

spectra before and after ablation for the low concentrations.
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Table 5.1: Optimization of AgNO3 concentration in 0.1M NaNO3 for holographic
recording in Nafion membranes (see Figure 5.5).

AgNO3 [M] 0.001 0.004 0.007 0.01 0.025 0.05 0.06
Na+ : Ag+ 1000:1 250:1 142:1 100:1 40:1 20:1 15.5:1
Hologram∗ - - - - - + ++

AgNO3 [M] 0.09 0.1 0.14 0.2 0.3 0.4 0.5
Na+ : Ag+ 11.1:1 10:1 7.1:1 5:1 3.3:1 2.5:1 2:1
Hologram∗ +++ ++ ++ + + + -

∗ - absence; + faint reflections; ++ acceptable reflections; +++ bright reflections.

It was found that solutions between 0.06M and 0.14M of AgNO3 provided suf-

ficient amount of silver for bright holograms with 0.09M as the optimum value.

It was also noticed that after loading the silver ions and reducing with NaBH4,

the coloration of the membranes changed to amber. This change in colouration is

indicative of nanoparticle formation [154,155]. Also, the characteristic absorption

peaks for metallic silver appeared in the absorption spectra of all the concentra-

tions tested and shifted after ablation. Thus, Ag 0 nanoparticles are likely to be

present in the membranes and this is confirmed by the SPR peak shift.

5.2.1 Optimization of holographic recording by ablation

for low-exchange and high-exchange Nafion

membranes

The ablation process encountered several problems when applied to the Nafion

membranes. One major issue was the flatness of the membranes: In order to

record an interference pattern with the standing waves, the membranes had to

be flattened on the glass slides. Several ways of ensuring that the membranes

were flat were tried: Compressing the membranes between two slides, attaching

them permanently to the slides with cyanoacrylate resin, and sticking the edges

to the glass slide and spreading refractive index matching solution on both sides.

Using extra glass slides or glue layers adds interferences in the laser path, thereby

increasing scatter and reducing the recording efficiency; this did not produce

encouraging results. The next major issue was to determine the right laser energy

to ablate the particles homogeneously. Table 5.2 summarizes the result of the
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Figure 5.5: Absorption spectroscopy of Nafion membranes for the various AgNO3

concentrations during the optimization process and photographs of the results. The
absorption spectrophotometer was set to detect the lower concentration; a shift in the
absorption peaks was detected after ablation.
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Table 5.2: Results for the optimization of the ablation parameters in Nafion holo-
graphic recordings (see Table 3.2 and Figure 3.3).

Sample 1 2 3 4 5 6 7 8 9 10 11
Area[cm2] 1.3 1.3 2.5 2.7 2.7 3.9 2.5 1.3 1.3 1.3 1.3
Hologram - - + ++ ++ ++ ++ - - - -

Surface +++ +++ ++ + - - + ++ ++ ++ ++
Intensity +++ +++ + ++ ++ + + + + + +
Index m. Yes Yes Yes Yes Yes Yes Yes Yes Air Air Air
No. shots 1 2 1 1 2 2 2 1 1 2 5+

Config. A A C C C C C C B B C
Y[cm]= 1.2 1.2 1.7 1.8 1.8 2.0 1.7 1.2 1.2 1.2 1.2
X[cm]= 1.4 1.4 1.9 1.9 1.9 2.5 1.9 1.4 1.4 1.4 1.4

∗ ‘Hologram’ corresponds to the monochromatic reflections: - absence, + very faint, ++ faint,

+++ abundant; ‘Surface’ corresponds to multicolor reflections from the surface: - absence, +

very faint, ++ faint, +++ abundant; ‘Intensity’ corresponds to the intensity of the reflected light:

: +++ intense, ++ weak, + very weak; and ‘Index-m.’ to the use of index-matching liquid;

and configurations A, B, C correspond to the arrangements in Figure 3.3. The elliptic areas were

calculated as A = πY X/4, where X and Y are the measured axes.

recording optimization.

The laser was operated at the maximum energy output; its radiation was

deflected by the lenses to a final spot size of approximately 1cm in diameter.

Assuming that all the laser energy is focused on that spot, the 300mJ per pulse

would be concentrated in that area. In order to find the optimum ablation condi-

tions, the spot size was changed for different recording set-ups as shown in Table

5.2.

Ablation in Nafion membranes generated ‘surface effects’, or undesired multi-

colour reflections, caused perhaps by the excess of particles on the surface. These

surface perturbations are surface gratings and not layered structures because they

can be seen at different angles of observation. The brightness of these undesired

reflections may overcome the brightness of the holographic grating making the

hologram unusable as sensor. PDMS for example is more elastic and was resistant

to surface ablation; on the contrary, Nafion is stiff and was significantly affected.

Table 5.2 includes evaluation of these surface reflections for different ablation

configurations.

The number of shots seemed not to influence the recording quality if the films
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were kept static between shots, although a second shot decreased the surface

effects. The configuration at which the silver particle faced the standing waves

produced better holograms and was used for all subsequent experimental work,

i.e. column 5 in Table 5.2.

The same result might be obtained by reducing the power output increasing

the Q-switch delay. However, the laser cooling and heating showed substantial

variability and it was unreliable for changes in the power output. Thus, the

maximum delay value was selected and the optimization performed by changing

the area of exposure. The power uniformity distributed over a large area of

exposure yielded better holograms. Thus far, it can be said that the ablation

required: Homogenous distribution of particles inside the membrane and beneath

the surface; no interfaces between the membranes and other transparent materials

in the laser path; and membranes as flat as possible.

5.3 Transmission Electron Microscopy

The stiffness of Nafion membranes was advantageous for the analysis of thin sec-

tions of the holograms with TEM. Figure 5.6 shows images of the membranes

before and after exposure to the laser. The effects of ablation on the distribution

of particles can be seen as lighter areas. The contrast of the images is different;

however, a region with a high concentration of nanoparticles can be observed

beneath the surface, and fringes appeared in the ablated sample. At low mag-

nification, conjuncts of particles emerge as dark areas and particles cannot be

distinguished separately.

The nanoparticles were near spherical and homogeneous in size. Higher mag-

nifications of the particles before ablation are shown in Figure 5.7. The contrast

given by the particles varied for some particles, lines corresponding to crystallo-

graphic planes were observed [181]. The silver in the ablated particles might not

be entirely metallic silver, but silver oxide; however, this has yet to be tested.

The fringes that appeared to correspond to the ablated particles showed no

difference in particle sizes, only in the number of them. This may be due to the

ablation into smaller particles that could not be resolved at those magnifications.

Figure 5.8 shows a magnification of the interfaces for one of these observed fringes;
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40nm

20nm

100nm

A

B

C
Figure 5.7: TEM images of silver particles in Nafion before ablation at different
magnifications. (A) 19000x direct magnification. (B) 62000x direct magnification. (C)
150000x direct magnification. All images taken with a Philips TEM at 120kV. The
particles appear spherical and show lines corresponding to different crystallographic
planes [181].
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Dark Fringe

Light Fringe200nm

500nm

A

B

Figure 5.8: TEM of holographic fringes in Nafion membranes. (A) 5000x direct
magnification after ablation; fringes highlighted with red lines at 8.83◦ from the surface,
spaced by ∼650nm. (B) 14500x direct magnification; the light fringe shows a lower
density of particles. Both images taken with a Philips TEM at 120kV.
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the edges are highlighted with yellow lines. It is known that after ablation the

particles decrease in size [149]; therefore, it can be assumed that the particles

became too small to be detected as individual particles at those magnifications.

Information about the geometry of the fringes for the mathematical model was

gathered from these TEM images. The region containing silver particles extended

to approximately 4.5µm beneath the surface. The angle of the apparent fringes

was 8.83◦, slightly larger than the fixed angle used in the experiments. The fringe

spacing manually measured from the TEM images at different positions varied

significantly with an average of 650nm, which is nearly double the expected value

of λ0/2. A possible explanation for these discrepancies is that the material was

sliced at an angle not perpendicular to the surface resulting in a slanted cut

that cause the space and angles to appear larger. Alternatively, it could be that

not all the ablated fringes can be distinguished at those magnifications, or that

the laser power was somehow reduced. Nevertheless, the distance between the

fringes could not be determined with certainty. Further research in finding an

appropriate technique for measuring the geometry of these photonic gratings is

recommended for future experimentalists.

The most important finding from the TEM image analysis was the determi-

nation of particle size distributions. As noted previously, the size of the cavities

is ∼4nm in diameter [242–244]; therefore, the size of the particles is expected to

be near the size of the cavities. However, the results of this work show particle

sizes of ∼20nm, not surprising since other studies of nanoparticle formation have

also found them to be larger [244]. Figure 5.9 shows plots for the particle size dis-

tribution before and after ablation. The fluoropolymer matrix flexibility is small,

but allows for the particles to grow further, as shown elsewhere [244]. Further-

more, swelling occurs in the presence of water which increases the available space

for the nanoparticles to form. This observation suggests that the cavities are

substantially larger than anticipated and expand after nanoparticle formation.

Figure 5.9 also shows the reduction on nanoparticle sizes; it is apparent that

nanoparticles of ∼30nm in diameter were removed or reduced in size, and only

particles under 20nm were preserved after ablation. This result should be inter-

preted with caution because the particle count was substantially lower for the

ablated regions. It is possible that the ablated nanoparticles are too small to be

detected or gave no contrast for the TEM.
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Figure 5.9: Particle counts from TEM of Nafion holograms before and after ablation.
(A) Counts before ablation. (B) Counts after ablation in the light fringes (see Figure
5.8).
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Figure 5.10: Holographic signal measurement and background correction for Nafion
holograms. (A) Raw spectra of holographic reflection and background light. (B) Iso-
lated hologram peak after subtracting the background.

5.4 Holographic signal measurements

Preliminary results with the high-exchange membranes showed that, in fact, the

membranes contained a holographic grating bright enough to be seen under a

white light halogen lamp. Figure 5.10 shows the holographic reflection peak of

a Nafion hologram before and after subtracting the background reflection. The

holographic reflection shows a second peak near the maximum of the background

reflection. It is likely that this corresponds to enhanced background reflections

or faint surface effects that were not completely subtracted from the background

correction.

5.4.1 Mathematical models for reflection spectra

The photonic model described in §1.2.3 was used to fit the experimental data

of Nafion holograms. As in the case of PDMS holograms, the refractive index

values of the layers had to be estimated. It has been reported elsewhere that

Nafion membranes increasea their refractive index when loaded with nanoparticles

[249–251], and thus it was expected that the refractive index also increased for

aCdS, Fe2O3 and SiO2 particles have been reported; for example, CdS and Fe2O3 increased
the refractive index from 1.38 to 1.6 and 1.75 respectively.
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metallic silver particles. The logic applied for PDMS membranes was also used

in this case: For a 0.01% (w/w) concentration of silver in a polymer, an increase

in refractive index of ∼0.06 units is expected; and for every 10nm reduction

in particle size, a 0.01 units decrease [187, 195]. Therefore, for clear Nafion of

n=1.38, the estimated values for the Ag 0-Nafion composite corresponding to the

non-ablated region would be 1.44 and for the ablated region 1.42, considering

a 20nm reduction in diameter. These numbers agree with previously reported

values for Nafion membranes with nanoparticles [248].

The model also required to know the thickness of the alternating fringes and

total number of layers. The effective distance beneath the surface containing

nanoparticles obtained from the TEM results was ∼4.5µm. Since it was not

possible to measure the fringe thickness in the case of Nafion, and considering

that the refractive indices are similar to those of PDMS, the value of 187nm was

taken as the layer thickness. Thus, the total number of fringes would be 24.

The final input parameters for the mathematical model were: 24 layers, layer

thicknesses a, b=Λ/2=187nm, n1=1.44, n2=1.42, and angle of observation from

the experimental set up θ=25◦. The results of the modeling are coupled with the

experimental results in Figure 5.11.

The experimental peak was broader than the peak predicted by the model; this

could be due perhaps to deficiencies in the background correction or the intensity

of the illumination source. This same background correction was performed for

the rest of the experiments in the following sections.

5.4.2 Proof of concept: response to water

The holographic sensing principle had to be proven for Nafion holograms; a change

in n or Λ should cause a change in λ or R. Nafion is not an elastic materiala,

therefore, a stretching and compression experiment would tear the membranes

apart. In this case, the swelling properties of Nafion to imbibing water are used to

prove that the holographic signal changes in response to expansion [253]. The use

of Nafion membranes for holographic sensors attempts to exploit the interactions

with partially charged gaseous molecules, such as oxygen or ammonia, that may

or may not cause swelling. Water was chosen because it also induces changes in

aThe Young’s modulus of Nafion is ∼0.25MPa which makes it a soft non-elastic plastic [252].
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Figure 5.11: Experimental data and mathematical model of the holographic reflection
spectrum of a Nafion hologram. The model TE and TM waves are shown in colours
and the normalized experimental data as a black line.

refractive index [247,254].

The interconnecting channels in Nafion are surrounded by hydrophilic sul-

phonic acid groups with negative charges. Its pKa has been calculated to be -6

and experimentally determined as -3.09 [255,256]. It was expected that molecules

with a partial negative charge would cause swelling, while molecules with posi-

tive charges would cause contraction. In this case, the charged gaseous molecules

have extra reactivity that could cause other type of changes, e.g. in refractive

index. Therefore, the holographic response could react, not only to swelling and

contraction, but also to refractive index variations (§1.2.3).

The experiments in the following sections aim to provide an insight into

the nature of the dual changes. When dry Nafion membranes are exposed to

water, the water molecules first associate with the hydrophilic sulphonic acid

groups [257,258]. The water in the ionic channels forms clusters around the pre-

viously associated molecules via hydrogen bonds [257–259], and once the water

content is high enough, the activity of the water molecules no longer holds the

clusters together and begins to coalesce, causing enhanced swelling [258–260].
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Since the nanoparticle presence does not affect the ionic properties of the mem-

brane, the swelling behaviour should also be exhibited in membranes with holo-

graphic gratings.

Figure 5.12 shows plots of the holographic signal peak wavelength and inten-

sity for the water exposure experiments. The wavelength increased and the re-

flection intensity decreased as the Nafion membrane absorbed water. This causes

a separation of the silver particles in space, reducing the reflection efficiency of

the layers. It is important to consider here that the refractive index of water

is similar to that of Nafion, and when the membrane is filled with water, the

average refractive indices of the dark and light fringes will change. It has been

reported elsewherea that when the membranes are hydrated, the total refractive

index decreases by 0.01 unit.

Since the refractive index of both layers is changed in the presence of water,

the refractive index difference is expected not to change because after subtracting

0.01 units, the refractive indices were 1.43 and 1.41 for dark and light fringes,

respectively. This change should not alter the reflectivity; this can be verified by

imputing the values in Equation 1.6 or the other mathematical models described

in §1.2.3. It can also be verified that a change of 0.01 units would not cause the

∼50% reduction in intensity observed in the experiments. The reflectivity change

is, then, mostly attributable to expansion of the fringes, which thereby reduce the

reflection efficiency. However, the models considered in this work do not account

for a reduction in reflection efficiency.

Figure 5.13 shows the kinetics of the holographic response to ingress of water;

the wavelength increases as the intensity decreases until a maximum change is

recorded. This not only proves that Nafion membranes swell in the presence of

water, but also that the gratings swell as a consequence of this. The colour change

in the reflected wavelength was also noticeable by eye as a change from green to

red. Figure 5.14 shows photographs of a flattened hologram under different light

conditions for exposure to water at a non-satisfying angle of incidence and at the

Bragg angle.

It was not possible to measure the dimensions of the holograms after swelling.

Therefore, the mathematical model was applied in reverse: For a given wavelength

aLies and Pantelic report average refractive index of Nafion of 1.35 when dry and 1.34 when
hydrated, [247,254].
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Figure 5.12: Holographic response to water in Nafion holograms. The spectra were
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and ∆λ ≈30nm.
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A B C

A* B* C*

Figure 5.14: Holographic reflections in Nafion holograms under different light con-
ditions. Top images taken under illumination with a diffuse white halogen lamp and
bottom images under a tungsten filament spot light. (A) Holographic reflections ap-
proximately at the Bragg angle of maximum reflectivity. (B) Holograms at a non-Bragg
angle. (C) Reflections at the Bragg angle in response to liquid water. The asterisks
denote different illumination. The red spot in A* corresponds to a protuberance, thus
giving different angles.
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Figure 5.15: Mathematical model and experimental values of holographic response
to water in Nafion holograms. The experimental data was normalized to unity at the
peaks.

shift and fixed refractive index values, the increase in fringe spacing was predicted.

For the observed 51nm wavelength shift, the model fits to a change in 15nm

fringe thickness. Figure 5.15 shows the experimental data and the model fits.

The experimental peaks appeared broader than the model predictions, perhaps

because the model does not consider reflection from the light source on the first

layer.

Similar to the colour analysis of PDMS holograms in §4.9, the holographic

reflections of Nafion membranes were measured as RGB values with the image

analysis software. However, it was not possible to obtain individual photographs

for varying concentrations of humidity in the membranes. It was only possible to

measure changes with and without water; the RGB plots for the images in Figure
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5.14 are included in Figure A.6 in the Appendix.

5.4.3 Proof of concept: response to thermal stimuli

Temperature is known to affect the physical properties of Nafion, particularly

the refractive index [261, 262]. Nafion is not elastic, and therefore expansion

would be minimal. In general, an increase in temperature means an decrease

in the refractive index values (see footnote b on page 18 §1.2.3). The refractive

index variation of metallic silver is also dependent on temperature but Nafion

is subjected to a larger change than silver because its thermo-optical coefficient

is higher [263–266]. As temperature increases, the refractive index difference

between Nafion and silver should decrease, and as a consequence, the reflection

intensity will be reduced. This can be verified by Equation 1.6, or by looking at

the sensitivity of the photonic model in §4.5.1.1.

As expected, there was a reduction in the reflection intensity when the surface

of the hologram was heated. Figure 5.16 shows the wavelength (∆λ) and reflection

changes (∆R) as the temperature increased and decreased over time. There

seemed to be a linear dependence of the reflection intensity change (∆R) with

temperature, which was affected by hysteresis. A small increase in wavelength

was also detected due to the limited thermal expansion of the fringes, or generated

by more substantive differences in refractive index (see Figure 4.20).

In conclusion, the wavelength change in response to swelling and the refractive

index change in response to temperature confirm the holographic sensing principle

is operational in Nafion holograms.

5.5 Preliminary results

5.5.1 High-exchange membranes

The holograms made in high-exchange Nafion membranes (NE-1035) were ex-

posed to hydrocarbon gases, N2, NO, CO2 and O2. Nitrogen gas and hydro-

carbons are inert molecules with no charge dipoles; therefore, no response was

expected from them. Nitric oxide is associated with free radical reactions which

give a holographic response change [267,268]. Carbon dioxide forms carbonic acid
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Figure 5.16: Holographic response to temperature of Nafion holograms. (A) Wave-
length and intensity changes vs time for a 60◦C increase and decrease. (B) Surface
temperature. (C) Temperature vs intensity correlation. (D) Temperature vs wave-
length correlation.
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Figure 5.17: Holographic response to control gases in high-exchange Nafion holo-
grams. Nitric oxide, nitrogen, carbon monoxide and a mixture of hydrocarbons, butane-
propane (30:70 (v/v)), showed no response. Oxygen data is shown in Figure 5.18. The
concentrations correspond to the concentrations of the lecture bottles, ≥99.0% (v/v).

in the presence of water and the charged carbonate group might also have an ef-

fect in the holographic response [269]. Similarly, dioxygen was expected to give a

change due to its reactivity and unpaired electrons. Of the reactants investigated,

only dioxygen showed a response (Figures 5.17 and 5.18). The membranes were

completely dried using an absorbent tissue and a hot air flow to remove as much

water as possible. The membranes were then left to cool down in the air-tight

analyzing chamber. The drying was performed because it was also found that

dried gases caused the hydrated membranes to give a response regardless of the

gas specie due to drying. Therefore, to avoid false positives, the experiments in

this section correspond to dried membranes only. The drying method does not

ensure 100% removal of water from the membranes because of the strong inter-

actions with the sulphonate groups. However, this was sufficient to avoid the

drying effect in the holographic response.

The holographic response to oxygen gas exposure is shown in Figure 5.18.
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Figure 5.18: Holographic response to oxygen gas in high-exchange Nafion holograms.
The concentration of oxygen gas was 99.99% (v/v) taken straight from the lecture
bottle. The black line corresponds to the average response and the different colors (1,
2, 3) to different runs.

There was no change in reflected wavelength but a negative change in reflection

intensity was recorded. Furthermore, the signal was completely reversible and

could be collected continuously as shown in Figure 5.19. The noise level of the

response to pure O2 was high and did not permit lower concentrations of oxygen

to be measured. In addition, the mechanisms of refractive index change with

O2, and the effect of drying, were difficult to deconvolute. A negative change in

intensity is related to a decrease in the refractive index contrast of the fringes.

However, it is not yet clear why the interaction with oxygen caused this change.

Several plausible hypothesis may be proposed, for example:

1. Any remaining water molecules strongly bound to the sulphonate groups

were displaced by oxygen causing a refractive index change. It has been

reported that structured water has a higher refractive index when in close

proximity to Nafion [241,270].

2. The singlet oxygen modifies the surface of the nanoparticles, changing their
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refractive index. It has been found that in oxidizing atmospheres the outer

most layer of silver nanoparticles could have variable refractive indices due

to the oxygen interaction with the metallic surface [271].

3. The refractive index of gaseous oxygen inside the membrane will contribute

to the total average refractive index of the fringes with and without ablation

and will reduce the reflection efficiency. The refractive index of oxygen is

∼1.0 and therefore a global reduction of refractive index is expected [272]. It

is known that gas-polymer interfaces in foam micro-structures cause scatter

which will affect the refraction and reflection [273].

4. Oxygen molecules with partial negative charges momentarily push the sul-

phonate groups apart, increasing the space between the cavities and chang-

ing the refractive index. Hydrophilic sulphonate groups could repel oxy-

gen that appears to be hydrophobic when in hydrated Nafion membranes

[274,275].

The first hypothesis is discarded because the water content after drying was low,

and, if water in the membrane cavities reduces the refractive index, the difference

n1-n2 should increase, thereby giving a higher reflectivity, not a lower reflectivity.

The second hypothesis seems feasible; however, there was no response to oxy-

gen in PDMS holograms containing metallic silver particles. The presence of

sulphonic acid charges favoured the oxygen diffusion into the membrane, forcing

the oxygen to form silver oxide on the nanoparticles. Even if there was silver

oxide (Ag2O) present on the surface, its refractive index would not contribute

greatly to that one of metallic silver and a change would not be noticeable [276].

The third hypothesis is also feasible; however, it needs to be shown that

gaseous oxygen flows freely through the PEMs cavities. In Nafion, dioxygen

coordinates with water and the volume occupied by dioxygen decreases as the

water content increases [274]. Since the membranes are dried, it is likely that

oxygen diffuses in the gaseous form. Polymer-gas interfaces increase scattering,

and thus the reflection efficiency and the holographic reflection intensity will

decrease [273]. This third hypothesis is the most feasible explanation because

it is the only way to justify changes in reflectivity when there is no change in

refractive index, at least from the model perspective which does not account for
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Figure 5.19: Holographic response to oxygen gas in high-exchange Nafion holograms.
The shadowed areas indicate the period of gas exposure. The concentration was 99.99%
(v/v).

reflection efficiency reduction by scattering.

The last hypothesis suggests that not only the refractive index changes, but

also the fringe spacing. This behaviour would be similar to the water response in

which both n and Λ changed and is also feasible.

These hypotheses should be interpreted with care because the response level

to oxygen is very low; the reason for this might be due to the hologram efficiency

more than the oxygen-Nafion interactions. Furthermore, it could be a combi-

nation of several phenomena that are causing the change. Thus, more than one

hypothesis can be valid. In conclusion, further investigation is needed to establish

the mechanisms of refractive index change in Nafion membranes exposed to O2.

Nevertheless, Nafion holograms were able to detect oxygen gas at 99.99% (v/v)

repeatedly and reversibly.
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Figure 5.20: Holographic response to oxygen, nitric oxide, nitrogen, carbon monoxide
and a mixture of hydrocarbons, butane-propane (30:70 (v/v)), for high-exchange Nafion
holograms. None of these gases showed a response. The concentrations corresponded
to the concentration in the lectures bottles ≥99% (v/v).

5.5.2 Low-exchange membranes

Holograms made in low-exchange membranes (N-117) were also exposed to hy-

drocarbon gases, N2, NO, CO2, NH3 and O2. The tests were also performed

for dried membranes; only ammonia showed a significant response. The results

for all the gases except ammonia are shown in Figure 5.20, and the response to

ammonia shown in Figure 5.21. Gaseous ammonia was only tested at concentra-

tions of 0.19% (v/v) in air. There was no significant change in wavelength, only

in reflection intensity.

As discussed in previous sections, a reflectivity change would be caused by

a change in refractive index or in the quality of the fringes. The hypotheses for

the different mechanisms in which ammonia can change the refractive index are

similar to those for oxygen:

1. The fringes are contracted by the attraction of positive charges in ammonia
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and negative charges in the sulphonate groups. The particles in the fringes

come close together, increasing the reflection efficiency and the brightness.

2. The refractive index of ammonia is different from Nafion and silver particles

which experience a global average change upon interactiona.

3. Ammonia may displace any remaining water molecules coordinated with the

sulphonate groups or formed ammonium ions NH+
4 , which caused changes

in the refractive index [279]. Ammonia is not known to react with metallic

silver; therefore no change in the silver particles is expected.

None of these hypotheses explain the increase in brightness except the contraction

of the fringes caused by the difference in charges. However, this should also affect

the reflected wavelength. Figure 5.21 shows a small change in wavelength that

would support this hypothesis. Further efforts to understand this effect may

include the optimization of the recording process to improve the brightness of the

hologram and testing the response under different humidity conditions.

5.5.3 Further optimization for low-exchange Nafion

membranes

A comparision of the response to 0.19% (v/v) NH3 gas for low-exchange and

high-exchange membranes is shown in Figure 5.22. Holograms in high-exchange

capacity membranes took longer time to reach a maximum response and recover

their original position. In fact, the high-exchange capacity membranes took a

thousand times longer to reach a maximum response or recover their original

state. Thus, low-exchange membranes were preferred for fast response; however,

only high-exchange membranes showed a response to O2, 2-fold higher than the

response to ammonia.

At this point the NE-1035 high-exchange membranes were no longer available

and low-exchange N-117 membranes were used for all subsequent experiments.

Further optimization of the methodology was required to increase the sensitiv-

ity of the low-exchange membranes in order to sense interactions with O2. The

aThe refractive index of liquid ammonia is 1.325 and∼1.0 for the gaseous state [272,277,278].

151



5. Holographic Sensors for Ammonia and Oxygen

ΔR
 [%

]

−5

0

5

Δλ
 [n

m
]

−10

0

10

Time [s]
0 100 200 300 400

NH3 1 2 3

Figure 5.21: Holographic response to ammonia in low-exchange Nafion holograms. All
plots correspond to 0.19% (v/v) in air. The black line represents the average response
and the different colours (1, 2, 3) different runs.

optimization studies targeted an increase in brightness aiming to enhance detec-

tion of small changes in the signal. The improvements listed below apply to the

methodologies described in §3.2.1 and §3.3.1.

Thus, commencing with the ablation process, one side of the membrane was

blocked with synthetic sticky rubber to avoid deposition of particles on both sides,

whilst to improve the nanoparticle loading times, the membranes were exposed

to silver ions without purifying or equilibrating with sodium ions. However, a po-

tential disadvantage of doing this is that the membranes could carry impurities,

although the presence of impurities did not appear to influence the brightness of

the resulting holograms. Furthermore, discarding the purification and equilibra-

tion steps substantially reduced the fabrication times.

The final concentration of silver particles in the membranes was initially con-

trolled by the concentration of the equilibrating solutions. The metallic silver

content was controlled by allowing enough time for the membranes to equilibrate

with the silver ions, whilst to optimize the nanoparticle-formation times even
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Figure 5.22: Comparision of holographic response to 1.9%(v/v) NH3 for low-exchange
and high-exchange Nafion holograms. (A) Low-exchange capacity membranes. (B)
High-exchange membranes.

further, the concentrations were changed and the exposure times reduced. The

silver loading process might be limited by the permeability of the membranes to

the solvent, in this case water, and thus the solutions were prepared in a mixture

of water and ethanol. The ethanol in the solution caused the membrane to swell,

allowing a faster diffusion of the silver and reducing ions into the membranes.

The total time was reduced to 3s for 0.1M AgNO3 in a 9:1 (v/v) ethanol:water

solution at room temperature.

After exposure to the silver solutions for 3s, the membranes were immedi-

ately transferred to a beaker containing deionized water and stirred vigorously

for 10s, in order to prevent the silver from accumulating on the surface and caus-

ing undesirable surface reflections. The surface was wiped with dry tissue and
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the membranes transferred to a 0.1M NaBH4 1:1 (v/v) ethanol:water solution for

2min. The final outcome was ready-to-shot membranes with the optimum con-

centration of silver for the production of bright holograms. After ablation, the

membranes were transformed into bright holograms observable under diffused

halogen white light and spot lights (as in Figure 5.14, §5.4).

5.5.4 Effect of environment humidity and temperature

on the holographic response

As shown in Figure 5.16, a change of ∼0.5nm in the replay wavelength was

recorded for every 1◦C change in temperature on the surface of the hologram. In

other words, small environmental temperature variations appeared not to cause

a significant change in the holographic response. However, water content sub-

stantially affected the membrane, as shown in the water exposure experiments.

Therefore, it was necessary to demonstrate that the environmental temperature

and humidity remained constant during the experiments. The temperature and

relative humidity in the spectrophotometer room and the rest of the laboratory

are controlled by an air conditioning unit, which recycles the air in the room;

in this process, water from the incoming air is temporary removed by condensa-

tion [280]. The room was monitored for 24h to verify that the temperature and

relative humidity were constanta. Figure 5.23 shows the recorded values which

were 42% and 23.9◦C on average with ±7% and ±8.5◦C variations respectively.

Thus, any recorded temperature changes were unlikely to affect the holographic

response although humidity variations could affect it. All subsequent experiments

were carried out during short periods of time to avoid significant variations in rel-

ative humidity.

Temperature and humidity were also measured at the outlet of the air-tight

chamber to test the effects of flushing a dry gas on the holographic response.

Figure 5.24 shows that flushing O2 and N2 directly from the lecture bottles led to

a decrease in the local relative humidity as the experiment progressed, whilst the

temperature showed a continuous increase. All gases in the lecture bottles were

free of moisture and thus caused the local atmosphere proximal to the holograms

to change. Dry gases not only affected the local relative humidity, but could

aSet to values of 23◦ and 40%.
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Figure 5.23: Monitoring relative humidity and temperature in spectrophotometer
room. Relative humidity, in red, oscillated from 35% to 49% with an average value of
42%. Temperature values changed from 23.1◦C to 24.8◦C with an average of 23.9◦C.
The time axis zero value corresponds to 20:00h.

also result in false positives because of a drying effect. This has to be factored

in to avoid confusion of the holographic response to the gaseous molecules with

desiccation of the membrane.

5.6 Holographic sensing of O2

The concentration of O2 in atmospheric air was asumed to be 20.9%. The test

gases were free of moisture and dilutions with atmospheric air thus exhibited

variations in humidity content. The initial humidity in the membranes could not

be controlled or measured during the experiments; it was only possible to perform

experiments for water-saturated, dry, or atmospheric humidity-equilibrated mem-

branes. Preliminary studies showed that dry low-exchange membranes produced

no response to oxygen. However, the low-exchange Nafion holograms were ex-

posed to oxygen concentrations under different conditions as follows: pre-wetted

by soaking in deionized water, equilibrated with atmospheric humidity for 72h,

or dried under a gas flow of either N2 or O2. The oxygen concentrations were

obtained with dilutions made in atmospheric air or N2 to consider the effect of

variable moisture content in the inlet. Table 5.3 summarizes the different condi-

tions tested for which results are plotted in the figures, as indicated in the table.
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Figure 5.24: Holographic response of pre-wetted holograms to moisture-free gases.
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Table 5.3: Experimental conditions for O2 sensitivity tests in Nafion holograms. In-
cluded: Figure containing the plots; wavelength peak at the beginning of the experiment
(λ0); intensity peak at the beginning of the experiment (I0); dilutions of O2 in air or
N2; and the pre-treatment of the membranes: wetted, equilibrated with atmosphere,
or dried with a gas flow.

Figure λ0 [nm] I0 [counts]x10−3 O2 in Pre-treatment
5.25 545 60 Air wet
5.26 569 50 Air atmospheric
5.27 567 50 N2 atmospheric
5.28 561 30 N2 N2 flow
5.29 562 47 N2 O2 flow

Holograms made by the optimized method were also insensitive to NO, CO2, and

hydrocarbons.

Figure 5.25 shows the response to O2 dilutions in air for a wet hologram. In

this experiment, the relative humidity in the inlet changed for the different O2

concentrations from 0% for the pure O2 to 40% for atmospheric air. There was

also O2 in the air which appeared to give a response. However, all the experiments

were accompanied by the effect of drying the hologram. There seems to be a good

correlation with changes in λ and the O2 concentration but this is obfuscated by

the differences in humidity.

Figure 5.26 shows the response to the same conditions as Figure 5.25, but in

this case the hologram was left to equilibrate with atmospheric humidity for 72h.

It was expected that changes caused by the drying effect would not be present

when exposed to air, or were reduced for the presence of air in the dilutions

with dry O2. The same humidity variations from 0% to 40% were present in this

experiment. Comparing the response to that shown in Figure 5.25, there was

a reduction in the large responses due to wetting. The decrease in wavelength

observed for the wet holograms was also present in this case. Similarly, a positive

wavelength shift for low O2 concentrations and negative shift for high O2 concen-

trations were recorded. The intensity showed the same trend, a reduction for high

concentrations and an increase for low concentrations. Once again, the drying

effect is detected as a reduction of the intensity but, in this case, oxygen at low

concentrations produced an increase in intensity. A plausible explanation for this
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increase is that the dilution had similar humidity content as the environment and

the response of the hologram is mainly due to the oxygen presence. The results

are similar to the ones in the preliminary results section (§5.5).

Thus, it has been noted that oxygen gives a response that is masked by the

drying effect on the holographic matrix. Figure 5.27 shows the response to varying

O2 concentrations in N2 for the same conditions as Figure 5.26. Diluting O2 in N2

eliminated the variations in humidity because both gases were dry. The drying

effect was, nevertheless, invariably present. The aim of this experiment was to

determine the effect of oxygen concentrations over the effect of drying. It was

found that the intensity decayed and the wavelength changed from negative to

positive values as a function of different concentrations of oxygen gas.

Ideally, a response to oxygen without interference from humidity would give

the necessary information to determine the oxygen concentration. One way to do

this is to work only under moisture-free conditions. In order to achieve this, the

membranes were pre-exposed to a copious flow of dry gases to test the holographic

response to oxygen concentrations after the holograms have been dried and the

atmospheric humidity removed from analyzing chamber. Figures 5.28 and 5.29

correspond to pre-exposures with pure N2 and O2 respectively. It was not possible

to determine the humidity inside the membranes; thus, it was assumed that this

process removed all moisture or at least minimised it.

Since the holograms should not respond to N2, a response to the varying con-

centrations of O2 was expected for the experiments shown in Figure 5.28. How-

ever, there was no difference in the responses: All the concentrations yielded the

same level for intensity and no response at all for wavelength. The identical in-

tensity response suggests that there was still humidity after the gas pre-exposure.

Interestingly, air showed a positive response compared to the dry gases, suggesting

again that the hologram reacted to the humidity in the air.

Pre-exposing with O2 should have given the same response as pre-exposing

with N2, because there was no humidity difference. Indeed, the level of response

was similar as it can be seen in Figure 5.29. However, the response to air was

different; the change was less pronounced than with the pre-exposure to N2. It

seems that the oxygen in the pre-exposure did not leave any room for the oxygen

in air to interact with the membrane and that the response to air in Figure 5.28

carries the response to O2 as well.
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Figure 5.25: Holographic response to O2 in air for a wet Nafion hologram. λ0=545nm,
I0=60000. (A) Kinetics of the response for the different concentrations. (B) Peak in-
tensity values, their corresponding wavelength, and correlations with gas concentration.
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Figure 5.26: Holographic response to O2 in air for an equilibrated Nafion hologram.
λ0=569nm, I0=50000. (A) Kinetics of the response for the different concentrations.
(B) Peak intensity values, their corresponding wavelength, and correlations with gas
concentrations.
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Figure 5.27: Holographic response to O2 in N2 for an equilibrated Nafion hologram.
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Figure 5.28: Holographic response to O2 in N2 for a N2-dried Nafion hologram.
λ0=561nm, I0=36000. (A) Kinetics of the response for the different concentrations.
(B) Peak intensity values, their corresponding wavelength, and correlations with gas
concentration.
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Figure 5.29: Holographic response to O2 in N2 for an O2-dried Nafion hologram.
λ0=562nm, I0=47000. (A) Kinetics of the response for the different concentrations.
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Therefore, it can be inferred from all these experiments that that Nafion holo-

grams effectively responded to oxygen concentrations but only in the presence of

moisture. An ideal experiment would consist in having O2 dilutions with the

same humidity content as the analyzing chamber which should be in equilibrium

with the hologram contained in it. This could be achieved with a humidity con-

trolling device for mixing gases and is recommended for further experiments with

oxygen-sensitive Nafion holograms. Nevertheless, having detected different levels

of response to oxygen makes Nafion holograms oxygen-sensitive, even though the

response was obscured with the humidity and the drying effect. In conclusion,

Nafion holograms are oxygen sensors only under specific humidity conditions.

5.7 Holographic sensing of NH3

The optimized low-exchange Nafion holograms were also exposed to ammonia.

The response to this gas was distinct to that for water and oxygen, since ∆λ

and ∆R changed in the opposite direction, and it was easier to measure un-

der environmental conditions since there was no interference from water. Nafion

holograms were equilibrated with atmospheric humidity for 72h. However, it was

noted that for concentrations above 9% (v/v), ammonia appeared to condense on

the surface of the holograms, thereby causing a drastic change in the holographic

response. Figure 5.30 shows the response to different concentrations of NH3 up

to 12.5% (v/v); above that concentration, the condensation on the surface caused

saturation of the response –this is included in Figure A.7 in the Appendix. Fig-

ure 5.31 shows the response to concentrations in the range 0.19-1.56% (v/v) not

appreciable in Figure 5.30. At lower concentrations, the error from the volume

measuring device exacerbates the error in the final measured concentration and

the signal. A linear correlation was found for both ∆λ and ∆R with concen-

tration. The wavelength decreased and the reflection intensity increased as the

gas concentration increased, although the linear correlation for wavelength was

not as satisfactory as the one for reflection intensity, particularly for the lower

concentrations.

The sensitivity and detection limits of the holograms were determined from

this set of results, taking into account the spectrophotometer resolution. The
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sensitivity and detection limits, not only depended on the instrumentation, but

also on the noise levels of the signals and the quality of the holographic reflections.

The Avantes spectrophotometer signal-to-noise ratio is 200:1 and the specified

wavelength resolution is 0.29nm, which in this case corresponds to a ∆R of 0.5%

[281]. By interpolating in the linear fits for ∆R and ∆λ in the high concentration

plot, the expected sensitivity should be between 0.09% to 0.12% (v/v) of NH3.

However, the holographic signal noise was higher than the spectrophotometer

resolution. In practice, only a minimum ∆λ of 3nm and minimum ∆R of 0.7%

were detected. This suggests the actual sensitivity and minimum detection limits

of the sensor for NH3 concentrations are (∆λ) 0.89% (v/v) and (∆R) 0.16% (v/v).

The ∆R response to ammonia was completely reversible and the holograms

were operated continuously giving repeatable results as shown in Figure 5.31.

This figure shows a continuous measurement of the holographic response to gas

injections of 0.19% (v/v) ammonia in air which was detected mainly as a change
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in R. The time for the signal to recover its original position was ∼20min. The

concentration at which the hologram acquired a stable wavelength response was

found to be ∼0.4% (v/v). This could also explain the poor correlation between

wavelength shift and concentration for the low concentrations plot in Figure 5.31.

The kinetics of the holographic response to water, ammonia and oxygen gas

are summarized in Figure 5.33A and the response rates are compared in Figure

5.33B. All the plots correspond to holograms equilibrated with atmospheric hu-

midity (∼40%). The concentration of ammonia for the comparison with pure

oxygen gas and liquid water was 12.5% (v/v). Equilibrium was reached in ∼100s

for all samples. The response to water is greater than the response to oxygen;

therefore, any variations in the local humidity will prevail over a response to O2.

NH3 on the other hand responded in completely opposite directions to water and

O2. This agrees with the hypothesis above that ammonia has partial positive

charges that attract the sulphonate groups causing shrinkage, thus decreasing

the wavelength and increasing the reflection efficiency.

There are several physical properties related to charge or polarity that could

explain the changes in n and Λ in Nafion holograms, for instance: Ionic strength,

octanol-water partition coefficients, molecular polarizability, molecular and po-

lar surface areas, molar refractivity, orbital electronegativities, molecular dipole

moment, and the solubility parameter (δ) previously discussed (Equation 4.8).

5.8 Ionic strength tests

Ionic strength is a physical property that could relate to the charge-induced in-

termolecular forces, and that can be tested experimentally. The ionic strength

was originally defineda as µI = 1/2
∑
mizi

2, where mi is the molality and zi the

number of charges in the ion. µI is used to relate charges and ionic interactions to

the activity coefficients of ionic solutions [284]. Thus, if the holographic response

depends on the strength of similar dipole-ion interactions, the hologram should

respond to various ionic strengths. It should be pointed out that measuring ionic

strength requires aqueous solutions, and hence these experiments started at the

aThere is some debate in the literature about the use of this empirical concept in theoretical
models and whether the equation should be different [282,283]; the original empirical definition
is used in this work.
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maximum response to water where the baseline was recorded.

The sulphonate groups in the channels of the membrane have hydrophilic

negative charges that when hydrated are surrounded by water molecules [257–

259]. These water molecules structure themselves around the sulphonate groups

causing a change in the local refractive index that can change due to perturbations

by interacting counter-ions [255, 258–260, 270]. Therefore, changes in intensity

were expected in these experiments. Figure 5.34 shows the holographic signal

changes to water and to solutions of NaCl with different ionic strengths. Ionic

strength is expressed in terms of molaritya. There were some fluctuations at the

beginning of each addition caused by the additions of liquid; in order to avoid

them, the liquid was instead injected to the initial 5mL covering the hologram.

Figure 5.35 shows the control experiment for 1mL additions of water showing

no initial disturbance of the signal. In the case of the ionic solutions, an initial

large shift was observed; no apparent trend was detected. The plots showing

the holographic response to an increase in ionic strength for NaCl, NH4Cl and

NH4OH ions are included in Figure 5.36. The data points of ∆λ and ∆R for

the correction plots were collected before each addition and compared with µI ,

as shown in Figure 5.37.

Na+ ions were tested as a standard measure of ionic strength and NH+
4 cations

were selected to compare their response with NH3. Unfortunately, the tests were

not reproducible and no significant correlation was found. Nevertheless, water

did not show a change to either ∆λ or ∆R. The ionic composition of the sample

has an effect on the holographic signals but a correlation with concentration could

not be found. A reason for the lack of repeatability of the tests could be that the

membranes were transformed into the sodium or ammonium form and remained

in that form for the rest of the additions. Conceivably, longer washing times in

DI water were required to revert them to the non-protonated form.

An alternative approach was to analyze the charge-induced intermolecular

interactions theoretically to try to find and empirical correlation with the observed

data. Molecular interactions are the driving force for the holographic signal to

change: For example, the holographic response of PDMS holograms was directly

correlated to the free energy of mixing. This might not be the case for Nafion,

aFor all the solutions there was only one type of cation of charge +1, and the density of
water at room temperature is 1kg/L; therefore, µI = mi = Mi, where Mi is the molarity.
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although a similar approach was taken by looking at the thermodynamics of the

interactions.

5.9 Thermodynamics of Nafion-analyte

interactions

Polar hydrophilic interactions with the sulphonate groups in the membrane cav-

ities are postulated to be the cause of the observed changes in λ and R. Their

magnitude should depend on the partial charges of the analytes which interact,

somehow, with the charges in the sulphonate groups. Physical phenomena such

as absorption, diffusion, swelling, and, in the case of Nafion, ionic dissociation

may be present [285]. The combination of these processes and the strength of the

dipole interactions may form the basis for the holographic response.

A thermodynamic model that relates swelling, absorption, and ionic-exchange

equilibria in Nafion membranes has been proposed by Choi [285], based on the

Flory-Huggins theory for activity. This model depends on various factors that can

be estimated a priori and the interaction parameter χ12 for which an empirical
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relation has to be found. As discussed in the previous chapter, χ12 depends

on concentration and solvent-polymer interactions. These interactions can be

expressed in terms of the solubility parameter δ [286]. χ12 is also related to

the enthalpy of the system (Equation 4.5 p.104), and thus to the free energy

which is the driving force for changes in Λ or n. Therefore, finding an empirical

correlation with δ is a step closer to predicting and modeling the sensor response

to any analyte. However, other physicochemical parameters could also have an

effect on the free energy, for instance, refractive index changes can be caused by

the complex electron distributions in the materials [287, p.43].

Analyte interactions with Nafion membranes seem to be a complex process

that should take into account both the polar and apolar interactions. When the

gases interact with the non-polar part of the persulphonic acid polymer, different

events may happen, as detailed in the hypotheses promoted in §5.5. Changes

in refractive index, wavelength, and the quality of the fringe interfaces occurred

simultaneously, and only three different molecular species have given a change in

∆λ and ∆R. Thus, the response in Nafion holograms is likely to have a complex

relationship with the molecular properties of the analytes, and may not correlate

with any single physicochemical property of the analytes.

In an attempt to find this empirical correlation, the holographic response was

plotted against various physicochemical parameters that relate to charges and

dipoles in the gas molecules. These include: The solubility parameter δ, the

octanol-water partition coefficient Kow, and the solvent accessible surface area

ASAS. Other properties considered are:

χv The orbital electronegativity of the most acidic atom in the molecule which

governs the partial charge distribution in the molecules. It depends on the

partial charge of the individual atoms and it is given by χv = 0.5(Iv +

Ev), where Ev is the electron affinitya of the atom and Iv is the ionization

potentialb [289].

Eπ The pi energy which is the sum of bond energy terms for pi orbitals in a

molecule given by the sum of the single-electron energies Eπ =
∑
njεj,

where nj is the number of electrons in orbital j and εj the energy of that

aEnergy required to detach an electron from an ion [288].
bEnergy required to remove an electron from an atom in its ground state [288].
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orbital [290].

α(ahc) The molecular polarizability which measures the tendency to diminish ex-

ternal electric fields by induced dipoles in a molecule; it can also be in-

duced by electrostatic interactions with solvents or ions [291]. It is given by

α(ahc) = 4/Ne [
∑

A τA]2, where Ne is the number of electrons in the molecule

and τA the polarizability of each atoma [292,293].

APSA The polar surface area corresponding only to the solvent accessible area of

the polar atoms in the molecules.

MRcalc The molar refractivity is related to the volume of the molecules and

charge distributions at the Van der Waals’ surface [294, 295]. It is used to

model electrostatic interactions and is given by (n
2−1
n2+2

)MW
ρ

, where n is the

refractive index, MW the molecular weight, and ρ the density; it is usually

calculated from contributions of the individual atoms [296].

µx The molecular dipole caused by the uneven distributions of positive and neg-

ative charges in the molecules. It is given by the vector sum of the bond

dipole moments µx =
∑

β µβ, where µβ = %∂, µβ is the dipole moment of

the βth bond, ∂ the bond distance and % the chargeb [297].

The plots of these properties versus the holographic response are included in

Figure 5.38. The data corresponds to the gas species that exhibited a response:

O2, NH3 and water; N2 is included as a control. The values of the physical

properties were obtained from reference [291]; Table 5.4 includes all the plotted

values.

The holographic response data seems to correlate well with χv, µx and δ.

It has been reported that Nafion membranes have a dual solubility parameter

(δ), with one corresponding to the hydrophobic backbone and the other to the

hydrophilic sulphonate groups [157,302]. It has also been reported that the dual

solubility parameter is affected by the counter-ion forms of the membrane; it has

different values for the H+ form and the Na+ form [302]. The values of δ for the

untransformed membranes are 20MPa1/2 and 34 MPa1/2 for the hydrophilic and

hydrophobic parts respectively.

aTabulated systematically from values based on H2 [292].
bIn a bond %+ ∂ %−
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Table 5.4: Some physicochemical properties of O2, N2, NH3 and water, and their
holographic response in Nafion holograms. Areas in Å2, all other values in SI units
unless specified.

Gas ∆λ[nm] ∆R[%] δ? logKow α(ahc) APSA ASAS MRcalc Eπ χv µx
NH3 -15 73 19 -0.98 2.26 13.6 40.8 15.5 2.7 7.98 1.9
N2 0 0 10.6 0.31 1.94 47.6 42.6 26.2 3.2 15.7 0
O2 6.2 -8.5 11.7 -0.28 1.48 34.1 52.5 2.9 4.5 17.1 0
H2O 52 -27 48 -0.65 1.47 25.3 35.6 3.7 4.2 9.1 2.1

?Solubility parameter values from: [298–301]. All other values from: [291].

Species with values of δ similar to those of Nafion yielded the highest re-

sponses. Thus, the correlation seems to follow the dual solubility parameter of

Nafion, giving the biggest shift in ∆λ or ∆R for species with similar values to

the Nafion hydrophilic and hydrophobic δ. Similarly, species with the highest µx

and lowest χv give the highest response. However, it was not possible to produce

an empirical equation because the data points were scarce and the curve lines are

just connections between the points. Nonetheless, once the empirical correlation

of the holographic response with a physical property is found, it would be possible

to relate changes in n and Λ to a thermodynamic model. Hence, in theory, the

sensor performance to any analyte could be predicted mathematically. These lim-

itations constrain the depth of analysis that can be made; thus, the holographic

response predictions for Nafion membranes is limited to observations.

It is clear that the strength and type of molecular interactions are the cause

for changes in fringe spacing and refractive index. The hypothesis that the fringe

spacing was modulated by alterations in intermolecular repulsions or attractions,

and that the refractive index changes by variations in the electron distributions in

the analytes and Nafion now seems plausible. However, an analytical relationship

has not yet been found and modeling this complexity might not be possible with

current methodologies. Thus, it is recommended that future research focuses on

understanding these phenomena, particularly, the refractive index changes caused

by intermolecular interactions.
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5.10 Summary

Holographic gratings in Nafion membranes were used as transducers for ammonia

and oxygen gas concentrations. Furthermore, the holograms exhibited a reversible

response. The gases in contact with the grating induced changes in optical prop-

erties and acted as the sensing mechanism behind the holographic response.

The response to oxygen was only detected in the presence of moisture. Nafion

holograms were able to detect oxygen concentrations in the 0%-100% (v/v) range

but their high sensitivity to humidity obscured the independent response to oxy-

gen. The response time was ∼100s and took ∼20min to fully recover. Further

investigation is required to improve oxygen sensitivity and understand the mech-

anisms of the response in the presence of water. Nevertheless, Nafion holograms

could be used as oxygen sensors under specific controlled humidity conditions.

On the other hand, the response to ammonia was detected regardless of the

presence of moisture in the membranes. Ammonia concentrations in the range

0.16%-12% (v/v) were detected with minimum detection limits of 0.16% (v/v),

and with response and recovery times similar to oxygen (100s and 20min). More-

over, the response signal to ammonia did not interfere with ∆λ and ∆R mea-

surements for water or oxygen gas.

It was hypothesized that the holographic-signal changes were caused by the

dipole interactions of the gaseous analytes with the sulphonate groups in the

Nafion cavities. In order to confirm this hypothesis, an empirical correlation

between the holographic response and the intermolecular interactions is needed.

The holographic response data agreed with χv, µx and δ which indicates that

dipole interactions are the cause of the change in n and Λ. However, the amount

of data was insufficient to properly validate the correlation.

Even if a significant empirical relationship was found, the hypotheses should

be analyzed with caution because the interactions could affect n and Λ simultane-

ously in different ways. Further, the photonic model has some limitations when

the quality of the fringes changed; it does not account for reflection efficiency.

Nevertheless, the mathematical model for the photonic effect was used to fit the

data from the Nafion holograms.

In conclusion, exploiting the intermolecular interactions of ammonia and oxy-

gen with Nafion lead to the production of oxygen and ammonia gas sensors. How-
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ever, the challenges of modeling the holographic response based on the analyte’s

properties, and producing a more selective and sensitive sensors still remain.
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Final Discussion

Two new types of holographic sensor have been described in this thesis: Sen-

sors for oxygen and ammonia fabricated in Nafion membranes and sensors for

hydrocarbon gases and VOCs made in PDMS films.

In order to record holograms in Nafion and PDMS, a new holographic record-

ing technique has been developed. This technique required the formation of silver

nanoparticles (∼18nm) in both PDMS and Nafion. The methodology for inclu-

sion of particles was designed according to the characteristics of the materials

and commenced with the perfusion and subsequent reaction of silver salts and a

reducing agent inside the polymer matrix, thereby forming metallic nanoparticles.

These reagents, however, require chemically compatible solutions with Nafion and

PDMS respectively.

PDMS is an apolar material [146], and thus the solutions containing the silver

and reducing agent were prepared in organic solvents with high affinity for PDMS.

The solvent chosen for this was tetrahydrofuran (THF) and the silver salt soluble

in THF was silver pentafluoropropionate (AgPFP). Similarly, hydroquinone (HQ)

was chosen as the reducing agent. The amount of silver nanoparticles generated in

the films was controlled by the concentration and volume of the solutions used,

and the size of the particles was constrained by entanglement in the polymer

chains.

In contrast, Nafion is not apolar, and exhibits internal cavities surrounded

by charged sulphonic groups [157, 240, 241]. These charges confer on Nafion its

permselectivity, allowing only positively charged molecules to permeate into the

polymer matrix when it is treated in an aqueous solution [240]. Thus, the so-

lutions used to perfuse the silver and reducing agent were water-miscible and

employed only silver cations. AgNO3 in solution was used to load silver ions into

the cavities of the membrane and a very strong reducing agent, NaBH4, was used
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to reduce the silver cations (Ag+) to metallic silver (Ag 0) particles. The size of

the particles was constrained by the size of the cavities in the membrane, and the

amount of silver at the time of imbibing the solutions.

The nanoparticles in both membranes appeared approximately homogeneous

in size with average diameters of ∼17nm and ∼19nm for Nafion and PDMS re-

spectively, and sizes no larger than ∼100nm. Furthermore, their distribution in

the z-direction beneath the surface was uniform down to a depth of ∼20µm for

PDMS and ∼4.5µm for Nafion. This homogeneity in distribution and sizes of

metallic particles in the membranes is the principal requirement for the record-

ing technique which involves ablation of these preformed particles. The 300mJ

laser radiation is reflected through the films containing nanoparticles forming

constructive interference patterns of high energy laser waves in which the abla-

tion takes place. The result is an ordered stack of layers of film with ablated

and non-ablated particles. The ablated regions showed narrower distributions of

particle sizes close to the average values. In other words, particles larger than

30nm appear to be more susceptible to ablation.

The ordered layer structure produces a photonic effect filtering the wave-

lengths that are reflected from the structure; the reflected wavelength (λ) is a

function of the grating spacing (Λ), the refractive indices of the alternating layers

n1 and n2 (average n), the angle of observation ϑB and the number of layers L,

and this can be described mathematically [116]. Likewise, changes in λ can be

used to estimate changes in n and Λ and vice-versa.

A key finding of this work was the correlation between the changes in n and

Λ and the analyte interactions with the materials of the sensor. Thermodynamic

models for the analyte-polymer interactions suggested that the solubility parame-

ter (δ) is a good indication of the strength of the molecular interactions for polar

or apolar molecules (§4.7.1 & §5.9, [218, 220, 221, 285, 286]). The experimental

results gave sufficient kinetic data to correlate the sensor response (∆λ) to the

thermodynamic parameter, δ. Analytes with similar affinity to Nafion and PDMS

gave the highest response. This correlation can be used to predict the response

of the sensor for an analyte of which δ is known.

The molecular affinity of Nafion and PDMS for the target analytes was in-

ferred before finding the correlation based on a thorough study of the molecular

properties of the analytes and polymers, which was the main reason why they
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were chosen as sensor materials. PDMS interacts with apolar substances via

hydrophobic interactions [146], and thus it was selected as a suitable material

for interacting with hydrocarbons and VOCs. Nafion, on the other hand, is a

porous material with hydrophilic cavities which interacts with molecules based

on their hydrophilicity or polarity [157,240,241], and thus it was deemed suitable

for polar molecules such as ammonia and oxygen. Both PDMS and Nafion also

form optically transparent films, which is a requirement for the laser ablation

methodology.

Nafion is a permselective membrane with nano-metric pore sizes [240, 241];

these constraints determine the type of molecules that permeate into the mem-

brane, i.e. small molecules, such as gases. Furthermore, molecules with partial

positive charges in their molecular structure are more likely to be attracted by

the sulphonic acid charges in Nafion, improving even more the selectivity of this

sensor. PDMS also exhibits extra advantages, such as its wide availability, easy

fabrication and inertness to corrosive materials or water [146, 171]. PDMS can,

therefore, be used in aqueous environments for sensing volatile compounds.

All the experimental evidence suggests that the cause of the change in n

and Λ is the strength of the analyte-polymer molecular interactions. However,

the mechanisms of the changes are still unknown and different hypotheses were

suggested based on previous work [241, 270, 272–275, 277–279], and the findings

in this work (§5.9 and §4.7.1).

The hydrophobic interactions between PDMS and the analytes are dominated

by Van der Waals’ intermolecular forces [167]. Upon interaction, the analytes in

continuous movement cede energy (i.e. free energy of mixing ∆Gm) to the PDMS

polymer chains, thereby changing their conformation and expanding the bulk film,

resulting in swelling of the fringe spacing (Λ).

The interactions with charged sulphonic acidic groups in Nafion are caused

by electrostatic attraction or repulsion by the partial charges in the molecular

structure of the analytes (i.e. similarities in δ) [236,238]. In the case of ammonia,

contraction of the fringes is expected due to the attraction of the sulphonate

terminated polymer chains towards the cavities. In the case of gaseous oxygen, its

partial negative charges were expected to repel the Nafion chains, thus expanding

the film and Λ. However, oxygen could not interact with the Nafion membranes

in the absence of water, and water changes the refractive index of the cavities.
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6. Final Discussion

Thus, the strength of the interactions (δ) affects n and Λ simultaneously.

The significance of these results is that, regardless of the sensor materials or

target analytes, the design, fabrication, characterization and modeling method-

ologies are generic for producing holographic sensors. Sensors for oxygen, am-

monia, hydrocarbons and other volatile organic compounds were produced using

this methodology, and thereby fulfilled the objectives of the project. The general

steps are detailed the section below.

6.1 Generic methodology for the production of

holographic sensors

First, it is necessary to select the target analyte for the sensor. A study of the key

properties of the analyte such as polarity, electronegativity, molecular structure,

conformation, etc. can determine what type of materials are good candidates for

the sensor. These materials should promote strong but reversible molecular inter-

actions with the analyte. Not all materials will fulfill the fabrication requirements

for holography and identifying a pair that matches the fabrication and interaction

requirements is the first key step in the production of holographic sensors.

The sensitivity and selectivity of the sensor are determined by the strength

and specificity of the interactions regardless of the sensing platform; the more

selective is the material, the more selective will be the sensor, whilst the sensing

platform constitutes the means of transducing the interactions into signals. Figure

6.1 illustrates the proposed generic methodology with the key steps identified.

The sensitivity of the sensor materials to the analytes should be preserved

through all the hologram formation and recording steps and the materials used

should comply to the holographic recording process. Producing a sensitive holo-

gram is not enough for its use as a sensor; it has to be characterized to ensure it

gives a significant response as the concentration of the analytes changes. Figure

6.1 also includes these subsequent characterization steps, with the ultimate goal

of predicting the holographic response. This is accomplished by coupling the

photonic model (§1.2.3) with a thermodynamic model (§4.7.1 and §5.9), relat-

ing the strength of the intermolecular interactions with the changes in reflected

wavelength and intensity. Coupling these two models requires an empirical cor-
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Silver salt

•In solvent 
compatible 
with film

Reducing agent

•In solvent 
compatible 
with film

Polymer film

•Optically 
transparent

•Flat
★Interactions 
with analyte

Film with nanoparticles

•Even particle distribution  
beneath the surface.

•Translucent for laser 
radiation

★Interactions with analyte 
are preserved

Hologram

•Bright 
monocrhomatic 
reflection

★Interactions with 
analyte are 
preserved

Kinetic models

•Reversible
•Repeatible
•Fast

Thermodynamic 
models

•Significant 
correlation

Photonic model

•Variations in n 
and Λ only

Mathematical prediction of holographic response

+ +

+

Perfusion and 
formation of 
nanoparticles

Fringe formation 
by ablation 

Exposure 
to analytes

Empirical 
correlation

Reconstruction of the 
holographic signal based 

on thermodynamic 
properties of analytes
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Analyte

Response model

Figure 6.1: Generic methodology for the production of holographic sensors. The key
steps and main contributions of the project are highlighted in red. Specific requirements
for each step or material are shown as bullet points. The first five blocks represent the
fabrication of the sensor and the last four the carachterization. An analogous with
Figure 1.2 is represented in the last block: A hologram integrates all the essential
components of a sensor.
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Table 6.1: Holographic sensor parameters for hydrocarbons.

Parameter Value
LDL 1% (v/v)

Range 0%-100% (v/v)
Response time 2s (40◦C)

3s (22◦C)
5s (8◦C)

Recovery time 300s; flushing with air ≤3s

relation between the holographic response and the thermodynamic properties of

the analyte, and finding this correlation is necessary for the analytical prediction,

which is the last key step of the common generic methodology.

6.2 Comparison of holographic sensors with

other gas-sensing technologies

It is necessary to compare the performance of the holographic sensors with current

gas-sensing technologies. Several technologies for measuring the target analytes

have been introduced in §1.1.3. This final section of the discussion focuses on com-

paring the main advantages and disadvantages of the holographic sensors based

on the results obtained in this work for each analyte. The parameters that offer

a good comparison for the sensor performance include the Lower Detection Limit

(LDL), the response time and the range of concentrations over which the sensors

operate. The following subsections compare the sensors by type of analyte.

6.2.1 Hydrocarbons and VOCs sensors

There are many examples of hydrocarbon or VOC sensors that are usually unse-

lective and group the analytes as flammables or toxics [12]. Sensitive techniques

that require sophisticated equipment are not discussed here; only those which

provide an end-point device readable by a final user are considered.

The poor selectivity of VOC sensors offered in the market is often justified

by claiming versatility for simultaneous detection of multiple analytes [303]; this
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is a potential advantage and disadvantage shared by PDMS sensors. The most

common sensors for hydrocarbons are solid state semiconductors that operate at

high temperatures ≥200◦C [304–308], and require a constant energy consumption

by the semiconductor to maintain this temperature. Although the mode of oper-

ation of these sensors is different to holographic sensors, it is based on oxidation

of their semiconducting layers. The holographic sensors are more competitive in

this aspect as they do not require embedded electronics or a power supply.

The detection limits cited for commercial hydrocarbon sensors are as low as

0.2ppm in air for a range of concentrations from 0 to 1% (v/v), response times

of ≤30s, and recovery times up to ∼70s [304,305,308]. Table 6.1 summarizes the

sensor parameters for the PDMS holographic sensor. Holographic sensors cannot

compete with the sensitivity of available hydrocarbon sensors in the ppm range.

Nevertheless, they detect concentrations as low as 1% (v/v) and span over the

whole range up to 100%. Moreover, the response times are an order of magnitude

faster than commercial sensors. This makes the holographic hydrocarbon sensors

unique and competitive if used in an appropriate environment.

Holograms can be used in environments with a high level of exposure to hy-

drocarbons or VOCs that require no interference with atmospheric gases or water.

Therefore, they would be suitable for real-time monitoring of industrial processes

(i.e. gas production plants, refineries, etc.). There is a copious body of research

including conductive polymers in the solid state sensors to increase their selec-

tivity and affinity for hydrocarbons [308].

Sensors for liquid VOCs are designed for different environments and there

is a plethora of methodologies available to measure them. A comparison with

current technologies should be performed on a case-by-case basis. For example,

§4.8 shows that concentrations of toluene in water can be detected accurately

down to ∼50ppb with a response time of 5min. Comparing this example with

current literature, it is as least as sensitive as optical or amperometric methods,

which display detection limits of 10ppm-2500ppm [309–311]. Furthermore, the

sensitivity of holographic sensors in aqueous solution compares favourably with

catalytic electrodes for gaseous toluene with similar response times and LDLs of

5min and 10ppb respectively [312].
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Table 6.2: Holographic sensor parameters for oxygen gas detection.

Parameter Value
LDL not possible to determine

Range 0%-100% (v/v)
Response time 100s (22◦C)
Recovery time 20min

6.2.2 Oxygen sensors

It was not possible to determine the sensitivity of Nafion holograms to oxygen

because the concentration measurements were affected by humidity. Hence, the

current holographic oxygen sensor described in this thesis offers no competition to

current technologies. Some of the published technologies can sense concentrations

as low as 0.5ppb and some detect oxygen within picoseconds of exposure [313,314].

The holographic oxygen sensor parameters are summarized in Table 6.2; it can be

operated at all concentrations, but this has also been achieved by other sensing

technologies [315]. Furthermore, there is interference with water which makes the

holograms unsuitable for most of the applications in which oxygen monitoring

is crucial. Nevertheless, the sensor offers the advantages of being a hologram:

Reversibility, no need for embedded electronics and facile affordable fabrication.

Further investigation on how to improve the sensitivity of the Nafion holo-

graphic sensor to oxygen is required. However, matching the achievements of

current sensors is a challenge that might be limited by the fundamentals of the

holographic platform.

6.2.3 Ammonia sensors

Currently available sensors for ammonia measure concentrations down to 50ppb

and up to 1000ppm in ∼1min [52]. This concentration range is ideal for en-

vironmental monitoring or health diagnostics applications. It has been found

that ammonia concentrations are potential disease markers in exhaled breath

[52, 316–318]. Healthy individuals exhale 50-2000ppb ammonia whereas individ-

uals with disease could see this concentration decreased or increased depending

on the disease or metabolic regime (i.e. renal failure, H. pylori infection, protein
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Table 6.3: Holographic sensor parameters for ammonia detection.

Parameter Value
LDL 0.16% (v/v)

Range 0%-12.5% (v/v)
Response time 100s (22◦C)
Recovery time 20min

deprivation or starvation, etc.) [9,52,316–321]. The maximum concentrations de-

tected from breath samples in patients with disease rises up to 10000ppb [316,317].

Environmental and industrial monitoring of ammonia, however, requires moni-

toring concentrations ≥20ppm and up to the lower explosive limit of 15% [52,55].

There is a gap from 1000ppm up to 15% (150,000ppm) that cannot be detected

with the current commercial sensors. The fatal exposure limits for humans lies

just above 1000ppm and below 10000ppm [50], and falls within this gap.

Nafion holographic sensors for ammonia are beyond the sensitivity required

for breath analysis. Also, they need to be operated under constant humidity or

oxygen concentrations. As a consequence, they are not yet suitable for breath

diagnostics. However, their detection range fills in the gap for ammonia sensors

to detect high concentrations and their response times are comparable with those

of current sensors. Table 6.3 summarizes the sensing parameters. Holographic

ammonia sensors are noteworthy for their potential use in industrial applications

where real-time monitoring of dangerous ammonia levels is required. Neverthe-

less, further investigation on the sensitivity is required for their use in biomedical

diagnosis.

Comparing the different analytes confirms that the photonic structure in poly-

mer films is a standard platform with potential use for the detection of various

analytes. This platform can be multiplexed by fabricating a sensor array for the

analysis of gas mixtures and can be integrated with previously developed holo-

graphic sensing technologies. Furthermore, using pulsed lasers requires fractions

of a second for recording a hologram; this process can be easily escalated for

mass manufacturing given that the polymer films are flat and can be roll-coated

on surfaces as discussed in the Materials and Methods section.
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Concluding Remarks

Understanding the fundamentals of how a sensor operates enabled the design

and production of new sensors under a standard platform. Furthermore, target-

ing specific gaseous analytes led to the invention of new holographic recording

techniques in previously unexplored materials. The final outcome was an ab-

lation technique to record grating layers in an elastomer and a fluoropolymer,

which were sensitive to hydrocarbons, volatile organic compounds, oxygen and

ammonia.

Knowledge of the fundamentals was also essential for the characterization

and theoretical analysis of the response of the sensors: It was possible to relate

analytically the thermodynamic properties of the analytes to a photonic model

for the prediction of the holographic reflection spectra.

The holographic sensing principle assumes that the molecular interactions

cause changes in the properties of the layered structure, which are then observed

as a coloured reflection. In the present work, experiments were designed, and an

explanation has been given, to validate this assumption. By finding significant

correlations, it was pointed out that the intermolecular interactions are likely to

be the cause of the changes. However, correlation does not imply causationa, and

–citing David Hume– “It is only after a long course of uniform experiments in

any kind, that we attain a firm reliance and security with regard to a particular

event” [323, p.36]. Thus, it is necessary to leave the question of what causes the

sensor signal to change open for future experimentalists.

aIt has been argued that when the observations are detailed enough, a single measurable
cause might not exist [322].
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Appendix

A.1 Discrimination of response in a group of

analytes using principal component

discrimination analysis (PCA)

It can be said that the sensor distinguishes between different types of analytes

when the PCA components are plotted in non overlapping areas. PCA in 2D was

performed for all the kinetic responses of VOCs and hydrocarbons at the different

concentrations and temperatures. The data points correspond to one repetition

only. The PCA plots were generated by a Matlab R© script (Program A.1) which

gathers data from the kinetic results (Program A.2). Figures A.1, A.2 and A.3

show the results of the PCA algorithm. There was no overlap between the data

points for most of the gas species and VOCs. However, there was a considerable

amount of data points that, even if not overlapping, were very close together;

this might be of limted use for identifying different species or concentrations.

In general, it can be said that the sensor was able to identify a combination of

molecules or concentrations but, in practice, it will only respond to certain groups

of analytes, or for mixtures in which only a few molecules interact. An example of

a real application in which only one component needs to be identified in a binary

mixture is discussed in §4.8.
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Program A.1: Principal Component Discrimination Analysis algorithm for extracting
the F components

FILENAME: "pca.m"

function [Y,X1,v,Psi] = pca(X,numvecs, options)

options.null = 0;

Psi = mean(X’)’;

if isfield(options, ’use_em’) && options.use_em==1

if isfield(options, ’iter’)

iter = options.iter;

else

iter = 20;

end

[Y,v] = empca(X,numvecs,iter); X1 = Y’ * X;

return;

end

dim = size(X,1);

p = size(X,2);

for i = 1:p

X(:,i) = X(:,i) - Psi;

end;

if numvecs<=dim && dim<p

L = X*X’; [Y,v] = eig(L); [Y,v] = sortem(Y,v);

Y = Y(:,1:numvecs); X1 = Y’ * X; v = diag(v);

return;

end

L = X’*X; [Y,v] = eig(L); [Y,v] = sortem(Y,v);

Y = X*Y; v = diag(v); v = v / (p-1); num_good = 0;

for i = 1:p

Y(:,i) = Y(:,i)/norm(Y(:,i));

if v(i) < 0.00001

v(i) = 0;

Y(:,i) = zeros(size(Y,1),1);

else

num_good = num_good + 1;

end;

end;

if (numvecs > num_good)

fprintf(1,’Warning: numvecs is \%d; only \%d exist.\n’,numvecs,num_good);

numvecs = num_good;

end;

Y = Y(:,1:numvecs); X1 = (Y’)*X;

function [vectors values] = sortem(vectors, values)

if nargin ~= 2

error(’Must specify vector matrix and diag value matrix’)

end;

vals = max(values);

[svals inds] = sort(vals,’descend’);

vectors = vectors(:,inds);

values = max(values(:,inds));
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values = diag(values);

function [evec,eval] = empca(data,k,iter,Cinit)

\%[evec,eval] = empca(data,k,iter,Cinit)

[d,N] = size(data);

data = data - mean(data,2)*ones(1,N);

if(nargin<4) Cinit=[]; end

if(nargin<3) iter=20; end

[evec,eval] = empca_orth(data,empca_iter(data,Cinit,k,iter));

function [C] = empca_iter(data,Cinit,k,iter)

\%[C] = empca_iter(data,Cinit,k,iter)

[p,N] = size(data);

assert(k<=p);

if(isempty(Cinit))

C = rand(p,k);

else

assert(k==size(Cinit,2));

assert(p==size(Cinit,1));

C = Cinit;

end

for i=1:iter

x = inv(C’*C)*C’*data;

C = data*x’*inv(x*x’);

end

function [evec,eval] = empca_orth(data,C)

\%[evec,eval] = empca_orth(data,Cfinal)

C = orth(C);

[xevec,eval] = truepca(C’*data);

evec = C*xevec;

function [] = assert(condition,message)

if nargin == 1,message = ’’;end

if isempty(message),message = ’Assert Failure.’; end

if(~condition) fprintf(1,’!!! \%s !!!\n’,message); end

function [evects,evals] = truepca(dataset)

[d,N] = size(dataset);

mm = mean(dataset’)’;

dataset = dataset - mm*ones(1,N);

cc = cov(dataset’,1);

[cvv,cdd] = eig(cc);

[zz,ii] = sort(diag(cdd));

ii = flipud(ii);

evects = cvv(:,ii);

cdd = diag(cdd);

evals = cdd(ii);

Program A.2: Principal Component Discrimination Analysis algorithm for calling
kinetic data

FILENAME: "PlotPCA.m"

clear clf clc
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format short g

format compact

gases=dlmread(’gases.csv’); \%92 columns

solvents=dlmread(’solvents.csv’); \%21 columns

decay=dlmread(’decay.csv’); \%2 columns

S=input(’(1)gases, (2)solvents or (3)decay? ’);

PCA=input(’ PCA 3 or 2 dimensions?’);

if S==1

if PCA==3

\% 3D PCA

a=pca(gases’,3)

f=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’,’ 22’,’ 23’,’ 24’,

’ 25’,’ 26’,’ 27’,’ 28’,’ 29’,’ 30’,’ 31’,’ 32’,’ 33’,’ 34’,’ 35’,’ 36’,

’ 37’,’ 38’,’ 39’,’ 40’,’ 41’,’ 42’,’ 43’,’ 44’,’ 45’,’ 46’,’ 47’,’ 48’,

’ 49’,’ 50’,’ 51’,’ 52’,’ 53’,’ 54’,’ 55’,’ 56’,’ 57’,’ 58’,’ 59’,’ 60’,

’ 61’,’ 62’,’ 63’,’ 64’,’ 65’,’ 66’,’ 67’,’ 68’,’ 69’,’ 70’,’ 71’,’ 72’,

’ 73’,’ 74’,’ 75’,’ 76’,’ 77’,’ 78’,’ 79’,’ 80’,’ 81’,’ 82’,’ 83’,’ 84’,

’ 85’,’ 86’,’ 87’,’ 88’,’ 89’,’ 90’,’ 91’,’ 92’);

plot3(a(:,1),a(:,2),a(:,3),’*’)

text(a(:,1),a(:,2),a(:,3),f,’FontSize’,8)

else

\% 2D PCA

b=pca(gases’,2)

g=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’,’ 22’,’ 23’,’ 24’,

’ 25’,’ 26’,’ 27’,’ 28’,’ 29’,’ 30’,’ 31’,’ 32’,’ 33’,’ 34’,’ 35’,’ 36’,

’ 37’,’ 38’,’ 39’,’ 40’,’ 41’,’ 42’,’ 43’,’ 44’,’ 45’,’ 46’,’ 47’,’ 48’,

’ 49’,’ 50’,’ 51’,’ 52’,’ 53’,’ 54’,’ 55’,’ 56’,’ 57’,’ 58’,’ 59’,’ 60’,

’ 61’,’ 62’,’ 63’,’ 64’,’ 65’,’ 66’,’ 67’,’ 68’,’ 69’,’ 70’,’ 71’,’ 72’,

’ 73’,’ 74’,’ 75’,’ 76’,’ 77’,’ 78’,’ 79’,’ 80’,’ 81’,’ 82’,’ 83’,’ 84’,

’ 85’,’ 86’,’ 87’,’ 88’,’ 89’,’ 90’,’ 91’,’ 92’);

plot(b(:,1),b(:,2),’*’)

text(b(:,1),b(:,2),g,’FontSize’,20)

end

elseif S==2

if PCA==3

\% 3D PCA

c=pca(solvents’,3)

h=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’);

plot3(c(:,1),c(:,2),c(:,3),’*’)

text(c(:,1),c(:,2),c(:,3),h,’FontSize’,8)

else

\% 2D PCA

d=pca(solvents’,2)

i=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’);

plot(d(:,1),d(:,2),’*’)

text(d(:,1),d(:,2),i,’FontSize’,8)
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end

elseif S==3

if PCA==3

\% 3D PCA

e=pca(decay’,3)

j=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’,’ 22’,’ 23’,

’ 24’,’ 25’,’ 26’);

plot3(e(:,1),e(:,2),e(:,3),’*’)

text(e(:,1),e(:,2),e(:,3),j,’FontSize’,8)

else

\% 2D PCA

k=pca(decay’,2)

l=strvcat(’ 1’,’ 2’,’ 3’,’ 4’,’ 5’,’ 6’,’ 7’,’ 8’,’ 9’,’ 10’,’ 11’,’ 12’,

’ 13’,’ 14’,’ 15’,’ 16’,’ 17’,’ 18’,’ 19’,’ 20’,’ 21’,’ 22’,’ 23’,

’ 24’,’ 25’,’ 26’);

plot(k(:,1),k(:,2),’*’)

text(k(:,1),k(:,2),l,’FontSize’,8)

end

end
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Table A.1: Current gas sensors market. Distribution of sensor types grouped by
analyte, multiple analyte sensors also considered. n = 724 products.

Gas analyte Abundance? Percentage
Oxygen 193 15.55%

Hydrocarbons 111 8.94%
Hydrogen 92 7.41%

Hydrogen Sulfide 86 6.93%
Carbon Monoxide 82 6.61%

Ammonia 49 3.95%
Sulfur Dioxide 45 3.63%

Chlorine 42 3.38%
Carbon Dioxide 41 3.30%

Nitrogen Dioxide 36 2.90%
Ozone 34 2.74%

Hydrogen Chloride 26 2.10%
Hydrogen Cyanide 24 1.93%
Chlorine Dioxide 22 1.77%

Nitric Oxide 20 1.61%
Phosphine 19 1.53%

Hydrogen Fluoride 16 1.29%
Halocarbons 14 1.13%

Arsine 12 0.97%
Silane 11 0.89%

Germane 11 0.89%
Fluorine 11 0.89%
Diborane 11 0.89%

Nitrogen Oxides 10 0.81%
Bromine 10 0.81%

Hydrogen Selenide 9 0.73%
Sulfur Hexafluoride 6 0.48%

Water Vapour 4 0.32%
Mercury Vapour 4 0.32%
Other Chemicals 190 15.31%

Total 1241 (n=724)
?data collected from [18]
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Table A.2: Sensor response (∆λ) to maximum concentration of all the hydrocarbons
and VOCs tested. Standard deviation, solubility parameters (δ), log of the octanol-
water partition coefficients (logKow), and boiling points.

Compound? ∆λ
[nm]

S.D.
[nm]

δ†

[MPa1/2]
logKow

‡ B.P.‡

[◦C]
Ethane 3.0 0.02 11.6 1.8 -89.0

Propane 13.7 0.19 12.7 2.4 -42.0
Butane 62.8 4.54 13.5 2.9 -0.5

Iso-butane 42.5 0.54 12.8 2.8 -11.7
Ethylene 2.1 <0.01 11.3 1.1 -103.7
Butylene 51.0 0.39 13.7 2.4 -6.3
Propylene 11.3 <0.01 12.5 1.8 -47.6
Acetylene 2.7 0.58 11.0 0.4 -84.0

Butyne 76.2 0.15 28.5 1.5 7.8
Butanol 126.5 <0.01 23.3 0.9 117.2
Propanol 146.4 <0.01 24.3 0.3 97.1
Ethanol 52.7 <0.01 26.0 -0.3 78.4

Methanol 16.2 <0.01 29.7 -0.8 64.7
Propan-2-ol 153.9 <0.01 23.7 0.1 82.3

Acetone 181.5 <0.01 20.3 -0.2 56.5
Pentanol 97.7 <0.01 21.7 1.5 138.0

Propyne/diene 14.0 <0.01 29.3 0.9 -48.0
Butanone 267.8 <0.01 19.1 0.29 76.6

2,3-butanediol 1.3 <0.01 22.7 - 180.7
Iso-Pentanol 152.8 <0.01 20.5 1.16 131.2
Iso-Butanol 155.9 <0.01 21.5 0.76 105

Acetaldehyde 119.5 <0.01 21.1 -0.34 18.6
Ethylene Glycol 0.0 <0.01 29.9 -1.36 197.5

t-Butanol 300.0 <0.01 21.0 0.35 84.6
Glycerol 0.0 <0.01 43.2 -1.76 290

Cyclohexanol 34.2 <0.01 23.3 1.23 159.6
Cycloheptanol 36.6 <0.01 - 2.13 181.8
Cyclooctanol 26.9 <0.01 - 2.62 203.2

Methylcyclopen-
tanol

231.3 <0.01 - 1.60 137.1

Water 0.0 <0.01 47.9 -1.38 100

PDMS >60 - 14.9-17.5 12 >200

? Other measured substances that exceeded the spetrophotometer detection range were: pentane,

pentene, pentyne, heptane, octane, decane, hexane, heptanone, hexanol, pentanol, 4-methyl-2-

pentanone, tert-amyl alcohol, iso-amyl alcohol. † Values were calculated or obtained from references:

[146, 148, 218, 221–223, 298, 324–329] 1MPa1/2=2.0455(cal/cm3)1/2. ‡ Values from: [213, 330].
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Figure A.4: Comparison between light absorption spectra of rod and cone cells and
quantum efficiency spectra of CCD and CMOS sensors. (A) Quantum efficiency for
CMOS and CCD sensors of the spectrophotometer used in this study. (B) Absorption
spectra of red-sensitive, green-sensitive and blue-sensitive cones, and rods in human
eyes. The plots were built with data from references: [331,332].
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Figure A.5: Microscopy images of the surface of Nafion holograms before and after
ablation. The fingerprint like pattern observed in the images is characteristic of the
laser optical interference.
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brated Nafion holograms and condensation. (A) Kinetics of the response (∆λ, ∆R)
for the different concentrations. (B) Peak intensity values and correlation with gas
concentration.
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Program A.3: Mathematica Yeh Matrix Method

L1 := 187; L2 := L1; N1 := 1.5; N2 := 1.47; L := 150; q := 20

kq@n_, w_, c_, q_D :=
n w

c
Cos@qD

TE@k1_, k2_, a_, b_D :=

Module@8<, 88Exp@Â k1 aD HCos@k2 bD + HÂ HHk1 ê k2L + Hk2 ê k1LL ê 2L Sin@k2 bDL,
-Exp@-Â k1 aD HÂ H Hk1 ê k2L - Hk2 ê k1LL ê 2L Sin@k2 bD<,

8Exp@Â k1 aD HÂ H Hk1 ê k2L - Hk2 ê k1LL ê 2L Sin@k2 bD,
Exp@-Â k1 aD HCos@k2 bD - HÂ HHk1 ê k2L + Hk2 ê k1LL ê 2L Sin@k2 bDL<<D

TM@k1_, k2_, a_, b_, n1_, n2_D := ModuleB8<,

:: Cos@k2 bD + Â
n22 k1

n12 k2
+ 1 ì

n22 k1

n12 k2
ì 2 Sin@k2 bD Exp@Â k1 aD,

Â
n22 k1

n12 k2
- 1 ì

n22 k1

n12 k2
ì 2 Sin@k2 bD Exp@-Â k1 aD>,

: - Â
n22 k1

n12 k2
- 1 ì

n22 k1

n12 k2
ì 2 Sin@k2 bD Exp@Â k1 aD,

Cos@k2 bD - Â
n22 k1

n12 k2
+ 1 ì

n22 k1

n12 k2
ì 2 Sin@k2 bD Exp@-Â k1 aD>>F

KL@matrix_D := ArcCos@Tr@matrixD ê 2D

CMS@matrix_D := Abs@matrix@@2, 1DDD^2

rqE@ a_, b_, n1_, n2_, q_, w_, qin_D :=

ModuleB8matrix, kl, c = 3. µ 10^8, q1, q2<,

q1 = ArcSinB
Sin@qinD

n1
F;

q2 = ArcSinB
n1 Sin@q1D

n2
F;

matrix = TE@kq@n1, w, c, q1D, kq@n2, w, c, q2D, a, bD;
kl = KL@matrixD;

1

1 +
AbsB Sin@klD

Sin@q klD
F^2

CMS@matrixD

F
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rqM@ a_, b_, n1_, n2_, q_, w_, qin_D :=

ModuleB8matrix, kl, c = 3. µ 10^8, q1, q2<,

q1 = ArcSinB
Sin@qinD

n1
F;

q2 = ArcSinB
n1 Sin@q1D

n2
F;

matrix = TM@kq@n1, w, c, q1D, kq@n2, w, c, q2D, a, b, n1, n2D;

kl = KL@matrixD;

1

1 +
AbsB Sin@klD

Sin@q klD
F^2

CMS@matrixD

F

PlotBrqEB
L1

109 2
,

L2

109 2
, N1, N2, L,

H2 pL 3 µ 108

l

109

, q Pi ê 180F, 8l, 300, 900<F

PlotBrqMB
L1

109 2
,

L2

109 2
, N1, N2, L,

H2 pL 3 µ 108

l

109

, q Pi ê 180F, 8l, 300, 900<F

TableBrqEB
L1

109 2
,

L2

109 2
, N1, N2, L,

H2 pL 3 µ 108

l

109

, q Pi ê 180F, 8l, 300, 900<F

TableBrqMB
L1

109 2
,

L2

109 2
, N1, N2, L,

H2 pL 3 µ 108

l

109

, q Pi ê 180F, 8l, 300, 900<F

2   MatrixYehMathematica.nb
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posées par la méthode interférentielle”, Journal du Physique, no. 3, pp. 97–107,
1894. 14

[86] A. Einstein, “On a heuristic viewpoint concerning the production and transfor-
mation of light”, Annalitycal Physik, vol. 132, no. 17, pp. 91–107, 1905. 14

[87] A. Einstein, “On the quantum theory of radiation”, Physika Zeitschrift, no. 18,
pp. 121–129, 1917. 14

[88] T. H. Maiman, “Stimulated optical radiation in ruby”, Nature, no. 187, pp. 493–
494, 1960. 14

[89] Y. Denisyuk, “On the reflection of optical properties of an object in a wave field of
light scattered by it”, Journal of the Soviet Academy of Sciences, vol. 6, no. 144,
pp. 1275–1278, 1962. 14

[90] J. Upatnieks, J. Marks, and R. Fedorwicz, “Color holograms for white light re-
construction”, Applied Physics Letters, vol. 8, no. 11, pp. 286–287, 1966. 14

[91] J. Goodman, Introduction to Fourier optics. McGraw-Hill physical and quantum
electronics series, Roberts & Co., 2005. 14

[92] P. Hariharan, Basics of holography. Cambridge Univ Press, 2002. 14

[93] G. K. Ackermann, J. Eichler, and J. Eichler, Holography: A Practical Approach.
Wiley-VCH, 2008. 15

213



REFERENCES

[94] J. Blyth, “Smart holograms”, The Holographer, vol. Materials, April 2004. 15,
24

[95] J. Blyth, A. G. Mayes, R. B. Millington, and C. R. Lowe, “A novel method for
producing silver halide-based holographic recording materials”, Imaging Science
Journal, vol. 47, pp. 87–91, 1999. 15

[96] H. Bjelkhagen, Silver-halide recording materials: for holography and their pro-
cessing, vol. 66. Springer Verlag, 1995. 15, 71

[97] B. A. Budkevich, A. M. Polikanin, V. A. Pilipovich, and N. Y. Petrochenko,
“Amplitude-phase hologram recording on FeCl2-PVA films”, Journal of Applied
Spectroscopy, vol. 50, pp. 621–624, 1989. 15

[98] R. Fontanilla-Urdaneta, A. Olivares-Pérez, and I. Fuentes-Tapia, “Real-time holo-
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