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In this thesis we develop analytical models for boundary layer flow through a two­

dimensional group of obstacles , based on the "distributed force" model. An array of 

obstacles is represented as a region without solid obstructions but with distributed 

body forces resisting the flow. Linear analyses are presented of inviscid, laminar (or 

constant eddy viscosity) and turbulent flow through such force distributions. For 

any group of obstacles , we show how to calculate the model force distribution which 

becomes the input for the linear analyses. The entire procedure can be iterated to 

take account of non-linear upstream sheltering effects. In general the model distributed 

force integrates to equal the actual force exerted by obstacles on the How divided by 

the fraction of the array volume not occupied by solid obstacles. 

Turbulent stresses are modelled using a mixing length that is uniform up to a 

specified height and increases linearly above. Our physical arguments for a displaced 

mixing length above the obstacles provide an explanation for the observed coincidence 

between displacement height and the level of mean momentum absorption. Compar­

isons of the turbulent analysis results with numerical simulations and experimenta,l 

data show very encouraging agreement and so support both the distributed force 

model and the assumptions of the mathematical analysis. 

From the results of the turbulent flow analysis, effective roughness and displace­

ment heights can be calculated for the flow above the obstacles. When the displace­

ment of the turbulent mixing length is correctly taken into account, the calculated 

parameters are comparable with those obtained experimentally. 

An analysis of plume dispersion through a group of obstacles shows how the flow 

field results can be applied to practical situations, and highlights the dominant effect 

of enhanced perturbation shear stress, especially in the obstacle roof top layer, on 

changes to the downstream evolution of the plume. 
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Chapter 1 

Modelling a group of obstacles 

as a distributed resistance 

1.1 The problem 

Perturbed turbulent boundary layers have been a subject of mathematical and exper­

imental rese..arch for at least four decades . Driving this research is an abundance of 

practical applications in engineering and environmental flows that may be summarised 

by the question, "What are the effects of surface obstructions and surface curvature on 

flow and dispersion in a turbulent boundary layer?" Despite the considerable variety 

of such applications, two rather general mathematical ideas seem to be useful in most 

situations. 

1. The disturbed flow can often be divided into regions where different physical 

processes dominate, particularly as regards the role of turbulent stresses. vVit­

ness the "internal boundary layer" of classical theories (e.g. Elliot 1958, Garratt 

199.0) and the inner/outer/wake regions of asymptotic theories (e.g. Counihan 

et al. 1974, Sykes 1980). 

2. Far enough away from the source of the disturbance it should be possible to 

parameterise the flow in some universal way. Any surface obstructions or topo-

6 
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logical variation, when viewed at a large enough length scale, just make the 

surface appear rough; hence a natural parameterisation is in terms of an effec­

tive roughness height, displacement height and friction velocity as for turbulent 

flow over a rough surface. 

The problem, that this thesis addresses, is that most attempts to model a set of ob­

structions in a turbulent boundary layer jump straight to the parameterisation. Rules 

of thumb and empirical values are used to estimate appropriate roughness parameters 

for a given distribution of obstructions (e.g. Kung's formula in Hsi & N ath 1970, ta­

ble 6.2 in Panofsky & Dutton 1984). Then the problem of modelling flow in a region 

where the distribution of obstructions changes is usually recast as an investigation of 

flow over a change of roughness, even though there is no evidence that the roughness 

parameterisation is applicable in such a region . 

For example, forests and large urban areas can modify the wind both within and 

above themselves sufficiently to affect prediction of the local micro-meteorology. For 

weather prediction purposes such effects have traditionally been modelled by repre­

senting the Jorest or urban area as a patch on the ground of increased roughness 

(e.g. Andre & Blondin 1986). It is generally believed that this is a reasonable model 

as long as the model roughness does not vary too rapidly in the direction of the 

wind, but the formalism gives no indication of what "too rapidly" actually means, 

neither does it attempt to describe the flow in regions where the roughness varia­

tion is too rapid. Anthropocentrically speaking this is unfortunate, since regions of 

rapid "roughness change" tend to exist next to high densities of human population, 

e.g. near transitions between relatively smooth countryside and significantly rougher 

urban areas. 

Hence three key difficulties beset direct use of the roughness parameterisation for 

flow above a group of obstacles. 

1. There is no reliable method for calculating roughness parameters. 
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2. There is no evidence that the parameterisation is valid where the distribution 

of obstacles is changing. 

3. The parameterisation only describes the flow , when at all, well above the group 

of obstacles. What happens within the group? 

The first of these difficulties is exacerbated by confusion over what the roughness 

parameters mean physically. 

Thorn (1971) discovered experimentally that the displacement height of the veloc­

ity profile above an artificial crop of roughness elements coincided remarkably closely 

with the height at which the drag force on the roughness elements appears to act 

(i.e. the height about which the force profile upon a roughness element has no mo­

ment). Jackson (1981) showed that the existence of some significant reference height 

d within the roughness element canopy is implicit in the usual derivation of the log­

arithmic velocity profile. Following Thorn's experimental result, J ackson took d to 

be the height at which the canopy drag appears to act, and then demonstrated that 

d was also related to the displacement thickness of the total shear stress (which in­

cludes, for a periodic array of roughness elements, the "wave stress" (puw) , u and w 

being the streamwise and vertical mean velocities.). Given a non-zero displacement 

height d (relative to the surface on which roughness elements are mounted), Thorn 

and Jackson both suggested that the roughness height Zo observed in the flow above 

was more likely to be related to the distance h - d between the displacement height 

and the top of the roughness elements than to the height h itself; hence they explained 

some of the considerable scatter in experimental values of zo/ h. 

These arguments are plausible, but neither Thorn nor J ackson offered any physical 

picture to underlie this definition of d and the h - d dependence of zoo 

A solution to all three difficulties described above is to construct a theory that 

describes .a group of obstacles at a more basic level than the roughness parameterisa­

tion. Such a theory should aim to describe the flow field around the group of obstacles, 

amongst the obstacles as well as above them. Variation of the flow field above the 

obstacles could then be used to determine whether a roughness parameterisation is 
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applicable and, where applicable, to predict the roughness parameters. 

Some progress in a parallel problem, that of boundary layer flow over complex 

terrain, has been made by Wood & Mason (1993), who used the detailed flow field 

results of Belcher et al. (1993) to derive an effective roughness height for turbulent 

flow over low hills. Their results relate the predicted roughness height to the form 

drag acting on the hills and to a scale height hm that depends upon hill geometry and 

boundary layer depth. If an effective roughness height can be similarly derived for 

flow above a group of obstacles, it will be interesting to see whether the form of our 

predictions resembles that of Wood & Mason's results. 

1.2 Motivating applications 

Before beginning the construction of such a theory, we consider two particular applica­

tions that strongly motivate the present investigation of turbulent flow through groups 

of obstacles: the description of wind flow and scalar fluxes within forest canopies and 

the modelling of pollution dispersion within urban areas. 

1.2.1 Wind flow and scalar fluxes within forest canopIes 

Many aspects of forestry research would be enhanced by better understanding of the 

wind field within the forest canopy. Plantations of Sitka spruce in Europe are regulaTly 

harvested well before the trees reach their optimum height and the wood attains its 

best quality, because experience has shown that plantations above a critical height 

are susceptible to extensive wind damage (Stacey et al. 1994); such damage results 

when the bending moments at the base of trees become large enough to uproot them. 

A good model of the forest canopy flow could predict these bending moments and 

therefore explain why wind damage is so prevalent above a certain tree height. Stacey 

et al. also consider the effects of a clearing within a forest,demonstrating that trees 

around a clearing are far more susceptible to damage than those in the bulk of the 

forest. This is of obvious importance for deforestation policy in many countries and 
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deserves to be better understood. 

Forests are also important as diurnal sources or sinks of oxygen, caTbon dioxide 

and water vapour. As a Tesult of their high heat capacity, forests tend to stabilise the 

temperature variations of their local environment, and fOTest air can have a cathaTtic 

effect on the otheTwise polluted enviTonment of a built-up area neaTby. Such effects 

have been consideTed by Gross (1987, 1988) in investigations of the consequences of 

defOTestation. 

1.2.2 Modelling pollution dispersion within urban areas 

With 90% of the UJ( population designated as living in urban aTeas (Phillips WOTld 

Atlas 1993) , urban pollution is increasingly a subject of debate. Everyday sources of 

pollution aTe widely distTibuted aTound a city: caT exhausts and industTial 01' domestic 

chimneys are pTimaTY SOUTces of pollution and processes like the catalysis of ozone 

production by ultraviolet light can lead to sources of new pollutants at some distance 

from the origin of the Teagent chemicals. MOTe localised pollution may arrive in 

plumes 01' clouds from sources outside the city: accidental release of toxic 01' Tadioactive 

mateTial as in the cases of Bhopal and Chernobyl, or deliberate Telease of neTve poisons 

in the eventuality of chemical warfare. In all cases the problem is to understand how 

the dispeTsion of such pollutants by the wind is modified by the pTesence of a large 

group of obstacles. The dispeTsion of pollutants in a turbulent flow over unobstTucted 

level terrain is now Teasonably well understood, but as yet theTe has been little wOTk , 

either theoTetical OT experimental, on the effects on dispeTsion of a group of obstacles. 

Notable exceptions are the set of experiments by Davidson et al. (1995a,b) and the 

theoretical work of Fung & Hunt (1991). 

Furthermore, such a theory may offer a better understanding of the processes 

surround,ing a sudden change in roughness, as modelled in numerous experiments, fOT 

example Bradley (1968), Antonia & Luxton (1971) and Counihan (1971), 
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1.3 Previous work on plant and urban canopies 

Early experiments on flow through crops were performed by Plate & Quraishi (1965), 

who used flexible plastic strips to represent the crop, and by Meroney (1968) and Hsi 

& Nath (1970), using metal and brush model trees to constitute a forest. Many other 

early experiments are reported in these papers. More recent experiments in the field 

(so to speak) have been performed by Amiro & Davis (1988) and Gardiner (1994), 

both in spruce forest, and by Rotach (1993) in the centre of Zurich. Model plant or 

forest canopies have been investigated in the wind tunnel by Thorn (1971), Raupach 

et al. (1980), Raupach et al. (1986) and Stacey et al. (1994). 

force 

per unit 

volume 

Figure 1.1: Using a distributed force profile to model a forest model. 

Cion co (1965) used a distributed force to model the resistive effects of canopy 

elements in a one-dimensional model of the velocity profile within a forest (figure 1.1). 

Any attempt to represent exactly the branches and leaves of each tree, as solid surfaces 

within the flow field, would be wildly impractical, so instead Cion co modelled the trees 

by their most significant physical effect: drag on the mean flow. In his model the 

distributed force is proportional to the square of the local velocity, and the turbulent 
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shear stress is · related Via a mixing length model to the vertical gradient of total 

streamwise velocity. Because the flow is homogeneous in the streamwise direction, 

the distributed force is balanced not by mean flow deceleration but by the turbulent 

stress gradient, and this balance leads to the prediction of an exponential wind profile 

in the upper half of the canopy. Such exponential profiles were characterised by 

an "attenuation index" a which describes the decay of streamwise velocity moving 

down from the crown of a forest into its interior. Cion co (1972) collated the data 

from several experiments on (real or model) cereal crops and orchards and classified 

them according to their observed value of a, finding that Iowa-values are found in 

sparse arrays of rigid obstacles while high a-values are found in dense arrays of flexible 

obstacles. Smith et al. (1972) used this exponential wind profile to demonstrate the 

possibility of mean wind direction shear in forests with a relatively open understorey, 

and supported their theory with measurements from Thetford Forest. 

Following Cionco (1965), essentially all modelling work since then has used a dis­

tributed force in the streamwise momentum equation to model obstacles, since the 

main effect of both natural and artificial obstacles is their drag. This approach re­

mains necessary since it remains impractical to represent explicitly the solid surfaces 

of a large number of obstacles in a numerical simulation or a tractable analytical the­

ory. Indeed, in numerical simulations (using the J( - E closure) where the resolution 

is just sufficient to resolve these solid surfaces it is found that average flow predic­

tions are worse than those obtained from a distributed force model because the strong 

shear layers neaT obstacle surfaces are not adequately resolved (Savill & Solberg 1994). 

These shear layers produce a lot of turbulent kinetic energy, which distributed resis­

tance models using J( - E or higher order turbulence closures can model by adding a 

production term to the turbulent kinetic energy equation in parallel with the drag 

term in the momentum equation (e.g. Svensson & Haggkvist 1990). 

Numerical simulations of canopy flow using a distributed force representation have 

been carried out by Yamada (1982) and Hiraoka (1993), using second-order turbulence 

closures, Shaw & Schumann (1992) and Kanda & Hino (1994), using large eddy sim-
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ulations, and Svensson & Haggkvist (1990), using a J( - E turbulence closure. 

The distributed force approach was formalised somewhat by Raupach & Shaw 

(1982), who showed that force-like terms in the momentum equation emerge naturally 

from a spatial averaging operation over a limited horizontal area. Specifically, the 

force term is the difference between the gradient of horizontally averaged pressure and 

the horizontally averaged pressure gradient, plus similar but less significant differences 

arising from turbulent stress variations. The formalisation is not exact to the extent 

that the horizontal averaging operation is not idempotent, but it does indicate in 

principle how the model distributed force should be related to the actual drag upon 

the obstacles. 

In recent years attention has focused more on aspects of canopy flow that can­

not be predicted using gradient-transfer models of the turbulence. Wilson & Shaw 

(1977) first proposed the use of a second-order turbulence closure for canopy flow 

and demonstrated that such a model could account for the weak secondary maxima 

of mean velocity sometimes observed in forest canopies near the ground. Quadrant 

analysis of the turbulent velocities measured in experiments and numerical simula­

tions ( e.g. Raupach et al. 1986, Gao et al. 1989) has shown that turbulent transfer in 

canopies is dominated by strong intermittent sweep and ejection events. 

Does such particular turbulent behaviour rule out the use of simple turbulence 

models in predicting the broad features of canopy flow? Perhaps surprisingly, it ap­

pears not. Westbury & Morrison (1994) have recently shown that momentum transfer 

in unobstructed turbulent boundary layers is also dominated by such strong intermit­

tent events, yet it is well known (e .g. Tennekes & Lumley 1972, chapter 5) that the 

mean flow in turbulent boundary layers is well described by classical mixing length 

theory. The view that simple turbulence models remain useful will be supported by 

the good a;greement between experimental data and the predictions of this thesis. 

The literature on dispersion is relatively sparse compared with that on the flow 

field. Many of the physical mechanisms involved in dispersion of pollution around 

buildings were discussed by Puttock (1976) and Hunt (1982) and one process in 
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particular- wake diffusion- was analysed in detail by Puttock & Hunt (1979). The 

UK-ADMS model described by Carruthers et al. (1994) models dispersion around a 

single building by dividing the neighbourhood of the building into distinct regions: 

near wake, external flow, etc.; this model is not yet able to consider a large number of 

such obstacles. Theurer & Plate (1994) describe a semi-empirical model for dispersion 

from a point source in an urban area: the near field, where individual buildings are 

important, gives way to the far field, where buildings act more like roughness, at some 

characteristic "radius of homogenisation"; flow field infOTmation fOT this model is to 

be determined from a wind tunnel study. 

Field and wind tunnel experiments on dispersion through an array of obstacles 

were performed at three different scales (1:20:200) by Davidson et at. (1995a,b); the 

key dispersive process observed in these experiments have been discussed by Jerram 

et al. (1994). Meroney (1968) measured the dispersion of a helium plume through 

his model forest canopy. Cop pin et al. (1986) and Legg et al. (1986) measured the 

dispersion of heat from both line and plane sources in their model pEmt canopy exper­

iments, and a theory for predicting dispersion from plane sources is given by Raupach 

(1989), the main point of which is the distinction between neaT field dispersion, wheTe 

dispersing particles tend to move in straight lines, and far field dispersion, which is 

betteT modelled as a Fickian process. 

1.4 Aims of this thesis 

The existing literature may be summarised as follows. There is a substantial body 

of experimental data on canopy flows, ranging from "roughness change" experiments 

through model plant canopies in boundary layer tunnels to full scale field experi­

ments in forests and city centTes. In modelling, the concept of a distributed resistance 

is well established and supported theoretically by the av~raging procedure of Rau­

pach & Shaw (1982). Numerical experiments using a distributed resistance have been 

successful in one, two and three dimensions. Analytical treatments of distributed 

resistance jn turbulent flow, however, have never ventured beyond one dimension. 
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Therefore the principal objective of this thesis is to develop the theory of two­

dimensional turbulent flow through a region of distributed resistance. Drawing upon 

thoroughly tested asymptotic methods developed by Jackson & Hunt (1975), Sykes 

(1980) and Hunt et al. (1988a) for turbulent flow over low hills, the core analysis of 

chapter 3 calculates the flow field perturbations caused by a distributed force in a 

turbulent boundary layer. The results of this theory, interpreted as spatially averaged 

quantities applicable to urban and forest canopies, are tested against experimental 

data and numerical simulations in chapter 4. Then the parameterisations of chapter 5 

show how the results of the analytical theory can be used to express the flow above 

an obstacle canopy in terms of effective roughness parameters , and relate appropriate 

roughness parameters to the underlying force distribution. 

Before starting the turbulent analysis, however, it is instructive and well rewarded 

to consider inviscid and laminar viscous flows through a distributed force (chapter 2). 

Firstly, because the study of inviscid flow gives a sharper picture of the physical 

effects of distributed force, by stripping away turbulent processes that complicate 

the flow. Secondly, because there is in fact a close relation between the inviscid and 

turbulent flow solutions. Thirdly, because laminar viscous flow may be considered 

as turbulent flow with a constant eddy viscosity, and in some situations a constant 

eddy viscosity model may be more appropriate than the mixing length model used 

in the main turbulent flow analysis. The laminar analyses also throw up a counter­

intuitive dependence of the overall flow structure on the form of the velocity profile that 

impinges upon the region of distributed force, which carries over into turbulent flow 

and has important consequences for dispersion. The inviscid analysis complements 

previous work by Taylor (1944), Lighthill (1957) and Newley et al. (1991) . 

In many practical situations it is the dispersion of some pollutant that is of overrid­

ing importance and not the flow field, albeit that the former is primarily determined 

by the latter. Therefore chapter 6 considers the processes that contribute to real 

dispersion and the difficulties involved in trying to model them. Following the work 

of Weng (1990) and Hunt et al. (1988c) a Fickian dispersion model is presented that 
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calculates the changes in scalar concentration distributions due to the addition of a 

distributed force to an originally unobstructed flow. The analysis is illustrated by 

sample results showing the perturbations to a Gaussian plume of contaminant passing 

through an array of obstacles. 

1.5 Definition of the model problem 

z* 

--------------------- Incident 

U*( z*) velo~ity 
--------------------, profIle L* 

Figure 1.2: illustration of the general problem: boundary layer flow through a region 

of distributed resistance. 

The general arrangement of the flow to be studied is illustrated in figure 1.2. The 

region within which any body forces act is characterised by overall length scales L* 

and H* and sits in a boundary layer described by the incident velocity profile U*(z*). 

It is understood that the boundary layer in the absence of any force distribution 

does not develop significantly over streamwise length scales of order L *. The precise 

definitions of L * and H* are not critical for the analyses that follow. The general 

problem,is to calculate the perturbations to the incident velocity field (U*(z*), 0) that 

arise as a result of the distributed body force. 

Building upon the ideas of Townsend (1965) for flow over a step roughness change 

and the recent field experiments of Davidson et al. (1995a) (where the observer could 
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Figure 1.3: Regions of the flow where different physical processes dominate: (i) impact 

region (ii) array interior (iii) near wake (iv) far wake. 

walk around among the obstacles!), one can identify the broad features of flow through 

such a fOTce distribution (figure 1.3). Over distances of O(H*) around the leading 

edge of the distribution, the turbulence in the incident flow has not had time to 

adjust to the sudden resistance, so the initial evolution of the flow is quasi-inviscid, 

i.e. dominated by inertial rather than turbulent stress effects . Hence the mean flow 

around the leading edge decelerates rapidly in proportion to the force acting upon 

it. Further downstream turbulent stresses become significant, while inertial effects 

are reduced since the flow as a whole has decelerated: hence the dominant balance 

within the interior of the distribution is between the turbulent stress gradient and the 

distributed force, as modelled in the one-dimensional treatment of Cionco (1 965). The 

deceleration of the mean flow lessens and finally vanishes as an increasing proportion 

of the distributed force is balanced by turbulent stress gradients. Hence in a long 

enough obstacle canopy the mean flow attains an equilibrium state within the array 

interior , in which the velocity defect no longer increases with distance downstream. 

Around ,the trailing edge, the sudden disappearance of any resistance gives rise to a 

second period of quasi-inviscid evolution, in this case acceleration. Turbulent stress 

gradients become dominant again in the far wake. Above the force distribution an 

internal boundary layer (IBL) develops. (This IBL is similar to that found after a step 
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Figure 1.3: Regions of the flow where different physical processes dominate: (i) impact 

region (ii) array interior (iii) near wake (iv) far wake. 

walk around among the obstacles!), one can identify the broad features of flow through 

such a force distribut ion (figure 1.3). Over distances of O(H*) aTOund the leading 

edge of the distribution, the turbulence in the incident flow has not had t ime to 

adjust to the sudden resistance, so the initial evolution of the flciw is quasi-inviscid, 

i. e. dominated by inertial rather than turbulent stress effects. Hence the mean flow 

around the leading edge decelerates rapidly in proportion to the force acting upon 

it. Further downstream turbulent stresses become significant, while inertial effects 

are reduced since the flow as a whole has decelerated: hence the dominant balance 

within the interior of the distribution is between the turbulent stress gradient and the 

distributed force, as modelled in the one-dimensional treatment of Cion co (1965). The 

deceleration of the mean flow lessens and finally vanishes as an increasing proportion 

of the distributed force is balanced by turbulent stress gradients. Hence in a long 

enough obstacle canopy the mean flow attains an equilibrium state with.in the array 

interior , in which the velocity defect no longer increases with distance downstream. 

Around. the trailing edge, the sudden disappearance of any resistance gives rise to a 

second period of quasi-inviscid evolution , in this case acceleration. Turbulent stress 

gradients become dominant again in the far wake. Above the force distribution an 

internal boundary layer (IBL) develops. (This IBL is similar to that found after a step 
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change in roughness.) Momentum from the flow above is drawn down by turbulent 

stress gradients to balance obstacle drag neaT the gTound. 

In many practical situations the force acting at some point within the distTibution 

is an incTeasing function of the local wind speed. Hence the stTength of the distributed 

fOTce decreases as the mean flow decelerates and the flow approaches an equilibrium 

state in which stTeamwise velocity gradients vanish. This tendency to equilibTium is 

clearly visible in the Tesults of Meroney's (1968) experiment. It also follows that the 

fOTce acting on the flow near the tTailing edge of the distribution is much less than at 

the leading edge. 

In order to describe how the force 1* should be calculated for a given set of 

obstacles and to undeTstand how the Tesults of a distTibuted fOTce analysis aTe Telated 

to actual wind velocities, it is necessary to consider the spatial averaging operation 

A discussed by Raupach & Shaw (1982). The interesting point is that the horizontal 

average A {</>} of a quantity </> could be defined in two ways: 

eitheT Ad </>}(x) J'r </>(x')A(x' - x) dx' 
Jflllid (1.1 ) 

J'r A(x' - x) dx' 
Jflwd 

or J'r </>(x')A(x' - x) dx' 
Jflllid 

J'r A(x' - x) dx' . 
Jail space 

(1.2) 

Here A(x) is some distribution about the origin that specifies the averaging operation 

precisely, for example 

(1.3) 

Now Al is the more intuitive definition of a spatial average, since it has the property 

that Al {1} = 1, i.e. that the average value of a constant quantity is equal to the 

constant , value. Whereas A 2 {1}(x) = (3(x), where (3(x) is the fraction of the area 

around x not occupied by obstacles (weighted by the distribution A). However, A2 

is much more convenient to differentiate than Al since the denominator of (1.~) is 

constant, and therefore the horizontal averaging formalism uses A2 as its definition 
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rather than Al. The fact that careless use of Al leads to incorrect answers is well 

known in the literature on multiphase flow- see for example Kowe et al. (1988). 

Raupach & Shaw (1982) describe in detail how A2 is applied to the Navier Stokes 

equations to give a new set of equations for the horizontally averaged flow quantities, 

but they assume the obstacle array to be sufficiently sparse that departures of fJ(x) 

from unity may be neglected (and hence the distinction between Al and A2 does not 

arise). When fJ(x) is included in the analysis it is found that the force term in the 

resulting momentum equation is enhanced by the factor fJ- l
. In other words , the 

distributed force per unit volume used to model an obstacle should integrate over the 

region surrounding that obstacle to give the actual force upon the obstacle divided by 

fJ · 

Now consider an array of N obstacles each with frontal area Aj, height h and drag 

coefficient Cd, distributed over a total ground area At . Then the total force acting is 

~ pU; N CdA j, where Uo is the characteristic velocity of the wind hitting the obstacles, 

and the volume over which this force acts is hAt. Hence the distributed force that 

should be used to model this array is given by 

1* = ~ U2NCdAj = ~ U2aCd = ~ U2D* 
2 P 0 fJ hAt 2 p 0 fJ 2 Po' (1.4) 

a == N A j / hAt is known in the literature on forests and plant canopies as the leaf area 

index (LAI) . D* == aCd/ fJ will be called the "drag parameter" (with dimensions L -1): 

it encapsulates all the geometrical and dynamical information about a canopy that is 

known a priori. Values of D* may be reduced by sheltering effects (e. g. Thorn 1971) if, 

for example, some obstacles are positioned so closely behind others that their exposure 

to the spatially averaged wind speed is reduced. Since most force distributions are 

a function of wind speed in the way suggested by (1.4), and the deceleration of the 

mean flow within the canopy is not known a priori, it is usually more appropriate to 

specify a 'distribution a drag parameter D* rather than of force 1* 

D* is not required to be uniform over an entire canopy. Where systematic trends 

in obstacle density, size or wind resistance occur it is reasonable to expect horizontal 

variations in the drag parameter. It would not however be consistent for D* to vary on 
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length scales smaller than the size LA of the averaging operation A 2 , tempting though 

it may be to try to represent individual obstacles by strongly localised distributions 

of D*. Note that there is no similar restriction on the vertical variation of D* or f* , 

since spatial averaging operates only in the horizontal plane. 

With suitably ' defined distributions of force f* or drag parameter D*, the dis­

tributed force model is in principle capable of predicting the large scale mean flow 

changes that are observed in real flow through groups of obstacles. The partial block­

ing of flow approaching an array, causing flow over or (in three dimensions) around 

. the obstacles, the mean deceleration of the wind within the array and the growth of 

an internal boundary layer above the obstacles are all significant effects that should 

be accurately captured by the concept of distributed resistance. 



Chapter 2 

Inviscid and laminar flow 

through a distributed force 

2.1 Introduction 

Taylor (1944) investigated the perturbations to a uniform flow due to a thin porous 

plate placed perpendicular to the stream. The plate in his analysis is represented 

as a uniform distribution of centres of resistance. By noting that the perturbed flow 

outside the wake of each centre of resistance is equivalent to the outflow from a source, 

it is possible to calculate the lateral deflection of streamlines approaching the plate 

and the overall drag coefficient in terms of the pressure drop across the plate. Thus 

Taylor exploited the important relationship between point forces and point sources 

in inviscid flow: the velocity perturbations due to these two types of disturbance are 

identical except for an additional , constant velocity defect in the wake of the point 

fOTce. 

The relationship is important because it enables us to translate any results ob­

tained for it point source so as to apply to a point force. Specifically, if (u*, v*, w*) 

are the velocity perturbations due to a point source at the origin of strength m* (with 

dimensions T-1 ), then the equivalent point force has strength 1* == pU*m*, directed 

against the incident velocity at the origin U*, and the corresponding velocity pertur-

21 
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bations are (1i* - m*H(x*)8(y*)8(z* ),v*,w*), where Hand 8 are the Heaviside and 

Dirac delta functions respectively. 

Lighthill (1957) analysed the three-dimensional disturbances to a parallel shear 

flow that are caused by just such a point source; his results may therefore be translated 

so as to apply to a point force in the way just described . In order to avoid the "cri tical 

layer" analysis required around singularities in the governing equations, he limited his 

analysis to unbounded shear flows in which the incident velocity is nowhere zero. For 

general shear flow the governing equations cannot be solved exactly, so Lighthill sought 

to illustrate the form of the point source Green's function in such a flow by calculating 

aspects of it in three particular approximations : (i) for large horizontal wavenumber 

k, which he showed determined the Green's function near the point source; (ii) for 

small horizontal wavenumber k , which determines the Green's function far from the 

point source; (iii) for general k in shear flows where the total variation of incident 

velocity D.U jUmax is small. 

The work of this chapter differs from and complements Lighthill's analysis in two 

ways. Firstly, we are here interested in finite regions of resistance rather than in 

isolated point forces. Secondly, these regions of resistance lie close to rigid surfaces 

where it is reasonable to expect the incident velocity to vanish. Therefore this chapter 

considers several special cases in which exact integrated solutions can be found for 

inviscid or laminar viscous flow through finite regions of resistance. Hence the results 

of Lighthill's analysis are not used directly, but there are several points of contact 

where the earlier work throws light upon the current study. 

The special cases considered all fix the form of the incident velocity profile near the 

ground U (z). In inviscid flow the difficulties of critical layer analysis can be avoided 

altogether if the incident vorticity gradient U" j U vanishes identically, so it is natural 

to consid~r constant shear flows in which this is the case. Two particular examples 

and a general far field analysis of such flows are presented in §§2.3- 2.6. 

As expected following Taylor's relationship between distributed forces and dis­

tributed sources, the general analysis shows that in most cases the far field pertur-



Inviscid and laminar flow tlll'OUgi1 a distributed force 23 

bations have the structure of outflow from a source whose strength is related to the 

integral of all the force acting. Perhaps surprisingly, however, the analysis shows that 

the strength of the far field source is also proportional to the incident velocity at the 

ground U( O). Consequently, for a linear velocity profile with U( O) = 0, the far field 

source actually ·vanishes completely, leaving a much weaker quadrupolar structure in 

its place. §2 .7 demonstrates that this unexpected result remains valid when the inci­

dent velocity profile U (z) departs from a linear form above the top of the distributed 

fOTce. 

The significant differences between a source-dominated and a quadrupole-domi­

nated flow structure affect the character of the flow within the region of resistance 

as well as in the far field (see §2.5) . Furthermore, since the main results of inviscid 

analysis carry over into a real turbulent flow, such differences in flow structure would 

have impOTtant implications fOT scalar dispersion. TherefOTe it seems worthwhile to 

investigate the phenomenon further. A second class of incident shear flows, U == 

(y/ H) CX with 0 < a < 1, is considered in §2.8, with the result that the source-like 

structure dominates fOT a < ~ but vanishes for a > ~. 

An inviscld analysis similar to that of this chapter was performed by N ewley et al. 

(1991) in an investigation of obstacles in a strongly stratified, rotating , uniform flow. 

Strong stratification, however , calls for a radiation boundary condition at the uppeT 

edge of the flow and the strongly stratified equations give internal wave solutions as 

z ~ 00, whereas the current analysis is intended for neutral stratification and so gives 

rise to exponentially decaying solutions aloft. A second significant difference between 

the two analyses is that New ley et al. were interested primarily in the region near 

the top of a top of a distributed resistance (modelling a group of hills) where vertical 

inertia forces are strong enough to overcome the stratification , whereas here we solve 

fOT the co~plete flow field and are particularly interested in the overall structure. 

Shibata & Mei (1990) calculated the far-field perturbations due to a localised 

force distribution near a wall in a low Reynolds number shear flow as part of a model 

for sand particle interactions, retaining in their analysis the laminar viscous terms 
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while neglecting inertial acceleration terms. For the special case in which the incident 

velocity is uniform, it is possible to generalise this calculation by retaining the inertial 

terms in a lineaTised form. This generalised analysis of unifoTm laminaT viscous flow 

through a distributed force is given in §2.9. 

The dominant theme of this chapteT is the dependence of predicted flow struc­

ture on the form of the incident velocity profile, demonstrated both for the constant 

shear flow analysis of §§2 .5- 2.6 and for the poweT law analysis of §2.8. Although the 

mathematical oTigins of this dependence are clear, a simple physical explanation is 

elusive. New light, howeveT, is cast upon the phenomenon by a discussion in §2.10 

of symmetry in the inviscid flow problem. By applying two symmetry operations to 

the flow system, the source-like flow structure can be understood as the product of 

an incident velocity discontinuity or region of stTOng shear in an unbounded flow , 

while the quadrupolar flow structure emerges naturally whenever discontinuities and 

strong shear are absent . The discussion concludes with some important implications 

for modelling the turbulent flow problem. 

2.2 Governing equations for laminar flow 

Our starting point is the steady incompressible N avieT Stokes equation with a dis­

tTibuted fOTce field f * (force per unit volume): 

, * n' * n '* + n2' * f * pu . v U = - v P JL v U - . 

Following Taylor (1944), we separate the velocity u* into two parts: the incident 

velocity profile i U* (z) and the velocity perturbations caused by the force distribution . 

The variables are non-dimensionalised as follows: 

The non-dimensionalised force may be written as f = L * / L j, where L j == pU;2 / 1* is 

a length scale characterising the strength of the force distribution. In the absence of 

pTessure and frictional fOTces , L j would be the distance over which a constant force 1* 
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would have to act in order to rob a fluid particle of its incident momentum pU; . Thus 

the non-dimensional force f would be a measure of how many times a fluid particle 

loses its momentum in traversing the force distribution . In real flows, however, this 

interpretation is made approximate firstly by the usual dependence of 1* on the local 

fluid velocity, secondly by turbulent stress gradients, which can balance a large fraction 

of the applied force 1* in place of inertia forces, and thirdly by pressure effects. 

Assume now that lul ~ 1, so then the governing equation may be linearised: 

8u 0 n V n2 of u- + u· \7UI = - vp + -- v u - 1 . 
8x L*U~ 

(2.1) 

It is convenient here to specify a stream wise-directed force -if , since in most cases 

of interest resistance acts against the local velocity u and in the linear approximation 

the latter lies close to the incident velocity direction i. Pressure is eliminated and the 

physics of the flow revealed by taking the curl of (2 .1): 

8w I (0 8v 0 8v 8w) " 0 V 2 0 U- - U 1- + J- + k- + U WJ = --\7 w - \7 X If 
8x 8x 8z 8z L*U~.' 

(2 .2) 

where w is the vorticity. Physically, this is 

~~ - {vortex stretching} + U" wj = {diffusion} - {rotational force gradients}. 

Thus the essence of flow through a distributed force is that rotational force gradients 

act as sources of fluid vorticity. A fluid particle's vorticity may subsequently be 

modified by diffusion or by vortex stretching, as in any flow , but negative or positive 

vorticity is created, even in an initially irrotational, inviscid flow, by local gradients 

of the distributed force . The term U" wj here represents vertical transport of incident 

vorticity by the perturbation flow. 

In two-dimensional, inviscid flows, the vorticity stretching and vorticity diffusion 

terms both disappear. Then the non-dimensional equations read 

U
8u + w 8U 
8x 8z 

U
8w 

8x 
8u 8w 
- +-
8x 8z 

8p _ f . 
8x ' 
8p 
8z' 

o· , 

(2.3) 

(2.4) 

(2.5) 
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eliminating the pressure gives the following equation for w: 

(2.6) 

The vertical perturbation velocity w(x, z) is completely determined by the functions 

U( z) and f(x , z) and by the boundary conditions that w(x,O) = 0 and w ----7 0 as 

x ----7 -00 and as z ----7 00. The horizontal perturbation velocity may then be obtained 

from the continuity equation together with the boundary condition that u ----7 0 as 

X ----7 -00. 

For a point force at the origin with strength F the right hand side of (2.6) is 

F8(x)8'( z ) and then (2 .6) is equivalent to Lighthill's (1957, eq. 14) equation of mo­

tion for a point source if the source strength rn is given by F = rnU(O). Lighthill's 

equation is derived for three-dimensional perturbations, whereas (2.6) was obtained 

in two dimensions only. Following Lighthill's derivation for a generally directed force 

distribution f , we obtain the more general three-dimensional inviscid governing equa-

tion 

of which (2.6) is a special case. 

Note that the first derivative of U is absent from (2.6) and (2.7) by continuity. 

When the shear of the incident velocity profile is constant or has negligible variation 

within the domain of the force distribution, the second derivative term U" disappears 

as well. In this case the general solution of (2.6) is 

JOO t OO G(x,y;~,OfJf 
w(x, z) = - 00 d~ la d( U(O fJ( ' (2.8) 

where G(x, y; C 0 is the two-dimensional Green's function 

, . . _ 1 (~_X)2+((_ z)2 
G(x,y,CO - -In (C )2 (( . )2' 47r <" - X + + z 

and has been constructed so as to ensure that w vanishes on the ground z = O. The 

horizontal perturbation velocity u is obtained from (2.8) by continuity. 
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2.3 A constant force in uniform incident flow 

In the simplest possible arrangement, in a uniform incident flow, consider a distributed 

force that is a constant F in the rectangular region defined by -1 < x < 1 and 

o < z < H, where H := H*/L*. Then of!oz is a 8-function at z = H and, in this 

inviscid approximation, any constant shear in the velocity profile has no effect upon 

the velocity perturbation produced by the force. There is a multiplicative factor of 

U(H) -I, but our choice of non-dimensionalisation, using the advective velocity scale 

U; := U*(H*), makes this factor 1. The integral (2.8) then reduces to 

w(x, z) 
F 

where F is the magnitude of the distributed force (defined to be positive when the 

force resists the flow) and 

The horizontal perturbation velocity is calculated via the continuity equation: 

u(x,z) 1 [h1(X-1,Z-H)-lLJ(X+1,Z-H) 1 
----'-~ = - - S(z - H) , 

F 41f -hl(X-1, z +H)+hl(X+1, z +H) 

where 

and the step function S( z - H) = 1 if z < Hand 0 otherwise; this term appears via 

the boundary condition that u -7 0 as x -7 -00. The inverse tangents are defined to 

lie in the range -1f /2 S; tan -1 e < 1f /2. hI (x, z ) and h2( x, z ) may be expressed as the 

real and imaginary parts of a single function of the complex variable S := x + iz: 

h(s):= hI + ih2 = -2is lns - 1fS. 

According to the convention chosen for the inverse tangent, this complex logarithm 

has a branch cut along the real axis z = O. If we now define a complex parameter 



Inviscid and laminar flow through a distributed force 28 

SI == 1 + iH describing the extent of the force distribution , the perturbation velocity 

field may be written compactly as 

u - iw = ~ [h( s _ SI) - h(s - si) - h(s + si) + h(s + SI) ]- S(z - H). (2.9) 
F 47f 

Far from the foice distribution, where Isl ~ ISll and z > H so that all four logarithm 

arguments lie on the same side of the branch cut, we can expand In( s +.6.s) in a Taylor 

senes : In( s + .6.s) ~ In s + .6.s / s - ~(.6.s / S)2 + . ... Then the far field velocities are 

. 2FH(x - iz) 0 (sr ) u - w = + - . 
7f(x 2 +z2 ) S2 

(2 .10) 

This agrees with Taylor (1944), since (2.10) is the perturbation flow field associated 

with a source near the origin. Integrating (2.10) around a large semicircle, we find 

that the total outflow from this source is 2F H. Below the height H , in z < H, the 

horizontal perturbation velocity tends to ° far upstream and - 2F in the wake far 

downstream. Thus the mass outflow from the source is balanced by a mass flux deficit 

of 2F H in the wake. The wake never decays because the mechanism for diffusion, 

namely viscosity, has been neglected in the current calculation. 
-, 

At z = H, discontinuities in two of the logarithmic terms and in S( z - H) combine 

to produce a jump in perturbation velocity u which increases linearly with distance 

from the leading edge of the force distribution, i.e . .6.u ex x + 1, until the trailing edge, 

after which the velocity jump remains constant. The same result can be obtained 

directly by considering the change in the horizontal component (2.3) of the governing 

equation across a discontinuity in the distributed force: 

{

O' 

:::} .6.u = F(x + 1), 

2F, 

x < - 1 

-1 < x < 1 

x > 1 

Ixl < 1 

Ixl > 1 

The vertical discontinuity in f cannot be matched by u2p/uxuz, as that would create 

infinite forces in the vertical momentum equation. 
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Figure 2.1: Constant force in uniform flow with F = 0.45 and H = 0.5. (a) Contours 

of the perturbation streamfunction. 
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Figure 2.2: Constant force in uniform flow with F = 0.45 and H = 0.5. (b) Contours 

of the tot al streamfunction. 
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Figure 2.3: Constant force in uniform flow with F = 0.45 and H = 0.5. (c) The per-

turbation streamwise velocity at a succession of dowllstream locations. The maximum 

velocity deficit, normalised by the uniform incident velocity, is -0.827. 
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Figure 2.4: Constant force in uniform flow with F = 0.45 and H = 0.5. (d) The 

perturbation vertical velocity at a succession of downstream locations. The maximum 

vertical velocity, normalised by the uniform incident velocity, is 0.358. 
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Figures 2.1-'-2.4 show the result of this calculation for F = 0.45 and H = 0.5. The 

plot of perturbation streamfunction in figure 2.1 shows the physical structure of the 

flow: outside the force distribution and its wake the perturbations resemble those from 

a point source at the origin, and the total mass outflow from this effective source is 

balanced by an equal mass flux deficit in the wake. The plot of total streamfunction in 

figure 2.2 shows the blocking effect: flow is forced up and over the region of resistance 

rather than through it. The plots of streamwise and vertical velocities (figures 2.3 and 

2.4) show how the flow is progressively decelerated by the resistance, how the velocity 

jump at z = H increases linearly between the leading and trailing edges, and how 

the disturbance in vertical velocity is very small outside the immediate vicinity of the 

resistance. The physical picture of §1.5 suggests that this inviscid calculation is qual­

itatively correct for the part of the force distribution where quasi-inviscid dynamics 

prevail , i.e. for the rapid mean flow deceleration of the flow near the leading edge. 

2.4 Quadratic force in a constant shear flow ' 

For a second example calculation, the incident velocity profile is chosen to be U = z/ H 

and, by analogy with the usual form of drag laws for bluff bodies (e.g. Batchelor 1967), 

the distributed force is proportional to the square of the local velocity: f = CdU2(Z). 

The dimensionless drag coefficient Cd then becomes the characteristic length ratio 

L'" / L j discussed in §2.2; it is assumed tobe constant within the rectangular region 

{Ixl < 1, 0 < z < H} and zero elsewhere. The governing equation for this flow is, 

from (2.6) , 

(2.11) 

the boundary conditions are w = 0 on z = 0 and w ~ 0 as x ~ -00 and z ~ 00 . 

The first ~erm on the right is a a-function at z = H and so its particular integral is 

the solution derived in §2.3, except that F is replaced by Cd. The second term on the 

right is a step function: constant 2Cd/ H in z < H and zero in z > H. This is the 

integral of a a-function; hence the particular integral of this term can be calculated 
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by integrating the solution of §2.3. The complex representation pays dividends m 

facilitating this integration. For example 

1,
S
1 (s - s')ln(s - s') ds' = [~(s - s')2 _ ~(s _ s')2ln(s _ S,)]S1 

1 4 2 1 
(2.12) 

1 . 21 . 2 121 2 
= 4(s --: sd - "2(s - sd In(s - SI) - 4(s - 1) + "2(s - 1) In(s - 1). 

Care is required when the path of integration crosses the branch cut along the real axis 

in the definition of In( s - s'). When 0 < Im( s) < H, there is an extra contribution to 

(2.12) from the branch cut, namely 

t7r 2 -(x - 1) sgn(x - 1). 
2 

Similar care is required when integrating h( s + si). The complete solution for the 

quadratic force distribution is 

u - tW ~ [h( s - SI) - h(s - sr) - h(s + sr) + h(s + SI)]- S( z - H) 
47r -

- 1H [j(s - SI) + j(s - sr) - j(s + sr) - j(s + SI) 
27r 

-2j(s - 1) + 2j(s + 1)] 

+ 2~ S(z - H) [(x - 1)2 sgn(x - 1) - (x + 1)2 sgn(x + 1)] 

2 + H(H - z)S( z - H), (2.13) 

where j( s) == s21n s. Approximating this expression for Isl ~ ISl l, z > H , and writing 

s = 1'eiB , we find that the far field for this quadratic force distTibution is given by 

u _ iw rv _ Cd
H3 = _ Cd (H) 3 exp( -3iB) 

37r s3 37r l' 
as l' ---7 00. (2.14) 

This is fundamentally diffeTent from the the source-like far field obtained in §2.3. 

Velocity perturbations fall off rapidly like 1'-3 Tather than 1'-1 and integration of 

(2.14) around a large semiciTcle shows that theTe is no net outflow associated with 

this far field. 

The exact flow field is illustrated in figures 2.5- 2.9. The plots of peTturbation 

stTeamlines (figures 2.5 and 2.6) show the weak quadrupolar circulation above the force 
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Figure 2.5: Quadratic force in linear flow with F = 0.45 and H = 0.5 . (a) Contours 

of the perturbation streamfunction. 

distribution and the much stronger recirculation of fluid within the force distribution 

and wake from the upper half H/2 < z < H to the lower half 0 < z < H/2 . The 

plot of total streamlines (figure 2.7) shows that the blocking effect of the resistance 

has all but vanished in comparison with the uniform flow (figure 2.2): streamlines 

pass through the force distribution with little net vertical displacement . The plots 

of streamwise and vertical velocities (figures 2.8 and 2.9) show that the distributed 

resistance acts to equalise wind velocities within the force distribution and that there 

is no flow through the roof of the force distribution . The velocity jump at z = H 

increases from the leading edge in the same way as in §2.3. 

2.5 Flow structure analysis 

Prior to the second example calculation of §2 .4, one might reasonably have guessed 

that the far field behaviour of the velocity perturbations depends only upon the total 
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Figure 2.6: Quadratic force in linear :flow with F = 0.45 and H = 0.5. (b) Contours of 

the perturbation streamfunction above the force distribution, showing the quadrupolar 

structure. 
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Figure 2.7: Quadratic force in linear flow with F = 0.45 and H = 0.5. (c) Contours 

of the total streamfunction. 

force acting, i ~e. the area integral of the distributed force. This proposition may be 

investigated in general by integrating (2.8) by parts: 

( . ) = fJdtd({ G(x,z;t,Of(t,OU1(O _ G/(x,z;t,Of(t,O } 
w x, Z <" U2 ( 0 U ( 0 ' (2.15) 

w here the primes indicate differentiation with respect to (. It is assumed that 

(2.16) 

so that the integrals in (2.15) are regular. Since G(x, z;t,O rv ( as ( --7 0, (2.16) 

implies that f and U must satisfy f(O/U(O rv (0: with 0: > -1 as ( --7 O. This 

restriction excludes the case of a constant force in the linear shear flow U = z / H, 

which is co~ered in §2.3. When U = z/ H, the restriction is obeyed by any force 

distribution that vanishes at the ground (e.g. a quadratic force f <X Z2). 

The far field of the flow is now investigated. First write (x,z) = r(cosB, sinB). 
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Figure 2.8: Quadratic force in linear flow with F = 0.45 and H = 0.5. (d) The 

streamwise velocity at a succession of downstream locations. The perturbation veloc­

ity, normalised by the incident velocity at z = H, lies between -0.858 and 0.899. 
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Figure 2.9 : Quadratic force in linear flow with F = 0.45 and H = 0.5. (e) The 

pertmbation vertical velocity at a succession of downstream locations. The maximum 

downwards vertical velocity, normalised by the incident velocity at z = H, is - 0.055. 
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Then for e + e ~ r2, G is approximately 

G( ' ().c · ()~ -( {sin() (sin2() e Sin3()} Csin3() O( -4) 
1, ,<", ~ + 2 + 3 + 3 3 + r . 

1f r r r 1fr 
(2.17) 

The dipole (r- 2 sin 2()) term here serves only to shift the effective origin of coordinates : 

it vanishes when the centroid of the force distribution lies at ( = O. The monopole 

(r - 1 sin ()) term dominates the far field provided its integral in (2.15) does not vanish. 

Writing the most general uniform or uniform shear velocity profile as U( 0 = U(O) +a(, 

the far field monopole velocity field is given, from (2.15), (2.16) and (2.17), by 

( . )~ sin() fJdCd(f((,O (1- (U
I

) = U(O)sin() fJdCd(f(( ,O 
Wl x,z 1fr <" U(O U 1fr <" U2(O' (2.18) 

If f == CdU2( Z), as in the analysis of §2.4, the integrand is constant and (2.18) reduces 

to 

( ) 
U( O)CdAsin () 

Wl X,Z ~ , 1fr (2.19) 

where A is the area occupied by the distributed force. 

A surprising feature of the monopole velocity field (2.18) is that it vanishes if 

U(O) = 0, i.e. if the incident velocity is zero at the ground and increases linearly 

with height. In this case Wl = 0 identically and the largest non-vanishing term is the 

quadrupole solution 

( . ) ~ 2sin3() fJdCd((f((,O 
W3 X,Z ~ 3 <" . 

31fr . a 
(2.20) 

Note that this general result depends only upon the form of the incident velocity 

profile, not on the force distribution. It shows that a region of net resistance near a 

solid boundary does not always give rise to a flow structure composed of a source and a 

wake. Instead a quadrupolar structure may prevail because the incident velocity profile 

is linear and vanishes at the boundary. (Equation (2.18) shows that a quadrupolar 

structure · can also result from distributions of f / U2 that integrate to zero, in the 

same way that a balanced source/sink pair in potential flow generates a dipolar rather 

than a source-like far field, but this result was to be expected.) More specifically, the 

strength of the source-plus-wake flow structure is directly proportional to the incident 
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boundary velocity U(O) . For any velocity profile which is non-zero at the ground, the 

flow structure is monopolar and its magnitude is related to the total force acting on 

the flow; but for the simple shear profile U = crz the flow structure is quadrupolar 

and its magnitude is related to the total couple on the flow about z = O. 

This differen:ce in flow structure is not a mere mathematical curiosity of inviscid 

flow. The following chapter will show that the results of a turbulent analysis may 

be understood as inviscid results plus turbulent stress corrections; the pressure field 

in particular is determined almost entirely by inviscid dynamics. Hence some broad 

features of the inviscid results carry over into the turbulent analysis. Consider then the 

influence of these flow structures on scalar dispersion. Referring back to the uniform 

flow streamline plots of figures 2.1 and 2.2, we note (i) that incident streamlines 

are partially blocked by the resistance, so that an approaching plume will have its 

centreline lifted, and (ii) that all the perturbation source flow comes from the wake 

via the resistance, so that scalar concentrations initially within the resistance will 

be rapidly dispersed into the flow above. In strong contrast, the linear flow plots of 

figures 2.5 and 2.7 show that the centreline of an incident plume is hardly affected by 

the resistance and that there is negligible exchange of fluid and scalar concentrations 

between the interior of the resistance and the flow above it. These are significant 

qualitative differences for scalar dispersion. 

In turbulent flow, the incident velocity profile is neither uniform, U = 1 nor linear, 

U = z / H. It is not at all clear which of these two idealised velocity profiles is the better 

model and, therefore, which of the two distinct flow structures is likely to be observed 

in practice. To resolve this issue, the following sections investigate the dependence 

of overall flow structure on varying shear above the region of resistance and on a 

second class of incident velocity profiles, with the assumption, as suggested by the 

two preced~ng calculations, that the flow as a whole can be adequately characterised 

by the behaviour of velocity perturbations in the far field. 
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2.6 The view from Fourier space 

The same fal' field results may be obtained in a complementary way by solving the 

constant and quadratic force problems in Fourier space. Equivalence between the 

results obtained in real and in Fourier space is important because the results of §§2.7-

2.8 can only be obtained by Fourier methods. When the force distribution is constant, 

the Fourier transform of the governing equation is 

whose solution for Z > H is 

wc(k, Zi H) = k- 2e- k z sin k sinh kH. (2 .21 ) 

The quadratic force solution is obtained from Wc by integration: 

W (k z · H) = q , , 
2 rH 

wc(k,ZiH)- H la wc(k,Zi7])d7] 

k-2 - kz . k {. h kH 2( cosh kH - 1) } 
A e sm A X sm A - • 

kH 
(2.22) 

, 

The order of the multipole far field behaviour in real space is represented in Fourier 

space by the behaviour of the Fourier transform for small k. Specifically, the Fourier 

transform of an n-pole behaves as kn - 1 as k ----7 o. Therefore we can find the "pole 

order" n for each of our two Fourier solutions by examining them as k ----7 O. In this 

limit, the constant force solution (2 .21 ) tends to H and the quadratic for ce solution 

(2.22) to k2 H3 /12. T hus a constant force gives a monopole far field perturbation 

(n = 1) while the quadratic force in constant shear flow produces a quadrupole far 

field perturbation (n = 3), in agreement with the real space analysis. 

To investigate this phenomenon for a wider class of force distributions, take U = 

(z/ H)a, \A.:'here 0: = 0 or 1, and the force distribution as f = Ccl(Z/ H) (3. Then the 

Fourier transformed governing equation is 

a2 
( ) (3-a {3C' ( ) (3-a- 1 W 2 Z d Z 

- - k W = -Cd - 8(z - H) + - -
aZ2 H H H ' 
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of which the solution is 

(3Cd rH 
w(k, z ;H)= Cdwc(k, z ;H)- H(3 -a la TJ(3- a-lwc(k, z ;TJ)dTJ. 

In order to ensure that the integral is finite we must impose the condition that (3 - a > 

-1. The limit of this solution as k ----7 0 is 

w(k ----7 0, z ; 1I) = Cd H (l - a) [1 + O(k)] + Cd
H3

(3 - a) [e + O(k3)] . 
(3 - a + 1 6({3 - a + 3) 

Hence w(k , z ; H) rv kO if a = 0 and w(k, z ; H) rv k2 if a = 1, for any value of (3 > a-I. 

This is equivalent to the real space results of §2.5. 

2.7 Varying shear above the force distribution 

How is the structure of the far-field perturbations modified by non-uniform shear 

above the force distribution? Specifically, is the quadrupole structure found for a 

linear velocity profile just an artefact associated with an unphysical choice of velocity 

which becomes unbounded as z ----7 oo? To answer these questions , we consider a flow 

in which the incident velocity shear changes abruptly at some height z ' > H. Thus 

U"( z ) is non"zero only at z = z' and the modified governing equation has the form 

(in Fourier space) 
fJ2w 
oz2 - k2 

Z - aw8(z - z') = g(k, z ), (2.23) 

where aU(z') is the jump in incident shear and g is the distributed force gradient. In 

H < z < z', the solution of this equation is 

rH g(k TJ) 
w(k, z ) = C sinh kz + lo ~ sinh k( z - TJ) dTJ, 

where C is an arbitrary constant. It is collvenient to rewrite this as 

w(k, z) = C sinh kz + hek z + Ize- k z
, 

whel:e hand 12 are known integrals over g. In the absence of the shear jump at z = z' , 

the boundary condition as kz ----7 00 determines C by requiring that the coefficient of 

ek z must vanish, which leads to 



Inviscid and iaminaL' flow through a distributed force 43 

Hence the solution in z > H is w(k, z) = (It + h)e-kz . 

When the incident velocity switches from linear to constant, there are jump con­

ditions to be incorporated at z = z' , namely 

[ l
Z I+ 

W Z l- = 0, and 
{) ] Z l+ 

[ {)w = aw(z'), 
z Z l-

so that the solution in z > z, is 

w C sinh kz + It ekz + he-kz 

+~ (C sinh kz' + It e
kzl + he-kzl) sinh k( z - z'). 

The coefficient of ekz must vanish, so 

~C + It + 2: (C sinh kz' + It ekz' + he-kzl) e- kz' = 0 

and then the solution in z > z ' is 

(It + h)e-kz 
W= --~~~~--~~~ 

1 + (a/2k )(1 - e- 2kzT 

Thus the solq,tion in the presence of the shear jump is modified by the multiplicative 

"transfer function" {I + (a/2k)(1 - exp(-2kz'))}-1 which depends only upon the 

wavenumber k and on the position z' and strength a of the jump, and not upon 

g(x, z) . 

If this transfer function is to alter the structure of far field velocity perturbations 

produced by the distribution, it must behave like some non-zero power of k as k -7 O. 

In fact it is evident that the transfer function tends in this limit to {I + az'} -1, which 

is independent of k. It follows that the shear jump has no effect on the structure of 

the far field. Clearly this conclusion may be generalised to cover any velocity profile 

with varying shear above the force distribution, by treating UI/( z) as the composition 

of a number of o-functions none of which alter the far field structure. Therefore the 

quadrupole structure must be a direct consequence of the variation of incident velocity 

near the ground where the distributed force acts and vorticity is created. 
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Hence the solution in z > H is w(k, z) = (h + h)e-kz . 

When the incident velocity switches from linear to constant, there are jump con­

ditions to be incorporated at z = z' , namely 

[ lz'+ 
W Zl- = 0, and [ 

() ] Zl+ 

()
w = aw( z') , 
z Zl-

so that the solution in z > z' is 

w C sinh kz + h ekz + h e-kz 

+~ (C sinh kz' + hekzl + he-kzl) sinh k( z - z'). 

The coefficient of ekz must vanish, so 

}C + h + 2ak (C sinh kz' + h ekz' + h e-
kZI

) e-kz' = ° 
and then the solution in z > z' is 

(h + h)e-kz 
W= --~~~~--~~~ 

1 + (a/2k)(1 - e-2kz,)" 

Thus the solution in the presence of the shear jump is modified by the multiplicative 

"transfer function" {I + (a/2k)(1 - exp(-2kz'))}-1 which depends only upon the 

wavenumber k and on the position z ' and strength a of the jump , and not upon 

g(x , z ). 

If this transfer function is to alter the structure of far field velocity perturbations 

produced by the distribution, it must behave like some non-zeTO power of k as k ~ 0. 

In fact it is evident that the transfer function tends in this limit to {I + az'} - 1, which 

is independent of k. It follows that the shear jump has no effect on the structure of 

the far field. Clearly this conclusion may be generalised to cover any velocity profile 

with varying shear above the force distribution, by treating UI/(z) as the composition 

of a nuniber of o-functions none of which alter the far field structure. Therefore the 

quadrupole structure must be a direct consequence of the variation of incident velocity 

near the gTOund where the distributed force acts and vorticity is created. 



Inviscid and laminar flow through a distributed force 44 

2.8 Power law shear flows 

It is possible to obtain analytical results for a further class of incident velocity profiles: 

U = (zj HY', where 0 < a < 1. Power law profiles merit investigation for two reasons: 

1. They are sometimes used as approximations to atmospheric boundary layer pro­

files; specifically, a value of a ~ ~ is sometimes used to model turbulent bound­

ary layers. (See Barenblatt 1993 for a discussion of power law and logarithmic 

profiles in turbulent flow s.) 

2. They lie intermediate between uniform velocity profiles (a = 0) and constant 

shear profiles (a = 1) and throw further light on the problem of far field pertur­

bation structure. 

For power law profiles U" jU a( a - 1) j Z2, so the Fourier transformed governing 

equation is 
a2w 2 W 1 af 
- - k w - a(a - 1)- = --. 
az2 z2 U az 

(2.24) 

(2.24) may be transformed into a modified Bessel equation of order 1/ == la - ~ I: 

2 a2
w aw (2 1) z2 a f 

~ ae + ~ a~ - ~ + a(a - 1) + 4 w = e/2u az' (2.25) 

where ~ == kz and VV == ~-1/2w. The coefficient 1/ is not a whole number for the range 

of a that we are interested in (we exclude a = ~). The homogeneous solution of (2.24) 

IS 

1 1 
W = A(kz)'ifv(kz) + B(kz )2 Lv(kz ). 

The general solution for an arbitrary force distribution is calculated using the Green's 

function method. The Green's function for a o-function at z = 'fJ on the right hand 

side of (2.24) must satisfy boundary conditions on z = 0 and as kz ---+ 00 and the 

jump conditions 

[wf1+ = 0 
'/-

and [w']'1+ = 1. 
'T/-

The boundary condition at the ground is w = O. Since 0 < 1/ < ~ and Iv (0 rv ~v 

for small ~,the homogeneous solution in fact satisfies the ground boundary condition 
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for any choice of A and B. Also, the gradient of W is infinite at z = 0 for any 

non-trivial choice of A and B. This difficulty arises because the incident velocity 

gradient is singular at z = 0, indicating that a physical analysis of the flow near 

z = 0 would require consideration of viscosity. In order to establish the far field 

structure, however, it suffices to retain the complementary function whose gradient 

is "less infinite," i.e. B = O. This choice is consistent with what happens in the 

limiting cases when a: is 0 or 1: in both cases JJ = ~,so II/(kz) = (1fkz/2) -1/2 sinh kz, 

LI/(kz) = (1f/cz/2)-1/2 cosh kz, and the ground boundary condition is satisfied by 

rejecting the complementary function in LI/(kz). Hence in z < 1] the Green 's function 

is given by 
1 

Wg(k, Z; 1]) = A(k, 1])(kz)2 II/(kz). 

In z > 1] we need to add a general solution which at z = 1] has a value of 0 and a 

gradient of 1. Thus in z > 1] 

using the relation LI/(OI~(O - 11/(01'-1/(0 = 2 sin JJ1f /1f~ (Abramowitz & Stegun 

1972, §9.6) . A is now determined by applying the boundary condition that Wg ----7 0 as 

z ----700. For large C 11/(0 rv e~/.j21f~, thus 

1 
1 1f1]2 

Ak2 + 2 sin IJ1f {I-I/(lC1]) - II/(k1])} = 0 

1 

A _ II/(k1]) - LI/(k1]) ('1) 2 
=;> -1f . 

2 sin JJ1f k 

The fully determined Green's function is therefore 

z < 1]; 

z> 1]. (2.26) 

Now consider the general force distribution f = Cd(Z/ H)f3. Then the right hand side 

of the governing equation becomes 
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The perturbation vertical velocity produced by such a fOl'ce distribution is 

For z > H, on substituting the Green's function (2.26), this is 

In order to complete the flow field calculation for given values of a and (3 this integral 

must be calculated numerically for several values of k; then the resulting profiles 

are inverse Fourier transformed to obtain the real space flow field. For the purpose of 

establishing the structure of the far field velocity perturbations, however, it is sufficient 

to obtain the limiting form of the Fourier transform as k --t O. This limit is found to 

be 

Recall that 1/ == la - ~I. If a < ~, 1/ = ~ - a and the second square bracket is 0(1). 

If, on the other hand, a > ~, 1/ = a - ~ and the second square bracket is 0(k2). As 

the rest of the limiting expression is 0(1), the result is that for power law incident 

velocity profiles U = (z/ HYx with 0 < a < 1, the far field velocity perturbations will 

have a monopole structure if a < ~ and a quadrupole structure if a > ~. 

2.9 Uniform laminar viscous flow 

The final calculation of this chapter includes fluid stress with a constant viscosity I/o 

This may be considered a crude model of turbulent flow, in which case 1/ should be 

interpreted as a turbulent eddy viscosity, i.e . the product of a typical eddy length 

scale and a typical eddy velocity. In some situations (see §3 .8) this model may in fact 

be more appropriate within the force distribution than the mixing length model, since 

the small scale intense eddies generated by obstacles and their wakes can mix fluid 

efficiently over the whole depth of the distribution. 
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When the iilcident velocity profile is uniform, the governing vorticity equation in 

two dimensions (2.2) becomes 

{)W v 2 {) f u- = --\7 w - -. 
{)x L*U~ {) z 

Write the vortiCity w in terms of a streamfunction 'IjJ such that w = - \72'IjJ and then 

take ~he Fourier transform of the equation to give 

1 {)4'IjJ (2k2 . ) {)2'IjJ (k4 . 3) {)f ---- -+~k -+ -+zk 'IjJ--
Re {)z4 Re {) z2 Re - {) z' (2.27) 

w here the Reynolds number is Re == L * U; I v and 'IjJ and f are now Fourier trans­

forms with respect to streamwise coordinate x and so are functions of (k, z). The 

complementary function of (2.27) has the form: 

(2.28) 

where (3 = Ikl , a 2 = k 2 + ikRe and the real part of a is non-negat~ve to satisfy the 

boundary condition that 'IjJ ~ 0 as z ~ 00. Vve require the Green's function Gv for 

(2.27) when the right hand side is a o-function at z = Zl. This will have the form of 

(2.28) and must also satisfy the following boundary and jump conditions: 

3. [G'v"J z=zr = 1 Vk·, 
Z = Z j 

4. Gv and its derivatives tend to zero as z ~ 00; 

where a prime' denotes differentiation with respect to z. The Green's function which 

satisfies all these conditions is given in z > Zl by 

exp( -azt) + (al (3) sinh((3z1) - cOSh((3zi) ((3) 
Gv = Gt (a _ (3)(a2 _ (32) exp - z 

exp( -(3zd + ((3la) sinh(azl) - cOSh(azl) ( ) 
+ (a - (3)( a 2 _ (32) exp -az (2.29) 
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and in Z < Zl by . 

(2 .30) 

Given this Green's function, the streamfunction is obtained from the integral 

100 . l oo {)f(k z' ) 
'Ij;(x, z) = Re dk e'kx dz' {) ~ Gv(k, Z; z'). 

-00 0 z 
(2.31) 

Streamwise and vertical perturbation velocities can then be found by differentiation: 

u = {)'Ij;/{)z; w = -{)'Ij; /{) x . 

x (strcamwisc coordinate) 

Figure 2.10: Constant force in uniform laminar viscous with F = 0.45, Re = 10 and 

H = 0.5. (a) Contours of the perturbation streamfunction. 

The streamfunction and perturbation velocities given by (2.31) are calculated nu­

merically for the uniform force distribution of §2 .3 and Re = 10 and the results aTe 

shown in figures 2.10- 2.13 . The plot of peTturbation stTeamlines (figure 2.10) shows 

fluid being sucked in from the wake and expelled through the top of the array. With 

the addition of an incident flow, the streamlines (figure 2.11) again exhibit the block­

ing effect of the array, but now they also show the wake beginning to decay as some 
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Figure 2.11: Constant force in uniform laminar viscous with F = 0.45, Re = 10 and 

H = 0.5. (b) Contours of the total streamfunction. 

fluid flows downwards downstream of the array. Figure 2.12 shows that the streamwise 

perturbation velocity becomes positive above the array soon after the leading edge in 

contrast to the inviscid case where the perturbation is negative until halfway along the 

array. It is also clear that there is far more deceleration in the first half of the array 

than in the second, consistent with the idea that the flow approaches an equilibrium 

state in the array interior with stress gradients making a significant contribution to 

the momentum balance. Figure 2.13 shows a dramatic streamwise gradient of vertical 

velocity in the exit region of the array where the applied force suddenly disappears. 

This gradient is less dramatic if 1* is a function of the local fluid velocity. 

The n-pole decomposition of the far field structure that has been pursued in the 

inviscid analysis depends implicitly upon the far field perturbations obeying Laplace's 

equation \72 w = 0 either exactly or approximately (which is true for the power law 

profile analysis of §2.8 because U"/U -+ 0 as z -+ 00) . The laminar viscous far field 

cannot be decomposed in this way because its perturbations obey the fourth order 



Inviscid and laminar flow tilrougil a distributed force 

2 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.4 

0.2 

0 

-2 -1.5 -I -0 .5 0 0.5 
x (streamwise coordinate) 

50 

1.5 2 

Figure 2.12: Constant force in uniform laminar viscous with F = 0.45, Re = 10 and 

H = 0.5. (c) The perturbation streamwise velocity at a succession of downstream 

locations. The maximum velocity deficit , normalised by the uniform incident velocity, 

is - 0.1 76 . 
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Figure 2.13: Constant force in uniform laminar viscous with F = 0.45 , R e = 10 

and H = 0.5. (d) The perturbation vertical velocity at a succession of downstream 

locations. The maximum upwards vertical velocity, normalised by the uniform incident 

velocity, is 0.0525. 
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equation (2.27) which does not reduce to Laplace's equation in the far field. However, 

comparison of the streamline plots from figures 2.1, 2.5, 2.6 and 2.10 clearly shows 

that the laminar viscous results obtained here are qualitatively closer to the source-like 

inviscid results of §2.3 than to the quadrupole structure results of §2.4. 

2.10 Symmetry in inviscid flow 

The different flow structures observed in inviscid flow can be understood, or at least 

viewed from a new vantage point, by considering the symmetry of the flow configu­

ration. The following arguments attempt to explain the observed flow structure in 

terms of this symmetry and have significant implications for turbulent flow and the 

way that turbulent flow should be modelled. 

2.10.1 Explaining the observed flow structures 

In inviscid flow, the function of the solid boundary is to suppress any normal flow. The 

same effect can be achieved without a solid boundary by placing an image system of 

incident velocity and force distribution below the line where perpendicular velocities 

are required to vanish. Thus the solid boundary in figure 2.14a becomes a line of 

symmetry for the equivalent flow system in figure 2.14b. 

A second symmetry operation derives from the governing equations (2.6), which 

show that it is f' jU , not f' alone, that acts as the source of perturbation vorticity and 

hence of vertical velocity perturbations. Therefore we could change the sign both ofthe 

incident velocity and of the distributed force below the line of symmetry and still have 

an equivalent flow system (figure 2.14c) for the flow above the symmetry line. (The 

physical behaviour of the flow below the line then becomes rather counter-intuitive, 

since the boundary condition is still that U -7 0 as x -7 -00, but mathematically the 

symmetry operation is valid.) 

Now consider the effect ofthese two symmetry operationson the inviscid distributed 
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Figure 2.14: Equivalent flow systems: (a) with a solid boundary; (b) reflected about 

the line where the solid boundary used to be; (c) after changing the sign of both f 

and U in the lower half of the system. 

force problem with linear incident velocity profiles, U = U(O) + (JZ. When U(O) = 0, 

the reflected velocity profile in the equivalent flow system of figure 2.14c (shown as 

a dashed line) is continuous. Then the complete system constitutes a force dipole in 

an unbounded shear flow and there is consequently no source-like contribution to the 

far field perturbations. When U(O) =1= 0 (shown as a solid line) the reflected velocity 

profile is discontinuous on the line of symmetry. It appears that this discontinuity 

prevents complete transmission of the perturbations from above the symmetry line 

to the region below so that cancellation of the upper and lower monopole fields is 

not exact and there is a source-like contribution to the far field perturbations whose 

strength is directly proportional to the size of the discontinuity U(O) (equation 2.18). 

A mathematical explanation is provided by Lighthill (1957). He describes an 

argument due to Prof. M.B. Glauert, based on the method of images, which shows 

the effect of a velocity discontinuity on the far field perturbations from a point source. 

If a point source of strength m lies above a vortex sheet separating two regions with 

velocities V_ and 1/+, the effective source strengths of far field perturbations above 
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and below the vortex sheet become m+ and m_ respectively, where 

2V~ 
and 

If V_ = - V+ as in figure 2.14c then m+ = m and m_ = -m. Hence the perceived 

source strength above the vortex sheet is unchanged, but the source strength below the 

sheet is reversed in sign. Now the equivalent flow system of figure 2.14c has a source 

above the symmetry line and a sink below the symmetry line for every element of the 

distributed force in figure 2.14a. In the presence of a velocity discontinuity, Glauert's 

image approach shows that sinks below the line will be perceived in the upper half of 

the flow as extra sources, supplementing the original sources in the upper half, thus 

producing a monopolar far field. 

For the case of uniform flow, therefore, it is demonstrated that the velocity dis­

continuity in the equivalent flow system modifies the source strength of velocity per­

turbations crossing the discontinuity such that the upper and lower sources do not 

cancel each other out in the far field. It is reasonable to infer that any discontinuous 

velocity profile will modify the transmitted source strength in a similar way to an 

extent depending upon the size of the discontinuity. The action of the discontinuity 

here is somewhat reminiscent of the effects of a strong shear layer in blocking the 

motion of turbulent eddies across it, discussed later in §3 .8. 

The more general shear flow profiles U = (z/ HY:X, 0 < Cl: < 1, lie intermediate 

between the strongly discontinuous (after reflection) uniform flow U = 1 (Cl: = 0) and 

the continuous linear flow U = z / H (Cl: = 1). The exponent Cl: describes the spread of 

the incident velocity shear layer around the symmetry line. Thus the results of §2.8 

show that shear layers with Cl: < ~ are sufficiently strong to behave in the same way 

as discontinuous velocity profiles, while those with Cl: > ~ are apparently not. 

2.10.2 Implications for turbulent flow modelling 

The flow structure results obtained in inviscid flow and the explanation offered here 

have important implications for turbulent flow and any attempts to model turbulent 
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flow. When TepTesented by a poweT law (e.g . BaTenblatt 1993), turbulent boundaTY 

layeT pTofiles have poweT law exponents around et ~ t; hence they should be classified 

with the et < ~ velocity pTofiles of §2.8. Physically this classification Teflects the fact 

that the sheaT in a turbulent boundaTY layeT is concentTated in a thin layeT neaT the 

ground. It follows that we should always expect to observe a source-like flow structure 

above the force distTibution in a turbulent boundaTY layer. It also follows that the 

incident velocity in a turbulent flow analysis should only be modelled by a profile that 

correctly repTesents strong shear or a velocity discontinuity near the ground. This 

excludes use of the lineal' profile U = z / H and favours the uniform profile U = 1, 

even though the latter does not satisfy a no-slip boundary condition at the ground . 

In a laminar viscous flow it is not clear to what extent the results of inviscid analysis 

apply. In contrast to turbulent boundary layers, typical laminar viscous boundary 

layers have a velocity variation described by the Blasius profile (e.g. TTitton 1988, 

pp. 127- 130) , which is almost linear over a large part of the boundary layer near the 

wall. However, the Tesults of §2.9 with a uniform incident velocity ai-e qualitatively 

source-like, and it may be that this resemblance is a consequence of the uniform 

velocity and that an analysis with U = z/ H would lead to a more quadrupole-like 

flow structure. In this case the Tesponse of a laminar boundary layer to a distributed 

fOTce would be veTY different fTom that of a turbulent boundary layeT simply because 

of diffeTences in their undisturbed velocity profiles, essentially because the laminaT 

profile lacks a layer of concentrated shear. Therefore when a laminar analysis is used 

to model a turbulent flow, as in §3 .8, care must be taken to ensure that the resulting 

flow structure is qualitatively correct . Use of a linear or Blasius pTofile in the laminar 

analysis could result in a perturbation structure completely inappropriate to turbulent 

flow, while use of a uniform profile at least guarantees a source-like far field such as 

prevails in ~urbulent flows. 



Chapter 3 

Analytical models for turbulent 

canopy flows 

3.1 Introduction 

The interesting flows that can be modelled using the concept of distributed force­

forest s, urban areas, etc.- are generally characterised by large enough Reynolds num­

bers for the flow to be fully turbulent . Given such practical importance, the remaining 

chapters of this thesis are concerned specifically with turbulent flow and dispersion 

through a distributed force . 

Turbulent flow field modelling III this thesis has two main objectives. Firstly 

we aim to produce practical analytical models for the detailed perturbation velocities 

and shear stresses within and above a region of distributed resistance. Such models 

are developed by the following analyses in this chapter , and have been incorporated 

into a working computer software package. The input to this computer package is 

a description of the incident wind and of the distributed resistance; the output is a 

two-dimensional array of perturbation flow quantities. In chapter 4 these models are 

used to simulate a number of experiments on flow through a group of obstacles and 

the simulation results are compared against the experimental data. 

Secondly we aim to produce "equivalent" parameterisations , that usefully describe 

56 
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broad aspects of the calculated flow fields in an accessible way. The most important 

of such parameterisations calculates effective roughness parameters- displacement 

height, roughness height and friction velocity- for the flow above a region of resis­

tance that varies slowly in the streamwise direction. Chapter 5 derives two equivalent 

parameterisations from the detailed flow field results of chapter 3 and indicates the 

regions of the flow where these parameterisations are valid. 

Figure 3.1: The two turbulent mixing length models used here. (a) The "standard" 

mixing length (SML) model. (b) The "displaced" mixing length (DML) model. 

A turbulent analysis requires a model for the turbulent stresses. If a standard 

model such as mixing length or 1( - E is to be used, new effects particular to distributed 

force flow or to the underlying canopy flow must be taken into account. For example, 

Svensson & Haggkvist (1990) and Savill & Solberg (1994) add terms to the 1(- ( 

turbulent kinetic energy (TKE) equation to represent the shear production of TKE 

in obstacle boundary layers. 

In this chapter we use two variants of the mixing length model. The "standard" 

mixing length (SML) model (figure 3.1a) assumes that the mean flow perturbations 

due to a distributed force are too weak to alter the turbulence structure of the incident 

boundary layer flow. Hence the mixing length Am is pTOportional to height above the 
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ground. In the "displaced" mixing length (DML) model (figure 3.1b), the flow domain 

is divided into two. A constant mixing length within the canopy models intense small 

scale turbulence due to the eddies shed from individual obstacles, while a linear mixing 

length above, with a non-zero displacement height, models the blocking effect on 

turbulent eddies Of a strong shear layer such as might be produced at the roof top level 

of a group of obstacles . Thus the DML model assumes that individual obstacles and 

large scale mean flow changes significantly alter the turbulence structure within and 

above the obstacle canopy. The ideas behind these two contrasting turbulence models 

are further discussed in §3.2 and §3 .8. The sensitivity of our results to turbulence 

modelling will be assessed by comparing results from these two models with each 

other and with numerical simulations using the J( - f closure. 

For the SML turbulence model, the method of analysis of the perturbation flow 

field follows that of Jackson & Hunt (1975), Sykes (1980), Hunt et al. (1988a) and 

Belcher et al. (1990), developed by these authors in investigations of turbulent bound­

ary layer flow over changes in ground elevation and surface roughness . The key points 

of this method are that 

• the analysis is linear: we specify the form of the incident velocity upstream 

of any distributed force and assume that any perturbations from this incident 

profile are small; 

• the flow domain is divided into dynamically distinct layers (described in §3.3): 

turbulent shear stresses usually affect the mean flow perturbations only within 

a thin layer near the ground (Townsend 1965); 

• linear perturbations are calculated separately in each layer and then matched 

with each other using the method of matched asymptotic expansions . 

Rapidly varying force distributions, however, can make turbulent shear stresses sig­

nificant outside the thin stress layer near the ground (§3.4) . This feature is specific 

to the distributed force problem, because a distributed force extends vertically into 

the flow domain, whereas the previously studied elevation and roughness changes are 

11 
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sU1jace perturbations. Hence separate analyses are presented for slowly varying (§3.5) 

and rapidly varying (§3.6) force distributions. Sample results for the SML analysis 

are presented in §3.7. 

For the DML turbulence model (§3.8), the upper part of the flow , where mixing 

length increases linearly with height, is calculated using the same asymptotic method 

but with extensions to allow for a non-zero displacement height. The lower part of the 

flow, where mixing length is uniform, is calculated using the laminar viscous analysis 

of §2.9. 

The chapter concludes in §3.9 by evaluating the sensitivity of the key features of 

the calculated flow fields to the turbulence model. 

3.2 The SML turbulent stress model 

As in the laminar analyses of chapter 2, the region of distributed force is characterised 

by horizontal and vertical extents L * and H*. The incident boundaTY layer flow is 

understood to be developing slowly only on time scales longer than the time L* jU; 

fOT flow to pass through the region of resistance, and the distributed force is taken 

to lie within the lower 20% of the total boundary layer depth. Hence the incident 

mean velocity profile is logarithmic (e.g. Panofsky & Dutton 1984, chapter 6) and 

characterised by friction velocity u* and roughness height z; : 

U*( *) - 1L* I z* z - - n-, 
K, zZ 

(3.1 ) 

where K, ~ 0.41 is von Karman's constant. Hence the mixing length model for the 

undisturbed boundary layer shows that turbulent shear stress in the incident flow is 

uniform: 

T * 2 = pu*. (3.2) 

Throughout the analysis , capital letters denote incident flow quantities and lowercase 

letters perturbation quantities. 

Following Townsend (1965), turbulent stress perturbations are modelled by the 
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equation 

* * 8u* 
T = 2pu*",z -8 ' z* 
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(3.3) 

in which "'z* is the SML model turbulent mixing length. Equation (3 .3) is the linear 

perturbation of the mixing length model for total shear stress, namely 

'* _ ,2 *2 8u* I 8u* I 
T - P'" z 8 8 . z* z* 

(3.4) 

The factor of two in (3.3) arises because (3.4) makes total shear stress f* quadratic 

in the total streamwise velocity gradient 8u* / 8z*. 

The normal stress perturbations T{l and T33 are far less important dynamically 

than the shear stress T{3 (also written here as T*). The flow within the thin layer 

where turbulent stress perturbations are non-negligible is largely determined by the 

balance of streamwise momentum, which is influenced by the vertical gradient of T{3 

and the stream wise gradient of T{l' Given that T{l and T{3 are of similar order (as 

established by numerous experiments, e.g. Laufer 1955), the thinness of the turbulent 

stress layer makes 8T{d 8x* negligible in comparison with 8T{3/ 8z*. Iil terms of the 

ratio E between vertical and streamwise length scales in this layer , the normal stress 

T{l makes only an 0 (E2) correction to the flow. 

The vertical normal stress T33 affects streamwise momentum transfer only indi­

rectly, as it gives rise to a pressure variation across the thin layer at O( E) and hence 

to an 0 (E) correction to the streamwise velocity perturbation. This is omitted in 

the analysis below, even though corrections of similar order are included, because it 

exhibits no new interesting physics and because the analysis clearly indicates how an 

arbitrary number of further such corrections could be incorporated if so desired. 

Thus closure models for T{l and T33 are not used in the following analysis. If 

models were required , for example to calculate further corrections to the asymptotic 

results below, then observations would suggest proportionality : T{l = -aT{3 and 

T33 = - {3T{3' Appropriate values for a and {3, measured in the laboratory and in the 

atmosphere, are given by Townsend (1976, Table 5.2) . 

All quantities in the following analysis will be non-dimensionalised using the length 

L*, advective velocity scale U; = U*(H*) and fluid density p, with the exception of 
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turbulent shear stresses which scale on u; and so are conveniently non-dimensionalised 

by the incident shear stress pu;. Dimensional quantities are marked with an asterisk. 

3.3 Asymptotic flow structure 

3.3.1 The domain of importance of turbulent stresses 

Implicit in the derivation of the mixing length model (3.3) is the idea that turbulent 

eddies are in a state of "local equilibrium" (Townsend 1961), such that there is enough 

time for turbulent eddies to move and transfer momentum before the mean flow has 

changed much. If, however, the mean flow changes too rapidly, eddies are distorted 

by the mean flow changes before there is time to establish the local equilibrium. The 

analogy with molecular diffusion then breaks down. In the limit of very rapidly chang­

ing mean flow, rapid distortion theory (RDT) can be used to model the turbulence. 

Following Britter et al. (1981) and Belcher et al. (1993), the height l* of an inner 

region witlun wmch (3.4) applies is established by comparing time scales for turbulent 

eddy diffusion and for distortion of the mean flow. 

Consider boundary layer flow past an obstacle of length L *. The time taken for a 

fluid particle or an eddy to be advected past the obstacle at a height z* is 

t: ~ L* jU*(z*). (3 .5) 

t~ decreases with height because the wind speed increases. The mean flow is distorted 

most somewhere near the obstacle, while far upstream and downstream the pertur­

bations tend to zero. Hence t~ is also the characteristic time scale for mean flow 

distortion. 

A turbulent equilibrium time t; is determined by the turbulent length scale, which 

according to the mixing length theory is the height above the ground, and the char­

acteristic velocity fluctuation u*. The equilibrium time scale is therefore 

(3 .6) 
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t; increases with height as the typical eddy size increases, because more time is required 

to mix momentum over greater distances. 

The two time scales t~ and t; are of similar order at a height l * defined implicitly 

by 
L * l * l * 

U*(l*) ~ u* =? l*ln z~ ~ K-L*. (3.7) 

In the region z* < l * where the equilibrium time t; is less than the advection time, the 

local equilibrium hypothesis is appropriate and the perturbation turbulence closure 

(3.3) can be used. For z* ~ l*, t; ~ t~ and so turbulence is governed by RDT. 

RDT implies that perturbation turbulent stresses are O( E2), where E is the ratio of 

turbulent velocity u* to characteristic advectioll velocity U; . It follows that these 

rapidly distorted eddies have no effect 011 the leading order mean flow perturbations. 

Thus consideration of these two time scales divides the flow domain into two 

regions at an approximate height l * . In the inner region, i. e. z* < l *, turbulent 

stress perturbations are significant and can be modelled by the mixing length closure 

(3 .3) . In the outer region, z* > l *, turbulent stresses do not affect the mean flow 

perturbations at leading order, indicating that the outer region flow perturbations are 

effectively controlled by inertia gradients and pressure forces. 

Belcher et al. (1993) have shown that this layered turbulence model is signifi­

cantly more accurate than using a mixing length model throughout the flow domain 

w hen applied to the calculation of pressure drag on a low hill: the results of their 

linear asymptotic analysis are comparable with those of numerical simulations using a 

second-order turbulence closure . If an SML closure is used incorrectly outside the inner 

region, turbulent stress appears to affect the mean flow perturbations at O(E) , where 

E is the ratio of turbulent friction velocity to the advective velocity scale. Belcher et 

al. used rapid distortion theory outside the inner region to show that turbulent stress 

in fact affects mean flow perturbations only at O( E2). 
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3 .3 .2 The use of Fourier analysis 

Following Lighthill (1957) and many others, the application of Fourier analysis to the 

linearised distributed force problem allows arbitrary force distributions to be treated 

by the Fourier synthesis of a set of harmonic distributions. The inconvenience of 

inverse Fourier transformation at the end of the analysis is far outweighed by the 

simplification that results from reducing partial differential equations in two or three 

independent variables to ordinary differential equations in just one vertical coordinate. 

Moreover, in the distributed force problem the reponse of the incident flow is quite 

different , depending on whether the force distribution varies rapidly or slowly in the 

streamwise direction, i.e. according to the ratio between streamwise variation length 

scale and force distribution height . Fourier analysis provides a formal method for 

separating out these differently behaving components of an arbitrary force distribu­

tion. This is an important extra consideration for the distributed force and roughness 

change problems because the imposed flow disturbance can include a wide spectrum 

of streamwise wavenumbers (consider the step change in roughness). 

In a Fourier ,analysis, it is appropriate to calculate the height l* separately for each 

Fourier component of the force distribution, taking the Fourier wavelength 21f / k* as 

the horizontal length scale for advection. Thus, from (3.7), at each wavenumber k* 

we define l*(k*) implicitly by 
l* 

k*l* ln - ~21fK,. 
z* o 

(3 .8) 

This wavenumber dependent scaling leads naturally to the physical picture described 

in §1.5. The impact and exit regions of the flow correspond to short wavelength com­

ponents of the force distribution. For these Fourier components l* is small compared 

to the height of the force distribution and most of the perturbation flow will be invis­

cid as the physical arguments of §1.5 suggest. By contrast, in the array interior and 

far wake regions, which correspond to long wavelength components, l* is large and 

well above the top of the force distribution; hence turbulent stresses are crucial to the 

dynamics of these regions . 

To fix the value of l* the right hand side of (3.8) is chosen to be 1. Note that 
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this choice is slightly different to that made by Hunt et al. (1988a) and Belcher et al. 

(1990) and is ,made here for notational convenience. Since l* is interpreted as an order 

of magnitude estimate for the transition height between inner and outer regions, the 

choice of this 0 (1) constant in no way affects the results. Thus l* is defined implicitly 

by 
l* 

k* l * In - = l. 
z* o 

(3.9) 

At very small wavenumbers (3.9) gives the inner region height l* increasing without 

limit. In practice l* must be limited by that fraction of the incident boundary layer 

depth in which there is local equilibrium, typically about one fifth of the total bound­

ary layer depth. Denoting this limiting height by 8*, there is a critical wavenumber 

k~ below which l* as defined by (3.9) would exceed 8*. k~ is given by 

k* = (8* In 8*)-1 
c z; (3.10) 

To estimate a typical value for k~ in the atmospheric boundary lay~r, we take 8* = 
200m and z; = O.lm, giving k~ = 6.6 X 1O-4m-1 or a critical horizontal scale of about 

10km. This r~striction is always significant for the smallest woods and villages as well 

as the largest cities and forests because, assuming that all of a force distribution acts 

in the same direction, the zero wavenumber Fourier component is larger in magnitude 

than any non-zero wavenumber component : 

If(k)1 = 11: f(x)e- ikX dxl:S 1: If( x) 1 dx = If(O)I· (3.11) 

In a numerical implementation of the results of the present analysis, (3.9) is modified 

to give 

l* - $:* h li 1 = u tan 8*' w lere 
l* 

k*l~ln ~ = l. 
z* o 

(3.12) 

The value of l * given by (3.12) differs negligibly from that of (3.9) when k* ~ k~, 

so the physical reasoning behind (3.9) is preserved until l*approaches 8*; then the 

modified definition (3.12) ensures that the stronger constraint l* :S 8* is obeyed. 
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3.3.3 The asymptotic small parameter to 

The small parameter £ of the analysis is defined as the ratio between turbulent velocity 

scale u* and advective velocity scale U;: 

(3.13) 

Non-dimensionalisation of the advective velocity scale, U; = U*(H*), gives the rela-

tion 
H 

dn - = l. 
Zo 

(3.14) 

This is perhaps a more useful definition of £ since it relates the small parameter directly 

to the geometry of the problem. (3.14) shows that the condition for £ to be small is 

equivalent to the condition that there should be a clear separation of scales between 

Zo and H. The surface roughness could also be modelled as a part of the distributed 

force . Therefore a clear separation of scales between Zo and H is required for the 

surface roughness to be treated consistently as a roughness length rather than as a 

force distribution. 

Equation -of (3.9) and (3.14) gives a relation between £ and kl : 

kl _ In(Hj zo) _ 1 + In(Hjl) _ 1 
£ - In(lj zo) - In(lj zo ) - 1 - dn(Hjl)" 

(3.15) 

Hence kl = 0(£) as long as 1 - dn(Hjl) = 0(1) , which is true unless 1 is as small 

as 0 (zo). Typically the smallest significant wavelengths of the force distribution are 

O(H), and for such small scales l '" A = O(H). Overall, therefore, it is saJe to scale 

kl = 0(£) , which shows that £ also characterises the ratio of vertical to horizontal 

length scales in the inner region. 

3.3.4 Subdividing the inner region 

A velocity scale for the inner region is defined by 

l 
Ut = U (l) = dn -

Zo 
(3.16) 
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and then the inCident velocity in the inner region may be written 

z 
U (z) = U, + dn T. (3.17) 

Hence U (z) = Ut + 0 (E) throughout the inner region except very near the ground 

where z cv Zo . Therefore the inner region is divided into two sub-layers. In the inner 

surface layer (ISL), z cv Zo, the natural 0(1) vertical coordinate is (i == z / zo and 

the incident velocity profile is U(z) = dn(i = O(E). The shear stress layer (SSL) is 

defined as the res t of the inner region. Here the 0(1) vertical coordinate is ( == z/l 

and the incident velocity is U(z) = Ut + O(E). The need to subdivide the inner region 

in this way was first recognised by Sykes (1980) and will be clarified in §§3.5.2-3.5.3. 

3.4 Effects of strong force gradients 

The remark made in §3.1, that rapidly varying force distributions can make turbulent 

stresses significant outside of the thin stress layer near the ground, is · a manifestation 

of the fact that a distributed force can impose new vertical length scales upon the 

flow. Since the basic physics of distributed body forces is that force gradients create 

vorticity (§2.2), new length scales are most clearly defined by locations within the 

force distribution where the force gradient is stTOng. 

When significant new vertical length scales exist, a mathematical problem for the 

SML analysis arises because the asymptotic flow structure of §3.3 implicitly ignore 

all vertical length scales except height above the ground. Although a general force 

distribution may have several places where the force gradient 8 f / 8z becomes large, the 

issues involved are demonstrated most clearly by consideration of a force distribution 

that is slowly varying up to a height h and zero above h, so that there is a single 

discontinuous change in distributed force at z = h. 
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3.4.1 Mathematical resolution of flow discontinuities In the outer 

regIOn 

The analysis of chapter 2 showed that in inviscid flow force discontinuities at height 

h lead to discontinuities in the streamwise velocity at height h. This result is equally 

valid for a force discontinuity in the outer region of the proposed turbulent flow struc­

ture. Therefore, given the dependence (3.9) of inner region height l on wavenumber 

k, for any height h there will be a range of wavenumbers such that the discontinuity 

lies in the outer region. Hence the Fourier components of perturbation velocity in this 

wavenumber range will be discontinuous at z = h. 

Such unphysical flow discontinuities betray a limitation of the asymptotic flow 

structure as described in §3.3. What happens physically is that in any region of high 

flow gradients, turbulent stresses become large and dynamically important. Mathe­

matically, therefore, turbulent stresses must be retained in the governing equations 

near any point of potential discontinuity. To reflect this, the asymptotic flow structure 

must be modified so as to include new turbulent stress layers around any height where 

strong force gradients occur outside the inner region. 

Hence the analysis of the SML model is presented in two parts. The slowly varying 

analysis of §3.5 is valid at smaller wavenumbers for which any strong force gradients 

lie well within the inner region. The rapidly varying analysis of §3.6 considers the 

idealised case of a uniform force distribution which vanishes discontinously at a height 

within the outer region, for which a new shear stress layer is added to the flow structure 

around the discontinuity. By comparing the analyses of §3.5 and §3.6, it becomes clear 

how their results can be blended together to allow a practical treatment of any number 

of force discontinuities anywhere within the flow domain. 

3.4.2 Effect of a strong elevated shear layer on turbulence 

As well as the asymptotic flow structure, the SML turbulence model also ignores any 

vertical length scales other than height above the ground. This is a physical limitation 

of the SML model that is addressed by the more general DML turbulence model in 
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the analysis of §3.8. 

3.5 Analysis of slowly varying force distributions 

3.5.1 Governing equations 

We begin with the steady, incompressible, Reynolds averaged Navier Stokes equations 

for total (i. e. undisturbed + perturbation) pressure, velocities and turbulent stresses, 

supplemented by a distributed force in the streamwise momentum equation: 

pu* . \7*u* + \7*p* 

n * "* v . U 

n * "* 'f* v ·r - I , 

o. 

(3 .18) 

(3.19) 

The total velocity is the sum of the undisturbed streamwise flow (U*, 0) and the 

perturbation velocities (u*, w*) due to the force if*. Similarly, p* = P* + p* and 

f * = T * +r*, but in the undisturbed boundary layer there are no gradients of pressure 

or turbulent stress, so the constant pressure P* is dynamically irrelevant and the 

constant stress tensor T * serves only to define the friction velocity u* . Expanding 

flow quantities into their undisturbed and perturbation parts, neglecting the normal 

turbulent stress perturbations , and linearising the inertia terms by assuming that 

lu*(z* )1 ~ U*(z* ), we obtain in component form 

ou* oU* op* 
pU*- + pw*-- + -' -

ox* oz* ox* 
ow* op* 

pU*--+-
ox* oz* 
ou* ow* - +­
ox* oz* 

OT* _ f * 
oz* ' 

(3 .20) 

OT* 
ox* ' 

(3.21) 

o. (3.22) 

The coordinates and physical quantities in these equations aTe non-dimensionalised 

using the characteristic length and velocity scales defined in §3.2: 

k* = kj L*, x * = L*x , 

U* = U; U, (3.23) 

u* = U; u , * U *2 P = P o P, 
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The non-dimensionalised equations read 

(3.24) 

(3.25) 

o. (3.26) 

The factor E2 ",2 = (U*/U;)2 appears here because the stress and inertia terms are 

non-dimensionalised using different velocity scales. Now the physical quantities in 

(3.24)- (3.26) are expressed in terms of their Fourier transforms, for example 

u(x, z ) = 1: u(k, z )eikxdk. (3.27) 

Note that a physical quantity is represented by the same symbol in both real and 

Fourier space; where there is any ambiguity as to whether the real space or Fourier 

space quantity is intended, the intention is clarified by writing the argument list 

explicitly as in (3.27). After a set of transformations like (3.27), (3.24)- (3.26) become 

ikUu + wU' + ikp 

ikUw + p' 

iku + w' o. 

Here the primes denote vertical differentiation 8/8z . 

(3.28) 

(3.29) 

(3.30) 

Throughout the analysis that follows, it is convenient to assume that the wavenum­

ber k is non-negative; this saves a lot of notational trouble involving Ikl and sgn k. 

This assumption is not restrictive since u( x, z), p( x , z) etc. are real, and so their 

Fourier transforms for negative k may be obtained from those for non-neg~tive k via 

the Hermitian relationship u( -k) = [u(k)]* (where the asterisk here denotes complex 

conjugation) . 

It is not possible to solve (3.28)- (3.30) exactly. Further progress must be made by 

considering the behaviour of (3.28)- (3.30) in each layer of the flow structure defined 

in §3.3 and applying the turbulence closure and approximations that are appropriate 

to each layer, 
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3.5.2 The shear stress layer 

The natural vertical coordinate for the shear stress layer is ( == z / I . Turbulent 

shear stresses are modelled by the eddy viscosity closure (3.3), which after non­

dimensionalisation (3 .23) takes the form 

2z OU 
T=--. 

E OZ 
(3.31) 

Rewriting (3.28)- (3.30) in terms of (, making use of this turbulence closure, and 

writing the incident wind velocity as U = U/ + fln (, we obtain 

ikt(U/ + fln ()u + EW/( + iklp 

ikl(U/ + fln ()w + p' 

iklu + w' o. 

(3.32) 

(3.33) 

(3 .34) 

Recall that kt, which multiplies many of the terms here, is O(E). These equations 

are to be solved asymptotically in the limit E -7 O. The perturbation 'velocities and 

pressure are expanded as asymptotic series in E: 

u 2 
U o + EUI + E U2 + ... 

W 
2 

EWI + E W2 + ... 

p 2 Po + EPI + E P2 + ... 

(3.35) 

(3.36) 

(3.37) 

The continuity equation (3.34) shows that there is no leading order vertical velocity 

perturbation, hence Wo has been omitted. The vertical momentum equation (3.33) 

shows that any pressure variation in the SSL must be O( (2); hence p~ = p~ = O. 

There are two mechanisms which give rise to a pressure perturbation in turbulent 

flow through a distributed force . The first is an inviscid mechanism. In the inviscid 

analysis, we found that the flow perturbations can be characterised as outflow from a 

source balanced by a constant velocity deficit in the wake of the force distribution. A 

pressure perturbation is associated with the source flow part of the inviscid solution. 

In the turbulent flow analysis, the outer region is quasi-inviscid and we shall see that 

a large part of the inner region also acts inviscidly, so this inviscid mechanism for 
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pressure perturbation is just as important for turbulent flow as it is for inviscid flow. 

A simple scaling analysis shows that this inviscid pressure perturbation is OU H /1'), 

where l' is the distance in real space from the measurement point to the centroid of 

the force distribution (the apparent origin of the source flow); this is formally 0(1) so 

far as our asymptotic expansion in f is concerned. 

The second mechanism is due to turbulent stress effects in the inner region, which 

give rise to an extra vertical velocity perturbation at z ~ l. This extra vertical velocity 

perturbation appears to the outer region like a wavy surface. An associated pressure 

perturbation is induced in the outer region, in the same way as in hill flow , and this 

pressure is transmitted back to the inner region. The extra vertical velocity at z ~ I 

turns out, however, to be 0(f2), so the corresponding pressure perturbation is much 

weaker then that produced by the inviscid mechanism. 

Substituting (3.35)- (3.37) into (3.32)- (3.34) we can identify the following equa­

tions at O( f) and O( (2): 

iklU,uo - 2fK,2((U~)' 

ik l U,Ul - 2f1>:2((u~)' 

ikluo + fW~ 

-If - ik lpo, 

0, 

2iklK,2(u' 
. 0' 

0, 

o. 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3 .42) 

(3.43) 

The first of these equations governs the leading order streamwise perturbation velocity 

u o . By means of a change of variables, defining the new Bessel function coordinate Z 

by 

(3.44) 

(3.38) is transformed into the Bessel equation 

(3.45) 
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Solutions to (3.45) are expressed in terms of the Bessel functions Jo(Z) and Ko( -iZ) 

(Abramowitz & Stegun 1972, chapter 9). This somewhat unusual combination is 

advantageous for two reasons. Firstly, Jo(Z) and Ko( -iZ) are respectively expo­

nentially large and exponentially small as IZI --+ 00, which is useful when matching 

with the outer region. Secondly, Jo(Z) and Ko( -iZ) are related to the Kelvin func­

tions: Jo(Z) = ber(Z) + i bei(Z) and Ko( -iZ) = ker(Z) + i kei(Z) where Z == 

Z exp( -3i7f /4) = I ZI , which is useful in practical implementa tions of the theory be­

cause ber(Z) etc. are real. 

The general solution of (3.45) is 

U o = AoJo(Z) + BoKo( -iZ) - ~ (3 .46) 

. z 
+ k~ ( Z' f( z'){ Jo(Z)Ko( - iZ') - Jo(Z')Ko( -iZ)} dZ', 

I Jzo 

where Ao and Bo are to be determined by matching with the inner surface layer below 

and the outer region above. The SSL and outer region coordinates are related to each 

other by (= kz/(kl) = kz X 0(c1) , so an 0(1) coordinate for the matching region is 

given by 

where O< a < l. (3 .47) 

In the matching region IZI therefore becomes large like Ea- I , so the terms in (3.46) 

containing Jo ( Z) are exponentially large as E --+ o. Anticipating that there are no 

exponentially large terms in the outer region solution to match this behaviour , it 

follow s that the coefficients in (3.46) of Jo(Z) must cancel as IZI --+ 00. Tlus matching 

condition fixes Ao: 

Ao + k~l h~ Z' f( z')Ko(-iZ')dZ' = o. (3.48) 

At O( E) the g;overning equation for Ul is (3.39). The general solution is 

Ul = A1Jo(Z) + B1IC( -iZ) - ~ (3.49) 

+ k~ ( z Z' (iiU
) + fi w

)) {Jo(Z)Ko( - iZ') - Jo(Z')Ko( - iZ)} dZ' , 
I Jzo 
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where J~U) == ikuo In (. and J~w) == fwd z. The particular integrals in (3.49) are 

formally the same as additional force distributions, so we could think of the corrections 

as contributing to an effective total force distribution 

f J J(U) J(w) 2f J elf = + f 1 + f 1 + f 2 + . . . . (3.50) 

The leading order pressure Po is determined by the original force distribution J, and 

in the same way the first order pressure perturbation may be split into two parts and 

ascribed to J~U) and J~w). Thus the first order streamwise velocity Ul can be divided 

into three components: 

(3.51) 

where 

ElKo( -iZ), (3.52) 
(U) 

AiU
) Jo(Z) - p~, (3.53) 

+ k~' h: z' J~U) {Jo( Z)Ko( -iZ') - Jo( Z')Ko( -iZ;} dZ', 

(w) 

Aiw
) Jo(Z) - P~l (3.54) 

. z 
+ k~' ho z' J~w) {Jo(Z)Ko( -iZ') - Jo(Z')Ko( -iZ)} dZ'. 

Then AiU) and Aiw
) are determined by equations similar to (3.48), while El is to be 

determined by matching with the ISL. 

3.5.3 The inner surface layer 

In the inner surface layer the natural vertical coordinate is C == z / Zo' Using the 

turbulence closure (3.31) and rewriting (3.28)- (3.30) in terms of the ISL coordinate 

C, we obtai~l 

ikzo U U + fW / (.i + ikzop 

ikzoUw + p' 

ikzou + w' 

20,-;2((.iU')' - zoJ, 

2 2'k . , ~fK 2 " Zo(iU , 

0, 

(3.55) 

(3.56) 

(3 .57) 
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primes now indicate differentiation with respect to (i. From (3.12) and (3.14) we can 

calculate the order of kzo: 
kl 

kz = -- < Ee-UI/f 
o l/ zo - , 

(3.58) 

i .e. kzo is exponentially small as E --7 O. We could therefore solve (3.55)- (3.57) for the 

perturbation velocities and pressure expressed as asymptotic series in the small pa­

rameter kzo . However, the SSL analysis contains only algebraically small corrections; 

hence there will be nothing small enough to match any O(kzo) corrections from the 

ISL. It is sufficient therefore to calculate only the leading order ISL solution, which 

should match the leading order solution in the SSL and all its algebraically small 

corrections (Belcher 1990). 

To obtain the leading order solution (denoted by the subscript i) we neglect all 

terms that are O(kzo). The streamwise momentum equation reduces to 

(3.59) 

When integrated once (3.59) gives the ISL shear stress : 

2 Z 0Ui 1 l z
"( ') , 

Ti = -!:l = T w + 22 f z dz . 
E u Z E K, Zo 

(3.60) 

The turbulent stress above a group of obstacles is transmitted to the ground partly 

through obstacle drag and partly through shear stresses at the ground. (3.60) describes 

the transfer of drag force between these two mechanisms in the absence of other 

dynamical contributions to the streamwise momentum balance. A second integration 

gives the leading order streamwise velocity: 

ETw Z 1 lZ (') z , Ui = -In - + -- f z In -dz . 
2 Zo 2EK,2 ZO Z , 

(3.61 ) 

Reynolds stress gradients are of great practical importance in determining near­

surface transport processes such as heat transfer and deposition of pollutants. In the 

absence of any force in the ISL, (3.60) shows that the turbulent shear stress is constant 

across the layer. But the ISL is a transcendentally thin layer, so the constancy of Ti 

does not exclude the possibility of algebraically large stress gradients existing in the 
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ISL. The unsealed streamwise momentum equation (3.28) gives 

(3.62) 

Substituting for the ISL streamwise perturbation Ui (3.61) and ignoring terms involved 

the distributed force f (which in practical flows is small very near the ground), we 

find that 

'k 2 [ ] 2 2, Z ~E Tw 2 Z Z Zo . 
E K, Ti = -- In - -In - + 1 - - + zkpi. 

2 ~ ~ Z 
(3.63) 

Equation (3.63), which was also obtained by Hunt et al. (1988a) by a different method, 

shows that there is an 0(1) turbulent stress gradient at the ground that matches 

the streamwise pressure gradient. In the leading order SSL solution this pressure 

gradient is balanced by the force distribution and streamwise accelerations and the 

most significant turbulent stress gradient is O( E). Thus, following Hunt et al. (1988a) , 

the ISL may be characterised as a layer where the stress gradient increases dramatically 

from O(E) to 0(1), as the balance of streamwise momentum changes to meet the 

surface boundary condition. 

3.5.4 Matching the ISL and SSL 

To match (3.46) and (3.52)- (3.54) with the ISL solution (3.61), it is convenient to 

separate out the terms of the SSL solution that are non-zero at z = Zo: 

AoJo(Zo) + BoKo( - iZo) _ Po 
Ut 

+Ao {Jo(Z) - Jo(Zo)} + Bo {Ko( - iZ) - Ko( -iZo)} 
. z 

+ k~t ho Z' f( z') {Jo( Z)Ko( -iZ') - Jo(Z')Ko( -iZ)} dZ'. 

The ISL coordinate (i is related to the SSL coordinate ( by 

z z Zo U If Ci = - = - + - = (e I ; 
Zo l l 

(3.64) 

(3.65) 

this shows that in the SSL, where ( = 0(1) , the ISL coordinate would be very large, 

O(exp(Ut/E)). An 0(1) coordinate 1Y for the ISL/SSL matching region is defined by 

where (3.66) 



Analytical models for turbulent canopy flows 76 

(a = 0 gives <p = (, placing us in the SSL, while a = 1 gives <p = (i, placing us in the 

ISL, so an intermediate value of a corresponds to a matching region between these two 
1 

layers.) In the matching region, \Z\ rv (2 is exponentially small like exp(-aUt!(2E)), 

so it is appropriate to use small argument expansions (Abramowitz & Stegun 1972, 

§§9.6 and 9.1) fOl·the Bessel functions in (3.64): 

1 -lZ2 + 0(Z4), (3.67) 

{ 
-iZ} { Z2 } Z2 - I + In -2- 1 - 4 - 4 + O(Z\ Z 4 ln Z). (3.68) 

Using these small argument expansions for the non-constant terms in (3.64), we find 

that the leading order SSL solution in the matching region takes the form 

() ( . ) Po Bo 1 z 1 l z 
f( ') z , u :::::: A J Z + B K -2Z - - - - n - + -- z In - dz . o 0 0 0 0 0 0 U 2 2 , 2 , t Zo El'\, ZO Z 

(3.69) 

Similarly, the first order corrections become 

(3.70) 

(3.71) 

(3.72) 

The highest order term of the ISL solution (3.61) is O( E). Hence matching with the 

ISL means that all the 0(1) or higher terms of (3.69)- (3.72) must add to zero. Now 

Ko( -iZo) rv In( zo/ l) = O( Cl), so part of the u~cf) correction becomes 0(1) as z / l --+ 0 

and contributes to this leading order match: 

(3.73) 

In (3.73), A~, Jo(Zo), Bo, Bl , Po and Ut are all 0(1), while Ko(-iZo) is O(c l
); at 

O( Cl) it follows that Bo = 0 and hence that we must reject the term in Ko( -iZ) as 

a part of the leading order solution. The remaining terms of (3.73), namely 

(3.74) 
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determine the first order coefficient Bl in terms of Ao and Po. 

Since all cO.rrections in the ISL are exponentially small, it is necessary to show 

that the leading order solution in the ISL matches the leading order solution and 

all its algebraically small corrections in the SSL. For this purpose it is convenient to 

lump together all contributions to an additional djstributed force for the first order 

correction-

(3.75) 

- and similarly for all higher order corrections. The nth order corrections are given 

by a set of equations like (3.70)- (3.72) and matching at O(En) with the ISL and with 

the outer region gives 

A,Jo(Zo) + EBn+lKo( -iZo) - ~ 0, 

An + k~l fz~ Z' fn(z')Ko( - iZ') dZ' = O. 

There are algebraic contributions to the ground shear stress from all orders: 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

Here we have used (3.48) and (3.74) to express the ground shear stress in terms of the 

distributed force and the inner region pressure Po. 

The shear stress gradient in the SSL is easily obtained by inspection of the stream­

wise momentum equations that U o and Ul satisfy; thus 

ikUu + f + ikp + wU' + 0(E2). (3.80) 

It follows that U o and Ul have associated stress gradients which match the ISL stress 

gradient to O( (2); clearly the stress gradient of the next order velocity perturbation 

U2 will improve the match to O( (3 ), and so on. 
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Finally we consider the particular integrals over distributed force f that appear 

in (3.61) and (3.69), and the additional force integrals that contribute to higher order 

corrections like (3.71). The former integrals match exactly. Corrections arising from 

the latter integrals are algebraically small within the SSL, but become exponentially 

small in the ISL/SSL matching region . Note that all contributions to additional 

distributed forces contain the factor k . Then in the matching region defined by (3.66) 

the typical force integral becomes 

(3 .81) 

which is exponentially small. Hence the only O( En) SSL corrections that remam 

o (En) in the matching region are contributions to the constant turbulent stress and 

are matched by the ISL's Tw as given by (3.78). 

Jackson & Hunt (1975), in their analysis of flow over a low hill, did not subdivide 

their inner region, but instead used solutions like those of the SSL here all the way 

down to the ground. Consider applying the ground boundary condition u(zo) = 0 to 

the SSL solution. At 0(1), (3.46) gives 

(3.82) 

Ao, Bo, Po and U/ are by definition 0(1), but J(o( -iZo) '" In l/ Zo = O( Cl). Hence Bo 

must be zero . Since Ao and Po are not free to be determined by (3.82) with Bo = 0, it 

follows that the leading order SSL solution call1lot satisfy uo(zo ) = o. Hence the need 

for an inner surface layer very close to the ground. 

Put more formally, the SSL solution cannot satisfy the ground boundary condition 

because the ground at z = Zo lies far below the region where the definition of the SSL, 

z /l = 0(1) , is reasonable. In the SSL, functions of the 0(1) layer coordinates ( and Z 

ought themselves to be 0(1) ; but as z ~ Zo we have ( = z /l = O( exp( -UL/ E)) ~ 0(1) 

and consequently J(o( -iZ) = O( Cl) ~ 0(1). 

Therefore, as first recognised by Sykes (1980) and later developed by Hunt et al. 

(1988a), correct treatment of the ground boundary condition is impossible without an 

ISL analysis. 
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3.5.5 SSL shear stress and vertical velocity perturbations 

The scaling of shear stress means that nth order streamwise velocity perturbations 

are associated via the turbulence closure model (3.31) with (n-1)th order shear stress 

perturbations. Thus the shear stress perturbation 7 is expanded as 

(3.83) 

By differentiation of (3.45) (with Bo = 0) and (3.70), the shear stress profiles associ­

ated with U o and uicf) are 

(3.85) 

The corresponding vertical velocity perturbations are conveniently calculated by using 

continuity to rewrite the streamwise momentum equations as 

-iklpo - If, 

o. 

Hence by integration, 

ikpo(z - zo) + ( Z f(z') dz' - EK;2{L1 + AoZoh(Zo)}, Jzo 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

At the top of the inner region, where the shear stresses 7-1 and 7Jcf) decay exponen­

tially, equation (3.88) shows that there is no first order contribution to the vertical 

velocity from Reynolds stress effects. This means that although turbulent stress ef­

fects are important at leading order within the SS1, they make no contribution to the 

leading order match with the outer region. The terms in (3.88) which do contribute to 

a vertical velocity at the top of the inner region represent purely inviscid behaviour. 

At second order Reynolds stress effects produce a perturbation vertical velocity whose 

limiting value is 

(3.90) 
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3.5 .6 D iscussion of the inner region solut ions 

The leading order solutions {uo , Ll, wd represent a largely inviscid response to the 

applied distributed force. Leading order Reynolds stresses are significant within the 

SSL but not at its lower or upper boundaries. The streamwise perturbation velocity 

U o tends to a constant non-zero value as zjl ----7 0, hence the leading order solution 

alone does not match with the ISL . 

At O(f) there are three first order corrections, labelled (cf), (U) and (w). The 

(cf) correction behaves logarithmically as zjl ----7 0, giving a ground shear stress and 

combining with the leading order solution to match with the ISL. At leading order, 

therefore, the sum uo+fUicf
) is a uniformly valid approximation for the complete inner 

region. 

The (U) and (w) corrections are conveniently represented as perturbations result­

ing from additional distributed forces . They arise respectively from approximating 

the incident velocity U( z) as a constant, U(z ) ~ U/, and from neg~ect of the O( f) 

incident velocity shear dU j dz, and are calculated as the results of additional force 

distributions :fiU
) == fiku o In ( and ffi w

) == f2WI/ z. 

Further evaluation of the general expressions (3.71) and (3.72), for the flow per­

turbations due to fiU
) and fi w

) , is not attempted here since (i) the results would not 

be very illuminating and (ii) a practical implementation of this analysis can compute 

these expressions using the leading order results already presented (but for additional 

O(f) force distributions). It will be necessary, however, to consider all the O(f) cor­

rections at the top of the inner region when matching with the outer region. 

3.5.7 Analysis of the outer region 

Take the curl of (3.28)- (3.30) and neglect the turbulent stress gradients, to obtain the 

governing equations for the outer region, 

( UII) 
w"- e + U w 

ikUu + wU' + 'ikp 

f ' 
u' 
-f, 

(3.91) 

(3.92) 
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ikUw + p' 

iku + w' 

0, 

o. 

81 

(3.93) 

(3.94) 

Equations (3.92)- (3.94) may be used to calculate the perturbation pTessure and stTe­

amwise velocity once (3.91) has been solved fOT the vertical velocity w. FOT a loga­

Tithmic boundary layeT, the incident sheaT teTm in (3.91) may be written 

U"w -EW 

U- z2U' 

, so it is appTopriate to solve (3.91) by writing W as an asymptotic seTies in E: 

2 W = Wo + EWl + E W2 + ... 

Substitute (3 .96) into (3.91) and group teTms of similar order, then 

and so on. The general solution to (3.97) is 

_ C -kz kz r f( z') coshk(z - z') d ' 
Wo - oe + Doe + J

zo 
U(z') z, 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

where the lower limit of the integral has been chosen for later convenience. Then by 

continuity the leading order stTeamwise velocity is 

_ - 'C -kz 'D kz iL ,r f(z') sinh k(z - z') d ' 
u o - 2 oe + 2 oe + kU + 2 Jz

o 
U(z') z, (3.100) 

and the leading order pressure is 

- if _ U - ·UC -kz _ 'UD kz _ ·u r f( z')sinhk( z - z') d ' 
Po - k U o - 1, oe t oe 2 Jz

o 
U(z') z . (3.1 01 ) 

The constant Do is determined by applying the upper boundaTY condition that Wo 

must be bounded as kz ~ 00. This means that the terms in exp(kz) must cancel each 

other above the force distribution, hence 

1100 f(z') exp( -kz') ,_ 
Do + - U( ') dz - O. 

2 Zo z 
(3.102) 
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It remains to determine the other constant Co and the inner region pressure Po by 

matching (3.99)-(3.101) with the corresponding SSL solutions. 

At first order, (3.98) shows that the O(E) vertical velocity correction can be rep­

resented as the result of a secondary force distribution Eh defined by 

(3 .103) 

This correction is similar to the (w) correction in the inner region. 

3.5.8 Matching the inner and outer regions 

The detailed matching of the inner and outer regions is analysed by focusing on the 

vertical velocity perturbation w. Matching is a two-part process. The complementary 

functions of the inner and outer solutions contain constants of integration that remain 

to be determined by matching and by applying boundary conditions. The particular 

integrals, on the other hand, are already fully specified. The matching J?rocess includes 

checking that the particular integrals are mutually consistent , which provides a useful 

check on the individual layer analyses. 

The shear stress layer is defined by z /l = 0(1), so kz = O(E) in the SSL, while 

in the outer region kz = 0(1). Therefore an 0(1) matching coordinate, X, for the 

overlap region between the SSL and the outer region is defined by 

whei'e O :S: a :s: 1. (3.104) 

Hence the outer region coordinate Icz is small in the overlap region where X = 0(1). 

The SSL Bessel function coordinate Z in the overlap region is 

Z - exp(3i1f /4) J2 U1kz _ exp(3i1f /4) ~U a / 2-1 
- - VL.UIXE, 

~ E ~ 
(3.105) 

which is large. 

Consider the behaviour of the SSL vertical velocities (3.88) and (3.89) in the 

overlap region. For large IZI , J(o( -iZ) and J(l( - iZ) tend exponentially to zero while 

Jo ( Z) and h (Z) become exponentially large . Thus rJcf) is negligible. Ll is also 
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negligible if the matching region lies above the top of the force distribution, since the 

h(Z) terms in (3.84) cancel each other (this condition determines Ao). 

If the matching region does contain any distributed force, T -1 can be rewritten: 

L1 = iZh(Z) J OO Z'f( z')Ko(-iZ' )dZ'+ ZK1(-iZ) jZ Z'f( z')Jo(Z')dZ'. (3.106) 
kU/ Z kU/ Zo 

As discussed in §3.4, the present analysis applies to slowly varying force distributions 

fOT which any strong force gradients of /oz lie well within the inner region. Hence 

f( z ) does not vary rapidly in the matching region. Then the exponential behaviour 

of the Bessel functions in (3 .106) means that the two integrals derive mainly from 

contributions very close to Z' = Z, and L1 can be evaluated approximately in the 

matching region by moving f( z) outside the integrals. Hence (3.106) becomes 

(3.107) 

which is exponentially small. Hence T -1 is also negligible in the matchin~ region even 

if the fOTce distribution extends above the inner region. 

Thus the vertical velocity that matches at O(E) and 0(E2) with the outer region is 

2 (cf) '" ikpo(z - zo ) l Z f( z') d' iE2K,2 B1ZoK 1( -iZo) 
EW1 + E W 2 '" U + -U z + U . 

/ Zo / / 

(3.108) 

Similar arguments applied to U o and uicf) show that the SSL streamwise perturbation 

velocity for matching with the outer region is 

if Po 
U o ~ kU/ - U/' (3.109) 

which could equally have been obtained from (3.108) by continuity. 

The inner/outer region matching is enhanced by consideration of the various O(E) 

corrections to the inner and outer region solutions. In the outer region, the O( E) 

correction due ,to neglect of incident velocity shear is represented as the result of an 

secondary force distribution given by (3.103). Noting the exponential behaviour of 

Wo, partial integration of (3.103) gives 

it = Wo {1 + O(kz )} ; 
z 

(3 .110) 

.L 
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hence as kz -+ 0 the first order correction in the outer region matches with the (w) 

correction in the inner region. Therefore it is convenient to leave (3.110) and the 

inner region (w) correction to one side. Practical implementations of this analysis can 

calculate these corrections for the whole flow domain as the result of a uniformly valid 

additional force distribution defined by (3.103). 

The inner region (cf) correction has already been shown to be negligible in the 

matching region. The inner region (U) correction is not negligible and has no coun­

terpart in the outer region because it is not necessary to approximate U(z) to obtain 

the outer region solutions . Therefore we calculate the effect of the (U) correction 

on the inner region solutions within the matching region. It is easiest to consider 

the streamwise velocity perturbation. Equation (3.109) shows that in the matching 

region , 
(U) _ if~U) p~U) _ -Uo In(z/l) p~U) 

UI - -- - - - - -, (3.111) 
k~ ~ ~ ~ 

where the pressure perturbation p~U) is associated with the additional force f~U) in the 

same way as Po arises from the imposed force distribution f. Therefore the corrected 

SSL solution in the matching region is 

( / ) 
(U) (U) 

U
O 

(1 _ Eln z l ) _ :EL = UoUt _ EPI + 0(E2) 

Ut Ut U( z ) Ut 
if Po 
kU - U + O( E), (3.112) 

i. e. the effect of incorporating the (U) correction is to replace occurences of Ut by U (z ). 

This might have been anticipated simply because U(z) varies much more slowly than 

the perturbation velocities U and w. Correcting the vertical velocity perturbations in 

a similar way (noting that dU/dz = O(E)), we obtain 

2 (cf) 2 (U) ikpo(z - zo ) ( Z f( z') d' iE
2

",2 BIZoJ(l( -iZo) 
EWI + E W 2 , + E W 2 ::::; U + Jzo U(z') z + U . (3.113) 

These solutions can now be matched with those in the outer region, each incorporating 

the same approximations and corrections . 

The form of the outer region solutions III the matching region IS obtained by 
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substituting the 0(1) coordinate X into (3.99)- (3.101): 

p~OR) . 

i(Do - Co) + ifCY. (Co + Do)x + ~~ + 0(f2CY. ), 

Co + Do + fCY.(Do - Co)X + 1: ~~~,~ dz' + O( f2CY.) , 

iU(Co - Do) - ifCY.(Co + Do)x + 0(f2CY. ). 
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(3.114) 

(3.115) 

(3.116) 

Comparison of (3.112) and (3.114), or of (3.113) and (3.115), shows that the partic­

ular force integrals already match at leading order. Then matching complementary 

. functions in the inner and outer region solutions for perturbation velocities gives the 

following relations between c o, Do and the inner region pressure Po: 

if2 K,2 El ZoJ( 1 ( -iZo) 

UCY. 
(3.117) 

(3.118) 

Here U CY. is the characteristic velocity of the matching region. Together with the upper 

boundary condition (3.102), these relations determine all the remaining unknowns. We 

note that the O(fCY. ) linear term in (3.115) matches exactly the linear pressure term 

of the SSL sohltion (3.113), which in practice considerably improves the inner/outer 

region matching. 

3.5.9 A uniformly valid approximation 

The matching process shows that the constant and linear terms of the SSL vertical 

velocity match the first two terms of the Maclaurin expansion of the outer region's 

Co exp( -kz) + Do exp(kz) for small kz . This suggests that a uniformly valid approxi­

mation may be formed by replacing the constant and linear terms of the SSL solution 

by Co exp( -kz ) + Do exp(kz) while retaining the other SSL t erms that are important 

in the inner region but decay exponentially in the outer region: 

(UVA) ~ C -kz D kz 1z J( z') coshk( z - z') d ,f2
K,2 r (UVA) 

w .- oe + oe + U ( ') z - U ' 
Zo 9 Z I 

(3.119) 

where r(UVA) = elLl + rJcf). The "blend velocity" Ug( z ) is defined such that 

Ug( z ) ----7 U, for z ~ 1 and Ug( z ) ----7 U( z ) for z ~ I; then the force integral in 

• 



Analytical models for turbulent canopy flows 86 

(3.119) is a uniformly valid approximation to both inner and outer region particular 

integrals. A un.iformly valid streamwise velocity perturbation may be obtained from 

(3.119) by continuity. 

This approximation includes the leading order solution and all O( f) corrections 

except that due to effects of incident velocity shear. Physically this correction accounts 

for the vertical displacement of upstream vorticity by w(UVA). It may be calculated 

as the leading order response to an extra distributed force ff~w) == fW(UVA) / z . 

3.6 Analysis of rapidly varying force distributions 

In this second part of the SML analysis there is a strong force gradient outside the 

inner region, which was excluded from the analysis of §3.5 for the reasons discussed 

in §3.4. 

3.6.1 A modified flow structure 

If used incorrectly for a force distribution that is discontinuous in the outer region, 

the analysis of §3 .5 gives a corresponding discontinuity in the streamwise perturbation 

velocity. In a real flow this is not permissible. What happens in practice is that regions 

of rapid variation locally create turbulent stresses that are dynamically important and 

must be included in the calculation, even though the flow outside these regions of 

rapid variation may behave inviscidly. Consequently the flow structure described in 

§3.3 must be modified to include new turbulent stress layers around any height where 

strong force gradients occur outside the inner region. Such a modified flow structure 

is illustrated in figure 3.2 for the case where just one new layer is required around the 

height h. In order to establish the precise effects of this new flow structure, it suffices 

to consider the canonical force distribution 

f 

f 

1, 

0, 

Zo ~ z ~ h, 

z> h. (3.120) 
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Upper Layer 

z = O(h) 

Figure 3.2: Modified flow structure for large wavenumbers such that l ~ h. 

Much of the detailed analysis of the perturbations induced by this force distribution 

is similar to that of §3.5 and so will not be repeated unnecessarily. In the following 

subsections we concentrate on the differences from the analysis for slowly .varying force 

dis tri bu tions. 

3.6.2 The inner surface and shear stress layers 

The ISL and SSL analyses proceed as in §§3.5.3- 3.5.6, but now the force is constant 

throughout these layers; hence uniformly valid solutions for the inner region are 

EElJ(o( -iZ) - ~ + k~t {I + Zoh(Zo)IC( -iZ)} , (3.121) 

(ikpo + l)(z - zo) E2K;2( r Jcf) - iElZoJ(l( -iZo)) 

Ut Ut 

where 

El and Po are 'related by the ISL/SSL matching condition (3.74) with 

(3.122) 
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Thus as z /l -7 00, the velocity perturbations that must match with the layer above, 

including the EAU) corrections as in §3.5.8 , are 

U + EU(U) 
o 1 (3.123) 

(3.124) 

3.6.3 The inviscid middle layer 

Governing equations for the inviscid middle layer (IML) are the same as those used 

for the outer region analysis of §3.5. 7. For a constant force , the general solutions are 

C 
- kz D kz rz cosh k( z - Zl) d 1 

oe + oe + Jz
o 

U(ZI) Z , (3.125) 

·C -kz ,'D kz i . rz sinh k( z - Zl) d 1 

-z oe + z oe + kU + Z Jz
o 

U( Z') z, (3.126) 

Po = Z . -kz ' kz' SIn z - z 1 . lZ . h k( ') 
k - UUo = zUCoe - zU Doe - zU ZO U(Z') dz . (3.127) 

Matching between the SSL and the IML proceeds exactly as between the inner and 

outer regions in §3.5.8, the only difference being that Do is not yet determined. Hence 
-, 

the two matching conditions (3.117) and (3.118) link Po, Co and Do as in §3 .5. A 

third relation will follow from matching with the roof top layer around z ~ h. To find 

the IML perturbations that match with the roof top layer , the appropriate limiting 

process is k(h - z ) -7 O. Therefore we substitute kz = kh - EC<'ljJ, where 0 :::; a :::; 1 and 

'ljJ = 0(1) , into (3.125)- (3.127) and obtain 

Po 

Coe- kh + Doekh + EC<'ljJ (Coe- kh _ Doekh ) _ EC«~ ~t 'ljJo) + 0(f2c< ), 

_z __ iC e- kh + iD ekh + O(EC< ) 
kUh 0 0 , 

z U ·U C -kh ·u D kh O( C< ) k - hUo = z h oe - z h oe + E • 

3.6.4 The roof top layer 

(3.128) 

(3 .129) 

(3.130) 

The roof top layer (RL) requires new consideration. The effect of a discontinuity in f 

at z = h is that the mean flow changes rapidly near z = h and so turbulent stresses 

2 
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become important in a region of the flow where they would otherwise be negligible. 

Mathematically, the shear stress gradient aT I OZ ~ f).T I f).z is large because the vertical 

length scale f). z over which the shear stress changes is smaller than it would otherwise 

be at a height h above the ground. Thus the roof top layer is constructed by defining a 

new vertical coordinate relative to h and acknowledging that strong perturbation stress 

and velocity gradients may exist over distances that are 0(1) in the new coordinate. 

To deduce the scaling of the new vertical coordinate (h and the thickness of the 

roof top layer, write 

(3.131) 

(3 .132) 

These definitions are substituted into the streamwise momentum equation (3.32) , 

which then becomes 

where the prime indicates differentiation with respect to (h. Of the two stress terms 

on the right hand side of (3 .133), the first is larger and is of similar order to the 

advection term when khEl - 2(3 = 0(1). Hence the vertical thickness i7' of the roof top 

layer is 

(3.134) 

At leading order the pressure across the RL is a constant, Ph, Slllce kiT = O( E(3). 

(Although it is not necessarily the same as the constant leading order pressure in 

the SSL, because pressure may vary dramatically across the inviscid middle layer.) 

Equation (3.133) shows that the vertical velocity term Ewlh is negligible as in the 

SSL but for a different reason. In the SSL the incident velocity shear El z may be 

large, but proximity to the ground means that w itself is small. In the RL w may 

be significant, in fact we know that u and ware of similar order in the inviscid layer 

below, but the incident velocity shear El h is very small. Thus the leading order form 

of (3.133) is identical to that of the SSL governing equation, except that the reference 

I 
11 
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velocity and pressure are different. At leading order the general solution is 

. ( ) Ph hzJ(o -iY --
Uh 

. Y 
+_2_ f Y' J(z') {Jo(Y)J(o( - 'iY') - Jo(Y')IC( -iY)} dY'. 

kUh jy" 

The new coordinate Y is defined by 

90 

(3.135) 

(3.136) 

.here Y is used rather than Z to emphasise that the velocity scale in the definition is 

Uh rather than Ut . A possible term in Jo(Y) has been omitted from (3.135) because 

the particular integral has been written so as to vanish for z > h. Below z = h (3.135) 

becomes 

hzJ(o( -iY) - Ph (3.137) 
Uh 

+ k;h {i - ¥,J(l( -iYh) Jo(Y) + i¥"h(¥,,)J(o( -iY)} , z < h. 

The Bessel function coordinate Y is very large in the RL, since hi l ~ 1. It follows 

that the Bessel functions around z ~ h are either growing or decaying exponentially. 

Moving downwards from z = h, the terms in J(o( -iY) grow exponentially. Since 

there is no similar exponential behaviour for these terms to match in the IML, their 

coefficients must cancel each other: 

(3.138) 

Thus the RL solution for z < h reduces to 

(3.139) 

while that for z > h is 

(3 .140) 

In (3.139), the Bessel function term decays exponentially like exp(.JZ - Yh) as the 

RL coordinate (h --+ -00 for matching with the IML. Then matching the IML and 
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RL streamwise velocities proceeds as in earlier examples, to give the roof top pressure 

Ph as 

·U (C -kh D kh) Ph = Z h oe - oe . (3.141) 

The change in vertical velocity w across the RL due to the shear stress correction 

terms is 

~W(RL) 

(3 .142) 

which is exponentially small on several counts . Therefore the limiting values of vertical 

perturbation velocity above and below the RL are equal. Hence the streamwise and 

vertical velocities above the RL are 

-PhjUh , 

C -kh D kh oe + oe . 

These must match the upper layer solution given by 

g e-kz 
1 , 

Hence the final matching conditions are 

C -kh D kh oe + oe , 

.......... ·(C -kh D kh) jU 
-7 Z oe + oe = Ph h· 

(3.141) and (3.149) together imply that Do = 0 and that 

jU ·C -kh -kh j U Ph h ="/, oe = e Po 0'. 

(3.143) 

(3.144) 

(3.145) 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

(3.150) 
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3.6.5 Comparison with a naive small k solution 

By a "naive" solution we mean one which is obtained if we ignore the difficulties that 

motivated tllis large wavenumber analysis and blindly apply the small wavenumber 

solution of §3.5 to the current canonical force distribution. Substituting the canonical 

force distribution (3 .120) into the unifonnly valid small wavenumber solution (3 .119), 

we obtain for z < h 

(3.151) 

and for z > h 

(3.152) 

The streamwise perturbation velocity is obtained by continuity. For z < h 

'c -kz 'D kz r isinhk(z - Z l) d 1 i 
-z oe + z oe + Jzo Ug(ZI) Z + kUg( z ) 

Jo(Z)Z,J(l( -iZ,,) B T. ( 'Z) 
- kUt + f 1 1(0 -z , (3.153) 

and for z > h 

'c -kz 'D kz 1" i sinh k( z - Z l) d 1 
-z oe + z oe + U ( ') z 

Zo 9 Z 

_ iKo( -iZ)Zhh(Zh) B T.( (- 'Z) 
kUt + f 11' 0 Z . (3.154) 

(3.153) and (3.154) show that the naive solution for u(UVA) is discontinuous at z = h 

because the jump in the inviscid response terms, i/(kUg(h)), is not cancelled exactly 

by the jump in the stress gradient terms, -i/(kUt). These terms do cancel each other 

under the conditions of the small wavenumber analysis, because then h lies well within 

the inner region and so Ug(h) = Ut, given the definition of Ug( z ) in §3.5 .9; in the large 

wavenumber case, however, we have h ~ I and Ug(h) > Ut . 



• 
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Let us compare (3 .151)- (3 .154) with the solutions obtained for the five layers of 

the large wave.number analysis in §§3.6.2- 3.6.4 . The IML solution for leading order 

pressure (3.127) shows that the first three terms of (3.153) are -p(z)/U(z), local 

pressure divided by incident velocity. This tends at the bottom of the IML to -Po/Ut, 

where Po is the constant SSL pressure . In the SSL, therefore, noting that Ug(z) :::::: Ut 

and that Jo(Z)J(l( -iZh) is exponentially small because z ~ h, (3.153) becomes 

identical to the large k SSL solution (3 .121). ' In the IML, Jo( Z)J(l( -iZh) is still 

exponentially small because z ~ h, but now J(o( -iZ) is also small because z ~ l. 

Hence all the turbulent stress terms of (3.153) become negligible and the surviving 

inviscid response terms are plainly identical to the large k IML solution (3.126). 

In the z < h half of the RL, z is now close enough to h for Jo( Z)J(l(- 'iZh) to 

become important , while J(o( -iZ) remains negligible. The first three terms of (3.153) 

now give -Ph/Uh , where Ph and Uh are the constant pressure and incident velocity 

for the roof top layer. Therefore the naive solution (3.153) has exactly ~he same form 

as the large k RL solution (3.139), except that the large k RL solution uses the local 

value of incident velocity, Uh, while the naive solution uses the value Ut from far below 

at z :::::: l. This applies both to explicit appearances of Ut or Uh in the solutions and 

to the use of Ut or Uh in the definition of the Bessel function coordinates Z and Y. 

Exactly the same is true in the z > h half of the RL: the naive solution and the large k 

solution (3 .140) have identical forms but use different values for the incident velocity. 

3.6.6 A uniform approximation for all wavenumbers 

This detailed comparison shows that we can in fact obtain a uniformly valid approxi­

mation for all wavenumbers by means of a simple modification to the small wavenum­

ber solutions (3.151)- (3.154): the SSL incident velocity Ut is replaced wherever it 

occurs by the blend velocity Ug(z). The definition of Bessel function coordinate Z 

becomes 

(3.155) 
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and explicit occtirrences of Ut are also replaced by Ug( z ). When, as m the small 

wavenumber analysis, turbulent stresses are important only within the inner region, 

this replacement has no effect, since Ug(z) ;::::: Ut- in the inner region. When turbu­

lent stresses become important outside the inner region, for example if there is a 

strong force gradient around Z = h ~ l, the replacement modifies the small wavenum­

bel' solutions such that they become identical to the detailed solutions from a large 

wavenumber analysis . 

Two characteristics of this simple modification should be noted. Firstly, its effect 

is similar to the effect in §3.5.8 of incorporating the (U) correction into the original 

SSL solutions. The replacement of a fixed characteristic velocity Ut by a varying 

velocity Ug(z) might be justified in general terms by arguing that the perturbations 

in the SSL vary much more quickly than the incident velocity profile U( z ) and hence 

that any errors introduced by the replacement will be small. This explains why the 

(U) correction, which allows for the incident velocity profile being U (z) rather than 

Ut, takes the form it does. The same argument is implicit in the IML' solution, since 

U(z) does not require approximation there. 

Secondly, the modification makes no direct reference to the height h whence the 

problems arise. This is a very important feature. It justifies our use of the canonical 

force distribution (3.120) and shows that the same modification applies equally well to 

force distributions which may include strong force gradients at a number of different 

heights. 

3.7 Sample results 

To illustrate the analysis we present small and large wavenumber responses to a dis­

tributed force whose drag coefficient is constant up to the height h* = 60mm and 

then vanishes; consequently the force in z~ ::; z* ::; h* varies as the square of incident 

velocity. The incident velocity is logarithmic with friction velocity u* = 0.64ms-1 and 

roughness height z~ = O.4mm. For a single wavenumber k, real and imaginary parts 

of the results .for a given quantity rP show the progression of that quantity in passing 
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through a sinusoidally varying force distribution with wavenumber k: Re{ <p} is the 

actual profile at points where the resistance is a maximum and Im {<p} is the actual 

profile at points where the resistance is zero and increasing; see figure 3.3. 

resista.nce 

Re <l> -Im <l> -Re <l> Im <l> 
I I I I 

I I I 
I I I 

f l Y 

< -=: 
x 

:> xo :> 

Figure 3.3: Real and imaginary parts of a solution represent the actual profile at 

different stages of passage through a sinusoidally varying resistance. The general 

profile at streamwise location x is Re{ <p} cos k( x - x o ) - Im {<p} sin k( x - xo ), where Xo 

is a location of maximum resistance. 

3.7.1 Matching between the inner and outer regions 

Figures 3.4 and 3.5 illustrate small and large wavenumber matching respectively. Each 

figure shows real and imaginary parts of the vertical velocity w as given by the inner 

region solution (3.88, 3.89), the outer region solution (3.99) and the uniformly valid 

approximation (3.119). In figure 3.4 1* = O.65m so that [* ~ h* and significant force 

gradients are contained within the inner region. In figure 3.5 1* = O.035m so that 

1* ~ h*: the roof top layer around h* is noticeable as a region where the gradient of w 

varies rapidly .. In both cases matching between inner and outer regions is good, such 

that the uniformly valid approximation asymptotes correctly to the inner and outer 

region solutions for z ~ I and z ~ I and makes a smooth transition between them for 

z = O(l). 
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Figure 3.4: illustration of inner/outer region matching at small wavenumbers, showing 

real (to the l'ight) and imaginary (to the left) parts of the vertical velocity perturbation 

w . Single dashed lines show the inner region solution; double dashed lines show the 

outer region solution; solid lines show the uniformly valid approximation. 
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Figure 3.5: illustration of inner/outer region matching at large wavenumbers , showing 

real (to the right) and imaginary (to the left) parts of the vertical velocity perturbation 

w. Single dashed lines show the inner region solution; double dashed lines show the 

outer region solution; solid lines show the uniformly valid approximation. 
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3.7.2 Small and large wavenumber responses 

Figures 3.6- 3.9' show the uniformly valid perturbation velocities, pressure and tur­

bulent shear stress that comprise the response to a slowly varying force distribution. 

Dashed lines show the effect of including the O( E) incident velocity shear correc­

tion. Notice how the spread of streamwise velocity defect increases as the flow moves 

downstream from the location of maximum resistance (profile = Re u) to that of zero 

resistance (profile = - Im u), showing the diffusive effects of turbulent stress. Corre-

. spondingly, - Im T shows a constant stress layer above z* = h* which is not evident 

in the Re T profile further upstream. 

Figures 3.10- 3.13 present similar results for a rapidly varying force distribution. 

Here the flow is quasi-inviscid , except for turbulent stress effects which meet the no­

slip condition at the ground and smooth out sharp gradients in the roof top layer. 

Hence the streamwise velocity is largely confined to z~ :s: z* :s: h*, turbulent stress is 

small except near the ground and near z* = h*, and the pressure pro~le is like that 

associated with outflow from a source. 

The effect of the incident velocity shear correction is generally to increase the 

magnitude of the streamwise velocity perturbations. In z* < h* the deceleration due 

to resistance is increased by this correction, while in z* > h* at large wavenumbers 

the acceleration over the top of the distribution is increased. Similarly, in turbulent 

flow over a low hill the incident shear correction increases the speed-up over the crest 

of the hill . 
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Figure 3.6: Perturbation streamwise velocity at small wavenumbers: real part to the 

left , imaginary part to the right. Dashed lines show the effect of including the incident 

velocity shear correction. 
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Figure 3.7:, Perturbation vertical velocity at small wavenumbers: real part to the 

right , imaginary part to the left. Dashed lines show the effect of including the incident 

velocity shear correction. 
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Figure 3.8: , Perturbation pressure at small wavenumbers: real part to the left, imagi­

nary part to the right. Dashed lines show the effect of including the incident velocity 

shear correction. 
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Figure 3.9:, Perturbation shear stress at small wavenumbers: real part to the right, 

imaginary part to the left. Dashed lines show the effect cif including the incident 

velocity shear correction. 
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Figure 3.12: ~erturbation pressure at large wavenumbers: real part to the left, imag­

inary part to the right. Dashed lines show the effect of including the incident velocity 

shear correction. 
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Figure 3.13: .Perturbation shear stress at large wavenumbers: real part to the right, 

imaginary part to the left. Dashed lines show the effect of including the incident 

velocity shear correction. 
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3.8 The displaced mixing length turbulence model 

According to the discussion of §3.1, the SML turbulence model becomes invalid if mean 

flow changes are strong enough to change the structure of the turbulence from that in 

the incident flow . In this section a new turbulence model is developed that takes into 

account such strong effects of mean flow changes on the turbulence. This "displaced" 

mixing length model is then used in a new analysis of the flow field perturbations due 

to a region of distributed resistance. 

3.8.1 Effects of a roof top shear layer 

When the buildings in a group have approximately equal heights, the force distribution 

used to model them has a well-defined, coherent "roof top," where the distributed force 

decreases rapidly from its maximum value to zero . 

The inviscid response to such a force distribution (chapter 2) includes a strong 

shear layer around the roof top height, in which the vertical gradient of sUeamwise ve­

locity increases following the flow in proportion to the local distributed force gradient: 

f} f}u f} f 
-- ex - . 
f}x f} z f}z 

(3.156) 

In the limit in which the distributed force is discontinuous at the roof top height, the 

inviscid response streamwise velocity is discontinuous also. According to the model 

of §§3 .5-3 .6 , the roof top shear layer's strength is reduced in the turbulent flow by the 

mixing action of turbulent shear stresses, but the shear layer is still strong enough to 

dominate flow around the roof top height. 

Such strong shear layers can have a significant effect upon the turbulence above 

and below them. Two quite different mechanisms both suggest that a strong shear 

layer acts to block turbulent motions across it. Firstly there is the dissipation mecha-

nism described by Hunt et al. (1988b) and Belcher et al. (1991a, 1991 b) and illustrated 

schematically in figure 3.14. Turbulent eddies that enter the shear layer are stretched 

out by the shear flow to an elongated shape. Hence vertical velocity gradients are 

amplified and turbulent dissipation increases . The shear flow inhibits motion of tur-
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------------ ------------0-------------~----- -- -- - - --- - -- ------ f---- --- -o ~ Shear Layer 
---- - ----------------- ------ - -- - -- - ------- - ----------------- ~ ------- -

Figme 3.14: The effect of a strong shear layer in increasing tmbulent dissipation. 

bulent eddies across the shear layer and leads to weak correlation between the flows 

above and below the shear layer. The increased tmbulent dissipation within the shear 

layer can be modelled as a reduction in the tmbulent mixing/ dissipation length scale; 

hence the above authors' shear-dependent mixing length model, 

(3.157) 

known as the Shear Blocking Mixing Length model. 

Secondly, recent studies by Craik (1991) and Hunt (unpublished) investigate a 

pmely inviscid effect of strong shear layers, illustrated schematically in figme 3.15. 

Inviscid analysis of a travelling linear distmbance above a vortex sheet shows that 

there is no induced distmbance below the vortex sheet if the phase speed of the 

distmbance equals the advection velocity U. Extrapolation of this result to the case of 

tmbulent eddies advected by the mean flow above a strong shear layer again suggests 

that a shear layer acts to block tmbulent motions across it and hence provides a 

reference level for the turbulence above and below. 

The effects of these blocking mechanisms will now be investigated in the context 

of flow through a group of buildings. 
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Figure 3.15: The effect of a travelling linear disturbance above a vortex sheet. 

3.8.2 The shear layer produced by a group of buildings 

109 

There is good reason to suspect that the distributed force model actually underesti­

mates the strength of the roof top shear layer. To obtain a physical pi.cture of how 

shear layers are created, it is useful to step back from the distributed resistan ce model 

and consider explicitly a group of obstacles in a turbulent boundary layer (figure 3.16) . 

Vorticity created along an obstacle's upper surface is shed from the tI'ailing edge of 

that surface to form a thin shear layer (cf. the experiments on single surface-mounted 

obstacles by Castro & Robins 1977). This vorticity is advected downstream towards 

the next obstacle and also diffuses vertically, ,so that the shear layer spreads . The 

shear layer spreads more down towards the ground than upwards because average 

wind speeds between the obstacles are much lower than those just above them, and 

because the shed vortices are deflect ed downwards by their own induced velocity field. 

Immediately above each building's roof, tmbulent eddies are blocked by the roof sur­

face and so the length scale of the turbulence should scale on height above the roof. 

Hence turbulent mixing here is much less vigorous than that in the SML model used 

in §§3 .2- 3.7 and the roof top surface shear layers are much more concentrated in reality 

than in the model. Therefore the rooftop shear layer as a whole, comprising boundary 

layers on building roofs and free shear layers between buildings, is likely to be rather 
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Figure 3.16: The spreading of shear layers shed from obstacle roofs. The dotted lines 

indicate the approximate extent of the spreading shear layer; the dashed line shows 

its horizontally averaged mean height. 

stronger than that in the SML distributed force analysis. 

Clearly a new turbulence model is required to take account of the effects of a 

concentrated roof top shear layer. The new formulation is an attempt to account for 

some of the single obstacle-scale influences on the flow, particularly in the vicinity of 

the roof top, that were lost during the horizontal averaging operation. 

3.8.3 The displaced mixing length model 

The proposed new model is illustrated schematically in figure 3.17. The principal 

effect of a concentrated shear layer is to inhibit turbulent motions across it: the 

turbulent length scale within the shear layer is reduced and turbulent eddies above 

the shear layer appear to be blocked as though by a solid surface at a reference height 

within or just bEllow the shear layer. This behaviour can be modelled by defining a 

displacemen,t height d and a roughness height z~ for the turbulent mixing within and 

above the shear layer. The displacement height d is the reference level with respect 

to which eddies above the shear layer appear to be blocked. The roughness height 

z~ parameterises the turbulent mixing and dissipation within the shear layer: n,z~ is 
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Figure 3.17: Flow structure for the displaced mixing length model. 
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the minimum value of the turbulent length scale there. Note, follo~ing Panofsky & 

Dutton (1984, chapter 6), how the roughness height is primarily a dynamical measure 

of turbulent ~ixing, not a geometrical measure of roughness elements on a surface, 

and so may be used to parameterise turbulent mixing at any interface whether or not 

roughness elements are present. 

In the "canopy mixing region" below Z = Z a new model is used. The field and 

wind tunnel experiments of Davidson et al. (1995a,b), on flow through an array of 

cubical obstacles, showed that the turbulence length scale within the obstacle canopy 

was much smaller than that in the incident flow. This suggests that the turbulence 

between obstacles is dominated by high intensity small scale turbulence generated by 

vortices shed from individual obstacles. In many canopies, where horizontal obstacle 

dimensions are smaller than obstacle heights, the resultant turbulent mixing wm be 

(i) on a smaller length scale than the blocking length scale K, Z and (ii) uniform over 

most of the depth of the canopy (assuming the horizontal obstacle dimensions are 

approximately constant with height). Thus the turbulence in Zo < Z < z is modelled 

here by a constant eddy viscosity. The laminar viscous analysis of §2.9, which uses a 



Analytical models for turbulent canopy flows 112 

constant eddy viscosity, is therefore appropriate for the canopy region Zo < Z < Z. 

Once general solutions for the upper flow and the canopy mixing region have been 

obtained, they are matched together at z = z by requiring streamwise velocity, vertical 

velocity, pressure and shear stress to be continuous . If the turbulent mixing length is 

discontinuous, as shown in figure 3.17, it follows that the streamwise velocity gradient 

will be discontinuous also. 

3 .8.4 Interpretation of the model parameters 

According to the discussion of §3.8 .2, the new model parameters should be related to 

the geometry of the roof top shear layer. The distortion of turbulent eddies illustrated 

in figure 3.16 suggests that z~ is of the order of the shear layer thickness and that the 

sum z == d + z~ is the mean height of the shear layer. Hence d and z~ are determined 

by the distribution of obstacles within a group, in particular by obstacle density. In 

a dense array with little space for the shear layer to spread between obstacles , d and 

z~ are determined mainly by the boundary layer on the obstacle roofs, i.e. by the 

obstacles' height and the surface roughness of their roofs . Conversely, in a sparse 

array where the shear layer spreads down to the ground between obstacles, d ~ hand 

z~ is determined mainly by the roughness of the ground. 

Note that the roughness height z~ used here to describe turbulent mixing within 

the shear layer is not equivalent to the roughness height Zl that is obtained by fitting 

a logarithmic profile, 

A * ( ) _ u* + ~ u* 1 Z - d1 
U Z - n---, 

K, Zl 
(3.158) 

to the flow above the buildings. The connection between z~ and Zl will be examined in 

chapter 5. The parameter d, on the other hand, can be identified with the displacement 

height d1 in (3.158). The question therefore arises: is the notion of d as some measure 

of a spreading shear layer compatible with other interpretations of the displacement 

height? 

Thorn (1971) observed experimentally that the level do at which the drag on a 

rough surface appears to act coincided, to within experimental error, with the dis-
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placement height d1 obtained by fitting the model profile (3.158) to the flow above 

the surface. That is, he found that 

(3.159) 

where {lo is the streamwise moment per unit area about the surface and To is the 

streamwise force per unit area. J ackson (1981) showed that the idea of a reference level 

or displacement height, at or near a rough surface, is implicit in the usual derivation, 

using dimensional analysis, of the logarithmic profile; otherwise the logarithmic law 

. would not be invariant under a translation of the vertical coordinate system. Following 

Thom's obseTVation, J ackson then proposed (3.159) as a reliable model for predicting 

the displacement height over any rough surface. Neither Thom nor Jackson, however, 

suggested a physical mechanism to explain why the displacement should obey (3.159). 

The strong shear layer mechanism discussed in §§3.8.1- 3.8.2 could be the missing 

link. The shear layer determines d by blocking turbulent motions across it, hence 

providing a reference level for the turbulent eddies above; the reference level then 

appears as a displacement height in the observed velocity profile (3.158). The shear 

layer also characterises the flow field that impinges upon downstream obstacles and 

thus controls the force and moment that act upon the surface. Therefore a relationship 

such as (3.159) between displacement height and forces on the surface is to be expected. 

3.8.5 Velocity profile calculation in z < z 

The canopy mixing region (CMR) flow is calculated using the analysis of §2.9 with 

Re = Uc /(2EK,2 'x), where Uc == U(Z) is the canopy velocity scale and ,x is the constant 

mixing length. From (2.29)- (2.31), the general solution for the perturbation stream­

function 1jJ is expressed in terms of two complementary functions ql(k, z) and q2(k , z ) 

and a Green's function g(1c, z; z'): 

~(k, z ) = slql(k, z ) + s2q2(k, z) + RUe rz ~f (z')g(k, z ; z') dz' , 
c Jzo u Z 

where 

sinh o:( z - zo ) - ~ sinh ,8(z - zo), 
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cosha(z - zo) - cosh,8(z - zo), 
sinh a(z - z') sinh ,8(z - z') 
a( a 2 - ,82) ,8( a 2 - ,82) . 

·and g(k, z; z') 

Recall from §2.9 that ,8 = Ikl and a 2 = k2 + ikRe such that the real part of a is 

non-negative. Then the perturbation velocities, pressure and shear stress are given in 

terms of'IjJ by 

u 

w 

p 

T = 

o'IjJ 
oz' 

-ik'IjJ; 

2EK,2A (~_ k2!...-) 'IjJ _ U o'IjJ _ L . 
ik oz3 'oz c oz 'ik' 

2EA (k2 + ::2) 'IjJ, 

(3.160) 

(3.161) 

(3.162) 

(3.163) 

These profiles depend implicitly on the constants SI and 52 which are to be determined 

by matching with the upper part of the flow . Thus at z = z we have 

which are all linear functions of 51 and 52. 

3.8.6 Velocity profile calculation in z > Z 

The upper flow is analysed using the methods developed for the SML analysis in §§3.5-

3.6. The main differences are that (i) the flow is displaced upwards by a distance z - Zo 

and (ii) the lower boundary condition is u(z) = (u, w) instead of u = O. Here we focus 

on the smaller wavenumber analysis, such that there are no strong force gradients in 

the outer region of the flow . Large wavenumber results may be obtained by following 

the approach of §3.6 with appropriate modifications . 

Asymptotic structure of the upper flow 

The upper limit z / of the rooftop inner region (RIR) is determined, as in §3.3, by the 

balance between time scales for advection by the mean flow and for turbulent eddy 
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adjustment. Taking into account the new reference level d for the turbulent eddies of 

the upper flow, the time scale balance is 

1 z, - d 
kU*( z,) ;::; ----;;- (3.164) 

Therefore the vertical size of the RIR, 1 == z, - d, satisfies 

klln d + 1 = 1. 
zo 

(3.165) 

The small parameter E is defined as in §3.3, namely E == In -1 (H / zo) . It remains true 

that kl = O(E) since d = O(H). The RIR velocity scale is defined by 

d+l 
U, == U (d + 1) = tIn --, 

Zo 

so then the incident velocity profile in the RIR may be expressed as 

z 
U (z) = U, + tIn d + ( 

(3.166) 

(3.167) 

It is not necessary to subdivide the RIR because U(z) is well approXimated by U, 

throughout the region. 

The roof top inner region 

In the upper flow, the turbulent mixing length is A;( z - d). Therefore the turbulent 

stress model becomes 
2(z - d) 8u 

T= . 
E 8z 

Define the RIR coordinate ( == (z - d) / 1; the governing equations are then 

ikl(U, + O(E))U + Ewl/z + iklp 

ikl(U, + O( E))W + pi 

iklu + w' o. 

(3.168) 

(3.169) 

(3 .170) 

(3.171) 

The non-zero vertical velocity at z = z means that the leading order streamwise 

momentum equation differs slightly from (3.38): 

(3 .172) 
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The last term in (3.172) is another manifestation of the O(E) additional force distri­

bution EW / z that may be applied to the whole of the upper flow. Putting this term 

to one side (for later correction), the general solution is 

U o = AoJo(Z) + BoKo( -iZ) - ~ (3.173) 

+-k
i J_

Z 
Z'J( z') {Jo(Z)Ko(- 'iZ') - Jo(Z')Ko(-iZ)} dZ' , 

"Ut Z 

where 

Z = 3i1r/4 2Utk(z - d) 
- e 2' EK, 

(3.174) 

Ao is determined by the constraint of boundedness as ( -> 00: 

Ao + k~l hoo 

Z' J(z')Ko( -iZ')dZ' = O. (3 .175) 

The three contributions to the first order correction Ul are determined as shown in 

§3.5 except that now JiU
) := ikuo(U - Ut)/E. Then the streamwise velocity boundary 

condition at z = z, namely u(z) = iL, shows that Bo = 0 as before al~d that 

(3 .176) 

Differentiation of the streamwise velocities U o and uicf) gives the shear stresses: 

The vertical velocity is W = W + EWl + E2w~cf) + ... , where 

ikpo(z - z) + lzz J(z') dz' - EK,2(Ll + AoZh(Z)); 

-EK,2( rJcf) - iB1ZK1( -iZ)). 

(3.178) 

(3.179) 

(3.180) 

As in the SML analysis, incorporation of the O(E) JiU
) correction at the top of the 

RIR converts occurrences within these solutions of the RIR velocity scale Ut to the 

slowly varying incident velocity U(z). 
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The outer region 

Governing equations for the outer region are identical to (3 .91)- (3.94). To reflect the 

displacement of the upper flow, it is convenient however to use exp ±k(z - cl) as the 

complementary functions of these equations rather than exp ±kz as in the standard 

mixing length analysis. The leading order solutions are 

Po = 

C 
-k(z-d) D k(z-d) rz f( ZI) cosh k( z - Zl) cl I. 

oe + oe + }z U( Z') z , 

-iCoe-k(z-d) + iDoek(z-d) 

if . rz f( ZI) sinh lc(z - Zl) cl I. 
+ kU + t }z U( Z') z, 

if _ uu 
k o · 

Here Do is determined by the condition of boundedness as kz ----7 00, namely 

~ ( OO f( zl) e-k(z'-d) 1 _ 

Do + 2 } z U (Z') clz - O. 

Matching the roof top inner and outer regions 

(3.181) 

(3.182) 

(3.183) 

(3.184) 

The 0(1) matching coordinate X for the overlap region between the roof top inner and 

outer regions is defined by 

where 0 ~ a ~ 1. (3.185) 

Matching the leading order vertical perturbation velocities in the overlap region gives 

(3.186) 

the particular integrals over f match automatically. Matching the perturbation pres-

sures gives 

(3.187) 

3.8.7 Matching the canopy region and upper flow analyses 

The entire upp er flow solution is linearly dependent on the velocity perturbations at 

the top of the canopy mixing region, U and w, and therefore on 8 1 and 82. The values 
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of 31 and 32 are determined by requiring that the CMR and RIR pressures and shear 

stresses are continuous at z = z. 
In practice it is easiest to do this by taking advantage of the linearity in 31 and 

32. Calculate the discrepancies in pressure and shear stress when 31 = 32 = 0 (-7 

6.poo, 6.700), when 31 = 1,32 = 0 (-7 6.PlO,6.71O) and when 31 = 0,32 = 1 (-7 

6.p01, 6.701). Then the required values of 31 and 32 are given by 

32 

(6.701 - 6.700)(6.plO - 6.po~) - (6.POl - 6.POO)(6.71O - 6.700)' 

(6.710 - 6.700)6.poo - (6.plO - 6.POo)6.700 

3.8.8 Sample results 

The displaced mixing length analysis introduces three new parameters that describe 

different aspects of the internal structure of a group of obstacles. These are A, the 

constant mixing length within the canopy mixing region, z, the deptll of the canopy 

mixing region, and z~, the roughness height ofthe interface between the canopy mixing 

region and the~linear mixing length flow above. In figures 3.18- 3.20 we attempt to 

illustrate the impact each parameter has on the streamwise velocity perturbation by 

varying a single parameter in each figure. Thus figure 3.18 shows results obtained 

using a "central" parameter set, results with A less than its central value, and results 

with A greated than its central value; similarly figures 3.19 and 3.20 illustrate variation 

of z~ and i respectively. The values of all parameter sets are given in table 3.1. In 

addition , the dotted line in each figure shows the streamwise velocity perturbation 

predicted by the SML analysis. Figures 3.18- 3.20 are calculated for the same force 

distribution and wavenumber as the small wavenumber SML sample results. 

Variation of A (figure 3.18) 

As A increases there is more efficient mixing over the depth of the canopy region. 

Hence velocity gradients are increasingly inhibited and the maximum velocity deficit 

is reduced . By continuity, the streamwise velocity deficit leads to a vertical velocity 
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Figure 3.18: Variation of A. The inset shows the mixing length profiles for each of the 

results graphed below. The dashed arrows indicate increasing A. 
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Figure 3.1 9: Variation of z~. The inset shows the mixing length profiles for each of 

the results graphed below. The dashed arrows indicate increasing z~ . 
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Figure 3.20: Variation of z. The inset shows the mixing length profiles for each of the 

results graphed below. The dashed arrows indicate increasing z. 
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A/h z~/h z/h =} d/h 

Central parameter set 1 1 3 1 
4" 4" 4" 2 

Reduced A 1 1 3 1 
8" 4" 4" 2 

increased A 1 1 3 1 
2 4" 4" 2 

Reduced z~ 1 1 3 11 
4" 16 4" 16 

Increased z~ 1 3 3 0 4" 4" 4" 

Reduced z 1 1 1 0 4" 4" 4" 

Increased z 1 1 2 1;! 
4" 4" 4 

Table 3.1: The values of A, z~ and z used in figures 3.18-3.20. 

perturbation at the top of the canopy region, which in turn causes the speed up in 

streamwise velocity above the canopy. Since the parameters of the flow over this 

vertical perturbation velocity, z~ and d = z - z~, are held constant, the speed up 

above the canopy increases or decreases with the velocity deficit within the canopy. 

In the DML model the mixing length remains constant even very close to the 

ground where the blocking scale z must eventually dominate the canopy turbulence 

scale A based on the dimensions of eddies shed from upstream obstacles. Thus signif­

icant velocity gradients that would be permitted near the ground by a mixing length 

of order Zo, the surface roughness, are inhibited by the constant DML model mixing 

length. This is a model weakness that could be compensated by reducing A to a form 

ex z near the ground. Such a refinement is not attempted here because it might not be 

practical to make measurements that are consistent with the distributed force model 

so close to the ground. 

Variation of z~ (figure 3.19) 

The interface roughness height or minimum mixing length in the shear layer, z~ , de­

termines the gradients of streamwise velocity just above z = z: smaller z~ gives larger 
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velocity gradients. Since speed up above the canopy is small compared with the max­

imum velocity deficit, the maximum velocity deficit is influenced by velocity gradients 

above z = z and hence by z~ . The canopy mixing region adjusts to meet this velocity 

deficit by changing its velocity perturbation only very close to z = z; cf. figure 3.18, in 

which variation of A causes variation of velocity perturbation throughout the canopy 

mixing region. 

Variation of z (figure 3.20) 

The inset graph shows how the mixing length starts increasing at z = z from its 

minimum value in the canopy mixing region. Since z~ = A for the cases shown in 

figure 3.20, z determines the extent of the flow domain where the minimum mixing 

length applies. Increased z means that stronger velocity gradients are allowed over 

more of the flow. The results with z / h = 2 show particularly strong gradients above 

the canopy; these are effectively laminar viscous results, since velocity variation above 

z = 2h appears insensitive to the turbulence model. 

3.9 Turbulence model sensitivity 

Since the DML analysis of §3.8 includes the SML analysis as a special case (z~ = z = 
zo), the effects of varying the three DML parameters provide a good indication of the 

general sensitivity of the turbulent flow problem to changes in the turbulence closure 

model. On the one hand, the sample results exhibited in §3.8.8 show that dramatic 

changes in the streamwise velocity perturbation profile, e.g. up to 100% change in the 

maximum velocity deficit, can be effected by varying the DML parameters. On the 

other hand, they also show that such dramatic changes require extreme parameter 

values and that there is a large parameter space within which the theoretical predic­

tions vary rather little. Even when extreme parameter values are used, the qualitative 

shapes of the perturbation quantity profiles remain similar in all cases. 

In particular, the sample results show that the DML model with constant mixing 
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length in the force distribution can give very similar results to the SML model if the 

DML parameters are chosen appropriately (with the exception of the z = O( zo) layer 

near the ground where the SML model gives much stronger velocity gradients). This 

insensitivity of the turbulent analysis to the way the mixing length varies within the 

canopy is encouraging: it suggests that reservations over the use of a single length 

scale in the turbulence model are less relevant than originally expected. 

The following chapter presents comparisons of the SML and DML results with 

experimental data and numerical simulations. 



Chapter 4 

Comparisons with experimental 

and numerical data 

4.1 Introduction 

In this chapter the results for the perturbed flow field derived from the distributed 

force model ani turbulent flow analyses are compared with a numerical simulation 

of the distributed force model and with several sets of experimental data on obstacle 

canopIes. 

Before presenting these comparisons however, it is necessary to consider two inter­

esting details of the practical implementation of the results of chapter 3. It was noted 

in §1.5 that in most practical problems the distributed force is not known a priori. 

Instead the urban or forest canopy is described by a distribution of drag parameter 

D*(x, z ) and the distributed force acting at any point is given by D* times the local 

wind speed squared. Thus the distributed force depends on the local wind speed, but 

the local wind speed is determined by distributed forces upstream. This problem is 

addressed in §4.2 by the concept of distributed force iteration. 

The second detail, in §4.3, concerns the transition from Fourier space, in which 

the results of chapter 3 are given, back to real space where flowfield comparisons are 

to be made. The inverse Fourier transformation is not straightforward because the 

125 
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model results contain an unusual singularity at k = O. Similar problems arise in other 

models that use Fourier synthesis, e.g. the "Flowstar" model described by Carruthers 

et al. (1988). 

The fiowfield comparisons proper begin in §4.4 with a discussion of the validation 

procedure. 

4.2 Distributed force iteration 

. As originally noted in §1.5, the distributed force in most practical problems is best 

calculated as the product of a velocity-independent drag parameter D*(x, z) and the 

square of the local wind speed. In a strictly linear calculation it is consistent to use 

the upstream velocity profile U (z) for the local wind speed throughout the canopy. In 

practice, however, to do so leads to serious overestimation of the streamwise velocity 

defect, particularly in the downstream parts of a canopy, the overestimate being cu­

mulative with distance downstream. This is an artefact of linearising . the drag . For 

example , the experiments of Davidson et al. (1995a) showed that the streamwise ve­

locity in the latter half of the obstacle array was about one half of that upstream, 

which means that the force acting over a large part of the array was just one quarter 

of the force acting near the leading edge. This suggests that the results of the linear 

analysis can be significantly improved if non-linear effects are accounted for in the 

specification of the drag. 

We can allow for the effects of reduced local wind speed by iterating the distributed 

force calculation. For the first iteration, set 

( 4.1) 

and calculate the corresponding streamwise velocity perturbations 

(4.2) 

where U represents the analysis of chapter 3. Then on subsequent iterations (starting 
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from n = I), set 

and calculate 

( 4.4) 

Without relaxation the iterative process oscillates owing to negative feedback, since 

large velocity defect ~ reduced force ~ reduced velocity defect 

and so on. Use of a relaxation factor 0:7, effectively increases the damping and therefore 

accelerates convergence of the iterative scheme. Note that the use of complementary 

relaxation factors O:T and (1 - 0:7, ) in (4 .3) ensures that the converged result is inde­

pendent of 0:7" For when the iteration converges, j(n) = j(n-l), which substituted 

into (4.3) gives 

(4.5) 

as required . Experience suggests that O:T ~ 0.6 is an efficient value . For most of 

the force distributions we have so far considered the iterative process then converges 

in just three or four iterations. The convergence criterion adopted here is that the 

fractional L2 norm of the force distribution change should be less than 1 %, i. e. 

(4.6) 

Figure 4.1 demonstrates the importance of this iteration. The curves shown were 

calculated for a rectangular drag parameter distribution describing the Cardington 

experiment of Davidson et al. (1995a). Curve (a) shows the ratio of force acting 

after iteration to that acting before iteration. Curves (b) and (c) show the dramatic 

difference between calculated streamwise velocity perturbations at half canopy height 

with and without iteration. 
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Figure 4.1 : The significance of distributed force iteration. (a) The ratio of distributed 

force after iteration to that before iteration, · integrated over the height of the distri­

bution. (b),( c) Streamwise velocity at half canopy height, before and after iteration, 

normalised by the upwind velocity at half canopy height. The horizontal aXlS IS 

streamwise distance from the leading edge, normalised by the canopy height. 
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4.3 Inverse Fourier transformation 

The results of the 'st,andard mixing length analysis, obtained in chapter 3, contain an 

interesting singularity at zero wavenumber. To see this, consider just the inner region 

solution, which may be written as 

U = Ko(~:Zo) {Jo(Z)Ko( -iZo) - Jo(Zo)IC( - 'iZ)} 

+ U{Ko~~iZo) {Ko( - iZ) - Ko( - iZo)} 
, z 

+ k~l ho Z' J( z'){Jo(Z)Ko( -iZ') - Jo(Z')Ko( -iZ)} dZ'. (4.7) 

Now as k ---7 0, 

( 4.8) 

and 
, ,1 z 

Jo(Z)Ko( -zZ') - Jo(Z')Ko( -zZ) = 2'ln z' + O(k). ( 4.9) 

Hence 

( 4.10) 

and 

100 J( ') -kz' 100 
Po = 'iU{ ; t ') dz' = i , J(z'){l + O(k)} dz', 

Zo 9 Z Zo 

(4.11) 

Therefore the inner region solution may be approximated as k ---7 0 as 

~ln ~ ( OO J( z') { In(z'/ ~o) _ I} dz' 
20); Zo Jzo 2Ko( -zZo) 

_ ·i In(z / z~ ) ( OO J(z') dz' + ~ ( Z J(z') In z, dz'. 
2U{IC( -zZo) Jzo 2EK, Jzo z 

The singularity at k = 0 arises from the k dependence of Ko( -iZo) in some of the 

denominators here, viz. Ko(-iZo) '" -~lnk as k ---7 O. Thus the small k dependence 

of u may be summarised as 

B 
u(k) ~ A+­

Ink 
as k ---7 0, (4.12) 
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where A and B are independent of k . The typical form of this singularity is illustrated 

in figure 4.2 (taking A = B = 1) . The gradient of u(k) becomes infinite as u(k) 

approaches the limiting value A at k = o. 

0,92 .------ - --,-------.--------.--- ----, 

1 + (1 I log Ikl) -

0,9 

0,88 
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Figure 4.2: The singularity 1+(1/ In Ik l). The sharpness ofthe singularity is illustrated 

by the fact that the computer-approximated curve uses 2000 samples equi-spaced in 

the range -0.01 < k < 0.01 but reaches a maximum value of only 0.92. The theoretical 

maximum is of course 1. 

The difficulty introduced by this singularity may be understood in two ways. For 

the usual inverse Fourier transform algorithm, u( k) must be sampled at discrete values 

of k: j 6.k, j = 0 . . . N -1 , where N is the size ofthe Fourier transform. It is well known 

that this discrete sampling of u( k) causes aliasing of the real space result u( x) such 

that the invers~ Fourier transform obtained is not exactly u( x) but Lb-oo u( x - j 6.x) , 

where 6.x = 27r / 6.k. 

Another way of interpreting the aliasing problem is to observe that the extreme 

pointedness of the In-1 k singularity is not adequately resolved by a finite number of 
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equispaced samplings. 

Such aliasing .can often be removed if it is possible to obtain analytically the large 

Ixl behaviour of u(x), which in tuTU depends upon the singularities of the Fourier trans­

form u(k). A step discontinuity in u(k), for example, would imply that u(x) rv X-I 

for large Ixl (e .g. Lighthill 1958). The In- l k singularity is qualitatively intermediate 

between a step discontinuity and a gradient discontinuity, so the corresponding large 

Ixl behaviour should fall somewhere between x-I and x- 2 . Unfortunately, however, 

it is not possible to obtain the exact behaviour in closed form . 

For these reasons it is impossible to use the straightforward Fast Fourier Transform 

(FFT) algorithm to calculate the inverse Fourier transform of u( k). Instead we split 

the FT integral into two parts, only one of which includes the singularity: 

1: u(k)eikx dk = 2Re 100 

u(k)eikx dk (4.13) 

2 Re (f:>. k/2 u( k )eikx dk + 2 Re]OO u( k )eikx dk. 
lo f:>.k/2· 

The second of these integrals may now be computed as the FFT of u(k) with u(O) set 

to zero. The first-integral is calculated by Simpson's rule after a change of variable to 

where So = SlO = 1, SI = S3 = Ss = S7 = S9 = 4, S2 = S4 = S6 = S8 = 2, 

6.~ = (In(6.kI2) - ~min)/10 and ~j = ~nun + j6.~. The error involved in choosing 

a finite negative value for ~n:un rather than -00 is O( exp ~nun)' so ~l1un can easily 

be chosen to make the error negligible. The author's current implementation has 

exp ~n:un = 10-5. The change of variable is advantageous because the error involved in 

using Simpson's rule to integrate a function j(q) over a range of q is O((d4j Idq4)max). 

If q = k and j(q) rv A + B/lnq as q ----7 0, the fourth derivative cif j tends to infinity 

as q ----7 O. After the change of variable, however, q = Ink, j(q) rv A + Blq and 

d4 j I dq4 rv 24B I q5 as q ----7 -00. In other words, changing the independent variable 

dramatically reduces the numerical error because the singularity is sampled at a more 



Comparisons with experimental and numerical data 132 

sensible set of points. 

4.4 Comparison of model results with experiment 

In the recipe described by this thesis, three main ingredients contribute to flowfield 

prediction for a given group of obstacles: 

• the idea that the group of obstacles may be modelled as a region of distributed 

force; 

• the procedure for calculating the appropriate force distribution; 

• the analyses of chapter 3 that calculate flow perturbations for a given force 

distribution . 

Any comparison of the recipe's predictions against experimental data is a test of the 

complete recipe, not of any single ingredient. 

On the other hand, numerical simulations have been performed which use a specific 

distributed force tOJepresent forest or urban canopies (e.g. Yamada 1982, Svensson & 

Wiggkvist 1990, Shaw & Schumann 1992) . Comparison of these simulations with the 

predictions of chapter 3, using the same force distribution, provides a direct test of the 

turbulent flow analysis in isolation. That is, the asymptotic method and turbulence 

closure model of the analytic approach are compared against the numerical approxima­

tions and nominally more sophisticated turbulence closure model of the simulations. 

Therefore our first comparison, in §4.5, is with the J( - E turbulence closure simulation 

of Svensson & Haggkvist (1990) . 

The comparisons in §§4.6-4.8 are all with experimental data and so require mod­

elling of a group of obstacles by an appropriate force distribution, using the drag 

parameter method and iterative process described in §1.5 and §4.2. §4.6 examines the 

deceleration of average streamwise velocity within the obstacle canopy, measured by 

Davidson et al. (1995a,b) in field and wind tunnel experiments on a group of obstacles. 

§4.7 compares whole flowfield predictions with the wind tunnel experiment of Meroney 
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(1968) on a model forest canopy, characterised by a single rectangular drag parameter 

distribution. FinaIJy, §4.8 presents a qualitative comparison with the observations of 

Stacey et al. (1994) in a clearing in the middle of a forest. 

Our objective throughout is predictive. Therefore we proceed by estimating any 

adjustable parameters on the basis of physical arguments, calculating the flow predic­

tions that result from the estimated parameter set, and comparing these predictions 

with simulations or experiment. No attempt is made to improve agreement by ret­

rospectively adjusting parameters. Since the DML turbulence model includes three 

adjustable parameters, this point is most relevant for the comparison using the DML 

turbulent flow analysis with Meroney 's (1968) data, in §4.7 . 

4.5 Comparison with numerical simulation 

Svensson & Haggkvist (1990) performed a numerical simulation of two-dimensional 

flow through a region of distributed resistance using the J( -E turbulence closure model. 

The distributed resistance was calculated from a drag coefficient Cd, a plant area 

density a* and the local wind speed ii,*: 

( 4.14) 

The model canopy was a rectangular region 2.5m high and 250m long. Within the 

canopy Cd and a* took constant values 0.3 and 2.1 m-I respectively; outside the 

canopy Cda* == O. To model the increased turbulent dissipation due to small scale 

wake turbulence generated by canopy leaves, resistance-related source terms based on 

Cd, a* and ii,* were added to the turbulent kinetic energy and dissipation equations as 

well as to the streamwise momentum equation. The extra coefficients introduced to 

allow tuning of these extra source terms were adjusted to give good agreement with 

far downstream velocity profiles measured in the experiment of Raupach et al. (1986). 

The upstream velocity profile used by Svensson & Haggkvist was 

( 
z* ) ~ U*(z*) = 10 -- m/so 

110m 
(4.15) 
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We fit a logarithmic profile to (4.15) by matching velocities at z = hand z = h/2 . 

This gives z~ =:= 1.604mm and u* = O.3248m/ s. The fitted logarithmic profile then 

differs from (4.15) by less than 3% over the height range O.4m < z* < l1m, which 

includes the part of the canopy where the distributed force and velocity perturbations 

are most significant. 
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Figure 4.3: Comparison of total streamwise velocity field with the numerical simula­

tion of Svensson & Haggkvist (1990). Points are SH's data; curves are predictions of 

the current SML theory. Coordinates are in metres . 

The predictions of the current SML analysis are compared with Svensson & Hagg­

kvist's simulation results in figures 4.3- 4.5. Figure 4.3 shows total streamwise velocity: 

the points are simulation data measured from Svensson & Haggkvist's figure 4a, the 

curves are our predictions. Figure 4.4 presents the same comparison after the incident 

velocity profiles have been subtracted from the total velocities.. Clearly the agreement 

is excellent. 

Figure 4.5 shows the turbulent shear stress distribution at x / h = 85. So far 

downstream we would expect the flow to have reached an equilibrium such that the 
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Figure 4.4: Comparison of streamwise perturbation velocity field with the numerical 

simulation of Svensson & Haggkvist (1990). Points are SH's numerical simulation; 

curves are predictions of the current SML theory. Coordinates are in metres. 
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Figure 4.5: A turbulent shear stress profile far downstream from the leading edge but 

still within the model canopy: comparison of SML theory with the numerical simula­

tion of Svensson & Haggkvist (1990) . Points are SH's data; curves are predictions of 

the current SML theory. Turbulent stress in measured in m 2 /s2
. Vertical coordinate 

is in metres. 
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dominant streamwise momentum balance is between distributed force and turbulent 

stress gradient: 

aT = f az . (4.16) 

The existence of this equilibrium is supported by figures 4.3 and 4.4 and SH's figure 4a, 

which clearly show that there is minimal development of the perturbed velocity profile 

downstream of x* = lOOm. Therefore the apparent discrepancy between numerical 

simulation shear stress and our predictions is rather surprising, given the good agree­

ment for streamwise velocity and hence for distributed force gradient . Svensson & 

Haggkvist did not say whether their simulation included a non-zero mean pressure 

gradient in the incident flow, which could account for the shear stress discrepancy. 

4.6 Deceleration of the mean canopy wind 

II!III II!III II!III 
m m m 

IllllJ IllllJ IllllJ . -------J--III III 
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Figure 4.6 : ,The obstacle layout in Davidson et al. 's (1995a) experiments. 

Davidson et al. (1995a,b) conducted two experiments on a staggered alTay of obsta­

cles arranged as in figure 4.6. One was a full-scale field experiment with obstacle 

dimensions w x b x. h = 2.2m x 2.45m x 2.3m, the other a boundary layer wind tunnel 
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experiment with w == b = h = 0.12m. To quantify the deceleration caused by the 

array, Davidson etal. measured mean streamwise velocities on the array centreline at 

half canopy height. Assuming that lateral velocity gradients near the array centreline 

are negligible, so that the centreline flow can be described by two-dimensional theory, 

the measUTed velocities can be compared with predictions using the distributed force 

model. 

In both experiments the incident velocity profile was logarithmic, with roughness 

parameters z; = llmm, u* = 0.49m/s (field) and z; = O.4mm, u* = 0.21m/s (wind 

tunnel) . The area index defined by equation (1.4) is 

wxh 1 . 
a = b I = -b = 0.045 (field), 0.93 (wmdtunnel). 

3 x 3w x 7, 9 
( 4.17) 

The fraction of canopy volume not occupied by obstacles is (3 = 0.89. Drag coefficients 

for the individual obstacles were not measUTed. Our calculations therefore use two 

plausible values: Cd = 3 and Cd = 5; this enables us to assess the dependence of wind 

deceleration on Cd as well as to see whether oUT range of predictions fncludes the 

experimental data. Thus the obstacle canopies of the two experiments are modelled 
-, 

by rectangular drag distributions with height, length and uniform drag parameter 

given in the following table. 

Height Length D*,Cd =3 D*, Cd = 5 

Field experiment 2.3m 44.1m 0.153m-1 0.255m-1 

Wind tunnel experiment 0.12m 1.92m 3.14m-1 5.23m-1 

The comparison is shown in figUTe 4.7. Several points may be noted. 

1. The predictions for the two experiments collapse onto each other when non­

dimensionalised as in figUTe 4.7. This is because the model and full scale rough­

ness heights are in approximately the same ratio as the obstacle dimensions. 

2. There is good agreement between theory and experiment in the overall form 

of the deceleration CUTve. However the experimental wind begins decelerating 

fUTther upwind and recovers more quickly downwind than the predicted wind. 
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Figure 4.7: Deceleration of the mean wind through an obstacle canopy. (U + u)/U 

at z = h/2 is plotted against streamwise distance from the leading edge of the array 

non-dimensionalised by obstacle size b. Points: Davidson et al. 's experimental data. 

Solid lines: SML theory results for the field experiment with Cd = 3 and Cd = 5. 

Dashed lines: SML theory results for the wind tunnel experiment with Cd = 3 and 

Cd = 5. 
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These discrepancies may be due to the finite lateral dimension of the experimen­

tal array, giving weak lateral upstream divergence and downstream convergence 

over streamwise distances of the order of the lateral dimension. In the case of 

the wind tunnel experiment, the wind tunnel roof could also be the cause of 

some discrepancy. 

3. The maximum velocity deficit is not linearly related to the drag coefficient Cd. 

We conclude that the distributed force model successfully models the mean wind 

deceleration through the obstacle array. 

4.7 Model plant and forest canopies 

Figure 4.8: Meroney's model tree. 

Meroney (1968) investigated the turbulent flow in and above a model forest consisting 

of trees made from "plastic simulated-evergreen boughs." His forest canopy was 0.18m 

high and llm long with tree density one per 36cm2 . Meroney gives the tree drag 

coefficient as Cd = 0.72 and his description of the model tree shape (figure 4.8) gives 

a frontal area of 71.5cm2 . Hence the projected frontal area of the tree crown is 

aJ = 11.0m-1 . The leaf area index a may be greater or less than aJ depending upon 

leaf distribution and orientation within the crown. The occupied volume fraction 1- f3 

is one half times the volume porosity of the tree crown. In the absence of more precise 
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information , we estimate al {3 = aj; hence the distributed force model drag parameter 

is D* = 7.94m-l. 

For a more faithful representation of the model forest, the distributed force model 

can be refined to reflect the vertical structure shown in figure 4.8. Instead of a single 

rectangular region with uniform drag parameter D* = 7.94m-1 , we define lower and 

upper rectangular regions with weaker and stronger drag parameters, namely 

D* = 2.58m-1
, 

D* = 10m-I, 

0< z* < 5cm, 

5cm < z* < 18cm. 

These numbers ensure that the overall leaf area index is unchanged. In the following 

comparison with Meroney's data both single region and two region representations 

are investigated. 

Meroney measured vertical profiles of streamwise velocity at x = -lm, Om, 1m, 

2m, 3m, 4m, 5m, 6m, 10m and Hm from the leading edge of the modeLcanopy. He 

did not specify an incident velocity profile, so we estimate incident flow roughness 

parameters by fit! ing a logarithmic profile to his measurements at x = -lm. This 

gives z~ = 1.77mm and u* = 0.391m/s. 

For a simulation using the DML theory, the estimated parameters are )..1 h = 0.2, 

d I h = 0.7 and z I h = 0.75. The low value of )..1 h reflects the small horizontal length 

scale of the model forest ("-'< 5cm) in comparison with canopy height. The value of 

cll h is an estimate following Thom (1971) and J ackson (1981) of the level of mean 

momentum absorption, and is typical of the ratios observed in many experiments 

( e. g. Thom 1971, Raupach et al. 1980). z and d together imply an interfacial roughness 

height z~ = 0.05h ~ 1cm for the shear layer near the top of the forest canopy. 

The comparison between theory and experiment is shown in figures 4.9 (SML 

theory) and 4.10 (DML theory). In general the agreement is good, more so for the 

downstream half of the canopy than for the upstream half. The difference between 

SML and DML results in the overall form of the flow field is not dramatic; specifi­

cally, the growth of the maximum velocity defect is similar in both cases . The large 
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Figure 4.9: Comparison with Meroney's (1968) model forest canopy experiment using 

SML theory. Perturbation streamwise velocity is plotted against height (in cm) at a 

series of downstream locations. Points: experimental data. Solid lines: current theory 

using a single region distributed force model. Dashed lines: current theory using a 

two region distributed force model. 
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Figure 4.10: Comparison with Meroney's (1968) model forest canopy experiment using 

DML theory with AI h = 0.2, dl h = 0.7 and i l h = 0.75. Perturbation streamwise 

velocity is plotted against height (in cm) at a series of downstream locations. Points: 

experimental data. Solid lines: cunent theory. 
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discrepancies near the leading edge may be due to a detail of Meroney's experimental 

setup which is not reproduced in the distributed force model. The model trees were 

mounted in holes drilled in an aluminium base plate sitting on the wind tunnel floor, 

with the leading edge of the base plate a few centimetres upstream of the leading 

edge of the forest canopy. Meroney does not specify the height of this base plate, but 

visual examination of photographs in his paper suggests that it could be as much as 

3cm. Therefore the flow near the leading edge of the canopy is actually responding 

to a sudden vertical step about 3cm high as well as to a porous region of resistance 

18cm high. 

4.8 The effect of a clearing in mid-forest 

Finally we apply the distributed force model and turbulent flow analysis to a scenario 

investigated by Stacey et al. (1994) using model trees in a wind tunnel experiment: 

mean wind acceleration in a clearing in mid-forest. Stacey et al. modelled a spruce 

forest with average height 15m, with far upstream roughness height O.lm, across which 

a clearing had been cut 6.7 tree heights (100.5m) wide. They assumed that the full­

scale drag of an isolated tree D agreed with an empirical formula due to Mayhead et 

al. (1975), viz. 

drag in Newtons D = 0.4352U2mO.667 exp( -O .0009779U2), (4.18) 

where m is the tree's live branch mass measured in kg and U is the nominal incident 

wind speed in m/so In the conditions being modelled, the live branch mass was 

m = 49.5kg and the nominal wind speed 30m/s, hence the drag force on an isolated 

full-scale tree was 2193N. The lateral and streamwise tree spacings were 1. 73m, so 

the canopy volume per tree was 44.9m3 . Therefore the distributed force model drag 

parameter may be estimated as 

D* = 2193N ~ O.11m-l. 
~p X 302m 2 /s2 X 44.9m3 

( 4.19) 

The flow field shown in figure 4.11 is calculated using two regions of distributed 

force . Both are ISm high and have D* = O.11m- l . One extends from x = -500m 
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Figure 4.11: Velocity vectors in a clearing in mid-fmest. Coordinates are non­

dimensionalised on the forest canopy height h = 15m. 

to x = 0 and is intended to set up an equilibrium canopy flow. The other extends 

from x = 100.5m to x = 300m. The clearing lies between the two regions . The ex­

perimentally measured flow field is shown in Stacey et al.'s (1994) figure 13. Detailed 

numerical comparison is not attempted here, but clearly there is good qualitative 

agreement between the experimental data and our predictions . The most notable fea­

ture is the vertical velocity variation within the clearing. The wind turns downwards 

to fill out the clearing immediately after its upstream edge and only turns upwards 

again after the trailing edge when the blocking effect of the downstream resistance 

has become dominant. Note that the shaded contours in figure 4.11 represent the 

strength of the local distributed force. The darker contours at the downstream edge 

of the clearing indicate that the force acting is stronger here than in the equilibrium 

flow at the left hand edge of the figure. In other words, a clearing in a fmest increases 

the risk of local wind damage, as observed by Stacey et al. 
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4.9 Assessment of the results 

These comparisons' with numerical simulation and experimental data show that the 

distributed force concept and the analytical models developed in chapter 3 are useful 

in practice. The perturbed mean flow field is successfully modelled both within and 

above an obstacle canopy. In particular, the magnitude of the mean flow deceleration 

through the array, the tendency to an equilibrium state, and the mean flow recovery 

after an array are all correctly reproduced by the model theory. 

Despite the extra sophistication of the DML turbulence model, the comparisons 

with Meroney's (1968) data show that the results of the DML theory do not greatly 

differ from those of the SML theory when the DML turbulence model parameters 

are estimated on the basis of physical reasoning. Occam's razor requires, therefore, 

that the SML model is recommended when the intent is to model the broad flow field 

features that have been considered in this chapter's comparisons. 

This recommendation does not mean that the arguments behind the DML model 

were wrong or superfluous. The following chapter will show that the SML and DML 

models give dramatically different results when the flow above the canopy is parame­

terised in terms of effective roughness parameters and that, in general, it is the DML 

model which gives the better parameterisations. 



Chapter 5 

Parameterisations 

5.1 Introduction 

The analytical models developed so far can be used to compute many details of canopy 

flow, but for many purposes a simple parameterisation of the results may be adequate 

and more convenient . The results of the analytical models of chapter 3 are now used 

to develop sucl~ parameterisations. 

The first parameterisation (§5.3) shows that the flow above the canopy is equivalent 

to the superposition of two flows, one corresponding to a surface roughness change 

and the other corresponding to a surface elevation change like a low escarpment . 

The inclusion of surface elevation as well as roughness in the parameterisation means 

that the initial blocking region of an obstacle canopy can be represented as well as 

the farther downstream roughness-like behaviour. Specifically, the parameterisation 

exhibits detailed agreement, at all heights above the canopy, between the flowfield 

obtained from the SML distributed force analysis and the flowfields describing flow 

over roughness and surface elevation changes, details of which are taken from the work 

of Belcher et al. (1990) and Hunt et al. (1988a). The roughness heights obtained, 

however , are unrealistically large because this parameterisation does not include a 

displacement height. 

The second parameterisation (§5.4) follows several experimenters (e.g. Thorn 1971 

147 
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and Hsi & Nath 1970) in attempting to fit "equivalent" roughness parameters- friction 

velocity U e, roughness height Ze and displacement height de- to the predicted total 

velocity profiles above the canopy. For flows where such a parameterisation is valid, 

its utility lies in encapsulating all the complexity of the two-dimensional canopy flow 

in just thTee functions of streamwise position, such that the flow well above the canopy 

is entiTely determined by ue(x), ze(x) and de(x). 

5.2 Summary of SML results 

The Tesults of the SML turbulent flow analysis of §§3 .5- 3.6 are presented together here 

fOT convenience. Uniformly valid solutions for streamwise and vertical per~urbation 

velocities and perturbation shear stress are given by 

U
(UVA) __ ·C - kz 'D kz l z if( z') sinh k( z - z' ) d' if 

- t oe + t oe + U ( ') z + kU 
Zo 9 Z 9 

iE2 /-i;2 r ,(UVA.) 

kUg 

C - kz k z l z f( z') coshk(z - z') d ' 
oe + Doe + U ( ') z 

Zo . 9 Z 

E2/-i;2 r(UVA) 

Ug 

iZJt(Z) ( CO Z' f( z' )Ko( -iZ') dZ' 
EkU/ Jz 

+ ZK1( -iZ) ( z z' f( z')Jo(Z') dZ' + iB1ZK1( -iZ). 
EkU/ Jzo 

The coefficients ~ppearing in (5.1)- (5.3) aTe given by 

1 ( CO f( z') exp( -fez') , 
Do + 2 Jzo Ug( z') dz 0, 

Co + Do 0, 

Po 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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Ao + k i ] 00 Z' f(z')J(o( -iZ')dZ' 
Ut Zo 

0, (5.7) 

AoJo(Zo) + EB1 J(o( -iZo) - ~ 0. (5.8) 

5.3 Surface roughness and elevation changes 

Attempting to decompose the distributed force results in terms of equivalent surface 

roughness and elevation distributions is of interest for two reasons, one practical and 

the other theoretical. The practical reason is that fluid modellers, in particular me­

teorologists , have for many years used increased roughness and/or surface elevation 

to represent complex terrain and terrain-mounted obstacles such as forests and cities. 

Fiedler & Panofsky (1972), Andre & Blondin (1986), Taylor et al. (1989) and Wood & 

Mason (1993) discuss aspects of the prediction and use of an equivalent TOughness; in 

the last two papers mentioned the equivalent roughness is closely related to the drag 

acting on the complex terrain. Clearly one would like to know whether an equivalent 

roughness for flow through a force distribution is similarly related to the force acting. 

Previous treatments of two-dimensional flow through a region of resistance have all 

been numerical (e. g. Svensson & Haggkvist 1990, Shaw & Schumann 1992) and so 

have been unable to investigate such questions analytically. 

Roughness alone, however , can only model the large streamwise length scale effects 

of a group of obstacles; it cannot reproduce the pressure-mediated blocking effects ob­

served around the leading edge of the group. Fung & Hunt (1991) had some success in 

modelling these blocking effects as well as the usual roughness effects by representing a 

group of obstacles as a combination of roughness and surface elevation. This suggests 

that the force distribution flowfield as a whole will also be better represented by a 

combination of roughness and elevation than by roughness alone. The following pa­

rameterisation giv~s explicit equivalent surface roughness and elevation distributions 

for any given force distribution. 

The second, theoretical reason IS that it ought to be possible to simulate the 

flow perturbations induced by surface elevation and roughness changes using a more 
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general disturbance distributed over a finite volume; we shall confirm that this is the 

case. 

5.3.1 Solutions for low hills and roughness changes 

Hunt et al. (1988a, hereafter "HLR") and Belcher et al. (1990, hereafter "BXH") 

calculated asymptotic solutions for turbulent flow over a low hill and over varying 

roughness using linear asymptotic methods similar to those of chapter 3. There are 

three small differences between their method of analysis and that used here. To 

permit investigation of incident velocity profiles with elevated regions of significant 

velocity shear, they subdivided the outer region into two layers, "middle" and "upper." 

The upper layer corresponds to our outer region: flow perturbations are irrotational 

and inviscid; the middle layer is also inviscid but neglects perturbation streamwise 

gradients and treats the incident velocity shear U" jU as a leading order term. (A 

similar refinement could be applied to the analysis of chapter 3 but was omitted in 

order to simplify the initial investigation; this means that the present theory" is limited 

to logarithmic incident profiles as stated in §3.2.) Secondly, our definitions of U;, E, 

l and Ut differ slightly from theirs. Thirdly, the uniformly valid first order correction 

due to wU' is not included in our uniformly valid approximation (3.119), whereas it 

is included in HLR's and BXH's solutions. 

To account correctly for these minor differences, we re derive their results following 

the method and parameter definitions of chapter 3. Uniformly valid approximations 

to the hill flow solutions are 

FT {U(z _ h(x)) _ U(z)} _ 'is(k) (e-kZ _ Ko( -:iZ)) , 
Ug(z) Ko( -zZo) 

s(k) (- kZ EK,2 ZK1(- 'iZ)) -- e + -----:-=~-----:-.:... 
Ug(z) UtIC( -iZo) , 

'is(k)e-kz , 

s(k)ZKl( -iZ) 
EUg(z)Ko( -iZo)' 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Here h( x) and s( x) are the hill elevation and the hill slope and FT {} represents Fourier 
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transformation. Unifoi'mly valid approximations to the roughness change solutions are 

u('rough) ( . 2 - kZ) A (rough) J( o( -iZ) + u.r;, ;/ ' (5.13) 

W(rough) 
,2 A(rough) 

- Er;, U/ ( iZJ(l( - iZ) + e-kz) , (5.14) 

p(rough) 0, (5.15) 

T(rough) A(rough)iZJ(l( -iZ) 
(5.16) 

E 

where M (x) := In( Zl (x) / Zo) is the roughness parameter introduced by Townsend 

(1966) describing the perturbation of the local roughness Zl (x) and 

A (rough) = -4E.M 
2In(l/zl) - 4, - i7r + 21n2r;,2 

-EM 
(5.17) 

5.3.2 Equivalent roughness and elevation distributions 

Above the top of the force distribution, the SML distributed force results (5.1)- (5.8) 

may be simplified and expressed as 

iE2 r;,2 T'( above) 
-ie-kZF(k)- kU ' 

9 

u(above) 

E2 r;,2T(above) 
e-kZF(k)_ U ' 

9 

w(above) 

p(above) ie-kzUgF(k), 

where 

F(k) = r)Q f(k, Z') cosh kz' dz' 
- Jzo Ug( Z') 

and the shear stress is 

T(above) = 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

If (5.18)- (5.20) are equivalent to a hill flow and roughness flow, the pressure pertur­

bation p(above) is due entirely to the hill flow component, since BXH's analysis shows 

that the most significant pressure perturbation in the roughness problem is O( E2). 

'I 
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Hence comparison with (5.9) shows that the hill flow contribution to (5.18)- (5.20) is defined 

by the slope distribution 

(5.23) 

Equations (5.9)- (5.12) with s(k) U/F(k) account for all the e- k z terms of (5.18)- (5.20) 

and part of the shear stress terms. Note that the displaced incident velocity perturbation 

U(z - h(x)) - U(z) is O(c) outside the inner surface layer, so is not a leading order term over 

most of the flow. The remaining terms are associated with the shear stress 

(above) _ (hill) _ (above) U/F(k)ZK1( -iZ) 
r r -r + . ' 

cUg(z)Ko( -zZo) 
(5.24) 

Comparison with (5.13)- (5.16) shows that these terms constitute a roughness flow with 

c( r(above) _ r(hill)) 

iZK1( -iZ) 
(5 .25) 

At leading order , therefore, the flow above the force distribution can be formally decomposed 

into an equivalent hill flow and an equivalent roughness flow, with respective parameters s(k) 

and M(k) given by (5 .23) and (5.25) . 

The results of the general DML analysis cannot be decomposed into a hill component and 

a roughness component because the surface elevation and roughness change analyses use a 

turbulence closure model with no displacement height. 

5.4 Equivalent roughness parameters 

The equivalent roughness parameterisation follows several experimenters (e.g. Thom 1971 and 

Hsi & N ath 1970) in attempting to fit "equivalent" roughness parameters- friction velocity 

U e , roughness height Ze and displacement height de - to the predicted total velocity profiles 

above the canopy. 

Standard similarity arguments applied to a slowly developing turbulent boundary layer 

(e.g. Tennekes & Lumley1972, chapter 5) show that, in a range of heights much greater 

than the roughness size but much less than the boundary layer depth, the vertical variation of 

streamwise velocity is logarithmic and can be characterised by the three roughness parameters 

U e , Ze and de: 

' * () U e I Z - de Urn Z = - n--. 
K; Ze 

(5.26) 

When it is the case that height ranges showing logarithmic velocity variation can be found 

at many successive downstream locations , it becomes natural to think of U e , Ze and de as 

functions of streamwise position x. 

For large scale meteorological computations, (5.26) provides a "ground" boundary con­

dition , specifically a relation between turbulent shear stress and streamwise velocity at the 

lowest grid point, if values of U e , Ze and de are known for the underlying terrain. 
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The meteorological literature, however , uses the term "effective roughness length" with 

different connotations from the "equivalent" roughness lengths used by the experimenters 

cited above. An "effeCtive" roughness length (e.g. Fiedler & Panofsky 1972; Taylor et al. 

1989, Wood & Mason 1993) is inferred from the areally averaged velocity profiles over a large 

horizontal area, and is closely related to the drag on that area. Consider for example a range 

of mountaiHs covered by ·forest. The equivalent roughness parameters at a given horizontal 

lo cation characterise the forestation and terrain slope immediately around that location, and 

vary with position on the mountain surface . The effective roughness parameters, by contrast, 

relate to a much larger length scale and characterise the large scale roughness of t,he mountains 

themselves. Andre & Blondin (1986) derive analytical expressions for a large scale effective 

roughness length in terms of the distribution of small scale equivalent roughness lengths. 

In the context of this thesis, however, the distinction between "equivalent" and "effective" 

roughness parameters is not so clear cut. It appears at first that the roughness parameters 

derived below from a local velocity profile must be "equivalent" parameters. Recall, though, 

that horizontal areal averaging is implicit in the distributed force concept and in any results 

derived from it, and in this sense our roughness parameters are "effective." Moreover, note 

that the distributed force concept can in principle be used to model the effects of a group 

of mountains just as it can be used to model the forest on a single mountain- the difference 

is merely one of horizontal length scale. In the following analysis, therefore , "equivalent" 

and "effective" are used somewhat interchangeably, and are associated with areal averaging 

over the horizontal obstacle length scale that was used (at least conceptually) to calculate the 

model force distribution. 

5.4.1 Linear perturbation of the logarithmic profile 

For comparison with the analytical results of chapter 3, we express (5 .'26) III terms of the 

perturbation u:r, and an upstream velocity profile characterised by zero displacement height, 

roughness height Zo and friction velocity u*; then 

(5.27) 

where Te == u~1 u; -1 and M e == (1 + Te 12) In( zel zo ). In the linearisation of (5.27) second order 

terms such as products of Te and del z have been neglected. The three terms on the right hand 

side of (5.27) describe perturbations to the friction velocity, roughness height and displacement 

height . N otice ho~ they are respectively associated with In z, constant and z-l contributions 

to the perturbation velocity profile. After Fourier transformation and non-dimensionalisation 

(5.27) becomes 
fTe(k) Z fde(k) 

U (k z) ~ --In - - fM (k) - --
m, 2 Zo e Z· 

(5.28) 
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Thus it is possible to define an effective shear stress, roughness parameter and dis­

placement height associated with each wavenumber of the velocity perturbations in 

Fourier space as well as with each streamwise station in real space. 

The dimensionless model perturbation profile (5.28) will be compared with the 

results of the SML analysis. For comparison with the DML analysis, note that (5.28) 

is equivalent in the linear approximation to 

(k ) ETe(k) 1 z- d U(k) Ede(k) EYe 1 z~ 
U z ::::::; -- n -- - Ell'! - -- + - n-
m, 2 ' e 2 ' Zo z Zo 

(5.29) 

i.e. the difference between (5.28) and (5.29) is quadratic in the small quantities Ye and 

delz . 

5.4.2 Roughness parameters for the SML analysis 

The SML streamwise perturbation velocity profile (5.18) varies approximately loga­

rithmically in the height range H < z ~ l , if this range is not empty. For small z I l 
and H Il, (5.18) may be approximated using (4.8) and (4.9), to give 

~ln~ ( CO J( z' )ln(~' l zo ) dz'- iln(zlz~) ( CO J( z')dz' 
201: Zo Jzo 2Ko( -~Zo) 2U/Ko( -~Zo) Jzo 

1 1z 
, z' , 1 z 1co 

, , - - J( z )ln-dz --In- J( z )dz . 
2EI{,2 ZO Zo 2EI{,2 Zo z 

(5.30) 

Hence, putting z > H, comparison with (5.28) shows that the effective roughness 

parameters describing the flow in this height range are 

(5 .31) 

and 

1 1co 
z' Me(k) = ~ J(k, z' )ln-dz' 

2E I{, Zo Zo 
(5.32) 

The first term in (5,.31) is O(c 2
) larger than the second. 
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5.4.3 Roughness parameters for the DML analysis 

In the upper part of the DML flow, where the mixing length is Am = K,( z - d) , the 

solution for the roof top inner region (3.173) may be written 

Ao . - - . 
u = . . _ {Jo(Z)Ko( -tZ) - Jo(Z)Ko( -tZ)} 

Ko( -tZ) 

+ Po _ {Ko(-iZ)-Ko(- iZ)} 
U,Ko( - iZ) 

. z 
+ k~' fz Z' f( z'){ Jo(Z)Ko( -iZ') - Jo(Z')Ko( -iZ)} dZ' 

IC( - iZ) _ 
+ Ko( -iZ) u, (5.33) 

where 
. (_ rX) f( z') e-k(z'-d) ,) 

Po = tU, W + }z U( z') dz (5.34) 

and Ao is given by (3 .175). For small (z - d)/l and (H - d)/l , using similar approxi­

mations to (4.8) and (4.9) , (5.33) becomes 

1 lZ (') z' - d , 1 z - d 100 (') J u- -- f z In--dz - -In-- f z dz 
2EK,2 Z z~ EK,2 z~ z 

1 1 z - d 100 f( z') I z' - dd' +--n-- _ n - - z 
~ 2EK,2 z~ Z 2Ko(-iZ) z~ 

1 z - d ( 100 if(z') ) - ._ In-,- u+iw+ --dz'. 
2Ko(- tZ) Zo z u, (5.35) 

. Hence , putting z > H , comparison with (5.29) shows that effective roughness param­

et ers for this part of the DML flow are given by 

_ . _ ( OO if( z') , 
1 100 z'-d u+tw+}i. u- dz 

T (k) - f( z') In -- dz' - Z , l'536) 
e - 2 E2 K,2 Ko( -iZ) z z~ EKo( -iZ) . 

and 
1 100 , z' - d , U T e z~ Me(k) = -- f( z )In-- dz - - + -In-. 

2 E2K,2 z z~ E 2 Zo 
(5.37) 

A useful check on the algebra is that the SML results (5.30), (5.31) and (5.32) may 

be obtained from (5.35), (5.36) and (5.37) respectively by putting u = w = d = 0 and 

i = z~ = zo o In the remainder of this chapter, where arguments apply equally to the 

SML and DML analyses, it will suffice to give explicit expressions only for the more 

general DML analysis. 

1-
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5.4.4 Relationship with the surface roughness/elevation parameter­

isation 

The SML roughness parameters (5.31) and (5.32) could also have been obtained via 

the surface roughness/elevation parameterisation of §5.3, since roughness parameters 

can be derived separately for the surface elevation and roughness change problems. 

For the flow above a surface slope distribution s(k), approximation of (5.9) gives the 

roughness parameters 

and (5.38) 

Similar approximation of the roughness change streamwise velocity (5.13) for a surface 

roughnes distribution M (k) gives 

Me(k) = M(k) and (5.39) 

These are leading order results valid in the wavenumber-dependent height range H < 

Z ~ l(k). Equation (5.39) confirms that the sU11ace roughness parameter M, which 

appears in BXH's analysis as a surface slip velocity u(zo ) = -El.;f, is equivalent to 

the roughness parameter ./IIf e deduced from the streamwise velocity variation above 

the roughness change. When the distributions s(k) and M(k) given by (5.23) and 

(5.25) are substituted into (5.38) and (5.39), and the elevation and roughness change 

contributions added together, the resulting parameters lv'fe and Te are the same at 

leading order as those given by direct roughness parameterisation of the SML results 

in (5.31) and (5.32). 

5.4.5 Sample results 

The distributions of Me given by (5.32) and (5.37) have been calculated in the simula­

tions of Meroney's (1968) model forest experiment described in §4.7. Strictly speaking 

it is incorrect to take the inverse Fourier transform of Me( k) since Me( k) is only defined 

at smaller wavenumbers for which H ~ d + l(k) (with d = 0 for the SML analysis). 

However, since (i) the amplitudes of higher wavenumber Fourier components of the 



ParameterisatiollS 157 

distributed force are relatively small and (ii) the restriction H ~ d + l( k) has a phys­

ical basis in Fourier space that can be restated in real space, we calculate the inverse 

Fourier transform regardless and then consider in what region of the real space flow 

the resulting Me( x) has validity. 

The physical basis of the restricted height range H < z ~ d + l(k) is that Me(k) 

is a valid parameterisation of the flow only for positions both above the force distI'i­

bution and well within the inner flow region where turbulence is in local equilibrium. 

Townsend's (1965) arguments, upon which the Fourier space inner region derivation 

of§3.3.1 was based, were originally stated in real space, and showed that after a sud­

den change in surface conditions turbulence is in local equilibrium within an internal 

boundary layer whose height l (x) is given approximately by 

l 
lln - rv X 

Zo 
(5.40) 

where x is the distance downstream from the change. For flow with non-zero displace-

ment height d, (5.40) generalises to 

(5.41) 

Hence the real space roughness parameters, Te( x) and 

1100 
, z'-d , U Te(X ) Z' Me(x) = -- f(x ,z )In -- dz - - + --ln~, 

2<:2/\:2 z z~ <: 2 Zo 
(5.42) 

are valid in the region {(x, z ) : H < z ~ d+l( x)} with l( x) given by (5.41), i. e. fOl' flow 

well downstream of the initial blocking region of the canopy where pressure and inertial 

effects dominate the flow. Notice that a non-zero displacement height d increases the 

region of validity of the roughness parameterisation and brings the point of origin 

of the internal boundary layer defined by (5.41) closer to the leading edge of the 

obstacle canopy. (The streamwise coordinate where the IBL emerges from the roof of 

the obstacle ca~lOpy is estimated by putting l = H - din (5.41).) 

Figure 5.1 shows the calculated NIe (x) for the SML and D ML sirnulations of 

Meroney's (1968) model forest experiment described in §4.7 . The DML equilib­

rium value of about 2.7 corresponds to an effective roughness height of about 2.6cm 
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Figure 5.1: The roughness parameter Me(x) calculated in the SML (dot-dashed line) 

and DML (solid line) simulations of Meroney's (1968) experiment . The horizontal 

axis shows streamwise coordinate in metres. 
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(Ze/ H ~ 0.14). For the same experimental configuration Hsi & Nath (1970) inferred 

a roughness height of 0.74cm (ze / H ~ 0.04) above the model forest, but they took d 

to equal the forest height H and their semi-logarithmic plot of il/u* against In(z - H) 

(their figure 10), from which their effective roughness height was estimated, conse­

quently shows a pronbunced curve. When their data is replotted using the present 

model displacement height d = 12.6cm (d/ H = 0.7), estimated following Thom 

(1971) and Jackson (1981) as the level of mean momentum absorption, the semi­

logarithmic curve is straighter and leads to an effective roughness height of about 

1.6cm (ze/ H ~ 0.09). 

The SML value, on the other hand, is far too large to be realistic . This is because 

the SML turbulence model forces the flow above the canopy to have zero displacement 

height. Suppose the velocity variation above the canopy is broadly as illustrated in 

figure 5.2, and recall that the roughness parameter !vIe quantifies the slip velocity 

at the displacement height, as shown by BXH's analysis and the parameterisation of 

§5.4.4. Clearly the flow above the force distribution in figure 5.2 is displaced with 

a displacement height d of the order of H, and the slip velocity at d = O(H) is a 

good velocity scale for the complete profile. The DML parameterisation shows that 

the effective roughness parameter J..1e for the flow above the canopy is related to the 

magnitude of the velocity defect within it . The SML parameterisation, on the other 

hand, effectively obtains its velocity scale by extrapolating the logarithmic velocity 

variation above H down to the ground, as indicated by the dashed line, leading to 

enormous and unrealistic values of !vIe. 

Figure 5.1 shows how strongly the value of Me depends upon the model displace­

ment height. To investigate the sensitivity of Me to the other DML model parameters, 

figure 5.3 shows the effect of doubling the canopy mixing length A and the interfacial 

roughness heigl~t z~ . The weak dependence of Me upon A and z~ is a robust feature 

of the present parameterisation because these two parameters are more difficult to 

estimate in an algorithmic way than the displacement height d. 
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z 

u(z) 

Figure 5.2: A typical low wavenumber streamwise velocity profile (solid line). Values 

of effective roughness parameter Me are obtained by fitting a logarithmically varying 

profile to the velocity above the canopy and taking the value of the fitted logarithmic 

profile at the displacement height d. Hence the dashed line shows why unrealistically 

large values of effective roughness parameter Me are obtained when an appropriate 

displacement height is not taken into account . 
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Figure 5.3: illustrating the sensitivity of Me to DML model parameters. The solid line 

is the same as in figure 5.1 (Ajh = 0.2 , djh = 0.7 and i jh = 0.75). The dotted line 

shows .Me calculat ed with Aj h doubled to 0.4; the dashed line shows Me calculat ed 

with z~jh doubled to 0.1. 
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5.4.6 Far downstream development 

One case of specific interest is an obstacle canopy that continues with constant obstacle 

density for a streamwise distance much larger than the canopy height. 

Experiments (e.g. Thorn 1971, Raupach et al. 1986) and the simulations of chap­

ter 4 strongly suggest that the flow in this case attains an equilibrium state in which 

the streamwise velocity and turbulent stress pTOfiles become independent of stream­

wise coordinate. The distributed force acting on the flow is balanced by the turbulent 

stress gradient. 

Since this equilibrium state is independent of the drag parameter distribution much 

farther downstream, it is mathematically convenient to consider a semi-infinite drag 

distribution. The suffix 00 will be used in this section to denote the limiting forms 

of profiles far downstream. Suppose that the equilibrium distributed force profile is 

f oo (z ), independent of x . Then the equilibrium streamwise velocity profile 1Loo (Z) is 

given by the limit of the approximate Fourier transform (5.35) as k ~_ 0: 

() _ 1 l z 
(') z ' - d, 1 Z - d 1 00 (') , Uoo Z = Uoo - --2 f 00 Z In --, - dz - --2 In --, - f 00 z dz . 

2ui, z Zo 2E/'i, Zo z 
(5.43) 

This result does not depend upon the arguments given in (5.4.5) as justification for 

the general inveTSe Fourier transform operation, since the far downstream profiles f oo 

and U oo are dominated by the k-1 singularity in their Fourier transforms as k -7 O. 

Putting z > H in (5.43) gives the far downstream TOughness parameters 

and (5.44) 

The vanishing of the far downstream perturbation shear stress was also obtained by 

Townsend (1976, §7.15) for a surface roughness change. 

Equation (5.43) indicates the form of the far downstream velocity perturbation 

but not its magnitude . Owing to the non-linear dependence of the distributed force 

on the total velocity, exact calculation of the magnitudes of Uoo and f oo requires the 

solution of the non-linear differential equation 

(5.45 ) 
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where ( is a stretched vertical coordinate and Uco is the total, i.e. incident plus per­

turbation, downstream velocity. This solution has not been obtained here, but an 

approximation to it may be obtained by noting that uco ( z) given by (5.43) is constant 

above the force distribution and therefore assuming that Uco (z) varies only slowly in 

the upper part of the force distribution where In(z - d)/z~ is large. Then putting 

z = H in (5.43) gives 

L* D* iH z' - d uco (H) ~ Uco - --2 (1 + uco (H))2 In --, - dz' , 
40~ z zo 

the solution of which is 

( ) J1 + Uco 
U co H ~ -1 +. . 

0: 

where 

L* D* { H - d } 
0: = -- (H - d) In -- - H + z . 

40~2 z~ 

In the SML case this simplifies to 

20" 
1Lco (H) ~ -1 + v7i*J5*' 

H*D* 
or 

( 5.46) 

(5.47) 

( 5.48) 

(5.49) 

Hence limiting values of streamwise velocity scale with the inverse square root of 

canopy height and drag parameter and in proportion with E. The asymptotic small 

parameter E quantifies the incident velocity shear, or equivalently the strength of 

the turbulent mixing processes, within the force distribution . As E decreases, the 

capacity of the turbulent stress gradient to balance the force acting is reduced, hence 

the magnitudes of the equilibrium force and total streamwise velocity profiles must 

decrease . 

The scaling of Uco with the inverse square root of drag parameter D* agrees with 

the results shown in figure 4.7. For two values of D* in the ratio 5 : 3 ~ 1.67, the 

values of .JD* are in the ratio y'5 : y'3 ~ 1.29 and the near-equilibrium values of 

streamwise velocity are in the approximate ratio 5 : 4 = 1.25. 
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5.5 The importance of displacement height 

The parameterisation results of §5.4 show that accurate modelling of the displacement 

height d is crucial to the prediction of realistic roughness parameters !vIe and Te . The 

fine details of a practical scheme to estimate d, j\lIe and Te for any given canopy flow are 

incomplete, since we have not specified algorithms for estimating the DML parameters 

A and z~ . The sensitivity study of §5.4.5, however, suggests that the impact of A and z~ 

on calculated roughness parameters is minor in comparison with that of d. Therefore 

an .interim recipe can be outlined as follows. 

1. Calculate a displacement height d for the flow as the level of mean momentum 

absorption, following Thorn (1971), J ackson (1981) and the discussion of §3.8. 

2. Estimate A and z~ using the physical ideas of §3.8. 

3. Calculate effective roughness parameters }..lIe and Te using the results of §5.4. 

It is interesting to note that the DML and SML results are very similar in the picture 

they give of the overall canopy flow field (§4.7) but differ enormously when parame­

terised in terms of roughness. 



Chapter 6 

Scalar dispersion within a group 

of obstacles 

6.1 Introduction 

Many of the practical situations that motivate investigation of flow through a group 

of obstacles are concerned with dispersion , for example the accidental release of toxic 

or radioactive material just upwind of a built-up area. Understanding the changes in 

the flow field around a group of buildings is a prerequisite for any prediction of the 

dispersion , but the bottom line for those at risk is expressed in terms of increased or 

reduced concentrations, not velocities and turbulent shear stresses. 

As a preliminary investigation into the problem of dispersion near buildings , and to 

show how the flow field results of previous chapters can be used in a practical dispersion 

calculation, this chapter presents a steady, Eulerian analysis of concentration changes 

based on the time-averaged diffusion equation. Although a mathematically similar 

analysis has been performed before for flow over low hills (Hunt et al. 1988c, Weng 

1990), new aspects of diffusive behaviour emerge because the undedying velocity and 

turbulent stress fields are very different. 

165 
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6.2 The variety of dispersive processes 

The problem of turbulent dispersion around a group of buildings is hugely complex. 

Different time scales, of the turbulence in the incident wind, of the turbulence gen­

erated by obstacles and of the mean flow advection between obstacles, interact to 

determine the behaviour of parcels of contaminant passing through the array. Rapid 

advection between obstacles coupled with long residence times in individual obstacle 

wakes gives rise to a chaotic, random walk process in which parcels of contaminant 

behave largely independently of each other. Slow advection between obstacles, on the 

other hand , allows turbulent eddying motions to spread out the concentration field in 

a more continuous way. 

Following the field and wind tunnel experiments of Davidson et at. (1995a,b), Jer­

ram et al. (1994) discussed some important physical processes that influence dispersion 

in such flow s. For an unobstructed plume, lateral meandering of the mean wind (on 

the experimental advection time scale) makes the instantaneous plume ~idth much 

smaller than the time- or ensemble-averaged plume envelope, as described for vertical 

diffusion from a ground-level source by Hunt & Weber (1979); this meandering effect 

is clearly visible in the video of the Cardington field experiments shown by Davidson 

et al. (1995a). For a plume passing through the group of buildings, however, the 

meandering effect is reduced by the creation of secondary wake sources: an obstacle's 

wake rapidly entrains contaminant while the plume is directed onto that obstacle and 

detrains contaminant more slowly for some time after the impinging plume has been 

turned elsewhere by the meandering wind. A second important effect is topological 

dispersion: the convergence and divergence of mean streamlines as they weave be­

tween the obstacles amplifies the effects of turbulent diffusion across the streamlines. 

Countering this increase in total dispersion, however, the basic turbulent cliffusivity 

within a group ' of obstacles can be less than in the incident flow when the lateral 

obstacle dimensions are much smaller than turbulence length scales in the incident 

wind, as shown in the bubble experiment described by Rinze (1975, pp. 448-449). 

Turbulent diffusion near a two-dimensional obstacle and its wake was studied by 
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Puttock & Hunt (1979) using the diffusion equation: their results included prediction 

of the average residence time of fluid particles within the recirculating wake. Fung 

& Hunt (1991) modelled the lateral diffusion through a group of tall cylinders using 

potential flow for the mean flow field, a random flight model for the turbulence and the 

criterion that whenever a fluid particle hit an obstacles it was absorbed for a period 

of time representing residence in the wake and then emitted at a random position 

around the wake's boundary. Fung & Hunt's model permitted study of the topological 

dispersion and secondary source effects , but omitted consideration of vertical plume 

spi'ead and deceleration of the mean flow through the group (since in potential flow the 

obstacles exert no drag upon the flow). Bartsch (1993) used a similar potential flow 

model to try to relate particle travel times through an array of cylinders to observed 

pressure drops across such arrays and to the dispersion of contaminant within the 

array. 

Summaries of the mathematical modelling approaches available for general disper­

sion problems, without particular reference to groups of obstacles and the associated 

special effects, are given by Robins & Fackrell (1977), Hunt et al. (1979), Chatwin & 

Alien (1985) and Hunt (1985). Thomson (1986) describes a random walk model for 

dispersion over complex terrain that might be adaptable for flow through a group of 

buildings. Kot (1989) considers the application of the various modelling approaches to 

contaminant dispersion around buildings. The consensus is that statistical methods 

provide the most authoritative dispersion predictions but require detailed flow field 

information that is often unavailable. The conceptually simpler diffusion equation 

does not required such detail but is based on gradient-transfer assumptions that are, 

in general, unfounded. In many situations, however, statistical analysis can be used 

to show that the diffusion equation is approximately valid in certain regions of the 

flow , usually w,here fluid particles have travelled for a long time from the source of 

contaminant (e.g. Chatwin & Alien). 
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6.3 Use of the time-averaged diffusion equation 

This chapter preselits a steady, Eulerian analysis of concentration changes based on 

the time-averaged diffusion equation 

'* n *'* + 8 ("") - 0 u . v C -- u ·c - . 
8xi t 

(6.1) 

Here il* and c* are the total mean velocity and concentration fields and il' and c' 

are the total fluctuation velocity and concentration fields. In the second term of 

(6.1) , (uic') is a mean concentration flux due to temporal correlations between the 

fluctuating concentration and velocity fields. Modelling is required, as in the time­

averaged N avier Stokes equations, because there is no closed form equation for (uic'). 

By arguments similar to those of §3.2, the gradient-transfer model proposes that this 

flux is linearly related to the mean concentration gradients-

( " " ) _ i( * 8c* u ·c - -1 ~ . . --
t tJ 8xj (6.2) 

- with diffusion coefficients [(0 that depend only on the local flow. For a detailed 

discussion of this model and the turbulent scalar diffusion equation, see the review of 

Chatwin & Allen (1985). Observations and theoretical arguments suggest that (6.2) 

is a reasonable model for far-field diffusion, i. e. for diffusion of fluid particles which 

have moved some distance away from the source of concentration, but fails to describe 

dispersion close to a source, since fluid particles tend initially to travel in straight lines 

for a time of the order of the Lagrangian integral time scale Ti. 
Our analysis calculates the changes in concentration that are due to the existence 

of obstacles obstructing the boundary layer flow. Thus we imagine the concentration 

distribution of some pollutant that would prevail in the absence of any obstacles, and 

then ask how this distribution would be altered by the addition of a group of obstacles 

to the flow . The pre-existing, steady concentration field may derive from a localised 

source upstream of the group, in which case its form may be calculated by reference 

to the literature on turbulent dispersion in undisturbed boundary layers (e.g. Hunt & 

Weber 1979, Hunt 1985). Alternatively it may be a diffuse cloud of pollution whose 
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q 

pre-existing + vertical + differential source of 

concentration pert. velocity mixing pert. concentration 

Figure 6.1: The creation of a perturbation source field. 

length scales are much larger than those of the perturbing group of obstacles , changing 

little in the streamwise direction and with a simply varying concentration profile in 

the vertical (cf. Hunt et al. 1988c). 

In all cases the perturbation velocity and stress fields cause the pre-existing con­

centration distribution to be advected and diffused differently to what would happen 

in the absence of such perturbations, creating patches q within the flow where con­

centration is higher or lower than it would otherwise be (figure 6.1). These patches 

then act as sources- both positive and negative- of perturbation concentration which 

may be advected downstream by the total velocity field and dispersed by turbulent 

stresses. 

Thus the perturbation concentration field to be calculated appears to derive from 

a virtual source q that is distributed throughout the group of obstacles. If q were a 

'real source of concentration, the diffusion equation alone would be a poor model of 

the resulting concentration distributions, since it is invalid for parcels of contaminant 

that have not travelled far from their source. Raupach (1989) describes a combined 

method, using a statistical method for the near field and a diffusion equation for the far 

field, that could be used to analyse such a. distributed real source of contaminant. For 

the present virtual source, however, we believe that the near field restriction does not 

apply. The distinctive statistical behaviour of fluid particles near a source results from 
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the initial localisation offluid particle positions. Fluid particles anywhere in a flow field 

will tend to move in straight lines for times of the order of Ti; what differentiates near­

field dispersion is that all dispersing particles are starting from a fixed position. Fluid 

particles passing through the virtual sources of perturbation concentration do not have 

such certain positions; having travelled for some time from the actual source their 

coordinates are described by delocalised probability distributions. Hence dispersion 

of perturbation concentrations from virtual sources should behave everywhere like 

far-field dispersion. (Except, of course, for virtual source that lie within Ti of the 

actual source, such that near-field dispersion from the actual source is still in effect. 

Such cases, which arise when a source of pollution is placed within or very near the 

group of obstacles, require corrections similar to those used by Raupach (1989) and 

are excluded from the analysis below.) It follows that (6.1) and (6.2) together should 

provide a reasonable model of the dispersion process. 

6.4 Linearisation conditions and flow structure 

The governing equations for perturbation concentration will be linearised as have 

been the flow equations of previous chapters. This means that products of pertur­

bation concentration with perturbation velocities are neglected in comparison with 

products of perturbation concentration and incident velocity. This does not require 

any assumption that perturbation concentrations are much smaller than pre-existing 

concentrations because the diffusion equation is linear in concentration. Thus the 

only linearisation assumptions are those on the perturbation velocities and turbulent 

stresses which have already been used in deriving the flow field information. 

The arguments of §3.3, defining the region near the ground where a turbulence 

closure model based on gradient-diffusion is appropriate, apply equally to the use of 

(6.2) in modelling turbulent fluxes of perturbation concentration. Therefore the flow 

domain is divided into inner and outer regions in the same way as for the standard 

mixing length flow calculations. The problems of multiple length scales discussed in 

§3.4 are unlikely to be so prevalent as in the flow calculation, as the perturbation 

I i 
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the initial localisation offluid particle positions. Fluid particles anywhere in a flow field 

will tend to move in straight lines for times of the order of Ti; what differentiates near­

field dispersion is that all dispersing particles are starting from a fixed position. Fluid 

particles passing through the virtual sources of perturbation concentration do not have 

such certain positions; having travelled for some time from the actual source their 

coordinates are described by delocalised probability distributions. Hence dispersion 

of perturbation concentrations from virtual sources should behave everywhere like 

far-field dispersion. (Except , of course, for virtual source that lie within Ti of the 

actual source, such that near-field dispersion from the actual source is still in effect. 

Such cases, which arise when a source of pollution is placed within or very near the 

group of obstacles, require corrections similar to those used by Raupach (1989) and 

are excluded from the analysis below.) It follows that (6.1) and (6.2) together should 

provide a reasonable model of the dispersion process. 

6.4 Linearisation conditions and flow structure 

The governing equations for perturbation concentration will be linearised as have 

been the flow equations of previous chapters. This means that products of pertur­

bation concentration with perturbation velocities are neglected in comparison with 

products of perturbation concentration and incident velocity. This does not require 

any assumption that perturbation concentrations are much smaller than pre-existing 

concentrations because the diffusion equation is linear in concentration. Thus the 

only linearisation assumptions are those on the perturbation velocities and turbulent 

stresses which have already been used in deriving the flow field information. 

The arguments of §3.3, defining the region near the ground where a turbulence 

closure model based on gradient-diffusion is appropriate, apply equally to the use of 

(6.2) in modelling turbulent fluxes of perturbation concentration. Therefore the flow 

domain is divided into inner and outer regions in the same way as for the standard 

mixing length flow calculations . The problems of multiple length scales discussed in 

§3.4 are unlikely to . be so prevalent as in the flow calculation, as the perturbation 
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source field is derived from velocity and stress fields which vary more smoothly than 

the underlying force distribution; but if necessary they can be accommodated by the 

same sort of solution modifications as those used in §3.6 . 

6.5 Diffusion equation analysis 

The analysis presented here closely follows that ofI-runt et al. (1988c) and Weng (1990) , 

who developed a diffusion equation analysis to model the changes in concentration and 

scalai' deposition rates over the surface of a low hill. 

6.5.1 Governing equations 

Combining the time averaged diffusion equation (6.1) and turbulent flux model (6.2), 

and omitting non-perturbation terms (whose balance should describe the pre-existing 

concentration distribution), we obtain 

u* oG* + w* oG* + U* oc* = ~ (K*. oc*) + ~ (t':-,.K*. OG*) . (6.3) 
ox* oz* ox* ox'! tJ ox; ox'! tJ ox; 

Here the velocity field u* has been separated into its incident and perturbations parts 

as in the flow calculations; similarly c* = G* + c* and kiJ = KiJ + t':-,.Kij' Thus 

t':-,.KiJ is the change in ij-diffusivity due to the distributed force. K~3' which relates 

the vertical turbulent flux to the vertical concentration gradient , may be modelled by 

arguments similar to those used for the turbulent ' shear stress model in §3.2, since 

eddies contributing to vertical diffusion are blocked by the ground and so have length 

scales proportional to height. 

Eddies contributing to the lateral diffusion coefficient lCi.2 are not blocked in this 

way because they may lie in horizontal planes. A length scale A; for these eddies may 

be estimated from the obstacle arrangement: since such eddies are created as Karman 

vortices shed from the obstacles, A; is related to the average lateral obstacle dimension 

or the average lateral spacing. Similar arguments apply to the streamwise diffusion 

coefficient Kil but in practice this coefficient is less important, firstly because the 

effects of direct streamwise diffusion are normally swamped by "shear» or "Taylor» 
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dispersion (the combined effect of differential advection at different heights and vertical 

diffusion; see e.g. Smith 1976) and secondly because the thinness of the inner region 

makes streamwise turbulent flux gradients negligible in comparison with vertical and 

lateral flux gradients. 

Following Hunt et al. (1988c), the velocity scale for the diffusion coefficients is 

taken to be the perturbed friction velocity, i. e. the square root ofthe locally perturbed 

turbulent shear stress. So the dynamically important undisturbed and perturbation 

diffusivities are modelled by 

where T is the perturbation shear stress from the flow calculation. Robins & Fackrell 

(1977) suggest Ktj = VTij /Pr , where VT is the eddy viscosity and Pr is the turbulent 

Prandtl or Schmidt number of the scalar under investigation; hence (6.4) effectively 

assumes Pr ~ 1. 

There could be significant turbulent concentration flux gradients associated with 

off-diagonal elements of the diffusivity tensor, for example 8( k Z38C* / 8z* )/ 8y*, but it 

is difficult to justify such sophistication in the diffusion model when the only available 

turbulence information is the Reynolds shear stress . The present analysis therefore 

neglects off-diagonal contributions to the concentration flux . Using the diffusivities 

(6.4), (6.3) becomes 

U*-- - -- ),*u -- - - K,z*u-8c* 8 ( 8c* ) 8 ( 8c* ) 
8x* 8y* Y * 8y* 8z* * 8z* 

= -q*, (6.5) 

where 

q* = u*8C* + w*8C* _ ~ (),*u*~ 8C* ) _ ~ (K,z*u*~ 8C*) . (6.6) 
8x* 8z* 8y* Y 2 8y* 8z* 2 8z* 

q* is the virtual source field for the perturbation concentration. There may be further 

contributions to q* if pollutant can be deposited on or absorbed through obstacle 

surfaces, such as through a building's open windows; these contributions could be 

modelled by a source term proportional to the force distribution f. 
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Equation (6.5) is Ilon-dimensionalised using the length and velocity scales L* and 

U; from the flow calculations and a concentration scale e;: 
ac a2C 2 a ac 

U -a - EK,AY -
a 

2 - EK, -a Z-a = -q, 
x y Z Z 

(6.7) 

where c = c* le; and .q = q* L* I(U;e;). Finally, to facilitate solution of the diffu­

sion problem for arbitrary distributions of the perturbation source q, we rewrite the 

physical quantities in (6.7) in terms of their Fourier transforms: 

(6.8) 

Here we have used Fourier transforms in both streamwise and lateral directions, with 

respective wavenumbers k and rn. This allows us to consider dispersion of a three­

dimensional plume, even though the underlying flow field is two-dimensional. 

6.5.2 The outer region 

In the outer region the evolution of turbulent eddies responsible for vertical mixing is 

described by rapid distortion theory (Britter et al. 1981); hence the vertical concen­

tration fluxes associated with these eddies are negligible. The same cannot necessarily 

be said of the eddies responsible for lateral mixing since these eddies are characterised 

by an independent length scale that does not increase with height. Therefore the third 

term of (6.8) is ignored and the outer region solution is 

tq 
C--­

- kUm ' 

6.5.3 The inner region 

(6.9) 

The SSL analysis proceeds by rescaling the vertical coordinate on l and expanding c 

as an asymptotic series in E: 

( = zll; 

Then at O(E) and 0(E2), (6.8) gives 

ikU/co + EK,rn2AyCo - EK,2((c~)'11 

. ikU/c} + EK,rn2 AyC} - EK,2( (c~)' I I 

-q; 

-ikco In (. 

(6.10) 

(6.11) 

(6.12) 
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Although the form of (6.11) and (6.12) is similar to that of Weng's (1990) inner region 

equations, the sample r esults obtained below are quite differen t from Weng's because 

the perturbation source fields q are quite different in the distributed force and hill flow 

problems. The general solutions to (6.11) and (6.12) are 

where 

Z - 3i1f/4 4kUlm Z -e . 
EK,2 

(6 .15) 

Exponentially large terms must cancel each other as [Z [ ---7 00; hence 

. jZ 
Ao + kU't Z' q( z')Ko( -iZ') dZ' 0, 

lm ZO 
(6.16) 

A1 - _1_ ( z Z'co(Z') In ~' Ko(-iZ')dZ' = O. 
Ulm Jzo 

(6.17) 

Details of the inner surface layer are similar to those in the flow calculation and are 

not repeated here; the result is that very near the ground 

cPw Z 1 l z 
, Z , 

C = Cw + - In - + -2 q(z ) In I dz , 
K, Zo EK, Z O Z 

(6 .18) 

where Cw is the perturbation concentration at the ground and cPw is the perturbation 

surface flux non-dimensionalised by u*C; . Matching between the ISL and SSL shows 

that Bo = 0 and that 

(6.19) 

6.5.4 Matching the inner and outer regions 

As z /l ---7 00 the SSL solutions (6.13) and (6 .14) may be approximated as in §3 .5.8 by 

moving q( z') outside the rapidly varying integrals, to give 

~ tq . 
Co ~ --, 

kUlm 
(6.20 ) 
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The sum of these leading and first order approximate SSL solutions is 

(6.21) 

which is the same as the outer region solution (6.9). Hence the inner region solution 

is in fact uniformly valid for the whole flow. 

Using the matching conditions that determine Ao and Al we can write the uni­

formly valid leading and first order solutions as follows: 

Co = _ iJo(Z) ( OO Z'q(z')J(o( -iZ') dZ' 
kUlm }z 

_ 'iJ(o( -iZ) l Z 
Z' ( ')J (Z') dZ" kU q Z 0 , 

Im Zo 

BIJ(o( -iZo) + JUo(Z) ( OO Z' co(z') In zl' IC( -iZ') dZ' 
Im }z 

+ J(o( -iZ) (z Z' co(z') In ~' Jo( Z') dZ'. 
Ulm }zo 

6.5.5 Surface flux conditions 

(6.22) 

(6 .23) 

A vertical concentration flux at the ground results from pollutant sticking to or being 

absorbed by roughness elements near z = ZOo Since roughness elements typically 

occupy a height range up to about 30zo the average deposition height will be Z I ~ 10zo 

and it is usual to specify a surface flux condition at Z I rather than at Zo (Hunt et al. 

1988c) . 

In a linear calculation, the surface flux of perturbation concentration must in 

general be a linear function of the various perturbation quantities that occur in the 

flow . There are obvious reasons for dependence on the local concentration and shear 

stress: 

(6.24) 

cPc and cPr are fixed coefficients: the first describes increased surface flux due to in­

creased local concentration and the second describes increased surface flux due to 

faster deposition of the pre-existing concentration. Pollutant deposition may also be 

affected directly by the distributed force near the ground, contributing a third term 
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to the surface flux: 

(6.25) 

where F( Zl) is some integral over the force distribution at Z = 0 (Zl)' 

The only part of the perturbation concentration solutions (6.22) and (6.23) that 

gives any surface flux is EElJ(o( -iZ). Thus cPw may be expressed in terms of El: 

,/. .- E 8J(o( -iZ) I 
'f'w - E 1 - --=-'-----'-

8ln Z Z l 

Substituting (6.26) into (6.25) we obtain an equation for El: 

cPc(Co( Zl) + E[Cl(Zl) - ElJ(o( -iZl )]) 

+ cPT T( Zl) + cPJF(Zl) . 

6.6 A linear incident concentration profile 

(6.26) 

(6.27) 

To illustrate the results of the analysis, consider a pre-existing concentration -distribu­

tion that is homogeneous in the streamwise and lateral directions and varies linearly 

with height: 

C = 1 + az. (6.28) 

Then the perturbation source field -q given by (6.6) simplifies to 

(6.29) 

Let a be positive, such that the pre-existing concentration increases upwards. Then 

the interpretation of (6.29) is that (i) upwards perturbation velocities (w) reduce 

the local concentration by transporting scalar from less concentrated areas, (ii) posi­

tive shear stress perturbations (T) increase local concentration because the diffusivity 

profile z~ increases faster than in the undisturbed flow, hence more high con­

centration scalar is mixed down from above, and (iii) positive shear stress gradients 

(8T/8z ) make the diffusivity profile increase faster with height, with the same effect 

as in (ii). 
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Even with such a simplified initial concentration distribution as (6.28), it has not so 

far proved possible to. obtain simple expressions for interesting integrated quantities 

such as the total concentration flux through the roof of an obstacle canopy or the 

maximum ground level concentration perturbation. 

0.9 

0.8 

0.7 ..-..-..-
0.6 

/ 
/ 

0.5 

0.4 
/ 

0.3 / 

0.2 

0.1 

0 

-0.3 -0.25 -0 .2 -0.15 -0.1 -0 .05 0 

Figure 6.2: Far downstream perturbation concentration profiles within the canopy. 

2E2K,2cce /( o:H2 f cemax) is plotted against z/ H for linear (solid line) and quadratic 

( dashed line) equilibrium force profiles. 

Some progress can be made, however, in investigating the far downstream form of 

the perturbation concentration profile for semi-infinite obstacle canopies of the type 

described in §5.4.6 . The limiting far downstream profiles derived here (indicated by 

the suffix (Xl) describe an equilibrium state that will exist in practice in any long 

obstacle canopy far downstream of its leading edge. Assuming zero perturbation flux 

at the ground, wh1ch is appropriate for a non-adhesive gaseous contaminant, and 

approximating the leading order inner region solution (6.13) using (4.8) and (4.9) , we 

find 

1 l ce 
, z' , 0: l ce 

, , 
Cce = -2 qce (z )ln-dz = - Tce(z)dz. 

. EK, z z 2 z 
(6.30) 
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Here we have used the fact that the integral of q over all z vanishes, which is evident 

from (6.6) when %x = %y = O. By differentiation of (5.43), Too is 

Hence 

1 t OO (') , 
Too = - £2,.,,2 } z f oo z dz . 

Coo = ~2 2 t OO (z - z')foo(z' ) dz' . 
2£,." }z 

(6.31) 

(6.32) 

Figure 6.2 shows the perturbation concentration profile within the canopy given by 

(6.32) when the equilibrium force profile foo takes on idealised linear and quadratic 

forms. Above the canopy the perturbation concentration is zero, because ou/ox, w 

and T all vanish (the latter only for z > H) in the equilibrium state. 

6.7 Perturbation of an incident Gaussian plume 

As a second example of the dispersion analysis, consider a two-dimensional, steady 

plume of contaminant that would, in the absence of any obstacles, have the refiected 

Gaussian concentration distribution (e.g. Davidson et al. 1995a) 

C() Co ( [- (Z - z(x ))2 ] [- (Z + z(x ))2]) 
x, Z = exp 2 + exp 2( . 

J27faz (x) 2az (x) 2az x) 
(6.33) 

The progress of the plume is specified by two functions of streamwise coordinate: the 

vertical plume spread a z (x) and mean centerline height z( x ). 

Simulation results are now presented using the dispersion analysis of §6.5 to cal­

culate the perturbations to a Gaussian plume given by (6.33) passing through a force 

distribution that models the staggered obstacle array in Davidson et al.'s (1995b) wind 

tunnel experiment at the Environmental Protection Agency (see §4.6). 

F igure 6.3 shows the growth of the undisturbed plume in the absence of any 

obstacles. The plu!ne centreline height is uniformly z = H /2, while the plume spread 

a z increases from O.2H at 7 H upstream of the leading edge of the array to 1.3H at 

40H downstream of the leading edge. Hence the incident plume size is of the same 

order as the canopy height. 
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Figure 6.3: Contours of the undisturbed plume concentration C. Streamwise and 

vertical coordinates are non-dimensionalised by obstacle height H = O.12m. The 

streamwise coordinate is measured from the leading edge of the alTay and the obstacle 

alTay extends from xl H = 0 to xl H = 16. * marks the source position. 
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Figure 6.4: T he disturbed plume. Total concentration c is shown using greyscale 

contours. The superimposed lines show the standard deviation about the ground of 

the incident (dashed line) and disturbed (solid line) concentration profiles as a function 

of x. Axes are as in figure 6.3 . * marks the source position. 
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Figure 6.4 shows the disturbed plume. As expected, the effect of the resistance is 

to increase the vertical spread of the plume. Figure 6.4 also quantifies the increase by 

superimposing graphs of the standard deviation about the ground of the undisturbed 

and disturbed concentration profiles. Although it is conventional and convenient to 

specify a vertical Gaussian plume profile in terms of 2 and (Jz , as in (6.33), the inverse 

process- finding the parameters 2 and (Jz which best describe a supplied concentration 

profile- is rather ill-conditioned, particularly when 2/ (J z is small. Davidson et al. 

(1995a) chose to characterise their measured profiles by fitting values of 2 and (Jz and 

then adding these together to give the "plume extent" ZT == 2 + (Jz ; the published 

control and alTay plume data refers only to ZT. The ill-conditioning of this parameter 

fitting process means that any attempt to compare Davidson et al. 's data with theory 

is susceptible to large elTors. A better way of quantifying plume extent as a single 

number is to use the sum of the squares of 2 and (Jz: z~ == 22 + (J;; z~ is the variance 

of the concentration profile about the ground and is independent of the ratio 2/ (J z . 

Figures 6.5,6.6 and 6.7 show the perturbation concentration distribution and the 

contributions to perturbation concentration due to advection and turbulent mixing 

respectively. The separate contributions are calculated by excluding terms from the 

expression (6.6) for the perturbation source field q. Thus for the advection contribution 

we put 
oC OC 

q=u-+w-ox OZ 

and for the turbulent mixing contribution, 

q = _ EK2 ~ (ZT OC) . 
2 OZ OZ 

(6.34) 

(6.35) 

For the flow modelled here it is clear that the concentration changes due to enhanced 

turbulent shear stresse around the top of the obstacle canopy are far more significant 

than concentration changes due to advection. 
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Figure 6.5: Contours of the perturbation concentration distribution c. Contour range 

is - O.10Cmax (white) to O.13Cmax (black), where Cmax is the maximum concentration 

in the incident plume (figure 6.3). * marks the source position. 
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Figure 6.6: The advection contribution to the perturbation concentration distribution. 

Contour range is -O.OlCmax (white) to O.07Cmax (black). * marks the source position. 

6.8 Concluding remarks 

The analysis described here is very general in that it can be applied to any incident 

concentration distribution and any perturbation flow field. It has been incorporated 

into the flow field computer software package described in §3 .1 so that simulations 

of plume dispersion changes can be performed for any combination of incident wind 

and distributed force that is input to the flow field calculation. The limitations of the 

dispersion analysis are the limitations of the diffusion equation as a representation of 

real dispersion. 

Experimental dispersion data for comparison with the current analysis must satisfy 

two requirements. Firstly, the data must be perturbation data, i.e . they must describe 

the changes in dispersion that result from the addition of obstacles to an initially 

unobstructed flow. This can be achieved in practice, as in Davidson et al.'s (1995a) 

field experiments, by running a control plume to one side of an array of obstacles 
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Figure 6.7: The mixing contribution to the perturbation concentration distribution. 

Contour range is -O.14Cmax (white) to O.08Cmax (black). * marks the source position. 

at the same time as the array plume passes between the obstacles. Secondly, the 

data must be characterised by convenient and well-conditioned quantities. The usual 

Gaussian parameters, mean centreline height z and vertical plume spread a z, are 

not good characterisation quantities because fitting these parameters to an arbitrary 

concentra,tion profile is , in general, an ill-conditioned process . The distinction between 

z and a z is only clear for thin elevated plumes with z ~ a z, a rare case in canopy 

flows. In the context of canopy flows , where plumes are usually well-mixed over a 

depth of the order of canopy height, we recommend that plumes be characterised by 

the mean and standard deviation of their concentration profiles about the ground. 



Chapter 7 

Summary and conclusions 

The main achievement of this thesis has been to give the first analytical treatment of 

two-dimensional turbulent flow through a region of distributed resistance. 

The introductory discussion of chapter 1 set out the need for such a theory, firstly 

to provide a description of the flow field within a group of obstacles of fini~e extent, 

such as a forest or an urban area, secondly to clarify existing parameterisations of the 

flow above such obstacles and, where relevant, propose new parameterisations. A re­

view of the existing literature on canopy flows showed that the concept of distributed 

resistance, in which an array of obstacles is modelled as a region without solid ob­

structions but with distributed body forces, was well known but had only previously 

been investigated in numerical computations and one-dimensional analytical treat­

ments (i. e. for horizontally homogeneous force distributions) . Such treatments are 

insufficient to understand the parameterisation of flow above a group of obstacles of 

finite size, or whose distribution varies in the streamwise direction. Therefore two key 

objectives emerged: (i) to construct an analytical theory of two-dimensional canopy 

flows and (ii) to use the results of this theory to derive accessible parameterisations 

of broad features · of the flow . As the necessary first step in any theory based on dis­

tributed resistance, chapter 1 concluded with a simple formulation for calculating the 

distributed forces corresponding to a given obstacle distribution. 

Chapter 2 presents several calculations of inviscid and laminar (or constant eddy 

185 



Summary and conclusions 186 

viscosity) flow through a region of distributed force. The most significant result of 

these calculations is that the structure of the perturbation velocity field depends 

strongly on the form of the velocity profile incident upon the force distribution. In 

most cases the perturbation flow structure resembles outflow from a source, as ex­

pected given the close mathematical relationship between a point force and a point 

source. For some incident velocity profiles, however, even for force distributions that 

are everywhere non-negative (i.e. resistive), the source-like structure of the flow field 

changes to a much weaker quadrupolar flow structure (i. e. the far field decays like 1'-3 

rather than 1'-1). The two perturbation flow structures differ significantly in the de­

gree of blocking of the incident flow and in the amount of fluid exchange between the 

force distribution and the flow above it , and so would have radically different effects 

on scalar dispersion. 

By consideration of the symmetry of the flow, we showed that the vanishing of 

the source-like structure is associated with the absence of a velocity discontinuity or 

strong shear layer at the ground. The implication for turbulent flows, which do have a 

strong shear layer at the ground, is that the source-like structure should always prevail. 

Hence it is crucial that any attempt to model turbulent flow uses an incident velocity 

profile which is discontinuous or has strong shear at the ground- this specifically 

rules out linear velocity profiles of the form U = a z . The results also suggest that low 

Reynolds number laminar viscous flows, which are linear near the ground, respond to 

distributed forces in a very different way from turbulent flows. The laminar viscous 

calculation of §2.9 uses a uniform incident velocity profile (which is interpreted by the 

symmetry arguments of §2.10 as being discontinuous at the ground) because it was 

intended as a preliminary model for turbulent flow, and was later used as such in the 

displaced mixing length (DML) theory of §3.8. 

The core of, the thesis is the asymptotic analysis of chapter 3. Two contrasting 

turbulence models were investigated, respectively describing strOllg (D ML) and weak 

(standard mixing length - SML) interaction between the perturbed mean flow and 

turbulent stress perturbations. Although the SML analysis is similar to previous 
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analyses of turbulent flow over low hills (Hunt et al. 1988a) and roughness changes 

(Belcher et al. 1990), changes were required to reflect the fact that a distributed force 

extends vertically into the flow and thus imposes its own vertical length scale H (or, in 

general, several such scales) . The appropriate velocity scale for advection is then, for 

all wavenumbers, U*(H) rather than U*(hm ) (where hm is Hunt et al.'s middle layer 

height) , and the asymptotic small parameter E = In-1 (H/ zo) quantifies the difference 

in height scales between H and the roughness height Zo of the incident flow. E must 

be small, or else it would be inconsistent to distinguish between the canopy obstacles 

modelled as a distributed force and the surface roughness elements modelled as a 

roughness height. The imposed length scale H also means that rapidly varying force 

distributions require a new layer to be added to the hill/roughness flow structure. 

The new layer includes significant turbulent stresses that are generated in an elevated 

region of rapid mean velocity variation and then advected downstream. 

When the perturbed flow includes an elevated shear layer strong enough to alter the 

turbulence structure above the canopy, the DML turbulence model is required. The 

effect on the upper turbulence of a strong elevated shear layer is upward displacement: 

the mixing length for turbulence above the shear layer is referred to some non-zero 

displacement height d rather than to the ground. The arguments of §3.8 showed that 

the creation and spreading of shear layers at roof top height in a group of obstacles 

could be the missing physical mechanism to explain Thorn's (1971) observations and 

J ackson's (1981) theoretical conjecture that the displacement height d coincides with 

the level of mean momentum absorption within the obstacle canopy. 

Chapter 4 presented comparisons between the analytical theories of chapter 3 and 

experimental data or numerical simulations. Good agreement between SML theory 

and a numerical simulation of turbulent flow through a distributed force using the 

J( - E closure sho,ws that the SML turbulence model and the assumptions made during 

the asymptotic analysis are justifiable in practice. For the other comparisons, with 

experimental field and wind tunnel data, the concept of distributed force iteration 

was introduced. This allows for non-linear sheltering effects in the specification of the 
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force distribution by using the local velocity instead of the upwind velocity to calculate 

the force acting at al~y point . The experimental comparisons are, of course, tests of 

the distributed force concept and of the recipe for calculating distributed force as 

well as of the turbulence modelling and asymptotic analysis . The level of agreement, 

in comparisons of the perturbed streamwise velocity profiles for which most data is 

available, was very encouraging! 

When the additional parameters for the DML theory were estimated according to 

the physical reasoning of §3.8, no large differences were observed between the SML and 

DML results . Therefore the less adjustable and simpler SML theory is recommended 

when the intent is to model the detailed perturbation flow field within and around an 

obstacle canopy. 

In chapter 5 two parameterisations for the flow above the obstacles were derived 

from the detailed flow field results of chapter 3. The first parameterisation decomposed 

the SML results in terms of the previously studied hill flow and roughness change 

problems . This means that an existing computational model for surface elevation 

and roughness changes , such as "Flowstar" (Carruthers et al. 1988), can in principle 

be used to simulate flow above a region of distributed resistance, using the relations 

derived in §5.3 to calculate elevation and roughness distributions "equivalent" to a 

given force distribution. Fung & Hunt (1991) discovered this possibility while trying 

to model the flow above an array of obstacles using Flowstar: they obtained a better 

representation of the flow by using a combination of elevation and roughness than 

by either alone. The parameterisation conversely implies that the hill and roughness 

problems may each be simulated by using a force distribution calculated such that the 

unwanted flow component vanishes (but the details of this calculation have not been 

presen ted here) . 

The second pal:ameterisation derived effective roughness parameters for both SML 

and DML results . Despite the apparent similarity between the results of the two 

turbulence models in the comparisons of chapter 4, there are dramatic differences 

between them when it comes to parameterisation. The DML theory, using a realistic 
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displacement height estimated using Jackson's (1981) definition as the level of mean 

momentum absorption (in accordance with the physical arguments of §3.8), gives 

values of effective roughness height Ze that are comparable with those "observed" in 

experiments by fitting logarithmic velocity profiles to the data. The SML theory, on 

the other hand, with zero displacement height, gives impossibly large values for Ze ' 

Hence a realistic displacement height is essential for successful estimation of effective 

roughness parameters. The sensitivity of Ze to the other two DML parameters seems 

much weaker. More work is required, however, to be sufficiently precise about all 

three DML parameters that the DML roughness parameterisation could be used as a 

reliable, predictive model. 

It is interesting to note that the expressions derived here for the effective roughness 

height are strikingly similar to those derived by Wood & Mason (1993) for the flow 

above a range of hills. The similarity suggests that results of the form 

In ze =CF*lnHF 
Zo pu; Zo 

(7 .1) 

are very widely applicable in the roughness parameterisation of surface disturbances. 

Here F * is the force acting on the flow per unit plan area, HF is the height at which 

F * appears to act, and C is an 0(1) coefficient. 

The region of validity of the roughness parameterisation is naturally expressed in 

Fourier space and cannot rigorously be translated into real space. Loosely translated, 

however, for the case of a step change in obstacle density at x = 0, there is an internal 

boundary layer (IBL) that starts from x = 0 and grows downstream. The roughness 

parameterisation is valid when there is a range of heights Z within the IBL but above 

the obstacle canopy such that H < Z ~ li(X), where li(X) is the IBL depth. Note 

that li( x = 0) = d, so the region of validity obtained from the DML theory starts at 

a smaller fetch (i.e. closer to x = 0) than that obtained from the SML theory. 

Chapter 5 concludes with an investigation of the asymptotic equilibrium state that 

develops in a semi-infinite force distribution far downstream of its leading edge. This 

idealisation is useful in practice as a model for the downstream parts of any obstacle 

canopy much longer than its height. The magnitude of the limiting streamwise velocity 
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was estimated by balancing the force against the turbulent stress gradient and making 

a reasonable assumption about the shape of the limiting profile, with the result that the 

limiting total velocity is directly proportional to the small parameter f and inversely 

proportional to the square roots of canopy height H* and drag parameter D *. Direct 

proportionality can be explained by noting that f quantifies the ability of the turbulent 

stress gradient to support a residual distributed force profile. 

The expression for the limiting velocity can be used to conduct a brief review of 

the validity of the assumption of linearity. Suppose that linearisation requires lul < a, 

and take the limiting value (5 .49) to be the maximum velocity perturbation. Then 

(taking K, ~ 0.5) the drag parameter D* is constrained by 

D*< 1 
(1- a)2H*ln(H/zo ) 

(7 .2) 

For some purposes (7.2) is unnecessarily restrictive. For example, when approaching 

the far downstream equilibrium state, the neglected non-linear perturbation terms 

uou/ ox , uow / ox, wou/oz and wow / oz remain negligible even though u is 'significant 

because ou/ Ox and w both tend to zero in the equilibrium state. Within a long canopy, 

therefore, the linear theory may give accurate results for values of D* somewhat larger 

than those allowed by (7.2). The greatest potential for error due to linearisation arises 

just after the trailing edge of a long canopy, where (-u) is still close to its maximum 

but its streamwise gradient ou/ox and the vertical velocity ware also significant. 

Finally, chapter 6 demonstrated application of the flow field results to the mod­

elling of scalar plume dispersion through a group of obstacles . This was a preliminary 

study only, but even so the results clearly showed several interesting aspects of the 

interaction between a plume and a group of obstacles. Most notable were the positive 

concentration perturbations (relative to concentrations in a control plume) around the 

leading edge of the canopy, due to the blocking effect of the initial resistance, and the 

dominance of perturbation turbulent stresses around the roof top height in controlling 

the evolution of the perturbed plume farther downstream. 
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