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SUMMARY

This thesis presents the results of experimental and theoretical in-
vestigations of the horseshoe vortex systems caused by boundary layer
separation upstream of obstacles mounted on a wall. Flow visualization
enabled these vortex systems to be described in detail for both laminar
and turbulent flow upstream of the obstacles, for flow velocities between
0.3 ms—1 and 25 ms_1. Pressure distributions on the wall beneath such
systems are presented and the variation of the vortex and separation
positions upstream of various obstacles is described in detéil. A com-

plex unsteady behavicur of laminar horseshoe vortex systems is described,

-and the frequency spectra of turbulent vortex systems are presented. For

laminar.vortex systems a theoretical study of the equations of motion has
béen made and the distributions of vortex circumferential velocity and
pressure within the vortex cores have been derived, plausible assumptions
having been made for the vcrtex radial velocity distribution. Some meas-
urements have been made of the flow velocity within laminar horseshoe
vortex systems using smoke flow visualization techniques.

The scour around obstacles mounted in a bed of sand beneath a water

flow, caused by such horseshoe vortex systems, is also studied. A di-

mensional analysis has been carried out to determine what dimensionless

combinations of the flow variables might influence the scour depth.

Small scale experiments were carried out to determine how the scour depth

varied with these dimensionless groups. The results of these experiments
are compared with the results of previous investigations and the way the
scour depth varies with these dimensionless groups has been clearly

shown. A theoretical analysis of one aspect of the phenomenon of scour

around obstacles is also presented.
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: " CHAPTER 1

Introduction

The two dimensional flow field around cylindrical bodies has been
extensively studied in the past, as has the subject of two dimensional
boundary ;ayer flow on a flat plate. However when a cylinder is mounted
on a flat plate in a fluid flow the resulting flow field is complex and
three dimensional. The boundary layer upstream of the cylinder undergoes
a three dimensional separation, due to the adverse pressure gradient
caused by the presence of the cylinder. The separated shear layer then
rollé up to form a vortex around the base of the cylinder. The ends of
this vortex are swept downstream and when viewed from above this vortex
has a'characteristic horseshoe 1like shape, which has led to its-name -
fhe horseshoe vortex. Such a vortex flow upstream of a 7.6 cm diameter
cylinder, 3.8 cm in height, made visible by smoke filaments injected into
the flow, is shown in the photograph of figure 1.1. This photograph was
taken by E.P.Sutton and is printed in Thwaites (1960). The flow is from
left to right and the boundary layer upstream of the cylinder is laminar.
It can be seen that several vortices are visible in the plane of symmetry
i upstream of the cylinder, rotating in both clockwise and anti—ciockwise
directions. The reflection of these vortices in the plate on which the
\ cylinder is mounted can also be seen. The fluid that flows into these
vortices drains away along the axes of these vortices - that is, the
vortices act as sinks for the upstream boundary layer fluid. Although
the upstream boundary layer in this case is laminar, similar, though in
general less complex, vortex systems form when the upstream boundary
layér is turbulent.

Such horseshoe vortex flows may be found in several practical situat-

ions. TFor instance horseshoe vortex systems are found at the junction of

——_t
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aeroplane wings and fuselages, and at the junction of plate and support
in plate heat exchangers. Horseshoe vortex systems also exist around |
the base of bridge supports on a river bed. In this case the  high shear
stresses beneath such vortex systems may cause extensive sediment motion
around the base of the bridge supports, and a scour hole may form around
the supports. Similar scour holes can also be observed in snow drifts
around telegraph.poles, and recently scour holes of this type have been
ohserved around craters on the surface of Mars (Greeley et al. (1974)).

In chapter 2 of this thesis experimental results are presented which
describe horseshoe vortex systems formed by a separating laminar boundary
layer upstream of models of various shapes.

Aiso in chapter 2 a theoretical analysis of laminar horseshoe vortex
systems is presented, based on a solution of the equations orf fluid
motion. Similar experimental results are presented in chapter 3 for
horseshoe vortex systems formed by separating turbulent boundary layers.
Chapter 4 deals with the problem of scour around bridge sugpports, and
both experimental and theoretical results are presented. Finally in
chapter 5 conclusionsvare drawn from the results of chapters 2, 3 and b,

Some notes on the presentation of material in this thesis will be
made here. Firstly it should be borne in mind that much that is included
in cﬁapter 2, for laminar horseshoe vortices, applies equally well to
turbulent horseshoe vortices. This applies in particular to section 2.2
(Dimensional analysis) and section 2.11 (Vorticity.distributions).

Secondly on many figures an indication of the magnitude of errors in
the experimental results has been included. It is possible that for the
experimental results presented in some figures the magnitude of the
errors may not be constant over the range of the experimentzl results
preéented. Thus the error values given should be regarded ac only
approximate indications of the errors that may occur, and should not be

regerded as strict error limits.
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Finally the main co-ordinate system used in this thesis will be de-

fined. A cartesian system is used with co-ordinates x , y and =
and flow velocities w, v and w in the x, ‘j and z directions re-
spectively. r.I‘he origin of this system is taken to be at the point where
the model axes meet the wall on which they are mounted. The streamwise
co-ordinate x increases in a downstream direction, Y increases away
from the wall and z increases away from the plane of symmetry of the

flow in a direction cecnsistent with the directions of 2 and j and

the 'right hand rule'.




CHAPTER 2

The horseshoe vortex formed by a separating laminar boundary layer

2.1 Literature review

2.1.1 Experimental investigations

The experimental work of E.P.Sutton over a period of years from
1958 onwards (reported by Kichemann (1965)) has already been mentioned.
This work was carried out in the small smoke tunnel at Cambridge
University Engineering Department, uéed in the experiments described in
later sections, and man& excellent photographs were produced which showed
' much detéil of the horseshog vortex system. However the first significant

fublished work on a horseshﬁe vortex system caused by a separating

l "laminar boundary layer was that of Schwind (1962). For this investigation
a specially built low speed wind tunnel was used, and horseshoe vortices
were observed in front of a 60° wedge which divided the wind tunnel into
two. Very detailed observations were made of the flow using smoke intro-
1

duced into the flow upstream of the wedge, for speeds between 0.16 ms~

and 1.33 ms-1. Schwind observed five types of vortex regimes (figure

2.1.1). At the lowest speeds used he observed flow of the '"regime 1"
type, which he described as '"a steady separation with no vortices visible'.

This description seems a little misleading. If the flow does separate up-

stream of the wedge, then downstream of the separation line, there will be
a flow in the upstream direction, which implies some form of vortex be-

haviour. Perhaps it would be more correct to say that in "regime 1" type

flow only a very weak, slowly rotating vortex is formed, that is observ-
able only on the plane of symmetry. As the flow velocity was increased,
flow of the '"regime 2" type was observed, with a single stéady clockwise
rotating vorte# and a small trizangular shaped counter-rotating vortex

visible. The need for velocity gradients to be continuous implies that a

second vortex rotating in the sume direction as the main vortex must be

_




Se
present upstream of the small counter-rotating vértex, although this was

not observed by Schwind for flows of the regime 2 type. hen such a

‘ . vortex was observed Schwind defined this as '"regime 3" fype flow, which

} appeared as the velocity increased. A second small counter-rotating

‘ vortex was also observed in this type of flow. As the velocity was

! further increased the two clockwise rotating vortices were seen to start

| to oscillate, the amplitude increasing with the velocity. In flows of
"regime 4" and "regime 5" types, which occurred at yet higher velocities,
regular oscillatory motion was observed with the main vortex apparently
becoming isolated from the rest of the vortex system and moving towards
the wedge, then moving back upstream. For "regime L' type flow the
vortex was seen to combine with the second vortex, while for '"regime 5"
type flow it was seen to pass beneath the second vortex. Sincerthis

j vortex could not pass out of the separated region it presumably combined
with an unobserved third clockwise rotating vortex.

Schwind pointed out that although the flow passed from regime 1 to
regime 5 types as the velocity increased, the velocity at which the flow
changed from one regime to another was by no means well defined and dif-
ferent flow regimes could exist at one velocity. From pulsed smoke ob-~
servations, Schwind obtained some not very accurate measurements of_the
velocity within the horseshoe vortex system, for steady vortex systems.
From cine film analysis he obtained much information on how the vortex

i

j position changed with time for unsteady systems, both on and off the
' plane of symmetry. He also attempted to find how the vortex position
!
|

varied with the various flow parameters, and how the oscillation frequency
varied for unsteady systems. ' However he met with little success.

Peake and Galway (1965a) studied the development of a laminar
boundary layer ahead of a 7 cm diameter cylinder mounted on a plate in a
water channel, at a velocity of 0.25 ms-1. They also carried out a

similar investigation for flow around Rankine ovais (Psake and Galway
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(1965b)). Although they were mainly concerned with the experimental and

theoretical develgpment of the boundary layer upstream of the separation
line, they did make some dye flow observations of the horseshoe vortex
systems ahead of the Rankine ovals. They observed up to three vortices
rotating in the same direction, upstream of the ovals, and at least one
counter-rotating vortex (figure 2.1.2). These works will be discussed
further in section 2.1.2.

Several investigations have been carried out to study transition in
a laminar boundary layer caused by obstacles immersed within the boundary
layer. Gregory and Walker (1951), in experiments around small cones and
cylinders observed "three.or more' horseshoe vortices upstream of the
obstacles. Mochizuki (1961a, 1961b) in studying the flow around hemi-

spheres ﬁsing smoke flow visualization techniques, obtained very detailed

photographs of the wake formation, and also observed the horseshoe vortex

system both upstream and downstream of the hemispheres.

A more extensive investigation of this type was carried out by Norman
(1972). He studied the flow around cylinders and rectangular boundary
layer trips at speeds from 0.3 s~ o 96 ma using smoke flow visualizat-
ion. He examined the configuration of the horseshoe vortices upstream of
the trip and proposed two detailed models of the steady flow patterns
observed (figure 2.1.3). These models, called by Norman the "Jet-Maze"
and “Stéirstep" models, aiffer in the order in which the different vprtices
within the vortex system are fed from the upstream boundary layer.

Norman concluded that for his flow conditions the flow was of the "Jet-
Maze" type. The system used by Norman for numbering the different
vortices will be used in a modified form throughout this dissertation.

Norman also studied the flow around the side of the boundary layer
trips using smoke flow visualization and hot wire anemometry. The whole

horseshoe vortex system was seea to be further away from the wind tunnel

wall on which the trip was placed than on the plane of symmetry, and the




core of thé main vortex (1) éppeared to be almost stagnant.

He also observed a type of oscillatory behaviour within the horse-
shoe vortex system. However it was not possible to say'to what flow
regime of Schwind (1962) this behaviour- corresponded. He also attempted
to find how the separation position upstream of the trip varied with the
flow parameters. There is considerable scatter in his results, but it
does seem that the horseéhoé vortex oscillations begin at a fairly con-
; stant value of Reynolds number based on trip size.

The Weapons Research Establishment (1967) has made a cine film of

| the flow upstream and downstream of spheres on a wall, immersed in a
laminar boundary layer, for sphere diameters between 3 mm and 37 mm and

wind speeds between 1.3 ms~ and 4.8 ms™'. Sublimation snd smoke Flow

visualization techniques were used. At the lower wind speeds steady

horseshoe vortices were seen upstream of the cylinder and these extended
many sphere diameters downstream, forming a laminar wake. As the wind
speed increased these vortices appeared to "burst" and beccme turbulent
downstream of the sphere, the position of this burst movirg upstream and

closer to the sphere as the speed increased. WWhen these bursts had moved

to within a few diameters of the sphere the upstream horseshoe vortex

systems began to oscillate regularly, and these oscillations seemed to

pass downstream, producing regular oscillations in both the laminar and
turbulené parts of the vortex wake. To which of the oscillatory regimes
of Schwind (1962) these oscillations belonged could not be distinguished.
As the speed increased further, the turbulence passed into the vortex
systems upstream of the spheres.

Sedney (1973) reviewed the subject of transition caused by boundary
layer trips for both subsonic and supersonic speeds. He also reviewed
some papers which are of relevance to the work described in Chapter 3,
where the horseshoe vortex caused by.a separating turbulent boundary layer

is discussed.

il : ' _ : I
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Finally mention should be made of the work of Bossel and Honnold
(1976). They studied the flow ahead of plate fin heat exchangers using
dye flow visualization in a low speed water tunnel. The& observed flow
patterns similar to those described by Norman (1972), differing slightly
in the order of feeder layers observed (figure 2.1.4). At the lowest
water velocities used they observed a flow very similar to Schwind's

"regime 1" type flow, where only a weakly rotating vortex could be seen.

2.1.2 Theoretical aspects

The development of a laminar boundary layer upstream of an obstacle
on a flat plate, when the pressure distribution on the plate due to the
obstacle is assumed to be known, can be calculated using two different
types of method. Firstly a differential method can be used in which the
boundary layer equations and the continuity equation are solved by using
finite difference methods. The position of the separaticu line ahead of
the obstacle can then be determined By finding the envelope of the limit-
ing streamlines. An example of this type of calculation is that of
Dwyer (1968), who calculated the boundary layer development ahead of a
circular cylinder on a plate at a speed of 30.5 ms-1. Secondly an
integral method can be used in which the boundary layer momentum integral
equations are solved, together with an assumed family of velocity pro-
files. A general calculation method of this type was deQeloped by
Timman (1955). Peake and Galway (1965a), (1965b) used a modification of
this method suggested by Cooké (1959) to calculate the boundary layér
development ahead of a cylinder on a plate, and ahead of a Rankine oval

on a plate. They utilised the small cross flow assumption of Zaat (1956)

- with this method of Timman and Cooke, which enabled the streamwise and

crossflow momentum equations to be solved independently. This method
will be discussed more fully in section 2.6.

The methods that have been used for the solution of the Navier-

Stokes equations for vortex cores have been well reviewed by Fall (1966).
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In section 2.9 one of these methods (that of Rott (1958)) will be applied
to the solution of the Navier-Stokes equations for a horseshoe vortex
core.

Schwind (1962) and Roper (1967) both applied vorticity considerat-
ions to their studies of horseshoe vortex systems. (The work of Roper
concerns a horséshoe vortex system caused by the separation of a turbulent
boundary layer, but the following analysis applies equally well to a
horseshoe.vortex system formed by a laminar boundary layer undergéing
separation. The work of Roper will be considered further in Chapter 3).

Both Schwind and Roper start with the vector form of the Navier-

Stokes equations

- Uxw = -V _I;(+L;f +VV1-°£ (2.1.1)

Q-
5l

where u is the vector velocity, P* is the piezometric pressure; P is
the fluid density, v the fluid kinematic viscosity and ¥ C=‘7X1i)

the vorticity vector. After some manipulation Schwind derives

i~

D = (V) + vV . (2.1.2)
t

where I%5t is the substansive derivative. Following Schwind we non-

o]

dimensionalize using

—_ - w — oYX N w t
V—I,v ) u.:-:r-.~ ) W = urp " ‘t=—£— (2..1.3)

where W, and x,. are reference velocities and lengths respectively.

This leads to

DZ _ v Vg (g.V)g - ~ (2.1.4)
Dt WpXp :

where (L"x”/v is a Reynolds number. Equation (2.1.4) implies that as

the Reynolds number changes the time average dimensionless vorticity (and

hence velocity) distributions must change. Schwind suggests that this
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explains the existence of different vortex regimes, the vorticity equation
(2.1.4) being satisfied by different flow geometries at different
Reynolds numbers. . |

Roper (1967) applied equation (2.1.1) to the control volume shown in

figure 2.1.5. After some manipulation he obtained the integral equation

A/(&”H)-dé = W j{(vxy_f)-is‘ (2.1.5)

ABCDA

Roper then applied the following boundary éonditions to equation
(2.1.5)

(a) the no slip condition on CD and DA

(b) the condition that the velocit& perpendicular to ABCD is zero.

He then obtained the following equations

I W
P T ch = jxvl * CLj (2.1.6)

-C A
2 2 2
;)"ﬁ)\)/a&;'%_ﬂ) %gtg.ix_ (2.1.7)
D D
where u and v are the velocity components in the x and y direct-
ioné and the subscript e indicates a value away from the plate far up-
stream. Because of the occurrence of the second derivatives of velocity
in equations (2.1.6) and (2.1.7) these equations seem to have no easy
solution, and do not really hélp in understanding the flow within a horse-
shoe vortex system.

Finally the inviscid flow analysis of Hawthorne (1954) and later
works of the same type will be described. Hawthorne (1954) studied the
secondary flow about struts and aerofoils. He assumed that the flow
about these bodies could be described by the potential flow appropriate

to the body shape, together with a small perturbation of the velocity in

the oncoming flow. Thus effectively the flow around struts and aerofoils
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in a shear flow was studigd. It was found that blunt nosed aerofoils
amplified the initial flow perturbations so that in the vicinity of the
body large concentrations of vorticity appeared, and the theory became
invalid. Cusped struts were found to amplify the perturbations to a
lesser degree, and the inviscid flow theory remained valid.

Hawthorne and Martin (1955) studied the flow around a hemisphere in
a shear flow using a similar inviscid flow analysis. The analysis showed
two concen£rations of vorticity downstream of the hemisphere (figﬁre
2.1.6) and experiments confirmed this. These vorticity concentrations
correspond in sign and position to the two branches of the horseshoe
vortex system trailing downstream of the hemisphere. Thus paradoxically
the horseshoe vortex, which is essentially caused by separation of a
viscous boundary layer can be modelled to some extent by an inviscid flow
analysis.

Finally the work of Rowe (1966) should be mentioned. He used similar
techniques to those described above, and calculated the secondary flow
distribution around various shapes of model in a shear flow and found the

position of the vorticity concentrations upstream of these models.

2.2 Dimensional analysis

If, in a horseshoe vortex system around an obstacle formed by the
separation of an incompressible laminar boundary layer, X,, is the
distance from the obstacle centre to the centre of the vortex core on the

plane of symmetry, then one may write

xv=+’n<b, L,U.,é*,H,u&',p,P) | (2.2.1)

where D is the obstacle diameter and L the obstacle height. U is
% .

the free stream fluid velocity, and § and H are, respectively, the

boundary layer displacement thickness and form parameter at the obstacle

4
position when the obstacle is not in position. LLH is the distribution

of turbulence within the oncoming boundary layer, and fL and F are the
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fluid viscosity and density respectively.

Non-dimensionalizing equation (2.2.1) becomes

. XLy U..D D D ’ .
- =’C”<7\7'T’—§7” H%—) (2.2.2)

where ) [.z-ti] is the kinematic viscosity.

P

Similarly if xg is the distance from the obstacle centre to the

separation line upstream of the obstacle on the plane of symmetry
B . fn (_UQQ,A, &1) (2.2.3)
61‘

It will be shown in section 2.4 that for some values of the flow

parameters, horseshoe vortex systems exhibit regular oscillatory behaviour.

If 1: is the frequency of such oscillations then one may write

£D_f (DD D —uﬂ (2.2.8)

In the following sections the variation of the dependent dimension-

less variables ( —-=Y Xs  and D ) will be considered for
D' D U

several different obstacle shapes. For all the obstacles used —— 1is
small (= 0.21 in mostvcases) and it will be assumed that the values of
the dependent dimensionless variables do not‘depend on this dimensionless
group. Also it will be seen that the form parameter H does not vary
greatly (section 2.3) and it will be assumed that such small variations
do not affect the dependent dimensionless variables. Further the variat-
ions of the turbulence distribution throughout the’boundary layer will
not be considered. (It will be shown that the only significant variations
in the turbulence distribution occur at the higher velocities used).

Thus for a horseshoe vortex system caused by a separating laminar
boundary layer we are left with
L =

X v
D N

'TJ-CDS' 1B =fns (_U_D' %) | (2:2:5)
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In the following sections the dependent dimensionless variables will

. ub D
be plotted in the against lane.
P Py g -ng' P

2.5 Experimental apparatus and procedure

2.3.1 Wind tunnels

Two wind tunnels were used for this part of the investigation; a
smoke tunnel was used to make visual observations of horseshbe vortex

systems and to measure the flow velocities within such systems, while

Number 1B Low Speed Wind Tunnel was used to make detailed measurements of

the pressure distributions beneath horseshoe vortex systems and of the

oscillation frequencies of such systems. |
The smoke tunnel is shown schematically in figure 2.3.1. The models

used were mounted on a plate parallel to the flow, along the tunnel centre

line. Smoke was introduced into the flow through a reke of small tubes

w mounted on a streamlined strut upstream of the plate. The smoke was pro-

duced by a smoke generator of the Preston and Sweety type, and consisted

of a fog of fine droplets of paraffin. The tunnel speed cculd be varied

- -1
between about 0.3 ms L and 4 ms with the smoke streamlines remaining

steady. The working section could be brightly illuminated for the pur-

poses of photography through perspex slits in the side of the tunnel.
Number 1B_Low Speed Wind Tunnel, which will from now on be referred
to as the 51 cm x 71 cm tunnel, is shown schematically in figure 2.3.2.
, Since this tunnel was used at speeds very much lower than was usual (at
between 0.5 ms—1 and 4 mé—1),Aseveral modificaticns were carried out.
Firstly extra screens were inserted in the tunnel upstream of the working
section, so that the tunnel could be run at higher fan speeds than would
otherwise have been the case (and hence steadier flows were obtained).
Secondly vortex generators were inserted at the upstream end of the dif-

fuser, to ensure that diffuser separation did not occur. To generate

the laminar boundary layers needed for this investigation, the tunnel

——
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wall boundary layer'was removed by using a suction slot (powered by a
Keith Blackman 8HE Pump) that could be inserted at various positions on
the wind tunnel wall. Thus a new laminar boundary layer grew on the wind
tunnel wall downstream of the suction slot. Four positions of the suction
slot were used, and for each position great care was taken to ensure that
the wind tunnel wall downstream éf the suction slot was perfectly smooth,
by filling any cracks between the suction slot and the downstream wind
tunnel wall with a filler; and then sanding and painting over the filler
until no discontinuity could be detected. As the tunnel speed was varied
the suction power was also varied so that all the boundary layer on the
upstream wind tunnel wall was sucked away at all tunnel spe=ds. The
suction power was measured by measuring the pressure drop across an orifice
plate within the suction pipe, and was varied by opening and closing a
valve within this pipe. Thus it was possible to reproduce the suction
power required to suck away the tunnel wall boundafy layer once a calibrat-

ion had been carried out.

2.3%.,2 Wind tunnel flow characteristics

Because some méasurements of a quantitative nature were made in the
smoke tunnel (the measurements of velocity within horseshoe vortex
systems), measurements were made of the velocity distributions in the
empty working section. These distributions were measured by traversing a
Pitot tube across the wérking section. The static pressure was measured
at a hole in the wind tunnel Qall within the workiﬁg section. These
velocity distributions are shown in figure 2.3.3. It can be seen that
there is approximately a 10% change in velocity across the section in the
X direction, and approximately a 20% change in velocity across the
section in the y direction (outside the tunnel wall boundaryllayer).

This effect is particularly noticable at the lower speed used. For this

reason all measurements of velocity within horseshoe vortex systems were
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made at :ﬁ; and above the higher speed used here.

Because of this non-uniformity of the.flow it was decided not to
measure accurately the bouﬁdary layer characteristics on the plate on
which the models were mounted, but simply to use the Blasius formulae for
flat plate boundary layers in zero pressure gradient to calculate their
nominal values.

However in the more controlled flow conditions of the 51 cm x 71 cm
tunnel the mean velocity and turbulence profiles of the boundary layers
on the wind tunnel wall downstream of the suction slot were measured, by
traversing a hot wire 'u' probe throughout the boundary layer. (see
section 2.3.6).

Somé of these profiles, measured at the model position, for all four
suction slot positions used, are shown in figure 2.3.4. It can be seen
'tﬁat there is a rather high level of turbulence in the tunnel free stream.
This is possibly due to the extra screens placed upstream of the working
section. At the higher speeds used this turbulence is amplified within
the boundary layer, an indication that transition to turbulence is begin-
ning to occur at these speeds. The boundary layer displacement thickness
and form parameter were calculated from these and other profiles and
their variation with tunnel speed is shown in figure 2.3.5. If one
assumes that there was an error in measuring the velocities in figure
2.3.4 of 15%, say (which is in fact as accuratel& as the velocities could
be determined at the low speeds used) then the displacement thickness 5*

o
(= j; [l - (%')]‘iff .
thickness Q (= foo(—'i) [l— g)jlc{ ) by up to 6% and the
o \U /) d

form parameter H (= 5’/9) by up to %5. This explains the seemingly

) may be in error by up to 3%, the momentum

large variation in the values of H indicated in figure 2.3.5. However
all values of . H are within 9% of 2.59, the value for bcundary layer
growth on a flat plate in zero pressure gradient.

Experiments with hot wire prcbes held close to the surface indicate
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that a laminar flow region adequate for the present experiments exists on
the wind tunnel wall behind the suction slot (figure 2.3.6). The dotted
lines in this figure indicate the approximate boundary of the region where
the turbulence level in the boundary layer is one and a half times that
measured on the wall centre line at a height of 1 mm above the wall.

Thus even when the suction slot is 0.45 m away from the model position a
region 0.36 m wide of adequate laminar flow exists on the wind tunne%

wall.

2.3.3 Models

For the flow visualization experiments carried out in the smoke
tunnel several cylinders of different diameters and heights were used.
These were made from brass tube, painted matt black and screwed to the
plate in the smoke tunnel. A 7.62 cm diameter, 3.81 cm high cylinder was
most commonly used for flow visualization, and was also used when horse-
shoe vortex velocity measurements were made.

For the more quantitative measurements made in the 51 cm x 71 em
tunnel three models were used; a circular cylinder, a circular cylinder
with a splitter plate, and a streamlined model consiéting of a hemi-
cylindrical nose section followed by a faired tail section. The dimen-
sions are given in figure 2.3.7; It was hoped to use a streamlined model
of the same height on the other models, but when built this proved to be
too heavy to traverse along the wind tunnel wall (in order to make pressure
measurements), so a shorter model was used. (These three different'types
of models were used to study the effect of the different flow patterns
within the wake of the models on the oscillatory behaviour of horseshoe
vortex systems).

The blockage correction of Maskell (1966) was applied to calculate
the effective flow velocities within the wind tunnel, for all the tests

carried out in the 51 cm x 71 cm tunnel. This correction states that the

effective velocity is given by U.0-+€§ where L is the wind tunnel
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velocity without the model in the working section and & 1is given by

&= [l + (CTPX%)F — | | (2.3.1)

where C is the wind tunnel cross sectional area, S is the area of the
model normal to the flow, and C; and C%é are, respectively, assumed
drag coefficients and base pressure coefficients for the model. The
blockage corrections & , calculated from equation (2.3.1) were small and
were found to be 0.005 for the streamlined model, and 0.025 for the
cylinder and cylinder with splitter plate models.

Because of the non-uniform nature of the flow no blockage corrections

were applied to any of the results obtained in the smoke tunnel.

2.3.4 Flow visualization photography

Photographs were taken in the smoke tunnel using a Nikon F135 mm

camera. Cine films were taken using a Beaulieu R16 cine camera.

2.3.5 Pressure measurements

Measurements were made of the pressure variation on the plane of
symmetry upstream of the models using the apparatus shown in figure 2.3.8,
which was built into the wind tunnel wall downstream of the suction slot
in the 51 cm x 71 cm tunnel. The models were traversed through a small i
distance (2 cm) and the pressure was measured successively at each of six (
pressure tappings 2 cm apart, using a Furness micromanometer FM332, with }
a full scale deflection of 1 mm of water. Thus a continuous pressure dis- ' ;
tribution was obtained. The model traverse gear was connected to a .
potentiometer powered by a D.C. supply, so that the cylinder movement
could be recorded on either a D.C voltmeter, or on the x axis of a

chart recorder. The Furness micromanometer produced an electrical output

which could also be recorded on a D.C. voltmeter or on the y axis of

the chart recorder. If a chart recorder was used a trace of the pressure

distribution could be obtained directly. Two Solartron D.C. Voltmeters
l and a Moseley Autograf 3S chart recorder were used. _

An apparatus very similar to that, K described above was also used to

- | - =
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make pressure measurements in the smoke tunnel. Details of this appar-

atus are given by Shellim (1976).

2.3.6 Hot wire anemometry

To measure the frequency of oscillation of horseshoe vortex
systems hot wire probes were inserted through the wall of the wind tunnel
so that the tip of the probe was only a short distance away from the wind
tunnel wall (figure 2.3.9a). Flow visualization carried out in the smoke
tunnel showed that the presence of the probe did not affect the vortex
system when it was placed in this position, but if the tip of the probe
entered the core of the main vortex, then the whole vortex system began
to oscillate irregularly.

DISA 'u' probes were used almost exclusively as the sensing element
at an overheat ratio of 1.8, and a block diagram of the system used is
shown in figure 2.3.10. The output from the 55D0O1 bridge was linearized
by a 55D10 linearizer and the linearized output was measured on a 55D30
D.C. voltmeter and on a 55D36 RMS meter. Signals were filtered to remove
the D.C. compoﬁent using a Krohn-Hite 3550 filter, and were recorded on a
Racal T3000 tape recorder. The signal was also dispiayed on a
Telequipment DMS53A storage oscilloscope fqr visual examination. Some
photographs were taken of the oécilloscope display using a Polaroid
éamera.

Similar probes were used to make measurements in the model wakes.
The method of mounting these probes is shown in figure 2.3.9b. Alsé they
were used to measure the velocity and turﬁulence profiles in the boundary
layer on the wind tunnel wall. The traverse gear used for this is shown
in figure 2.3.9c.

The signals were linearized because many of the signals that were to
be analyzed had large values of turbulence intensity (over 50%). These
signals would have been distorted by the non-linear output characteristics

of the bridge if no linearizer had been used.

—_
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Spectral analyses were carried out on the recorded signals using the
CUED CED509 & minicomputer. The spectral analysis programme was devel-
oped by S.Norman and details of the programme may be found in Norman
(1977). Using a fast Fouw rier transform this programme analyzes a
fluctuating signal and produces {in either graphical or digital form) an
output which shows how the power spectral density varies with frequency.
The area under the power spectral density curve is a measure of the power
of the fluctuating input signal. Thus any peaks in this curve indicate
frequencies at which a large proportion of the power of the fluctuating
signal is present. For iastance a sine wave with only one discrete
frequency will produce =2 éharp peak at this frequency on the power spectral
density-frequency curve.

Alllof the values of power spectral density that are shown in figures
léter in this dissertation are non-dimensionalized by dividing by the

mean square of the fluctuating signal.

2.3.7 Velocity measuremeﬁts

If the velocity within horseshoe vortex systems were to be measured
by any of the conventional means (such as /itot tubes or hot wire probes)
it would be very difficult to interpret the results since the extent to
which these probes affect the flow would not be known. It was thus
decided at the beginning of this investigation to make a simple laser
anemometer to make velocity measurements within the horseshoe vortex syst-
em. This instrument can measure flow velocity at a point in a flow.where
two laser beams are crossed and thus no probe is inserted into the flow.
Accordingly the experiments were designed to make laser anemometry
possible in the 51 cm x 71 cm tunnel. It was decided to measure the flow
around models downstream of a suction slot in the wind tunnel wall rather
than to measure the flow around models mounted on a plate in a wind

tunnel, because this made it possible to use an already existing optical
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system. Unfortunately there were several unforseen problems with the
laser anemometer and it proved to be impossible to make the required
measurements with this instrument.

It was then decided to make measurements of the flow velocity by

making cine films, at a nominal speed of 64 frames/second, of smoke fila-
l ments entering the vortex system, and thenrmaking measurements from these
films to determine how far the ends of the smoke filaments had travelled
between successive frames. The exact speed at which the cine camera
filmed was determined by filming the output of a D.C. voltmeter to which
an oscillating signal of exactly 1.25 Hz was applied, and counting the

number of frames betwesn maxima of the voltmeter output. The camera was

found to be filming at 58.8  frames/second.

! . o So in this way a set of wvelocity measurements could be made on the
plane of symmetry upstream of the models used. Such an experiment was
easily set uﬁ in the smoke tunnel and proved to be successful. So a
similar experiment was set up in the 51 cm x 71 cm tunnel. The apparatus
used is shown in figure 2.3.11. The smoke was injected into the flow
from a probe just downstream of the suction slot. The horseshoe vortex
was illuminated through a window set into the wind tunnel wall, by two

Wattastar lamps, and cine films were taken through a perspex sheet set

| into the wind tunnel floor. The smoke probe was designed so that smoke

i filaments were introduced into the flow 1 cm beléw the centre line of the

! wind tunnel wall. This was because preliminary tests revealed that the
flow on the wind tunnel wall had a small upwards component close to the
centre line and the flow direction was at about 2° to the horizontal.
This small deviation of the flow from the horisgontal is of no consequence

i3 to the pressure and hot wire measurements described in the following
sections, but for the horseshoe vortex to be adequately visualised the
smoke filaments had to be introduced into the flow a small distance below

the wall centre line.

\ | ) |
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| 2.4 Flow visualization results

2.4.1 General descrintion of horseshoe vortex flows

Figure 1.1, taken from Thwaites (1960), shows a photograph taken

by E.P.Sutton in the smoke tunnel used for flow visualization experiménts
in this investigation. It shows the flow pattern on the plane of sym-
metry upstream of a short cylinder on a plate, formed by the separation
of a lamingr boundary layer. The reflection of this flow pattern in the
plate can also be seen.

Figure 1.1 is typical of the flow patterns seen in the smoke tunnel
at the lower speeds used. There are at least three vortices rotating in
the clockwise direction and two smaller vortices rotating in the opposite
direction. The exact number of vortices was seen to depend upon the flow ’
speed and cylinder size, more vortices appearing as the speed increased.
With a 7.62 cm diameter cylinder in the tunnel, above a certain flow
speed (approximately 0.65 ms"1 ) the entire horseshoe vortex system began
to oscillate in a regular manner with the two largest clockwise rotating
vortices moviné towards one another and apart again. At higher speeds
(above approximately 0.8 ms ! ) the largest clockwisé rotating vortex
ceased to be fed by smoke during part of the oscillation period and seemed
to become detached from the rest of the vortex system. At still higher
speeds (above approximately 1.4 ms ™ ) the flow appeared to be very un-
steady and turbulent and showed no traces of periodicity. These steady
and. oscillating horseshoe vortex systems will be discussed in more detail

in the following sections.

2.4.2 Detailed description of steady horseshoe vortices

Consider the horseshoe vortex system that is shown in the photo- .

sraphs of figure 2.4.1. The filament of smoke that feeds into the vortex
system is being moved closer to the plate on which the cylinder is mounted
l as we proceed from figure 2.4.71a to figure 2.4.1g. ‘“hen the filément just
begins to flow into the vortex system, it flows into a small anticlock-

h | |
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wise rotating vortex formed by separation of the flow from the face of
the cylinder. The smoke filament passes around the base of the cylinder
(figure 2.4.1a). We will call this vortex , vortex O .

As the smoke filament moves closer to the plate, it flows down the
face of the cylinder, then along the plate away from the cylinder and
into a small triangular vortex. This vortex assumes a horseshoe shape
around the side of the cylinder. We will call this vortex (for reasons
that will become apparent later) vortex 7 (figure 2.4.1b).

As the smoke filament moves still closer to the plate, it flows away
from the cylinder, over vortex 1' and into a small flattened vortex
rotating in the same direction as vortex 1'. We will call this vortex
vortex 2 (figure 2.4.1c).

As the movement of the smoke filament continues, the smoke flows
into a large vortex, rotating in a clockwise direction and situated bet-
ween vortex 1' and the cylinder. This vortex will be referred to as

vortex 1 , or the primary vortex (figures 2.4.1d and 2.k4.1%e).

With the smoke filament still closer to the plate, the smoke flows
into two further vortices rotating in the same direction as vortex 1.

The one closer to the cylinder will be referred to as 'vortex 2", the one
further away as 'vortex 3' (figure 2.4.1f and g).

The order of 'feeder layers' for vortices 2 and 3 is not very clear
from the photographs but it appears from these figures that as the smoke
filament moves towards the plate vortex 3 is fed first, then vortex 2 and
when the smoke filament is right next to the surface of the plate vortex
3 is fed once more. The streamline pattern that can be inferred from
these photographs is shown in figure 2.4.2a. |

This type of vortex system is an example of a six vortex system which
wés the most complex system observed in the smoke tunnel. Four and two’
vortex systems were also observed under different flow conditions and the

streamline patterns observed are shown in figure 2.4.2b and 2.4.2c. Also
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in this figure the various_separation lines ( S, SO,S“S2 ¥ éttachment
lines ( Ao, A,, A, ) and free stagnation points (SPL SP2 ) are shown.

Figure 2.4.3 shows how the number of vortices varies with the flow
parameters, determined from observations around cylinders of various
sizes. (The value of 5* was calculated from the Blasius formula). It

can be seen that the number of vortices that were observable increases as
ub D
~N and

—gg- increase.

2.4.3 Detailed description of oscillating horseshoe vortex systems

In this section fhe photographs of an oscillating horseshoe vortex
system shown in figure 2.4.4 will be considered. In these photographs,
taken from a positive cine film, smoke appears black against a white back-
ground. The primary vortex (1) initially moves towards the cylinder
(frames 1-9) and the smoke filament to it is cut so it appears to become
isolated. Then it moves back upstream and entrains smoke from the outer
layers of the secondary vortex (2) (frames 10-14) until the initial flow
pattern is reestablished. It is not possible to determine whether vortéx 1
does cease to ge fed by any fluid as it moves towards the cylinder, or
whether the smoke filament is cut and vortex 1 simply-seems to become
isolated.

The paths taken by vortices-1, 2 and 3 during one oscillation are
shown in figure 2.4.5. It is instructive to consider the vortex system
to consist of potential vortices and their images (in a manner similar to
Schwind (1962)) and to analyse the movements of figure 2.4.5 in this
light (figure 2.4.6a). As vortex 1 is convected downstream (frames 1 to
9) it becomes influenced to a greater extent by its image in the cylinder
and thus moves down towafds the plate. As it moves closer to the plate
it becomes influenced more and more by its image in the plate'and thus
moves back upstream where it entrains the outer layers of vortex 2 (frames

10 to 14).

: o :
As vortex 1 moves towards the cylinder vortex 1 must move with it,
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since it is causedvby separation under vortex 1. Since the effect of
vortex 1' on vortex 2 is to pull it down onto the plate (figure 2.4.6b)
when vortex 1' moves away from vortex 2, vortex 2 rises from the plate
(frames 3-10). 1In a similar manner when vortex 1 (and hence vortex 1')
moves back towards vortex 2, vortex 1' influences vortex 2 to a greater
: extent and vortex 2 moves back towards the plate (frames 11-14).
The oscillating flow described above is very similar to the '"regime
L flow of Schwind (section 2.1.1). However it was not possible to ob-
serve Schwind's '"regime 5" flow. As the tunnel speed was increased above
approximately 1.4 ms-1 (with a 7.62 cm diameter cylinder) the horseshoe
vortex system appeared to become turbulent and no regular oscillatory

motion could be seen.

2.4,k The horseshoe vortex away from the plane of symmetry

Figure 2.4.7 shows a horseshoe vortex system viewed at an angle of
30° to the plane of symmetry. This was made visible by illuminating the
flow through a perspex slit in the side of a cylinder. The smoke feeder
{ filament on the plane of symmetry moves closer to the plate from figure
2.k.7a to figure 2.4.7¢.

Vortices 1, 2 and 3 can be clearly seen in these photographs. It
should be noted that all the smoke making them visible has come from the
plane of symmetry. This does not mean that the vortices are not being
fed by fluid in this plane. A smoke feeder filament éan be dimly seen

. & .
entering vortex 1 in figure 2.4.7a and vortex 1 can also just be seen in

this photograph.

Visual observations at angles of greater than 300 to the plane of
symmetry suggest that all the vortices move to greater distances from the
plate than on the plane of symmetry. Also the number of vortices seems
to increase further around the cylinder. For example where only two
vortices were seen on the plane of symmetry, four might be seen at an

angle of 450 to the plane of symmetry.' However it proved impossible to
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take photographs at angles very much greater than 300 to the plane of

symmetry.

2.4.5 Comparison of flow visualization and pressure distributions

Pressure distributions were measured using the apparatus of
Shellim (1976), described in section 2.3.5 and two typical results are
shown in figure 2.4.8. The qualitative nature of these results should be
borne in mind. The pressure coefficient CP' used in this section is
based upon the velocity and pressure close to the leading edge of the
plate on which the cylinder is mounted. The curves of figure 2.4.8 are
tracings of chart recorder outputs.

First consider the curve marked A, which is a pressure distribution
| at flow conditions for which a steady horseshoe vortex system existed.

‘ The position of the pressure minimum was seen to correspond closely
|

: to the position of the primary vortex when smoke flow visuslization was

| carried out. Thus the position of the primary vortex can be determined

from pressure distributions, and this method was used to find the posit-
ion of the primary vortex in the more controlled flow conditions of the

51 cm x 71 cm tunnel.

Now consider curve B. Flow visualization showed that at these flow
conditions an unsteady horseshoe vortex system existed. Thus a pressure
distribution similar to curve B is indicative of an unsteady horseshoe
vortex system.

Curve A also shows a slight levelling out at = = -0.92. Flbw

D

visualization showed this to be the position of vortex 17 . A slight

dip in the curve can also be seen at t%?- = -1.06, and flow visualization

showed this to be the position of vortex 2.

2.4.6 Effect of hot wire probes on horseshoe vortex systems

Since it was intended to study the periodic behaviour of horseshoe

r vortex systems using hot wire probes, flow visualization experiments were
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carried out to study the efféct of such probes on the flow. It was found
that if the probe ‘entered the primary vortex, this vortex began to
oscillate irregularly at speeds where the flow would otherwise be steady.
However, as can be seen from figure 2.4.9, if the probe is inserted only
a small distance into the flow (of the order of 1 mm) then the probe

appears to have no effect on the flow.

2.5 Plane of symmetry pressure measurements

In this section pressure distributions on the plane of symmetry up-
étream of the models will be presented. The pressure coefficient CP
used in this section is'bésed upon the velocity and pressure at the model
position‘without the model being in position. The pressure distributions

on the plane of symmetry upstream of the cylinder model are shown in

-figure 2.5.1. These curves are tracings of chart recorder outputs. It

can be seen that there are two types of distribution. For'-%éz < 5,000

the curves have minima, which the smoke tunnel results suggest are at the

position of the primary vortex. For £%? > 5,000 no minima can be seen

and flow visualization results suggest that oscillating vortex systems

ub

exist. As ~ increases, the vortex position moves upstream away from
the cylinder. The variation of the vortex position with the flow para-
meters will be considered further in sections 2.6 and 2.7.

In section 2.4.5 a levelling out of the preésure distributions at
the position of vortex 1’, and a slight dip at the position of vorte# 2
were described. No such effects can be seen in the pressure distributions
of figure 2.5.1, but it is possible that they are obscured by the rather
large errors indicated. |

£,

At the model leading edge ( = '0'5)‘CP is below 1.0. It can be

D
seen that as QJD and —%%r increase,CP at

—%%— = =0.5 also increases.

This can be explained in the foliowing manner. As the flow variables

change, the vertical dimensions of the vortex system do not change sig-

[‘ , )



27-

nificantly. (For example, for -%?— = 2.0, the free stagnation point SP1

was found to have a value of —5%— of 0.072 % 0.005 at all flow velocities,

and one of the streamlines that approached it was found to have an up-
| stream value of —— of 0.115 + 0.005). Thus as —d4L— or D in-
‘ D - . % $*
) creases and the boundary layer becomes thinner, then the fluid that

i basses close to the upstream edge of the cylinder will come from a region

| of highef non-dimensional velocity. Now CP at i%— = -0.5 is given by

‘ }
| B (F [% _—c —B) |
| Crlz=-o3] FRPATE ) (2.5.1) |
| 2 ? ] !
‘ _

| where the subscript , refers to conditions at the model position without
the model being in position. Now PEE'—"'Uﬂ is approximately equal to
the stagnation pressure on the streamline passing down the face of the

cylinder :

= <+ : | ) ;

Ple=-og =P= + 7P Ue VB i

where T%O is the pressure far upstream and u,, is the velocity on that
particular streamline far upstream. If one assumes that Fcith”

|
|
l
|
; and U, == U, then we have
|
!
l
l

2
Cor= =~ [Z= - (2.5.3) ‘
P3=‘0'5] U ‘ > \
So as the dimensionless velocity on the streamline passing down the

ub D

e and _Tgi- 1nc?ease) then

face of the cylinder increases (i.e. as

CP[—% . -0'5] will also increase.

i Also shown in figure'2.5.1 are the pressure distributions measured
without the model in position. It can be seen that the models are in a
region of slightly favourable pressure gradient;

Figure 2.5.2 shows pressure distributions Ahead of the cylinder, ob-
taingd with the suction slot in pecsitions 1, 2 and 3. These show the
variation in the pressure distribution as %%F varies. The distributions

for an oscillatory type of flow show little variation, but where the

- | | !
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vortex position can be distinguished, it can be seen that the vortex
moves away from the model as —%%F decreases.

Figure 2.5.3% compares the pressure distributions upstream of all the
models used. There is little difference between the distributions for
the cylinder and the cylinder with splitter plate. However, other things
being equal, upstream of the vortex positién the pressure coefficient at
any point ahead of the streamline model is less than at the equivalent
point ahead of the cylinder. This is due to the streamlined model, being
shorter than the others, disturbing the flow to a lesser extent and thus
any deviations in pressure from the upstream value occur closer to the
model. ?hus upstream of £he vortex position ahead of the streamlined

model at any value of ', one would expect Cp to be lower than at

=
D
the same value of %%— ahead of the other models.

2.6 Prediction of the separation position upstream of a cylinder on a

Elate
2.6,1 Introduction

In the previous section it was shown how the position of the horse-
shoe vortex on the plane of symmetry upstream of a cylinder could be de-
termined from pressure distributions. It seems possible that this vortex
position might be fixed by the position of the separation line upstream
of the cylinder. Therefore in this section two integral methods will be
used to determine how this separation position varies with the flow '_
parameters. These methods are:-

1) The method of Timman (1955) using the small crossflow assumption of
Zaat (1956).
2) A modification to method (1) susgested by Cooke (1959) (as used by

Peéke and Galway (1965a) (1965b)).

2.6.2 Co-ordinate system and integral equations

It is assumed in what follows that the boundary layer upstream of

the cylinder is laminar up to the separation line on the plane of symm-




29.

etry. We will use an orthogonal coordinate system ( a,T],C,). In
studies of three dimensional boundary layers it is usual to define a
streamline coordinate system and we will do so here. We write g as
the velocity potential, 7} as the stream function and (; as the co-
ordinate perpendicular to the wall on which the boundary layer is growing.

We also write

deoh dE
d.'n:hz.d’r)
where S and N are distances in the & and Y, directions and ‘h,

and h, are metric coefficients. The momentum integral equations may be

written, in streamline coordinates,

S O L eau) . B L 5
+1(0,-0,)+ L0, +0,) = ﬁ-(i—c)w (2.6.1)
o @)+ g 33_77 (©.,1) +-(0,-0,-57)
+ £ (80, +8]) = % <_§LC°)¢=6 (2.6.2)

where w,v are the velocities in the &,’q directions; (L is the
velocity along a streamline outside the boundary layer;'R,,‘Rz are the
radii of curvature of the 7) = constant and E = constant lines re-

spectively and

5 j?,_ w)dr Sf_——:-fé(ﬁ‘) dt,

o o




0.

G H(-t)de e [Tl

ez’=—/o°(utz“> C"C’ 9,2= fmi(,_ﬁ)dq
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Also if the flow external to the boundary layer can be assumed to be

potential flow it can be shown that

- h :1_. (2.6.3)

2.6.3 Potential flow upstream of a circular cylinder

In the following sections it will be assumed that the pressure
field upstream of the separation line can be approximated by the potential
flow pressure distribution. Thus some results for the potential flow up-
stream of a cylinder are given here.

1f U is the velocity a distance X upstream of a cylinder of

radius R , on the plane of symmetry,then it is easily shown that

U= U, (1— Rz) (2.6.4)

x?

u _
T | (2.6.5)

where LLOO is the velocity far upstream. (See, for example, Duncan et al.
(1970)).

2.6.4 1Integral method based on the methods of Timman and Zaat

Timman (1955) formulated an integral method to solve equations

(2.6.1) and (2:6.2) by assuming the following velocity profiles.
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As we are only concerned with flow on a plane of symmetry we will
not consider further the crossflow velocity profiles (equation 2.6.7) or
the definitions of I, and I, .

At the point of separation on the plane of symmetry the shear stress
in the streamwise direction must fall to zeros

B2, - =0 , o

geo
From equation (2.6.6)

e -Te - T8, =0 (2.6.8) |
since in this case T, = —C as T; <(Q (adverse pressure gradient).
Also
=
92 Jro 3T !
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So from equation (2.6.8), at the separation point
& 4 kT
3= 3w L= 0
T ol (2.6.9)

From the definition of 7,— , and remembering that dx= h,dE, (;%EL

from equation 2.6.3) it is easily shown that
‘ T = cdl
" = AL

dx

So if o= o5 and x =X at the separation point equation (2.6.9) gives

%%L:z: o o (2.6.10)

Now Zaat, making the assumption of small crossflow (i.e. that Y is

small, which it is close to the plane of symmetry) derives from equations

(2.6.1) and (2.6.2) the equation

ABE, (U_éo*> = 508 %z _ (2.6.11)

where ? [: h_Z'TL—Z] = | , in this case. Now on the plane of
2

symmetry d& = Udx and this equation becomes

2 (u%) = 508U (2.6.12)
ox

From equations (2.6.4) and (2.6.12)

xz

Y . 2\4 2\3
'TA; U, (1 - R) o - 5'08(" E_> (2.6.13)
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Now integrating between x = x, and X =124

4 2 \4 b/ 2 \#4
ot - 5 - qu_ E) o

o

(2.6.15)

Now if when x =x, , O =0, it may be shown that (Peake and

Galway (1965b))

0, = 0293 (o,~v)*

where 90 is the momentum thickness at x = x, . Thus
2
o= lo S (2.6.16)

Xs

2R

Finally let X, = and X,= % . From equations

(2.6.14) to (2.6.16)

XS-Z\“ a P y
4 (l_ —l[t—/ Xs ~+ IO|6X5+ 7"2 Xs = O°6L" Xs—a +OO3X55

. -2\4
=6 (u—"i,e—>(—%—)6— Z ) + 1016 X, + T12X. — 064 X,

+ 003 X.°.

Now assume that at x ==x,, 9 =8 =0 ; i.e. assume boundary layer

" growth from the leading edge of a flat plate. The last equation becomes

-2 \4 i -
)Zj ) XS + 1016X, + V12X — 064X + 0:03X g

(-

= 106X, + TI2X — 064 X2 + 003X, ° (2.6.17)
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2.6.5 1Integral method based on the methods of Timman, Cooke and Zaat

Cooke (1959) wrote the velocity profile given by Timman (equation

2.6.6) as

L_'z. = £ (z) s —]._ﬂ (z*) (2.6.18)

to obtain better agreement with a known exact solution. Now using this

equation, an equation similar to equation (2.6.8) can be derived

EL;/(Z') -1 ﬁ(z'l = 0 (2.6.19)

=0

Using equation (2.6.19) an equation similar to equation 2.6.10 can be

au
[

Thus the X, X relation becomes (if © =0 at 22 )

derived

x*)* . . -
8.(1— T ) X& + 10 b Xy + TI2XS' = 0-6h X2 + 0-03X.°
= [0 1b X, + 712X~ — O-bhX >+ 0-03X° (2.6.20)

2.6.6 Experimental results and discussion

The solutions of equations (2.6.17) and (2.6.20) are plotted in
figure 2.6.1. It can be seen that they both have the same form although
equation (2.6.20) predicts rather smaller values of X, than equation
(2.6.17), at the same value of X, . However for both curves X in-

creases as Xo increases. Also it appears that Xs depends upon. Xo

and not upon any other flow parameters such as %D— and —% (It is
of course possible to express Xo [:= —_%9:] in terms of the other flow

parameters since for a laminar boundary layer on a flat plate in zero

pressure gradient

s U\
9 =173 (—,V—')

£
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. % 2
bzef =2 0-33 (LD-X-&) (2.6.21)

|
|
|
which gives : ‘
Experiments were carried out to determine whether or not the fléw \
studied in this investigation (the flow around a cylinder mounted on a l
wind tunnel wall downstream of a suction slot) could be considered eq-
uivalent to a cylinder mounted on a flat plate. With the suction slot in ]
position 1, the position of the separation point on the piane of symmetry
upstream of the cylinder model was measured. This position was made |
visible by letting smoke into the flow from a small hole at the base of
the cylihder, and ﬁeasuring.how far upstream the smoke was carried. These
results are shown in figure 2.6.1 (X, is in this case defined as the
"distance from the leading edge of the suction slot to the cylinder centre).
It can be seen that there is little variation of the separation position
with Reynolds number, which is what the analysis of the previous sections
shows to be the case for a cylinder on a flat plate. Thus it would seem
that the flow étudied here can be taken to be equivalent to the flow up-
stream of a cylinder on a flat plate, in this respect at least.
It can also be seen from figure 2.6.1 that the analysis predicts a
separation position upstream of the measuréd position. This is because . %
the potential flow velocity distribution upstream of the cylinder can only
be regarded as an approximation. The potential flow pressure distriku%ion
on the plane of symmetry upstream of an infinite two dimensioral cylinder
(which is clearly closely related to the potential flow velocity dis-.

tribution) is given by (Belik (1973))

\ l [
C'P: 2)(.1 = I'oxq (2.6.22)

Equation (2.6.22) is plotted in figure 2.6.2 together with some

measured pressure distributions. It can be seen that at a given point




36.

upstream of the vortex system the potential flow pressure gradient is
steeper than the meaéured pressure gradient. Thus one would expect the
analysis to predict a separation position upstream of the measured

position.

2.7 Variation of the horseshoe vortex position

Figures 2.7.1, 2.7.2 and 2.7.3 show how -5?1 ) the dimensionless

vortex position, varies for the cylinder, cylinder with splitter plate,

and streamlined models respectively. Contours of —<¥ are plotted
; uD D g : .
in the e - ¥ plane as suggested by the dimensional analysis of

section 2.2. The values of x, were obtained from pressure distributions
with the suction slot in all four positions. The dotted lines in the
figures join experimental points corresponding to one suction slot posit-
ion. The positions of the experiméntal points in figures 2.7.1 to 2.7.3
Xy
5]

indicated on figures 2.7.1 tc 2.7.3 is con-

are at the position of the '"decimal points!" of the values of

Xy

D

siderable since it was not possible to determine accurately the position

The possible error in

of the minima in the pressure distributions. Bearing this in mind there
can be seen to be little difference between figures 2.7.1, 2.7.2 and

2.7.3. This fact is also apparent from figure 2.7.4 which is a plot of

the variation of ;? for the three models as -%%- varies, for
J%gl = 3000. For all models as increases, increases, and

decreases. No pressure minima were observed

as 2 increases Xy
&* 1D

for values of Jffl above approximately 5,000, and the flow visualizat-
. ion (section 2.4) suggests that when J%%L is above this value oscillat-

ing vortex systems exist.
It was shown in section 2.6 that the position of the separation line
ahead of a cylinder on a plate depends upon -f§$1 where Xx. 1is the

distance from the cylinder centre to the leading edge of the plate. If

the separation position fixes the vortex position then the analysis and
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,l Vl will also increase , as is seen to be the case.

ion suggests that with the probe in this position the flow was not

37,

experimental results of the previous section lead one to expect that
the vortex position would remgin constant for each suction slot position
i.e. along the dotted lines in figure 2.7.1 to 2.7.3. This can be seen
not to be the case. Thus one must conclude that the vortex position is
not solely determined by the separation position, but some other effect

plays a part. What this effect may be has not been determined.

Finally it can be seen from figures 2.7.71 to 2.7.4 that-as 4%%—

u:D lxv

increases, at fixed ~ ' [D decreases. Equation (2.6.21) for the

case of a cylinder on a flat plate is

[5]-0as (X3

UD D

So at constant o B reduction in =% 1s equivalent to an in-

Xo| | and, from figure 2.6.1, an increase in = leads
D ’ D

xs 3 xS ) . .
>l Thus as S¥ decreases, ;fi;—’ will in

crease. If one assumes that the horseshoe vortex position is largely

crease in

to an increase in [

determined by the separation position, then it is to be expected that

D

2.8 The oscillatory behaviour of horseshoe vortex systems

To study the oscillatory behaviour of horseshoe vortex systems, a
hot wire probe was placed in the flow so that its wire was 1 mm from the

wind tunnel wall, with the suction slot in position 1. Flow visualizat-

affected (section 2.4.6). The hot wire output was recorded at sevefal

velocities and spectral analyses were carried out. The spectra obtained
were not repeatable, the number and magnitude of peaks in the spectra at
any one velocity varying from run to run. The hot wire output was then
displayed on a storage oscilloscope and the situation was clarified. At

any one speed four different waveforms could be 'seen at different times:-

(a) a steady trace with no oscillations,
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(b) a low frequency oscillation, (St = —%fl- <% 0.26)

(c) a high freyuency oscillation, ( St = 0.40, increasing to

about 0.60 at higher UVD )

(d) an irregular turbulent trace.

Photographs of waveforms (b), (c) and (d) are shown in figure 2.8.1.
Each of the above four states might exist for any length of time between
1 second and 5 minutes and the flow switched from one state to another
in a complétely random manner. At the lowest speeds used, state (a) was
observed more often than the other states, but as the velocity increased
state (b) became the most often observed state. 4As the velocity was in-
creased further state (c) was observed more often and at the highest
speeds only a turbulent trace (state (d)) could be seen.

After many attempts tape recordings were made of signals of just one
of the above states, of sufficient length to enable a spectral analysis
to be carried out. The spectra obtained are shown in figures 2.8.2a and
2.8.2b. Note that the flow parameters are almost identical in both cases,
but the peaks occur at completely different frequencies. In figure 2.8.2a,
for the dominant peak, St = 0.26, and in figure 2.8.2b, for the dominant
peak, St = 0.36. The smaller peaks in both spectra are harmonics of
the main peaks. They appear sinply because of the shape of the waveform
of the hot wire output, which is in turn dependent upon the exact posit-
ion of the hot wire probe in the flow. A spectral analysis carried out
when both frequencies were present in the signal is shown in figure
2.8.3. Two peaks and their harmonics can be seen.

The spectrum of turbulence obtained at the highest speeds used is
shown in figure 2.8.4. It can be seen that there is no dominant peak in
the spectrum.

Further tests were carried out with the suction slot at positions 2,

3 and 4. With the suction slot at position 2, the unsteady behaviour was

similar to that described avove, but with the suction slot at position 3
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the lower frequency oscillations were seen only very occasionally. With
the suction slot at position 4 no regular oscillatory motion was observed.
With the slot at this position the periods of steady flow were observed j

at much higher velocities than for suction slot positions 1 to 3. These

flow. These bursts of turbulent flow were probably caused by bursts of

l

|

periods of steady flow were interrupted by bursts of irregular turbulent w
turkulence in the upstream boundary layer passing into the vortex system. :
|

The variation of Strouhal number with the flow parameters for both

types of oscillation is shown in figure 2.8.5. The frequencies were
measured by displaying the hot wire output on a storage oscilloscopevand | t?
measuring the distance between adjacent peaks in the waveform, from many 1
different output traces, and taking the average distance between peaks *

\

to be a measure of the oscillation period. It can be seen from figure

2.8.5 that for the high frequency oscillation (the 'primery' oscillation)

St increases as J%%Z increases, while for the low frequancy oscillat-

ion (the 'secondary' oscillation) St remains fairly constant. (There A.».Té

was a considerable variation in the oscillation frequency at any one set

of flow conditions as can be judged from the width of the dominant peaks E

in the spectra of figure 2.8.2.). i'
Schwind (1962), as stated in section 2.1.1, observed two types of i

oscillation (figure 2.1.1). At a speed of 0.L45 ms"1 he measured a freq- [

uency of oscillation of 0.8 Hz for flows of the regime 4 type and a

frequency of 1.4 Hz for flows of the regime 5 type. Thus it would seem

likely that the high frequency or primary oscillation noted here can be i
identified with Schwind's regime 5 and the low freguency or secondary
oscillation with Schwind's regime 4. Schwind observed that in general
regime 5 oscillations occur at higher speeds than regime L escillations “
(although they cculd both occur at the same speed). This agrees well f‘

with the results presented here where the primary oscillations persist to

uD

much higher values of than do the secondary oscillations.

v
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The above describes the oscillatory behaviour of the horseshoe vortex

systems. However it does not explain what causes these oscillations.

One can however eliminate some possible causes. To test whether the

I wake vor£ex shedding of the cylinder had any effect on the oscillations,

' tests were carried out with a cylinder with splitter plate and with a

I : streamlined model, for both of which the wake spectrum was found to be

significantly different from that of the cylinder (see figure 2.8.6). :

|  Results almost identical to those described above were obtained. Also it |
can be seen from figure 2.8.7 that the Strouhal number for the wake vor-
tex shedding of the cylinder is approximately 0.16 at all tunnel speeds,
which bears no relationship to the observed frequenciss of oscillation of"
the horseshoe vortex system. Thus it appears that ons can eliminate wake

! vortex shedding as a possible cause of the oscillations.

Figure 2.8.8 shows the speed of rotation of the wind tunnel fan non-
dimensionalized using the cylinder diameter and the wind tunnel free
stream velocity, plotted against a Reynolds number based on cylinder
diameter. Again the Strouhal number bears no relationship to the Strouhal
number of the vortex oscillations. In fact this Strouhal number de-

: creases with Reynolds number while the Strouhal number of the vortex os-

| cillations increases with Reynolds number. So it would appear that these
‘ oscillations are not affected by any disturbances caused by the fan.

} Now consider the spectrum shown in figure 2.8.9. This shows the i
: spectrum recorded in the boundary layer on the wind tunnel wall down-
stream of the suction slot; at the same flow conditions as for figure
2.8.2, but with £he cyiinder not in position. The spectrum shows a large
D.C. peak together with several other peaks. However these peaks do not
correspond to either of the horseshoe vortex oscillation frequencies at
this speed. In fact two of the dominant peaks on this spectrum, the ones

at 9.4 Hz and 16.8 Hz do not change their position as the tunnel speed

varies. This would suggest that they are related to an oscillation. fre-
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quency of the wind tunnellstructure. So it would appear that any disturb-
ances present in the boundary layer upstream of fhe model do not affect
the horseshoe vortex oscillations. |

Thus having eliminated all the above possibilities for the cause of
vortex oscillations the author can see only one explanation for these

ub D

e and ng— the horse-

shoe vortex itself becomes unstable for some reason, and begins to

oscillations; that is, at certain values of

oscillate in one of two 'matural' modes, the higher frequency medé becom-
ing more dominant as the Reynolds number increases.

Thus one question remains to be answered. That is what is the
mechanism that initiates this instability? It seems possible that the
oscillations are initiated by bursts of turbulence passing into the
vortex systems from the upstream boundary layer. To test this hypothesis
two hot wire signals were recorded simultaneously, one hot wire being in
the boundary layer upstream of the horseshoe vortex (-é%— = =2.08), and
one being beneath the vortex systém as usual (—j?— = -0.81). A photo-
graph of the oécilloscope output is shown in figure 2.8.10, over a period
of time during which the vortex oscillations began. The upper trace in
the photograph shows the output from the hot wire probe in the upstream
boundary layer and the lower trdce shows the'output from the hot wire
probe beneath the vortex. The period of time covered by this photograph
is sufficiently large to record any bursts of turbulence detected by the
upstream probe that might be convected into the vortex system at the time
when oscillations begin. It can be seen that there are no such bursts
of turbulence shown on the photograph, so.it would seem the vortex oécil—
lations are not initiated by bursts of turbulence. (It should be noted
that the slight high frequency "ripple'" on the oscilloscope trace is at
the mains frequency of 50 Hz and originates within the electronic system

and not within the flow).

So if the disturbances that initiate the oscillations do not come
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quency of the wind tunnelAstructure. So it would appear that any disturb-
ances present in the boundary layer upstream of the model do not affect
the horseshoe vortex oscillations. |

Thus having eliminated all the above possibilities for the cause of
vortex oscillations the author can see only one explanation for these
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shoe vortex itself becomes unstable for some reason, and begins to

oscillations; that is, at certain values of

oscillate in one of two 'matural" modes, the higher frequency mode becom-
ing more dominant as the Reynolds number increases.

Thus one question remains to be answered. That is what is the
mechanism that initiates this instability? It seems possible that the
oscillations are initiated by bursts of turbulence passing into the
vortex systems from the upstream boundary layer. To test this hypothesis
two hot wire signals were recorded simultaneously, one hot wire being in
the boundary layer upstream of the horseshoe vortex (-5%— = =2.08), and
one being beneath the vortex systém as usual (—j?— = -0.81). A photo-
graph of the oscilloscope output is shown in figure 2.8.10, over a period
of time during which the vortex oscillations began. The upper trace in
the photograph shows the output from the hot wire probe in the upstream
boundary layer and the lower trace shows therutput from the hot wire
probe beneath the vortex. The period of time covered by this photograph
is sufficiently large to record any bursts of turbulence detected by the
upstream probe that might be convected into the vortex system at the time
when oscillations begin. It can be seen that there are no such bursts
of turbulence shown on the photograph, sorit would seem the vortex oécil—
lations are not initiated by bursts of turbulence. (It should be noted
that the slight high frequency '"ripple" on the oscilloscope trace is at
the mains frequency of 50 Hz and originates within the electronic system

and not within the flow).

So if the disturbances that initiate the oscillations do not come
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from upstream of the models, then it seems likely that they originafe
downstream of the models. Evidence for this comes from the film made by
the Weapons Research Establishment (1967), described in‘section 2.1.1.
This shows that vortex oscillations appear to be initiated by disturbances
caused by 'bursting" of the horseshoe vortices trailing downstream of the
model. The film showed that as the flow velocity increased these vortex
bursts moved upstream of the cylinder until the horseshoe vortex system
becomes entirely turbulent, and the same sort of behaviour was observed
in this investigation, with the vortices upstream of the models becoming
turbulent as the velocity increased.

Thus in conclusion it would seem that horseshoe vortex oscillations
are initiated by disturbances in the vortex system downstream of the
model, but the frequency of oscillation is determined solely by the values

uD . 5]

of - and -:ggr, and not by the frequency of wake vortex shedding,

or of any other small disturbances in the flow in the wind tunnel.

2.9 Solution of the Navier-Stokes equations for a laminar horseshoe vortex

2.9.1 Introduction

In this sectioﬁ the application of the equations of fluid motion
to a horseshoe vortex system is considered. It is assumed in what follows
that the horseshoe vortex system being-considered has been formed by the
separation of a laminar boundary layer upstream of a cylindrical obstacle,
although this analysis could equally well apply to separation upstream of
a non-cylindrical obstacle. .

A cylindrical polar system of co-ordinates will be used, as shown in
figure 2.9.1; r is the radial co-ordinate, = 1is the axial co-ordinate
along the vortex axis and ¢ is the angular co-ordinate. The velocities
in the r, =z, ¢ directions are w,w, v respectively. Clearly, since
the horseshoe vortex system is curved, for this system of co-ordinates to

be unambiguous the radius of curvature of the centre line of the vortex

—\
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must be large compared to the vortex radius. This is assumed to be the
case in the region of the horseshoe vortex systen on and close to the
plane of symmetry. 1In this '"plane of symmetry'" region a simple analytical

solution to the equations of motion can be derived.

2.9.2 Equations of motion

In this section the equations of ﬁotion that can be expected to
apply for the core region of a laminar horseshoe vortex are presented in
a dimensionless form. Hali (1966) shows that many vortex systems can be
regarded as being quasi-cylindrical, i.e. using the co-ordinate system of

figure 2.9.1.

J J |

= (2.9.1)
_which implies that the vortex core radius is much less than the length of
the vortex core. This is the case in horseshoe vortex systems. Hall
makes the further assumption that the flow in such systems is axially

symmetric, i.e.

'gé’g = 0 (2.9.2)

This assumption can be expected to be valid in the central region of
the horseshoe vortex where the streamlines can be expected to possess
such axial symmetry. Having made these assumptions Hall derives, for a
laminar quasi-cylindrical vortex
(a) the continuity equation

de

1 3 9 0
e dr(PU*r)-f- 2 pu)=0 (2.9.3)

(b) the momentum equations

Py _ 9p (2.9.4)




b,
J dw d [ 9
P At ""uaﬁ + W Az> = - ﬁ + TS‘(/‘”‘@) (2.9.6)

From here we make the further assumptions that
(a) the motion is steady so ——a%- = 0
(v) ‘DIand /4. are constants.

At this point we introduce the dimensionless variables

31
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where a

o e — =2

P & =— = i

— Ww —_ W i

o= = —_— = 2.9.
Ve w Vi (2.9.7)

— v — ¥

V = Sv—— —
Vi P pve

In general Z,, . and vV, can be any reference length in the axial
direction, any reference length in the radial direction, and any reference
velocity respectively. For our purposes however =z, can be taken simply
as being the diameter of the cylinder, r}. as an arbitary core radius
on the plane of symmetry, and V,. as the value of v at r =7 on the

plane of symmefry.

Now substituting (2.9.7) in equations (2.9.3) to (2.9.6)

-5 o 9B _
2 e i)+ = =0 (2.9.8)
v: _ OP

o _a’? (2.9.9)
7% van g + T o L1 4 e 5

oF iz T F T R RO TR

(2.9.10)
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So we can see that the flow is determined by two dimensionless groups

(1) ¢ = ;?‘ 3y a ratio of the vortex core radius on the plane of
+

symmetry to a reference length in the axial direction.

(2) }?e o %;f} ; a Reynolds number based on the velocity at the

edge of the vortex core on the plane of symmetry, and the radius of

the vortex core on the plane of symmetry.

2.9.3 The plane of symmetry region
Now we make the assumption that on, and close to, the plane of sym-

metry of a horseshoe vortex system

&L =—-cr (2.9.12)

‘ (This assumption was also made by Rott (1958) and the first part of what
follows is similar, in outline, to the analysis presented in that paper.
However Rott did not present the analysis in a dimensionless form, and he
‘ did not use it to describe the flow on a plane of symmetry of a horseshoe
| vortex system, but applied the analysis to "bath tub" vortices). With

this assumption equation (2.9.8) gives

06 _ 2c

z

oo 2z (2.9.13)
. oC :

|

|

|

' i.e.
I since @=0 on T =0 (i.e. on the plane of symmetry itself).

| " Bquation (2.9.13) suggests that @ is not a function of Z on and
ET close to the plane of symmetry, if equation 2.9.72.is valid.

The second momentum equation (2.9.10) becomes

|
l

— OV — OV — Lol =2 8% %= v =
I “eF S FAeEL — eV = == [FEYL L FLY _ ¥ 2.9.14
| oF 3z Re 72| dF* 3F St
‘ If we let
‘ E = CRG= _LL_,;}_:“L ‘ (2-9.15)
I (since from equation (2.9.12) C == %L vhere U =-u,at r=rn )

(o)

—' ‘ ' ]
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we obtain
0 T (o Cra)dE =)y =26z F"
<2 2 — - * - |
7 AFZ—&—(P—#—EF)AF (/ E")V =3z (2.9.16)

To solve equation (2.9.16) we use the method of separating the

variables

v = (7 g2 - (2o
where () is a function of ~ only and 3(5) is a function of =

only. Equation (2.9.16) becomes

’;‘,;%i;ﬁz +(,=+E¢%.3_) %%_ —(I—EF){-'] ‘[m: 332—} 5

7" | 3J

Ni

where a is a constant.

So we have

9 =

This integrates to give

£ _ 5y | (2.9.18)
3(2)

where 3Ji):= 3(2) ~at Z = | . This equation suggests that if

a 40, 3(2)=O when Z=0 . So if a0, V=0 on the

plane of symmetry (from equation (2.9.17)); i.e. there is no circumfer-
ential velocity component on the plane of symmetry. This is obviously

untrue, so a must be equal to zero and

§&) = & | (2.9.19)

So the circumferential velocity is obtained from

—2 éa‘F = =3 ﬁ _ _ =2
et F+ EF >c§F (-Em)f =0 (2.9.20)
Since 'V = 3,(2){(?) this becomes .

72 a" ¥ (F+ gF3SL — (i —ErF)v =0 (2.9.21)
8 |
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Equation (2.9.21) can be directly integrated twice by making the

I : substitution " =2%x7FV where I is a dimensionless circulation. The
[

equation reduces to

Il
@)

7 IL (EF‘—I)A—T; (2.9.22)

dF=
which has the solution

— —-EFZ
T=27cFV=A2+A|g /2

|
|
|
l Let us consider the boundary conditions. At the vortex centre the
l circumferential velocity must fall to zero; i.e. v=0 at Rr=0

Thus
A, =—A,
Also at the edge of the vortex core V =[] at F=I| . Thus
| A = 2w (I—e-E/zyl (2.9.23)
So the solution for VvV is
= ___FL (::::Z> | (2.9;24)

The form of equation (2.9.24) is shown in figure 2.9.2 where V 1is
plotted against © for various values of E (The curve for E = 1.8
will be referred to in section 2.10). These curves all show a maximum
value of V at some value of ® (= Fy ) (except for the E = O curve).
The position of this maximum can readily be located by letting %2— =0

This gives

o \5 | '
7 =(2—E5'—> (2.9.25)

™M
The radial position at which the circumferential velocity is maximum
is given by equaticn (2.9.25). The velocity V at this radius is given

by

)2 -1-25
o £ VIl : '
Vi = (25‘) <'_:_% ) (2.9.26)
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Equation (2.9.21) can be directly integrated twice by making the

substitution F = 2%FV where | is a dimensionless circulation. The

equation reduces to
. T _, T
P i T (Er *l)-:% = (2.9.22)

which has the solution

T= 27(FV=A1+A|3— “z

Let us consider the boundary conditions. At the vortex centre the

circumferential velocity must fall to zero; i.e. V=10 at r=0 .

Thus

A‘ - AZ
Also at the edge of the vortex core V — [ at F=I| . Thus

_E/2 =1

A = 2an (l—e \ (2.9.23)

So the solution for V is
' _E% , ' ‘
v =+ (———' =2 > (2.9.24)
P | —e 72 :

The form of equation (2.9.24) is shown in figure 2.9.2 where ¥V 1is
plotted against © for various values of E (The curve for E = 1.8
will be referred to in section 2.10). These curves all show a maximum
value of ¥V at some value of 7 (= Ty ) (except for the E = O curve).
The position of this maximum can readily be located by letting —g% =0

This gives

5 \% '
oo = (255' > (2.9.25)

The radial position at which the circumferential velocity is maximum

is given by equaticn (2.9.25). The velocity V at this radius is given

by

1 -1-25
A ® E YV /l= : :
Vm = <2A5‘> <'__2‘§/1 ) (2.9.26)
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Equations (2.9.25) and (2.9.26) are shown in graphical form in
figures 2.9.3%a and b.
Let us consider the pressure within the core of the horseshoe vortex

system in the plane of symmetry region. From equations (2.9.11) and

(2.9.13)
— A—-
herZ = —o B (2.9.27)
since froml equation (2.9.13) % =1}
r

Equations (2.9.27) and (2.9.9) suggest that

P —Peo=p(2) +pil® (2.9.28)

where P'o’o is the value of ‘F at P =0and 'Z =0, ‘P, is a function
of = only, and is given by equation (2.9.27), and 'Pz is a function of
'F only and is obtained from eauation (2.9.9).

From equation (2.9.27)

P(2) = —'2(&)1 z* (2.9.29)

and from equations (2.9.9) and (2.9.24)

P:(F)= ?3?1'2_—;{_ dF (2.9.320)
(~]

Equation (2.9.30) lezds to exponential integrals that have to be evaluated

numerically. P, (F)  and P (Z) are plotted in figures 2.9.4a and b

for various values of £ and -$— .

&

From equation (2.9.27) it can be seen that at Z =0

%% =0 ., 9 =0
02 az*
So at 2 =0 the variaticn of 'f—j_ with respect to Z shows a maximum.

This agrees with the experimental results of Vasanta Ram (1963), shown
in figure 2.9.5. Although the results of Vasanta Ram were for a horse-

shoe vortex system caused by a turbulent boundary layer separation, it

_
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can be sgen that the variation of’ ﬁ with respect to = does show a
maximum value on the plane of symmetry.

As previously noted equations (2.9.8) to (2.9.11) suggest that the
flow is controlled by two dimensionless groups R and &« . However for

the plane of symmetry region an inspection of the final results (equations

(2.9.24) to (2.9.26), (2.9.28) to (2.9.30) shows that the relevant groups
are:-

| 1) E = CR@ = —ul”’\—/ﬁ - a Reynolds number based on the radial velocity

at the edge of the vortex core.

| e _ UprzZzp
| ' 2 & = /vhr‘r

Now if we define @ as a volume flow rate into the vortex core

Q =(2rnu)z, | (2.9.31)
\ then
|
| <c ___Q _ _Q
o« (2mny)n T (2.9.32)
where TQ = AXMVYp . This is a Rossby number based on a volume flow

rate, a circulation at the edge of the vortex core, and the vortex core

radius on the plane of symmetry.

defined somewhat arbitrarily. If we now identify r,. with 1, , the

I

|

|

| In the preceding analysis Y. , the reference radius, has been

! radius at which the velocity Vv on the plane of symmetry is a maximum

! (i.e. the radius of the "eye" of the vortex), we have from equation

| . (2.9.25)
_ 2.51 %
i Fen = ':< E )
%

’ : E =24 — 2.5 (2.9.33)

Substituting in equation (2.9.24)

~r25
|—e

| '_e—r-st‘ . ' _
v=% (7 = | (2.9.34)
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The pressure distribution in the radial direction follows from equat-

ion (2.9.9)

7 —r257® \2
e [l o

o

(2.9.35)

Equations (2.9.34) and (2.9.35) are plotted in figure 2.9.6. It can
be seen that if r. is defined as the point at which the velocity is
maximum, the velocity and pressure distributions are independent of
Reynolds number.

The two descriptions of the velocity field given in equations (2.9.24)
and (2.9.34) are complementary. If r. is defined as the radius of the
vortex core (which may be taken as the region in which the assumption of
axial symmetry holds) then £he radius F;, of the 'eye' of the vortex is
dependent upon Reynolds number, as given by equation (2.9.25). However
equation (2.9.34) suggests that if the radius is non-dimensionalized on
the radius of the eye of the vortex, then the velocity and pressure dis-

tributions are independent of Reynolds number.

2.9.4 Continuity considerations

In this section an attempt will be made to show how the vortex
Reynolds number E varies with the large scale flow parameters (—%gl
and -fg% ). e define r,. as the radius of the core of-the primary
vortex of a laminar horseshoe vortex system (i.e. the region in which the
assumption of axial symmetry holds). Assume that the flow rate into.this
vortex core is proportional to the flow rate in the upstream boundary -

layer. By continuity we have

2nrnu, o U,(S—S") , - (2.9.36)

. : . 3 :
where & is the upstream boundary layer thickness and S is the dis-
placement thickness. Now for a flat plate boundary layer in zero pressure

gradient
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. Thus from equations (2.9.36) and (2.9.37)

| rup o UGS (2.9.38)

or

- . ¥ w X
| vl %‘S = (T,Q)(%) (2.9.39)
|

ub
N

So one would expect E to be proportional to and inversely
| proportionél to ﬁf% . The constant of proportionality depends ubon the

constant in equation (2.9.3%6) and must be determined experimentally.

2.10 Velocity distributions within horseshoe vortex systems

2.10.1 Comparison of vortex flows in the two wind tunnels

As was stated in section 2.3 it was intended to use a laser anemo-
meter to make measurements of flow velocities within horseshoe vortex
systems. However with the experimental configuration used this proved to
be impossible. It was decided to measure flow velocities by filming

‘ smoke filaments entering the vortex systems and measuring the difference
in position of.the ends of the smoke filaments between successive frames.
It was found possible to make measurements in the smoke tunnel so that the

} velocities at most points within the horseshoe vortex system on the plane

| of symmetry upstream of a cylinder could be determined. However when the
experiments were set up in the 51 cm x 71 cm wind tunnel a difference in

; the vortex flow structure in this tunnel and in the smoke tunnel became‘

| apparent. In £he 51 ecm x 71 cm tunnel there seemed to be a great deal

|

more "divergence" upstream of and within the horseshoe vortex systems.

That is to say the streamlines close to the plane of symmetry upstream of
, the horseshoe vortex system in this tunnel were swept away from the plane
of symmetry within the horseshoe vortex systems very much more quickly
than in those systems formed in the smoke'tunnel. Thus smoke rarely
penetrated into the lower velocity regions of the vortex systéms formed in
the 51 cm x 71 cm tunnel, and it wés not possible to measure the velocities

2 | - | i
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within these systems.

Thus in the more confined flow of the smoke tunnel the flow is more
vigorous on the plane of symmetry upstream of the cylinder than for the
flow in the 51 cm x 71 cm tunnel. This may be due to either or both of
two effects. Firstly the flow upstream of the cylinder in the 51 cm x
71 cm tunnel is not influenced by the "images" of the cylinder in the
wind tunnel walls (figure 2.10.1a), these images being too far away.
However in the smoke tunnel the "images' of the cylinder in the sides of
the tunnel are effectively much closer to the cylinder. One would there-
fore expect them to influence the flow upstream of the cylinder. These
"images" tend to force the flow towards the plane of symmetry (figure
2.10.1a) and this may explain the more vigorous flow observed on the
plane of symmetry upstream of the cylinder in the smoke tunnel.

Secondly the cylinder used in the smoke tunnel is very much shorter
than that used in the 51 cm x 71 cm tunnel (3.8 cm instead of 30.5 cm).
Thus flow on the.plane of symmetry can pass over the cylinder rather than
having-to diverge from the plane of symmetry to pass around the cylinder.
This again would lead to a more vigorous flow on the plane ;f symmetry.

To test which of these two effects‘predominate the flow upstream of
a 7.6 cm diameter cylinder, 12.7 cm in height was observed in the smoke
tunnel. In figure 2.10.1b a photograph of the flow upstream of this
cylinder is shown together with a similar photograph of the flow upstream
of the shorter cylinder usually used in the smcke tunnel. It can be seen
that there is-a significant difference between these flows. The vortex
system upstream of the taller cylinder is flatter and somewhat less well
defined than that upstrcam of the shorter cylinder. Also much of the
flow was observed to diverge away from the plane of symmetry upstream of
the vortex system. This is similar to the flow that was observed up-

stream of the 30.5 cm high cylinder in the 51 cm x 71 cm tunnel, but in

that tunnel the flow diverged from the plane of symmetry tc a much greater

'i‘ . | . A |
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extent and was therefore more difficult to photograph.
So it would seem that this divergence of the flow becomes more prom-
.inent as the height of the cylinder is increased, and as the ratio of
the cylinder diameter to the wind tunnel width decreases. That is, both

of the two effects described above play a part.

Because of the well defined nature of the flow upstream of the
7.6 cm diameter by 3.8 cm high cylinder mounted in the smoke tunnel it
was decideé to make measurements of velocity upstream of this cylinder

only. However when considering these results the preceding discussion

should be kept in mind.

2.10.2 Velocity measurements in the smoke tunnel

Velocity measurements on the plane of symmetry upstream of a

cylinder in the smoke tunnel are shown in figure 2.10.2, for %jD

2,610, fg; = 14.8. The sections for which velocity profiles are pre-
sented are shown in figure 2.10.2a. The velocity profile in a direction
parallel to the plate for a section perpendicular to the plate, upstream
of the vortex system ié shown in figure 2.10.2b. Velocity profiles in
directions parallel and perpendicular to the plate a£ a section perpen-
dicular to the plate just downstream of the separation point are shown in
figures 2.10.2c and d respectiveiy; similar profiles through vortex 2 are
shown in figures 2.10.2e and fj; through vortex 1' in figures 2.10.2g and
h; and through vortex 1 in figures 2.10.21i and j. The velocity profiles
in directions parallel and perpendicular to the plate for a section
through the centre of vortex 1 parallel to the plate are shown in figures
2.10.2k and 1. The reversed flow within the vortex systems can be plainly
seen in these figures. The expected double crossover in the velocity pro-
file can also be seen in figure 2.10.2g. Here the flow in vortex 1' is

in the stream direction close to the plate, in the upstream direction

away from the wall, and in the stream direction out of the vortex

system.
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Within the vortex system a significant vortex radial flow component

could only be measured within vortices'1 and 2 (figures 2.10.2e,f,i, and j).
In these figures the velocity components parallel to and perpendicular to
the plate correspond to the vortex circumferential and radial components
respectively. The radial component of velocity can be seen to be an

order of magnitude smaller than the circumferential component.

Within the cores of the vortices the radial flow component was meas- |
ured in two ways; bj resolving the flow velocity at the measurement sect- i
ions in a radial direction, and by measuring the variation of the distance
of a streamline from the vortex centre between two successive crossings
by the streamline of the measurement section. The latter method effect-
ively gives a mean radial velocity for half a streamline soiral around
the vortex. However these methods gave more or less identical results
close to the centre of the vortices.

In the analysis of section 2.9 the assumption was made that the
vortex radial velocity was linearly proportional to the distance from the ‘“ hj
centre of the vortex. From figure 2.10.2j (for vortéx 1) it can be seen |
that this is the case only within the very centre of the vortex core
(region XY). This region lies within the velocity peaks of the circum-
ferential velocity profile.

The Reynolds number based on the radius of region XY and the radial
velocity at its edge (£ ) can be calculated to be 1‘8.i 0.3 for the flow
conditions of figure 2.10.2; ‘The theoretical velocity distribution for
this Reynolds number, given by equation 2.9.24, is shown in figure 2.9.2.

Although this curve is of the same form as the measured velocity distribut-
ion within the region XY, there are not enough experimental points in

this region to enable a detailed comparison to be made between experimental
and theoretical results.

The form of the profile of radial velocity within the horseshoe

vortex core (figure 2.10.2j) suggests that a better theoretical descript-



seen that the basic assumption of axial symmetry is violated.
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ion of the vortex circumferential velocity profile might be obtained by
assuming a parabolic distribution of the radial velocity within the
vortex core, in the analysis of section 2.9. Although this presents no
great mathematical difficulty, this extension to the analysis is not
presented for the following reascn. A comparison of figures 2.10.2i and
j (for a section perpendicular to the plate through vortex 1) with
figures 2.10.2k and 1 (for a section parallel to the plate through
vortex 1) shows that the assumption of axial symmetry within vortex 1 is
only true close to the centre of the vortex where the radial velocity
profile can be taken as linear. Away from the centre of the vortex al-
though the radial velocit& distribution can be seen to be roughly para-

bolic in planes both parallel and perpendicular to the plate, it can be

Figure 2.10.3 shows the velocity variation along streamlines within
the horseshoe vortex systems for the same conditions as figure 2.10.2.
In this figure S 1is the distance along the streamlines measured from
j??- = =1.75, and Wg 1is the velocity along the streamlines. Figure
2.10.%a is a scale drawing of the vortex system showing the position of
the streamlines considered. This figure presents essentially the same in-
formation as figure 2.10.2 but shows some interesting features. Firstly
it caﬁ be seen that whenever one of the streamlines passes beneath
vortices 1 or 2 (seﬁtions C and B in the figure)vthen the velocity rises
to a maximum. Secondly from figures 2.10.7d and f it can be seen that
when a streamline approaches a stagnation point nearly all the loss of
streamline velocity occurs in the vicinity of the stagnation point.

Figure 2.10.4 shows velocity profiles in directions verpendicular
and parallel to the plate, for a section perpendicular to the plate,
through the centre of vortex 1 at four different speeds. Equafion

2.9.24 suggests that the velocity profiles within the region of the vortex

core where the radial velocity distribution is linear, should change as
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[ | the Reynolds number changes. However figure 2.10.4 shows that the non-
} dimensional  velocity profiles do not vary greatly in and beneath the

vortex core. Any variation may however be obscured by the rather large
I errors indicated. Above the vortex core however the streamwise vélocity

profiles do vary with the flow parameters. This is because as J%P—

increases vortex 1 moves away from the cylinder to a position where the

{ dimensionless velocity outside the vortex system is higher.
l 2.10.3 Associated measurements

.[ It is of interest at this point to compare the nominal values of
the flow parameters, predicted by a calibration of the empty smoke tunnel
and by flat plate boundary layer theory, with the measured values. At a

2,10.2, at f%—- = =2.25, the measured flow velocity was 0.56 e

l

|

} point upstream of the separation line, for the conditions of figure

|

compared to the value of 0.5 ms_1 given by the tunnel calibration. The

| ' displacement thickness at this point was 0.33 cm (+ 0.02), while the
value given by flat plate boundary layer theory is 0.38 cm. So it can be
concluded that.the nominal values of the flow parameters in the smoke
tunnel are reasonably accurate. |

Also marked in figure 2.10.2b are the regions of the boundary layer

which pass into the different vortices of the vortex system. It can be

seen that the fluid from the outer edge of the boundary layer does not
enter the vortex system, but passes around the side or over the top of

the cylinder. It is possible to calculate the total volume flow into

each vortex as a percentage of the total volume flow into the vortex
: system (i.et the flow into vortices 1, 1', 2, 2' and 3; the flow into
vortex O is small and difficult to distinguish from the flow that does
not enter the vortex system). These results are shown in table 1. (The

assumption is made that the lower regions of the boundary layer all flow

into vortex 2, which may or may not be correct; see section 2.4.2).

"
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ELE?J : *MNQ = 2,610, %— = 14.8) |
Vortex g 2 3 12!

1% Volume flow| -43.3 19.7 8.4 18.1 10.5

So it can be séen that nearly half the volume flow into the vortex sysfem
is into vortex 1. Also the flows into vortices 1‘ and 2! are comparable
with the flows into vortices 2 and 3 respectively.

Finally in figure 2.10.5 the distribution of skin friction beneath
the horseshoe vortex system is shown. The data presented in this figure
was taken from the.velocity profiles of figure 2.10.2 and other velocity
profiles. The dotted lines in the figure indicate a region where the
skin friction could not be measured, such as near a separation or attach-

ment point, but where its variation could be deduced, i.e. Cf must fall

~to zero at such a point. The most striking feature of this figure is the

high value of ‘C;' beneath vortex 1, approximately five times the
free stream value upstream of the vortex system. Beneath vortex 2, the
value of |CF‘ is somewhat-less than the upstream value, and beneath
vortex 3 it is much less. Thus although over much of the vortex system
on the plane of symmetry there is a reductién inlCFI from its free

stream value, there is a considerable increase in ]C;I beneath vortex 1.

2.11 Vorticity Distributions

In this section the distribution of vorticity within horseshoe
vortex systems will be considered. However it is first necessary té set
out some basic concepts relating to vorticity. The vorticity of a fluid
fiow with velocity components w, v and w in the x, Y and 2z directions

is given by

dw 3 - ‘ dw | ¢ \ :
4 =<¥—3§>L+(§—z“-g)j_+ (E—g?ﬂﬁ (2.11.1)

Vortex lines can be constructed which are everywhere parallel to the

vorticity vector. All the vortex lines passing through a closed curve
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form a vortex tube. It is easily shown that for such a vortex tube of

area S

J/;93 Ei;i = constant (2.11.2)

As a consequence of this result it can be shown that vortex lines cannot
start or end within a fluid.

For a control volume within the fluid the net outflow of vorticity
must be zero. Now vorticity can be transp§rted in two ways; by convect-
ion or by diffusion. Vortex lineé, which are usually fluid lines, are
convected through the flow and can be distorted and stretched as the flow
passes around obstacles. vVorticity diffusion occurs when there is a
vorticity gradient and its magnitude is proportional to the magnitude of
this vorticity gradient. Thus the net convection of vorticity out of any
control volume within the fluid must be equal to the net vorticity dif-
fusion into the contral volume.

Now consider the flow configuration shown in figure 2.11.71 where a
cylinder is mounted on a plate on which a boundary layer is growing. On

the plane of symmetry upstream of the cylinder the vorticity is given by

— [dv _ ét_i..\ _
W = (éx Aﬂ/i = w, k (2.11.3)
since W = _%E; —_ v _ O . Thus in the two dimensional

= oz

boundary layer upstream of the cylinder the vorticity vector and the
vortex lines are parallel to the plate and perpendicular to the plane of
symmetry. Now consider vortex tubes consisting of such vortex lines as
they are carried by the flow towards the cylinder. The boundary layer
upstream of the cylinder undergoes a threerdiménsional separation, and
the vortex tubes comprising it are concentrated into the vortices of any
horseshoe vortex system that might form. These vortex tubes are swept
and stretched around the side of the cylinder. <Since these vortex tubes

are always composed of the same fluid, the area of these tubes must de-

crease as they are stretched to conserve their volume. Thus from equation
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2+.11.2 their vorticity must increase. Thus as vortex lines are convected
into the horseshoe vortex system this tendency for the vorticity to in-
crease must be matched by vortex diffusion to the plate or cylinder. Or
alternatively vorticity of the opposite sign must diffuse from the plate
or the cylinder.

Now consider the streamwise momentum équation for fluid flow.

J f J (2.11.4)

This equation will be applied to the flow on the plane of symmetry of

i _ VR V7. 17 S ol S
figure 2.11.1. Now at 3 =0, W=V=W = S = Fg = Xpd =
S .. : . du
3z __.O : So if the flow is steady (i.e. S =0

“equation (2.11.4) becomes
L(%p_s _ ,v(gi_u_a\ (2.11.5)
P X y=0 3 3.:0
From equations (2.11.3) and (2.11.5)
sle) - fy
= =35 (2.11.6)
P \3% Jyso %Y ly=o
since fhs =0 on y = 0. Thus the vorticity gradient at y = 0,

which is proportional to the magnitude of vorticity diffusion, is pro-

portional to the streamwise pressure gradient.

Thus if
d ‘ . '
6x.)3=o> o (2.11.7)
then - (5‘” <0 (2.11.8)
9y Iy=0

and the vorticity distribution for small values of j is as sketched in

figure 2.1.2(a). Here there is diffusion of +ve vorticity away from

the wall (or alternatively diffusion of -ve vorticity to the wall).
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_ éﬁ)
. If (A:c, - <0 | | (2.11.9)
then (é-“ﬁ> >0 ‘ . (2.11.10)
éﬂ 3:0

and the vorticity distribution for smallAvalues of H is as sketched in
figure 2.11.2b. Here there is diffusion of +ve vorticity to the wall
(or alternatively diffusion of -ve vorticity from the wall).

Now the variation of pressure beneath hor;eshoe vortex systems has
been described in section 2.6. A typical pressure distribution on the
plane of symmetry is sketched in figure 2.11.2(c). Figure 2.11.2(d) shows
the direction of the diffusion of +ve vorticity that can be inferred
from figure 2.711.2(c) and equation (2.11.6). One would expect that the
largest vorticity gradiénts near the wall would occur in the region of the
greatest pressure gradient, and that most vorticity diffusion would take
place in this region.

The vorticity distribution within a horseshoe vortex system is
shown in figure 2.,11.%. These curves were calculated from the wvelocity
profiles of fiéure 2.10.2, Figure 2.11.3(a) shows the vorticity distfibut-
ion in the unseparated boundary layer. It can be seén that vorticity of
negative sign is being convected by the flow. In this region eéuation
(2.11.3) reduces to

L= - (‘2—“)}1 (2.11.11)
J

Ou_ is +ve , W is -ve. The slope of the vorticity pro-

%y

file at the wall in this case is small, as one would expect from equation

Since

(2.11.6) as the pressure gradient is small. Figures 2.11.3b, ¢ and d

show the vorticity profiles just downstream of separation, through the

centre of vortex 2 and through the centre of vortex 1 respectively. The

slopes of the vorticity distributions at y = 0 in figures 2.11.3(b) and

2.11.3(c) are slightly negative which is as one would expect from equation

(2.11.6) since at these points (Jéfl—> >0 From figure
y=0

dx
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?;11.3(d) the vorticity gradient at y = 0, is approximately zero, which

again is as one would expect since (:iPJB L 0 at this point.

However the large negative values of the vorticity gradient for 3 > 0

do give some indication of the magnitude of the vorticity diffusion in

the region of large pressure gradient between vortex 1 and the cylinder. i
It can be seen from the preceding discussion that vortex diffusion

from the plate beneath the horseshoe vortex system plays an important

role in determining the flow pattern. It was thus of interest to see what

fdrm the flow pattern would take if this source of vorticity diffusion

were absent. So flow visualization experiments were carried out in the

smoke tunnel using the apéaratﬁs shown in figure 2.11.%a. FKere the region

of the plate on which the cylinder is mounted, downstream of the observed ‘

separation line has been removed, so that.there is no vorticity diffusion

from the platé in this region. Photographs of one of the resulting flow

patterns on the plane of symmetry upstream of two c¢ylinders, one mounted

on either side of the plate, are shown in figures 2.11.4b to_2.11.4g.

The - streamlines feeding the vortex systems move downwards in the photo-

graphs from figure 2.11.4b to 2.11.4g. The flow can be .seen to be complex

with fluid from one side of the plate passing through the hole in the

plate to the part of the vortex system on the other side of the plate.

The streamlines that can be deduced from these photos are sketched in

figure 2.11.5. It can be seen that the vortex system formed by, say, the

separated fluid from the bottom of the plate in the- photograph forms the'

counter-rotating vortices that are'required to keep the vortices formed

by the separating fluid from the top half of the plate in equilibrium, and

vice versa.

So it can be concluded that vorticity diffusion from the plate beneath

the vortex does play an important role in determining the flow pattern
within the vortex system, since when there is no such diffusion the flow

patterns are changed significantly.
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CHAPTER 3

The horseshoe vortex formed by a separating turbulent boundary layer

3,1 Literature review

3.17.1 Experimental investigations of horseshoe vortices

The first investigation of a horseshoe vortex system formed by a
separating turbulent boundary layer seems to have been made by Vasanta '
Ram (i963>. He studied the horseshoe vortex ahead of a 15 cm diameter
cylinder on a plate in a wind tunnel at a Reynolds number ( 4%2— ) of

k.1 x 105, for the following two different sets of upstream boundary layer

conditions: -
(1) % = 33.3, H = 1.56,,% = 0.32
(2) ‘—?7(— s B6, B = 1.35,-% - 0.32

He measured the pressure distribution on the cylinder and on the plate
around the cylinder. Some of these experimental results were used in
section 2.9 (figure 2.9.5). One of the measured pressure distributions on
the plahe of symmetry upstream of the cylinder is shown in figure 3.1.1.
The position of the primary vortex, indicated by the minimum in the
pressure distributioﬁ can be clearly seen. Vasanta Ram also performed
some oil flow visualization on the plate and made measurements of the flow
direction around the side of the cylinder using a three hole yawmeter.

The work of Roper (1967) has already been mentioned in section 2.1.2

where his control volume vorticity analysis was discussed. He carried

out flow visualization experiments around a 5.04% cm diameter cylinder
mounted on a ground plane in a water flume, using the hydrogen bubble

technique. The flow conditions for his experiments were as follows:-

ub D
L2 = 27k0-3180, 4 =8.7, H=1.7, JL)—— = 0.61
(The values of —%%— and H were not given by Roper, but were calculated
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1 from the velocity profiles that were given. The equivalent cylinder |
i . -height (L) was taken as being the water depth at the model position).
He observed the whole flow field around the cylinder including the wake |
flow. He observed a form of oscillatory behaviour within the horseshoe

vortex system (figure 3.1.2). However he seems to confuse the observed

motion of the hydrogen bubbles used for flow visualization with the motion

of the horseshoe vorfices themselves. When the streak of hydrogen bubbles

l passes from one vortex to another during the oscillation Roper describes

‘ this as the formation of a new vortex, whereas it is simply that the

l hydrogen bubbles make a different vortex visible. However it would appear
that the oscillatory beha&iour he observed can be described as follows
(figure 3.1.2). The primary vortex (1) broke away from the rest of the

- vortex system, moved downstream towards the cylinder, and then back up-

| .sfream where it appeared to combine with vortex 2 producing a burst of
turbulence. Roper considered this oscillation to take place at the freq-

uency of wake vortex shedding, even though the Strouhal number of the

vortex oscillation was approximately equal to 0.1, about half the usual

value of the Strouhal number of wake vortex shedding. However Roper did

|
not measure the frequency of wake vortex shedding, so his conclusions
could not be verified. |

Belik (1973) investigated the horseshoe vortex systems ahead of

|
|

| : cylinders of different sizes mounted on plates iﬁ a wind tunnel. Uging |

\ vorticity arguments, he derived a functional expression similar to equat- ' |

, ion (2.2.5) which was arrived at in this investigation by simple dimen- |

sional analysis. - Using oil flow visualization he measured the variation

in the position of the primafy separation line as the flow parameters

varied between the limits

0:35%105 < 4L < 2.210% 54 < < 860

. H =I5 : 02 <‘% < 0%

|
|




|
|
|
|
\

6k

(The values of H and (5* were calculated from the information given by

Belik).

He concluded that the dimensionless position of the separation line, !
¥ ‘
f3$1, depended upon the dimensionless group - iﬁéL- only. (This

group is related to the dimensionless groups derived in section 2.2 since ‘

us* u_D )
S¥ (5:T:1) - )

Belik also measured the pressure distribution upstream of the cylinder
for some tests. One of his results is shown in figure 3.1.1, with the

result of Vasanta Ram. Again the position of the horseshoe vortex core

can be clearly seen.
Westkaemper (1968) correlated the results of previous investigations
into the variation of the separation position upstream of wall mounted

obstacles in a supersonic flow. He produced the correlation
s _ _ . 2 <5
] [c <osq:]-
=07 D
F=-za(d) vos [Fros

1.9 <M<11.8; 0.24 x 106 < ';l,—b < 17.4 x106; 7<;gl>*_< Lo,

0.1 <-'%< 5.0; No data for H was given.
( x5 1is the distance from the obstacle centre to the separation posit-
ion on the plane of symmetry and M is the Mach number).

Sedney and Kitchens (1975) studied the flow ahead of models of dif-

ferent shapes and sizes placed on the wall of a supersonic wind tunnel

for the following flow conditions

1.5 <ML 4,5, 2.9 x 1o6< %VQ < 1.8 x 108, 3.8 <& _SDT < 30.5,

0.19 <L< 1.88; (No data for H was given).
Using various flow visualization techniques they were sble to measure
the'position of the separation and attachment lines ahead of the cylinders

and other models used. They concluded‘that the correlation of VWestkaemper
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(1968) described above did not predict the primary separation position

xsl that were too

well, for these flow conditions, giving values of I D

large. They were also able to observe up to three separation and attach-
ment lines ahead of the models in the boundary layer and using the flow
models of Norman (1972) they were able to deduce four different types of
flow pattern on the plane of symmetry (figure 3.1.3). The type of flow
pattern observed changed as the flow parameters varied, the number of

vortices in general decreasing as the Reynolds number increased. Sedney

and Kitchens could offer no explanation for this interesting fact which
is contrary to the observed behaviour of horseshoe vortices formed by

the separation of a low speed laminar boundary layer. The author is of
the 6pinion that this effect is in some way due to the complicated inter-
action between the horseshoe vortex and the bow shock ahead of the models,
but the nature of this interaction is unknown.

Finally mention should be made of the experimentél wérk of Shabaka
(1975). 1In a continuing investigation he has measured the axial velocity
profiles in a turbulent horseshoe vortex core downstream of a wing body
junction, using a pitdt tube. These prpfiles allow the position of the
vortex core to be determined downstream of the junction. Shabaka however

did not measure the flow upstream of the wing body junction.

3.1.2 Boundary layer. measurements and calculations

Two comprehensive sets of measurements of the flow in the boundary
layer upstream of the separation line ahead of an obstacle have been made;
by Hornung and Joubert (1963), and East and Hoxey (1969a and b).

Hornung and Joubert (1963) measured velocity profiles upstream of a

streamlined body with a circular cylindrical noée section 0.56 m in

diameter. The flow conditions for these experiments were

UD 5. D D
-l 0.65 x 100; <F

(The value of ég;— given here was calculated from the flow pafameters 0.38m

= 44,0; No data for H or - was given.
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{ | upstream of the cylinder leading edge, i.e. at -%— = =1.18). They also
measured the direction of the flow using a yaw meter and observed the

turbulent horseshoe vortex system downstream of the separation line using

smoke flow visualization.

model, 0.61 cm diameter, at the following flow conditions

ud 6 D _ _ D _
—— =3.72x 10, F = -2, H = 1.u0, =2~ = 0.58

|
|
|
|
‘ East and Hoxey (1969a and b) measured the flow ahead of a similar
|
|
‘ (The values of i%%- and H givgn here were calculated from the flow
l parameters 0.46 h upstream of the cylinder leading»edge, i.e. at —5%—
\ = =1.25). They measured velocity profiles, pressure distributions, skin
| fricﬁion, and the direction of the flow, at a number of points ahead of
| and around the side of the model. They did not make any detailed observat-
w ions downstream of the separation line.

As noted in section 2.1.2 there are two types of methods that have
been used for boundary layer calculations. Firstly there are differential
methods, where the boundary layer equations are solved numericaily. Using

a method of this type, Nash (1969) calculated the boundary layer develop-

ment ahead of a cylindrical obstacle and found the results compared well

with the results of Hornung and Joubert (1963). Secondly there are inte-
gral methods where the three dimensional momentum integral equations are
solved using an assumed family of velocity profiles. Johnston (1960a)
developed a method of this type, and used it to predict the separation

position ahead of a wall with a jet impinging upon it. This method will

be discussed in detail in section 3.5.

%.1.3 Tovology of surface streamline patterns

In section 3.3.2 the results of oil flow visualization around the
base of cylinders on a wall will be presented. O0il flow visualization

shows thre direction of the "limiting streamlines'", i.e. the limiting

| .
| direction of the flow as the wall is approached. Maskell (1955) first
i :
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| studied the concept of limiting streamlines. He found that at all points
! on a surface the limiting streamlines can have only one direction, except
i g at certain points, referred to as singular points. Theée singular points
‘ are associated with separation of the flow from the surface and with the
| reattachment of the flow. (This is not to say that all points along a
three dimenéional separation line are singular points). In figure 3.1.4

several types of limiting streamline patterns are shown in the vicinity

l

} of singular points (after Hunt et al. (1978)). Figures 3.71.4a and 3.1.4b
| show nodal points of attachment and separation respectively; figures

% 3.1.4c and 3.1.4d show saddle points of separation and attachment re-

‘ spectively; figures 3.1.4e, 3.1.4f and 3.1.4g show the limiting stream-

| line patterns called foci which can also be referred to as nodes. The

i regions of existence of these singular points are also indicated in terms
|

of the values of J, A and N where

aeu . ae,v - Beu.{ée_z
T =y T oy e Gl

= éeu é_e_"_
ATy

- aafi

\ and e, and e, are the surface shear stress vectors in the x and Y

(3.1.3)

(3.1.4)

‘ directions respectively. The ‘derivation of equations (3.1.2) to (3.1.4)
!‘ is given by Hunt et al. (1978).
‘ By extending the work of Perry and Fairlie (1974), Hunt et al. (1978)
| also derive a formula relating the number of nodal points and saddle

points on and around a finite body mounted on an infinite plane.

_ s ) _
. (ZN Za b naey 0 - (3.1.5)

' where 2, is the number of nodal points and Xg is the number of saddle

‘ : ' points.
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Now consider figures 3.1.5(a) and (b) which show the surface stream-
lines of the flow around a cuboid on a plane. Bj considering the number
of nodal and saddle points it can be seen that equation (3.1.5) is
verified in this case.

Hunt et al. also derived a similar_formula relating the number of
nodal and saddle points in a flow plane. Consider figure 3.1.5(c), where
the streamlines in the plane of symmetry of the cuboid are sketched. For

such a plane Hunt derives

(Ey-2) + +E-5) =0 | (3.1.6)

where EZN; and Z:s/ are the number of '"half" nodal and saddle points on
the surface of the plane and cuboid. By counting the number of nodal and
saddle points, and the number of half nodal and saddle points, it can be

seen that equation (3.1.6) is verified in this case.

3.2 Experimental apparatus and vrocedure

3.2.17 Wind tunnels

The expériments to investigate the horseshoe vortex formed by a
separating turbulent boundary layer were carried oﬁt.with the models
mounted on
(a) the floor of No. 1B wind tunnel (the 51 cm x 71 cm tunnel) ,

(b) on a false floor mounted within the working section of the wind tunnel

(figure 3.2.1).

Two series of tests were carried out on the wind tunnel floof, with.
two extensions of different length (1.2 m and 3.3 m) inserted upstream of
the model position, thus extending the length of the working section. In
each case the boundary layer was t;ipped at the downstream end of the con-
traction by a rod of square cross section, 4 mm in height, spanning the
tunnel. Thus in each series of tests boundary layers of different thick-
nesses were obtained. With the short extension in position the model

position was 1.6 m downstream of the trip and with the long extension in
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pééition the model position was 3.7 m downstream of the trip.

Velocity and turbulence profiles were measured at the model position
using a hot wire probe (see section 3.2.5). Some of these profiles are
shown in figures 3.2.2a and 3.2.2b for the long extension upstream of the
working section and in figures 3.2.2c and 3.2.2d for the short extension
upstream'of the working section. Velocity profiles at the model position
on the false floor are shown in figure 3.2.2e. (These profiles were
measured with a rake of 13 flattened Pitot tubes placed at the model
position). The mean velocity profiles of figures 3.2.2a, 3.2.2c and
5.2.2e are plotted in the form of '"Clauser'" diagrams in figure 3.2.3%a
(with the long extension to the working section), figuré 3.2.b (with the
short extension to the working section) and figure 3.2.3c (with the false
floor in position). It can be seen from figurés 3.2.2 and 3.2.3 that
these profiles are typical of turbulent boundary layers (see, for example,
Klebanoff (1955)), and they plot as straight lines in the Clauser diagram
as expected (except close to the floor in the laminar sub layer and in the
outer region of the boundary layer).

Figure 3.2.4 shows how the boundary layer paraméters H and 5*
vary with wind speed. It can be seen that at the lower speeds, with the
short extension in position, H " has values outside the range 1.3 = 1.7
that one would expect for normal turbulent boundary layers. For experiments
with both the short and the long extension in position H decreases as
the wind speed increases.

Many experimenters use the parameter J%éi- to describe the state
of turbulent boundary layers. Although this parameter is not used in this
investigation values of i%?— are given here for completeness. For
tests with the long extension in position, lé?— at the model position
varies between approximately 450 and 1Q,OOO; with the short extension in
positioh between approximately 250 and 7,000; and for tests on the false

ue

floor VI at the model position varies between approximately 900 and

: _ | ‘ ' | E
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1800.

3.2.2 Models

The same 6.35 cm diameter cylinder and cylinder with splitter plate
models used in the study of laminar horseshoe vortices were used fof this
part of the study (see figure 2.3.7). A model of the same section as the
streamlined model shown in figure 2.3.7 was also used but its height was
the same as the other models (30.5 cm). In addition to these models seven
30.5 em high circular cylinders were used for oil flow visualization
studies. They had diameters of 10.2 cm, 8.9 cm, 7.6 cm, 6.4 cm, 5.1 cm,
3.8 cm and 2.5 cm. The 10.2 cm diameter cylinder Qas constructed in sect-
ions so that its height could be varied.

AThe dimensional analysis of section 2.2 applies to horseshoe vorfices
formed by separating turbulent boundary layers as well as to vortices
formed by separating laminar boundary layers. Thus any measurements of
vortex or separation position can be plotted in the lé@_. versus %%F
plane. The positions of such measurements in this plane are shown in
figure 3.2.5 for the 6.35 cm diameter models on the #unnel floor with the
long and short extensions to the working section in position, and on the
false floor placed in the working section. In this figure the positions

of the experiments of Roper (1967) and Vasanta Ram (1963) are also shown.

3.2.3 Flow visualization experiments

Surface oil flow visualization around the models was carried out
on the wind tunnel floor and false floor, and on the models themselves,
using a suspension of titanium dioxide in paraffin with small quantities
of oleic acid added to prevent flocculation of the suspension. This mik-
ture was spread in a thin film on the surface over which the oil flow
visualization was carried out. %hen the wind tunnél was run the shear
siresses on the surface moved the suspension in the direction of the sur-
face streamlines, and the pattern of these streamlines was made visible.

Smoke flow visualization was carried out on the plane of symmetry up-



stream of the 10.2 cm diameter cylinder. Smoke was injected into the
boundary layer upétream of the model through holes in the floor of the
long extension, just downstream of the boundary leyer trip. The smoke,

a fine suspension df kerosene oil droplets, was produced by a Taylor 3020
smoke generator. Photographs were taken of the flow upstream of the cyl-
inder using a Nikon 35 mm camera. The smoke was illuminated by a
"attastar" lamp, the light from which was focussed on to the region of
the horseshoe vortex system by a system of cylindrical lenses and slits
(figure 3.2.6). The light plane in the region of the vortex system was

about 5 mm thick.

3.2.4 Pressure measurement

Measurements of the pressure distribution on the plane of symmetry

"were carried out on the wind tunnel floor using an apparatus very similar

to that described in section 2.3.5, mounted beneath the {floor of the wind
tunnel. Readings were taken using the Furneés micromonometer, and an
ordinary inclined tube alcohol manometer at low and high speeds respect-
ively. Pressure measurements were carried out with models mounted on the
wind tunnel false floor by fixing the model in one position and measuring
the pressure upstream of the model at twenty pressure tappings, spaced at

L mm intervals, using a multitube, inclined tube manometer (figure 3.2.1).

3.2.5 Hot wire anemometry

The unsteady behaviour of the vortex systems was investigated in a
manner similar to that described in section 2.3.6 using a hot wire probe
mounted such that the tip of the probe was only a small distance from the
wind tunnel floor. The uﬁsteady wake flow downstream of the models was
investigated by mounting the hot wire probe at various positions down-
stream of the models, again in a manner similar to that described in
section 2.3.6. The hot wire apparatus was identical to that described in

that section and spectral analyses were also carried out as described in

that section.
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! 5.3 Flow visualization

3 3.3.1 0il flow visualization

The method of oil flow visualization, using a suspension of titanium
dioxide in paraffin, was used to determine the surface strezmline pattern

| on the models, and on the wind tunnel floor adjacent to them. Figure

§ 3.3.1a shows a photograph of the flow pattern on the wind tunnel floor
around a 10.2 cm diameter cylinder. The surface streamlines are sketched
in figure 3.3.1b. The saddle point of primary separation (S ) can be seen

upstream of the cylinder, but its position is indistinct since much of the

titanium dioxide suspension has been brought into this region by the flow.

The saddle point of secondary separation (S, ) can also be seen. Between
S and S, there must be a nodal point of attachment but this cannot be
distinguished on the photograph. The primary and secondary separation

lines, which are composed of ordinary separation points, aire also shown in

figures 3.3.7a and b. Around the side of the cylinder the primary separat-
ion line becomes indistinguishable from the other surface streamlines.

The position of the attachment line Ao very close to the cylinder, can ’

also be distinguished'from the photograph. The large deposit of titanium
dioxide in the wake of the cylinder and the symmetric surface streamline
pattern in the wake are the products of the unsteady wake flow and as such

can only give some time average indication of the position of the surface

streamlines in the wake.

The flow pattern upstreaﬁ of the cylinder that can be inferred ffom
these results is shown in figure 3.3.2. It consists of four vortices
(o, 1, 1' and 2). However there may be other vortices present that are
not strong enough to cause a recognizable surface streamline pattern to

form.

One interesting surface streamline pattern that was seen to occur
occasionally (in an unpredictable fashion) is sketched in figure 3.3.3.

Here the secondary separation line appears to be split in twec, becoming
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very indistinct near the plane of symmetry, with surface streamlines
apparently crossing it. There are two possible explanations for this
type of flow pattern:-

(1) the 'split' separation line is a genuine effect and there is a
secondary separation off, but not on, the plane of symmetry;

(2) the 'split' separation line and the surface streamlines
apparently crossing it are no more than time average patterns
c;used by an unsteady flow.

It is not possible to say which of the two explanations is the correct
one.

The flow patterﬁs on the models themselves were also visualized using
this method and these are sketched in figure 3.3.4. The flow on the front
of all the models was qualitatively the same (figure 3.3.4ka). A separat-
ion line (S,) can be seen close to the wind tunnel floor (where the
boundary layer on the upstream face of the cylinder separates due to the
adverse pressure gradient caused by the horseshoe vortex system). A
nodal point of attachment can also be seen about 0.8 model heights from
the wind tunnel floor. Thus the flow on the front of the models above
the horseshoe vortex region is far from being two dimensional. The
separation line showing laminar ‘boundary layer separation from the side
of the cylinder is shown in figure 3.3.4b. This separation line is at
about 80° of arc from the leading edge of the cylinder, but near the wind
tunnel floor separation occurred further around the cylinder, at about’
110° degrees of arc, probably due to the boundary layer on the cylinder
at this point being turbulent and better éble to withstand adverse press-
ure gradients. Further around in the wake of the cylinder another separat-
ion line could be»séen. Stewart (1977) is of the opinion that this type
of line is due to a,secondary'separation beneath the cylinder wake

vortices. Figure 3%.3.4c shows the surface stireamlines on the side of the

cylinder with splitter vlate model. Laminar boundary layer separation can




within the boundary layer have their downstream sides at an angle of about

7h.

again be distinguished at about 80° of arc from the leading edge of the
cylinder and an attachment line can be seen on the splitter plate. The
surface streamline on the side of the streamiined model'(figure B 3.kd)
reveal a complex three dimensional separation bubble on the side of the
model, presumably caused by laminar boundary layer separation, transition
of the separated shear layer, and reattachment of the turbulent shear
layer. Downstream of the attachment line the flow remained.attached to
the surface till close to the trailing edge.

Much information was recorded on how the primary and secondary sep-
aration lines varied with the flow parameters. This information will be

presented in section 3.6.

3.,%.2 Smoke flow visualization

Photographs were taken of the horseshoe vortex flow upstream of a
4" diameter cylinder mounted on the floor of the 51 cm x 71 cm diameter
tunnel, using the lighting arrangement described in section 3.2.3, with
the long extension upstream of the working section. Two different types
of photograph were taken. Firstly with long exposures (1/15s to 1/60s)
photographs of the type shown in figure 3.3.5a were taken. These photo-
graphs show a time mean position of the horseshoe vortices on the plane
of symmetry upstream of the cylinder. -In figure 3.3.5a vortex 1 can be
seen. Secondly with short exposures (1/500s to 1/1000s) photographs of
the type shown in figure 3.3.5b were taken. This photograph does not show
the horseshoe vortices, which can only be seen in the longer exposure
photographs which show the mean flow pattern. However it does show the
large scale turbulent structures in the upstream boundary-layer. These
structures are distorted as they are convected .into the vortex system and

the nature of this distortion can be described. It can be seen from

figure 3.3.5b that upstream of the vortex system the large scale eddies

40° to the wind tunnel floor (arrow A in the photograpin). Similar obser-
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vations have been made by'Bandyopadha& (1977) in his extensive flow
visualization studies of turbulent boundary layers. However just upstream
of the cylinder above the horseshoe vortex system these large scale struct-
ures are at é much greater.anglé to the wind tunnel flow (up to 900).
(Arrow B in the photograph). Similar distortion of the large sqale struct-
ures was observed in a large number of photographs. This distortion may

be explained in the following manner. Head and Bandyopadhay (1978) have
considered'turbulent boundary layers to be made up of hairpin vor£ices;
i.e. vortices with a hairpin like shape with the "ends'" of the hairpin
emerging from the laminar sub-layer. These hairpin vortices appear to have
a preferred inclination of 40° to the wind tunnel floor on which the
-boundary layer is growing. This corresponds to the angle of the front of
the large scale turbulent structures of figure 3.3.5b and these structures
can be considered to consist of many such hairpin vortices. The .angle of
these hairpin vortices to the floor is determined by the balance between
two forces. Firstly the self induced forces on these vortices tend to
increase their'angle of inclination to the floor. Secondly the mean shear
stresses within the boundary layer tend to decrease the angles of in-
clination of these vortices. As the boundary layer appfoaches separation
these mean shear stresses fall, and as a result the angle of the vortices

to the floor must increase, as has been seen to be the case.

3.4 Plane of symmetry pressure measurements

| Figure 3.4.1 shows the pressure distributions measured ahead of the
6.35 cm diameter cylinder with the long extension ahead of the working
section. It can be seen that there is very little variation in these
pressure distributions over the range of Reynolds number covered.
All the pressure distributions show a levelling out at f%%' e 0.8,
and following the argument of section 2;4.5 it seems reasonable to infer

that this is the position of the centre of the primary horseshoe vortex.

This position does not seem to vary with Reynolds number.
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Figure 3.4.2 shows similar pressure distributions ahead of the cyl-
inder with the short extension in position. The curves are similar to
those of figure 3.4.1 in that they do not vary appreciably with Reynolds

number. The curves all show a levelling out, or a slight dip, at

-j%%.::-O.S, so the vortex position seems to be the same as for the tests
with the long extension in position (i.e. at lower gi s

The dotted line in figure 3.4.2 is an approximation to the pressure
distributions upstream of the seﬁaration position and can be represented
by

Cp = 051+ Ol18(%) | (3.4.1)

This pressure distribution will be used in section 3.5 to calculate a
theoretical value of the separation position using the integral method of
Johnston (1960a).

Figure 3.4.3 shows a similar set of curves obtained when the model
was placed on the false floor in the wind tunnel. Again there can be seen
to be little variation with Reynolds number over the range covered. The
distributions all show a slight dip at i%— @ -0.754--0.80, so it would

seem that the vortex position is closer to the cylinder than for the tests

Xv

decreases
D

with the long and short extension in position, i.e.

as j%%- increases.
Now let us compare figures 3.4.1 to 3.4.3. The major difference

between these figures is the difference in the value of CP at

—ﬁ?— = =0.5. As :%%— increases (from figure 3.4.1 to figure 3.4.3),
C:PE§,=_051 also increases. Similar variations were also observed

for pressure distributions beneath laminar horseshoe vortices described in
section 2.5. In that section it was shown that such behaviour was con-

sistent with the observed fact that the dimensions of the vortex system

.do not change with the flow parameters. The pressure coefficient (:P at

%_ = -0.5 was shown to be approximately equal to (

D

. )2 where W is

u
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\ the velocity on the streamline that passes down the face of the cylinder.
Thus as i%%- increases (the boundary layer becoming thinner), since

v the vortex dimensions remain constant, (=%~ ) on the streamline passing
( down the face of the cylinder also increases, and thus CP at fﬁ; = -0.5
l increases.
l Since similar behaviour can be seen in the results of figures 3.4.1
to 3.4.3 it can be concluded that for turbulent horseshoe vortices also,
the dimensions of the vortex system do not change as :%%—- chanées.
Figure 3.4.4 shows the pressure distributions obtained ahead of dif-

ferently shaped models. It can be seen that for the cylinder, cylinder

with splitter plate, and streamlined models there is little difference in

-the pressure distributions. So it would appear that the flows in the model
wakes do not significantly affect these upstream pressure distributions.
\ The pressure distributions describéd in this section are similar in
form to those obtained by Vasanta Ram (1963) and Belik (1973), shown in

figure 3.1.1. The position of the minimum (and hence of the primary

vortex) on the.pressure distribution of Vasanta Ram (1963) is much more
distinct than on the distributions described here. This may be due to the

very much higher Reynolds number used in the experiments of Vasanta Ram

(1963).

3.5 The prediction of the sevaration vosition using the integral method

of Johnston
" Johnston (1960a) developed an integral method to find the point of |
boundary layer separation ahead of a wall being impinged upon by a con- '
fined jet (figure 3.5.1). 1In this section this method will be used to
calculate the separation position upstream of a cylinder mounted on a wall,

since it is possible that this separation position fixes the position of

the horseshoe vortex.

: | Johnston (1960a) wrote the momentum integral equation on a plane of

|
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f symmetry in a three dimensional flow as
| O _ Cex _ (28, +8%) 4 3 0
! o fx _ (20, i u ’ 1
= a _Bu a‘x - 3nl (3.5.1)

]; dx 2 u dx

where the symbols have the same meaning as in section 2.6. In addition

| (i) C:E: is the skin friction in the streamwise direction,

|

‘l (i1i) o« is the angle of the free stream streamlines to the plane
of symmetry.

He then assumes that the pressure distribution on the piane of symmetry

can be giveh by the_pofential flow pressure distribution outside the

boundary layer. This leaas to

_gg (3.5.2)
2

In another publication Johnston (1960b) had found that many turbulent
- boundary layers have a velocity distribution which takes a triangular
shape when plotted in a polar form, as shown in figure 3.5.2. 1In the

inner region of such a distribution

w=Mu (3.5.3) |

1 where ﬂL is a constant, and in the outer region

w =, (U-u) (3.5.4)

| where (ﬂl is also a constant. Now for i&?” greater than 104 Johnston |

| . used the fldw model to show
| 0, =M, (6,- 5¥) (3.5.5)
( :

| : which leads to

\ =5 G:5:6)

on the plane of symmetry. Then he showed that for a region where the

free stream streamlines are circular arcs
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amz = 2 M‘
n . an ' (3.5.7)

To obtain better agreement with the experimental situation that he
was studying, Johnston changed the constant 2.0 in equation (3.5.7) to
| 1.0. This is a vital step in the analysis. If this constant were not
1.0 the equations could not take their final simple form.

He then obtains from equations (3.5.6) and (3.5.7)

i 812 / | V |
| La _ g—f,‘— (6,-8*) ; (3.5.8)

Equations (3.5.1), (3.5.2) and (3.5.8) result in the integral equation

0, =[8, lf]x:;; / e Pdx (3.5.9)

Lo

. -+ Johnston then solved this equation in a stepwise manner with the help
} ' of the Ludwieg and Tillmann (1949) skin friction relatiocn for two dimen-

sional turbulent boundary layers
A

-1-56IH -0:20% '
Cee= 02406 ¢ (ﬁi) - (3.5.10)

He also used the von Doenhoff and Tetervin (1943) equation

68(H-2:975 g aed
—g—g = 68(H-2-97 )E,L%_<5.aq 109,0(4.075 %@))% - (H e/"zs Y‘]

(3.5:11)

It should be emphasised that equations (3.5.10) and (3.5.11) were
derived for two dimensional flows and there is no evidence that>they apply
! to three dimensional flows. Using equations (3.5.9) to (3.5.11) Johnston

‘ found the variation in f#, 8“ and C#x upstream of the separation line
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ahead of the wall. He identified the separation position as the position

where Cyg, fell to zero. Good agreement was found bgtween this theory

and experimental results, for the flow configuration of figure 3.5.1.
This method has been used to find the variation with the flow para-

meters of ‘the separation position ahead of cylinders on a wall. Equations

(3.5.9) to (3.5.11) were used even though there was no evidence to show

that they were applicable to this case. A computer programme was written
which calculated the variation of H and Cg ahead of the cylinder.

It was assumed that the pressure distribution upstream of the cylinder was
given by equation (3.4.1), the measured pressure distribution upstream of
the separation position ahead of cylinders, with the short extension to
the working section in position. The free stream velocity distribution
upstream of the cylinders (required to solve equation (3.5.9)) could then
be calculated since

P —;Lf,uj iff,u; , (3.5.12)
where the subscript , refers to conditions at the model position without

the model being in position, and ngspw, U@ﬁk LL» , where the subscript

oo refers to conditions far upstream. Also, outside the boundary layer

p + T’¢ Ut = P,,ﬁ%e u2 (3.5.13)

Fromvequations (3.5.12) and (3.5.13) an equation can be derived for

the velocity distribution outside the boundary layer

luY_ | _
(u ) = | —cCp B (3.5.14)

W,

The input required by the computer programme were the flow parameters

H us* D x

.. ~ and —g; at a value of_ >

X
UL ynstead of LD yill be explained in the

= =2.5. (The reason for

using the parameter

next section). The separation position was taken as being the point at
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ahead of the wall. He identified the separation position as the position

| where Cygy fell to zero. Good agreement was found between this theory

and experimental results, for the flow configuration of figure 3.5.1.

‘ , This method has been used to find the variation with the flow para-
meters of ‘the separation position ahead of cylinders on a wall. Equations

| (3.5.9) to (3.5.11) were used even though there was no evidence to show

} that they were applicable to this case. A computer programme was written

] which calculated the variation of M and Cs  ahead of the cylinder.

‘ Tt was assumed that the pressure distribution upstream of the cylinder was

\

{ given by equation (3.4.1), the measured pressure distribution upstream of

the separation position ahead of cylinders, with the short extension to

the working section in position. The free stream velocity distribution

I upstream of the cylinders (required to solve equation (3.5.9)) could then

be calculated since

PR . P Po
_—Tlf’u: = *‘f’“fv _ (3.5.12)

Cp =

where the subscript , refers to conditions at the model position without
the model being in position, and P=Pa U~ U, , where the subscript

o refers to conditions far upstream. Also, outside the boundary layer

p+ Tlf’ U = p.,,+—'2-€ u2 (3.5.13)

From.equations (3.5.12) and (3.5.13) an equation can be derived for

the velocity distribution outside the boundary layer

lwY_  _
(uw) = | —Cp R (3.5.14)

The input required by the computer programme were the flow parameters

e
H o~ u-'vg and _JS)F at a value Of —%— = =2.5. (The reason for
* . .
using the parameter Lgf instead of lé%l will be explained in the

next section). The separation position was taken as being the point at

:
i .
i. i ,
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which C,  fell to zero, A typical result is shown in figure 3.5.3.

Xs

D

meters could be determined. It was found that, to an accuracy of 2%, the

By varying the input data the variation of

with the flow para-

Ls

vredicted variation of 5 is given by
Xs
S =
—o-o.z - °.3H-5'°
_ L D] T us* 4| . LY 3-09
Es ?} [,V XlO:l- [—/5‘#}1’ +4—7H——H—

(3:5:15)

b 4
for 5 < J;—* < 25; 5,000 u—j— < 25,000; 1.3 < H < 1.7. Figure

3.5.4a shows -%%— plotted against D with H as parameter (for

us* . il x

5. = 10,000) and figure 3.5.4b shows I; plotted against

'if* with H as parameter (for i%%r = 10.0). It can be seen that
,f§$_ does not vary significantly as gi varies, but increases as
eﬁf* increases and as H increases. These results and their implicat-

ions will be discussed in the next section.

3.6 Variation of the dimensions of the horseshoe vortex system with the

flow parameters

The experimental results presented in this section were obtained in

two different ways. Firstly the data on the variation of the vortex

position with the flow parameters was'taken from the pressure distributions’
described in section 3.4, while the data on the variation of the saddle
points of primary and secondary separation were obtained from oil flow
visualization studies.

Figure 3.6.1 shows how the dip in the pressure distributions identi-

up D

fied as the vortex position varies with Y and -gy . Because the

pressure distributions from which this data was taken did not show well

. P — x . .
defined minima at the vortex position, the values of =X shown in this

D




working section in position; figure 3.6.2b shows how

D

figure are not very accurate. However it does seem that as 5F in-

creases the horseshoe vortex moves closer to the cylinder.

Figure 3.6.2 shows how the non-dimensional primary separation position

x; : , v

l; varies with the flow parameters. The results are plotted in the
us* D ub D
Y versus <F plane rather than the ~,  versus —EFF plane.

This is simply because the experimental points are better distributed in

xs
cernable. (The choice of i{é— rather than

this plane, and the variations in that occur are more easily dis-

ub

Y)

in no way invali-

dates the dimensional analysis of section 2.2 since

us* _ fun\/p\" -
- (2)(%) )

N ~ I SF

Figure 3.6.2a shows how == varies with the long extension to the

D

Xs

varies with

the short extension in position; and figure 3.6.2c shows how -

D
varies with the cylinders on the false floor. The values of ;? are
X
given as numbers in the us® __ —%%— plane. The position of the ex-
~

periments in this plane correspond to the position of the "decimal points"
X3 »
D Ll

meter H is also shown in these figures, as are lines of constant

in the values of The approximate variation in the form para-

ubd
oV
Although there were considerable errors involved in the measurement

x. . v & o ol ’ . . .
= , certain trends in its variation can be discerned in figure

us*
)

of

—Xs_

D

increases. The first of these trends can also be seen in figure 3.6.3 which

3.6,.2.

appears to decrease as 7%%— increases and as

Xs

D
= 10,000, for tests with both extensions to

shows a cross plot of figures 3.6.2(a) and (b) where

¥
against —g%r for —Lfé——

the working section in position. Figure 3.6.3 also shows a similar plot

us*
v

is plotted

for = 2,500, for tests on the false floor. It can be seen that

there is some variation between the resulté of the three series of tests

~and it seems likely that this variation is due to the difference in the

us*
%

and H . This will be discussed further later in

parameters
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this section.

, *
Belik (1973) suggests that ;? depends on —q&i— only. The
results of figure 3.6.3 show this not to be the case, since i%?— can
be seen to vary with 7%%— .

Figures 3.6.4a, b and ¢ show the variation in the non-dimensionalized
distance from the cylinder centre to the secondary saddle point of sep-
aration ( -§§i— ) for tests with the long extension upstream of the
working section, the short extension in position, and for tests on the
false floor respectively. It should be pointed out that it was possible
to determine the position of the secondary separation point more accurately

than the position of the primary separation point since the oil flow

pattern was more distinct in the region of the secondary separation point.

x
Certain trends in the variation of 2 with the flow parameters
. . uS* . - Xs, .
can be discerned from these figures. As p- increases, D in-
creases somewhat. Taken with what was said above this means that the
1] c¥
primary and secondary separation lines move together as 2L in-

Jv

creases. Also it would seem from comparing figures 3.6.4a, b and c that

I -
=5 D increases.

D S¥ .

It is of interest to compare this trend with the trend shown in the

decreases as

variation of the vortex position with the flow parameters, shown in figure

D

3.6.1, where 4%%—' also decreases as SF increases. Since the

secondary separation is caused by adverse pressure gradients beneath the

v

main horseshoe vortex, one would expect the variations in D and
4%?—— to be similar, as they are. However it was not possible to
X
detect any variation in 4%%— as —%%L (or %%é— ) increases, but

this may be due simply to the difficulty in measuring the vortex position

precisely from the pressure distribution.

X5

D

stream of the cylinders with the short extension upstream of the working

up-

Now the results of figure 3.6.2b, for the variation of

section, will be compared with the results given by the integral method of




i
|
|

X See footnote on next page

8L,

Johnston (equation 3.5.15 and figure 3.5.4). For jg%_ = 14.6,-%651 =
6090, H = 1.4, the measured value of 3; was 1,12 (figure 3.6.2b).
The value predicted by the integral method is I ;? I = 1.30. So the
integral method overestimates the numerical value of ;f » This is
found to be the case generally.
. However equation (3.5.15) does predict that as jg%— increases
l-%?—' decreases somewhat, and such a trend can be observed in the

experimental results. (It can be seen from figures 3.5.4 and 3.6.2b that

the predicted variation is however much smaller than the measured variat-

ion). EBquation (3.5.15) also predicts that | ;;I “increases as
*
qf increases. However the opposite trend can be observed in the
us*

experimental results. But as increases in the experiment, H

%

decreases at the model position, as indicated in figure 3.6.2b. Equation

(3.5.15) shows that -f%i‘ is more dependent upon H than upon g;
X
or —%%i— , and that it decreases as f4 decreases. So in the experiments
: . us* o ; xg
the effect of an increase in —» 1in increasing I.D | may be
masked by the effect of a decrease in H in decreasing ' E; | , and

this may explain the observed trend in the experimenfal results.’xr

At this point it is worth discussing some of the limitations of
Johnston's integral method and of its application to the experimental
results. Perhaps the most sweeping approximation made by Johnston in the
derivation of his method was the use of the two dimensional skin friction
and form parameter equations (equations (3.5.10) and (3.5.11)). The flow
on the plane of symmetry upstream of cylinders is however not two dimen-
sional, the flow diverging away from the plane of symmetry. The vortex
tubes in the boundary layer upstream of the cylinder are stretched as they
approach thebcylinder, their area thus decreasing and their vorticity in-
creasing (section 2.11). Bead (1976) showed that the effect of such
stretching of the vortex tubes is to increase the transfer of streamwise

momentum through the boundary layer. Thus the skin friction at the wall
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will be increased by vortex stretching. So the effect of vortex stretching
will be to cause C; to fall to zero closer to the cylinder than would
have been the case without vortex stretching, i.e. separation will occur
closer to the cylinder. Thus one would expect that the use of the two
dimensional skin friction and form parameter equations, which do not take
into account vortex stretching, would predict separation upstream of the
measured position, which was seen to be the case.

The input parameters for the computer programme of Johnston's method

¥ ;

( _Ud? ; —%— and H ) had to be specified at —=— = -2.5. Thus it

v %) D |
is not strictly valid to compare the results of this method directly with i

X
the experimental results where us 4?;- and J{ are specified at
v
the model position, i%— = 00, However it seems unlikely that any
*

variations of Lﬁf , iﬁ and H at —5%— = -2.5, with the model
in position, from their values at —f?— = 0.0, without the model in

position, will be very large. One would therefore expect the conclusions

reached above to still apply.

Finally oil flow visualization tests were carried out around the base

of a 10.16 cm diameter cylinder, as the cylinder height was varied. The

variation of —%?L and fﬁ?— with the height:diameter ratio (-é;— )

is shown in figure 3.6.5. Tt can be seen that if -JL)— > 1.5 then changes

in this ratio hardly affect f%f and —%%% . Since for all the

other tests reported in this chapter i%; > 3,0, then it is justifiable

tb neglect —%; when considering the variation of ;f and iﬁiL . . ;

with the flow parameters. The curves of figure 3.6.5 also suggest that

¥
for constant Us 7%}- and H

~
Jzd- & « D | (L > 1.5 |
j
i L ?

So the length of the separated region scales on the cylidder diameter

‘ | |
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when the cylinder is tall, and on the cylinder height when the cylinder

is short.

3.7 The frequency spectra of horseshoe vortices formed by separating

turbulent boundary layers

Figure 3.7.1 shows the power spectrum of the velocity fluctuations
of a horseshoe vortex system upstream of a circular cylinder mounted on
the floor of the 51 cm x 71 cm tunnel with the short extension in position.
The power spectral density is non dimensionalised using the mean square of
the fluctuating velocity. It can be seen from the figure that the power
spectrum can be represeﬁted by a smooth curve to within experimental
error. Most of the spectra presented in this section are drawn in the form
af smooth curves for the sake of clarity. However it should be remembered
that the measured spectra are of the type shown in figure 3.7.1.

Figure 3.7.2a shows the horseshoe vortex spectra upstream of the 6.35
diameter circular cylinder at two different speeds with the long extension
to the working section in position. Also on this figure are shown the
boundary layer spectra at the model position with the model absent, meas-
ured at the same height above the wind tunnel floor and at the same flow
velocities as the horseshoe vortex spectra.

‘Figure 3.7.2b shows similar vortex and boundary layer spectra at two °
different flow velocifies with the short extension to the working section
iﬂ position. Figure 3.7.2c shows similar spectra with the cylinder hounted
on the false floor, at one flow velocity.

It can be seen from this figure that at any one set of flow conditions
the horseshoe vortex spectra and boundary layer spectra without the model
in position are very similar. Thus one can conéludé that the distribution
of turbﬁlent energy with frequency within horseshoe vortex systems is
determined by ghe energy distribution in the upstream boundary. However

it should be noteéd that within horseshoe vortex systems the actual turb-

. ¢ AL'? ) ’ . & hil
ulence intensity ( : ) was found to be in the region of 0.40, while

Ww
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within the undisturbed boundary layer, at the same value of -ﬁg_ .

Jw?

i was found to be in the region of 0.10-0.15. (Here w is the

local streamwise velocity, not the free stream velocity).

The effect of a change in the flow conditions can also be seen in

figures 3.7.2a and b. As the flow velocity increases (i.e. as tﬁ? and

gi increase) it can be seen that at the low frequency end of these
spectra the power spectral density decreases, while at the high frequency
end, the power spectral density increases. This one would expect since as
the flow speed increases the frequencies associated with £he large energy
carrying turbulence structures within the upstream boundary layer must
also increase, and hence energy must be transferred from the low frequency
range of these spectra to the high.frequency range.

The effect of a change in —%%— on the vortex syectra can be seen
in figure 3.7.3 where the three high velocity vortex spectra of figure
3.,7.2 are compared. It can be seen that thg horseshoe vortex spectrum with

the model mounted on the false floor (at iéér = 30.5) contains less

energy at low frequencies and more at high frequencies than the other two

spectra (at —%%r = 9.6 and 6.6). As &% decreases (and ;ﬁ in-
creases) the large energy carrying eddies within the boundary layer up-
stream of the vortex system become smaller and hence the frequencies assoc-
iated with them become larger. Thus one would expect this transfer of
energy to the high frequencies within the upstream boundary layer, and
therefore also within the vortex systems.

Figure 3.7.4 shows the spectra of the horseshoe vortices upstream of
three different models; the 6.35 cm diameter cylinder, the cylinder with
splitter plate, and the streamlined model. It can be seen that there is
little difference between the spectra. The wake spectra cf these three

models are shown in figure 3.7.5. They can be seen to differ significantly,

the spectrum of the cylinder wake showing a well defined peak at the vortex

shedding frequency, while the other spectra do not show such well defined
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peaks. Thus it can be concluded that the wake flow of the models does
not affect the spectra of velocity fluctuations within the horseshoe
vortex system.

No regular horseshoe vortex oscillations have been observed for the
turbulent vortex systems considered here. However oscillations have been
observed by Roper (1967) (section 3.1.1) at flow conditions similar to
those of the present experiments (figure 3.2.5). The cause of this dis-
crepancy ié unknown but it may be that the boundary layer upstream.of the

cylinder used by Roper was not fully turbulent and the oscillations he

observed were in fact laminar horseshoe vortex oscillations.




89.

CHAPTER 4

Scour around obstacles in an erodible bed

4.1 Introduction

Two flow mechanisms are responsible for the formation of scour holes
around the bases of obstacles, such as bridge piers, set in an erodible
river bed.

(a) The contraction of the flow channel formed by adjacent piers caﬁses
an increase in the flow velocity between the piers.

(b) The adverse pressufe gradient ahead of a pier causes separation of

the oncoming shear flow from the bed, and causes part of it to roll up

and form a horseshoe vortex, wrapped around the front of the pier and

-trailing downstream on both sides. When the bed is erodible the high

shear stresses under such a vortex cause a scour hole to be formed at the

base of the pier.

Two types of scour can be identified:-

(a) clear water scour, wherermovement of sediment only takes placeAin the
vicinity of the bridge piers. An equilibrium depth of scour is
reached when the shear stresses on the boundéry of the scour hole fall
below the value needed for movement of sediment;

(b) scour with continuous sediment motion, where-the whole river bed is in
motion. In this case the equilibrium depth of scour is reached Qhen
the inflow of sediment into the scour hole is equal to the outflow of
sediment from the scour hole.

In this chapter the scour holes formed around isolated cylinders on

a flat bed of sand will be considered. That is to say the horseshoe

vortex system will be considered to be the only mechanism of scour.

4,2 Dimensional analysis

For a fully developed channel flow one may write the functional
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relationship

U=‘Fh(’t,<:l.s,,’\, P'v)
where (L is the mean channel velocity, € is the bed shear stress, dj is
the roughness size (which is assumed to be equal to the median grain
diameter), h is the water depth, e is the water density and v is the
kinematic viscosity of the water. Thus non-dimensionalizing

W - £ (—*—M d ,———{1 \) (4.2.1)

Uy % g

AL : . :

where Wy é% -T; is the friction velocity.

In what follows it will be assumed that the flow is a fully developed

channel flow with a velocity distribution (outside the laminar sub-layer)

given by

= 048 [n (%) +3B (4.2.2)

Ux <
where W 1is the mean velocity at a distance j above the bed and B
is given by
B= fn (g*-is)
_ Y%
For scour around a cylinder in an erodible bed consisting of a non-
cohesive bed material, due to a fully developed channel flow, one may

write the functional relationship

d = fn (D-,l""\),()sf(’,(fs-f’)j.&s,bat> (4.2.3)

where A. is the maximum scour depth in the scour hole at time {;, Es
is the sediment density and D is the cylinder diameter. (The inclusion
of 3 only in the combination (Pg-F)S implicitly assumes that the flow
is deep enough for free surface effects to be insignificant.)

Now it follows from equation (4.2.1) that Wy is determined if El,
h , Cls, and Y are specified. Therefore if one assumes a logarithmic
velocity distribution it follows from equatioh (4.2f2) that the velocity

profile in the channel is determined if LL,;\,cls and A (and therefore

u*) are specified. Therefore no other velocity profile parameters are
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included in equation (4.2.3). Also no parameters which describe the
turbulence charactcristicé of the flow are included, it being assumed
that any variations in the turbulence that might occur will not sig-
nificantly affect the scour depth. This will not be the case when a
large amount of sediment is carried into the scour hole in suspension.
Then one would expect that the upstream turbulence distribution must
affect the overall sediment distribution within the flow and hence must
affect thelscouring process. So the following dimensional analysis will
not apply when the upstream flow carries a large amount of suspended
sediment.

Non-dimensionalizing equation (4.2.3)

.i_n h ads .D _Ps_ . '

where N= a/ W
' (8-} 9]
9-1}qt
- By, ]
Now consider the dimensionless group LE&‘

based on mean flow velocity and sediment size. Thishmay be replaced by

, the Reynolds number

the group Uxds  iice from equation (4.2.1) it follows that

uyde o (D _h_)

N Uy ' dg

U ds
N
Gy

which gives

ux(is (L h
TR =fn {U}vcls '

Now consider steady state conditions when d.: C{e the equilibrium

scour depth. The dimensionless group that characterizes the time develop-

ment of scour can be neglected i.e. the group T . Now most natural

river beds are composed of sand and gravel for which i is constant

P
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afid equal to 2.65. Thus this group can be neglected as long as any ex-
periments that are carried out use sand as a bed material.

So equation (4.2.4) becomes

_42. = "\ U-*(J-s D . :
D fn (N, v - | (4.2.5)

Now the flow upstream of the obstacle may be one of three types

(a) . u'*d%. < 5 h};draulically smooth
) 5 << “'*d%j <= 70: transitional
() 70 << u*% : fully rough.

If the flow is of type (c) then viscosity (and hence _g._/vclu ) will

cease to be important. (The velocity profile upstream of the'cylir.der

h
ds

(4.2.2) becomes a constant. Since the form of this velocity profile de-

will in this case be determined by N and , and B in equation
" termines the nature of the horseshoe vortex system, viscosity (and hence

—“"—It‘:{'—s— ) will cease to influence the nature of.‘the horseshoe vortex

Uy ds'

system.) Thus for flows of type (c) o ceases to be an important

variable and

_d;_ = _.L__ _.-D_.) . | ,
3 fn (N, T (4.2.6)

(In neglecting —-l'—L:—ds the group —%]i which is still included im-
plicitly in equation (4.2.5) has also been neglected. Thus equation
(4.2.6) can only apply when a change in —q\)i does not cause a funda-
mental change in thé flow pattern around the cylinder. Thus, for example,
if a change in —a_\P— causes the boundary. layer on the cylinder surface
away from the bed to change from laminar to turbulent at its point of
separation (with a consequent change in the extent of the wake and the
flow pattern around the cylinder) then it is not justifiable to neglect
L%Q- or -Lﬂ'fv—d’i— . |
Now the significance of the group N will be considered. This group

determines the type of scour that will occur. For N< No(say), the

« «
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and equal to 2.65. Thus this group can be neglected as long as any ex-
periments that are carried out use sand as a bed material.

So equation (4.2.4) becomes

_OL%. = I’\ U-*Cls D -
D n (N, L v - (4.2.5)

Now the flow upstream of the obstacle may be one of three types

(a) | u'*d%. <~ 5: hydraulically smooth

(b) . B =T “*d%j < 70: transitional

() 70 << u*% : fully rough.

If the flow is of type (c) then viscosity (and hence —“/\’Jdu ) will

cease to be important. (The velocity profile upstream of the cylirder

will in this case be determined by N and —’C"L——, and D in equation
s

(4.2.2) becomes a constant. Since the form of this velocity profile de-

" termines the nature of the horseshoe vortex system, viscosity (and hence

—i:t—d'—i ) will cease to influence the nature of ‘the horseshoe vortex

Uy C(sl

o ceases to be an important

system.) Thus for flows of type (c)

variable and

4o - (N%-ﬁ—) (4.2.6)

(In neglecting —I'L'v—di the group -%D— which is still included im-
plicitly in equation (4.2.5) has also been neglected. Thus equation
(4.2.6) can only apply when a change in % does not cause a funda-
mental change in the flow pattern around the cylinder. Thus, for example,
if a change in -%—D causes the boundary. layer on the cylinder surface
away from the bed to change from laminar to turbulent at its point of
separation (with a consequent change in the extent of the wake and the
flow pattern around the cylinder) then it is not justifiable to neglect
%‘D- or E—%{L . s

Now the significance of the group N will be considered. This group

determines the type of scour that will occur. For N<No(say), the
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shear stresses underneath the horseshoe vortex system are not large enough
to cause sediment.to be moved and no scour occurs. If pd; < N < ﬂJc ’
where PJC is the value of [N for which general sediment motion begins
on the bed upstream of the cylinder, then clear water scour will océur.

If ﬁJc<( ﬁq then scour with continuous sediment motion will occur.

The relative importance of the group fd in clear water scour and

scour with continuous sediment motion can be deduced in the following
ways Suppose a scour hole in equilibrium exists and the conditions are
such that clear water scour occurs. If the flow velocity G: is increased
slightly (by A‘EL , say) the horseshoe.vortex system within the scour hole
becomes more able to tranéport sediment (since faster moving fluid feeds
into the vortex system) and hence the scour hole becomes deeper (by

‘ ([S<ié), say). Now suppose a scour hole in equilibrium exists and the
cénditions are such that scour with continuous sediment moticn occurs. If
the flow velocity is again increased by CS[l , the horseshoe vortex system
within the scour hole will again be able to transport more sediment out of
the scour hole, but now ﬁore sediment will be moving into the scour hole

due to the increased capacity of the upstream flow to transport sediment.

So if the scour depth changes by ([Scie) , then it seems likely that

(Ade)' = (A de)

So it would seem the variations in W (and hence in bJ ) cause

d

larger variations in Cie (and hence in —=% ) in clear water scour than

D

in scour with continuous sediment motion.

Now the significance of the dimensionless group D will be con-

h

becomes 'large' one would expect that the shear stress

sidered. As D
h
beneath the horseshoe vortex would tend to decrease since the flow becomes
similar to the flow in a confined jet impinging upon a wall mounted per-

pendicular to the jet axis. In such a case a closed separation bubble is

formed at the base of the wall. The flow within such a closed separation

bubble is very much less vigorous than within the "open' separated flow of
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a horseshoe vortex system, into which fluid is continually flowing.
Hence one would expect that the bed shear stresses beneath a closed
separation bubble will be very much lower than beneath an '"open' horse-

shoe vortex system. ' Thus one would expect the scour depth beneath the

D
h

results of Carstens and Sharma (1975) show this to be the case, since for

D = 2.94, they found that the deepest scour occurred behind the cylinder

horseshoe vortex system to decrease as becomes large. 1Indeed the

h

due to scouring by vortices in the cylinder wake, and there was little

D
h

relatively large, one would expect that variations in A would cease to

scour in front of the cylinder. Also if is "small", and hence ‘\ is

influence the flow near the bed. Hence variations in

]‘2 would cease to
be important. Thus one would expect that D would only be an important

h

variable if it were neither "large' or '"small" but what values of —LQ——

correspond to "large" and "small" is not known.

The scour depth at any time t is given by eqﬁation (k.2.4) while
the equilibrium scour depth is given by equation (4.2.5). From these two
functional relétionships

.é_ - "? LL*C‘.s .D . -

- fn (N, iy T | (4.2.7)
where the dimensionless ratio ;?

therefore been neglected. Equation (4.2.7) applies when the flow upstream

has been assumed constant and has

of the cylinder is either hydraulically smooth or transitional. If the
upstream flow is fully Foug% then _Jéiﬁig_ ceases to be important
- ) 4 .
(provided changes in udb do not change the flow pattern fundamentally).
IV
So equation (4.2.7) becomes
d_ _p(N A D T (4.2.8)
de d¢ ' h

At this point it should be pointed out that for experimental work it

. . u .
is often convenient to replace s o by the group & , Where

G = £(%)"}3C%z i
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— 2

Y G= (/} (—“)
Fn Lxds ———) | (4.2.9)
Cr ’ 'V"d.s g 9
So it is justifiable to consider this group instead of Jﬁffii- in any
of the functional expressions derived above. This group reflects the in-
fluence of viscosity in very much the same way as _igffii_ . For small

values of this group (<1500, approximately) the flow is hydraulically

smooth. For C} > hox 104, the flow is hydraulically rough. Thus when

.Gr> b x 1OI+ one would expect it to become unimportant in a similar manner

to -xds
M

L.,3 TLiterature review

Lk,3.1 Experimental investigations

Many experimental investigations of the subject of scour around
bridge piers have been carried out and reviews have been presented by
Breusers et al. (1977) and Melville (1975). Here some of the previous in-
vestigations will be considered in the light of the dimensional analysis
of section 4.2.

Shen et al. (1969) attempt to correlate maximum depth of scour with
LD
I‘)

and produce the formula

~ _\06I9
d, = 0:00073 (“—,f) {y(wt (4.3.1)

If this formula is compared with equations (4.2.5) .and (4.2.6) it can be
seen that it is at least inadequate and for some types of flow completely
invalid. The dimensional nature of the left-hand side of equation
(4.3.1) is also very unsatisfactory.

Nicollet and Ramette (1971) conducted experiments cn the basis of

the functional expression

de _ g (Uds D C(B.3.2)
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which the dimensional analysis of the previous section shows to be in-
adequate.

Leclerc (1971) used the functional expression

_%i = fn (weds ) ' (4.3.3)

and found that the water depth h was not an important variable. How-
ever this was because at the test position in the flume that was used,
the flow was not fully developed and any change in ;1 did not change the
boundary layer thickness at the test position (and hence the horseshoe
vortex system was unaffected). Several previous experimentershave made
this error.

Hancu (1971) used the expression

£n (&, HG,D,f}) (4.3.4)

which although inadequate is of interest since it appears to be the first

time that the variable lic (the value of LL' at which scour with contin-
uous sediment transport starts) was introduced. Bonosoundas (1973) also
used this variable. Firstly he wrote

e = fn (p.v.do o pu-p)g, G, D.q. 4

Non-dimensionalizing he obtained

de _ ¢, __u* dl-s,ucis __9_2)_11‘_@_
D [& ]3 ~ w*' d, D

Bonosoundas' dimensional analysis is interesting but several criticisms
can be made. Firstly one of the variables Fg' F' 3, (@;‘ 9)3 is re-
dundant since the fourth is a function of the first three. Secondly in
non-dimensionalizing, ten independent variébles result in six dimensionf
less groups, instead of the seven predicted by the theory of dimensional
analysis.

From a formula by Velikanow, Bonasoundas then wrote

U (W h ) |
W, [(%)”'JQJ'S‘ ds _2

He then made the mistake of replacing both
Ef; ']3
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and -;? by %: in the functional expression, whereas it is only
S c -—
justifiable to repldce one of the groups by

e ;
Bonsoundas then neglected %; , thereby limiting the analysis to

the derivation of an expression for ultimate depth of scour only. He

also neglected J%iti without stating when this assumption applies.

-

He also neglected the group which is justifiable since

L o (0 )T g 2 )

But he did not make this clear. Finally replacing i> by —%%—
(which is not justifiable unless : is included in the functional

expression since

= fn .
<h aLs
he obtained

e_¢r (L. D |
Fn<a , h) (4.3.5)

So although equation (4.3.5) appears to be more simplz than equations

(4.2.5) and (4.2.6), and the dimensional analysis seems complete, there

are several vital flaws in the argument.

Many formulae have been produced by Indian researchers which claim
to relate the ultimate scour depth to the various dimensicnless groups.

These are reviewed by Henderson (1966). Among them are the formulae

_’_7_ N _d;e_ — I8 (L>o‘75

b e = = (4.3.6)
:' CLe, _ . h 0-78 U.

which can be seen to be inadequate.

Perhaps the only previous experimental results that are systematic
enough to enable them to be plotted in the form suggested by the dimensional
analysis are those of Chabert and Engeldinger (1956). This is done in

section 4.6.

Finally mention must be made of several other interesting investigat-

ions of particular aspects of this subject. Laursen (1960), (1963), al-




|
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though not stating so explicitly assumes that the contraction mechanism
of scour described in section 4.1 is the dominant one and does not dis-
cuss the role of horseshoe vortex systems. He presented theoretical
analyses and ekperimental results for both clear water scour and scour

with continuous sediment motion. For the latter he gave the formula

.%& - 15 é%)ws V (4.3.8)

White (1975) carried out experiments at Froude numbers between 0.8 and
1.2 for several different obstacle shapes and compared the results with
several of the above formulae.

Carstens and Sharma (1975) carried out experiments in a flow with a
;arge vaiue of —%%— and the scour upstream of the cylinder was found to
be less than the scour downstrecam of the cylinder caused by wake vortices.

Nicollet (1975) carried out a limited series of experiments to
study scour around cylinders in a bed of cohesive material. The observed
scour holes were of approximately the same size as those in a bed of non-
cohesive material but were more "ragged' in appearance.

Finally mention must be made of the extensive experiments of Melville
(1975). He did not attehpt to find how the scour depth varied with the
flow parameters but studied the flow in preformed concrete scour holes in
an attempt to gain an understanding of the flow. These scour holes were
models of the holes thatvMelville had observed around cylinders in a bed
of sand. A photograph of a scour hole typical of those he observed is
reproduced in figure 4.3.1, together with a sketch of a longitudinal
section through the scour hole. He observed that the upstream slope of
the scour -hole was at an angle to the horizontal equal to the anglé of
repose pf the sediment, except in a region close to the base of the
cylinder (figure 4.3.1b). Scouring took place in this region. A heap of
deposited sediment was observed in the wake of the cylinder.

In the preformed scour holes he measured mean velocities, turbulence
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intensities and spectra, and surface shear stresses. Howe&er to make
these measurements he used hot film anemometers and preston tubes. The
effect of these probes on the complex three dimensional.separated flow
within the scour holes is unknown, and these results can at best only be
regarded as qualitative. However the turbulence spectra measured by
Melville within a vortex system upstream of a cylinder on a flat bed are
very similar to those described in section 3.7. Melville also made de-
tailed observations of the formation of scour holes and carried out flow
visuelization of the horseshoe vortex system using both dye and hydrogen

bubble visualization techniques.

Lk,3.,2 Theoretical investigations

Because of the complex nature of the scouring problem theoretical
investigations have proved to be difficult to conduct. However two
interesting attempts have been made.

Carstens (1966) applied the sediment pickup function of Le Feuvre
(1966) to this problem. This must be a somewhat dubious assumption in
view of the fact that the flow geometry studied by Le Feuvre (water flow-
ing over a preformea isolatgd scour hole) is very different from the flow
around fhe base of bridge piers. He then applied this function to some
results of Chabert and Engeldinger (1956) and obtained the formula

y _ -

e _osup [N= "“) (4.3.9)

D N*-5-02

Grodowozyk et al. (1968) analyse scour around a cylindrical obstacle
by using the shallow water hypothesis and solving numerically the linear-
ized shallow water equations using the method of characteristics. The
results compare reasonably well with experimentél results although the
authors admit that this analysis does not take into account the horseshoe

vortex system, but assumes that scour is caused by a perturbation in the

velocity field.
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] L., Experimental apparatus and procedure

The experimental results described in this chapter were obtained in
the sediment transport flume at Cambridge University Geology Department.

The flume has a working section 5 m long by 0.3 m wide and tests were

carried out at a point 4.5 m from the start of the working section
(figure 4.4.1).

The surface flow velocity in the flume,d, was measured by timing a
small piece of plastic as it floated down a 2 m length of the flume.
The mean velocity profiles at the working point in the flume were measured
using a pitot tube and an inclined tube manometer. Although this proved

to be rether inaccurate at the lower velocities there was no other method

Lk.k.2 in the form of a "Clauser plot". It can be seen that away from the

l

' readily available. Some tydical velocity profiles are shown in figure
[ bed -% increases linearly with -E%F* , showing that the logarithmic
|

\

u
velocity distribution is valid. The "Clauser plot'" enables the ratio
—g%- to be calculated since 9
" Uy
Uy — Ce
where C* , the skin friction, is taken from the Clauser plot. This ratio
was required to calculate values of —5%5EL « These calculated values

showed that in nearly all the tests carried out in the flume, the flow was

hydraulically smooth.

once U and Uy were known the mean channel velocity L could be

calculated from the  equation

U = U —2-5

Wik Uy

(Yalin (1972)), which is obtained by an integration of the logarithmic
velocity distribution (equation 4.2.2).

The four cylinders afound which the scour depth was measured had J
diameters of 1.27 cm, 2.54 cm, 3.81 cm and 5.08 cm. The Reynolds numbers l

( j;%l 5 and 2.5 x 10“.

based on the:cylinder diameters ) were between 10

_
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As !
<V

rises above approximately 2 x ’IO5 the boundary layer on the |
cylinder surface changes from being laminaf to turbulent at its point of : i
separation. Thus for these experiments the boundary layer on the cylinder
is laminar at separation.

Tests were carried.out using sand of median diameter 0.45 mm (giving

a nominal value of G of 1.47 x 103) and at nominal water depths of

5.5 cm and 11.0 cm (giving values of i of 120 and 240 and values of |
. 5 .
-%?— between 0.12 and 0.92). The form of the scour hole was similar to

that observed by previous investigators, and the maximum scour depth (d.)
was seen to occur on the upstream stagnation line of the cylinder. (For
the tests where there was general sediment motion, the equilibrium scour
depth was arbitrarily defined as the maximum scour depth observed. This

is because the scour depth varies by up to 10% as bed forms more through

the scour hole.

In-practice the flow in rivers can be either hydraulically smooth,

transitional or fully hough . Thus the value of G given above (which
corresponds to a flow that is hydraulically smooth) does correspond to a
practical case. Values of G which correspond to transitional and fully
turbulent flows occurred in the experiments of Chabert and Engeldinger

(1956) which are discussed in section 4.6. The range of D_ for these

h
experiments also corresponds to the rangse that one would expect to meet
in practice. However the values of 2 (120 and 240) are somewhat

s

lower than one would expect to meet in a practical situation. However

h

S

has higher

e ————

for the experiments of Chabert and Bngeldinger (1956),

and more realistic values (up to 1400).

4,5 Experimental results and discussion

L.,5.1 Description of the scouring process

All the scour holes that were observed were similar to those ob-
served by Melville (1975) (fizure 4.3.1). The deepest scour was seen to

occur on the front stagnation lins of the cylinder, and this depth will

E
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from now on be referred to as the scour depth, and its‘maximum value as
the equilibrium scour depth. Measurements showed that the upstream slope
: of the scour hole was at an angle close to the angle of'repose of the
sand (30°) except for a small region close to the cylinder. This region
is where the horseshoe vortex system lies and scoﬁring takes place in
this region. During the scouring process sand is picked up by the horse-
shoe vortex system in this region and is carried around the cylinder and
deposited in the wake. Thus a pile of sand forms there. More sand then
slips down thé upstream surface of the scour hole into the horseshoe
vortex system and the scour hole continues to grow until, for clear water

scour, the shear stress beneath the horseshoe vortex system falls to such

l a value that it cannot remove any sediment, or, for scour with continuous
I sediment motion, the inflow of sediment into the scour hole equals the

| N

: outflow of sediment.

It appears that the extent of the scour hole upstream of the cylinder

is not directly related to the original length of the separated region

of the scour hole is determined by the slope of the upstream face, which
is in turn dependent upon the angle of repose of the sediment, and not

\
I
l - upstream of the cylinder. This is because once scour has begun the extent
!
t upon the original length of the separated region.

{

4,5.2 Equilibrium depth of scour

~ Figures 4.5.1(a) and (b) show %; plotted against N with ﬁ%—
%— . It can be seen that there
s

. as parameter, for the two valﬁes of
are three distinct ranges of N
‘ (a) A!<'ND (from figure 4.5.1(a), N, == 1.9; from figure 4.5.1(b),

N, == 1.9). Mo sediment motion was observed in the flume.

(0) No<< N < N, (from figure 4.5.1(a), N, == 3.1, from figure 4.5.1(b),
de #= 3,0). The experimental results lie on a straight line for
all values of D . Upstream of the cylinders scour was only ob-

| h

served close to the cylinders, so this region corresponds to clear

b . | | | .
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water scour.

(e) PJ:>/VL . The experimental results cease.to show any variation

with N , but do vary with D . As D increases, —d@— de-
h h D
creases. Sediment motion was observed over the entire bed, so this

region corresponds to scour with continuous sediment motion.

First of all the clear water scour region will be considered. From

figure 4.5.1(a) for h = 240

. ds
| de
l —f- = ,‘2N—’2'2 ’ (4.5.1)
! From figure 4.5.1(b) for h = 120
| d
| e

&> = N —119 (L.5.2)

The small difference between these equations is some measure of the

h de

| effect of the group 4 on D This effect can be seen to be
i S
5 slight.

As -%%— increases one would expect the shear stress beneath the

horseshoe vortex system to decrease and hence the equilibrium scour depth
should decrease. This appears to be the case in the.region of scour with
continuous sediment motion, but not in the région of clear water scour.
The arguments of section 4.2 also lead one to expect that for scour with

continuous sediment motion the scour depth should depend upon ﬁd less

‘ than in clear water scour. This can be seen to be true from figures

| 4,5.,1(a) and 4.5.1(b) where de shows little variation with A/ in

D
the region of scour with continuous sediment motion.
In figure 4.5.1(c) %f is plotted against ‘EL' in the region
of scour with continuous sediment motion for -%t— = 240. The ex-
perimental points lie about the line
l de — ]O (‘i\—ola (1}.5'3)
D hl
h . |
It was not possible to draw a similar graph for 4 = 120, since }
: S ‘
‘there are few experimental results in the region of scour with continuous
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sediment motion, for this value of —ll— (figure 4.5.1Db).

ds

4.5.3 Time develdpment of scour

Figures 4.5.2a to ¢ show the development of the scour depth with
time. It can be seen from these figures that clear water scour develops
more slowly than scour with continuous sediment motion. As N increaées
it appears that the rate of development ofvclear water scour slows down,
but the rate of development of scour with continuous sediment motion in-
creases. Thus the type of scour that takes longest to develop occurs
when N has a value just below NL i.e. when general sediment motion
is almost taking place. '

No great difference can be seen between figures 4.5.2(5) to (c) so

it would seem that 4%%— does not significantly affect the rate of
' D

development of scour {at least for 0.24 < =— < 0.48).

h

4.5.4 Dye flow visualization

The horseshoe vortex upstream of a 5.08 cm diameter cylinder was

observed by introducing dye into the flow upstream of the cylinder and
the flow patterns that were seen are sketched in figure 4,5.3., No dif-
ference in flow patterns was observed with or without general sediment
motion. Two vortices rotating in the same direction were observed both
at the start and end of the scouring process. This implies that a
counterrotating vortex must exist between them, but this was not observed.

It is interesting to note that water from all levels of the upstream
flow feeds these vortex systems, so that it was possible to see a filament
of dye, that was introduced into the flow near the surface, pass down the
upstream face of the cylinder into the vortex system. Also when the scour
hole was fully developed the vortex systems were still fed from all levels

of the'upstream flow.

4.6 Comparison with the results of Chabert and Engeldinger (1956)

When a search of the literature was being made, it became apparent

S
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thaf most previous experimental investigations were carried out in such
a way that it is impossibie to plot the results in a way similar to
figures 4.5.1(a) and (b) because two or more dimensionless groups were
varied simuitaneously. However the results of Chabert and Engeldinger
(1956) for scour around circular cylindrical piers in a bed of sand are
ideally suited to be plotted in such a way.
For these tests £é%l~ varied between approximately 6 x ’IOLlL and
2 X 105. Thus for most tests one would expect the boundary layer bn the
cylinder sdrface to be laminar at its separation point, but for the
higher Reynolds numbers the boundary layer at this point may be turbulent,
and the flow pattern around the cylinder may be changed substantially.
(Since the boundary layer on full scale bridge piers is invariably turb-
ulent at the separation point, future experimenters using small scale
models should artificially 'trip' the boundary layer on the cylinder sur-
face to obtain flow patterns similar to those around full scale bridge
piers.
Figures 4.6.1a and b show i%f— plotted against N at constant
D ; h
-;:-, for two different values of :L;

out. It can be seen that these figures have the same form as figures

with & kept constant through-

4.,5.1(a) and (b). For clear water scour figure 4.6.1a gives

de |

D N =i (4.6.1)
when -%%- = 66.7, and figuré 4,6.1b gives

de __

D = 03N —1I3 | (4.6.2)
when -f%— = 33.3. Tt can be seen that N, is significantly less

than in the authors own experiments, presumably because of the large dif-
ference in G . Again it can be seen that f%% does not depend upon

-%%ﬂ for clear water scour, for 0.25 ‘<f-%%- < 1.5.

Figure 4.6.1c shows the variation of -%f— with -%%— for scour
with continuous sediment motion. For _h = 66.7 the points lie about

d
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thaé most previous experimental investigations were carried out in such
a way that it is impossible to plot the results in a way similar to
figures 4.5.1(a) and (b) because two or more dimensionless groups were
varied simuitaneously. However the results of Chabert and Engeldinger
(1956) for scour around circular cylindrical piers in a bed of sand are
ideally suited to be plotted in such a way.

For these tests Lé%l. varied between approximately 6 x 104 and
2 x 105. Thus for most tests one would expect the boundary layer bn the
cylinder s&rface to be laminar at its separation point, but for the
higher Reynoids numbers the boundary layer at this point may be turbulent,
and the flow pattern around the cylinder may be changed substantially.
(Since the boundary layer on full scale bridge piers is invariably turb-
ulent at the separation point, future experimenters using small scale
models should artificially 'trip' the boundary layer on the cylinder sur-
face to obtain flow patterns similar to those around full scale bridge
vpiers.

Figures 4.6.1a and b show i%f- plotted against N at constant

, for two different values of L with G kept constant through-

D
h dg

out. It can be seen that these figures have the same form as figures

Lk.5.1(a) and (b). For clear water scour figure 4.6.1a gives

% = 097N -3 ' (4.6.1)

when —%%— = 66.7, and figuré 4,6.10 gives
de

D = 1-03N — -3 7 (4.6.2)
when D - 33.3. Tt can be seen that N, is significantly less
than in the authors own experiments, presumably because of the large dif-
ference in G . Again it can be seen that f%% does not depend upon

-%%~ for clear water scour, for 0.25 < %?— < 1.5.
Figuré 4.6;1c shows the variation of -%f— with -%%— for scour

with continuous sediment motion. For N P 66.7 the points lie about

ds
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the line
de oo DY
o =i (7;) | (4.6.3)
h
and for j): : = 53654 '
-0'3b
.-%“— = .35 (%) | (4.6.1)

It can be seen that equations (4.6.3) and (4.6.4) have the same form as
equation (4.5.3) but the numerical constants differ significantly. This

is perhaps not surprising when one considers the large differences in

h
ds and G .

So it would seem that in the region of clear water scour, the equi-

librium scour depth is given by

de '

D —N--i (4.6.5)
where k, and Kz do not depend significantly upon —% in the range
D2 < % < 1.5, but do vary as —C‘E— and G vary. In the region

3
of scour with continuous sediment motion
=K

de _ e (D)

D T 3\h (4.6.6)
where K3 and K, do not depend upon N (at least for N< 6.0) but do
vary as —h—, and G vary.

ds

The question now arises as to how the constants K,, K,, Ki; and

k,,_ vary with i’s and G . Chabert and Engeldinger (1956) do not

give very much more data for clear water scour than that shown in figure

4.,6.1, so any conclusions must be made on the somewhat limited basis of

equations (4.5.1), (4.5.2), (4.6.1) and (4.6.2). These equations suggest
L

that k, remains approximately constant as —Is- and G vary, while

K, does not vary greatly as varies, but appears to be dependent

h
dg

upon G . Obviously there is a need here for further experiments to be

 carried out to describe the variations of K, and K,_ more fully.

Chabert and Engeldinger (1956) however do give a great deal of in-
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formation for scour with continuous sediment motion, over a large range

of J1 and C} « It was possible to draw further graphs similar to
S

figure 4.6.1(c). They were all of the same form, and the scour depth
h

S
and (G are shown in figures 4.6.2(a) and (b). From figure 4.6.2(a) it

h

can be seen that k; decreases as :I— increases and C} decreases.
'S

varied only slightly with PJ . The variations of k5 and f<¢ with

From figure 4.6.2(b) it can be seen that K, seems to be almost in-

h

dependent of 2 but increases as (G decreases. Also shown in
S

figures 4.6.2(a) and (b) are the values of K; and K4 taken from
equation 4.5.3. It can be seen that the value of K3 fits well into the

results of Chabert and Engeldinger, but the value of f<4 does not, being

~ very much lower than one would expect. No explanation has been found for

this. There is a need here for further experiments both to explain this

discrepancy and to find values of i<3 and f<4 at values of :‘, and
5

G which lie outside the range of variables covered by Chabert and
Engeldinger.
It is surﬁrising that K; varies with G , even when &G is above

L x ‘IOI+

and the flow is hydraulically rough. One would expect any
variation in G would have little effect on the scour depth when it is
above this value. This is possibly a spurious effect caused by the
changes in flow pattern that occur when l;?— -rises above 105, but this
is only conjecture.

Finally it should be pointed out that there are, to the author's
knowledge, no publiéhed results which can be compared with the results

of figure 4.5.3 for the time development of scour. There is a need for

further experiments to be carried out to describe fully how the time

development of scour varies with the flow parameters.
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4.7 Analytical formula for scour around bridge piers

In this secéion an analytical formula will be derived which relates l

the equilibfium scour depth aréund a circular cylinder to the flow 1

. v ‘

variables, for clear water scour. :

Consider the simplest possible type of vortex system, consisting of

just oﬁe vortex around a cylindrical obstacle, on a rigid bed (figure 1

4.7.1). Now by assuming that the flow velocity along AD can be described |
by potential theory and by applying the no slip condition on BC and CD

it is easily shown that T the circulation around the ABCD (proceed- ‘

I'o=-;-u, (xs+ %):c . (4.7.1)
8

ing in a clockwise direction), is given by
1
» |
(where W "is the upstream free stream flow velocity and the flow across !
|

AB is assumed to have no component of velocity perpendicular to the bed).

It is shown in section 3.6 that for a turbulent horseshoe vortex system

s =~ . :
Zs = 4 | 72

If we assume that =gz can be equated with xg without any of the above

ion around the hofseshoe vortex on the plane of symmetry.

i.e. L=+up 53~ 10 ' (4.7.3)

assumptions being violated then I, should approximate to the circulat- ‘
As a scour hole forms underneath the vortex system, the system sinks

into the scour hole. As the depth of scour increases, then the shear

stress beneath the vortex system decreases, until at a depth de the

shear stress is not large enough to move any sediment,for clear water

scour. This is defined as the equilibrium scour depth.
The shape of the scour hole is shown schematically in figure 4.7.2.

The sides of the scour hole are at an angle ¢ (the angle of repose of

the sediment) to the horizontal. except for the portion of the scour
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| hole underneath the horseshoe vortex system (AB). Sediment is being re-
moved from this séction by the horseshoe vortex system, and is replaced
by further sediment sliding down the sides of the scour hole.

. Now assume that the vortex system within the scour hole may be re-
presented by a circular forced vortex motion of radius r and maximumv
circulation [' .

Then
' =2nry (4.7.14)

where v 1is the tangential velocity on the edge of the vortex. Assume

that the radius of this vortex is given by

‘ K d '
r=n(l+3 (4.7.5)
where rp is the vortex radius on a flat bed and k. is a constant

during‘the scouring process. Also assume that
T =1 (4.7.6) .

Dye flow visualisation (section 4.5.4) shows that the same portion of the

upstream fluid flows into the vortex system within the scour hole, as on

a flat bed. Thus the input of vorticity to the vortex system remains

constant. If one assumes, as seems reasonable, that the vortex radius
increases as the scour depth increases, then one would expect ['  to

increase, since for a vortex tube

T « wr? - . (4.7.7) -

where o is the total vorticity of the vortex core which may be expected
to remain constant as the scour depth varies. However as the scour depth
increases one would expect the amount of vorticity diffusion out of the
vortex system to the cylinder surface to increase since more of the

cylinder surface becomes exposed. This effect will tend to decrease &

Thus since r  increases and  decreases it seems reasonable to assume

that I' remains approximately constant, and equal to I the circulat-
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ion around the vortex on a flat bed.
From equations (4.7.3) to (4.7.6)
_ __UDp kd)"
V= T 0+ D . (4.7.8)

Figure 4.7.3 shows the forces on an idealised sediment particle at
the equilibrium scour depth when the particle is beneath the vortex
system and just about to be moved by the flow. The flow within the
vortex system applies two forces to the particle.

(a) a drag force parallel to the slope of the scour hole (F)
(b) a 1ift force perpendicular to the slope of the scour hole (L).

If moments are now taken about the point X when the particle is

- just on the point of moving up the slope then

wx,—: F313 ‘,‘L-“'z (4-7'9)

By trigonometry

%, = (2) s (105

sty ot (0 s £ (4.7.10)
X, = (f;—s)sm 60°

Thus from equations (4.7.9) and (4.7.10)

W ces (60°—o<) = F%‘ . 3 -l;,'f ) (4.7.11)
‘ xd2 | '
Now W’:Ts (Ps—(:\)a (4.7.12)

Assume that F and L are given by the following expressions

i = C»-feve’.(li‘l> | (5.7.13)
L= CL%pve*(’Zle) (4.7.14)

where C» is a drag coefficient and C, is a 1lift coefficient,
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Ve is the tangential vortex velocity at the equilibrium scour depth
and its use here as the ''characteristic!" velocity for the forces on a

sediment particle can only be a gross approximation. From equations

(4.7.11) to (4.7.14)
2_ 8 cos(éO°—o<‘) Ps

Now in the part of the scour hole from which sediment is being removed,

flow visualization suggests

30°< ot < 40°

So © O'87 < cos (0% ) < 0-q4

Thus from now on cos(éCf—w) will be assumed to be approximately
constant. The coefficients C» and C. for a particle on a slope are

known to depend upon Reynolds number. In this case the appropriéte

Ve Cis

= .12 elel) =0.5m,

Reynolds number is
dﬁ_= i < 10-% and vV = 10-6 (which are typical values for rivers) then

—JésééL— = 250. For this Reynolds number Coleman.(1972) shows that Cj
for a particle on a slope is approximately equal to 3.0 and does not vary

as the Reynolds number varies between 70 and 1000. If the same can be

said for C. then one may write

Ve = u(% ) gy (4.7.16)

where K; is a constant given by

k — 8 _cos{tO-x ;
= & g=ld (4.7.17)
Thus if we equate the value of  given by (4.7.16) with that
siven by (4.7.8) (letting v=v and d=dg in the latter) then we

have

(&~ gdem [+ 2 (1 44)'] | (1.7.1
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‘ If we let ¢ = equation (4.7.16) becomes, after some rearrangement

&=
Sl

—’K'N_Kz (4.7.19) '

! D
- .
’ where K, = (m)—a> (4,‘7.20)
and Ky == L— : (4.7.21)

de

BEquation (4.7.19) describes the variation of o with N for
|

clear water scour. The linear form of this equation is similar to that |

of equation 4.6.5, which describes the experimental results of the author

and of Chabert and Engeldinger (1956).

Fo
D

k,, kz. and C . Strictly these quantities should be considered to

Nov consider K, and ¥, and their component variables

- be functions of all the independent variables of equation (4.2.3). So a
dimensional analysis gives the result (for equilibrium scour depth around

a bridge pier in a sand bed).

n

K, K,= fns (N, —2:, 2, Gr) (4.7.22)

‘ So strictly f(, and K} are functions of four dimensionless groups.

! . . 'However now consider each of the component variables in turn.

|

| (1) —5?—- (the non-dimensional vortex radius on a flat bed)
can be expected to remain constant for all flow conditions,
since the dimensions of turbulent horseshoe vortex systems do

not change greatly as the flow conditions change (chapter 3).

(ii) Kk, relates the vortex radius to the scour depth. At a fixed

value of the scour depth d , the dimensions of the scour hole
are largely controlled by the value of the angle of repose of

the sediment, and not by the flow conditions. This angle of

|
|
repose of the sediment in fact varies only with the sediment's
|
size and shape (Henderson (1966)). Since the vortex radius is

determined by the scour hole dimensions, for any one sediment
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K, will be constant.

(i3i) K, has already been shown to be approximately constant.

: 1}
(iv) Cl= — does not change greatly as the flow conditions
u

vary, usually being in the range 0.85 to 0.90.

Thus for any one sediment 5; , k ,k and c can be con-
sidered to be constant and thus K, and '<; can be considered constant
for any one sediment. So it would appear that k; and K; are only
dependent upon the sediment size and shape and thus are only dependent
upon the dimensionless groups in equation (4.7.22) that contain the

variable ds (it being assumed that this variable specifies the sediment

completely) i.e.

K, K= fns (f G> (4.7.23)

which is the relationship found experimentally (section 4.5).
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CHAPTER 5

Conclusicns

5.1 The horseshoe vortex formed by a separating laminar boundary layer

(a) The horseshoe vortex upstream of a cylinder in a laminar boundary
layer has been visualized using smoke flow visualization. Three differ-
ent types of vortex system have been observed which are, with increasing |

up
A

(1) steady horseshoe vortex systems with 2, 4 or 6 vortices, the

uDd
v

number of vortices increasing as increases;
(ii) horseshoe vortex systems which exhibit a regular oscillatory
motion; .
(iii) horseshoe vortex systems which exhibit an irregular unsteady
behaviour.
(b) Pressure distributions were measured on the plane of symmetry up-
stream of models of various types 6ver a wide range of flow conditions
D

UD
(2000 <ﬁ—§r'<:16,000, 20 <*zﬁr<70). Two types of pressure distribut-

ion were measured:-

(i) pressure distributions which showed minima. Flow visualization
shows that such minima are at the position of the horseshoe
vortex. Thus the vortex position can .be determined from such
pressure distributions;

(ii) pressure distributions which show no minima. Flow visualization
shows that this type of pressure distribution occurs when the
horseshée vortex systems are unsteady.

" (¢) The variation of the position of the primafy horseshoe vortex in

steady vortex systems, as —ull and é?— vary, has been presented in
% 5 x : ud : D
a graphical form. Y crea as - increases and as
grap. a | r increases =y —F'

decreases. A theoretical analysis which predicts the position of the
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separation line upstream of a circular cylinder on a plate, suggests that
the horseshoe vorfex position is not solely determined by this separation
position but some other effect plays a part.

(d) The oscillatory behaviour of horseshoe vortex systems was found to be

complex. As the Reynolds number [ ng ] increased steady horseshoe

vortex systems began to oscillate intermittently and randomly at two
different frequencies. As —%gl- increased further the periods of
oscillation became longer, the high frequency oscillation becoming more
common. At yet higher —%éll the oscillations became irregular and the
horseshoe vortex system became turbulent. These oscillations are not

caused by vortex sheddiné in the wake of the models or by any small dis-

turbances within the wind tunnel. It is concluded that these oscillat-

ions are initiated by 'bursting' of the horseshoe vortices downstream of

ﬁhe models. The frequency of these oscillations is solely determined by

the values of U'TD and % .

(e) A theoretical solution of the equations of motion for laminar horse-
shoe vortex systems has been presented. Solutions are presented for the

plane of symmetry regicn of the vortex system. 1In this region the solut-

ion shows that the two relevant dimensionless groups are a Reynolds

number based on the vortex core radius and radial velocity at the edge of

this core, and a Rossby number. If the radius of the vortex core is
taken to be the radius Qithin which the assumption of axial-symmetry
holds then the velocity and pressure distributions within the vortex core
are shown to be Reynolds number dependent. If the radius of the vortex
core is taken to be the point at which the velocity is maximum then these
velocity and pressure distributions are shown to be independent of
Reynolds number.

(f) The velocity distributions within steady laminar horseshoe vortex
systems have been measured using smoke flow visualization. A radial flow

component can be measured oniy in vortices 1 and 2, and appears to in-

i, | | : | i
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crease linearly with the distance from the centre of the vortex, in the
central region of the vortex. The experimental data was not sufficient
to enable a detailed comparison to be made with the previously mentioned
theoretical:analysis. There was found to be little variation in the di-
mensionless velocity profiles, within the vortex system, as the flow
speed varied, although any variation may well have been obscured by the
rather large measurement errors.

(g) The skin friction coefficient beneath vortex 1 was found to have a

numerical value of five times its value far upstream of the cylinder,

for J%%l = 2,610, 1%%— = 14.8.

5.2 The horseshoe vortex formed by a sevarating turbulent boundary layer

(a) 0il flow visualization suggests that for the flow conditions of
these experiments only four vortex systems exist (i.e. for L00O < i%?—
< 90,000, 4 <-§—}< 30).

(b) Long exposure photographs of smoke flow visualizaticn show the time
mean horseshoe vortex flow pattern. Short exposure photographs show
lérge scale turbulent structures in the boundary layer upstream of the
cylinder, with fheir.upstream edges at 40° to the flow direction. Closer
to the cylinder, above the vortex system,these large scale structures are
distorted and take on larger angles to the flow direction (up to 90°).
(¢) Pressure distributions were measured upstream of various models and
all the measured pressure distributions showed minima at what was taken

to be the position of the primary horseshoe vortei. Little variation of

these distributions with Reynolds number could be detected, although they

do vary as -éé%— varies.

(d) The variation in the positioh of the primary horseshoe vortex with

the flow parameters has been presented graphically, as has the variation

. . . 2
in the positions of both primary and secondary separation lires. fjf;
X
s x : . :
decreases as —ll— increases. |-—= decreases as Us increases
. 5 * D v

—
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and T increases. |[—2L-| decreases as us® decreases and D
' ) - D v §¥
increases.

The position of the primary separation line has also been calculated
using the integral method of Johnston (1960a). This method is shown not
to predict well the separation position, although it does shea some light
on how the observed separation positions vary with the flow parameters.
In particular it shows that the primary separation position is very
sensitive.to changes in the upstream value of the form parameter }{ .
(e) The frequency spectrum of velocity fluctuations at a given height
within a turbulent horseshoe vortex system appears to be very much the
same as the frequency spectrum at the same height within the upstream
boundary layer. The nature of the flow within the model wakes does not

appear to affect these spectra.

5.3 Scour around obstacles in an erodible bed

(a) The functional expression for the ultimate scour depth caused by a

horseshoe vortex system around an isolated cylinder in a sand bed is

given by

Jii = fn (IV ukds' D ) h )

D W h ds
for a hydraulically smooth or transitional upstream flow. For a fully
turbulent upstream flow i;%?E may become unimportant if changes in

—L%%L do not alter the flow pattern substantially.
(b) The functional expression for the rate of development of scour

around such cylinders can be written as

de ugde D _h )
2 = (N' v T a |

for a hydraulically smooth or transitional upstream flow, while for a

fully turbulent upstream flow —=-—= may become unimportant.

de K N—K,




where l(, appears to be constant and k} depends upon h and C}

but not upon e, .

h

(d) 1In the region of scour with continuous sediment motion

$-kB)

h
ds

(e) The time development of clear water scour is less rapid than the

where ké and k@_ depend upon and G’ but not upon N .

time development of scour with continuous sediment motion.

(f) The type of scour that takes longest to develop occurs when N is
Just below the value needed for general sediment motion.

(h) The horseshoe vortex system is fed from all layers of the flow at

all times during the scouring process.

(i) A simple theoretical analysis has been presented which accurately
describes the variation of the scour depth with the flow parameters,

for clear water scour.

5.4 Unresolved problems and suggestions for future work

As can be seen from the previous chapters several problems remain

unresolved and further work is required.

Firstly the problem of the variation of vortex and separation positions
has not been adequately resolved, for either laminar or turbulent horseshoe
vortices. For laminar systems the separation and vortex positions should
be measured simultaneously. The difference in the way that these two
positions vary éould then be examined closely and this may lead to a better
understanding of the mechanisms that cause these variations. For tufbulent
horseshoe vortices further experiments need to be carried out to confirm
the trends in the variation of the separation positions described in

section 3.6.

Secondly the boundary layer calculation methods of sections 2.6 and
3.5 could be investigated more closely. The various assumptions made in
these methods (form of velocity profiles, skin friction and form parameter

equations etc.) could be checked by direct experiment. Also other forms of

calculation methods could be applied to the problem, such as the integral




method of Thwaites and the differential method of Dwyer (1968).

Thirdly the oscillations of horseshoe vortices could be investigated
in further detaii. In particular it would be useful to simultaneously
visualize laminar horseshoe vortex oscillations upstream of a cylinder and
- the vortex bursts downstream of the same cylinder tb demonstrate whether
or not these vortex bursts initiate horseshoe vortex oscillations. Also
turbulent horseshoe vortices could be investigated at flow conditions
similar to those of Roper (1967), to see if the oscillations he observed

.could be reproduced. o

In the previous chapters the effects of variations of the height/
diameter ratio of the cylinders has been almost ignored. As can be seen
from sections 2.10.1 and 3.6 these effects are significant and could be ;

investigated more closely.

o7 K3 and K4 of the scour

depth equations (4.6.5) and (4.6.6) need to be investigated more fully

The variations of the constants Kl’ K

by further experiments, as does the variation of scour depth with time.
Also it is possible that an analysis similar to that of section 4.7 (for
clear water scour) could be developed for scour with continuous sediment

motion.

Initially it was hoped that the work of chapters 2 and 3 would
be helpful in gaining an understanding of the scour process described
in chapter 4. Although the flow patterns at the start and end of the
scouring process were similar in that the number of vortices were the same
it has to be admitted that it was difficult to relate the work on vortices ;
on a flat bed to the work on scour. However, it is possible that the work *
of chapters 2 and 3 might be useful for developing methods of scour
protection by placing "rip-rap" (large stone particles) in the regions of
high shear stresses upstream of bridge piers. With such scour protection ﬁ
the bed around the bridge pier should remain plane and one would expect
the experimental results of chapters 2 and 3 to be applicable. Further

experiments to describe the flow around cylinders on a rough rigid bed

would also be of interest in this respect.
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