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SUMMARY 

This thesis presents the results of experimental and theoretical in-

vestigations of, the horseshoe vortex systems caused by boundary layer 

separation upstream of obstacles mounted on a wall. Flow visualization 

enabled these vortex systems to be described in detail for ~oth laminar 

and turbulent flow upstream of the obstacles, for flow velocities between 

-1 -1 
0.3 ms and 25 ms • Pressure distributions on the ".fall beneath such 

systems are presented and the variation of the vortex and separation 

positions upstream of various obstacles is described in detail. A com-

plex unsteady behaviou~ of laminar horseshoe vortex systems is described, 

. and the frequency spectra of turbulent vortex systems are presented. For 

laminar vortex systems a theoretical study of the equations of motion has 

been made and the distributions of vortex circumferential velocity and 

pressure within the vortex cores have been derived, plausible assumptions 

having been ma de for the vertex radial velocity distribution. Some meas-

urements have been made of the flow velocity \vithin laminar horseshoe 

vortex systems using smoke flow v1.sualization techniques. 

The scour around obstacles mounted in a bed of sand beneath a water 

. flow, caused by such horseshoe vortex systems, is also studied. A di-

men sional analysis has been carried out to determine vThat dimensionless 

combinations of the flow variables might influence the scour depth .. 

Small scale experiments were carried out to determine how the scour depth 

varied with these dimensionless groups. The results of these experiments 

are compared with the results of previous investigations and the way the 

scour depth varies with these dimensionless groups has been clearly 

shown. . A theoretical anal:isis of one aspect of the phenomenon of scour 

around obstacles is also presented. 
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CHAPI'ER 1 

Introduction 

The two dimensional flow field around cylindrical bodies has been 

extensively studied in the past, as has the subject of two dimensional 

boundary layer flow on a flat plate. HmoJever vthen a cylinder is mounted 

on a flat plate in a fluid flow the resulting flow field is complex and 

three dimensional. The boundary layer upstream of the cylinder undergoes 

a three dimensional separation, due to the adverse pressure gradient 

caused by the presence of the cylinder. The separated shear laye~ then 

rolls up to form a vortex around the base of the cylinder. The ends of 

this vortex are Sl,o!ept dm-Tnstream and vlhen viewed from above this vortex 

has a characteristic hors eshoe l i ke shape , which has led to its ·name -

the horseshoe vortex. Such a vortex flow upstream of a 7.6 cm diameter 

cylinder, 3.8 cm in height, made visible by smoke filaments injected into 

the flow, is shown in the photograph of figure 1.1. This photograph was 

ta~en by E.P.Sutton and :lS printed in Th"laites (1960). The flmoJ is from 

left to right and the boundary layer upstream of the cylinder is laminar. 

It can be seen that several vortices are visible in the plane of symmetry 

upstream of the cylinder, rotating in both clockwise and anti-clockwise 

directions. The reflection of these vortices in the plate on which the 

cylinder is mounted can also be seen. The fluid that flows into these 

vortices drains a l,o/ay along the a.xcs of these vortices - that is, the 

vortices act as sinks for the upstream bounda ry layer fluid. Although 

the upstream boundary layer in this case is laminar, similar, though in 

general less complex, vortex systems form vlhen the upstream bouIldary 

layer is turbul ent. 

Such horse shoe vortex .flows may be found in several practical s ituat-

ions. For instance horseshoe vortex systems B.re found at the junction of 
lJ~IV~. ! 

liiflAAI\y'" 
C;. M R~~ 
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aeroplane wings and fuselages, and at the junction of plate and support 

in plate heat exchangers. Horseshoe vortex systems also exist around 

the base of bridge supports on a river bed. In this case the high shear 

stresses beneath such vortex systems may cause extensive sediment motion 

around the base of the bridge supports, and a scour hole may form around 

the supports. Similar scour holes can also be observed in sr.ow drifts 

around telegraph poles, and recently scour holes of this type have been 

observed around craters on the surface of Mars (Greeley et al. (1974)). 

In chapter 2 of this thesis experimental results are presented which 

describe horseshoe vortex systems formed by a separating laminar boundary 

layer upstream of models of various shapes. 

Also in chapter 2 a theoretical analysis of laminar horseshoe vortex 

systems is presented, based on a solution of the equations of fluid 

motion. Similar experimental results are presented in chapter 3 for 

horseshoe vortex systems formed by separating turbulent boundary layers. 

Chapter 4 deals \"rith the problem of scour around bridge sUfports, and 

both experimental and theoretical results are presented. Finally in 

chapter 5 conclusions are drawn from the results of chapters 2, 3 and 4. 

Some notes on the presentation of material in this thesis will be 

made here. Firstly it should be borne in mind that much that is included 

in chapter 2, for laminar horseshoe vortices, applies equally well to 

turbulent horseshoe vortices. This applies in particular to section 2.2 

(Dimensional analysis) and section 2.11 (Vorticity distributions). 

Secondly on ma~y figures an indication of the magnitude of errors in 

the experimental results has been included. It is possible that for the 

experimental results presented in some figures the magnitude of the 

errors may not be constant over the range of the experimente.l results 

presented. Th').s the error values given should be regardp.d a:.: only 

approximate indications of the errors that may occur, and should not be 

tegerd~d as strict error limits. 
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Finally the main co-ordinate system used in this thesis will be de-

fined. A cartesian system is used with co-ordinates x: and z. 

and floVl velocities u. v and w in the .:t, ~ and z directions re­

spectively. The origin of this system is taken to be at the point where 

the model axes meet the wall on which they are mounted. The streamwise 

co-ordinate..:c increases in a do ... mstream direction'::1 increases away 

from the wall and 2. increases m-JaY from the plane of symmetry of the 

flow in a direction consistent with the directions of z and:J and 

the 'right hand rule'. 
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CHAPI'ER 2 

The horseshoe vortex formed by a separating laminar boundary layer 

2.1 Literature revie\". 

2.1.1 Experimental investigations 

The experimental work of E.P.Sutton over a period of years from 

1958 onwards (reported by KUchemann (1965)) has already been mentioned. 

This work was carried out in the small smoke tunnel at Cambridge 

University Engineering Department, used in the experiments described in 

later sections, and many excellent photographs were produced which showed 

much detail of the horseshoe vortex system. However the first significant 

published '10rk on a horseshoe 'Jortex system caused by a separating 

'laininar boundary layer 'I!as that of Sch\oJind (1962). For this investigation 

a specially built 10\'1 speed wind tunnel was used, and horseshoe vortices 

were observed in front of a 600 wedge which divided the wind tunnel into 

two. Very detailed observations were made of the flow using smoke intro­

-1 duced into the flow upstream of the wedge, for speeds between 0.16 ms 

-1 
and 1.33 ms Schwind observed five types of vortex regimes (figure 

2.1.1). At the lowest speeds used he observed flow of the "regime 1" 

type, which he described as "a steady separation with no vortices visible li • 

This description seems a little misleading. If the flow does separate up-

stream of the wedge, then dO\mstream of the separation, line, there will be 

a flow in the upstream direction, which implies some form of vortex be-

haviour. Perhaps it would be more correct to say that in "re-sime 1" type 

flow only a very weak, slowly rotating vortex is formed, that is observ-

able only on the plane of symmetry. As the flow velocity was increased, 

flow of the "regime 2" type was observed, \oJith a single cteady clochlise 

rotating vortex and a small tr~_angular shaped counter-rotating vortex 

visible. The need for velocity gradients to be continuous implies that a 

second vortex rotating in the S':ime direction as the main vortex must be 



present upstream of the small counter-rotating vortex, although this was 

not observed by Schwind for flows of the regime 2 type. Hhen such a 

vortex was observed Schwind defined this as "regime 3" type flow, which 

appeared as the ·velocity increased. A second small counter-rotating 

vortex was also observed in this type of flow. As th~ velocity was 

further increased the tvJO cloc}c1 .... ise rotating vortices \.,ere seen to start 

to oscillate, .the amplitude increasing with the velocity. In flows of 

"regime 4" and "regime 5" types, which occurred at yet higher velocities, 

regular oscillatory motion was observed with the main vortex apparently 

becoming isolated f11 0m the rest of the vortex system and moving to\.,rards 

the wedge, then moving back upstream. For "regime 4" type flow the 

vortex was seen to combine with the second vortex, while for "regime 5" 

type flow it was seen to pass beneath the second vortex. Since this 

vortex could not pass out of the separated region it presumably combined 

with an unobserved third clocb/ise rotating vortex. 

Schwind pointed out that although the flow passed from regime 1 to 

regime 5 types as the velocity increased, the velocity at which the flm.,r 

changed from one regime to another was by no means well defined and dif-

ferent flow regimes could exist at one velocity. From pulsed smoke ob-

servations, Schwind obtained some not very accurate measurements of the 

velocity within the horseshoe vortex system, for steady vortex systems. 

From cine film analysis he obtained much information on hm·J the vortex 

position changed with time for unsteady systems, both on and off the 

plane of symmetry. He also attempted to find hm.,r the vortex position 

varied with the various flow parameters, and ho\v the oscillation frequency 

varied for unsteady systems. . Ho\.,rever he met \vi th little success. 

Peake and Gah/ay (1965a) studied the development of a laminar 

boundary layer 

water channel, 

ahead of a 7 cm diameter cylinder mounted on a plate in a 
. -1 

at a velocity of 0.25 ms • They also carried out a 

similar investigation for flow around Rankine ovals· (P~ake and Galway 

1 
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·(1965b)). Although they were mainly concerned with the· experimental and 

theoretical develqpment of the boundary layer. upstream of the separation 

line, they did make some dye flow observations of the horseshoe vortex 

systems ahead 0f . the Rankine ovals. They observed up to three vortices 

rotating in the same direction, upstream of the ovals, and at least one 

counter-rotating vortex (figure 2.1.2). These works ... fill be discussed 

further in section 2.1.2. 

Several investigations have been carried out to study transition in 

a laminar boundary layer caused by obstacles immersed within the boundary 

layer . Gregory and vlalker (1951), in exper iments ar ound small cones and 

cylinders observed "three or more" horseshoe vortices upstream of the 

obstacles. Mochizuki (1961a, 1961b) in studying the flow around hemi-
( 

spheres using smoke flow visualization techniques, obtained very detailed 

photographs of the wake formation, and also observed the horseshoe vortex 

system both upstream and downstream of the hemispheres. 

A more extensive investigation of this type was carried out by Norman 

(1972). He studied the flow around cylinders and rectangular boundary 

-1 6-1 layer trips at speeds from 0.3 ms to 1 ms · using smoke flow visualizat-

ion. He examined the configuration of the horseshoe vortices upstream of 

the trip and proposed two detailed models of the steady flow patterns 

observed (figure 2.1.3). These models, called by Norman the "Jet-Maze" 

and "Stairstep" models, differ in the order in which the different vortices 

within the vortex system are fed from the upstream boundary layer. 

Norman concluded that for his flow conditions the flow was of the "Jet-

Maze" type. The system used by Norman for numbering the different 

vortices will be used in a modified form throughout this dissertation. 

Norman also studied the flmoJ around the side of the boundary layer 

trips using smqke flovl visuali.zation and hot wire anemomet;ry. The whole 

horseshoe vorte.x system was seen to be further away from the wind tunnel 

wall on which the trip was placed than ori the plane of symmetry, and the 



core .of the main vortex (1) appeared to be almost stagnant. 

He also obs erved a type of osCillatory behaviour .. oJi thin the horse-

shoe vortex system. However it was not possible to say to what flow 

regime of Schwind (1962) this behaviour- corresponded. He also attempted 

to find how the separation position upstream of the trip varied with the 

flow parameters. There is considerable scatter in his results, but it 

does seem that the horseshoe vortex oscillations begin at a fairly con-

stant value of Reynolds number based on trip size. 

The Weapons Research Establishment (1967) has made a cine film of 

the flow upstream and downstream of spheres on a wall, immersed in a 

laminar boundary layer, for sphere diameters between 3 mm and 37 mm and 

. - 1 4 8 - 1 ~nd speeds between 1.3 ms and • ms Sublima tion an d smoke flow 

visualization techniques were used. At the lower wind speeds steady 

horseshoe vortices were seen upstream of the cylinder and these extended 

many sphere diameters downstream, forming a laminar ... ,ake. As the wind 

speed increased these vortices appeared to "burst ll and become turbulent 

downstream of the sphere, the position of this burst movi!:g upstream and 

closer to the sphere as the speed increased. It/hen these bursts had moved 

to within a fev' diameters of the sphere the upstream horseshoe vortex 

systems began to oscillate regularly, and these oscillations seemed to 

pass downstream, producing regular oscillations in both the laminar and 

turbulent parts of the vortex wake. To which of the oscillatory regimes 

of Schwind (1962) these oscillations belonged coul~ not be distinguished. 

As the speed increased further, the turbulence passed into the vortex 

systems upstream of the spheres. 

Sedney (1973) reviewed the subject of transition caused by boundary 

layer trips for both subsonic and supersonic speeds. He also reviewed 

some papers which are of relevance to the work described in Chapter 3, 

where the horseshoe vortex caused by a separating turbulent boundary layer 

is discussed. 
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Finally mention should be made of the \'fork of Bossel and Honnold 

(1976). They studied the flow ahead of plate fin heat exchangers using 

dye flovl visualization in a low speed water tunnel. They observed flow 

patterns similar to those described by Norman (1972), differing slightly 

in the order of feeder layers observed (figure 2.1.4). At the lowest 

"later velocities used they observed a flow very similar to Schwind' s 

"regime 1" type flow, where only a "/eakly rotating vortex could be seen. 

2.1.2 Theoretical aspects 

The development of a laminar boundary layer upstream of an obstacle 

on a flat plate, when the pressure distribution on the plate due to the 

obstacle is assumed to be known, can be calculated using two different 

types of method. Firstly a differential method can be used in which the 

boundary layer equations and the continuity equation are solved by using 

finite difference methods. The position of the separ atict: line ahead of 

the obstacle can then be determined by finding the envelope of the limit­

ing streamlines. An example of this type of calculation is that of 

Dwyer (1968), who calculated the boundary layer development ahead of a 

circular cylinder on a plate at a speed of 30.5 ms-1 Secondly an 

. integral method can be used in which the boundary layer momentum integral 

equations are solved, together with an ·assumed family of velocity pro­

files. A general calculation method of this type was developed by 

Timman (1955). Peake and Galway (1965a), (1965b) used a modification of 

this method suggested by Cooke ·(1959) to calculate the boundary layer 

development ahead 0f a cylinder on a plate, and ahead of a Rankine oval 

on a plate. They utilised the small cross flow assumption of Zaat (1956) 

with this method of Tjmman and Cooke, which enabled the streamwise and 

crossflow momentum equations to be solved independently. TillS method 

will be discussed more fully in section 2.6. 

The methods that have been used for the solution of the Navier­

Stokes equations for vortex cores have been well r eviewed by P:all (1966). 



In section 2.9 one of these methods (that of Rott (1958» will be applied 

to the solution of the Navier-Stokes equations for a horseshoe vortex 

core. 

Schwind (1962) and Roper (1967) both applied vorticity considerat-

ions to their studies of horseshoe vortex systems. (The ... ,ork of Roper 

concerns a horseshoe vortex system caused by the separation of a turbulent 

boundary layer, but the following analysis applies equally well to a 

horseshoe vortex system formed by a laminar boundary layer undergoing 

separation. The work of Roper ... ,ill be considered further in Chapter 3). 

Both Schwind and Roper start with the vector form of the Navier-

stokes equations 

(2.1.1) 

where y: is the vector velocity , p* is the piezometric pressure; f is 

the fluid density, 'V the fluid kinematic viscosity and w- (= V x u) 
the vorticity vector. After some manipulation Schwind derives 

(2.1.2) 

where ]) /nc is the substansi ve deri va ti ve. Follmofing Schwind we non-

dimensionalize using 

- Lt 
Lt.: --

U r 
) 

where Lt,.. and xr are reference velocities and lengths respectively. 

This leads to 

.D~ = 
])t (2.1.4) 

where U-r:r::. r / v is a Reynolds number. Equation (2.1.4) implies that as 

the Reynolds number chang0s the time average dimensionless vorticity (and 

hence velocity) distributions must change. Sch'",ind suggests that this 
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explains the existence of different vortex regimes, the vorticity equation 

(2.1.4) being satisfied by different flow geometries at different 

Reynolds numbers. 

Roper (1967) applied equation (2.1.1) to the control volume sho'ttn in 

figure 2.1.5. After some manipulation he obtained the integral equation 

Roper then applied the following boundary conditions to equation 

(2.1.5) 

(a) the no slip condition on CD and DA 

(b) the condition that the velocity perpendicular to ABCD is zero. 

He then obtained the following equations 

t~JD~ ~]c -'J[ 1:, . Jj 
~ 

(2.1.6) 

where u and v are the velocity components in the x and y direct-

ions and the subscript eX) indicates a value away from the plate far up-

stream. Because of the occurrence of the second derivatives of velocity 

in equations (2.1.6) and (2.1.7) these equations seem to have no easy 

solution, and do not really help in understanding the flow within a horse-

shoe vortex system. 

Finally the inviscid flow analysis of Hawthorne (1954) and later 

works of the same type will be described. Hawthorne (1954) studied the 

secondary flow about struts and aerofoils. He assumed that the flow 

about these bodies could be described by the potential flow appropriate 

to the body shape, together with a small perturbation of the velocity in 

the oncoming flo\Ol. Thus e ffecti vely the flow around struts .3.nr'. aero foils 

t 
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in a shear flow was studied. It was found that blunt nosed aerofoils 

amplified the initial flow perturbations so that in the vicinity of the 

body large concentrations of vorticity appeared, and the theory became 

invalid. Cusped 'struts were found to amplify the perturbations to a 

lesser degree, and the inviscid flow theory remained valid. 

Hawthorne and Martin (1955) studied the flow around a hemisphere in 

a shear flow using a similar inviscid flow analysis. The analysis showed 

two concentrations of vorticity downstream of the hemisphere (figure 

2.1.6) and experiments confirmed this. These vorticity concentrations 

correspond in sign and position to the two branches of the horseshoe 

vortex system trailing downstream of the hemisphere. Thus paradoxically 

the horseshoe vortex, which is essentially caused by separation of a 

"iscous boundary layer can be modelled to some extent by an inviscid flow 

analysis. 

Finally the work of Rowe (1966) should be mentioned. He used similar 

techniques to those described above, and calculated the secondary flow 

distribution around various shapes of model in a shear flow and found the 

position of the vorticity concentrations upstream of "these models. 

2.2 Dimensional analysis 

If, in a horseshoe vortex system around an obstacle formed by the 

separation of an incompressible lamtnar boundary layer, Xv is the 

distance from the obstacle centre to the centre of the vortex core on the 

plane of symmetry, then one may write 

Xv = tn(.D, L, U, J*, H, LJ.;, ft, p) (2.2.1) 

where.D is the obstacle diameter and L the obstacle height. U is 

r* " the free stream fluid velocity, and 0 and H are, respectively, the 

boundary layer displacement thicknesf; and form parameter at the obstacle 
, 

position when the obstacle is not in position. u.~ is the distribution 

of turbulence \Vi thin the oncoming boundary layer, and f and F are the 
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fluid viscosity and density respectively. 

Non-dimensionalizing equation (2.2.1) becomes 

Xv 

J) 
r I UD ]) ]) H U ') 

= r-n \N' T'~' 'it (2.2.2) 

where AJ [ ~t] is the kinematic viscosity. 

Similarly if Xs is the distance from the obstacle centre to the 

separation line upstream of the obstacle on the plane of symmetry 

(2.2.3) 

It will be shown in section 2.4 that for some values of the flow 

parameters, horseshoe vortex systems exhibit regular oscillatory behaviour. 

If f is the frequency of such oscillations then one may write 

f.D :fh (' un D ]) H ~ \ u ' 'V'l'~' u} (2.2.4) 

In the following sections the variation of the dependent dimension-

less variables ( Xv' ~ and 11L ) will be considered for 
J) 

, 
J) U 

several different obstacle shapes. For all the obstacles used .D is --
L 

small (= 0.21 in most cases) and it will be assumed that the values of 

the dependent dimensionless variables do not depend on this dimensionless 

group. Also it will be seen that the form parameter H does not vary 

greatly (section 2.3) and it will be assumed that such small variations 

do not affect the dependent dimensionless variables. Further the variat-

.ions of the turbulence distribution throughout the boundary layer will 

net be considered. (It will be shown that the only significant variations 

in the turbulence distribution occur at the higher velocities used). 

Thus for a horseshoe vortex system caused by a separating laminar 

boundary layer we are left with 

~ Xs fJ) f (UD D\ 
.D ' J)' U = ns --;:;-,' "1"f) 

.\ 

t 



In the folloVling sections the dependent dimensionless variables vlill 

be plotted in the against lJ 
~ plane. 

2.3 Experimental apparatus and procedure 

2.3~1 Wind tunnels 

Two wind tunnels were used for this part of the investigation; a 

smoke tunnel was used to make visual observations of horseshoe vortex 

systems and to measure the flow velocities within such systems, while 

Number 1B Low Speed Hind Tunnel was used to make detcdled measurements of 

the pressure distributions beneath horseshoe vortex aystems and of the 

oscillation frequencies of such systems. 

The smoke tunnel is shown schematically in figure 2.3. '1. The models 

used were mounted on a plate parallel to the flO\oJ, aiong the tunnel centre 

line. Smoke was introduced into the flow through a reke of s~all tubes 

mounted on a streamlined strut upstream of the plate. The smoke was pro-

duced by a smoke generator of the Preston and S\veety type, and consisted 

of a fog of fine droplets of paraffin. The tunnel speed could be varied 

-1 4-1 
between about 0.3 ms and ms with the smoke streamlines remaining 

steady. The working section could be brightly illuminate1 for the pur-

poses of photography through perspex slits in the side of the tunnel. 

NUmber 1B Low Speed Wind Tunnel, which will from now on be referred 

to as the 51 cm x 71 cm tunnel, is shown schematically in figure 2.3.2. 

Since this tunnel was used at speeds very much 10'der than was usual (at 
-1 -1' 

between 0.5 ms and 4 ms ), several modifications were carried out. 

Firstly extra screens were inserted in the tunnel upstream of the working 

section, so that the tunnel could be run at higher fan speeds than would 

otherwise have been the case (and hence steadier flows, were obtained). 

Secondly vortex generators were inserted at the upstream end of the dif-

fuser, to ensure that diffuser separation did not occur. To generate 

the laminar boundary layers needed for this investigation, the tunnel 
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wall boundary layer was removed by using a suction slot (powered by a 

Keith Blackman 8HE Pump) that could be inserted at various positions on 

the wind tunnel wall. Thus a ne.,., laminar boundary layer grew on the wind 

tunnel wall downstream of the suction slot. Four positions of the suction 

slot were used, and for each position great care was taken to ensure that 

the wind tunnel wall downstream of the suction slot was perfectly smooth, 

by filling any cracks beh/een the suction slot and the downstream wind 

tunn~l wall with a filler, and then sanding and painting over the filler 

until no discontinuity ' could be detected. As the tunnel speed was varied 

the suction power '-Ias also varied so that all the boundary layer on the 

upstream wind tunnel .,.,all vias sucked away at all tunnel speeds. The 

suction power \-Ias measured by measuring the pressure drop across an orifice 

plate within the suction pipe, and was varied by opening and closing a 

valve within this pipe. Thus it was possible to reproduco the suction 

power required to suck away the tunnel wall boundary layer once a calibrat-

ion had been carried out. 

2.3.2 \1ind tunnel flow characteristics 

Because some measurements of a quantitative nature were made in the 

smoke tunnel (the measurements of velocity within horseshoe vortex 

systems), measurements were made of the velocity distributions in the 

empty working se.ction . These distributions were measured by traversing a 

Pitot tube across the 'Norking section. The static pressure was measured 
. 

at a hole in the wind tunnel wall \ ... i thin the working section. These 

velocity distributions are shown in figure 2.3.3. It can be seen that 

there is approximately a 10% change in velocity across the section in the 

x direction, and approximately a 2~6 change ih velocity across the 

section in the y direction (outside the tunnel wall bounda"t'Y layer). 

This effect is particularly noticable at the lov/er speed used. For this 

reason all measurements of velocity within horseshoe vortex systems were 
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made at and above the higher speed used here. 

Because of t~is non-uniformity of the flow it was decided not to 

measure accurately the boundary layer characteristics on the plate on 

which the models were mounted, but simply to use the Blasius formulae for 

flat plate boundary layers in zero pressure gradient to calculate their 

nominal values. 

However in the more controlled flow conditions of the 51 cm x 71 cm 

tunnel the mean velocity and turbulence profiles of the boundary layers 

on the wind tunnel wall downstream of the suction slot were measured, by 

traversing a hot wire 'u' probe throughout the boundary layer . (see 

section 2.3.6). 

Some of these profiles., measured at the model position, for all four 

suction slot positions used, are shmm in figUre 2.3.4. It can be seen 

that there is a rather high le,el of turbulence in the tunnel free stream. 

This is poss:l.bly due to the extra screens placed upstream of the \'lorking 

section. At the higher speeds used this turbulence is amplified within 

the boundary layer, an indication that transition to turbulence is begin-

ning to occur at these speeds. The boundary layer displacement thickness 

and form parameter were calculated from these and other profiles and 

their variation with tunnel speed is shown in figure 2.3.5. If one 

assumes that there was an error in measuring the velocities in figure 

2.3.4 of 1-5%, say (which is in fact as accurately as the velocities could 

be determined at the 10"" speeds used) then the displacement thickness <5* 

(= 1("11 ~~ )] d~ ) may be in error by up to 3%, the momentum 

thickness e (= [OO~u) [1- 0tr)Jd j ) by .uP to 6% and the 

form parameter H (: oil/e) by up to o/;b. This explains the seemingly 

large variation in the values of ~ indicated in figure 2.3.5. However 

all values .of. H are within 9"% of 2.59, the value for bcundary layer 

growth on a flat plate in zero p~essure gradient. 

Experiments with hot wire probes held close to the surface indicate 
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that a laminar flow region adequate for the present experiments exists on 

the wind tunnel wall behind the suction slot (figure 2.3.6). The dotted 

lines in this figure indicate the approximate boundary of the region where 

the turbulence level in the boundary layer is one and a half times that 

measured on the wall centre line at a height of 1 mm above the wall. 

Thus even when the suction slot is 0.45 m away from the model position a 

region 0.36 m wide of adequate laminar flow exists on the wind tunnel 

wall. 

2.3.3 Models 

For the flow visualization experiments carried out in the smoke 

tunnel several cylinders of different diameters and heights were used. 

These were made from brass tube, painted matt black and scre\<led to the 

plate in the smoke tunnel. A 7.62 cm diameter, . 3.81 cm high cylinder was 

most commonly used for flm<l visualization, and was also used wheri hor se-

shoe vortex velocity measurements were made. 

For th~ more quantitative measurements made in the 51 cm x 71 cm 

tunnel three models were used; a circular cylinder, a circular cylinder 

with a splitter plate, and a streamlined model consisting of a hemi-

cylindrical nose section followed by a faired tail section. The dimen-

sions are given in figure 2.3.7. It was hoped to use a streamlined model 

of the same height on the other models, but \<lhen built this proved to be 

too heavy to traverse along the wind tunnel v/all (in order to make pressure 

measurements),so a shorter model was used. (These three different types 

of models were used to study the effect of the different flow patterns 

within the wake of the models on the oscillatory behaviour of horseshoe 

vortex systems). 

The blockage correction of Haskell (1966) was applied to calculate 

the effective flow velocities within the wind tunnel, for all the tests 

carried out in the 51 cm x 71 cm tunnel. This correction states tha t the 

eff ective velocity is given by U (\ +E-) .,.,here U is the wind tunnel 



17. 

velocity without the model in the working section and e is given by 

£ ~ f' + (~; Ph)( ~ ) r - (2 • 3. 1 ) 

where C is the wind tunnel cross sectional area, S is the area of the 

model normal to the flow, and C~ and Cpb are, respectively, assumed 

drag coefficients and base pressure coefficients for the model. The 

blockage corrections c , calculated from equation (2.3.1) were small and 

were found to be 0.005 for the streamlined model, and 0.025 for the 

cylinder and cylinder with splitter plate models. 

Because of the non-uniform nature of the flow no blockage corrections 

were applied to any of the results obtained in the smoke tunnel. 

2.3.4 F10\'J visualization photography 

Photographs 'vJere taken in the smoke tunnel using a Nikon F135 mm 

camera. Cine films were taken using a Beaulieu R16 c~ne camera. 

2.3.5 Pressure measurements 

Measurements v,ere made of the pressure variation on the plane of 

symmetry upstream of the models using the apparatus shown in figure 2.3.8, 

which was built into the wind tunnel wall downstream of 'the suction slot 

in the 51 cm x 71 cm tunnel. The models \1ere traversed through a small 

distance (2 cm) and the pressure was measured successively at each of six 

pressure tappings 2 cm apart, using a Furness micromanometer FM332, with 

a full scale deflection of 1 mm of water. Thus a continuous pressure dis-

tribution was obtained. The model traverse gear was connected to a 

po~entiometer powered by a D.C. supply, so that the cylinder movement 

COQld be recorded on either a D.C voltmeter, or on the x axis of a 

chart recorder. The Furness micromanometer produced an electrical output 

which could also be recorded on a D.C. voltmeter or on the y axis of 

the chart recorder. If a chart recorder was used a trace of the pressure 

distribl1tion cOiJ.ld be obtained directly. Two Solartron D.C. Voltmeters 

and a Hose1ey Autograf 3S chart recorder were used. 

An apparatus very \.;as alco used to 
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make pressure measurements in the smoke tunnel. Details of this appar­

atus are given by Shellim (1976). 

2.3.6 Hot wire anemometry 

To measure the frequency of oscillation of horseshoe vortex 

systems hot wire probes ',.,rere inserted through the v,all of the Hind tunnel 

so that the tip of the probe was only a short distance alo/ay from the wind 

tunnel wal~ (figure 2.3.9a). Flow visualization carried out in the smoke 

tunnel showed that the presence of the probe did not affect the vortex 

system when it was placed in this position, but if the tip of the probe 

entered the core of the main vortex, then the whole vortex system began 

to oscillate irregularly. 

DISA 'ut probes were used almost exclusively as the sensing element 

at an overheat ratio of 1.8, and a block diagram of the system used is 

shown in figure 2. 3 . 10 . The output from the 55D01 bridge was linearized 

by a 55D10 linearizer and the linearized output was measured on a 55D30 

D.C. voltmeter and on a 55D36 RMS meter. Signals were filtered to remove 

the D.C. component using a Krohn-Hite 3550 filter, and were recorded on a 

Racal T3000 tape recorder. The signal was also displayed on a 

Telequipment DM53A storage oscilloscope for visual examination. Some 

photographs were taken of the oscilloscope display using a Polaroid 

camera. 

Similar probes \o/ere used to make measurements in the model wakes. 

The method of mounting these probes is shown in figure 2.3.9b. Also they 

were used to measure the velocity and turbulence profiles in the boundary 

layer on the wind tunnel wall. The traverse gear used for this is shown 

in figure 2.3.9c. 

The signals were linearized because many of the signals that were to 

be analyzed had large values of turbulence intensity (over 5~G). These 

signals would have been distorted by the non-linear output characteristics 

of the bridge if no linearizer had been used. 
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·Spectral analyses were carried out on the recorded signals using the 

CUED CED5090<. min icomputer. The spectral analysis programme \vas devel­

oped by S.Norman and details of the programme may be found in Norman 

(1977). Using'a 'fast Fouzrier transform this programme analyzes a 

fluctuating signal and produces (in either graphical or digital form) an 

output which shows how the power spectral density varies with frequency. 

The area under the power spectral density curve is a measure of the power 

of the fluctuating input signal. Thus any peaks in this curve indicate 

frequencies at which a large proportion of the power of the fluctuating 

signal is present. FOr instance a sine wave with only one discrete 

frequency will produce ~ sharp peak at this frequency on the power spectral 

density-frequency curve. 

All of the values of pm-fer spectral density that are shown in figures 

later in this dissertation a,re non-dimensionalized by dividing by the 

mean square of the fluctuating signal. 

2.3.7 Velocity measurements 

If the velocity within horseshoe vortex systems were to be measured 

by any of the conventional means (such as P"itot tubes or hot wire probes) 

it would be very difficult to interpret the results since the extent to 

which these probes affect the flmv \'Iould not be known. It was thus 

decided at the beginning of this investigation to make a simple laser 

anemometer to make velocity measurements within the horseshoe vortex syst­

em. This instrument can measure flow velocity at a point in a flow where 

two laser beams are crossed and thus no probe is inserted into the flow. 

Accordingly the experiments were designed to make laser anemornetry 

possible in the 51 cm x 71 cm tunnel. It was decided to measure the flow 

around models downstream of a suction slot in the \vind tunnel wall rather 

than to measure the flow around models mounted on a plate in a wind 

tunnel, because this made it possible to use an already existing optical 



20. 

system. Unfortunately there were several unforseen problems with the 

laser anemometer and it proved to be impossible to make the required 

measurements with this instrument. 

It was then decided to make measurements of the flow velocity by 

making cine films, at a nominal speed of 64 frames/second, of smoke fila­

ments entering the vortex system, and then making measurements from these 

films to determine how far the ends of the smoke filaments had travelled 

between successive frames. The exact speed at which the cine camera 

filmed \'/as determined by filming the output of a D.e. voltmeter to which 

an oscillating signal of exactly 1.25 Hz was applied, and counting the 

number of frames between maxima of the voltmeter output. The camera was 

found to be filming at 58.8' frames/second. 

So in this 1t-lay a set of velocity measurements could be made on the 

plane of symmetry upstream of the models used. Such an experiment was 

easily set up in the smoke tunnel and proved to be successful. So a 

similar experiment was set up in the 51 cm x 71 cm tunnel. The apparatus 

used is shown in figure 2.3.11. The smoke was injected into the flow 

from a probe just downstream of the suction slot. The horseshoe vortex 

was illuminated through a windm'l set into the wind tunnel wall, by two 

Wattastar lamps, and cine films were taken through a perspex sheet set 

into the wind tunnel floor. The smoke probe was designed so that smoke 

filaments were introduced into the flow 1 cm below the centre line of the 

wind tunnel wall. This was because preliminary tests revealed that the 

flow on the wind tunnel wall had a small upwards component close to the 

centre line and the flow direction was at about 20 to the horizontal. 

This small deviation of the flow from the horizontal is of no consequence 

to the pressure and hot wire measurements described in the foll.owing 

sections, but for the horseshoe vortex to be adequately visualised the 

smoke filaments had to be introduced into the fl 0 \,1 a small distance below 

the wall centre line. 
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2.4 Flow visualization results 

2.4.1 General description of horseshoe vortex flows 

Figure 1.1, taken from Thwaites (1960), shows a photograph taken 

by E.P.Sutton in 'the smoke tunnel used for flO\.,. visualization experiments 

in this investigation. It shows the flow pattern on the plane of sym­

metry upstream of a short cylinder on a plate, formed by the separation 

of a laminar boundary layer. The reflection of this flo ... r pattern in the 

plate can also be seen. 

Figure 1.1 is typical of the flow patterns seen in the smoke tunnel 

at the Im'ler speeds used. There are at least three vortices rotating in 

the clockwise direction and two smaller vortices rotating in the opposite 

direction. The exact number of vortices was seen to depend upon the flow 

speed and cylinder size, more vortices appearing as the speed increased. 

With a 7.62 cm diameter cylinder in the tunnel, above a certain flow 

speed (approximately 0.65 ms -1 ) the entire horseshoe , vortex system began 

to oscillate in a regular manner with the two largest clockwise rotating 

vortices moving towards one another and apart again. At higher speeds 

(above approximately 0.8 ms-1 ) the largest clockwise rotating vortex 

ceased to be fed by smoke during part of the oscillation period and seemed 

to become detached from the rest of the vortex system. At still higher 

speeds (above approximately 1.4 ms~ ) the flow appeared to be very un­

steady and turbulent and showed no traces of periodicity. These steady 

and oscillating horseshoe vortex systems will be discussed in more detail' 

in the following sections. 

2.4.2 Detailed description of steady horseshoe vortices 

Consider the horseshoe vortex system that is shown in the photo- . 

graphs of figure 2.4.1. The fil8,ment of smoke that feeds into the vortex 

system is being moved closer to the plate on ... ,hich the cylinder is mounted 

as 'vie proceed from figure 2.4.1a to figure 2.4.1g. l:/hen the filament just 

ber;ins to flow into the vortex sy3te~'I, it floHS into a small anticlock-

1 
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wise rotating vortex formed by separation of the flo'" from the face of 

the cylinder. The smoke filament passes around the base of the cylinder 

(figure 2.4.1 a) • ~'/e will call this vortex) vortex 0 • 

As the smoke filament moves closer to the plate, it flows down the 

face of the cylinder, then along the plate away from the cylinder and 

into a small triangular vortex. This vortex assumes a horseshoe shape 

around the side of the cylinder. We will call this vortex (for reasons 
, . 

that will become apparent later) vortex 1 (figure 2.4.1b). 

As the smoke filament moves still closer to the plate, it flows away 

from the cylinder, over vortex 11 and into a small flattened vortex 
, 

rotating in the same direction as vortex 1 • vIe will call this vortex 

" J vortex 2 ' (figure 2.4.1 c) • 

As the movement of the smoke filament continues, the smoke flows 

into a large vortex, rotating in a clockwise direction and situated bet-
, 

ween vortex 1 and the cylinder. This vortex will be referred to as 

vortex 1 or the primary vortex (figures 2.4.1d and 2.4.1e). 

With the smoke filament still closer to the plate, the smoke flows 

into two further vortices rotating in the same direction an vortex 1. 

The one closer to the cylinder will be referred to as 'vortex 2f, the one 

further away as 'vortex 3' (figure 2.4.1f and g). 

The order of 'feeder layers' for vortices 2 and 3 is not very clear 

from the photographs but it appears from these figures that as the smoke 

filament moves towards the plate vortex 3 is fed first, then vortex '2 and 

when the smoke filament is right next to the surface of the plate vortex 

3 is fed once more. The streamline pattern that can be inferred from 

these photographs is shown in figure 2.4.2a. 

This type of vortex system is an example of a six vortex system which 

was the most complex system observed in the smoke tunnel. Four and two 

vortex systems were also observed under different flow conditions and the 

streamline patterns observed are shown in figure 2.4.21> and 2.'+.2c. Also 
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in this figure the various separation lines ( S) Se) S, ) S~ ), attachment 

lines ( Ao, AI, A2 ) and free stagnation points (SP1, 5P2 ) are shown. 

Figure 2.4.3 shows how the number of vortices varies ".lith the flow 

parameters, determined from observations around cylinders of various 

siz~s. (The value of 8* was calculated from the Blasius formula). It 

can be seen that the number of vortices that were observable increases as 

U.D d]) . 
---;;;- an . cS* J.ncrease. 

2.4.3 Detailed description of oscillating horseshoe vortex systems 

In this section the photographs of an oscillating horseshoe vortex 

system shown in figure 2.4.4 will be considered. In these photographs, 

taken from a positive cine film, smoke appears black against a white back-

ground. The primary vortex (1) initially moves towards the cylinder 

(frames 1-9) and the smoke filament to it is cut so it appears to become 

isolated . Then it moves back upstream and entrains smoke from the outer 

layers of the secondary vortex (2) (frames 10-14) until the initial flow 

pattern is reestablished. It is not possible to determine \.,hether vortex 1 

does cease to be fed by any fluid as it moves towards the cylinder, or 

whether the smoke filament is cut and vortex 1 simply seems to become 

isolated. 

The paths taken by vortices 1, 2 and 3 during one oscillation are 

shown in figure 2.4.5. It is instructive to consider the vortex system 

to consist of potential vortices and their images (in a manner similar to 

Schwind (1962)) and to analyse the movements of figure 2.4.5 in this 

light (figure 2.4.6a). As vortex 1 is convected downstream (frames 1 to 

9) it becomes influenced to a greater extent by its image in the cylinder 

and thus moves down towards the plate. As it moves closer to the plate 

it becomes influenced more and more by its image in the plate and thus 

moves back upstream where it entrains the outer layers of vortex 2 (frames 

10 to 14). 
" 

As vortex 1 moves towards the cylinder vortex 1 must move with it, 
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since it is caused by separation under vortex 1. Since the effect of 
, 

vortex 1 on vortex 2 is to pull it down onto the plate (figure 2.4.6b) 
, 

when vortex 1 . moves away from vortex 2, vortex 2 rises from the plate 

(frames 3-10). In.' a similar manner when vortex 1 (and hence vortex 1 
, 

) 
, 

moves back tolt,ards vortex 2, vortex 1 influences vortax 2 to a greater 

extent and vortex 2 moves back towards the plate (frames 11_11+). 

The oscillating flow described above is very similar to the "regime 

4" flow of Schwind (section 2.1.1). However it was not possible to ob-

serve Schwind's "regime 5" flm.". As the tunnel speed was increased above 

4 -1 (6 ) approximately 1. ms with a 7. 2 cm diameter cylinder the horseshoe 

vortex system appeared to become turbulent and no regular oscillatory 

motion could be seen. 

2.4.4 The horseshoe vortex alt,ay from the plane of symmetry 

Figure 2.4.7 shows a horseshoe vortex system viewed at an angle of 

300 to the plane of symmetry. This was made visible by iJl-uminating the 

flow through a perspex slit in the side of a cylinder. The smoke feeder 

filament on the plane of symmetry moves closer to the plate from figure 

2.4.7a to figure 2.4.7c. 

Vortices 1, 2 and 3 can be clearly seen in these photographs. It 

should be noted that all the smoke making them visible has come from the 

plane of symmetry. This does not mean that the vortices are not being 

fed by fluid in this plane. A smoke feeder filament can be dimly seen 
., 

entering vortex 1 in figure 2.4.7a and vortex 1 can also just be seen in 

this photograph. 

o Visual observa~ions at angles of greater than 30 to the plane of 

symmetry suggest that all the vortices move to greater distances from the 

plate than on the plane of symmetry. Also the number of vortices seems 

to increase further around the cylinder. For example where only two 

vortices \vere seen on the plane of symmetry t four might be seen at an 

lOt angle .Qf '+5 to the plane of symmetry. However it proved impossible 0 
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o take photographs at angles very much greater than 30 to the plane of 

symmetry. 

2.4.5 Comparison of flow visualization and pressure distributions 

Pressure distributions were measured using the apparatus of 

Shellim (1976), described in section 2.3.5 and two typical results are 

sho ... m in figure 2.4.8. The qualitative nature of these results should be 

I 
borne in mind. The pressure coefficient Cp used in this section is 

based upon the velocity and pressure close to the leading edge of the 

plate on ... ,hich the cylinder is mounted. The curves of figure 2.4.8 are 

tracings of chart recorder outputs. 

First consider the curve marked A, which is a pressure distribution 

at flow conditions for which a steady horseshoe vortex system existed. 

The position of the pressure minimum was seen to correspond closely 

to the position of the primary vortex when smoke flow visl}plization was 

carried out. Thus the position of the primary vortex can b0 determined 

from pressure · distributions, and this method ... ,as used to find the posit-

ion of the primary vortex in the more controlled flo'd conditions of the 

51 cm x 71 cm tunnel. 

Now consider curve B. Flow visualization showed that at these flow 

conditions an unsteady horseshoe vortex system existed. Thus a pressure 

distribution similar to curve B is indicative of an unsteady horseshoe 

vortex system. 

Curve A also shows a slight levelling out at . ~ = -0.92. Flow 

visualization showed this to be the position of vortex l' . A slight 

dip in the · curve can also be seen at ~ = -1.06, and flow visualization 
J) 

showed this to be the position of vortex 2. 

2.4.6 Effect of hot wire probes on horseshoe vortex systems 

Since it I.ras intended to study the periodic behaviour of horseshoe 

vortex systems using hot wire probes, fl0\1 visualization eXperiments were 
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carried out to study the effect of such probes on the flow. It was found 

that if the probe 'entered the primary vortex, this vortex began to 

oscillate irregularly at speeds where the flO\'I would otherwise be steady. 

However, as can be seen from figure 2.4.9, if the probe is inserted only 

a small distance into the flow (of the order of 1 mm) then the probe 

appears to have no effect on the flow. 

2.5 Plane of symmetry pressure measurements 

In this section precsure distributions on the plane of symmetry up-

stream of the models will be presented. The pressure coefficient Cp 

used in this section is based upon the velocity and pressure at the model 

position \.,ithout the model ~eing in position. The pressure distributions 

on the plane of symmetry upstream of the cylinder model are shown in 

figure 2.5.1. These cur-res are tracings of chart recorder outputs. It 

can be seen that there are two types of distribution. For UD < 5,000 
-v 

the curves have minima, which the smoke tunnel results suggest are at the 

position of the primary vortex. un 
For /\,) :> 5,000 no minima can be seen 

and flow visualization results suggest that oscillating vortex systems 

exist. As increases, the vortex position moves upstream away from 

the cylinder. The variation of the vortex position with the flow para-

meters will be considered further in sections 2.6 and 2.7. 

In section 2.L~.5 a levelling out of the pressure distributions at 

the position of vortex 1', and a slight dip at the position of vortex 2 

were described. No such effects can be seen in the pressure distributions 

of figure 2.5.1, but it is possible that they areobscQ~ed by the rather 

large errors indicated. 

At the model leading edge ( ,; = -0.5), Cp is below 1.0. It can be 

th t UD d J). C t x. 0 5 al . seen a as ~ an 7- lncrease I paT = -. so lncreases. 

This can be explained in the foJ.lowing manner. As the flow variables 

change, the vertical dimensions of the vortex system do not change sig-

s 
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n{ficantly. (For example, for f = 2.0, the free stagnation point SP1 

was found to have a value of ~ of 0.072 ~ 0.005 at all flow velocities, 

and one of the streamlines that approached it was found to have an up-

stream value of ~ of 0.115 ~ 0.005). Thus as JUL D 
-V or-;sr in-

creases and the boundary layer becomes thinner, then the fluid that 

passes close to the upstream edge of the cylinder will come from a region 

of higher non-dimensional velocity. Nm.,. Cp at D = -0.5 is given by 

. (2.5.1) 

where the subscript 0 refers to condi.tions at the mod.el position without 

the model being in position. Nm.,. P[) =-0'5J is approximately equal to 

the stagnation pressure on the streamline passing dow~ the f~ce of the 

cylinder: 

where fro is the pressure far upstream and Uro is the velocity on that 

particular streamline far upstream. If one assumes that fo ~ f co 

and LLo::= LLoo then we have 

C · UCC 

( )

.2 

F[~ = -o.sJ ~ U~ 

So as the dimensionless velocity on the streamline passing down the 

face of the cylinder increases (i.e. as 

Cp[; = -o.sJ vlill · also increase. 

un 
-v and ~ increase) then 

. 8* 

Also shown in figure 2.5.1 are the pressure distributions measured 

without the model in position. It can be seen that the models are in a 

region of slightly favourable pressure gradient. 

Figure 2.5.2 shows pressure distributions ahead of the cylinder, ob-

tained with the suction slot in pcsitions 1, 2 and 3. These show the 

variation in the pressure distribution as varies. The distributions 

for an oscillatory type of flow show little variation, but where the 

c 
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vortex position can be distinguished, it can be seen that the vortex 

moves away from the model as decreases. 

Figure 2.5.3 compares the pressure distributions upstream of all the 

models used. There is little difference between the distributions for 

the cylinder and the cylinder with splitter plate. Hm ... ever, other things 

being equal, upstream of the vortex position the pressure coefficient at 

any point ahead of the streamline model is less than at the equivalent 

point ahead of the cylinder. This is due to the streamlined model, being 

shorter than the others, disturbing the flow to a lesser extent and thus 

any deviations in pressure from the upstream value occur closer to the 

model. Thus upstream of the vortex position ahead of the streamlined 

model at any value of x \vould expect C to be lO1,orer than at 
.I> 

" one p 

the same value of oX. c:thead of the other models. '1)' 

2.6 Prediction of the separation position upstream of a cylinder on a 

plate 

2.6.1 Introduction 

In the previous section it was shO'..,rn how the position of the horse-

shoe vortex on the plane of symmetry upstream of a cylinder could be de-

termined from pressure distributions. It seems possible that this vortex 

position might be fixed by the position of the separation line upstream 

of the cylinder. Therefore in this section hro integral methods will be 

used to determine ho ... r this separation position varies 'ITith the flow 

parameters. These methods are:-

1) The method of Tjmman (1955) using the small crossflm-I assumption of 

Zaat (1956). 

2) A modification to method (1) su~gested by Cooke (1959) (as used by 

Peake and Galway (1965a) (1965b)). 

2.6.2 Co-ordinate system cmd integral equations 

It is assumed in \1hat fo11o\'ls that the boundary layer upstream of 

the cylinder is laminar up to the separation line on the, plane of sJ~m-
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etry. 'de will use an orthogonal coordinate system ( ~,'l, C, ). In 

studies of three dimensional boundary layers it is usual to define a 

streamline coordina te system and we will do so here. 'tie write ~ as 

the velocity potential, '1 as the stream function and S as the co­

ordinate perpendicular to the wall on which the boundary layer is growing. 

1,le also write 

~s=h/d~ 
dn = h).'d 7] 

It/here S and n are distances 'In the ~ and r; directions and hi 

and h2 are metric coefficients. The momentum integral equations may be 

written, in streamline coordinates, 

'~e C\) '~t\ ) + - - " &:::::1 + - 0 + R'). 11 ;u R, 12. 821 (2.6.1) 

_ V (dV) 
le dl, ~=o 

(2.6.2) 

where u.. 0 V are the velocities in the ~ ,y] directions; U is the 

velocity along a s treamline outside the boundary layer; RI ,Rl are the 

radii of curvature of the 1 = constant and; = constant lines re-

spectively and 

s:- fa> (-IT-) d l, 
o 
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e" = foo u (I 
o 

Also if the flovl external - to the boundary layer can be assumed to be 

potential flow it can be shown that 

- I 
h, = h2= 11-

2.6.3 Potential flow upstream of a circular cylinder 

In the following sections it vlill be assumed that the pressure 

field upstream of the separ3:tion line can be approximated by the potential 

flow pressure distribution. ;,rhus some results for the potential flovl up-

stream of a cylinder are given here. 

If U is the velocity a distance ::x:: upstream of a cylinder of 

radi us R , on the plane 0 f 3ymmetry) then it is easily shown that 

(2.6.4) 

where L1 00 is the velocity far upstream. (See, for example, Dunc9.1l et al. 

(1970» . 

2.6. l t Integral method based on the methods of T:iJnman and Zaat 

Timman (1955) formulat .~!d an integral method to solve equations 

(2.6.1) and (2:6.2) by assuming the follo",ing velocity profiles. 
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(2.6.6) 

___ 'i -,'~ 
Z l e . + 

317{ 

1: = 0 if T, > 0 

As we are only concerned with flow on a plane of symmetry we will 

not consider further the crossflow velocity profiles (equation 2.6.7) or 

the de fini tions 0 f 1 and ~ : 

At the point of separation on the plane of symmetry the shear stress 

in the streamwise direction must fall to zerol 

tft\,o = et-Lo = 0 

From equation (2.6.6) 

(2.6.8) 

since in this case -r: = r; as ~ < 0 (adverse pressure gradient). 

~.lso 
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So from equation (2.6.8), at the separation point 

'+ + ~ T 0 ~ 3fif ,= 

T, =-1 

From the definition of T, , and remembering that dx-:: h, dE, (= clt, u 
from equation 2.6.3) it is ~asily shown that 

o-dll T,= d.:t 

So if 0' = O",s and oX = X.s at the separation point equation (2.6.9) gives 

(2.6.10) 

Now Zaat, making the assumption of small crossflow (Le. that Y is 

small, which it is close to the plane of symmetry) derives from equations 

(2.6.1) and (2.6.2) the equation 

~d1; (~~) (2.6.11) 

\o/here [ . h£~i LL~ = 
in this case. Now on the plane of 

symmetry d ~ = U d.l: and this equation becomes 

(2.6.12) 

From equations (2.6.4) and (2 .6.12) 

(2.6.13) 

c 
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Now integrating betvleen :le = x.o and :r = Xs 

(2.6.14) 

From equations . (2.6 .• 5) and (2.6.10) 

~= 
xs 3 

.2 U R" GO 

(2.6.15) 

Now if when .:x: =)::0 I 0' = Cfo it may be shown that (Peake and 

Galway (1965b)) 

where eo is the momentum thickness at x = Xc. Thus 

a: -0- ". b eol. 
'V 

Finally let Xs = 

(2.6.14) to (2.6.16) 

(2.6.16) 

Xs 

2.R 
From equations 

, 0 . I b Xo + 7· , ~ X - f - O· 61t X - 3 
o 0 

Now assume that at x = .:co I e = eo = 0 i.e. assume boundary layer 

. growth from the leading edge of a flat plate. The last equation becomes 

'+ (,_ ?_.l)'f X/ + IO./bXs + ,-/2X;' - O'b4-Xs-
3 + 

, v -.3 -5 
= IO ' /bXo + "/2Xo- -O'(-,£;-i\o ' +O'03Xo (2.6.17) 
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2.6.5 Integral method based on the methods of Thlman, Cooke and Zaat 

Cooke (1959) wrote the velocity profile given by Timman (equation 

2.6.6) as 

u (2.6.18) 

to obtain better agreement with a known exact solution. Nmv using this 

equation, an equation similar to equation (2.6.8) can be derived 

(2 .6.19) 

Using equat ion (2.6.19) an equat ion similar to equation 2.6.10 can be 

derived 

Thus the Xo- Xs relation becomes (if e = 0 ai; .:t = Xo ) 

8(1- ~-'r X: + 10·11, X. + 7'12Xs- ' - O'HXs-
3 + O·03X.-· 

(2.6.20) 

2.6.6 Experimental results and discussion 

The solutions of equations (2.6.17) and (2.6.20) are plotted in 

figure 2.6.1. It can be seen that they both have the same form although 

equation (2.6.20) predicts rather smaller values of Xs than equation 

(4.6.17), at the same value of Xo. Hmvever for both curves Xs in­

creases as Xo increases. Also it appears that Xs depends upon Xo 

and not upon any other flow parameters such as ~ and ~*' (It is 

of course possible to express Xo [= ~oJ in terms of the other flow 

parameters since for a laminar boundary layer on a flat plate in zero 

preesure gradient 

~* ,. 73 (~~ol)--r 
lxo \ \ - y 
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which gives 

(2.6.21) 

Experiments were carried out to determine whether or not the flow 

stud~ed in this investigation (the flow around a cylinder mounted on a 

~'lind tunnel wall downstream of a suction slot) could be considered eq-

uivalent to a cylinder mounted on a flat plate. \'lith the suction slot in 

position 1, the position of the separation point on the plane of symmetry 

upstream of the cylinder model was measured. This position was made 

visible by letting smoke into the flow from a small hole at the base of , 

the cylinder, and measuring. how far upstream the smoke was carried. These 

results are shown in figure 2.6.1 (Xo is in this case defined as the 

distance from the leadir.g edge of the suction slot to the cylinder centre). 

It can be seen that there is little variation of the separation position 

with Reynolds number, which is what the analysis of the previous sections 

shows to be the case for a cylinder on a flat plate. Thus it would seem 

that the flow studied here can be taken to be equivalent to the flo\.,. up-

stream of a cylinder on a flat plate, in this respect at least. 

It can also be seen from fi~lre 2.6.1 that the analysis predicts a 

separation position upstream of the measured position. This is because 

the potential flO'.,r velocity distribution upstream of the cylinder can only 
. 

be regarded as an approximation. The potential flow pressure distribution 

on the plane of symmetry upstream of an infinite two dimensior.al cylinder 

(which is clearly closely related to the potential flm1 velocity dis-. 

tribution) is given by (Belik (1973)) 

I 
2X:J.. (2.6.22) 

Equation (2.6.22) is plotterl in figure 2.6.2 together with some 

measured pressure distributions. It can be seen that at a given point 
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upstream of the vortex system the potential flow pressure gradient is 

steeper than the measured pressure gradient. Thus one would expect the 

analysis to predict a separation position upstream of the measured 

position. 

2.7 Variation of the horseshoe vortex position 

• :l:.v 
F~gures 2.7.1, 2.7.2 and 2.7.3 show how T J the dimensionless 

vortex position, varies for the cylinder, cylinder with splitter plate, 

and streamlined models respectively. Contours of are plotted 

in the LLD 
-v 

.D 
- 6* plane as suggested by the dimensional analysis of 

section 2.2. The values of ;Cv were obtained from pressure distributions 

with the suction slot in all four positions. The dotted lines in the 

figures join experimental points corresponding to one suction slot posit-

ion. The positions of the experimental points in fig1.:res 2.'1.1 to 2.7.3 

are at the position of the "decimal points" of the values of I :;" I . 
The possible error in I ~y ( indicated on figures 2.7.1 to 2.7.3 is con­

siderable since it was not possible to determine accurately the position 

of the minima in the pressure distributions. Bearing this in mind there 

can be seen to be little difference between figures 2.7.1, 2.7.2 and 

2.7.3. This fact is also apparent from figure 2.7.4 which is a plot of 

x . D 
the variation of :Dv for the three models as E/* varies, for 

11]). I Xv I For all models as -;::;- ~ncreases, ~ 

rFl 
llD = 3000. 
"V 

increases, and 

J) 
as cS~ . increases, decreases. No pressure minima were observed 

for val ues 0 f above approximately 5,000, and the flow visualizat-

.. ion (section 2.4) suggests that when U]) is above this value oscillat­
V 

ing vortex systems exist. 

It was shown in section 2.6 that the position of the separation line 

ahead of a cylinder on a plate depends upon ;0 '.V'here.x.c is the 

distance from the cylinder centre to the leading edge of the ~late. If 

the separation position fixes the vortex position then the analysis and 
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experimental results of the previous section lead. one to expect that 

the vortex position would remain constant for each suction slot position 

Le. along the dotted lines in figure ~.7.1 to 2.7.3. This can be seen 

not to be the case. Thus one must conclude that the vortex position is 

not solely determined by the separation position, but some other effect 

plays a part. What this effect may be has not been determined. 

Finally it can be seen from figures 2.7.1 to 2.7.4 that · as ~~ 

increases, at fixed ~J) l ;V f decreases. Equation (2.6.21) for the 

case of a cylinder on a flat plate is 

f ';0 I = 033~~D )(t7 
So at constant ~J) a reduction in f* is equivalent to an in­

crease in I ~o{ , and, from figure 2.6.1, an increase in / ~ I leads 

t ' 'I Xs I' Th 1) d ~I! '11' o an J.ncrease J.n lY . us as 6* ecreases, ,-,]) I WJ. J.n-

crease. If one assumes that the horseshoe vortex position is largely 

determined by the separation position, then it is to be expected that 

./ ;v I will also increase , as is seen to be the case. 

2.8 The oscillatory behaviour of horseshoe vortex systems 

To study the oscillatory behaviour of horseshoe vortex systems, a 

hot wire probe was placed in the flo\-1 so that its wire was 1 mm from the 

wind tunnel wall, with the suction slot in position 1. Flow visualizat-

ion suggests that with the probe in this position the flow was not 

affected (section 2.4.6). The hot wire output was recorded at several 

velocities and spectral analyses were carried out. The spectra obtained 

were not repeatable, the number and magnitude of peaks in the spectra at 

anyone velocity varying from run to run. The hot wire output was then 

displayed on a storage oscilloscope and the situation was clarified. At 

anyone speed four different waveforms could be 'seenat diff8rent times:-

(a) a steady trace with no oscillations, 



38. 

(b) a low frequency oscillation, (st = 0.26) 

(c) a high freLiuency oscillation, ( Sf:; ~ o.L~o, increasing to 

about 0.60 at higher ) 

(d) an irregu1ar turbulent trace. 

Photographs of \olaveforms (b), (c) and (d) are shown in figure 2.8.1. 

Each of the above four states might exist for any length of time between 

1 second and 5 minutes and the flow switched from one state to another 

in a completely random manner. At the lowest speeds used, state (a) was 

observed more often than the other states, but as the velocity increased 

state (b) became the most often observed state. As the velocity was in-

creased further state (c) was observed more often and at the highest 

speeds only a turbulent trace (state (d» could be seen. 

After many attempts tape recordings were made of signals of just one 

of the above states, of sufficient length to enable a spectral analysis 

to be carried out. The spectra obtained are shown in figures 2.8.2a and 

2.8.2b. Note that the flow parameters are almost identical in both cases, 

but the peaks occur at completely different frequencies. In figure 2.8.2a, 

for the dominant peak, St = 0.26, and in figure 2.8~2b, for the dominant 

peak, st = 0.36. The smaller peaks in both spectra are harmonics of 

the main peaks. They appear simply because of the shape of the waveform 

of the hot wire output, which is in turn dependent upon the exact posit-

ion of the hot wire probe in the flow. A spectral analysis carried out 

when both frequencies were present in the signal is shown in figure 

2.8.3. ~~o peaks and their harmonics can be seen. 

The spectrum of turbulence obtained at the highest speeds used is 

shown in figure 2.8.4. It can be seen that there is no dominant peak in 

the spectrum. 

Further tests were carried out \·,ith the suction slot at positions 2, 

3 and 4. 1,vith the suction slot at position 2, the unsteady behaviour was 

si!:lilar to that described above, but with the suct.ion slot at position 3 

~" ____________________________ ~d 
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the lower frequency os cillations v/ere seen only very occasionally. \oJith 

the suction slot at position 4 no regular os cillatory motion was observed. 

With the slot at this position the periods of steady flow were observed 

at much higher velocities than for suction slot positions 1 to 3. These 

periods of steady flow were interrupted by bursts of irregular turbulent 

flow. These bursts of turbulent flow were probably caused by bursts of 

turbulence in the upstream boundary layer passing into the vortex system. 

The variation of Strouhal number with the floy] parameters for both 

types of oscillation is shown in figure 2.8.5. The frequencies were 

measured by displaying the hot \.,rire output on a storage oscilloscope and 

measuring the distance between adjacent peaks in the wavefo::'m, from many 

different output traces, and taking the average distance between peaks 

to be a measure of the oscillation period. It can be seen f~om figure 

2.8.5 that for the high frequency oscillation (the 'primal-Y' oscilla tion) 

Se increases as un increases, while for the 10\'1 frequ8ncy oscillat-

ion (the 'secondary' oscillation) S6 remains fairly constant. (There 

was a considerable variation in the oscillation frequency at anyone set 

of flow conditions as can be judged from the width of the dominant peaks 

in the spectra of figure 2.8.2.). 

Sch\'1ind (1962), as stated in section 2.1.1, observed two types of 

• I. -1 
oscillation (figure 2.1.1). At a speed of 0.~5 ms he measured a freq-

uency of oscillation of 0.8 Hz for flows of the regime 4 type and a 

frequency of 1.4 Hz for flows of the regime 5 type: Thus it would seem 

likely that the high frequency or primary oscillation noted here can be 

identified wi th Sch~'1ind' s regime 5 and the 10\'1 frequency or secondary 

oscillation with Scnwind's regime 4. Schwind observed that in general 

regime 5 oscillations occur at higher speeds than regime 4 cscillations 

(althou.gh they could both occur at the same speed). This agr~es well 

with the r esults presented here where the primary oscillations persist to 

much higher values of than do the secondary oscillations. 
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The above describes the oscillatory behaviour of .the horseshoe vortex 

·systems. However it does not explain what causes these· oscillations.· 

One can however eliminate some possible causes. To test whether the 

wake vortex shedding of the cylinder had any effect on the oscillations, 

tests were carried out "'lith a cylinder with splitter ;plate and with a 

streamlined model, for both of which the wake spectrum was found to be 

significantly different from that of the cylinder (see figure 2.8.6). 

Results almost identical to those described above were obtained. Also it 

can be seen from figure 2.8.7 that the Strouhal number for the wake vor­

tex shedding of the cylinder is approximately 0.16 at all tunnel speeds, 

which bears no relationship to the observed frequencio.s of oscillation of · 

the horseshoe vortex system. Thus it appears that ons can eliminate wake 

vortex shedding as a possible cause of the oscillationo. 

Figure 2.8.8 shows the speed of rotation of the wind tunnel fan non­

dimensionalized using the cylinder diameter and the wind tunnel free 

stream velocity, plotted against a Reynolds number based on cylinder 

diameter. Again the Strouhal number bears no relationship to the Strouhal 

nuinber of the vortex oscillations. In fact this Strol.J.hal number de­

creases with Reynolds number while the Strouhal number of the vortex os­

cillations increases with Reynolds num'Qer. So it \'/ould appear that these 

oscillations are not affected by any disturbances caused by the fan. 

Now consider the spectrum shown in figure 2.8.9. This shows the 

spectrum recorded in the boundary layer on the wind tunnel wall do\'/n­

stream of the suction slot, at the same flow conditions as for figure 

2.8.2, but with the cylinder not in position. The spectrum shows a large 

D. C. peak together with several other peaks. HmoJever these peaks do not 

correspond to either of the horseshoe vortex oscillation frequencies at 

this speed. In fact two of the dominant peaks on this spectrum, the ones 

at 9.1+ Hz and 18.8 Hz do not change their position as the tunnel speed 

varies. This would suggest that they are related to an oscillationfre-
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quency of the wind tunnel structure. So it would appear that any disturb-

. ances present in the boundary layer upstream of the model do not affect 

. the horseshoe vortex oscillations. 

Thus having eliminated all the above possibilities for the cause of 

vortex oscillations the author can see only one explanation for these 

oscillations; that is, at certain values of and the horse-

shoe vortex itself becomes unstable for some reason, and begins to 

oscillate in one of two "natural" modes, the higher frequency mQde becom-

ing more dominant as the Reynolds number increases. 

Thus one question remains to be ans\vered. That is what is the 

mechanism that initiates this instability? It seems possible that the 

oscillations are initiated by bursts of turbulence passing into the 

vortex systems from the upstream boundary layer. To test this hypothesis 

two hot wire signals were recorded simultaneously, one hot wire being in 

the boundary layer upstream of the horseshoe 

one being beneath the vortex system as usual 

vortex ( ~ = -2.08), and 

(~ = -0.81). A photo­
J) 

graph of the oscilloscope output is shown in figure 2.8.10, over a period 

of time during which the vortex oscillations began. ·The upper trace in 

the photograph shows the output from the hot wire probe in the upstream 

boundary layer and the lower trace ShovlS the output from the hot wire 

probe beneath the vortex. The period of time covered by this photograph 

is sufficiently large to record any bursts of turbulence detected by the 

upstream probe that might be convected into the vortex system at the time 

when oscillations begin. It can be seen that there are no such bursts 

of turbulence· shown on the photograph, so it would seem the vortex oscil-

lations are not initiated by bursts of turbulence. (It should be noted 

that the slight high frequency "ripple" on the oscilloscope trace is at 

the mains frequency of 50 Hz and orieinates within the electronic system 

and not \vithin the flow). 

So if the disturbances that initiate the oscillations do not come 
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~I 
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from upstream of the models, then it seems likely that they originate 

downstream of the models. Evidence for this comes from the film made by 

the Weapons Research Establishment (1967), described in section 2.1.1. 

This shows that vortex oscillations appear to be initiated by disturbances 

caused by "bursting" of the horseshoe vortices traili!'l.g downstr~am of the 

model. The film shm·red that as the floltl velocity increased these vortex 

bursts moved upstream of the cylinder until the horseshoe vortex system 

becomes entirely turbulent, and the same sort of behaviour 'Nas observed 

in this investigation, with the vortices upstream of the models becoming 

turbulent as the velocity increased. 

Thus in conclusion it would seem that horseshoe vortex oscillations 

are initiated by disturbances in the vortex system dOI'mstream of the 

model, but the frequency of oscillation is determined solely by the values 

of UJ) 
'V 

and 
J) &* ' and not by the frequency of wake vortex shedding, 

or of any other small disturbances in the flow in the wind tunnel. 

2.9 Solution , of the Navier-Stokes equations for a laminar horseshoe vortex 

2.9.1 Introduction 

In this section the application of the equations of fluid motion 

to a horseshoe vortex system is considered. It is assumed in what follows 

that the horseshoe vortex system being considered has been formed by the 

separation of a laminar boundary layer upstream of a cylindrical obstacle, 

al though this analysis could equally \.,rell apply to separation upstream of 

a non-cylindrical obstacle. 

A cylindrical polar system of co-ordinates will be used, as sho ... m in 

figure 2.9.1; r is the radial co-ordinate, .z. is the axial co-ordinate 

along the vortex axis and ~ is the angular co-ordinate. The velocities 

in the r, 2., ~ directions are u. I w", Vi respectively. Clearly, since 

the horseshoe vortex system is curved, for this system of co-ordinates to 

be unambiguous the radius of curvature of the centre line of the vortex 

-c-::\j 



must be large compared to the vortex radius. This is assumed to be the 

case in the region of the horseshoe vortex system on and close to the 

plane of symmetry. In this "plane of symmetry" region a simple analytical 

solution to the equations of motion can be derived. 

2.9.2 Equations of motion 

In this section the equations of motion that can be expected to 

apply for the core region of a laminar horseshoe vortex are presented in 

a dimensionless form. Hall (1966) shows that many vortex systems can be 

regarded as being quasi-cylindrical, i.e. using the co-ordinate system of 

figure 2.9.1. 

(2.9.1) 

which implies that the vortex core radius is much less than the length of 

the vortex core. This is ti18 case in horseshoe vortex systems . Hall 

makes the further assumption that the flow in such systems is axially 

symmetric, i.e. 

o 

This assumption can be expected to be valid in the central region of 

the horseshoe vortex where the streamlines can be expected to possess 

such axial symmetry. Having made these assumptions Hall derives, for a 

laminar quasi-cylindrical vortex 

(a) the continuity equation 

4 + -' ~ (DlL r)+ d (ow) 0 
dt:; r d /" \ oz \ = 

(b) the momentum equations 

~2_ .~ 
r Or 



P'f-dW + 11. dw + LJ dW ) _ 

~ dt dt" dZ 
+ _I ~(JJ..r®) 

r dr V - er 

From here we make the further assumptions that 

(a) the motion is steady so =0 

(b) f and f- are constants. 

At this point vIe introduce the dimensionless variables r, 

where 
--. -L- .z 

" .:::: :z: 
r'r -

Zr 

u.= ~ w 
VI" w - vI" 
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(2.9.6) 

2., Lt, V,W, p, 

(2.9.7) 

In general Z r I r,.. and Vr can be any reference length in the axial 

direction, any reference length in the radial direction, and any reference 

velocity respectively. For our purposes hmvever z,.. can be tak.en simply 

as being the diameter of the cylinder, r,.. as an arbitary core radius 

on the plane of symmetry, and V,.. as the value of V at r =~ on the 

plane of symmetry. 

Now substituting (2.9.7) in equations (2.9.3) to (2.9.6) 

_I '~(rLL) + et. ~i:3 = 0 
r dr d2 

_ dv 
Lt --dr 

- dW + ". di3 u. dr ex. '-V d% 

uv 
r 

I 
Re 

(2.9.8) 

(2.9.10) 

(2.9.11) 

d 



(1 ) 

So we can see that the flo'll is determined by two dimensionless groups 

~ == ~ j a ratio of the vortex core radius on the plane of 
2r 

symmetry to a reference length in the axial direction. 

(2) R = - v,.. rr- . 
e . -V a Reynolds number based on the velocity at the 

edge of the vortex core on the plane of symmetry, and the radius of 

the vortex core on the plane of symmetry. 

2.9.3 The plane of symmetry region 

No \-1 we make the assumption that on, and close to, the plane of sym-

metry of a horseshoe vortex system 

4L-=-cr 

(This assumption was also made by Rott (1958) and the first part of what 

follows is similar, in outline, to the analysis presented in that paper. 

However Rott did not present the analysis in a dimensionless form, and he 

did not use it to describe the flow on a plane of symmetry of a horseshoe 

vortex system, but applied the analysis to "bath tub" vortices). Hith 

this assumption equation (2.9.8) gives 

dW le 
dZ cc. 

i.e. i0 2c Z (2.9.13) - cc:. 

since w = 0 on :z. = 0 (L e. on the plane of symmetry itself) • 

. ' Equation (2.9.13) suggests that w is not a function of 1. on and 

close to the plane of symmetry, if equation 2.9. 12.is valid. 

The second momentum equation (2.9.10) becomes 

If \-le let 

(since from equation (2.9.12) c _ 
v~ 

where u..=. -u.,. at r -= r,. ) 
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we obtain 

To solve equation (2.9.16) \'/e use the method of separating the 

variables 

where fer) is a function of r only and 3(2) is a function of z. 

only. Equation (2.9.16) becomes 

where a is a constant. 

So we have 

.£ _ 'l. 
, f' 

This integrates to give 

(2.9.18) 

where 3'(2.) -= :3 (Z:) 

a 4= 0, 3(2::.) = 0 

at .z = I. This equation suggests that if 

when z = 0 So if Q -=1= 0, v = 0 on the 

plane of symmetry (from equation (2.9.17)); i.e. there is no circumfer-

ential velocity component on the plane of symmetry. This is obviously 

untrue, so a.. must be equal to zero and 

So the circumferential velocity is obtained from 

Since . v this becomes 

(2.9.21) 
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Equation (2.9.21) can be directly integrated twice by making the 

substitution r .--.: 21(" rv where r' is a dimensionless circulation. The 

equation reduces to 

which has the solution 

- -- -~ r =- 2xrv =A + A e :z 
:t I 

(2.9.22) 

Let us consider the boundary conditions. At the vortex centre the 

circumferential velocity must fall to zero; Le. V = 0 at r=O 

Thus 

A. =- A~ 

Also at the edge of the vortex core V = I at r = I Thus 

( 
-E,.I. ) -I 

AI =,:l~ 1- e ~ 

So the solution for v is 

t -E!% ) - I , -e ::I. 

V = F I -e-51 

The form of equation (2.9.24) · is shown in figure 2.9.2 where V is 

plotted against r for various values of E (The curve for E = 1.8 

will be referred to in section 2.10). These curves all show a maximurn 

value of v at some value of r (= rm ) (except for the E = 0 curve). 

d\i The position of this maximum can readily be located by letting ~r = 0 

This gives. 

The radial position at which the circumferential velocity is maximum 

is given by equation (2.9.25). The velocity V at this radius is given 

by 



Equation (2.9.21) can be directly integrated twice by making the 

substitution r .-: 21( rv where r' is a dimensionless circulation. The 

equation reduces to 

which has the solution 

- -- -~ r=21(rv=A +Ae ~ :t , 

Let us consider the boundary conditions. At the vortex centre the 

circumferential velocity must fall to zero; i.e. v= 0 at r=O 

Thus 

Also at the edge of the vortex core V = I at r = I Thus 

( -E/,) -I 
A, = ~ 7'\ /- e ~ 

So the solution for v is 

t -E.?1 ) _ I I -e ::l. 

V = F I -e-% 

The form of equation (2.9.24) · is shown in figure 2.9.2 where V is 

plotted against r for various values of E (The curve for E = 1.8 

will be referred to in section 2.10). These curves all show a maximUIlI 

value of v at some value of r (= r,., ) (except for the E = 0 curve). 

6V The position of this maximum can readily be located by letting ar = 0 

This gives. 

The radial position at which the circumferential velocity is maximum 

is given by equation (2.9.25). The velocity V at this radius is given 

by 

. (. E \~ ~~) 
V(11 = :<.51) ~ 
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Equations (2.9.25) and (2.9.26) are shown in graphical form in 

figures 2.9.3a and b. 

Let us consider the pressure within the core of the horseshoe vortex 

system in the plan'e of symmetry region. From equations (2.9.11) and 

since from equation (2.9.13) =0 

Equations (2.9.27) and (2.9.9) suggest that 

p - (50,0 = p.(z) + plf) 

where is the value of f at F = 0 and is a function 

of 2: only, and is given by equation (2.9.27), and p.:I. is a function of 

-F only and is obtained from equation (2.9.9). 

From equation (2.9.27) 

2( C)2. _2 
pili) = ~ (X Z 

and from equations (2.9.9) and (2.9.24) 

(2.9.30) 

Equation (2.9.30) lee.ds to exponential integrals that have to be evaluated 

numerically. p.:I.(r) and p. (-Z) are plotted in figures 2.9.4a and, b 

for various values of E and ~ , • 

From equation (2.9.27) it can be seen that at z = 0 

So at z = 0 the variation of p with respect to z shows a maximum. 

This agrees \O/ith the experimental results of Vasanta Ram (1963), shown 

in fieure 2.9.5. Although the results of Vasanta Rnm \.,rere for a horse-

sh:::le vortex system caused by a turbulent boundary layer separation, it 



can be seen that the variation of ' p vii th respect to :z. does show a 

maximum value on the plane of symmetry. 

As previously noted equations (2.9.8) to (2.9.11) suggest that the 

flow is controlled by hio dimensionless groups Re and 0(.. However for 

the plane of symmetry region an inspection of the final results (eauations 

(2.9.24) to (2.9.26), (2.9.28) to (2.9 .30) shows that the relevant groups 

are:-

1) E = eRe. - a Reynolds nlli~ber based on the radial velocity 

at the edge of the vortex core. 

) c UrZY'/ 
2 ~ = v,....rr 

Now if we define Q as a volume flow rate into the vortex core 

then 

Q 

fr. rr 

where 1';. = 2 7t'r;. vr This is a Rossby number based on a volume flow 

rate, a circulation at the edge of the vortex core, and the vortex core 

radius on the plane of symmetry. 

In the preceding analysis ~ the reference radius, has been 

defined somewhat arbitrarily. If we now identify r,. with r,., ,the 

radius at "'lhich the velocity V on the plane of symmetry is a maximum 

(L e. the radius of the "eye" of the vortex), l(le have from equation 

r,.,= I = e~51 )Js. 

£= = 2 -51 

Substituting in equation (2.9.24) 

- , v-­- r ( 

-1-.25r
Z

) . I-e 

I 
-1-2.5 -e . 

(2.9.34) 
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The pressure distribution in the radial direction follows from equat-

ion (2.9.9) 

'P~ (r) = 1~" -0 
t -".25;:2.);;' /-e d-

I /-.lS r -e 

Equations (2.9.34) and (2.9.35) are plotted in figure 2.9.6. It can 

be seen that if rr is defined as the point at which the velocity is 

maximum, the velocity and pressure distributions are independent of 

Reynolds number. 

The two descriptions of the velocity field given in equations (2.9.24) 

and (2.9.34) are complementary. If rr is defined as the radius of the 

vortex core (which may be take!1. as the region in which the assumption of 

axial symmetry holds) then the radius r~ of the 'eye' of the vortex is 

dependent upon Reynolds number, as given by equation (2.9.25). HOI".ever 

equation (2.9.34) suggests ,!;hatif the radius is non-dimensionalized on 

the radius of the eye of the vortex, then the velocity and pressure dis-

tributions are independent of Reynolds number. 

2.9.4 Continuity considerations 

In this section an attempt will be made to show hOl". the vortex 

Reynolds number E varies with the large scale flo"l parameters ( ~ 

and ) . ~]e define rr as the radius of the core of the primary 

vortex of a laminar horseshoe vortex system (Le; the region in which the 

assumption of axial symmetry holds). Assume that the flow rate into this 

vortex core is proportional to the flow rate in the upstream boundary 

layer • . By continuity 'tie have 

where <5 is the upstream boundary layer thickness and <5* is the dis-

placement thickrless. Now for a nat plate boundary layer in zero pressure 

gradient 
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Th~s from equations (2.9.36) and (2.9.37) 

(2.9.38) 

or 

E 0{. = t~)(f) 
So one would expect to be proportional to and inversely 

proportional to 
J) 

d* . The constant of proportionality depends upon the 

constant in equation (2.9.36) and must be determined experimentally. 

2.10 Velocity distributions 'Ni thin horseshoe vortex systems 

2.10.1 Comparison of vortex flO\vs in the two wind tunnels 

As \'TaS stated in section 2.3 it was intended to use a laser anemo-

meter to make measurements of flow velocities within horseshoe vortex 

systems. However with the experimental configuration used this proved to 

be impossible. It was decided to measure flow velocities by filming 

smoke filaments entering the vortex systems and measuring the difference 

in position of the ends of the smoke filaments behreen successive frames. 

It was found possible to make measurements in the smoke tunnel so that the 

velocities at most points within the horseshoe vortex system on the plane 

of symmetry upstream of a cylindOer could be determined. However when the 

experiments were set up in the 51 cm x 71 cm wind tunnel a difference in 

the vortex flow structure in this tunnel and in the smoke tunnel became 

apparent. In the 51 cm x 71 cm tunnel there seemed to be a great deal 

more "divergence" upstream of and within the horseshoe vortex systems. 

That is to say the streamlines close to the plane of symmetry upstream of 

the horseshoe vortex system in this tunnel were s'trept away from the plane 

of symmetry \o,i thin the horseshoe vortex systems very much more quickly 

than in those systems formed in the smoke tunnel. Thus smoke rarely 

penetrated into the 10\ver velocity regions of the vortex systems formed in 

the 51 cm x 71 cm tunnel, and it was not possible to measure the velocities 

\ ,,"" 

~""""""""""""""" ________ ~d 
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within these systems. 

Thus in the more confined flow of the smoke tunnel the flow is more 

vigorous on the plane of symmetry upstream of the cylinder than for the 

flo ... , in the 51 cm x 71 cm tunnel. This may be due to either or both of 

two effects. Firstly the flow upstream of the cylinder in the 51 cm x 

71 cm tunnel is not influenced by the "images" of the cylinder in the 

wind tunnel walls (figure 2.10.1a), these images being too far away. 

However in the smoke tunnel the "images" of the cylinder in the sides of 

the tunnel are effectively much closer to the cylinder. One \.,.ould there­

fore expect them to influence the flO\'J upstream of the cylinder. These 

"images" tend to force the flow towards the plane of symmetry (figure 

2.10.1a) and this may explain the more vigorous flow observed on the 

plane of symmetry upstream of the cylinder in the smoke tunnel. 

Secondly the cylinder used in the smoke tunnel is very much shorter 

than that used in the 51 cm x 71 cm tunnel (3.8 cm inste~d of 30.5 cm). 

Thus flow on the plane of symmetry can pass over the cylinder rather than 

having to diverge from the plane of symmetry to pass around the cylinder. 

This again would lead .to a more vigorous flow on the plane of symmetry. 

To test which of these two effects predominate the flow upstream of 

a 7.6 cm diameter cylinder, 12.7 cm in height was observed in the smoke 

tunnel. In figure 2.10.1b a photograph of the flow upstream of this 

cylinder is shown together with a similar photograph of the flow upstream 

of the shorter cylinder usually used in the smoke t.unnel. It can be s·een 

that there is a significant difference bet'iJeen these flO\.,.s. The vortex 

system upstream of the taller cylinder is flatter and some't1hat less well 

defined than that upstream of the shorter cylinder. Also much of the 

flow was observed to diverge away from the plane of symmetry upstream of 

the vortex system. This is similar to the flow that was observed up­

stream of the 30.5 cm high cylinder in the 51 cm x 71 cm tunnel, but in 

that tunnel the flow diverged from the plane of symmetry to a much greater 

.".' 

d 
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extent and was therefore more difficult to photograph. 

So it would seem that this divergence of the flow becomes more prom-

.inent as the height of the cylinder is increased, and as the ratio of 

the cylinder diameter to the vrind tunnel width decreases. That is, both 

of the two effects described above play a part. 

Because of the well defined nature of the flow upstream of the 

7.6 cm diameter by 3.8 cm high cylinder mounted in the smoke tunnel it 

was decided to make measurements of velocity upstream of this cylinder 

only. However when considering these results the preceding discussion 

should be kept in mind. 

2.10.2 Velocity measurements in the smoke tunnel 

Velocity measurements on the plane of symmetry upstream of a 

cylinder in the smoke tunnel are shown in figure 2.10.2, for U.D 
= 

2,610, .D 
~ = 14.8. The sections for which velocity profiles are pre-

sented are sho ... rn in figure 2.10.2a. The velocity profile in a direction 

parallel to the plate for a section perpendicular to the plate, upstream 

of the vortex system is shm.,rn in figure 2.10.2b. Velocity profiles in 

directions parallel and perpendicular to the plate at a section perpen-

dicular to the plate just downstream of the separation point are shown in 

figures 2.10.2c and d respectively; similar profiles through vortex 2 are 
I 

shown in fi gures 2.10.2e and fj through vortex 1 . in figures 2.10.2g and 

h; and through vortex 1 in fi gures 2.10.2i and j. The velocity profiles 

in directions parallel and perpendicular to the plate for a section 

through the centre of vortex 1 parallel to the plate are shown in figures 

2.10.2k and 1. The reversed flow within the vortex systems can be plainly 

seen in these figures. The expected double crossover in the velocity pro-
I 

file can also be seen in fi gure 2.10.2g. Here the flm.,r in vortex 1 is 

in the s tream direction clos e to the plate, in the upstream direction 

away from the wall, and in the ' stream direction out of the vortex 

sy~tem. 

t I,·' 



Within the vortex system a significant vortex radial flOloI component 

could only be measured within vortices 1 and 2 (figures 2.10.2e,f,i,and j). 

In these figures the velocity components parallel to and perpendicular to 

the plate correspond to the vortex c.ircumferential and radial components 

respectively. The radial component of velocity can be seen to be an 

order of magnitude smaller than the circumferential component. 

Within the cores of the vortices the radial flow component was meas­

ured in two ways; by resolving the flow velocity at the measurement sect­

ions in a radial direction, and by measuring the variation of the distance 

of a streamline from the vortex centre beh/een two successive crossings 

by the streamline of the measurement section. The latter method effect­

ively gives a mean radial velocity for half a streamline s~iral around 

the vortex. However these methods gave more or less identical results 

close to the centre of the vortices. 

In the analysis of section 2.9 the assumption was made that the 

vortex radial velocity was . linearly proportional to the dis':;ance from the 

centre of the vortex. From figure 2.10.2j (for vortex 1) it can be seen 

that this is the case only within the very centre of the vortex core 

(region XY). This region lies within the velocity peaks of the circum­

ferential velocity profile. 

The Reynolds number based on the radius of region XY and the radial 

velocity at its edge (E) can be calculated to be 1.8 ~ 0.3 for the flow 

conditions of figure 2.10.2. The theoretical velocity distribution for 

this Reynolds number, given by equation 2.9.24, is shown in figure 2.9.2. 

Although this curve is of the same form as the measured velocity distribut­

ion within the region XY, there are not enough experimental points in 

this region to enable a detailed comparison to be made beh/een experimental 

and theoretical results. 

The form of the profile of radial velocity within the horseshoe 

vortex core (figure 2.10.2j) suggests that a better theoretical descript-
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ion of the vortex circumferential velocity profile might be obtained by 

assuming a parabolic distribution of the radial velocity within the 

vortex core, in the analysis of section 2.9. Although this presents no 

great mathematical difficulty, this extension to the analysis is not 

presented for the following reason. A comparison of figures 2.10.2i and 

j (for a section perpendicular to the plate through vortex 1) with 

figures 2.10.2k and 1 (for a section parallel to the plate through 

vortex 1) shows that the assumption of axial symmetry within vortex 1 is 

only true close to the centre of the vortex where the radial velocity 

profile can be taken as linear. Away from the centre of the vortex al-

though the radial velod,ty distribution can be seen to be roughly para-

bolic in planes both parall'cl and perpendicular to the plate, it can be 

seen that the basic assumption of axial symmetry is violated. 

Figure 2.10.3 shQ10JS the velocity variation along streamlines within 

the horseshoe vortex systems for the same conditions as figure 2.10.2. 

In this figure s is the dist~~ce along the streamlines measured from 

.::t: 
~ = -1.75, and Us is the velocity along the streamlines. Figure 

2.10.3a is a scale drawing of the vortex system showing the position of 

the streamlines considered. This figure presents essentially the same in-

formation as figure 2.10.2 but shows some interesting features. Firstly 

it can be seen that whenever one of the streamlines passes beneath 

'" 
vortices 1 or 2 (sections C and B in the figure) then the velocity rises 

to a maximum. Secondly from figures 2.10.~ ,d and f it can be seen that ' 

when a streamline approaches a stagnation point nearly all the loss of 

streamline velocity occurs in the vicinity of the stagnation point. 

Figure 2.10.4 sho~ls velocity profiles in directions perpendicular 

and parallel to the plate, for a section perpendicular to the plate, 

through the centre of vortex 1 at four different speeds. Equation 

2.9.24 suggests that the velocity profiles within the region of the vortex 

core where the radial velocity distribution is linear, should change as 
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the Reynolds number changes. However figure 2.10.4 sho'tls that the non-

dimensional velocity profiles do not vary greatly in and beneath the 

vortex core. Any variation may however be obscured by the rather large 

errors indicated. Above the vortex core however the streamwise velocity 

profiles do vary with the flo\o,f par~meters. This is because as 

increases vortex 1 moves a'tlay from the cylinder to a position where the 

dimensionless velocity outside the vortex system is higher. 

2.10.3 Associated measurements 

It is of interest at this point to compare the nominal values of 

the flow parameters, predicted by a calibration of the empty smoke tunnel 

and by flat plate boundary layer theory, with the measured values. At a 

point upstream of the separation line, for the conditions of figure 

2.10. 2 , at 6 -1 = -2.25, the measured flow velocity was 0.5 ms as 

compared to the value of 0.5 ms-1 given by the tunnel calibration. The 

displacement thickness at this point was 0.33 cm (~ 0.02), while the 

value given by flat plate boundary layer theory is 0.38 cm. So it can be 

concluded that the nominal values of the flow parameters in the smoke 

tunnel are reasonably accurate. 

Also marked in figure 2.10.2b are the regions of the boundary layer 

which pass into the different vortices of the vortex system. It can be 

seen that the fluid from the outer edge of the boundary layer does not 

enter the vortex system, but passes around the side or over the top of 

the cylinder. It is possible to calculate the total volume flow into 

each vortex as a percentage of the total volume flow into the vortex 
I 

system (Le. the flow into vortices 1, 1',2,2' and 3; the flow into 

vortex 0 is small and difficult to distinguish from the flow that does 

not enter the vortex system). These results are shown in table 1. (The 

assumption is made that the lO\ver regions of the boundary layer all flow 

into vortex 2, which mayor may not be correct; see section 2.4.2). 

, .... ' 
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So it can be seen that nearly half the volume flow into the vortex system 

is into vortex 1. Also the floVls into vortices 1 I and 2' are comparable 

with the flows into vortices 2 and 3 respectively. 

Finally in figure 2.10.5 the distribution of skin friction beneath 

the horseshoe vortex system is shown. The data presented in this figure 

was taken from the velocity profiles of figure 2.10.2 and other velocity 

profiles. The dotted lines in the figure indicate a region vlhere the 

skin friction could not be measured, such as near a separation or attach-

inent point, but where its variation could be deduced, i.e. Cf must fall 

. tQ zero at such a point. The most striking feature of this figure is the 

high value of le;1 beneath vortex 1, approximately five times the 

free stream value upstream of the vortex system. Beneath vortex 2, the 

value of I Cf I is somewhat less than the upstream value, and beneath 

vortex 3 it is much less. Thus although over much of the vortex system 

on the plane of symmetry there is a reduction in ICfl from its free 

stream value, there is a considerable increase in 141 beneath vortex 1. 

2.11 Vorticity Distributions 

In this section the distribution of vorticity within horseshoe 

vortex systems will be considered. However it is first necessary to set 

out some basic concepts relating to vorticity. The vorticity of a fluid 

flO\oJ with velocity components U, V and W in the x., j and Z directions 

is given by 

(2.11.1) 

Vortex lines can be constructed which are everywhere par3.11el to the 

vorticity vector. All the vortex lines passing through a closed curve 
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form a vortex tube. It is easily shown that for such a vortex tube of 

area 5 

JiS. cl 5 - constant (2.11.2) 

As a consequence of this result it can be shown that vortex lines cannot 

start or end within a fluid. 

For a control volume \.,ri thin the fluid the net outflow of vortici ty 

must be zero. Now vortici ty can be transported in two ",ays; by convect-

ion or by diffusion. Vortex lines, which are usually fluid lines, are 

convected through the flow and can be distorted and stretched as the flow 

passes around obstacles. Vorticity diffusion occurs when there is a 

vorticity gradient and its magnitude is proportional to the magnit·.lde of 

this vorticity gradient. Thus the net convection of vorticity out of any 

control volume within the fluid must be equal to the net vorticity dif-

fusion into the contral volume . 

Now consider the flo\'! configuration shown in figure 2.11.1 where a 
I, .. ' 

cylinder is mounted on a plate on which a boundary layer is growing. On 

the plane of symmetry upstream of the cylinder the vorticity is given by 

(2.11.3) 

since w = !~ - ~~ = 0 Thus in the two dimensional 

boundary layer upstream of the cylinder the vorticity vector and the 

vortex lines are parallel to the plate and perpendicular to the plane of 

symmetry. Now consider vortex tubes consisting of such vortex lines as ' 

they are carried by the flow towards the cylinder. The boundary layer 

upstream of the cylinder undergoes a three dimensional separation, and . 

the vortex tubes comprising it are concentrated into the vortices of any 

horseshoe vortex system that mip.;ht form. These vortex tubes are swept 

and stretched around the side of the cylinder. Eince these vortex tubes 

are always composed of the same fluid, the area of these tubes must de-

Cl'ease as they are stretched to conserve their volume. Thus from equation 
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2.11.2 their vorticity must increase. Thus as vortex lines are convected 

into the horseshoe vortex system this tendency for the vorticity to in-

crease must be matched by vortex diffusion to the plate or cylinder. Or 

alternatively vorticity of the opposite sign must diffuse from the plate 

or the cylinder. 

Now consider the streamvlise momentum equation for fluid flow. 

(2.11.4) 

This equation will be app~ied to the flow on the plane of symmetry of 

~u.. d("(" d2. u. 
figure 2.11.1. No\., at J = 0, . u,= V -= ~ = d.:.t: = dZ = dX.z -

=0 . So if the flow is steady (i.e. 

. equation (2.11.4) becomes 

-' (~\ = ~(4\) f c:b:. )~r=o d~'" ~ :~o 

From equations (2.11.3) and (2.11.5) 

(2.11.6) 

since dv 
dZ, = 0 on j = 0. Thus the vorticity gradient at ~ = 0, 

which is proportional to the magnitude of vorticity diffusion, is pro-

portional to the streamwise pressure gradient. 

Thus if 

then (2.11.8) 

and the vorticity distribution for small values of j is as sketched in 

figure 2.11.2(a). Here there is diffusion of +ve vorticityaway from 

the wall (or alternatively diffusion of -ye vorticity to the wall). 

' ..... ~ .. , 
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If (2.11.9) 

then (dW2.) > 0 
6~ ~::O 

(2.11.10) 

and the vorticity distribution for small values of ~ is as sketched in 

figure 2.11.2b. Here there is diffusion of +ve vorticity to the wall 

(or alternatively diffusion of -ve vorticity from the ~/all). 

Now the variation of pressure beneath horseshoe vortex systems has 

been described in section 2.6. A typical pressure distribution on the 

plane of symmetry is sketched in figure 2.11.2(c). Figure 2.11.2(d) shows 

the direction of the diffusion of +ve vorticity that can be inferred 

from figure 2.11.2(c) and equation (2.11.6). One would expect that the 

largest vorticity gradients near the wall would occur in the region of the 

greatest pressure gradient, and that most vorticity diffusion would take 

place in this region. 

The vortici ty distribution vii thin a horseshoe vortex system is 

shown in figure 2.11.3. These curves were calculated from the velocity 

profiles of fi gure 2.10.2 . Figure 2.11.3(a) shows the vorticity distribut-

ion in the unseparated boundary layer. It can be seen that vorticity of 

negative sign is being convected by the flo\1f • In this region equation 

(2.11.3) reduces to 

g - = - tdll
) k 6~ -

(2.11.11) 

Since is +ve ~ is -ve. The slope of the vorticity pro-

file at the wall in this case is small, as one would expect from equation 

(2.11.6) as the pressure gradient is small. Figures 2.11.3b, c and d 

shmlf the vorticity profiles just downstream of separation, through the 

centre of vortex 2 and through the centre of vortex 1 respectively. The 

slopes of the vorticity distributions at ~ = 0 in figures 2.11.3(b) and 

2.11.3(c) a re slightly negative Nhich is as one would expect from equation 

(2,11.6) since at these points From figure 

d 
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~.11.3(d) the vorticity gradient at ~ = 0, is approximately zero, which 

again is as one would expect since at this point. 

However the large negative values of the vort ; city gradient for ~ > ° 
do give some indication of the magnitude of the vorticity diffusion in 

the region of large pressure gradient between vortex 1 and the cylinder. 

It can be seen from the preceding discussion that vortex diffusion 

from the plate beneath the horseshoe vortex system plays an important 

role in determining the flow pattern. It was thus of interest to see Hhat 

form the flow pattern Vlould take if this source of vorticity diffusion 

were absent. So flow visualization experiments were carried out in the 

smoke tunnel using the apparatus shown in figure 2.11.~a. Here the region 

of the plate on which the cylinder is mounted, dov1nstream of the observed 

separation lipe has been removed, so that there is no vorticity diffusion 

from the plate in this region. Photographs of one of the resulting flow 

patterns on the plane of symmetry upstream of two cylindeI's, one mounted 

on either side of the plate, are shown in figures 2.11.4b to 2.11.4g. 

The · streamlines feeding the vortex systems move dOltlnward::; i!l the photo-

graphs from figure 2.11.4b to 2.11.4g. The £10\'1 can ba ,seen to be complex 

with fluid from one side of the plate passing through the hole in the 

plate to the part of the vortex system on the other side of the plate. 

The streamlines that can be deduced from these photos are sketched in 

figure 2.11.5. It can be seen that the vortex system formed by, say, the 

separated fluid from the bottom of the plate in the-photograph forms the 

counter-rotating vortices that are' required to keep the vortices formed 

by the separating fluid from the top half of the plate in equilibrium, and 

vice versa. 

So it can be concluded that vorticity diffusion from the plate beneath 

the vortex does play an important role in determining the flow pattern 

within the vortex system, since when there is no such diffusion the £10\.,. 

patterns are chan8ed significantly. 
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CHAPTER 3 

The horseshoe vortex formed by a separating turbulent boundary layer 

3.1 Literature review 

3.1.1 Experimental investigations of horseshoe vortices 

The first investigation of a horseshoe vortex system formed by a 

separating turbulent boundary layer seems to have been made by Vasanta 

Ram (1963). He studied the horseshoe vortex ahead of a 15 cm diameter 

cylinder on a plate in a wind tunnel at a Reynolds number (~]) ) of 

4.1 x 105, for the following two different sets of upstream boundary layer 

conditions:-

(1 ) D H ]) 

&* = 33.3, = 1.56, .-L- = 0.32 

(2) 
J) 

7.6, H D = 0.32 7 = = 1.35, -t-

He measured the pressure distribution on the cylinder and on the plate 

around the cylinder. Some of these experimental results were used in 

section 2.9 (figure 2.9.5). One of the measured pressure distributions on 

the plane of symmetry upstream of the cylinder is shown in figure 3.1.1. 

The position of the primary vortex, indicated by the minimum in the 

pressure distribution can be clearly seen. Vasanta Ram also performed 

some oil flow visualization on the plate and made measurements of the flow 

direction around the side of the cylinder using a three hole yawmeter. 

The work of Roper (1967) 'has already been mentIoned in section 2.1.2 

where his control volume vorticity analysis was discussed. He carried 

out flow visualizat.ion experiments around a 5.04 cm diameter cylinder 

mounted on a ground plane in a water flume, using the hydrogen bubble 

technique. The flow conditions for his experiments were as :ollows:-

= 2740-3180, 
]) sr = 8.7, H= 1.7, -{L = 0.61 

(The values of and H \.,rere not given by Roper, but were calculated 



from the velocity profiles that 1,o,ere given. The equivalent cylinder 

height (L) was tC!.ken as being the water depth at the model position). 

He observed the whole flO\v field around the cylinder including the wake 

flow. He observed a form of oscillatory behaviour \vi thin the horseshoe 

vortex system (figure 3.1.2). However he seems to confuse the observed 

motion of the hydrogen bubbles used for flow visualization with the motion 

of the horseshoe vortices themselves. When the streak of hydrogen bubbles 

passes from one vortex to another during the oscillation Roper describes 

this as the formation of a new vortex, whereas it is simply that the 

hydrogen bubbles make a different vortex visible. H01tleVer it ',.,ould appear 

that the oscillatory behaviour he observed can be described as follows 

(figure 3.1.2). The primary vortex (1) broke away from the rest of the 

vortex system, moved dOHnstream towards the cylinder, and then back up-

stream Where it appeared to combine \vi th vortex 2 producing a burst of 

turbulence. Roper considered this oscillation to take place at the freq-

uency of wake vortex shedding, even though the Strouhal number of the "H 

vortex oscillation was approximately equal to 0.1, about half the usual 

value of the Strouhal numl;>er of wake vortex shedding. However Roper did 

not measure the frequency of wake vortex shedding, so his conclusions 

could not be verified. 

Belik (1973) investigated the horseshoe vortex systems ahead of 

cylinders of different sizes mounted on plates in a wind tunnel. Using 

vorticity arguments, he derived a functional expression similar to equat-

ion (2.2.5) which was arrived at in this investigation by simple dimen-

sional analysis. Using oil flm'" visualization he measured the variation 

in the position of the primary separation line as the flo\-l parameters 

varied between the limits 

JJ 
S-4 <: <5* < 86-0 

H ~ '-5 J) 
O'l <T < O·b 
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(The values of H and &* were calculated from the information given by 

Belik) . 

He concluded that the dimensionless position of the $eparation line, 

Xs 
~ depended upon the dimensionless group only. (This 

group is related to the dimensionless groups derived in section 2.2 since 

(3.1.1) ) 

Belik also measured the pressure distribution upstream of the cylinder 

for some tests. One of his results is shown in figure 3.1.1, with the 

result of Vasanta Ram. Again the position of the horseshoe vortex core 

can be clearly seen. 

Westkaemper (1968) correlated the results of previous investigations 

into the variation of the separation position upstream of wall mounted 

obstacles in a supersonic flow, He produced the corr81ation 

t~ <O'8~ 

( )

-0'7 -=u. . J) 
J) = -:2,42 .-~ + 0·5 

... , ,.,,'''. 

1.9 <::M<11.8; 0.24 x 106 <. ~]) < 17.4 x 106 ; 7< f~ < 42; 

0.1 ~~ <: 5.0; No data for H was given. 

( Xs is the distance from the obstacle centre to the separation posi t-

ion on the plane of symmetry and M is the Mach number). 

Sedney and Kitchens (1975) studied the flow ahead of models of dif-

ferent shapes and sizes placed on the wall of a supersonic wind tunnel 

for the following flm", conditions 

4 6 ~ 8 8 8 1.5 <M< .5,2.9 x 10 < ./\) . < 1·, x 10 t 3. ]) < 6* < 30.5, 

O.19<~<1.88; (No data for J.l was given), 

Using various flol-' visualization techniques theY',o/ere 8.ble to measure 

the position of the separation and attachment lines ahead of the cylinders 

and other models used. They concluded that the correlc.tion oi Hestkaemper 



(1968) described above did not predict the primary separation position 

v/ell, for these flm·! conditions, giving values of I ~sl that were too 

large. They were also able to observe up to three separation and attach-

ment lines ahead of the models in the boundary layer and using the flo"'l 

models of Norman (1972) they were able to deduce four different types of 

flow pattern on the plane of symmetry (figure 3.1.3). The type of flow 

pattern observed changed as the flow parameters varied, the number of 

vortices in general decreasing as the Reynolds number increased. Sedney 

and Kitchens could offer no explanation for this intcrestine fact Y/hich 

is contrary to the observed behaviour of horseshoe vortices formed by 

the separation of a low speed laminar boundary layer. The b.uthor is of 

the opinion that this effect is in some way due to the complicated inter-

action between the horseshoe vortex and the bO'N shock 3.head of the models, 

but the nature of this interaction is unkno",m. 

Finally mention should be made of the experimental work of Shabaka 

(1975). In a co~tinuing investigation he has measured the axial velocity 

profiles in a turbulent horseshoe vortex core downstream of a wing body 

junction, using a pitot tube. These profiles allo~'1 the position of the 

vortex core to be determined downstream of the junction. Shabaka however 

did not measure the flow upstream of the \.,.ing body junction. 

3.1.2 Boundary layer . measurements and calculations 

Two comprehensive sets of measurements of the flow in the boundary 

layer upstream of the separation line ahead of an obstacle have been made; 

by Hornung and Joubert (1963), and East and Hoxey (1969a and b). 

Hornung and Joubert (1963) measured velocity profiles upstream of a 

streamlined body with a circular cylindrical nose section 0.56 m in 

diameter. The flow conditions for these experiments were 

. ~D = 0.65 x 10
6; f* = 44.0; No data for ~ or ~ \.,.as f:iven. 

(The value of f-*- given here was calculated from the flow parameters 0.38 m 
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upstream of the cylinder leading edge, i.e. at 
)( 

o = -1.18). They also 

measured the direction of the flow using a yawmeter and observed the 

turbulent horseshoe vortex system dovmstream of the separation line using 

smoke flov! visualization. 

East and Hoxey (1969a and b) measured the flml ahead of a similar 

model, 0.61 cm diameter, at the following flow conditions 

U1) 

'Y 
30.2, H = 1.40, 

J) 
-l,- = = 3.72 x 

]) . (The values of "JT and given here were calculated from the flow 

parameters 0.46 m upstream of the cylinder leading edge, i. e. at ~ 

= -1.25). They measured velocity profiles, pressure distributions, skin 

friction, and the direction of the flow, at a number of points ahead of 

and around the side of the model. They did not make any detailed observat-

ions downstream of the separation line. 

As noted in section 2.1.2 there are two types of methods that have 

been used for boundary layer calculations. Firstly there are differential 

methods, where the boundary layer equations are solved numerically. Using 

a method of this type, Nash (1969) calculated the boundar; layer develop-

ment ahead of a cylindrical obstacle and found the results compared \vell 

with the results of Hornung and Joubert (1963). Secondly there are inte-

gral methods where the three dimensional momentum integral equations are 

solved using an assumed family of velocity profiles. Johnston (1960a) 

developed a method of this type, and used it to predict the separation 

position ahead of a wall with a jet impinging upon it. This method Vlill 

be discussed in detail in section 3.5. 

3.1.3 Topology of surface streamline patterns 

In section 3.3.2 the results of oil floi-l visualization around the 

base of cylinders on a wall will be presented. Oil flow visualization 

shows tte direction of the "limiting streamlines", i.e. the limiting 

direction of the flow as the wall is approached. Maskell (1955) first 



,studied the concept of limiting streamlines. He fOlmd that at all points 

on a surface the limiting streamlines can have only one direction, except 

at certain points, referred to as singular points. These singular points 

are associated l,>li th · separation of the flovl from the surface and with the 

reattachment of the flow. (This is not to say that all points along a 

three dimensional separation line are singular points). In figure 3.1.4 

several types of limiting streamline patterns are shown in the vicinity 

of singular points (after Hunt et al. (1978)). Figures 3.1.4a and 3.1.4b 

show nodal points of attachment and separation respectively; figures 

3.1.4c and 3.1.4d show saddle points of separation and attachment re-

spectivelYi figures 3.1.4e, 3.1.4f and 3.1.4g ShO'l1 th~ limiting stream-

line patterns called foci which can also be referred to as nodes. The 

regions of existence of these singular points are also indir-ated in terms 

of the values of J, A and [). where 

J" = 
de\(, . dev k.~ 
c).:t ;j'j d~ dx. 

0.1.2) 

11 = de~ + de .. 
dx. ~~, 

0.1.3) 

A t!!. 
+ Kt' -Y) -= 

.2 
0.1.4) 

and e"" and e v are the surface shear stress vectors in the x and::J 

directions respectively. The 'derivation of equations 0.1.2) to 0.1.4) 

is given by Hunt et al. (1978). 

By extending the \oJork of Perry and Fairlie (1974), Hunt et al. (1978) 

also derive a formula relating the number of nodal points and saddle 

points on and around a finite body mounted on an infinite pl~~e. 

' (~N - z: , ' = 0 
S I PUlNri.. Atv]) BODY 

where Z", is the number of nodal points and Es is the nwnber of saddle 

points. 



68. 

Nmo,f consider figures 3.1.5(a) and (b) which shov/ the surface stream­

lines of the flow a!'oundacuboid on a plane. By considering the number 

of nodal and saddle points it can be seen that equation (3.1.5) is 

verified in this case '. 

Hunt et al. also derived a similar formula relating the number of 

nodal and saddle points in a flow plane. Consider figure 3.1.5(c), where 

the streamlines in the plane of symmetry of the cuboid are sketched. For 

such a plane Hunt derives 

(3.1.6) 

where 2.N ' and ~.s" are the number of "half" nodal and saddle points on 

the purface of the plane and cuboid. By counting the number of nodal and 

saddle points, and the number of half nodal and saddle points, it can be 

seen that equa tion (3.1.6) is verified in this case. 

3.2 Experimental appara tus and procedure 

~.2.1 Wind tunnels 

The experiments to investigate the horseshoe vortex formed by a 

separating turbulent boundary layer were carried out with the models 

mounted on 

(a) the floor of No. 1B wind tunnel (the 51 cm x 71 cm tunnel) J 

(b) on a false floor mounted within the working section of the wind tunnel 

(figure 3.2.1). 

Twq series of tests were carried out on the wind tunnel floor, with 

two extensions of different length (1.2 m and 3.3 m) inserted upstream of 

the model position, thus extending , the length of the vlorking section. In 

each case the boundary layer was tripped at the dOv'nstream end of the con­

traction by a rod of square cross section; 4 mm in height, spanning the 

tunnel. Thus in each series of tests boundary layers of different thick­

nesses were obtained. \~ith the short extension in position the model 

position was 1.6 m downstream of the trip and with the long extension in 

,,,110 



position the model position vias 3.7 m downstream of the trip. 

Velocity and turbulence profiles were measured at the model position 

using a hot wire probe (see section 3.2.5). Some of these profiles are 

shown in figures 3~2.2a and 3.2.2b for the long extension upstream of the 

working section and in figures 3.2.2c and 3.2.2d for the short extension 

upstream of the \'Iorking section. Velocity profiles at 'the model position 

on the fal~e floor are shown in figure 3.2.2e. (These profiles were 

measured vlith a rake of 13 flattened Pitot tubes placed at the model 

position). The mean velocity profiles of figures 3.2.2a, 3.2.2c and 

3.2.2e are plotted in the form of "Clauser" diagrains in figure 3.2.3a 

(with the long extension to the working section), figure 3.2.b (with the 

short extension to the working section) and figure 3.2.3c (with the false 

floor in position). It can be seen from figures 3.2.2 and 3.2.3 that 

these profiles are typical of turbulent boundary layers (se~, for example, 

Klebanoff (1955)), and they plot as straight lines in the Clauser diagram 

as expected (except close to the floor in the laminar sub layer and in the 

outer region of the boundary layer). 

Figure 3.2.4 shows how the boundary layer parameters Hand S* 

vary \'lith wind speed. It can be seen that at the lower speeds, with the 

short extension in position, H has values outside the range 1.3 - 1.7 

that one would expect for normal turbulent boundary layers. For experiments 

with both the short and the long extension in position H decreases as 

the wind speed increases. 

Many experimenters use the parameter , to describe the state 

of turbulent boundary layers. Although this parameter is not used in this 

investigation values of are given here for completeness. For 

tests with the long extension in position, at the model position 

varies bebleen approximately 450 and 10,000; with the short extension in 

position between approximately , 250 and 7,000; and for tests on the false 

floor Lle 
~ 

at the model position varies ' beh/een approximately 900 and 
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1800. 

3.2.2 Models 

The same 6.35 cm diameter cylinder and cylinder with splitter plate 

models used in the study of laminar horseshoe vortices were used for this 

part of the study (see figure 2.3.7). A model of the same section as the 

streamlined model shown in figure 2.3.7 'i/as also used but its height was 

the same as the other models 00.5 cm). In addition to these models seven 

30.5 cm high circular cylinders were used for oil flo'il visualization 

studies. They had diameters of 10.2 cm, 8.9 cm, 7.6 cm, 6.4 cm, 5.1 cm, 

3.8 cm and 2.5 cm. The 10.2 cm diameter cylinder was constructed in sect-

ions so that its height could be varied. 

The dimensional analysis of section 2.2 applies to horseshoe vortices 

formed by separating turbulent boundary layers as well as to vortices 

formed by separating laminar boundary layers. Thus any measurements of 

vortex or separation position can be plotted in the 
U]) 
'V 

versus 

plane. The pO"sitions of such measurements in this plane are shown in 

figure 3.2.5 for the 6.35 cm diameter models on the tunnel floor \·lith . the 

long and short extensi.ons to the working section in position, and on the 

false floor placed in the working section. In this figure the positions 

of the experiments of Raper (1967) and Vasanta Ram (1963) are also shown. 

3.2.3 Flow visualization experiments 

Surface oil flow visualization around the models was carried out 

on the wind tunnel floor and false floor, and on the models themselves, 

using a suspension of titanium dioxide in paraffin with small quantities 

of oleic acid added to prevent flocculation of the suspension. This mix-

ture . was spread in a thin film on the surface over Iolhich the oil flm.,. 

visualization was carried out. \'lhen the wind tunnel was run the shear 

s~rasses on the surface moved the susp~nsion in the direction of the sur-

face streamlines, and the pattern of these strep~lines was made visible. 

Smoke fIO\·, visualiza tion was carried out on the plane of symmetry up-
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stream of the 10.2 cm diameter cylinder. Smoke ... ,as injected into the 

pounclary layer upstream of · the model through holes in the floor of the 

long extension, just downstream of the boundary layer trip. The smoke, 

a fine suspension of kerosene oil droplets, was produced by a Taylor 3020 

smoke genera tor. Photographs Here taken of the flow upstream of the cyl­

inder using a Nikon 35 mm camera. The smoke was illuminated by a 

"\'/attastar" lamp, the light from which \.,ras focussed onto the region of 

the horseshoe vortex system by a system of cylindrical lenses and slits 

(figure 3.2.6). The light plane in the region of the vortex system was 

about 5 mm thick. 

3.2.4 Pressure measur8ment 

Measurements of the pressure distribution on the plane of symmetry 

were carried out on the wind bnnel floor using an apparatus very similar 

to that described in section 2.3.5, mounted beneat h the floor of the wind 

tunnel. Readings were taken using the Furness micromonometer, and an 

ordinary inclined tube alcohol manometer at low and high speeds respect­

ively. Pressure measurements l'Iere carried out with models mounted on the 

wind tunnel false floor by fixing the model in one position and measuring 

the pressure upstream of the model at twenty pressure tappings, spaced at 

4 mm intervals, using a multitube, inclined tube man.ometer (figure 3.2.1) ~ 

3.2.5 Hot wite anemometry 

The unsteady behaviour of the vortex systems was investigated in a 

manner similar to that described in section 2.3.6 usine a hot wire probe 

mounted such that the tip of the probe was only a small distance from the 

wind tunnel floor. The unsteady wake flo' .... downstream of the models \'las 

investigated by mounting the hot wire probe at various positions down­

stream of the ~odels, again in a manner similar to that cescribed in 

section 2.3.6. The hot wire apparatus was identical to that described in 

that section and spectral an3.IY3es I ... ere also carried out as described in 

that section. 



3.3 Flm., visualiza tion 

3.3.1 Oil flO'tl vis ualization 

The method of oilflo'll visualization, using a suspension of titanium 

dioxide in paraffin, was used to determine the surface stre~line pattern 

on the models, and on the wind tunnel floor adjacent to them. Figure 

3.3.1a shows a photograph of the flo'll pattern on the illind tunnel floor 

around a 10.2 cm diameter cylinder. The surface streamlines are sketched 

in figure 3.3.1b. The saddle point of primary separation (3) can be seen 

upstream of the cylinder, but its position is indistinct since much of the 

titanium dioxide suspension has been brought into this region by the flo".,. 

The saddle point of secondary separation ( S, ) can also be ::3een. Between 

S and S, there must be a nodal point of attachment but this cannot be 

distinguished on the photograph. The primary and secondary separation 

lines, which are composed of or dinary s epara t ion points , £1.:::,e also shown in 

figures 3.3.1a and b. Around the side of the cylinder the primary separat-
.,. " 

ion line becomes indistinguishable from the other surface streamlines. 

The position of the attachment line Ao very close to the cylinder, can 

also be distinguished from the photograph. The large deposit of titanium 

dioxide in the wake of the cylinder and the symmetric surface streamline 

pattern in the wake are the products of the unsteady wake flo\., and as such 

can only give some time average indication of the position of the surface 

streamlines in the wake . 

The flow pattern upstream of the cylinder that can be inferred from 

these results is shown in figure 3.3.2. It consists of four vortices 
, 

(0, 1, 1 and 2). }Io'llever there may be other vortices present that are 

not strong enough to cause a recognizable surface streamline pattern to 

form. 

One interesting surface streamline pattern that was seen to occur 

occasionally (in an unpredictable f ashion) is sketched in figure 3.3.3. 

Here the secondary sepa ration line appears to be split in hlO, becoming 
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very indistinct near the plane of symmetry, with surface streamlines 

apparently crossing it. There are two possible explanations for this 

type of flow pattern:-

(1) the 'split! separation line is a genuine effect and there is a 

secondary separation off, but not on, the plane of s~nmetry; 

(2) the 'split' separation line and the surface streamlines 

apparently crossing it are no more than time average patterns 

caused by an unsteady flow. 

It is not possible to say which of the two explanations is the correct 

one. 

The flm." patterns on the models themselves v/ere also visualized using 

this method and these are sketched in figure 3.3.4. The flow on the front 

of all the models was qualitatively the same ' (figure 3.3.4a). A separat-

ion line (So) can be seen close to the wind tunnel floor (where the 

boundary layer on the upstream face of the cylinder separates due to the 

adverse pressure gradient caused by the horseshoe vortex system). A 

nodal point of' attachment can also be seen about 0.8 model heights from 

the wind tunnel floor. Thus the flow on the front of the models above 

the horseshoe vortex region is far from being two dimensional. The 

separation line showing laminar'boundary layer separation from the side 

of the cylinder is shown in figure 3.3.4b. This separation line is at 

about 800 of arc from the leading edge of the cylinder, but near the wind 

tunnel floor separation occurred further around the cylinder, at about 

o 110 degrees of arc, probably due to the boundary layer on the cylinder 

at this point being turbulent and better able to withstand adverse press-

ure gradients. Further around in the wake of the cylinder another .separat-

ion line could be seen. steHart (1977) is of the opinion that this type 

of line is due to a . seconda.ry separation beneath the cylinder wake 

vortices. Figure 3.3.4c shows the surface streamlines on the side of the 

cylinder \o1ith spli tter :plate model. Laminar boundary layer separation can 

'" ... " 
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again be distinguished at about 800 of arc from the leading edge of the 

cylinder and an attachment line can be seen on the splitter plate. The 

surface streamline on the side of the streamlined model (figure 3.3.4d) 

reveal a complex three -dimensional separation bubble on the side of the 

model, pres~~ably caused by laminar boundary layer separation, transition 

of the separated shear layer, and reattachment of the turbulent shear 

layer. Downstream of the attachment line the flm.,. remained attached to 

the surface till close to the trailing edge. 

Much information was recorded on how the primary and secondary sep­

aration lines varied with the flow parameters. This information will be 

presented in section 3.6. 

3.3.2 Smoke floVl visualization 

Photographs were taken of the horseshoe vortex flow upstream of a 

4" diameter cylinder mounted on the floor of the 51 cm x 71 cm diameter 

tunnel, using the lighting arrangement described in section 3.2.3, \O]i th 

the long extension upstream of the working section. 1\10 different types 

of photograph were taken. Firstly with long exposures (1/15s to 1/60s) 

photographs of the type shown in figure 3.3.5a were taken. These photo­

graphs show a time mean position of the horseshoe vortices on the plane 

of symmetry upstream of the cylinder. In figure 3.3.5a vortex 1 can be 

seen. Secondly lvi th short exposures (1/500s to 1/1000s) photographs of 

the type shown in figure 3.3.5b ".,ere taken. This photograph does not show 

the horseshoe vortices, which can only be seen in the longer exposure 

photographs which show the mean flow pattern. HOl.ever it does shO\" the 

large scale turbulent structures in the upstream boundary layer. These 

structures are distorted as they are convected .into the vortex system and 

the nature of this distortion can be described. It can bt: seen from 

figure 3.3.5b that upstream of the vortex system the large scale eddies 

within the boundary layer have their dO\mstream sides at an angle of about 

400 to the wind tunnel floor (arro'''' A in the photograph). Si",ilar obser-
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vat ions have been made by Bandyopadhay (1977) in his extensive flow 

visualization studies of turbulent boundary layers. However just upstream 

of the cylinder above the horseshoe vortex system these large scale struct­

ures are at a much greater angle to the wind tunnel flow (up to 900
). 

(Arrow B in the photograph). Similar distortion of the large scale struct-

ures was observed in a large number of photographs. This distortion m3.Y 

be explained in the following manner. Head and Bandyopadhay (1978) have 

considered turbulent boundary layers to be made up of hairpin vortices; 

i.e. vortices with a hairpin like shape with the "ends" of the hairpin 

emerging from the laminar sub-layer. These hairpin vortices appear to have 

a preferred inclination of 400 to the wind tunnel floor on which the 

. boundary layer is growing. This corresponds to the angle of the front of 

the large scale turbulent structures of figure 3.3.5b and these structures 

can be considered to consist of many such hairpin vortices. The .angle of 

these hairpin vortices to the floor is determined by the balance bebveen 

two forces. Firstly the self induced forces on these vortices tend to 

increase their angle of inclination to the floor. Secondly the mean shear 

stresses \vithin the boundary layer tend to decrease the angles of in-

clination of these vortices. As the boundary layer approaches separation 

these mean shear stresses fall, -and as a result the angle of the vortices 

to the floor must increase, as has been seen to be the case. 

3.4 Plane of symmetry pressure measurements 

Figure 3.4.1 shows the pressure distributions measured ahead of the 

6.35 cm diameter cylinder with the long extension ahead of the working 

section. It can be seen that there is very little variation in these 

pressure distributions over the range of Reynolds number covered. 

All the pressure distributions shO\v a levelling out at x 
J) 

~ -0.8, 

'?nd following the argument of section 2.4.5 it. seems reasonable to infer 

that this is the position of the centre of the primary horseshoe vortex. 

This position does not seem to vary \vi th Reynolds number. 
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Figure 3.4.2 shoHS similar pressure d'istributions ahead of the cyl-

inder with the short extension in position. The curves are similar to 

those of figure 3.4.1 in that they do' not vary appreciably with Reynolds 

number. The curves all shm·/ a levelling out, or a slight dip, at 

n ~ -0.8, so the vortex position seems to be the same as for the tests 

with the long extension in position (Le. at lower 
]) 

) . V 
The dotted l.ine in figure 3.4.2 is an approximation to the pressure 

distributions upstream of the separation position and can be represented 

by 

0.4.1) 

This pressure distribution will be used in section 3.5 to c~culate a 

theoretical value of the separation position using the integral method of 

Jop~ston (1960a). 

Figure 3.4.3 shows a similar set of curves obtained ',·:hen the model 

was placed on the false floor in the wind tWL~el. Again there can be seen 

to be little variation with Reynolds number over the range covered. The 

distributions all show a slight dip at; ~ -0.75+-0.80, so it would 

seem that the vortex position is closer to the cyl inder than for the tests 

with the long and short exten~ion in position, i.e. decreases 

as 
]) 
S:t< increases. 

Now let us compare figures 3.4.1 to 3.4.3. The major difference 

between these figures is the difference in the value of er at 

= -0.5. As increases (from figure 3.4.1 to figure 3.4.3), :le 

J) 

ep ~ =-0'5] also increases. Similar variations \ .. ere also observed 

for pressure distributions beneath laminar horseshoe vortices described in 

section 2.5. In that section it was shOim tha t such behaviour \ .. as con-

sistent with the observed fact that the dimensions of the vo~tex system 

. do not change \'!ith the flow parameters. The pressure coefficient Cp at 

::r; ' . (_Lt)2 . 
1) = -0.5 was shown to be approximately equal to . U where tL 1.S 
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the velocity on the streamline that passes down the face of the cylinder. 

Thus as increases (the boundary layer becoming thinner), since 

the vortex dimensions remain constant,(~ ) on the streamline 
U 

down the face of the ' cylinder also increases, and thus Cp at 

increases. 

passing 

-±:.. = -0.5 
J) 

Since similar behaviour can be seen in the results of figures 3.4.1 

to 3.4.3 it can be concluded that for turbulent horseshoe vortices also, 

the dimensions of the vortex system do not change as changes. 

Figure 3.4.4 shows the pressure distributions obtained ahead of dif-

ferently shaped models. It can be seen that for the cylinder, cylinder 

with splitter plate, and streamlined models there is little difference in 

, th~ pressure distributions. So it "'/Quld appear that the flows in the model 

'trakes do not significantly affect these upstream pressure distributions. 

The pressure distributions described in this section are similar in 

form to those obtained by Vasanta Ram (1963) and Belik (1973), shown in 

figure 3.1.1. The position of the minimum (and hence of the primary 

vortex) on the ' pressure distribution of Vasanta Ram (1963) is much more 

distinct than on the distributions described here. This may be due to the 

very much higher Reynolds number used in the experiments of Vasanta Ram 

3.5 The prediction of the seuaration position using the integral method 

of Johnston 

Johnston (1960a) developed an integral method to find the point of 

boundary layer separation 'ahead of a wall being impinged upon by a con-

fined jet (figure 3.5.1). In this section this method will be used to 

calculate the separation position upstream of a cylinder mounted on a \"rall, 

&ince it is possible that this separation position fixes the position of 

the horseshoe vortex. 

Johnston (1960a) wrote the momentum integral equation on a plane of 
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symmetry in a three dimensional floVl as 

(2.8" + ~,~) J.!l _ e doc' 
LL cb: .\ dn 0.5.1 ) 

where the symbols have the same meaning as in section 2.6. In addition 

is the skin friction in the streamwise direction, 

is the angle of the free stream streamlines to the plane 

of symmetry. 

He then assumes that the pressure distribution on the plane of symmetry 

can be given by the . potential flO\ ... pressure distribution outside the 

boundary layer. This leads to 

d~1 

. c3n 
_, ~1t 
Ll dx 

In another publication Johnston (1960b) had found that many turbulent 

. boundary layers have a velocity distribution which takes a triangular 

shape when plotted in a polar form, as shown in figure 3.5.2. In the 

inner region of such a distI'.ibution 

w = M, l.L 

where rl, is a constant, and in the outer region 

where (Y)2. is also a constant. Now for greater than 104 Johnston 

used the flow model to shm ... 

which leads to 

. _ deu = dfYL'(e _ r *) on cln 1/ 0, 

on the plane of symmetry. Then he showed that for a region where the 

free stream streamlines are circular arcs · 

: ' ' " 
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cl f'l dd.' -~ =2 
dn <In 

To obtain better agreement with the experimental situation that he 

was studying, Johnston changed the constant 2.0 in equation (3.5.7) to 

1.0. This is a vital step in the analysis. If this constant were not 

1.0 the equations could not take their final simple form. 

He then obtains from equations (3.5.6) and (3.5.7) 

d8/.l do<' (8 *') on =-~ I/-S, 

Equations (3.5.1), (3.5.2) and (3.5.8) result in the integral equation 

Johnston then solved this equation in a stepwise marmer v:i th the help 

of the Ludwieg and Tillmann (1949) skin friction relation for two dimen-

sional turbulent boundary layers 

0.5.10) 

He also used the von Doenhoff and Tetervin (1943) equation 

J.H. fI,·{,S(H-.2·'17.5) [ 2!. ( ue, ))2 All. (1-1-/.280)] 
dx = e C1L\5'8'l '09,o ,\4·075~ , dx. -,2'035 e,l J 

It should be emphasise(l. that equations 0.5.10) and 0.5.11) were 

derived for two dimensional flows and there is no evidence that they apply 

to three dimensional flO\"s. Using equations 0.5.9) to 0.5.11) Johnston 

fotmd the variation in Ii, en and C,p.x upstream of the separation line 

,. ' '" 
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ahead of the wall. He identified the separation position as the position 

where Yx fell to zero. Good agreement was found between this theory 

and experimental results, for the flow configuration of figure 3.5.1. 

This method has been used to find the variation \oJith the flow para-

meters of ·the separation position ahead of cylinders on a wall. Equations 
'oJ 

(3.5.9) to (3.5.11) were used even though there was no evidence to shotoJ 

that they ... ,ere applicable to this case. A computer programme was writ ten 

which calculated the variation of H and Cfx ahead of the cylinder. 

It was assumed that the pressure distribution upstream of the cylinder was 

given by equation (3.4.1), the measured pressure distribution upstream of 

the separation position ahead of cylinders, with the short extension to 

the working section in position. The free stream velocity distribution 

upstream of the cylinders (required to solve equation (3.5.9)) could then 

be calculated since 

(3.5.12) 

where the subscript 0 refers to conditions at the model position without 

the model being in position, and po:c>:'plP' Uo~ U()I) , where the subscript 

00 refers to conditions far upstream. Also, outside the boundary layer 

From equations (3.5.12) and (3.5.13) an equatiDn can be derived for 

the velocity distribution outside the boundary layer 

1- Cp (3.5.14) 

The input required by the computer programme ~/ere the flow parameters 

H US~ .D , ---:v-- and ~t-' at a value of ;; = -2.5. (The reason for 

using the parameter Lt'::': insteild of ~ will be explained in the 

next se-:tion). The separation position was taken as being the point at 

I-' ,,-
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ahead of the wall. He identified the separation position as the position 

where 4x fell to zero. Good agreement vias found bet\',een this theory 

and experimental results, for the flow configuration of figure 3.5.1. 

This method has been used to find the variation \vith the flow para-

meters of ·the separation position ahead of cylinders on a wall. Equations 

(3.5.9) to (3.5.11) \vere used even though there was no evidence to shO\v 

that they were applicable to this case. A computer programme was \-,ritten 

which calculated the variation of ~ and Cfx ahead of the cylinder. 

It \-,as assumed that the pressure distribution upstream of the cylinder was 

given by equation (3.4.1), the measured pressure distribution upstream of 

the separation position ahead of cylinders, with the short extension to 

the working section in position. The free stream velocity distribution 

upstream of the cylinders (required to solve equation (3.5.9) could then 

be calculated since 

T-'fo 
ep = ...J.. U.2. 

.2 f 0 
(3.5.12) 

where the subscript 0 refers to conditions at the model position without 

the model being in position, and p0:£>:'Pcx>' Uo~ U(X) , where the subscript 

~ refers to conditions far upstream. Also, outside the boundary layer 

From equations (3.5.12) and (3.5.13) an eq~atiDn can be derived for 

the velocity distribution outside the boundary layer 

1- Cp (3.5.14) 

The input required by the computer programme v/ere the flo\oJ parameters 

H US-it]) x ,. -:v- and ~/' at a value of :D = -2.5- (The reason for 

using the parameter U.;* instei'l-d of UD 
'V ')1 

will be explained in the 

next se~tion). The separation position was taken as being the point at 

. " I V 
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which Cfx fell to zero. A typical result is shovTn in figure 3.5.3. 

By varying the input data the variation of Xs 

.D 
with the flow para-

meters could be determined. It vfas found that, to an accuracy of 2:;6, the 

predicted variation of is given by 

for D U6* 
5 < ~.t: < 25; 5,000 < -:;;y- < 

ShOvfS plotted against 

25 , 000 ; 1.3 < H < 1. 7 . Figure 

]) 

~ 
with H as parameter (for 

= 10,000) and figure 3.5.4b shows plotted ag8:inst 

with H as parameter (for 

does not vary significantly as 

increases and as H increases. 

= 10.0). It can be seen that 

.D 
~ varies, but increases as 

These results and their implicat-

ions will be discussed in the next section. 

3.6 Variation of the dimensions of the horseshoe vortex system with the 

flm" parameters 

The experimental results presented in this section were obtained in 

two different ways. Firstly the data on the variation of the vortex 

position with the flow parameters VTaS taken from the pressure distributions ' 

described in section 3.4, while the data on the variation of the saddle 

points of primary and secondary separation were obtained from oil flow 

visualization studies. 

Figure 3.6.1 shows hovl the dip in the pressure distributions identi-

fled as the vortex positioc vaties with u.n 
v and D 

1*. Because the 

pressure distributions from which this data was taken did not ShOH \ ... el1 

defined minima at the vortex positio!l, the values of shO\offi in this 



figure are not very accurate. However it does seem that as 

creases the horse$hoe vortex moves closer to the cylinder. 

]) 

<5* 
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in-

Figure 3.6.2 shows hO\v the non-dimensional primary separation position 

varies ' with the flow parameters. The results are plotted in the 

versus plane rather than the vE'rsus plane. 

This is simply because the experimental points are better distributed in 

this plane, and the variations in that occur are more easily dis-

cernable. (The choice of rather than in no way invali-

dates the dimensional analysis of section 2.2 since 

l.t~ _ (l1D.\ (Jl )-' 
'\J - ~)\ ~/ ) 

FigUre 3.6.2a shows how varies with the long extension to the 

working section in position; figure 3.6.2b shows how varies with 

~ 
J) 

the short extension in position; and figure 3.6.2c sho ... ,s how 

:X:s 

1) varies with the cylinders on the false floor. The values of are 

given as numbers , in the plane. The position of the ex-

periments in this plane correspond to the position of the "decimal points" 

in the values of 
]) 

The approximate variation in the form para-

meter H is also shown in these figures, as are lines of constant u~ 

Although there were considerable errors involved in the measurement 

of ~ certain trends in its variation can be discerned in figure 
J) 

, 

3.6.2. ITI appears to decrease as 
]) 

increases and LlS* 
7 as 

-v 

increases. The first of these trends can also be seen in figure 3.6.3 vlhich 

shows a cross plot of figures 3.6.2(a) and (b) where is plotted 

]) LLJ* 
against ~ for v = 10,000, for tests with both extensions to 

the working section in position. Figure 3.6.3 also shO\"lS a similar plot 

for ~ 2,500, for tests on the false floor. It can be seen that 

C" there is some variation beti-/een the results of the three series of tests 

and it seems likely that this variation is due to the difference in the 

,parameters U8* and H '!'his v,ill be discussed further l a ter in 



this section. 

Belik (1973) suggests that ;:r depends on 

results of figure 3.6.3 show this not to be the case, since 

be seen to vary with 
]) 

£* 

only. The 

can 

Figures 3.6.4a, b and c sho l" the variation in the non-dimensionalized 

distance from the cylinder centre to the secondary saddle point of sep-

aration ( ) for tests with the long extension upstream of the 

working section, the short extension in position, and for tests on the 

false floor respectively. It should be pointed out that it was possible 

to determine the position of the secondary separation point more accurately 

than the position of the primary separation point since the oil flot." 

pattern was more distinct in the region of the secondary separation point. 

Certain trends in the variation of with the nO'lf parameters 
J) 

can be discerned from these figures. As ~* increases, I ~' I in-

creases somewhat. Taken with what was said above this means that the 

primary and secondary separation lines move together as in-

creases. Also it would seem from comparing figures 3.6.4a, b and c that 

\ £' I decreases as increases. 

It is of interest to compare this trend with the trend shown in the 

variation of the vortex position with the flow parameters, shown in figure 

3.6.1, where I -:v I ~ also decreases as increases. Since the 

secondary separation is caused by adverse pressure gradients beneath the 

main hors0shoe vortex, one would expect the variations in 
]) 

and 

to be similar, as they are. However it was not possible to 

UD 
'V 

;Cv (or ) increases, but detect any variatio~ in as 
D 

this may be due simply to the difficulty in measuring the vortex position 

precisely from the pressure distribution. 

Now the results of figure 3.6.2b, for the variation of up-

stream of the cylinders with the short extension upstream of the working 

section, will be compared with the results given by the int.egral method of 



Johnston (equation 3.5.15 and figure 3.5.4). For 
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U&* 
= 14.6, -- = 

v 

6090, H = 1.4, the measured value of I ~ I \.,ras 1.12 (figure 3.6.2b). 

The value predicted by the integral method is I xJ)s I = 1.30. So the 

integral method overestimates the numerical value of This is 

found to be the case generally. 

However equation (3.5.15) does predict that as increases 

I ~I decreases somewhat, and such a trend can be observed in the 

experimental results. (It can be seen from figures 3.5.4 and 3.6.2b that 

the predicted variation is however much smaller than the measured variat-

ion). Equation (3.5.15) also predicts that I i~1 . increases as 

U6'* increases. However the opposite trend can be observed in the 

experimental results. But as UcS* increases in the experiment, H 
decreases at the model position, as indicated in figure 3.6.2b. Equation 

(3.5.15) shm.,rs that I J: I is more dependent upon H 1) 
than upon ~ 

or UJ'* and that it decreases as H decreases. So in the experiments 

UJ* I ;5 I the effect of an increase in -y in increasing may be 

masked by the effect of a decrease in H in decreasing I 1)5 I and 

this may explain the observed trend in the experimental results. * 
At this point it is worth discussing some of the limitations of 

Johnston's integral method and oT its application to the experimental 

results. Perhaps the most sweeping approximation made by Johnston in the 

derivation of his method was the use of the t...!odimensional skin friction 

and form parameter equations (equations (3.5.10) and (3.5.11)). 'l'he flow 

on the plane of symmetry upstream of cylinders is hOI·/ever not two dimen-

sional, the flo";! cli verging away from the plane of symmetry. The vortex 

tubes in the boundary layer upstream of the cylinder are stretched as they 

approach the cylinder, their area thus decreasing and their vorticity in-

creasing (section 2.11). Read (1976) shO\oJed that the effect of such 

stretchinG of the vortex tubes is to increase the transfer of stream'tlise 

mo~entum through the boundary layer. Thus the skin friction at the wall 

~ See footnote on next page 

' " 



will be increased by vortex stretching. So the effect of vortex stretching 

will be to cause C.;:. to fall to zero closer to the cylinder than would 

have been the case without vortex stretching, 1. e. separation ".Till occur 

closer to the cylinder. Thus one \.,rould expect that the use of the · two 

dimensional skin friction and form parameter equations, which do not tru<e 

into account vortex stretching, 1,ofould predict separation upstream of the 

measured position, which was seen to be the case. 

The input parameters for the computer programme of Johnston's method 

and H ) had to be specified at ~ = -2.5. Thus it 

is not strictly valid to compare the results of this method directly with 

the experimental results wherA._ Ud* J) and Hare specifl'ed at 
- V 81- . 

the model position, ~ = 0'0. However it seems unlikely that any 

variations of U8* D 
--;sr and H at x: 

.D 
= -2.5, with the model 

in position, from their values at = 0.0, without the model in 

position, \'1111 be very large. One 1,ofould therefore expect the conclusions 

reached above to still apply. 

Finally oil flow· visualization tests 'lIere carried out around the base 

of a 10.16 cm diameter cylinder, as the cylinder height was varied. The 

variation of ~ 
J) 

and 

is shown in figure 3.6.5. 

~ with the height:diameter ratio (~ ) 
J) 4.J 

It can be seen that if 1:, > 1.5 then changes 

in this ratio hardly affect ;.5 and 1)' .. Since for all the 

other tests reported in this chapter j) > 3.0, then it is justifiable 

to neglect L 
D 

when considering the variation of and 

with the flow parameters. The curves of figure 3.6.5 also suggest that 

for constant and H : 

L 

(J..) 1.5) 
.D 

( ~ < 0.3) 

So the length of the separated region sca18s on the cylinder di~meter 

• I •• 
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when the cylinder is tall, and on the cylinder height when the cylinder 

is short. 

3.7 The freqae~cy spectra of horseshoe vortices formed by separating 

turbulent boundary l~ers 

Figure 3.7.1 ShOvlS the pO'IIer spectrum of the velocity fluctuations 

of a horseshoe vortex system upstream of a circular cylinder mounted on 

the floor of the 51 cm x 71 cm tunnel with the short extension in position. 

The power spectral density is non dimensionalised using the mean square of 

the fluctuating velocity. It can be seen from the figure that the power 

spectrum can be represented by a smooth curve to within experimental 

error. Host of the spe.::tra presented in this section are drawn in the form 

of smooth curves for the ::;ake of clarity. However it should be remembered 

'that the measured spectrA. are of the type shown in figure 3.7.1. 

Figure 3.7.2a shows the horseshoe vortex spectra upstream of the 6.35 

diameter circular cylinder at two different speeds with the long extension 
~ •• 1 

to the working section in position. Also on this figure are shown the 

boundary layer spectra at the model position with the model absent, meas-

ured at the same height above the wind tunnel floor and at the same flow 

velocities as the horseshoe vortex spectra. 

Figure 3.7.2b shows similar vortex and boundary layer spectra at two 

different flow velocities with the short extension to the working section 

in position. Figure 3.7.2c shows similar spectra with the cylinder mounted 

on the false floor, at one flow velocity. 

It can be seen from this figure that at anyone set of EO'. ... conditions 

the horseshoe vortex spectra and boundary layer spectra without the model 

in position are very similar. Thus one can conclude that the distribution 

of turbulent energy Hith frequ~ncy within horseshoe vortex sy::;tems is 

determined by the energy di.::;tri 'bution in the upstream boundary. Ho\vever 

it should be noted that within horseshoe vortex systems the actual turb-

ulence intensity ( ) was found to be in the region of 0.40, while 



\./i thin the undisturbed boundary layer, at the same value of 

-/ - / 2 
_ It_ 

U was found to be in the region of 0.10-0.15. (Here u is the 

local stream't/ise velocity, not the tree stream velocity). 

The effect of 'a change in the flo\'! conditions can also be seen in 

figures 3.7.2a and b. As the flow velocity increases (i.e. as U]) 
and 

]) 
~ increase) it can be seen that at the low frequency end of these 

spectra the power spectral density decreases, while at the high frequency 

end, the power spectral density increases. This one Vlould expect since as 

the flow speed increases the frequencies associated with the large energy 

carrying turbulence structures v/ithin the upstream boundary layer must 

also increase, and hence energy must be transferred f~om the low frequency 

range of these spectra to the high frequency range. 

The effect of a change in on the vortex Gpectra can be seen 

in figure 3.7.3 where the three high velocity vortex spect.ra of figure 

3.7.2 are compared. It can be seen that the horseshoe vortex spectrl~ with 

the model mounted on the false floor (at = 30.5) contains less 

energy at low frequencies and more at high frequencies than the other two 

spectra (at = 9.6 and 6.6). As decreases (and in-

creases) the large energy carrying eddies within the boundary layer up-

stream of the vortex system become smaller and hence the frequencies assoc-

iated with them become larger. Thus one would expect this transfer of 

energy to the high frequencies within the upstream boundary layer, and 

therefore also within the vortex systems. 

Figure 3.7.4 shows the spectra of the horseshoe vortices upstream of 

three different models; the 6.35 cm diameter cylinder, the cylinder \..,rith 

spli tter plate, ::md the streamlined model. It can be seen that there is 

little difference between the spectra. The wake spectra ef these three 

models are shown in figure 3.7.5. They can be seen to differ significantly, 

the spectrum of the cylinder wake showing a well defined peak at the vortex 

shedding frequency, while the other spectra do no t Ghow such w81l defined 
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peaks. Thus it can be concluded that the wake flo\Ol of the models does 

not affect the spectra of velocity fluctuations ... rithin the horseshoe 

vortex system. 

No regular horseshoe vortex oscillations have been observed for the 

turbulent vortex systems considered here. However oscillations have been 

observed by Roper (1967) (section 3.1.1) at flo\-I conditions similar to 

those of the present experiments (figure 3.2.5). The cause of this dis­

crepancy is unknown but it may be that the boundary layer upstream of the 

cylinder used by Roper was not fully turbulent and the oscillations he 

observed were in fact laminar horseshoe vortex oscillations. 



CHAPTER 4 

Scour around obstacles in an erodible bed 

4.1 ·Introduction 

TvIO flow mechanisms are responsible for the formation of scour holes 

around the bases of obstacles, such as bridge piers, set in an erodible 

river bed. 

(a) The contraction of the flow channel formed by adjacent piers causes 

an increase in the flow velocity beb/een the piers. 

(b) The adverse pressure gradient ahead of a pier causes separation of 

the oncoming shear flO\': from the bed, and causes part of it to roll up 

and form .a horseshoe vortex, wrapped around the front of the pier and 

. trailing downstream on both sitles. i-Jhen the bed is erodible the high 

shear stresses under such a vortex cause a scour hol~ to be formed at the 

base of the pier. 

Two types~ of scour can be identified:-

(a) clear water scour, where movement of sediment only takes place in the 

vicinity of the bridge piers. An equilibrium depth of scour is 

reached 1,oThen the shear stresses on the boundary of the scour hole fall 

below the value needed for movement of sediment; 

(b) scour 1,orith continuous sediment motion, where -the vThole river bed is in 

motion. In this case the equilibrium depth of scour is reached when 

the inflow of sediment into the scour hole is equal to the outflow of 

sediment from the scour hole. 

In this chapter the scour holes formed around isolated cylinders on 

a flat bed of sand 1,orill be considered. That is to say the horseshoe 

vortex system 1,orill be consider&d to be the only mechanism of scour. 

4.2 Dimensional analysis 

For a fully developed ch:uU1t:'l flovl one may write the functional 

" .' 
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relationship 

il = -Fn ( -r , et , h, f I \I J 
where IT is the mean channel velocity, "C is the bed shear stress, ds is 

the roughness size (which is assumed to be equal to the median grain 

diameter), h is the water depth, f is the water density and v is the 

kinematic viscosity of the water. Thus non-dimensionalizing 

(4.2.1) 

is the friction velocity. 

In what follows it will be assumed that the flow is a fully developed 

channel flow with a velocity distribution (outside the laminar sub-layer) 

given by 

2·5 Ln ~~J +:B (4.2.2) 

where u- is the mean velocity at a distance j above the bed and . .B 

is given by 

For scour around a cylinder in an erodible bed consisting of a non-

cohesive bed material, · due to a fully developed channel flm'l, one may 

write the functional relationship 

(4.2.3) 

where d is the maximum scour depth in the scour hole at time 1: , fs 
is the sediment density and n· is the cylinder diameter. (The inclusion 

of 3 only in the combination (ps-f}3 implicitly assumes that the flow 

is deep enough for free surface effects to be insignificant.) 

Now it follows from equation (4.2.1) that u..~ is determined if U, 

h., ds , and '\J are specified. Therefore if one assumes a logarithmic 

velocity distribution it follows from equation (4.2.2) that the velocity 

profile in the channel is determined ifll I h I ds and 'V (and therefore 

U*) are specified. Therefore no other velocity profile parame7.crs are 

'. ' .. ' ',', 
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included in equation (4.2.3). Also no parameters \'/hich describe the 

turbulence charactc~istics of the flow are included, it being assumed 

that any variations in the turbulence that might occur will not sig-

nificantly affect the scour depth. This will not be the case when a 

large amount of sediment is carried into the scour hole in suspension. 

Then one would expect that the upstream turbulence distribution must 

affect the overall sediment distribution within the flow and hence must 

affect the scouring process. So the following dimensional analysis will 

not apply vlhen the upstream flow carries a large amount of suspended 

sediment. 

Non-dimensionalizing equation (4.2.3) 

(4.2.4) 

Now consider the dimensionless group , the Reynolds number 

based on mean flow velocity and sediment size. This may be replaced by 

the since from equation (4.2.1) it follows that 

which gives 

Now consider steady state conditions when d = d~ t!lC equilibrium 

scour depth. The dimensior~ess group that characterizes the time develop­

ment of scour can be neglected i.e. the group lr. Now most natural 

river beds are composed of Gand and gravel for uhich is constant 
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, 

and equal to 2.65. Thus this group can be neglected as long as any ex-

periments that are carried out use sand as a bed material. 

So equation i4.2.4) becomes 

(4.2.5) 

NOvl the flow upstream of the obstacle may be one of three types 

(a) u.*cL~ < 5: hydraulically smooth 

(b) 5 <~~~ < -70: transitional 

(c) 70 < Ll*~ fully rough. 

If the flOvl is of type (c) then viscosity (and hence 'u;t,ds 
'\J 

) will 

cease to be important. (The velocity profile upstream of the cylir..der 

will in this case be determined by N and _..:...h,--_, and b in equation 
ds 

(4.2.2) becomes a constant. Since the form of this velocity profile de-

, termines the nature of the horseshoe vortex system, viscosity (and hence 
, 

) will cease to influence the nature of the horseshoe vortex 
'Y 

system.) Thus for floVTs of type (c) ceases to be an important 

variable and 

(4~2.6) 

(In neglecting the group which is still included im-

plicitly in equation (4.2.5) has also been neglected. Thus equation 

(4.2.6) can only apply v/hen a change in ul) does not cause a funda­
'\J 

mental change in the flow pattern around the cylinder. Thus, for example, 

if a change in ~D causes the boundary layer on the cylinder surface 
"I) 

away from the bed to change from laminar to turbulent at its point of 

separation (with a consequent change in the extent of the wake and the 

flow pattern around the cylinder) then it is not justifiable to neglect 

[l.D 
"'V 

) . or 

Now the significance of the group N will be considered. This group 

det ermines the type of scour that v/ill occur. For N<No(say), the 
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and equal to 2.65. Thus this group can be neglected as long as any ex-

periments that are carried out use sand as a bed material. 

So equation (4.2.4) becomes 

(4.2.5) 

NOvl the flow upstream of the obstacle may be one of three types 

(a) u.;t\d.~ < 5: hydraulically smooth 

(b) 5 < u~~ < -70: transitional 

(c) 70 < t,l*~ fully rough. 

If the flo"" is of type (c) then viscosity (and hence ) will 

cease to be important. (The velocity profile upstream of the cylir.der 

will in this case be determined by N and _...;...h",--_, and 1) in equation 
ds 

(4.2.2) becomes a constant. Since the form of this velocity profile de-

. termines the nature of the horseshoe vortex system, viscosity (and hence 

U:kcLs ) will cease to influence the nature of the horseshoe vortex 
IV 

system.) Thus for flows of type (c) ceases to be an important 

variable and 

(4~2.6) 

(In neglecting the group which is still included im-

plicitly in equation (4.2.5) has also been neglected~ Thus equation 

(4.2.6) can only apply when a change in U]) does not cause a funda­
l\) 

mental change in the flow pattern around the cylinder. Thus, for example, 

if a change in QD causes the boundary layer on the cylinder surface 
'V 

away from the bed to change from laminar to turbulent at its point of 

separation (with a consequent change in the extent of the \vake and the 

flow pattern around the cylinder) then it is not justifiable to neglect 

[l.D or ) . 
Now the significance of the group N will be considered. This group 

det ermines the type of scour that ... ,ill occur. For Nc::::.No(say) , the 
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shear stresses underneath the horseshoe vortex system are not large enough 

to cause sediment .to be moved and no scou,r occurs. If N -- N < IN 
o -- c 

where Ne:. is the value of N for which general sediment motion begins 

on the bed upstream -of the cylinder; then clear water scour will occur. 

If N~ -< tv then scop..!' with continuous sediment motion 'v/ill occur. 

The relative importance of the groupN in clear water scour and 

scour with continuous sediment motion can be deduced in the following 

way~ Suppose a scour hole in equilibrium exists and the conditions are 

such that clear water scour occurs. If the flOi'l velocity U is increased 

slightly (by L1 il , say) the horseshoe vortex system 'vii thin the scour hole 

becomes more able to trAnsport sediment (since faster moving fluid feeds 

into the vortex system) and' hence the scour hole becomes deeper (by 

(l! de), say). NOi'! suppose a scour hole in equilibrium exists and the 

conditions are such that SCOtIT with continuous sediment motion occurs. If 

the flow velocity is again increased by 11 U , the horseshoe vortex system 

within the scour hole will again be able to transport more sediment out of 
~ 

the scour hole, but now more sediment will be moving into the scour hole 

due to the increased capacity of the upstream flo,::! to transport sediment. 
I 

So if the scour depth changes by (L1 cl.e ) , then it seems likely that 

(~de)' ~ (~de ) 
So it would seem the variations in 

larger variation3 in de (and hence in 

in scour with continuous sediment motion. 

U (and hence in t\1 ) cause 

k ) in clear water scour than :n 

Now the significance of the dimensionless group ~ will be con-

_ J) 
sidered. As h becomes' large' one would expect that the shear stress 

beneath the horseshoe vortex would tend to decrease since the flow , becomes 

similar to the flOi'l in a confined jet impinging upon a 'v!all mounted per-

pendicular to the jet axis. In such a case a closed separation bubole is 

formed at the base of the wall. The flo~/wi thin such a closed separation 

bubble is very much less vigorous than within the "open" separated flOlo! of 

.. J ~ ...... 
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a horseshoe vortex system, into which fluid is continually flowing ~ 

Hence one would expect that the bed shear stresses beneath a closed 

separation bubble will be very much lower than beneath an "open" horse-

Thus one would expect that ~ would only be an important 

-L 
h 

variable if it were neither "large" or "small" but what values of 

correspond to "large" and "small" is not known. 

The scour depth at any time i is given by equation (4.2.4) while 

the equilibrium scour depth is given by equation (4.2.5). From these two 

functional relationships 

= fn (N 11_. 
I d I 

S 

u.:t<ds ~ T) 
'V I h I 

(4.2.7) 

where the dimensionless ratio ~ -f has been assumed constant and has 

therefore been neglected. Equation (4.2.7) applies when the flow upstream 

of the cylinder is either hydraulically 

upstream flow is fully _ ro U.9~ . then 

or transitional. If the 

ceases to be important 

(provided changes in a 1) do not change the flow pattern fundamentally). 

So equation (4.2~7) becomes 

(4.2.8) 

At this point it shou1d be pointed out that for experimental work it 

u.*a.f>; r is often convenient to replace by the group q, where 
~ 
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Now 
G= [~>} (~J~ 

Cl- fn (N I 
u:f.d~ h ) (4.2.9) --

cL s IV 

So it is justifiable to consider this group instead of in any 

of the functional expressions derived above. This group reflects the in­

fluence of viscosity in very much the same way as tL* ds 
A) 

For small 

values of this group (~1500, approximately) the flow is hydraulically 

smooth. For G- ~ 4 x 104, the flow is hydraulically rough. Thus when 

. ~ ~ 4 x 104 one would expect it to become unimportant in a similar manner 

to 

Literature review 

Experimental investigations 

Many experimental investigations of the subject of scour around 

bridge piers have been carried out and reviews have been presented by 

Breusers et al. (1977) and Melville (1975). Here some of the previous in-

vestigations will be considered in the light of t he dimensional analysis 

of section 4.2. 

Shen et al. (1969) attempt to correlate maximum depth of scour with 

Ul> and produce the formula 
"V 

d.e == C t 6/9 

0·00013 u.; fee t (4.3.1) 

If this formula is compared with equations (4.2.5) .and (4.2.6) it can be . 

seen that it is at least inadequate and for some t ypes of flow completely 

invalid. The dimen3ional nature of the left-hand side of equation 

(4.3.1) is also veFf unsatisfactory. 

Nicollet and Ramette (1971) conducted experiments en the basis of 

the functional expression 

_
de f = n 
]) 

(4.3.2) 

'·1, 
'.- , 

.... , . 
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which the dimensional analysis of the previous section shows to be in-

adequate. 

Leclerc (1971) used the functional expression 

and found that the water depth h was not an important variable. How-

ever this ",as because at the test position in the flume that was used, 

the flow was not fully developed and any change in h did not change the 

boundary layer thickness at the test position (and hence the horseshoe 

vortex system was unaffected). Several previous experiment9 have made 

. this error . 

Hancu (1971) used the expression 

(4.3.4) 

which although inadequate is of interest since it appears to be the first 

time that the variable Uc (the value of LI at which scour with contin-

uous sediment transport starts) ,.,.as introduced. Bonosaundas (1973) also 
. " 

used this variable. Firstly he wrote 

cl., = tn (p,-v.d,. P"(1"-fl9' 11, h, D'j' t) 
Non-dimensionalizing he obtained 

Bonasoundas' dimensional analysis is interesting but several criticisms 

can be made. Firstly one of the variables p p q 10. - 0) q 
IS'I '.)' ,\:s \ J 

. is re'-

dundant since the fourth is a function of the first three. Secondly in 

non-dimensionalizing, ten independent variables result in six dimension-

less groups, instead of the seven predicted by the theory of dimensional 

analysis. 

~om a for(mu~a ~~ velikan~\.,., )Bona,soundas 

tic- :; fn [(¥-)-~ ~ds' d..s ' 
He then made the mistake of replacing both 

then wrote 

-2 
U. 

... I ~ 

.. I . 
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and ._1,_ by IT 
. d s Uc, 

IT justifiable to replace one of the groups by _ 
- U" 

in the functional expression, whereas it is only 

Bonsoundas then neglected ~ ,thereby limiting the analysis to 

the derivation of an expression for ultimate depth of scour only. He 

also neglected CL <is without stating v,hen this ass1.unption applies. 
V -.1. 

U 
He also il~eglected (t~:1 gr[(;:\ 34> 

'3ds ' = fn III f:; - fJ 3ds 
which is justifiable 

D ----&-) 
~ cL.s I f 

But he did not make this clear. Finally replacing 
]) 

since 

by 
]) 

h 
(\.,rhich is not justifiable unless _h_ 

d..s 
is included in the functional 

expression since 

he obtained 

.D 
d.-s 

de. = 'fn ([le £.) 
.]) Q I h , 

So although equation (4.3 .5) appears to be more simpJ. ,~ than equations 

(4.2.5) and (4.2.6), and the dimensional analysis seems complete, there 

are several vital flaws in the argument. 

Many formulae have been produced by Indian researchers which claim 

to relate the ultimate scour depth to the various dimensicnless groups. 

These are reviewed by Henderson (1966). Among them are the formulae 

( 
h )O'7S 

'·8 -.D 

4-·2 - . . (h )0'78 
n . 

which can be seen to be inadequate. 

(4.3.6) 

Perhaps the only previous experimental results that are systematic 

enough to enable them to be plotted in the form suggested by the dimensional 

analysis are those of Chabert and Engeldinger (1956). This is done in 

section 4.6. 

Finally ment:ton must be made of several other interesting investigat-

ions of particular aspects of this eubject. Laursen (1960), (1963), al-
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though not stating so explicitly assumes that the contraction mechanism 

of scour described in section 4.1 is the dominant one and does not dis-

cuss the role of horseshoe vortex systems. He presented theoretical 

analyses and experimental results for both clear water scour and scour 

with continuous sediment motion. For the latter he gave the formula 

de t+h )-0
0

3 -=1·5 
]) 

(4.3.8) 

White (1975) carried out experiments at Froude numbers between 0.8 and 

1.2 for several different obstacle shapes and compared the results with 

several of the above formulae. 

Cars tens and Sharma -( 1975) carried out experiments in a flow with a 

large value of f and the scour upstream of the cylinder was found to 

be less than the scour dO\oJnstrcam of the cylinder caused by wake vortices. 

Nicollet (1975) carried out a limited series of experiments to 

study scour around cylinders in a bed of cohesive material. The observed 

scour holes ""ere of approximately the same size as those in a bed of non-

cohesive material but were more "ragged" in appearance. 

Finally mention must be made of the extensive experiments of Melville 

(1975). He did not attempt to find how the scour depth varied with the 

flow parameters but studied the flow in prefOrmed concrete scour holes in 

an attempt to gain an understanding of the flow. These scour holes were 

models of the holes that Melville had observed around cylinders in a bed 

of sand. A photograph of a scour hole typical of those he observed is 

reproduced in figure 4.3.1, together with a sketch of a longitudinal 

section through the scour hole. He observed that the upstream slope of 

the scour ·hole vias at an angle to the horizontal equal to trle angle of 

repose of the sediment, except in a region close to the base of the 

cylinder (figure 4.3.1b). Scouring took place in this region. A heap of 

deposited sediment was observed ~n the \·iake of the cylinder. 

In the preformed scour holes he. measured mean velocities, turbulence 
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intensities ruld spectra, and surface shear stresses. However to make 

these measurements he used hot film anemometers and preston tubes. The 

effect of these probes on the complex three dimensional separated flow 

within the scour holes ' is unknol~n, and these results can at best only be 

regarded as qualitative. However the turbulence spectra measured by 

Melville lrithin a vortex system upstream of a cylinder on a flat bed are 

very similar to those described in section 3.7. Melville also made de-

tailed observations of the formation of scour holes and carried out flow 

visu~dization of. the horseshoe vortex system using both dye and hydrogen 

bubble visualization techniques. 

4.3.2 Theoretical investigations 

Because of the complex nature of the scouring problem theoretical 

investigations have proved to be difficult to conduct. However two 

interesting attempts have been made. 

Carstens (1966) applied the sediment pickup function 01 Le Feuvre 

(1966) to this problem. This must be a somewhat dubious as.:mmption in 

view of the fact that the flow geometry studied by Le Feuvre (water flOi~-

ing over a preformed isolated scour hole) is very different from the flOi~ 

around the base of bridge piers. He then applied this function to some 

results of Chabert and Engeldinger (1956) and obtained the formula 

d.e 
]) 

== O'S4-b 

Grodowozyk et al. (1968) analyse scour around a cylindrical obstacle 

by usine the shallow water hypothesis and solving numerically the linear-

ized shallOl-l water equations using the method of characteristics. The 

results compare reasonably well with experimental results although the 

authors admit that this analysis does not take into account the horseshoe 

vortex system, but assumes that scour is cauGed by ' a pertilrbe.tj.on in the 

velocity field. 
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4.L~ Experimental appara tus and procedure 

The experimental results described in this chapter were obtained in 

the sediment transport flume at Cambridge University Geology Department. 

The flume has a working section 5 m long by 0.3 m wide and tests \vere 

carried out at a point 4.5 m from the start of the working section 

(figure 4.4.1). 

The surface flow velocity in the n ume , U I \.,..as measured by timing a 

small piece of plastic as it floated dO\-Jn a 2 m length of the flume. 

The mean velocity profiles at the ""orking point in the flume \vere measured 

using a pitot tube and .an inclined tube manometer. Although this proved 

to be re.ther inaccurate at the lower velocities there was no other method 

readily available.. Some typical velocity profiles are shown in figure 

4.4.2 in the form of a "Clauser plot". It can be seen that away from the 

bed ~ increases linearly with ~ ,showing that the logarithmic 

velocity distribution is valid. The "Clauser plot" enables the ratio 

Lt. to be calculated since --,. 

(~f ? t.{* U 
!-l* 

-

where Cf , the skin friction, is taken from the Clauser plot. This ratio 

was required to calculate values of These calculated values 

shO\ved that in nearly all the tests carried out in the flume, the flow was 

hydraulically smooth. 

Once U and u * were knO\vn the mean channel velocity U. could be 

calculated from the · equation 

-2-5 

(Yalin (1972», which is obtained by an integration of the logarithmic 

velocity distribution (equation 4.2.2). 

The four cylinders around \'/hich the scour depth ""as measured had 

diar.1eters of 1 ~27 cm, 2.5L~ cm, 3.81 cm and 5.08 cm. The Reynolds numbers 

based on the · cylinder diameters ( LLD ) \vere between 103 and 2.5 x 10
4

• -y. 
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ITD 
-v rises above approximately 2 x 105 the boundary layer on the 

cylinder surface ch.:me;es . from being laminar to turbulent at its point of 

separation. Thus for these experiments the boundary layer on the cylinder 

is laminar at separation. 

Tests were carried out using sand of median diameter 0.45 mm (giving 

a nominal value of er of 1.47 x 103) and at nominal "later depths of 

5.5 cm and 11.0 cm (giving vaJ.ues of of 120 and 240 and values of 

JL ) h between 0.12 and 0.92. The form of the scour hole was similar to 

that observed by previous investigators, and the maximum scour depth (d ) 

was seen to occur on the upstream stagnation line of the cylinder. (For 

the tests where there was general sediment motion, the equilibrium scour 

depth was arbitrarily defined as the maximum scour depth observed. This 

is because the scour depth varies by up to 10',,& as bed forms more through 

the scour hole. 

In-practice the flO\.,r in rivers can be either hydraulically smooth, 

transi tional or fully - rou..sh-~ . Thus the value of Gr gi ven above (which 

corresponds to 'a flow that is hydraulically smooth) does correspond to a 

practical case. Values of er which correspond to transitional and fully 

turbulent flows occurred in the experiments of Chahert and Engeldinger 

(1956) which are discussed in section 4.6. The ra.'1ge 0 f 
.J) 

h 
for these 

experiments also corresponds to the range that one would expect to meet 

in practice. Hm.,rever the values of (120 and 240) are some"rhat 

lower than one "/Ould expect to meet in a practical situation. However 

for the experiments of Chabert and Engeldinger (1956), 

and more realistic' values (up to 1400). 

4.5 Experimental results and discussion 

~.5.1 Description of the scouring process 

_h_ 
ds 

has higher 

All the scour holes that ,rere observed ",'ere similar to those ob-

served by Melville (1975) (fi~ur~ 4.3.1). The deepest scour was seen to 

occur on the front stagnation'line of the cylinder, and this depth will 
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from now on be referred to as the scour depth, and its maximum value as 

the equilibrium scour depth. Measurements showed that the upstream slope 

of the scour hole was at an angle close to the angle of repose of the 

sand (300
) except for a small region close to the cylinder. This region 

is where the horseshoe vortex system lies and scouring takes place in 

this region. During the scouring process sand is picked up by the horse-

shoe vortex system in this region and is carried around the cylinder and 

deposited in the wake. Thus a pile of sand forms there. More sand then 

slips dOvIn the upstream surface of the scour hole into the horseshoe 

vortex system and the scour hole continues to grow until, for clear water 

scour, the shear stress beneath the horseshoe vortex system falls to such 

a value that it cannot remove any sediment, or, for scour with continuous 

sediment motion, the inflow of sediment into the scour hole equals the 

outflow of sediment. 

It appears that the extent of the scour hole upstream of the cylinder 

is not directly related to the original length of the separated region 

upstream of the cylinder. This is because once scour has begun the extent 

of the scour hole is determined by the slope of the upstream face, which 

is in turn dependent upon the angle of repose of the sediment, and not 

upon the original length of the separated region. 

Equilibrium depth of scour 

Figures 4.5.1 (a) and (b) show te 

as parameter, for the bro values of 

are t~Iee distinct ranges of IV 

h 
c1s 

plotted against N with ~ 

It can be seen that there 

(a) N < No (from Egure 4.5.1(a), No::!: 1.9; from figure 4.5.1 (b), 

No =-= 1.9). No sediment motion was observed in the flume. 

(b) No<N < Nc.(froni figure 4.5.-1(a), Ne::::!!::: 3.1, from figure 4.5.1(b), 

N~ ==- - 0) - )" . 
. all values of 

The experimental results lie on a straight line for 

I> 
h 

Upstream of the cylinders scour was only ob-

served close to the cylinders, so this region corresponds ~o clear 
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water scour. 

(c) N > Ne 
with N 

The experimental results cease to show any 

but do vary with f As ~ increases, 

variation 

de-

creases. Sediment motion was observed over the entire bed, so this 

region corresponds to scour with continuous sediment motion. 

First of all the clear vlater scour region will be considered . . From 

figure 4.5.1(a) for 

de 
']) /-2 N -.2·2 

= 240 

From figure 4 .5.1(b) for h 
ds 

.~ = N -/-9 
]) 

= 120 

The small difference between these equations is some measure of the 

p-ffect of the group _h_ 
c!.s 

de. 
on ]) This effect can be seen to be 

slight. 

As 
]) 

h 
increases one would expect the shear stress beneath the 

horseshoe vortex system to decrease and hence the equilibrium scour depth 

should decrease. This appears to be the case in the region of scour with 

continuous sediment motion, but not in the region of clear water scour. 

The arguments of section 4.2 also lead one to expect that for scour with 

continuous sediment motion the scour depth should depend upon tv less 

than in clear water scour. This can be seen to be true from figures 

4.5.1(a) and 4.5.1(b) where shows lit tIe variation with N in 

the region of scour with continuous sediment motion • 

In figure 4.5.1(c) is plotted agai.'1st 

of scour with continuous sediment motion for 

perimental points lie about the line 

_de I 0 /J) \ -0'/8 
]) = . \h) 

_h 
l's 

It was not possible to dravl a similar ~raph for 

..1L 
h 

in the region 

= 24D. The ex-

= 120, since 

. thpre are fevl experimental results in the region of scour with continuous 

I ~ 

.-." 



sediment motion, for this value of 

4.5.3 Time develdpment of scour 

_h 
d.s 

104. 

(figure 4.5. 1 b) . 

Figures 4.5. 2a to c shovl the development of the scour depth ",i th 

time. It can be see'n from these figures that clear water scour develops 

more slm'lly than scour wi.th continuous sediment motion .. As N increases 

it appears that the rate of development of clear water scour SlOiJS down, 

but the rate of development of scour with continuous sediment motion in-

creases. Thus the type of scour that takes longest to develop occurs 

when N has a value just below Ne i.e. when general sediment motion 

is almost taking place. ' 

No great difference; can be seen beb'leen figures 4.5.2(a) to (c) so 

it would seem that ~ does not significantly affect the rate of 

development of scour (at least for 0.24 < t < 0.48). 

4.5.4 Dye flml visualiza tinr}. 

The horseshoe vortex upstream of a 5.08 cm diameter cylinder \'Ias 

observed by introducing dye into the flow upstream of the cylinder and 

the flow patterns tha t were seen are sketched in figure 4.5.3. No dif-

ference in flow patterns vIas observed with or without general sediment 

motion. Two vortices rotating in the same direction were observed both 

at the start and end of the scouring process. This implies that a 

counterrotating vortex must exist between them, but this was not observed. 

It is interesting to note that water from all levels of the ups'tream 

flow feeds these vortex systems, so that it was possible to see a filament 

of dye, that was introduced into the flo'd near the surface, p8.SS down the 

upstream face of the cylinder into the vortex system. Also when the scour 

hole was fully developed the vortex systems were still fed from all levels 

of the upstream flow. 

4.6 Compa rison with the results of Chabert and Engeldinge r (1956) 

VJhen a search O[ the lit0rature was being made, it bp-came apparent 

, 

" ' .. ~. ' . 
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that most previous experimental investigations were carried out in such 

a way that it is impossible to plot the results in a way similar to 

figures 4.5.1(a) and Cb) because two or more dimensionless groups were 

varied simultaneously. HO\o,fever the results of Chabert and Engeldinger 

(1956) for scour around circular cylindrical piers in a bed of sand are 

ideally suited to be plotted in such a way. 

For these tests un varied between approximately 6 x 10
4 

and 

2 x 105 . Thus for most tests one 'I,ould expect the boundary layer on the 

cylinder surface to be laminar at its separation point, but for the 

higher Reynolds numbers the boundary l ayer at this point may be turbulent, 

and the flow pattern around the cylinder may be changed substantially. 

(Since the boundary layer on full scale bridge piers is invariably turb-

ulent at the separation point, future experimenters using small scale 

models should artificially Itrip' the boundary layer on the cylil'l:der sur-

face to obtain flO\o,f patterns similar to those around full scale bridge 

piers. 

Figures 4;6.1a and b shO\o,f ~e plotted against N at constant 

.D h' for two different values of wi th G- ·kept constal1t through-

out. It can be seen that these figures have the same form as figures 

4.5.1(a) and (b). For clear wat€r scour figure 4.6.1a gives 

when 

. de = o·Q7N -1·3 
]) 

h 
D = 66 .. 7, and figure 4.6.1b gives 

(4.6.1) 

(4.6.2) 

when 

d.e = /.03N - /-3 
h D 
]) = 33.3. It can be seen that t-lo is significantly less 

, 
than in the authors own experiments, presumably because of the large dif-

f'_ de ference in y • Again it can be seen that ]) does not depend upon 

n . . n 
--' for clear water scour, for 0.25 < -- < 1.5. h . h 

·de ]) ]) with T for scour Figure 4.6.1c shows the variation of 

with continuous sediment motion. For ~ 66.7 the points lie about 



105. 

that most previous experimental investigations were carried out in such 

a way that it is impossible to piot the results in a way similar to 
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de = /.03N - /-3 
h D 
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D 
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than in the author's own experiments, presumably because of the large dif-

r_ de ference in y • Again it can be seen that ]) does not depend upon 
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h h 

de I) 
]) wi th T for scour Figure 4.6.1c shows the variation of 

with continuous sediment motion. For ~ 66.7 the points lie about 



106. 

the line 

/-0 ttF25 

(4.6.3) 

and for . = 33·3. 

(4.6.4) 

It can be seen that equations (4.6.3) and (4.6.4) have the same form as 

equation (4.5.3) but the numerical constants differ significantly. This 

is perhaps not surprising when one considers the large differences in 

1L r 
d 

and q- • 
s 

So it vlould seem that in the region of clear ""ater scour, the equi-

librium scour depth is given by 

de.. = k,N --i<~ 
.D (4.6.5) 

where k, and 

J) 
0.12 < h < 

k2 do not depend significantly upon 
J) 

h in the range 

1.5, but do vary as and G- vary. In the region 

of scour with continuous sediment motion 

(4.6.6) 

where k3 and kif do not depend upon N (at least for N < 6.0) but do 

vary as h and ~ vary. 
cLs 

The question now arises as to how' the constants k, . k,z, 1<..3 and 

. kif vary with and ~ Chabert and Engeldinger (1956) do not 

give very much more data for clear \vater scour than that shown in figure 

4.6.1, so any conclusions must be made on the somewhat limited basis of 

equations 

that k, 

(4.5.1), (4.5.2), (4.6.1) and (4.6.2). 

remains approximately constant as 
J, 
~ 

These equations suggest 

and c;r vary, while 

k2 does not vary greatly as varies, but appears to be dependent 

upon Gr obviously there is a need here for further experiments to be 

carried out to describe the variations of k, and k;1.. more fully. 

Chabert and Engeldinger (19.'76) however do give a great deal of in-

. ... '.' 
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formation for scour with continuous sediment motion, over a large range 

of _h_ and ~ It was possible to dra ... r further graphs similar to 
ds 

figure 4.6.1(c). They were all of the same form, and the scour depth 

varied only slightly ' with ~ The variations of k:) 

and ~ are shown 'in figures 4.6.2(a) and (b). From figure 4.6.2(a) it 

can be seen that k3 decreases as increases and er decreases. 

From figure 4.6.2(b) it can be seen that k4- seems to be almost in-

dependent of h but increases as er decreases. Also shown in ds 

figures 4.6.2(a) and (b) are the values of k.3 and kif- taken from 

equation 4.5.3. It can be seen that the value of k3 fits well into the 

results of Chabert and Engeldinger, but the value of kif does not, being 

very much lower than one ~.,ould expect. No explanation has been found for 

this. There is a need here for further experiments both to explain this 

discrepancy and to find value1? of k3 and k4- at values of and 

~ which lie outside the range of variables covered by Chabert and 

Engeldinger. 

It is surprising that kJi,. varies with G- even when q is above 

4 x 104 and the flow is hydraulically rough. One would expect any 

variation in G- would have little effect on the scour depth when it is 

above this value. This is possibly a spurious effect caused by the 

changes in flow pattern that occur when rises above 105 , but this 

is only conjecture. 

Finally it should be pointed out that there are, to the author's 

knowledge, no published results which can be compared with the results 

of figure 4.5.3 for the time development of scour. There is a need for 

further experiments to be carried out to describe fully how the time 

development of scour varies with the flow parameters. 
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4.7 Analytical formula for scour around bridee piers 

In this section an analytical formula will be derived which relates 

the equilibrium scour depth around a circular cylinder to the flow 

variables, for clear water scour. 

Consider the simplest possible type of vortex system, consisting of 

just one vortex aTound a cylindrical obstacle, on a rigid bed (figure 

4.7.1) . Now by assuming that the flo", velocity along AD can be described 

by potential theory and by applying the no slip condition on BC and CD 

it is easily shown thnt ~ l" . the circulation around the ABCD (proceed-

ing in a cloc~~ise direction), is given by 

(where u. . is 'the upstream fr8e stream flO\~ . veloci ty and the flow across 

AB is assumed to have no c0mponent of velocity perpendicular to the bed). 

It is shown in section 3.6 that for a turbulent horseshoe vortex system 

If we assume th8:t x8 can qe equated with .:x:s idthout any of the above 

assumptions being violated then 4 should approximate to the circulat-

ion around the horseshoe vortex on the plane of symmetry. 

i.e. r: + un Q'3h .A. • UJ) 0= -,-,,- - ' 3 

As a scour hole forms underneath the vortex system, the system sinks 

into the scour hole. As the depth of scour increases, then the shear 

stress beneath the vortex system decreases, until at a depth de the 

shear stress is not large enough to move any sediment)for clear water 

scour. This is defined as the equilibrium scour depth. 

The shape 'of the scour hole is shown schematically in figure 4.7.2. 

The sides of the scour hole are at an angle ~ (the angle of repos e of 

the sediment) to the horizontal, except for the portion of the scour 
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hole underneath the horseshoe vortex system (AB). Sediment is being re-

moved from this section by the horseshoe vortex system, and is replaced 

by further sediment sliding down the sides of the scour hole • 

. Now assume that .the vortex system ~/ithin the scour hole may be re-

presented by a circular forced vortex motion of radius r and maximum 

circulation r 
Then 

r (4.7.4) 

where v is the tangential velocity on the edge of the vortex. Assume 

that the radius of this vortex is given by 

where ro is the vortex radius on a flat bed and k, is a constant 

during the scouring process. Also assume th~t 

r = r: o (4.7.6) . 

Dye flow visualisation (section 4.5.4) shows that the same portion of the 

upstream fluid flo,-"/s into the vortex system within the scour hole, as on 

a flat bed. Thus the input of vorticity to the vortex system remains 

constant. If one assumes, as seems reasonable, that the vortex radius 

increases as the scour depth increases, then' one would e~ect r to 

increase, since for a vortex tube 

where W' is the total vorticity of the vortex core \oJhich may be expected 

to remain constant as the scour depth varies. HO\oJever as the scour depth 

increases one would expect the amount of vorticity diffusion out of the 

vortex system to the cylinder surface to increase since more of the 

cylinder surface becomes exposed. This effect will tend to decrease UT • 

Thus since,.. increases and LV . decreases it seems reasonable to assume 

that r remains approximately constant, and equal to Ta the circulat-
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ion around the vortex on a flat bed. 

From equati~ns (4.7.3) to (4.7.6) 

v = - Ul) 1 + H, d \-1 
b1t tO V :D) (4.7.8) 

Figure 4.7.3 shows the forces on an idealised sediment particle at 

the equilibrium scour depth when the particle is beneath the vortex 

system and just about to be moved by the flow. The flo ... r within the 

vortex system applies two forces to the particle. 

(a) a drag force parallel to the slope of the scour hole (F) 

(b) a lift force perpendicular to the slope of the scour hole (1). 

If moments are nmr taken about the point X when the particle is 

. just on the point of moving up the slope then 

By trigonometry 

~, = (~5) Cc~ ((,0°_") 

.x:.l.= 

Thus from equations (4.7.9) and (4.7.10) 

Now 

F.f3 + 
2. 

L 
~ 

Assume that F and L are given by the follo'.ving expressions 

(4.7.10) 

(4.7.12) 

\.,.here C31 is a drag coefficient and c.L is a lift coefficient, 
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Ve is the tangential vortex velocity at the equilibrium scour depth 

and its use here as the "characteristic" velocity for the forces on a 

sediment particle can only be a gross approximation. From equations 

(4.7.11) to (4.7.14) 

Now in the part of the scour hole from ... ,hich sediment is being removed, 

DOlt' visualization suggests 

30° <: eX .::: 'tOo 

So 0·87 <: CO~ (60~0( ') < O·qJt 

Thus from now on ~s ( C£f - O{) will be assumed to be approximately 

constant. The coefficientn C~ and CL for a particle on a slope are 

known to depend upon Reynolds m.unber. In this case the appropriate 

Reynolds number is veJs If Ve (~ a) 0.5 -1 = ms 
"V 

d -4 .s = 5 x 10 . and -V = 10-6 ( \'ihich are typical values for rivers) then 

= 250. For this Reynolds number Coleman (1972) shows that C~ 

for a particle on a slope is approximately equal to 3.0 and does not vary 

as the Reynolds number varies between 70 and 1000. If the same can be 

said for C~ then one may write 

(4.7.16) 

where Kl is a constant given by 

Thus if we equate the value of ~ given by (4.7.16) with that 

~.i 'len by (4.7.8) (letting v-= Ve in the latter) then we 

have 

(4.7.18) 
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If we let c == ~ equation (4.7.16) becomes, after some rearrangement 

Je k,N - I<.z. J) - (4 ·7.19) 

where K, (6 7(~, k2~ c)t~ ) 

and k2, I 
T. (4.7.21) 

Equation (4.7.19) describes the variation of with N for 

clear Hater scour. The linear form of this equation is similar to that 

of equation 4.6.5, which describes the experimental results of the author 

and of Chabert and Engeldinger (1956). 

Novi consider k, and !(~ and their component variables 
D 

k" kl. . and C Strictly these quantities should be considered to 

be functions of all the independent variables of equation (/+.2.3). So a 

dimensional analysis gives the result (for equilibrium scour depth around 

a bridge pier in a sand bed). 

K,) k;.= fns (N, +, ~ J ~) 
Q..s " 

So strictly k, and K). are functions of four dimensionless groups. 

However now consider each of the component variables in turn. 

(i) (the non-dimensional vortex radius on a flat bed) 

can be expected to remain constant fO.r all flovl conditions, 

since the dimensions of turbulent horseshoe vortex systems do 

not change greatly as the flow conditions change (chapter 3). 

(ii) k, relates the vortex radius to the scour depth. At a fixed 

value of the scour depth J , the dimensions of the scour hole 

are largely controlled by the value of the angle of repose of 

the sediment, and not by the flm." conditions. This angle of 

repose of the sediment in fact varies only with the sediment's 

size and shape (Henders on (1966)). Since the vortex radius is 

determined by the sconr hole dimensions, for anyone sediment 
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k, will be constant. 

(iH) k;z. has already been sho ... m to be approximately constant. 

(iv) ct ~] does not change greatly as the flO\.,r conditions 

vary, usually. being in the range 0.85 to 0.90. 

Thus for anyone sediment k, ,k2. and. c can be con-

sidered to be constant and thus k, and K2 can be considered constant 

for anyone sediment. So it would appear that k, and k2. are only 

dependent upon the sediment size and shape and thus are only dependent 

upon the dimensionless groups in equation (4.7.22} that contain the 

variable ds (it being assumed that this variable specifies. the sediment 

completely) i.e. 

which is the relationship found experimentally (section 4.5). 
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1<, will be constant. 

(iii) kz. has already been shown to be approximately constant • 

(iv) ct ~] does not change greatly as the flO\v conditions 

vary, usually being in the range 0.85 to 0.90. 

Thus for anyone sediment k, I k2. and. c can be con-

sidered to be constant and thus 1<, and 1<,2. can be considered constant 

for anyone sediment. So it would appear that k, and k2. are only 

dependent upon the sediment size and shape and thus are only dependent 

upon the dimensionless groups in equation (4.7.22) that contain the 

variable Js (it being assumed that this variable specifies. the sediment 

completely) i. e. 

which is the relationship found experim~ntally (section 4.5). 

". I ~ ," .. 
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CHAPrER 5 

Conclusions 

5.1 The horseshoe vortex formed by a separating laminar boundary layer · 

(a) The horseshoe vortex upstream of a cylinder in a laminar boundary 

layer has been visualized using smoke flow visualization. Three differ-

ent types of vortex system have been observed which are, with increasing 

:-

(i) steady horseshoe vortex systems \OJi th 2, 4 or 6 vortices, the 

b f . t· . . Lt]). num er 0 vor kces lncreaslng as ~ lncreaSesj 

(ii) horseshoe vortex systems which exhibit a regular oscillatory 

motion; 

(iii) horseshoe vortex systems which exhibit an irregular unsteady 

behaviour. 

(b) Pressure distributions were measured on the plane of symmetry up-

stream of models of various types over a wide range of flow conditions 
U~ . n 

(2000 <. ~ <.. 16,000, 20 <. c5:t: <70). Two types of pressure distribut-

ion were measured:-

(i) pressure distributions which showed minima. Flow visualization 

shows that such minima are at the position of the horseshoe 

vortex. Thus ·the vortex position can .be determined from such 

pressure distributions; 

(ii) pressure distributions which show no minima. Flow visualization 

sho\vs that this type of pressure distribution occurs when the 

horseshoe vortex systems are unsteady. 

(c) The variation of the position of the primary horseshoe vortex in 

steady vortex systems, as 

a graphical form.J:;; I 
_~D and f* vary, has been ,Presented in 

increases as . .JJlL. increase.:> and as . .~* 
'\I Cj 

decreases. A theoretical analysis which predicts the position of the 

'.: ', 1, / 
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separation line upstream of a circular cylinder on a plate, suggests that 

the horseshoe vor~ex position is not solely determined by this separation 

position but some other effect plays a part. 

(d) The oscillatory behaviour of horseshoe vortex systems was found to be 

complex. As the Reynolds number [~ ] increased steady horseshoe 

vortex systems began to oscillate intermittently and randomly at two 

different frequencies. As un 
'\1 -

increased further the periods of 

oscillation became long~r, the high frequency oscillation becoming more 

common. At yet higher the oscillations became irregular and the 

horseshoe vortex system became turbulent. These oscillations are not 

caused by vortex shedding in the wake of the models or by any small dis-

turbances within the v/ind tunnel. It is concluded that these oscillat-

ions are initiated by 'bursting' of the horseshoe vortices downstream of 

the models. The frequency of these oscillations is solely determined by 

the values of un and -~ 
'V 61-

(e) A theoretical solution of the equations of motion for laminar horse-

shoe vortex systems has been presented. Solutions are presented for the 

plane of symmetry region of the vortex system. In this region the solut-

ion shows that the two relevant dimensionless groups are a Reynolds 

number based on the vortex core radius and radial velocity at the edge of 

this core, and a Rossby number. If the radius of the vortex core is 

taken to be the radius within which the assumption of axial symmetry 

holds then the velocity and pressure distributions within the vortex core 

are shown to be Reynolds number dependent. If the radius' of the vortex 

core is taken to be the point at which the velocity is maximum then these 

velocity and pressure distributions are shown to be independent of 

Reynol<;l.s number. 

(f) The velocity distributions within steady laminar horseshoe vortex 

systems have been measured using smoke flow visualization. A radial flow 

component can be measured on.1.y in vortices 1 and 2, and appears to in-

' .. I, • I • 
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crease linearly with the distance from the centre of the vortex, in the 

. central region of the vortex. The experimental data was not sufficient 

to enable a detailed comparison to be made with t he previously mentioned 

theoretical analysis. There was found to be little variation in the di-

mensionless velocity profiles, vIi thin the vortex system, as the flOi ... 

speed varied, although any variation may well have been obscured by the 

rather large measurement errors. 

(g) The skin friction coefficient beneath vortex 1 was found to have a 

numerical value of five times its value far upstream of the cylinder, 

for un 
v = 2,610, = 14.8. 

5.2 The horseshoe vortex formed by a separating turbulent boundary layer 

(a) Oil flow visualization suggests that for the fio,,! conditions of 

these experiments only four vortex systems exist (i.e. for 4000 ~ U] -y 

D < 90,000, 4 <¥ < 30). 

(b) Long exposure photographs of smoke flow visualizaticn show the time 

mean horseshoe vortex flo",! pattern. Short exposure photog:-aphs show 

large scale turbulent structures in the boundary layer u~stream of the 

cylinder, with their upstream edges at 400 to the flow d::'rection. Closer 

to the cylinder, above the vortex system,t~ese large scale structures are 

distorted and take on larger angles to the flOi ... direction (up to 900
). 

(c) Pressure distributions were. measured upstream of various models and 

all the measured pressure distributions showed minima at what was taken 

to be the position of the primary horseshoe vortex. Little variation of 

these distributions with Reynolds number could be detected, although they 

do vary as varies. 

(d) The variation in the position of the primary horseshoe vortex with 

the flow parameters has been presented graphically, as has the variation 

in the positions of . . l::rv I both primary and secondary separat~on l~~es. ~--

increases; 1- ;s I decreases as U';* increases decreases as 
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and ~ 

increases. 

I. .l:]) ~s. / . increases. ~ decreases as 
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decreases and ~ 

The position of the primary separation line has also been calculated 

using the integral method of Johnston (1960a). This method is shown not 

to predict well the separation position, although it does shed some light 

on how the observed separation positions vary with the flow parameters. 

In particular it shows that the primary separation position is very 

sensitive to changes in the upstream value of the form parameter ~ 

(e) The frequency spectrum of velocity fluctuations at a given height -

\rithin a turbulent horseshoe vortex system appears to be very much the 

same as the frequency spectrum at the same height within the upstr.eam 

boundary layer. The nature of the flow within the model wakes does not 

appear to affect these spectra. 

5.3 Scour around obstacles in an erodible bed 

(a) The functional expression for the ultimate scour depth caused by a 

horseshoe vortex system around an isolated cylinder in a sand bed is 

given by 

fn (NI 
for a hydraulically smooth or transitional upstream flow. For a fully 

turbulent upstream flow 
U,*, d.~ may become unimportant if changes in 

(LD 
'\l 

do not alter the flow pattern substantially. 

(b) The functional expression for the rate of development of scour 

around such cylinders can be written as 

ufds ~ ~ T) 
"V 'h' ds' 

for a hydraulically smooth or transitional upstream flOlv I while for a 

fully turbulent upstream flow ~d.-s may become. unimportant. 

(c) In the region of clear water scour 

. i e = k, N- k). 

'" '. o' 
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where /\, appears 

J) but not upon 
~ 

(d) In the region 

where and 

to be constant and k2. depends upon h 
cLs 

of scour with continuous sediment motion 

depend upon _h_ 
ds 

and q. but not upon N 

and 

(e) The time development of clear water scour is less rapid than the 

time development of scour with continuous sediment motion. 

~ 

(f) The type of scour that takes longest to develop occurs when rv is 

just belo\v the value needed for general sediment motion. 

(h) The horseshoe vOl.'tex system is fed from all layers of the flow at 

all times during the scouring process. 

(i) A simple theoretical analysis has been presented which accurately 

describes the variation of the scour depth with the flow parameters, 

for clear water scour. 

5.4 Unresolved problems and suggestions for future work 

As can be seen from the previous chapters several problems remain 

unresolved and further work is required. 

Firstly the problem of the variation of vortex and separation positions 

has not been adequately resolved, for either laminar or turbulent horseshoe 

vortices. For laminar systems the separation and vortex positions should 

be measured simultaneously. The difference in the way that these two 

positions vary could then be examined closely and this may lead to a better 

understanding of the mechanisms that cause these variations. For turbulent 

horseshoe vortices further experiments need to be carried out to confirm 

the trends in the variation of the separation positions described in 

section 3.6. 

Secondly the boundary layer calculation methods of sections 2.6 and 

3.5 could be investigated more closely. The various assQ~ptions made in 

these methods (form of velocity profiles, skin friction and form parameter 

equations etc.) could be checked by direct experiment. Also other forms of 

calculation methods could be applied to the problem, such as the integral 



method of Thwaites and the differential method of Dwyer (1968). 

Thirdly the oscillations of horseshoe vortices could be investigated 

in further detail. In particular it would be useful to simultaneously 

visualize laminar horseshoe vortex oscillations upstream of a cylinder and 

the vortex bursts downstream of the same cylinder to demonstrate whether 

or not these vortex bursts initiate horseshoe vortex oscillations. Also 

turbulent horseshoe vortices could be investigated at flow conditions 

similar to those of Roper (1967), to see if the oscillations he observed 

could be reproduced. 

In the previous chapters the effects of variations of the height/ 

diameter ratio of the cylinders has been almost ignored. As can be seen 

from sections 2.10.1 and 3.6 these effects are significant and could be 

investigated more closely. 

The variations of the constants K
l

, K
2

, K3 and K4 of the scour 

depth equations (4.6.5) and (4.6.6) need to be investigated more fully 

by further experiments, as does the variation of scour depth with time. 

Also it is possible that an analysis similar to that of section 4.7 (for 

clear water scour) could be developed for scour with continuous sediment 

motion. 

Initially ~t was hoped that the work of chapters 2 and 3 would 

be helpful in gaining an understanding of the scour process described 

in chapter 4. Although the flow patterns at the start and end of the 

scouring process were similar in that the number of vortices were the same 

it has to be admitted that it was difficult to relate the work on vortices 

on a flat bed to the work on scour. However, it is possible .that the work 

of chapters 2 and 3 might be useful for developing methods of scour 

protection by placing "rip-rap" (large stone particles) in the regions of 

high shear stresses upstream of bridge piers. With such scour protection 

the bed around the bridge pier should remain plane and one would expect 

the experimental results of chapters 2 and 3 to be applicable. Further 

experiments to describe the flow around cylinders on a rough rigid bed 

would also be of interest in this respect. 

I 
I 
I 
I 
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