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Abstract 

This thesis presents techniques for the modelling of musical signals, with particular re­

gard to monophonic and polyphonic pitch estimation. Musical signals are modelled as a 

set of notes, each comprising of a set of harmonically-related sinusoids. An hierarchical 

model is presented that is very general and applicable to any signal that can be decom­

posed as the sum of basis functions. Parameter estimation is posed within a Bayesian 

framework, allowing for the incorporation of prior information about model parame­

ters. The resulting posterior distribution is of variable dimension and so reversible jump 

MCMC simulation techniques are employed for the parameter estimation task. The ex­

tension of the model to time-varying signals with high posterior correlations between 

model parameters is described. The parameters and hyperparameters of several frames 

of data are estimated jointly to achieve a more robust detection. A general model for 

the description of time-varying homogeneous and heterogeneous multiple component 

signals is developed, and then applied to the analysis of musical signals. 

The importance of high level musical and perceptual psychological knowledge in the 

formulation of the model is highlighted, and attention is drawn to the limitation of 

pure signal processing techniques for dealing with musical signals. Gestalt psychologi­

cal grouping principles motivate the hierarchical signal model, and component identifi­

ability is considered in terms of perceptual streaming where each component establishes 

its own context. 

A major emphasis of this thesis is the practical application of MCMC techniques, which 

are generally deemed to be too slow for many applications. Through the design of 

efficient transition kernels highly optimised for harmonic models, and by careful choice 

of assumptions and approximations, implementations approaching the order of real­

time are viable. 
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Probability distributions 
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Abbreviations 

AIC Akaike's Information Criterion 
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Introduction 1 
Musical signals have been of enigmatic interest to many scholars since the time of 

Pythagoras [14] . Considerable amounts of research have been devoted to their analysis, 

yet we do not appear appreciably closer to understanding those properties of musical 

signals which are capable of provoking cognitive and emotional responses in the listener. 

It is this inherent complexity which draws so much attention to the analysis of musi­

cal signals from such diverse backgrounds as engineering, physics, artificial intelligence, 

auditory psychology, music psychology and music theory. 

Other aspects of musical technology have however progressed to the point that today 

comparatively few households are without digital audio media in the form of compact 

discs, minidiscs or MP3 players. Many of today's commercial recordings are com­

mitted directly to the digital domain without a reel of magnetic tape in sight. The 

ubiquity of digital audio is further evidenced by the multimedia capabilities of modern 

personal computers and its profusion over the internet. The downloading of streamed 

audio in real time from radio stations and concert venues is now commonplace, and 

perceptually-motivated coding techniques are employed to obtain high compression 

rates whilst maintaining high audio quality. 

One of the main attractions of digital audio is the ability to transfer and reproduce it 

in the digital domain without degradation. Many hardware and software tools exist 

to replace the array of traditional recording studio hardware, performing duties such 

as adding effects1, reducing noise and compensating for other undesired signal char­

acteristics, all without introducing losses from the signal paths between the processing 

components. 

Processing stages intended to remedy artefacts introduced in the signal path and from 

the media characteristics, e.g., the removal of gramophone thumps, hiss, clicks and 

1 Including, perversely, simulating the characteristics of magnetic tape and other analogue equipment. 
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wow [54, 154, 163] and nonlinear distortions [151], operate upon the entire signal, as 

all signal components are affected. 

Other operations may however be incompatible with this global approach: reducing 

or increasing the prominence of a particular instrument within the mix, correcting a 

wrong note played by one member of an ensemble or removing an errant mobile phone 

from a valuable live recording. In many instances the original multi-track recording is 

not available, and a one or two channel mix of a number of instruments must suffice. 

Often, particularly with live orchestral recordings, only a handful of microphones are 

used, each receiving a different proportion of the signal from each of the constituent 
instruments. 

To perform these operations, the entire signal has first to be broken down into its con­

stituent components, and the relevant processing can then be applied. The individual 

components are unlikely to be disjoint in time and frequency and so simple filtering 

and transformation-based methods will generally be inadequate. A parametric model 

of musical signals that can account for the contribution of several different sources to 

the overall sound is a necessary first step towards any form of separation or inference 

about the individual components. 

Musical signals are characteristically very structured: at the lowest level, sinusoids are 

grouped together to form notes of particular pitches. Notes are grouped in the pitch do­

main to form chords or harmonies, and grouped in the time domain to form melodies. 

Yet higher levels of structure may establish themes through repetition and simple trans­

formation of smaller elements. This successive abstraction to higher levels is termed 

musical context integration. The perception of musical signals is consistent with these 
Gestalt grouping principles. 

From a signal processing point of view, the existence of musical structure can in fact be 

a hindrance. Common assumptions of independence and orthogonality (which usually 

permit considerable simplifications to the problem at hand) do not necessarily apply. In 

most forms of (Western tonal) music the notes will not be independent events - they 

are likely to be highly correlated in the time and pitch domains. The nature of harmony 

is such that notes with common harmonics tend to sound concordant, therefore such 

notes will not be orthogonal in conventional representations, by virtue of the sharing 

of fundamental components. Consequently, blind application of raw signal processing 
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te~hniques to musical signals is unlikely to meet with much success. 

This thesis addresses how musical signals may be modelled to reflect this hierarchical 

framework of grouping. Once the model has been formulated, it is necessary to estimate 

values of the parameters which characterise the data. Given these parameter values, any 

or all of the components can be resynthesised individually for subsequent processing (as 

for the applications described above), or the variation of the parameters (usually pitch) 

of each instrument over time can be logged. This latter operation relates to the task 

of polyphonic music transcription, which is of great interest to composers and music 

publishers for transforming audio input into a score. 

The high degree of structure in the data makes a parametric model ideal. The model can 

be posed within a Bayesian framework which allows enormous potential for the repre­

sentation of salient prior information. This information may affect parameter values, 

for instance by imposing physical constraints such as the parameter range, or convey 

some conviction about possible values given the current musical context, or alternatively 

we may wish to ensure that we are being sufficiently non-informative so as not to bias re­

sults when we know little a priori. Information can also be incorporated at a higher level 

to not only represent likely parameter values, but to also describe their behaviour over 

time using hyp~rparameters. The structure can be represented using Bayesian graphical 

models which reflect the statistical dependence between the parameters and hyperpa­

rameters. They can also result in more efficient estimation algorithms by identifying 

correlated parameters, such that these parameters can be estimated jointly. 

Bayesian inference is employed for the parameter estimation task - typically we ob-

tain the mode or the mean of the posterior distribution. The complexity of the 

model makes direct calculation of parameter estimates infeasible and necessitates the 

use of numerical techniques. In recent years, Markov chain Monte Carlo (MCMC) 

methods have become popular for such problems, as a consequence of the rapid growth 

in available computing power. MCMC methods generate a sequence of dependent sam­

ples from (i.e., simulate a Markov chain from) the desired posterior distribution, such 

that inferences upon the distribution can be made from Monte Carlo integrals of the 

samples. 

MCMC methods are generally held to be slow for practical applications, but this the­

sis shows how efficient algorithms can be produced by exploiting the structure of the 
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model at hand. In many instances there are a number of simplifying assumptions and 

approximations that may be made; these may permit a substantial reduction in the com­

putational cost of the estimation scheme. Together with careful implementation, these 

techniques bring the prospect of real-time MCMC-based algorithms significantly closer. 

The layout of the rest of this thesis is as follows: 

Chapter 2. Approaches to transcription and separation 

This chapter describes some of the very varied methods for the analysis of mu­

sieal signals from the perspective of a number of different disciplines: auditory 

psychology, music psychology and signal processing. Key elements of different 

approaches are drawn on in the work presented in later chapters. 

Chapter 3. Bayesian signal processing 

This chapter introduces a Bayesian methodology for the modelling of signals, and 

subsequent methods for performing the parameter estimation task, in particular 

Markov Chain Monte Carlo (MCMC) techniques, together with strategies for 

the implementation of efficient MCMC algorithms. The issues of model selection 

over variable sized dimensions are addressed with recourse to reversible jump 

techniques. 

Chapter 4. Detection and estimation of single component models 

A flexible model formulation based upon the General Linear Model is introduced 

in this chapter that is suited to the analysis of many types of signal. The model 

is posed in a Bayesian framework and MCMC techniques for producing param­

eter estimates are described. The extension of the basic model to deal with time­

varying signals is detailed that exploits the slow variation of signal parameters 

to produce an efficient algorithm. The parameters of several observations are 

estimated jointly, which increases robustness to transient disturbances; this can 

potentially achieve speed increases over independent analyses of each frame. 

Chapter 5. Detection and estimation of multiple component models 

This chapter generalises the results of the previous chapter to multiple compo­

nents, when the number and type of components is unknown. Careful formula­

tion of the model is required to enable parameter estimation over a variable sized 
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parameter space, and reversible jump techniques are applied to allow this. Resid­

ual methods are developed to reduce the computational load of the simulation. 

Efficient parameter estimation techniques for time-varying multiple component 

signals are also presented. 

Chapter 6 Application to monophonic musical signals 

The models of the previous chapters are applied to the analysis of monophonic 

musical signals. A general linear model composed of harmonically related basis 

functions is employed, and the motivation for the harmonic model is outlined. An 

efficient MCMC simulation scheme is described that exploits the structure of the 

harmonic model to produce some novel transition kernels. Several assumptions 

and approximations are outlined that can reduce the computational cost by an 

order of magnitude. Some analyses of monophonic data are shown that highlight 

the ability of the model to perform pitch estimation, or give detailed information 

about the harmonic character of the musical instrument. 

Chapter 1" Application to polyphonic musical signals 

The monophonic model of the previous chapter is extended to polyphonic signals. 

A hierarc~cal model is used that incorporates Gestalt perceptual grouping princi­

ples to model the perception of musical signals in terms of streams of notes over 

time. An efficient MCMC simulation scheme is described that employs residual 

methods combined with methods optimised for harmonic signals to produce a 

method that is able to explore the posterior distribution very rapidly. Some exam­

ples for real and synthetic polyphonic datasets are shown. The chapter also gives 

an assessment of the model for musical signal modelling, describing its advantages 

and limitations. 

Chapter 8. Conclusions 

This chapter presents a summary of the material in this thesis and outlines po­

tential areas for future research. Some of the predominant issues arising from the 

analysis of audio signals and the role of Bayesian signal modelling in the area of 

musical signal analysis are discussed. 

Throughout this thesis there are several important concepts which arise repeatedly. 

Their importance is reflected in the breadth of subject areas covered in the literature 
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review chapters. 

Model structure 

• The exploitation of model structure in musical signals, which are highly structured 

at a number of levels. This can lead to efficient analysis methods and can permit 

simplifying assumptions. 

• The importance of Gestalt grouping principles as an abstraction mechanism and 

the use of Bayesian hierarchical models for representing this structure. 

Multi-disciplinary approaches 

• The need for expertise from many different subject areas for effective modelling. 

• Signal processing principles alone are inadequate for modelling complex musical 

signals, whilst high level models do not consider the signal level. 

• The need to unite high and low levels of modelling is very important: low level 

signals are modelled in order to make inferences in the high level problem domain. 

Importance of context 

• The analysis of musical signals can lead to ambiguous results as many properties 

(e.g., pitch, timbre) are ill-defined. 

• Establishing a surrounding context in one dimension (e.g., time, frequency) may 

provide a means to resolve the ambiguities by horizontal or vertical grouping. 

• Joint estimation of signal parameters over longer timescales provides increased 

robustness through the exploitation of model structure. 

Approaches to Transcription, 

Modelling and Separation 

2.1 Introduction 

2 

The analysis of music and musical signals is an area which has attracted attention from 

a number of different disciplines, in particular physics, psychoacoustics, mathematics, 

music and engineering. Each has played a major part in the current state of under­

standing of the characteristics of musical signals. Pythagoras investigated the relative 

lengths of vibrating strings producing concordant sounds, thus establishing the twelve 

tone Pythagorean scale in terms of the ratios of integers. Mersenne and Galileo inde­

pendently related musical pitch to the rate of oscillation. Fourier's decomposition of 

periodic oscillations into frequency components proved to be inspirational for many 

subsequent investigators, and physicists such as Helmholtz, Ohm and Seebeck sought 

to explain the perception of a single pitch given a harmonic series [107]. 

Physics has contributed much to musical research in terms of the understanding of the 

sound generating mechanisms of musical instruments. This can be of great importance 

in the design of new or improved instruments. Psycho acoustics deals not with the phys­

ical properties of sound itself but of its perceptual properties; i.e., rather than dealing 

with sound generation it is concerned with sound reception. Intensity, pitch, timbre 

and roughness are examples of such perceptual properties, which are important to the 

perception of musical sounds, but which may not necessarily map directly onto signal 

characteristics. It is closely related to the field of cognitive psychology which deals with 

the high level organisation of perceived sound, and the area of auditory scene analysis. 

Naturally, music theory and music psychology also have much to contribute to this field 
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of research. Rather than be concerned with low-level concerns of sound generation and 

auditory detection, they focus on high-level modelling of musical structure. Musical 

constructs such as key, harmony and metre are significant in these methods, and the 

emphasis of many techniques is of an understanding of musical signals such that high­

level inferences and expectations may be generated. 

More recently, researchers in several areas of engineering (particularly within the signal 

processing community) find themselves drawn towards the challenges of analysing and 

modelling musical sound. Many analysis techniques exist in signal processing for the 

representation, detection and transformation of signals. Much research is application­

driven and closely correlated to developments in hardware, so efficient implementations 

are often readily achievable. At a more fundamental level, signal processing provides 

various calculi for the representation and transformation of signals. 

Clearly each of the above areas has much to offer the realm of musical signal analysis; 

none, though, can offer (alone) a complete solution. A musical signal is a representa­

tion of a series of physical vibrations, perhaps varying over time, which produce sensa­

tions of perceptual characteristics (e.g., pitch, timbre, loudness) over short time scales 

and gives rise to perceptions of musical structure (e.g., melody, rhythm, harmony) over 

longer time scales. The remainder of this chapter will review salient contributions to 

the field of musical signal analysis in each of the above areas. Subsequent chapters 

will draw upon various aspects of these areas to improve the performance of the signal 

detection and estimation techniques. 

2.2 Auditory modelling 

Performance on a par with the human auditory apparatus is undeniably a goal of most 

pitch estimation and signal decomposition techniques. What the auditory system may 

lack in terms of sensitivity and its susceptibility to masking effects is more than com­

pensated for by its speed, robustness and ability to perform high level inference. The 

ear is able to isolate a single speaker in a crowded room (the 'cocktail-party effect') or 

follow a single instrument in a polyphonic recording, even without the help of spatial 

-
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information. Researchers in psychoacoustics and cognitive psychology are concerned 

with understanding the physical, neural and psychological processes which enable us to 

perceive sound, and to build models of the human auditory system. There are several 

such areas which are directly relevant to this thesis. The following sections will review 

some of the salient contributions of (low-level) auditory modelling and (high-level) per­

ceptual modelling research to the understanding of the auditory system. Some practical 

models drawing on auditory and perceptual principles will also be briefly reviewed. 

2.2.1 Low level auditory modelling 

In the mammalian auditory system, acoustic vibrations are channelled by the outer ear 

into the middle ear, via three bones: the malleus, incus and stapes. The middle ear effects 

impedance matching between the pressure upon the tympanic membrane (eardrum) and 

the cochlea (inner ear). The cochlea is filled with two different fluids which transmit 

oscillations to the basilar membrane. The basilar membrane (BM) has variable compli­

ance along its length, and von Bekesy [156] showed that travelling waves (rather than 

standing waves, as was previously thought) are induced in the BM. The consequence of 

this is that each point along the BM has maximum response at a different frequency, 
" 

and hence it acts as a frequency-to-place convertor. There is also a direct correspon-

dence between each place and the neurones sensitive to that particular characteristic 

frequency (CF), referred to as tonotopic organisation. This gives rise to place models of 

pitch perception. 

The response of the BM to excitation at different frequencies can be quantified in terms 

of the magnitudes of the resonances of each place on the BM. One may talk about the 

'sharpness' of the tuning in terms of the Q of the local resonance, which is in inverse 

proportion to the bandwidth [96]. The psycho acoustic response is often expressed in 

terms of auditory filters. Fletcher [41] suggests this approach, where the peripheral 

auditory system is modelled as a bank of overlapping bandpass filters. He measures 

the sensitivity to sinusoidal signals in noise by masking the sinusoid with band-limited 

noise (of constant power density) centred upon the sinusoidal frequency. The point 

at which an increase of the noise bandwidth does not increase the amount of noise in 

the auditory filter is the critical bandwidth (CB). This expression of the auditory filters 

is extensively used; Zwicker and his collaborators adopt measures based upon critical 
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bandwidth [167, 166]. The audible frequency range is split into around 24 abutting 

bands spaced at 100Hz intervals up to 500Hz and then spaced at approximately O.2jHz 

above 500Hz. 

The critical-band rate (i.e., the cumulative number of bands as a function of increasing 

frequency) thus obtained is known as the Bark scale. 1 The Bark scale is also propor­

tional to the position of maximum excitation along the length of the BM as a function of 

frequency. It is also proportional to another less common pitch scale, the mel scale, also 

known 'i s ratio pitch. Ratio pitch is measured by presenting a pure tone iI to the subject 

who must then adjust a second frequency iI/2 such that it appears to be half the pitch 

of iI. The scale of iI/2 against iI is linear up to around iI = 1kHz but then exhibits a 

marked departure from linearity such that l.3kHz is perceived to be the half pitch of an 

8kHz stimulus. Since the scale purportedly relates to the sensation of melody, the scale 

is named the mel and is defined relative to a pure tone of 125Hz having a ratio pitch 

of 125mel [142]. Its relation to the Bark scale is 1 Bark = 100 mel. Its departure from 

the familiar (linear) musical scale of pitch in terms of octaves accounts for its lack of 

popularity, despite being an empirical measure of pitch perception [62]. 

Critical-band based auditory filter banks, on the other hand, are popular as a prepro­

cessing stage in musical applications. Moore [96], however, notes that critical bands 

are rectangular - as originally proposed by Fletcher as a simplifying assumption in the 

analysis - whereas the shape of the auditory filters are not. A scale based upon Equiv­

alent Rectangular Bandwidths (ERBs) is proposed [97] which differs significantly from 

the CB scale at low frequencies as more accurate measuring techniques have indicated 

that the auditory bandwidths continue to decrease below 500Hz. Experiments show 

that the human auditory filter has a rounded exponential shape (roex) which can be 

well approximated by a gammatone filter whose impulse response has the envelope of 

a gamma filter multiplied by a sinusoid at the centre frequency [106]. The gammatone 

filter bank can also be efficiently constructed, a feature which which has made it popular 

in many applications. 

1 After Barkhausen, who studied the perception of loudness. 
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Place models 

The simplest place models of pitch are unable to explain many pitch phenomena, in par­

ticular the perception of complex tones. Those complex tones that evoke the greatest 

sensation of pitch are comprised of pure tones (i.e., sinusoids) at harmonically related 

frequencies. 2 This gives rise to many peaks in the oscillation of the BM, and a place 

model based upon attending to the cochlear channel with the maximum response will 

fail to explain the percept of a single pitch. Ohm's acoustical law postulates that the 

individual frequency components in a complex tone can be 'heard out', but this is now 

known to be true only for the first five to seven harmonics, and experimental condi­

tions are required to isolate individual components [108, 116V Complex tones with 

harmonically related components usually generate a single sensation of pitch, as they 

'fuse' perceptually. This effect will be discussed in greater detail in the next section. 

One limitation of the place model of pitch, as suggested by some authors (including 

Scheirer [126]) is that it may assume more frequency resolution than the ear possesses 

and hence isn't an accurate model of the auditory system. 

Another effect which should be addressed by a pitch model is that of the missing funda­

mental. The fiq;t few harmonics of a complex tone can be omitted and yet the tone still 

evokes a sensation of pitch at the (now absent) fundamental frequency. This percept 

has become known by several names: virtual pitch, low pitch or residue pitch. Certain 

musical instruments, e.g., the bassoon, have very low or non-existent fundamental fre­

quencies yet they still appear to be pitched at that fundamental frequency. The virtual 

pitch theory of Terhardt et al. [146, 145] bases a perception of pitch on a combination 

of analytic listening and holistic perception. Analytic listening, i.e., the ability to hear 

out individual partials in a complex tone yields spectral pitch. The holistic perception 

makes inferences from tones where the lower harmonics are not present. This 

is also an important mode of pitch perception for instruments such as chimes and bells 

which are inharmonic and have no modes of vibration near to the fundamental- the 

pitch is instead determined by the 4th to 6th harmonics [42]. 

2There are nevertheless other stimuli which can invoke a sensation of pitch, for instance narrow-band 

nOIse. 
3Por instance probe-tone techniques can be used where the subject has to decide whether a frequency 

is present in a complex tone. The single frequency stimulus is non-deterministically chosen to be a true 

component of the harmonic series or a value halfway between two harmonics. 

? 
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Two broad classes of psycho acoustic pitch models are predominant in the literature: 

pattern recognition models and temporal models [96, chapter 5]. Pattern recognition 

approaches assume two stages of analysis: peripheral processing (spectral analysis) fol­

lowed by central processing (pattern recognition). The most widely referenced model is 

Goldstein's optimum processor [55] which resolves individual spectral peaks from each 

ear and feeds them to a central processor which assumes that all frequencies are noisy 

representations of harmonic frequencies and produces a maximum likelihood estimate 

of the fundamental frequency. The model is able to explain phenomena such as miss­

ing fun4amentals and dichotic pitch (where each ear receives different harmonics). The 

Schroder histogram[128] is a commonly referenced pitch model that tallies all integer 

sub-multiples of each active frequency, and the one with the most tallies is taken as the 

fundamental; Parsons [105] uses this technique to determine the pitch of speech signals. 

Temporal models 

Temporal models operate rather differently by assuming that temporal information is 

also important in the perception of pitch. The auditory nerve firings are phase-locked to 

the excitation waveform such that they fire at the same phase on the waveform, though 

not necessarily on every cycle. This behaviour is exhibited for stimuli below around 

5kHz [96]. Each neurone therefore transfers periodicity information in its temporal 

firing pattern, in addition to that suggested by its tonotopic organisation. Temporal 

models apply an initial cochlea filtering stage and pass each filter bank output into a 

periodicity detector. Hybrid place/temporal schemes have become popular, in particular 

the models of Patters on and Holdsworth [106] and Meddis and Hewitt [92]. 

Meddis and Hewitt's model applies an initial filter stage to account for the response 

of the outer and middle ear, followed by a filter bank of 128 overlapping critical-band 

filters to simulate the response of the basilar membrane. Each filter output is passed 

through a hair-cell simulation model and the resulting neural spikes undergo an auto­

correlation analysis. This is then averaged across all channels to produce a summary 

autocorrelogram where the height of each pitch candidate corresponds to the strength 

or salience of that pitch. 

Patters on and Holdsworth's model is intended as a functional rather than physiologi­

cally accurate model. The cochlea filtering stage employs a gammatone filterbank with 
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bandwidths based upon Moore and Glasberg's ERB formulae [97] and their neural 

detection stage includes logarithmic compression and an adaptation stage. This lat­

ter stage simulates the auditory mechanisms of adaptation and suppression, such that it 

adapts rapidly to changes in intensity and that areas of low activity are suppressed when 

other intense activity regions exist. The following temporal stage is based around the 

concept of an auditory image model. For periodic sounds, the auditory image produced 

should be stable, but the Neural Activity Pattern (NAP) produced from the adaptation 

stage does not present a steady image as each cochlear channel will consist of responses 

at multiples of the excitation pitch period. The temporal integration is therefore made 

adaptive, triggering at a particular point on the waveform and effectively simulating the 

phase-locking of neurons. 

2.2.2 High level perceptual models 

Our responses to everyday acoustic stimuli are of course much more complex than 

the psychoacoustic responses that might be expected from steady-state complex tones 

in noise. We are able to detect much more in sounds than simply a collection of in­

stantaneous pitches. From musical signals many different kinds of information can be 

inferred: 

• Musical information: 

Melody, rhythm, metre, harmony and modality 

• Environmental information: 

Spatial location of the sound source, room characteristics, identification of back­

ground noises (ecology) 

• Cognition: 

Identification of the type of instrument, recognition of the melody, recognition of 

a particular composer's style, recognition of musical genre 

• Emotional information: 

Identifying the emotional intents of the composer and musician 

All of the above form percepts which are of a much higher level than pitch sensations, 

and which cannot be explained at a physiological level. The area of study concerned 
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Figure 2.1: Illustration of some Gestalt grouping principles (see text for explanation). 

with models of audition has become known as Auditory Scene Analysis after Bregman's 

text [11]. The name is taken from the auditory analog of visual scene analysis - the 

process of drawing inferences from the given environment. Bregman's approach is based 

upon the concepts of grouping and streaming. Low level components of sound are 

grouped using a variety of rules into sources which are associated with streams. 

The models of grouping used almost universally in the field are those proposed in the 

early twentieth century by the Gestalt psychologists. A simple set of rules is employed 

to group fundamental elements together. Many principles of auditory organisation have 

visual analogs - the most common grouping cues are illustrated in figure 2.1. Proximity 

rules group elements which are close together. Similarity rules group elements with 

common characteristics - the figure comprises of a 4 x 4 grid of elements, but rather 

than suggesting the formation of a square, the perception is of two sets of parallel lines 

by account of the similarity of the elements in each column. The principle of good 

continuity groups those elements which follow particular directions - the illustration 
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is perceived as two crossing curves rather than two curves which touch and then diverge. 

The principle of common fate groups elements which are subject to similar variations 

_ in the figure we see two identical curves. Finally the principle of familiarity causes us 

to group elements into configurations which are familiar to us, and so the final figure 

forms itself into the image of a house. 

These principles are of great importance when analysing musical signals, as argued by 

Deutsch [27]. Sounds which are similar suggest an origination from the same source, 

and conversely, sounds which are different suggest a number of sources. A sequence of 

sounds with smoothly changing characteristics (e.g., frequency) suggest a stream from 

a single source. 

Two of the most important cues in the low-level analysis of musical signals are common 

harmonicity and common onset. Harmonicity is a common fate cue which explains the 

perception of pitch in terms of the grouping of sinusoids with common periodicity. Psy­

choacoustic evidence suggests this is an integral part of auditory processing (see §2.2.1). 

Most pitch models assume the existence of sinusoidal partials at frequencies harmoni­

cally related to a fundamental (which mayor may not be present). 

The ear does not require perfect harmonicity for grouping. Moore et al. [98, 99] ad-
..... 

justed the frequency of a single partial in a harmonic series and found that for deviations 

of up to 3 % the partial is still perceived as 'belonging' to the harmonic series, a concept 

known as the 'harmonic sieve'. Further increases generate a sensation of 'roughness' 

and a shift of over 8 % separates the partial entirely from the complex. This fits in with 

Goldstein's optimal processor theory [55] described previously. Furthermore, shifts in 

the frequency of one harmonic affect the perceived pitch of the tonal complex, in a 

manner which is subject-dependent. The amount which each harmonic is capable of 

altering the pitch perception of the complex provides a measure of the dominance of 

that harmonic. The dominant harmonic is usually one of the first six [98]. 

The results also concur with the observations of inharmonicity in piano tones. Piano 

strings can be inharmonic by up to 3 % which accounts for the ambiguous or 'muddy' 

pitch sensation for low notes. The inharmonicity increases with the string width and 

the effect is less marked if longer strings are used [42]. Pianos are often tuned to a 

'stretched' scale beyond a 2: 1 frequency ratio per octave in the high and low registers, 

partially due to the inharmonicity and also due to the non-uniform perception of pitch 
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at high registers, as suggested by the mel scale. Rasch [117] observes that harmonics of 

a single note fuse together, where spectral fusion plays a major part in the segregation 

of multiple sources. This effect is evident in organ stops where individual notes often 

fuse together as harmonics of a single note. 

Common onset (also known as common amplitude onset) is a major auditory cue. It 

is the event marking the transition between silence and the simultaneous sounding of 

a number of frequencies. If a number of frequencies start at exactly the same time, it 

suggest~ that they might originate from the same instrument. Similarly, if a number of 

instruments are playing together it is quite plausible that a number of them may play 

on the same beat. Rasch [118] notes that there is typically a delay of between 30 and 

50ms between the onsets of different instruments. The rise time of partials of most 

instruments tends to be within around 40ms in a small ensemble. These delays are 

usually long enough to allow the auditory system to detect each note in the ensemble. 

Common onset is particularly important when considering the perception of non-tuned 

or inharmonic instruments such as percussion and bells. A struck cymbal generates a 

signal which has energy distributed over a wide range of frequencies, and evokes no 

definite pitch sensation4 so common periodicity is not a viable cue. The spectral com­

ponents are instead grouped according to their common moment of attack. Similarly, 

bells are inharmonic (but tuned), and the common onset of all frequency components 

allows them to be perceptually grouped. If two bells are struck at precisely the same 

time, the sensation of pitch is blurred and the common onset suggests the presence of 

a single bell. This phenomenon can also be observed in the Gamelan [75] whose bars 

generate inharmonically spaced partials5 and are played in pairs. 

Complementary to common onset is the cue of common offset, which describes the 

common termination of a number of frequency components as a cue for grouping. 

It is rarely discussed in the literature since it is not often encountered in musical or 

ecological sound stimuli. Few musical instruments have the characteristic of cutting off 

all frequency components simultaneously and furthermore the acoustic environment is 

often sufficiently reverberant to ensure that all frequencies decay at different rates. 

4However, a second cymbal of a different size may sound higher or lower, although still unpitched, by 

virtue of the relative locations of the spectral centroids. 
5This inharmonicity is essential to the sound of the Gamelan and is carefully controlled at the time the 

Gamelan is made. 
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Common frequency variation is a demonstrably important cue for spectral fusion. 

When the ear is presented with a harmonically rich mix of steady-state sounds, har­

monicity alone may not be sufficient to effect perceptual grouping. If several compo­

nents have frequencies which vary in an identical manner then they will be perceived 

to originate from the same source. This is demonstrated by McAdams [88] who ap­

plies frequency modulation to a synthetic vowel sound which was embedded within a 

mixture of other vowel sounds. The modulated frequency components fuse perceptually 

and stood out from the other components. Common frequency variation is of particular 

interest in musical signals for two reasons: firstly, a change in the frequency of excita­

tion of a musical instrument will change the frequency of each harmonic by an amount 

proportional to the harmonic number, and secondly, common frequency modulation in 

the form of vibrato is often added by a performer. This is encountered frequently in the 

parts played by the leading instruments of an ensemble, perhaps not only as an addi­

tional means of expression but also as a means of increasing the perceptual salience of 

the .soloist over a spectrally rich backdrop. Rasch [117] finds that if a tone was played 

agamst a louder masking tone, the quieter tone could be reduced by 18dB and still be 

heard if vibrato was added. 

" 
Common amplitude variation doesn't appear to be as useful as common frequency vari-

ation since the harmonics of an instrument will decay at different rates. Mellody and 

Wakefield demonstrate an interesting example however where the sound of a violin 

played with vibrato was resynthesised with only amplitude or frequency modulation 

respectively [94]. The AM-only reconstruction sounded perceptually identical to the 

original, whereas the FM-only reconstruction sounded comparatively flat and lifeless. 

~mplitude variation can therefore be an important psychological cue, but may not be 

SImple to model analytically. 

2.3 Auditory and perceptual-based models 

!he psy.ch~acoustics and perceptual psychology literature have proved to be extremely 

mfluenual m problems of signal separation and musical transcription. In particular, the 
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key concepts of the cochlea as a filterbank and the perceptual organisation of sound 

through Gestalt grouping principles are central to many models, some of which will be 

reviewed in this section. 

The sensitivity of the ear as a function of frequency is studied extensively by psychoa­

cousticians. The representation of the cochlea as an auditory filter bank, based upon 

Equivalent Rectangular Bandwidths or Critical Bandwidths (see section 2.2.1) has led 

many authors to adopt this kind of frequency decomposition rather than an approach 

based upon the Fourier transform. This front-end processing may then be followed di­

rectly b~ a pattern processing stage, corresponding to a place model of pitch, e.g., as in 

Goldstein's optimal processor [55] or each cochlear channel may be followed by a peri­

odicity detection stage (temporal model of pitch perception) as in Meddis and Hewitt's 

model [92]. Hybrid place/temporal schemes are also common. 

Waveform Cochlear 
Filterbank 

Detection 
Stage 

Autocorrelation Correlograrn 

Figure 2.2: The processing steps of a typical correlogram-based auditory model. 

The temporal integration of the cochlear channel outputs can be performed in different 

ways and a typical method is shown in figure 2.2. The cochlear filter bank outputs pass 

through a detection stage which is intended to simulate the firings of the auditory nerve. 

A gain control compresses the dynamic range of the detector outputs and the auto­

correlation stage detects the periodicities in each channel, simulating the phase-locking 

behaviour of neurones which fire at the same relative phase on the excitation waveform. 

The outputs of the autocorrelation in each channel are then often combined into a 2-

dimensional time-frequency or 3-dimensional time-lag-frequency representation called 

a correlogram. 

Meddis and Hewitt propose a more complex model which also accounts for the trans­

mission characteristics of the outer ear and has a more elaborate simulation of nerve 

fibre discharge [92]. Karjalainen and Tolonen employ a similar model for multiple 

pitch estimation, using half-wave rectification and low pass filtering in the detection 

stage [69]. 
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Ellis' work [34, 35, 36] is built upon the 3d log-lag correlogram which also uses half­

wave rectification and low pass filtering in the detection stage. A series of delay lines at 

logarithmically-spaced lags are then used to perform the auto correlation with a constant 

number of bins per octave. The image of frequency (cochlear channel) against log-lag 

constitutes a correlogram 'slice' which are then concatenated over time to form a 3-d 

structure. Various statistics can be obtained from the correlogram, e.g., summation 

over the cochlear channels yields the summary auto correlation (a form of periodogram) 

similar to that of Meddis and Hewitt, and the zero-Iag face of the correlogram shows a 

time-frequency representation of signal intensity. 

A significant aspect of Ellis' model concerns the decomposition of signals into funda­

mental objects other than sinusoids. His basic building blocks are noise clouds (noise 

with a finite spectral spread), transient clicks, and weft (wideband periodic energy with 

a smooth time-varying envelope).6 The subsequent processing in his model is based on 

a blackboard system (see also §2.4.4) which develops several inference hypotheses in 

parallel. The inference strategy is prediction-driven, where the source models generate 

expectations which are then confirmed or denied by a bottom-up signal analysis. His 

goal is computational auditory analysis, with an emphasis on ecological sound mixtures 

such as street ambience. 

Mellinger [93] employs a cochleagram representation from which he makes inferences 

directly using techniques from the image processing literature. He develops a set of time­

frequency filtering kernels? for extracting features from the correlogram. Mellinger's 

motivation is for a physiologically compatible model of auditory processing, and he 

claims the filtering kernels are plausible since they can be implemented as a delayed 

weighted summation which is within the functional capability of a neuron. The ker­

nels which he produces enhance features such as note onsets and offsets and frequency 

variation, since the logarithmic frequency scale means that the frequency variation of 

harmonically related partials undergo coherent motion at a fixed spacing. He also deals 

with a higher level of modelling concerned with event detection by grouping partials 

using Gestalt grouping cues. Individual partials become part of an affinity group which 

corresponds to a note event and is comprised of partials that are closely related (e.g., 

common onset, common periodicity). 

6The name weft comes from an Anglo-Saxon term for the horizontal threads in a woven fabric. 
7 Or more precisely, time-height, where height is the logarithm of frequency. 
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Slaney, Naar and Lyon [134] describe techniques for inverting the auditory model di­

rectly from the correlogram. Components of the correlogram with common periodicity 

are separated, and are used to form short-time power spectra, and hence, estimates of 
the cochleagram. The component sounds are then resynthesised using an overlap-add 

technique. Weintraub [162] also computes the autocorrelation of the cochlear filter bank 

outputs to calculate the periodicity information in each frequency region, from which a 

spectral estimate of each sound is generated. An iterative algorithm locally maximises 

the probability of the spectral estimate, given the local periodicity information and the 

spectraltcontinuity constraints. This approach is intended for speaker separation, and 

claims to separate unvoiced (i.e., inharmonic) sounds. However, it must be trained with 

instances of all transitions, as it uses a Markov model to detect the voicing state for 

each speaker. 

A neural comb filter is proposed by de Cheveigne [25] to isolate harmonic sounds in a 

cancellation model of auditory processing. Implementation of the filter requires knowl­

edge of the fundamental frequencies, which are estimated from the average magnitude 

difference function (AMDF). This is searched over the lag domain (T) for the minimum. 

For two simultaneous sounds, a comb filter with two lags is used, and the double dif­

ference function (DDF) must be searched over two dimensions of lag. The method 

performs well for samples where the fundamental frequencies didn't cross, but requires 

clean voiced sections which eliminated 25% of the data samples. 

2.4 Musical models 

Much of the work outlined in the preceding section is concerned with the auditory pro­

cesses involved in the perception of sound. The high level auditory grouping processes 

described in the previous sections are not specific to music but rather applicable to the 

perception of complex sound mixtures of speech, music or our environment. This sec­

tion will describe some of the considerations which are specific to musical signals. They 

have a high degree of structure at many different levels, and so algorithms or mod­

els must be designed specifically for them. The application of raw signal processing 
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techniques is unlikely to meet with much success as many of the common engineering 

assumptions (for instance, the independence of multiple sources) are quite explicitly 

violated. 

If the goal is a musical application, for instance musical transcription (as opposed to 

a signal processing application such as signal separation) then the output should be 

of a form suitable for human consumption which means that it should be expressed 

in terms of a musical structure. Frequencies are replaced by pitches, and the relative 

time-line is expressed in terms of musical metre. Hence a level of understanding of the 

signal is required in order to place it within a musical context. This process is often 

termed musical context integration and many of the methods described in this section 

are concerned with establishing various forms of musical context. 

2.4.1 Pitch models 

The perceptual models of pitch thus far encountered have psychoacoustic rather than 

musical motivations. Musical pitch, however, is rather different in that it has two di­

mensions - chroma and height. Pitch chroma is the label given to a musical note at a 

particular point in the scale and in Western music takes one of 12 labels - 'A: to 'G' plus 

five accidentals (sharps and flats). Pitch height increases with frequency, assuming the 

tone is harmonic with a perceived pitch at the same frequency as a sinusoid at the fun­

damental frequency. Pitch height tends to increase mono tonically with pitch chroma, 

but after ascending by an octave, the chroma returns to the same value. Two pitches 

close in frequency sound similar as do two pitches whose separation is close to an whole 

number of octaves. A commonly used representation of this structure is the pitch helix 

(figure 2.3). 

Shepard [133] presents a striking example of separating the dimensions of height and 

chroma through synthesis of a musical scale which appears to ascend indefinitely and 

yet which passes through the same point after each octave. The tones were constructed 

from a set of sinusoids whose amplitudes are determined by a spectral envelope which 

was a Gaussian with a fixed central frequency. The pitch chroma is increased in steps 

but the pitch height is approximately constant. The illusion is similar to that of the 

barber's pole where a potentially infinite spiral is observed through a window of fixed 
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Figure 2.3: Helical representation of pitch. Two pitches are similar if they are close along the 

path of the helix or at the same chroma at different heights. 

size, and the spiral appears to ascend continuously.s 

Musicians perceive pitch differently than non-musicians. Musicians are likely to be 

aware of the importance of chroma and the intervals between notes, whereas non­

musicians are less likely to appreciate the importance of octaves, although they should 

recognise the similarity of notes an octave apart. 

The pitch helix is not restricted to the Western 12-tone scale. Most musical cultures 

exhibit a notion of octave equivalence regardless of the number of notes in their scale. 

Many also show preferences for scales which include consonant intervals of fourths and 

fifths (i.e., with relative fundamental frequencies of 4:3 and 3:2). It is debatable whether 

our preference for octaves has a physiological or cognitive basis (e.g., because of phase­

locking in neurons or from familiarity, respectively) since it is almost universal across 

musical cultures, but differs for infants and older children [14]. 

Pythagoras constructed a 12-note scale based upon the concordant intervals of 3:2 and 

4:3 which he determined by experimentation with strings of varying lengths [107]. The 

note intervals are derived from the ratio of powers of 2 and 3. An alternative to the 

Pythagorean scale is just intonation where the intervals are defined in terms of integer 

ratios, but tuning has be performed relative to a particular key which makes the scale 

impractical for fixed-tuning instruments. The predominant scale in use today is the 

equal temperament scale which divides each octave into 12 logarithmically equal steps. 

This enables transposition into any key but fourths and fifths are no longer exact integer 

8 A demonstration of Shepard's tones may be found at http: / / asa. aip. org/ sound. html 
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Figure 2.4: The relation between the harmonics of C and other notes. Common intervals are 

labelled. 

ratios - they now take the values 1.335 and 1.498 rather than 4/3 and 3/2. Despite 

the apparent simplicity of octave equivalence in terms of the concordance of vibrations 

in a 2:1 frequency ratio, exact octaves are actually perceived to be 'too short': the pitch 

separation must be increased by 10% of a semitone (0.6% frequency increase) to be 

perceived as a 'true' octave [42]. Pianos are tuned according to a stretched octave, due 

to the inharmonicity of the strings [42]. Burns [14] also suggests musicians' preference 

for sharp rather than flat intervals as another explanation. 

2.4.2 Harmony 

The basis of harmony in Western music arose from the concordance of particular pitch 

combinations. It was found that various combinations of notes in the scale can be 

played together as a chord to create a harmonious effect, or other combinations could 

produce a sensation of tension and instability. One of the most harmonious and com­

mon chords is a major chord whose pitches are in the ratio 4:5:6. If each note is played 

by a tone which is a harmonic series with a fundamental frequency equal to the pitch 

then the frequency of every third harmonic of the first note will be the same as the 

frequency of every second harmonic of the third note, etc.. It is this coincidence of 

harmonics which makes the chord sound pleasant. 

The chord also suggests the presence of a note further down the scale at a pitch of 

one quarter (i.e., two octaves) below the first. This is the harmonic root of the chord. 

Figure 2.4 illustrates the harmonic relationships of the note 'C'. Ten of the first twelve 

harmonics happen to coincide with the other notes in the scale. Several commonly 
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encountered musical intervals are shown in the figure, and the chord of C major appears 

in the 4th, 5th and 6th harmonics, as do its inversions (CEG, EGC, GCE). 

If several notes are combined in this way then the perception can sometimes be of a 

single tone at the harmonic root. Pipe organs are capable of producing the sensation 

of a low pitch by combining several higher tones [117]. Debussy and his contempories 

explored the possibility of combining the sounds of several instruments playing simul­

taneously to create complex timbres rather than the impression of chords [27]. 

,1 
The identification of chords can be an ambiguous problem. The idea that a particular 

stimulus can be perceived in different ways by different subjects complicates both the 

construction of algorithms to detect chords and also the measurement of its success. It 

also provides an indication of the inadequacy of making inferences based upon a single 

frame of data. If the individual tones do not start simultaneously but have a small onset 

delay between them then this may yield enough information to resolve the ambiguity 

_ the first note is heard for long enough to establish a context for itself. The onset 

of a second note now appears as a new note. If the context of the first note is not. 

established before analysing the two tone complex then the detection may instead yield 

the harmonic root of the chord. 

Techniques for resolving the inherent ambiguities of chordal detection are not common 

in the literature. Most pitch estimation techniques in fact ignore the problem entirely. 

The prevalence of chords in Western tonal music suggests that this high degree of struc­

ture should be capitalised upon, by modelling it explicitly and incorporating it into the 

musical context. 

2.4.3 Statistical studies 

A great deal of useful information about musical signals can be obtained from statisti­

cal studies of various musical phenomena. In a probabilistic modelling framework this 

information may provide suitable (frequentist) a priori probabilities for model parame-

ters. 

Mathematical analysis of musical scores between 1500 and 1960 [43] has highlighted 

variations in the frequency distribution of pitch over successive historical periods. Mu­

sic before 1900 tends to have a roughly normal frequency distribution, whereas mid-
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twentieth century music has a flatter distribution, showing a tendency to make more use 

of the extremes of the spectrum. Also the size of the transitions from one note to the 

next are much larger in twentieth century music. Studies on the duration of notes sug­

gest that lengths less than 150ms are rare, and most notes which form part of melodic 

themes last between 150 and 900ms Baroque music was found to h d ' . ave a me lan tone 

rate of 6.3 tones/s [11, p462]. Mellody and Wakefield have found the mean rate of 

vibrato for violin sounds to be 5.9Hz with a mean excursion of ±15.2 cents [94] . . 

~empo analyses by van Noorden and Moelants [153] show a strong tendency for mu­

Sl~ randomly selected from the radio to have a tempo of around 130 bpm (beats per 

mmute). Analysis of different musical styles show that jazz and baroque both have a 

much wider variation, with a more diffuse mode between 100-170 bpm, whilst modern 

dance music also has a mean of around 130 bpm but with a much smaller variance and 

music from the Flemish hit parade shares similar characteristics. A potential exp;ana­

tIon ~ut forward for this 'resonance' around 130 bpm (or equivalently, the mean beat 

duration of 450ms) is that it corresponds roughly to the speed of human locomotion. 

Rasch [118] conducted experiments to determine the degree of synchronisation between 

players in an ensemble, finding that the average delay between two instruments was be­

tween 30 and 50ms. Longer delays of between 100 and 200ms occurred occasionally 

due to mistakes, tempo changes or the first note after rests. Experiments also showed 

that melody instruments tend to lead, followed by bass, and middle registers are last. 

Longer onset times also appear to occur for string instruments than for wind instru­

ments. 

2.4.4 Streaming, grouping and segmentation 

In addition to being very structured in terms of the mathematical relations between 

scales and intervals, musical signals have many more levels of structure than can be 

observed at a microscopic level. The smallest musically significant unit is the note event 

- a pitch sounding at a particular instant in time. Many signal processing algorithm~ 
are ~oncerned. with producing a list of note events as their output. Conversely, many 

~uslcal algonthms take a list of note events as their input and produce · higher level 

mferences. Given a sequence of note events it is often desired to determine how these 
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Figure 2.5: Fugue from Bach's Toccata and Fugue in Dm - an example of virtual polyphony. 

.l 
are formed into perceptual streams such that a signal comprised of several instruments 

may be parsed into its constituent parts. 

Generally, the grouping of notes into perceptual streams appears to take place according 

to the Gestalt principles of grouping outlined previously. There are two dimensions of 

grouping to be concerned with: horizontal and vertical. 

Horizontal grouping 

Horizontal grouping or sequential integration refers to the connection of events at dif­

ferent points in time, e.g., for the formation of melody. It is the mechanism by which 

individual melodic lines can be heard out from a dense background, or similarly how 

an individual conversation can be followed in a room full of interfering conversations 

(the cocktail party effect). Gestalt principles of continuity and similarity are important 

for horizontal grouping. 

When we are presented with a monophonic melody, i.e., with only one note sounding 

at a time, then we tend to perceive a pitch moving in time, rather than a set of separate 

pitches [24]. This percept can be defeated by the composer, however, as illustrat~d in 

figure 2.5. The musical excerpt is of a Bach organ fugue and it shows the use of vtrtual 

polyphony. A single melodic line alternates between a high and a low no~e, ~nd as 

their separation increases the percept is of two separate melodic streams, whIch IS also 

apparent from the graphical representation in the lower figure. 

The analysis of the melodic 'surface' is an active area of research in musical psychology 
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and musicology.9 Lerdahl and Jackendoff [76] propose a generative theory of tonal 

music which accounts for the perception of a musical extract by applying a hierarchical 

grouping. They propose several different types of structure which operate on low-level 

features such as pitch and note durations, in addition to metrical information (a higher 

level of time-variation) and more abstract musical concepts such as symmetry, inversion 

and variation of previously encountered passages. Each grouping is based upon a set 

of 'well-formedness rules' based upon musical intuition. The grouping boundaries are 

dictated by changes in the local structure. Cambouropoulos [15] extends Lerdahl and 

Jackendoff's grouping rules to improve the detection of local boundaries in the melodic 

surface by adding an identity-change rule to prevent the segmentation between two 

identical elements. In a later paper [16] he proposes a clustering algorithm to detect 

high level structure, e.g., the rondo form ABAC. 

A key element of the horizontal organisation of music lies in its rhythm. The rhythmic 

structure of the music often ensures that the timing of musical events will be regular; 

once the tempo is known, it is possible to predict the likely points in time that the next 

event will occur. Chafe and Jaffe [18] used a metrical grid to investigate event timing 

and spot weak or missing events and developed a form of rhythmic expectation. They 

also propose the concept of a cognitive flywheel to process high level structures once the 

low-level musical context has been established, for instance to recognise features such 

as 'thematic repeat'. 

An interesting line of development of horizontal organisation draws on Artificial In­

telligence (AI) principles. Streaming paradigms, as employed by Nakatani et al. [100], 

simulate Bregman-style streaming using a number of agents, each of which is dynami­

cally allocated to a sound stream and is either a watcher or a tracer. Watchers use the 

DFT to find new streams and generate tracers which follow the sound stream until it 

ends. The output of each tracer is fed back to the input for signal cancellation. 

Vertical grouping 

Vertical grouping or simultaneous integration refers to the groupmg of concurrent 

events to produce a single sound percept, e.g., a pitch or a chord [11, p30]. Common 

9The term 'surface' is employed because melody is a visible feature of a musical extract. In contrast, 

the key of a melody is not directly observable and must be inferred. 
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Figure 2.6: Ambiguity between horizontal and vertical grouping. 

.t 
onset and harmonicity are the dominant cues for the first level of grouping fundamental 

sound elements such as sinusoids, transients and noise into percepts of individual musi­

cal notes. A second level of grouping collects sets of notes together into chords. Much 

classical and modern music is chordal, i.e., there is an implication of a particular chord, 

suggested by the choice of bass note and the combination of notes played by the other 

instruments. 

Some composers, for instance Debussy, have blended together different instruments to 

produce chords which sound more like rich timbres, defeating the perceptual grouping 

mechanism by combining several different notes to create the percept of only one. Sim­

ilar effects are evident in pipe organ stops where several pitches are combined to give 

the effect of a single low pitch (see §2.4.2). Horizontal grouping also comes into effect 

here to determine whether a note should be grouped into a chord or into a melodic 

stream. This is illustrated in figure 2.6: a note establishes a melody through horizontal 

grouping, but vertical grouping attempts to integrate that note into a chord. 

Artificial Intelligence methods based upon blackboard systems are effectively employed 

by Ellis [34] and Martin [84]. This is an AI metaphor of a number of experts stood 

around a blackboard each adding their own expertise. These experts have 'knowledge' 

about physical sound production, auditory physiology and musical practice to effect a 

hierarchical grouping of successively FFT, tracks, partials, notes, intervals, chords and 

tonality. Good results are reported by Martin on four-voice Bach chorales, although 

subject to several restrictions. Nonetheless, the effectiveness of Martin's method is proof 

of the necessity of incorporating both low level (signal) and high level (musical structure) 

information for the processing of musical signals. 
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2.5 Signal processing models 

Signal processing provides various calculae for the description and manipulation of 

signals, and many of the techniques described in previous sections incorporate some 

element of signal processing. In particular, many signal processing techniques are con­

cerned with the analysis of time and frequency variation of signals. This section will 

describe some of the broad domains of signal processing and their contributions to the 

analysis of musical signals. In many cases a distinction will be made between parametric 

and non-parametric models. The division between the two classes is blurred but in gen­

eral the spirit of a parametric model is that an explicit signal model is constructed which 

is parametrised in terms of a set of features which are often physically meaningful. The 

subsequent process of inverting the model to find the parameters is termed parameter 

estimation. By contrast, non-parametric methods are often based upon signal transfor­

mations (e.g., between time and frequency domains), and do not necessarily have an 

explicit underlying signal model. Inferences are then made from this transformed rep­

resentation. Additive models are described, encompassing sinusoidal and Fourier-based 

models which are highly relevant to musical signals by virtue of their formulation in 

terms of frequency components. Alternative methods of describing frequency character­

istics are described, including time-frequency representations and source-filter models. 

Explicit models of musical instruments drawing upon physical modelling techniques are 

also described towards the end of the section. 

2.5.1 Additive models 

A large class of models can be described as additive signal models, in which the data is 

represented as the sum of a number of elemental components. Discrete data is expressed 

as the linear summation of a set of basis functions {gj[n]} with amplitude coefficients 

{bj }, 

J 

d[n] = Lgj[n] bj (2.1) 
j = l 
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or in vector notation 

J 

d = :Lgjbj 
j=l 

the basis functions can be reorganised into a basis matrix G 

G [glg2 ... gJ] 

b [b 1 b2 ... bJ]t 

d Gb . 

. t 
Estimates of the linear coefficients can be obtained from the pseudoinverse of G, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Of particular interest are sets of orthogonal basis functions, i.e., (gj , gk) = 0, j =I- k, 

(where (".) denotes the vector inner product) as in this case (GtG) is diagonal, 

and so 

(2.8) 

This permits considerable simplifications as the amplitudes may be evaluated indepen­

dently from the projection of the data onto each basis function, obviating the need for 

a matrix inversion. 

Parametric additive models aim to find a minimal spanning set {gj} to economically 

represent the given data. Each model typically specifies a particular form of basis func­

tion whose parameters are to be determined. This type of model is described as adap­

tive since the parameters of the model are chosen specifically for each data vector [57]. 

Model overfitting should be avoided as it reduces the efficiency of the representation 

and its ability to generalise (the comparison of different models is discussed in chap­

ter 3). Non-parametric methods may in be useful in determining the basis functions to 

use, e.g., by peak-picking from a non-parametric transformation. 

2.5. Signal processing models 47 

Non-parametric basis expansions generally take the form of a reversible transformation 

whose basis functions form a spanning set over the entire signal space. Since the basis 

functions are fixed, it is only the amplitude coefficients which have to be calculated and 

this calculation can often be highly optimised (e.g., the Fast Fourier Transform). 

Musical signals have strong features in the time and frequency domains and so basis 

function expansions which encapsulate time-frequency variation are popular. The most 

common class of basis functions used in audio applications are complex exponentials, 

which naturally arise as the eigenfunctions of linear systems. 

Sinusoidal models 

Sinusoidal basis functions are closely related to the Fourier transform. The (continuous) 

Fourier transform is defined for a signal x(t) as 

F{x(t)}: X(w) = I: x(t) e-jwtdt (2.9) 

and its inverse is given by 

x(t) = - X(w) ejwtdw. 1 /00 
21f -00 (2.10) 

For a sampled signal x[n] the Discrete Fourier Transform (DFT) is calculated for 0 :S 

k <N 

N-l 

X[k] = :L x[n] e_27T~nj (2.11) 
n=O 

N-I 
1 ""'" 2rr k nj xfJI]= (j ~X[k] eN. (2.12) 

j{~ O 

The inverse DFT is also therefore a basis expansion of complex exponentials with am­

plitudes given by the DFT coefficients X[k]. The frequency of the kth component is Wk = 

21fk/ N I:::,.t where I:::,.t is the sampling interval and N is the number of data points used in 

the analysis. The frequency resolution therefore increases as the duration N I:::,.t of the 

data increases. Orthogonality of the complex exponentials can be seen from the inner 
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Figure 2.7: Windowing applied to a sinusoid which extends over all time to perform a time­

localised P~urier transform. 

(2.13) 

(2.14)( 

For Wl # W2 the periodic nature of the real and imaginary components means that the 

integral will tend to zero as T tends to infinity. If Wl = W2 then the integral will be finite 

and will tend to unity in this instance, hence for a sufficiently large analysis interval the 

complex exponentials form an orthogonal basis set. For the discrete form this requires 

N llt » 21f /Wmim where Wmin is the lowest frequency in the data. 

Musical signals are characterised by significant variations in their amplitudes and fre­

quencies over time. The Fourier transform is defined for two-sided signals of infinite 

duration which is inappropriate for musical signals. A variation on the DFT is the 

Short-Time Fourier Transform (STFT) which applies a window w[n] before calculating 

the transform, 

00 

X[k, m] = L w[n] x[n + m] e- 27r~ni (2.15) 
n=-oo 

The window is non-zero only within the interval [-N/2, N/2]. The subscript m is now 

used to indicate a time-localised transformation - only the part of the signal in the 

interval [m - N /2, m + N /2] is analysed, as shown in figure 2.7. 
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It is very inefficient to calculate the STFT for all time steps m and where the time­

variation of the parameters is slow compared to the window length it is usually effective 

to subsample the STFT at intervals of length L (the hop) by only evaluating it at these 

points. The STFT can be reformulated to make this explicit: 

00 

X[k, i] = L w[n] x[n + iLl e_27r~nj. (2.16) 
n=-oo 

One of the most useful properties of the Fourier transform is the transformation of 

convolution in the time-domain to multiplication in the frequency domain, 

F{f(t) * g(t)} = F(w) G(w). (2.17) 

The effect of applying a symmetrical window before the transformation becomes 

equivalent to c.o"vo lving the FT of the window with the FT of the infinite time signal. 

The FT of a sinusoid of frequency Wo is an impulse at W = Wo. However, when a window 

is applied the FT will suffer a loss of sharpness. In the simplest case of a rectangular 

window w(t) the FT is a sinc function (figure 2.8) 

w(t) = { 1, -T/2 ~ t:S T/2 
0, otherwise 

jT/2 
.". W(w) = e-jwtdt 

-T/2 

= Tsin(wT /2) 
(wT/2) 

(2.18 ) 

(2.19) 

(2.20) 

The convolution with the windowing function introduces artifacts into the short-time 

signal spectrum which are undesirable. Sidelobes are introduced which complicate the 

extraction of spectral peaks and the main lobe may spread over several frequency bins 

which makes it more difficult to resolve closely-spaced sinusoids. A variety of window­

ing functions are commonly used to compensate for these drawbacks which trade-off 

between main lobe width and sidelobe amplitudes. The Hamming window for instance 

has better sidelobe characteristics than the rectangular window but has a broadened 

main lobe. Depalle and Helie [26] propose a window without sidelobes which consists 

of a Gaussian multiplied by a triangular window raised to a power. The triangular part 
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Figure 2.8: The Fourier transform of a sinusoid of infinite length is an impulse (upper plot). 

When con~lved with a window the Fourier transform is multiplied by the transform of the 

window itself which for a rectangular window is a sinc function (shown in lower plot). 

controls the main lobe width whilst the Gaussian part controls the asymptotic frequency 

behaviour away from the main lobe. 

In the subsampled STFT formulation, artifacts may be introduced into the resynthesised 

signal when the frequencies or amplitudes in the data signal are time-varying. This can ( 

result in discontinuities at the frame boundaries which sound harsh when played back 

(in the case that the hop size is the same as the window size, L = N). These artifacts 

can be reduced by making the hop size less than the frame size, typically N /2 :S L :S N. 

A tapered window such as a triangular window is applied in the STFT. The overlapping 

tapered windows, when reconstructed and added together yield a smoother parameter 

variation. This method is termed overlap-add synthesis and provides improved audio 

quality at the expense of extra computation. 

Resolution and interpolation 

The resolution of the DFT is related to the number of points in the transform, since the 

number of points used in the transform equates to the number of basis functions used in 

the reconstruction. The time-varying behaviour of the signal precludes us from choosing 

an arbitrarily large frame size as this will introduce smearing of the spectral peaks. The 

number of data points is therefore governed by the amount of time over which the 

frequencies and amplitudes are almost constant. For musical signals this interval is 

usually chosen to be around 20-30ms (e.g., [54]). Using the STFT, the resolution can 

.... 
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be increased further by zero padding, i.e., appending zeros to the data to increase the 

number of basis functions in the transform whilst effectively keeping the number of data 

points constant. Increasing the amount of zero padding does not change the shape or 

size of the main or sidelobes in the spectrum since these are a function of the window. 

Although the resolution of the STFT and DFT is finite, it is possible to improve upon 

the resolution of frequency estimates generated from them. For instance, if the discrete 

signal j[n] is a complex exponential with unit amplitude and a frequency which lies 

between bins m and m + 1, such that 0 :S 6. :S 1 

[ 
27rn ] j[n] = exp jN(m + 6.) (2.21) 

then the DFT is evaluated at bins m and m + 1 to yield 

\ F[m] l~ ~ sin(7r6.) 

(F[m + 1] \~ 7r(6.
N

_ 1) sin(7r(6. - 1)). 

(2.22) 

(2.23) 

These can be combined to give an estimate of 6. 

6. = IF[m + 1]1 
IF[mll-t1F[m + ly (2.24) 

An interpolation technique which utilises the change of phase around the DFT peak is 

described in [63, 104] (in the above example F[m] and F[m + 1] have near-zero imagi­

nary values, but with opposite signs). Depalle and Helie [26] perform a Taylor expan­

sion of the Fourier transform of the window function in order to produce a least-squares 

estimate of the spectral peak. An interpolator employing a parabolic approximation to 

the spectral peak is suggested by Mclntyre and Dermott [91]. Macleod [80, 81] in­

terpolates the discrete Fourier Spectrum (DFS) between the spectral peak and its two 

neighbours using amplitude and phase information, since at least 85% of the energy 

(sum of squares) of the DFS of a cisoid is contained within these three sarnple points. 

This is also extended to a five point interpolator and an iterative method for multiple 

tone estimation is proposed, based upon successive parameter estimation, reconstruc­

tion and subtraction. 

Another problem which may arise from the finite resolution and smearing of peaks is 

that a frequency component may be obscured by another which is closein frequency 
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and of greater amplitude. Analysis-by-synthesis methods (such as that proposed in 

[80, 81]) are able to resolve close peaks by subtracting the reconstruction of the dom­

inant frequency component and analysing the residual waveform. Parsons [105] uses 

knowledge of the shape of the smearing function (i.e., the window function) to resolve 

overlapping peaks. The peak shapes are calculated from the initial frequency estimates 

and subtracted from the spectrum. The previously masked peaks are then discernible in 

the residual spectrum. 

Parametric and non-parametric interpretations 

Sinusoidal and Fourier-based models can be either parametric or nonparametric. In 

some applications the Fourier transform is regarded as being a bank of bandpass fil­

ters. This interpretation is particularly common in audio coding applications. The 

phase vocoder [40] is one such example, which is based upon the STFT and produces a 

subband decomposition. Transform coders, for instance as used by the MPEG-1 stan-

dard [2, 10] rely on a Fourier transform as an initial processing step. ( 

Terhardt [144] makes the Fourier transformation into a parametric representation by 

letting the complex amplitudes and phases of each component be variable over time, 

allowing for frequency modulation and birth and death of frequency tracks. However 

there are still an infinite set of parameters. This spectrum is known as the Fourier 

Amplitude Spectrum. 

Sinusoidal models can be written in a parametric form where the data is represented 

using a parsimonious set of sinusoids, and the STFT is employed to produce estimates 

of the most salient frequency components by peak-picking, e.g., [89] (see also §2.5.3). It 

is an important distinction that the Fourier transform can be viewed as a transformation 

or as an parameter estimator - this notion will be revisited in chapter 6. 

Time-frequency representations 

Other time-frequency basis functions are commonly used, corresponding to different 

tilings of the time-frequency plane, as illustrated in figure 2.9. Each has particular char­

acteristics in terms of the resolution in the time and frequency domains. For instance 

the STFT can have good frequency resolution at the expense of time resolution. This 
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Figure 2.9: Different tilings of the time-frequency plane. The Fourier transform is shown in 

(a) which requires a signal of infinite extent in the time domain. The short-time Fourier trans­

form is shown in (b) which uses an analysis window of a fixed length to obtain a degree of 

time-localisation. A multiresolution tiling is shown in (c) where each frequency region is anal­

ysed using a different window length to yield better time-localisation (e.g., wavelets). Figure (d) 

shows schematically a decomposition using Gabor kernels, where each sinusoidal basis func­

tion is windowed with a Gaussian with parameters corresponding to scale and translation (the 

frequency is fixed however). 

53 
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may be significant if it is required that sharp instrument attacks are to be represented. 

These cannot be modelled well if the moment of attack does not fall upon the frame 

boundary.lo Much better time-localisation can be achieved through the use of wavelet 

basis functions [82]. The time-localisation is obtained at the expensive of frequency 

localisation. For the tiling shown in figure 2.9(c) resolution in time is much improved, 

but each tile spans an octave which is of limited use for characterising complex musical 

signals. Such tilings have found application to the modelling of wideband frequency 

content and residual waveforms [57]. 

Evangelist! [37] acknowledges the limitations of conventional wavelet bases in respect 

of musical signal analysis, namely the octave frequency resolution of dyadic wavelets 

and the fact that signal pseudo-periodicity is not exploited. He extends the definition 

of the wavelet transform to other bases which are better able to exploit periodicity 

and time-varying behaviour using frequency warping techniques. Frequency warping 

is used to re-map the frequency plane such that, for instance, inharmonic sounds can 

be transformed to a harmonic series. Newland [103, 102] generates new wavelet basis 

functions (namely harmonic and musical wavelets) which are more suited to musical ( 

signals. Wavelet methods are multiresolution analysis techniques where each frequency 

region is analysed over a different time scale. This can be applied to sinusoidal models 

to circumvent the need for analysis windows long enough to capture the lowest frequen­

cies in the signal. Instead, higher frequencies are modelled with progressively shorter 

windows so that the model has increased time-resolution at high frequencies. This prin­

ciple is employed for coding to produce an efficient representation of wideband audio 

with improved time-localisation for transients [77]. 

An alternative representation in the time-frequency plane is the Gabor atom. A Gabor 

atom is defined as a sinusoid at a frequency Wo with a Gaussian amplitude envelope of 

a particular scale at a particular epoch in time 

2 [ (t - to? ] g(t, to, a ,w) = exp - 2a2 + jwt (2.25) 

The Fourier transform can in fact be considered as a special case of the Gabor expansion 

where a --t 00. Darfler and Feichtinger [31] discuss how Gabor kernels can be adapted 

10 Sinusoidal models are in any case not ideal for the representation of percussive attacks which tend to 

have a damped oscillatory characteristic. 
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to particular musical instruments. Gabor atoms have also been adopted for granular 

sound synthesis as a flexible means of synthesising musical sounds [135]. 

There is a family of bilinear (i.e., quadratic) time-frequency representations built upon 

the Wigner-Ville distribution (WVD) which is the Fourier transform of the signal's local 

autocorrelation function, 

vV(t, w) = ~ 100 s*(t - :c) s(t + :c) e-jWT dT. 
2n 00 2 2 

(2.26) 

For data comprised of sinusoidal components the WVD has components at the frequen­

cies of these components, but it also includes cross-terms at the midpoints of each pair 

of frequencies. A transformation kernel specific to the type of signal under considera­

tion is used to minimise these effects. An adaptive time-frequency kernel optimised for 

musical signals is proposed by Sterian and Wakefield [141]. Their modal time-frequency 

distribution belongs to Cohen's class of bilinear time-frequency distributions [21] and 

applies frequency-dependent smoothing to achieve a multi-resolution analysis whilst 

also suppressing the cross-terms. The cross-term at the frequency (Wj + wk)/2 oscillates 

at a frequency of Wj -Wk and so a low-pass filter is used with a breakpoint just below the 

closest expected partial separation to minimise these effects without affecting the more 

slowly varying partials. Mellody and Wakefield [94] show how the modal distribution 

can produce high resolution estimates of amplitude and frequency variation for vibrato 

in a violin signal. 

2.5.2 Source-filter models 

A physically-motivated approach to signal modelling represents the signal as the ex­

citation of a resonant cavity. Such methods are commonly referred to as source-filter 

methods, and are popular for the coding of speech signals, where the speech produc­

tion method is modelled as a glottal excitation passing through a vocal tract filter. The 

excitation takes the form of a pseudo-periodic stream of either pulses or noise and the 

vocal tract has a response with several peaks (formants) which vary over time to pro­

duce different vowel sounds. Fant's vocal production model [38] switches the excitation 

between pulse and noise waveforms to reproduce both voiced and unvoiced speech; this 

technique has formed the basis of early speech synthesisers. Linear prediction (LP) of 
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speech is built upon Fant's model [83]. The pulse or noise excitation is passed through 

(slowly) time varying linear filters, and hence the output at time instant n can be pre­

dicted by a linear combination of the preceding values (via the z-transform of the filter 

function). Linear prediction is extensively employed for speech coding (linear predictive 

coding, or LPC) as the essential elements of the signal (voicing state, pitch and vocal 

tract response) may be represented much more efficiently than the raw waveform data. 

Closely related to LPC is the autoregressive (AR) signal model. Autoregressive models 

seek to model a random process whilst LP methods seek to estimate it [147]. Several 

techniquesi or the restoration of degraded audio signals employ AR models as an un­

derlying signal representation [54, 53, 125, 151]. 

An AR model can be expressed as a time series 

p 

srn] = L srn - i]CXi + ern] (2.27) 
i=l 

as the weighted sum of the P previous inputs and an excitation term (generally Gaus­

sian). The AR model is also often referred to as the all-pole model; the poles may appear 

close to the unit circle (for near-periodic signals) or close to the origin (for noise-like sig­

nals). Autoregressive moving average (ARMA) models include zeros as well as poles. 

This can result in a much more compact representation for complex systems, but the 

estimation of ARMA parameters is more difficult [50, 147]. However, an AR model 

extended to a higher order can be used to approximate a given ARMA model. Typical 

musical signals may require an AR model of order 30-100 [53]. 

In the taxonomy of models, AR models may be described as semi-parametric. One 

motivation for their use is their ability to represent time series. The poles describe the 

frequency domain behaviour of the signal but not in a way that makes it simple to 

extract pitch information, particularly for polyphonic sources. The AR model itself 

is not an ideal representation for periodic data, particularly where the excitation is 

periodic (rather than a noise source, e.g., as with voiced speech). Vermaak et al. describe 

an extension to the AR model which explicitly models periodic variations [155]. 

Another method based upon the source-filter model is homomorphic deconvolution or 

cepstral analysisll [8]. This method relies on the convolution property of the Fourier 

llOr more correctly, cepstral alanysis. 
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transform whereby the process of convolving the excitation with the impulse response 

of the resonant cavity can be effected by multiplying the respective Fourier transforms 

in the frequency domain. 

The logarithm of the Fourier spectrum is equal to the sum of the logarithm of the 

excitation spectrum and the logarithm of the response spectrum. 

x(t) 

X(w) 

... log[X(w)] 

e(t) * j(t) 

E(w) F(w) 

log[E(w)] + log[F(w)] 

(2.28) 

(2.29) 

(2.30) 

For voiced speech the excitation spectrum will be a series of impulses whilst the vo­

cal tract response spectrum will be a relatively smooth function with several spectrum 

peaks at the formant frequencies. By taking the Fourier transform of the log spectrum, 

these effects can be separated. The top plots in figure 2.10 shows the waveform of a 

voiced speech signal, the logarithm of the spectrum and the Fourier transform of the 

log spectrum (the cepstrum). The impulses in the excitation give rise to a cepstral peak 

at around 4ms (in the quefrency domain) corresponding to the pitch, whilst the slowly 

varying characteristic of the vocal tract are represented by the low quefrency values. 

The lower plots show the cepstrum of an unvoiced speech signal which has no peak at 
"-

the pitch period. 

Cepstral methods are popular for front-end processing in speech recognition applica­

tions in order to isolate speech formants. Cepstral methods are not in general robust to 

additive noise, as the logarithm operation used to separate the cepstra produces noise 

correlated with the signal [4]. 

2.5.3 Instrument models 

One approach to the analysis of musical signals is to explicitly model musical instru­

ments. In contrast to psycho acoustic models, it is the generating rather than receiving 

mechanism which is modelled. There are three main motivations for this type of mod­

elling. One is to produce invertible models which are able to extract information about 

the instrument and the notes it is playing, the second to synthesise realistic sounding 

instruments, and the third to gain a better understanding of the physics of instruments 

in order to improve their design. 
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Figure 2.10: Cepstral analysis of voiced and unvoiced speech signals. In each figure, the top plot 

is the waveform in the time domain, the middle plot is the logarithm of the Fourier spectrum 

and the lower plot is the cepstrum. See the text for further discussion. 
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Sinusoidal instrument models 

Many of the techniques for analysing musical signals can be described as 'analysis by 

synthesis'. A parametric or semiparametric signal model is used to represent the data, 

and a parameter estimation stage calculates parameter values which are then used to 

synthesise a signal. The parameters are chosen to minimise the error, usually in a least­

squares sense. The most common class of analysis models are those based upon a 

sinusoidal representation, building on the framework of McAulay and Quatieri [89] 

(hereafter referred to as M+Q models). Their model was originally intended for speech 

but has found applicability in many fields. Speech production is modelled using a 

source/filter paradigm - a glottal excitation waveform is passed through a time-varying 

vocal tract filter. The model is intended for perfectly voiced speech, and so the signal 

is expressed as the sum of sinusoids whose parameters are constant over an analysis 

frame. 

The frame length is chosen to be a multiple of the pitch period as this minimises the 

spectrum sidelobes. The method is pitch synchronous as it requires a rough estimate 

of the pitch to construct the analysis window. The estimates of the amplitudes and 

phases of the constituent sinusoids are taken from the peaks of the short-time Fourier 

transform (STFT). The subsequent synthesis stage uses an overlap-add technique to 

achieve parameter interpolation between frames by overlapping each analysis frame. 

The estimation of phases used a cubic polynomial to achieve phase unwrapping, where 

the maximally smooth phase trajectory is chosen. 

There are many refinements and extensions to the M+Q model in the literature, includ­

ing scope for signal transformations [112], pitch estimation [90], use of quadratic phase 

variation and improved residual coding [29], and representation in terms of instanta­

neous amplitudes in order to obviate the need for phase unwrapping [78]. 

Pitch-synchronous methods assume slow time variation of the frequency components 

in order to use a rough estimate of the pitch at that point in time. The advantage of a 

pitch synchronous approach is that if the window length is an integer multiple of the 

pitch period then this minimises the artifacts introduced by the window function. A 

major limitation of pitch-synchrony, however, is that it is suited only to the analysis 

of monophonic sounds, i.e., those comprised of a single set of related harmonics. For 

sounds composed of unrelated notes from two different instruments, there can be no 
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concept of pitch-synchrony since each has its own pitch. Attempts to find a single pitch 

may yield that of the strongest of the two sources or the harmonic root of the two 

harmonic series. 

Sinusoidal plus residual models 

Sinusoidal models are able to represent voiced speech and tuned musical instruments 

quite well. They are able to capture the steady state frequency components of the sig­

nal and when the signal is reconstructed, the sounds are usually very intelligible and 

recognitiorr of the speaker or type of instrument is possible. The reproduction will not 

reproduce all perceptual characteristics of the original signal, however. For percussive 

instruments, the transients which accompany the attack of each note are of great per­

ceptual importance, but these cannot be accurately represented in a sinusoidal model 

since the sinusoidal components are not localised in time and amplitude variations are 

constrained to occur at time boundaries. Similarly, in unvoiced speech or instruments 

with a noise component such as bowed strings or woodwind, the noise component is 

essential, or at least important, to the characteristic and intelligibility of the sounds. 

There are several popular models that are used to model the residual waveform which 

remains following extraction of the sinusoidal components. 

Serra (amongst others) develops techniques for extending the sinusoidal model to in­

clude a stochastic component [131, 132]. The residual signal is assumed to be stochastic 

(the sinusoidal components are assumed deterministic) and is modelled as filtered white 

nOIse, 

(2.31) 

with a slowly time-varying filter h(t, ·) and white noise process u(t). The estimated 

sinusoidal components are resynthesised and the STFT is taken and subtracted from 

the original STFT to yield the residual spectrum. This is simplified by calculating a 

piecewise-linear, continuous approximation to the spectrum. The stochastic part is then 

resynthesised by taking the inverse Fourier transform of the residual spectrum multi­

plied by a random phase term, since only the amplitude characteristics of the noise 

spectrum are considered perceptually important in the reconstruction. Goodwin [56] 

proposes a noise model based upon perceptual properties in which he uses equivalent 
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rectangular bandwidths (ERBs) to obtain a more perceptually salient noise representa­

tion. 

Rodet [123] develops a different sinusoidal plus residual model. The sinusoidal estima­

tion stage has several refinements over the M+Q method. Most notably the problem 

of partial tracking, where trajectory information is included, is formulated in terms of 

transition probabilities of a hidden Markov model, and is solved using the Viterbi al­

gorithm. Rodet suggests approximating the spectral envelope of the residual with an 

autoregressive time series (an all-pole filter) or using cepstral techniques to separate the 

effects of the excitation (which is a noise signal) and the (vocal tract) filter response. 

Sinusoidal models assume a quasi-periodic excitation where the excitation frequency 

variation is piecewise constant and slowly varying. This assumption can be violated by 

certain signals, for instance in speech where vocal fry can occur at low frequencies. The 

effect is due to the chaotic' nature of the glottal excitation, and means that the spacing 

of the glottal impulses will not be constant. Rodet notes that sinusoidal plus stochastic 

residual methods are not suited to representing this type of signal. 

The stochastic residual model is good for noise-like characteristics, and when the spec­

tral envelope isparametrised, as in the models of Rodet and Serra, it can be transformed 

in the time or frequency domains along with the sinusoidal components to achieve 

time-stretching or pitch-shifting. It is not able to represent transient events which are 

important for percussive instruments, and so Rodet employs a dictionary of elementary 

waveforms to decompose the residual into waveforms which are well-localised in time. 

Time-localised characteristics are preserved in the high-resolution matching pursuit al­

gorithm that he uses to perform the decomposition. 

The sinusoidal plus residual models are suitable for analysis and synthesis. The rep­

resentation is also becoming popular for audio coding, and is incorporated into the 

MPEG-4 audio coder [111, 67]. These models are intended to capture the important 

perceptual characteristics of musical signals. The residual components, however, are 

not necessarily physically meaningful - the residual spectral envelope carries no intu­

itively useful information about the nature of the instrument (in contrast to the more 

meaningful parameter of pitch). 
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Tracking 

Much of the musical signal processing literature focuses upon the problems of mod­

elling audio signals over short durations (of the order of 20ms). It is common to break 

the signal down into frames of this length and process each frame separately, perhaps 

with a small overlap to reduce the artifacts on playback (see §2.5.1). However, it is 

also important to consider the longer term variation of musical signals. Many authors 

consider musical signals to be slowly varying sets of sinusoids with more significant 

changes in the data represented by the birth and death of sinusoids. McAulay and 

Quatieri [,89, 112] advocate this method and implement a scheme to track changes in 

frequency between adjacent frames whilst allowing for the birth and death of sinusoids. 

This yields a set of frequency tracks which may then be used for coding, pitch/time 

transformations or pitch detection via a least squares fit of the set of partials [90]. 

They note, however, that the identification of two concurrently sounding pitches is in­

herently ill-conditioned due to the possibility of closely-spaced harmonics between the 

two notes. Godsill employs a similar birth/death sinusoid tracking approach for the 

detection of wow in gramophone recordings, with an explicit dependence on the cyclic 

frequency variation parameter [54,49]. 

Doval and Rodet [33, 123] adopt a more explicit tracking model formulated in terms of 

a probabilistic harmonic association problem. The set of frequency observations from 

the STFT peaks are modelled as a set of harmonically related partials plus some 'noise' 

partials. A hidden Markov model is constructed to emit a frequency observation at each 

time step with a transition probability that is low for small frequency changes, and the 

optimal state sequence is found via the Viterbi algorithm. Sterian et al. [139] formulate 

a similar association problem, using cues such as common harmonicity, common onset 

and statistics of the partials, for grouping. They employ a Kalman filter to model the 

power and frequency variation of each partial. 

Fernandez-Cid and Casajus-Quir6s [39] propose to build up a history for a note before 

it is accepted. This increases robustness against signal transients which cause spurious 

detections and acknowledges the importance of context. However, the method does 

not explicitly track note frequency changes and would be unsuitable for rapidly vary­

ing pitches. An ad hoc rule-based system is used for validating note candidates on the 

basis of their fundamental frequency and harmonic amplitudes; this helps to suppress 
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the detection of harmonic roots by ensuring that the lower harmonics have apprecia­

ble amplitudes. The pitch tracking is a post-processing stage which requires the note 

candidates to be present for at least 90ms of the preceding 150ms. 

Signal processing approaches to frequency tracking all rely upon the slowly varying 

characteristics of musical signals. Such behaviour is evident in simple cases, but for 

faster note variations or polyphonic signals the added complexity invalidates the slow 

variation assumption over longer time scales. An alternative approach is to explicitly 

use musical knowledge to track the variation. Discontinuities in frequency tracks are 

introduced when a note is moved between discrete pitches. These changes generally 

correspond to the discrete pitches of the musical scale. Kashino and Murase [70] cre­

ate a Bayesian belief network to represent the probabilities of different note transitions, 

obtained from the analysis of a database of musical scores. They report a much lower 

error rate with the introduction of note transition information and further decreases 

with musical role consistency measures (e.g., an instrument playing the bass line will 

not cross into the pitch regions of the melodic part). Unfortunately, their work does not 

address the problem of pitch estimation in each frame, as they assume that the multiple 

fundamental frequency estimation problem is solved. Their method does serve, how­

ever, to highlight the importance of musical context and structure within an application 

designed to dealwith musical signals. 

Physical instrument models 

Physical modelling of musical instruments is an active area of research whose aim is 

to capture the important characteristics of acoustic instruments and control them in 

real-time. Conventional techniques employed in musical synthesisers for synthesising 

realistic instruments are based on sample and synthesis or wavetable methods. The 

instrument is sampled and the sustained part of the waveform is looped. The sound is 

played back at different pitches merely by playing the waveform back at different rates 

and each instrument must be sampled at several points over its natural pitch range, 

called multisampling. Only simple modifications to the sound are possible with sample 

and synthesis (e.g., envelope manipulation and filtering), and so the synthetic instrument 

lacks expressiveness [87]. 

Physical modelling overcomes this limitation by constructing a model to simulate the 
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actual physical characteristics of the instrument. A popular class of physical models, 

summarised by Smith [136] are based upon digital waveguides. These simulate dis­

tributed media such as vibrating strings and bores (In contrast to 'lumped' elements 

such as point masses connected by springs and dampers) which act as transmission lines 

for forward and backward travelling wave components. Losses can be introduced into 

the waveguides to simulate effects such as friction and drag, and scattering junctions 

join together sections with different impedances, introducing reflections. Smith shows 

how these simple building blocks, may produce realistic sound synthesis for instruments 

such as cla~nets and bowed strings. 

Cook [22] describes how to harness physical models for the automatic production of 

sound effects. Despite the huge advances made in computer animation and the advent of 

feature-length computer-generated visuals, the sound backdrop is usually created man­

ually by the Foley artist. 12 Techniques which have been around for around 50 years 

are still in use - wooden chairs to simulate creaking floorboards, coconut shells for 

horse steps, and baseball bats striking frozen chickens for kung fu films. Cook presents 

physical models based upon a taxonomy of elemental sound types such as blowing, 

striking, rubbing, scratching, etc., which may be combined and scaled to simulate other 

sounds. For instance a gourd model (of grains within a gourd) can be used to model 

tambourines, shakers and feet on gravel. The technique, called physically informed 

stochastic event modelling (PHISEM), models the collision of individual 'grains' on the 

gourd as an exponentially decaying noise signal and the output is fed to a filter which 

represents the resonances of the gourd, e.g., hollow cavities will have a single resonance 

peak, whereas sleighbell jingles can be modelled with a more complex resonance struc­

ture. The model was motivated by stochastic simulations of collisions obtained using 

Newtonian mechanics.13 

Such physical instrument models are very powerful for synthesis but due to their com­

plexity and non-linearities they are generally not invertible, making them of limited use 

12Named after Jack Foley, the first practitioner of the technique, who calculated that he had walked 

over 5000 miles in a studio re-recording the sound of footsteps. 
13The potential for sound effect automation is demonstrated in a short animation, "Music for unpre-

pared piano", where balls of varying mass and hardness are projected onto the strings of a piano. The 

sound and animation are generated from object models given the raw composition data of the speed and 

mass of the balls. 
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for analysis. Even if it were possible to invert such a model, there is no guarantee that 

the resulting parameters would be perceptually salient. 

Physical models can also be of great use in the understanding of the sound generation 

mechanisms of musical instruments. The physics behind the behaviour of vibrating 

strings, air columns, plates and membranes is well understood (see [42] for a review). 

This knowledge can be applied to improve the design of instruments; Kausel [71] de­

scribes a technique that assists in the design of trumpets, shortening the design cycle 

required to obtain a desired set of trumpet characteristics. 

Timbre 

Another aspect of instrument modelling is concerned with the representation of timbre. 

Timbre is rather nebulously defined by the American National Standards Institute as, 

" ... that attribute of auditory sensation in terms of which a listener can 

judge that two sounds similarly presented and having the same loudness and 

pitch are dissimilar." [3] 

For several reasons it is difficult to construct a precise mathematical definition of tim­

bre. Timbre is a multidimensional property and certain aspects of timbral perception 

may be subjective and qualitative. Ohm's acoustical law states that it is the relative am­

plitudes of harmonic partials rather than their relative phases which determine timbre. 

It is generally claimed that the ear is insensitive to phase14 and examples by McAulay 

and Quatieri [89] and Risset and Wessel [121] suggest this is largely true for speech 

intelligibility and timbral perception respectively. Phase changes also occur in listening 

environments from surface reflections, and these do not appear to have any bearing on 

perceived timbre. Hence timbre cannot be dependent solely on the waveform shape. 

Whilst spectral amplitudes are clearly an important aspect of timbre, it also depends 

greatly on time-domain variations of sound. Percussive sounds are characterised by the 

fast rise times of their harmonic partials, and changing the envelope amplitude signifi­

cantly alters the apparent timbre of the instrument. Similarly, if the sound of a piano is 

14This is often stated quite ambiguously - what is usually implied is insensitivity to relative phase 

differences between steady-state harmonic partials [121]. 
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played backwards then it no longer sounds like a piano, despite having the same time­

averaged spectral content. A possible set of quantitative features to describe timbre in­

clude the relative amplitudes of harmonics and their time-varying envelopes, resonance 

characteristics (e.g., formants), inharmonicity and spectral centroid (which represents 

'brightness', although this too is a subjective measure). Martin [85] illustrates some 

such characteristics for flute, violin and trumpet tones and shows the marked differ­

ences between them. He later extends the feature set to a 31-dimensional vector for 

the purposes of instrument recognition [86]. He identifies around ten characteristics, in 

addition to signal statistics such as mean and variance both in the steady state and the 

initial attack phase; the characteristics include spectral centroid location and modula­

tion, vibrato frequency, onset rate and ratio of odd to even harmonics. (These features 

are obtained using Ellis' log-lag correlogram [34].) Using these features he proposes a 

taxonomic hierarchy of instruments organised by properties such as pizzicato or sus­

tained. Most instrument families he found could be organised into disjoint regions of 

the timbre space with the exception of woodwind which has to be split into flute/piccolo 

or reed sub-families. 

Brown [13] describes a method for discriminating the timbres of the oboe and the saxo­

phone in which cepstral coefficients are calculated and used as features in a subsequent 

pattern analysis. The classifier is trained using a k-means algorithm. The cepstral coeffi­

cients are averaged over the duration of the training samples (solo saxophone and oboe 

extracts of around 1 minute duration). No time domain information is used in the clas­

sification, but for the given two class problem, the spectral method, which decouples 

the excitation and response (see §2.5.2), performs well. However, it is not clear that 

this method could extend to classification of a much larger number of instruments since 

spectral information, whilst important, is not sufficient for the recognition of many in­

struments. Time domain variation (in particular the nature of the attack and decay 

phases) and the presence of noise (e.g., breath noise for a flute) are also major cues to 

recognition. Furthermore, Risset and Wessel [121] observe that, "a saxophone remains 

a saxophone whether it is heard over a distortion-ridden pocket-sized transistor radio 

or directly in a concert hall." Hence, spectral information may be even less important 

than one might intuitively think. 
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2.6 Conclusions 

This chapter has presented a wide variety of techniques from very different disciplines, 

each of which are highly relevant to the analysis of musical signals. The role of the 

ear as the detector of musical sound is investigated in section 2.2. The frequency de­

composition properties of the cochlea and its interpretation as a filter-bank are of par­

ticular interest, along with its implications for pitch detection. Higher level auditory 

processes are also discussed which are responsible for the integration of the low level 

frequency stimuli into meaningful percepts (such as musical notes) by grouping and 

streaming principles. Some practical models built upon these principles are described 

in section 2.3. Some of the considerations specific to musical signals are detailed in 

section 2.4, which describes some of the forms of structure found in musical signals 

at medium and high levels of modelling. Some statistical properties of musical struc­

ture are mentioned which may form a useful basis for probabilistic modelling of high 

level musical features (which will be described in chapter 3). Finally, section 2.5 de­

scribes some of the techniques for analysis at a signal level, drawn from several areas 

of signal proces.§ing. Parametric and nonparametric methods are described which ei­

ther construct an explicit signal model and then perform a parameter estimation step, 

or extract salient features from the data by means of signal transformation and filter­

ing operations. Techniques used to model musical instruments for synthesis are also 

described. 

Currently, many of the aforementioned fields of research occupy distinct territories shar­

ing little overlap. For an application such as musical transcription one must draw upon 

applicable techniques from different fields. This challenging problem has many ambi­

guities which can only be resolved in a meaningful manner by the application of specific 

knowledge about the expected musical structure, characteristics of the sound generat­

ing mechanisms and low level properties of the signal. Some of these important features 

will be employed in the models developed later in this thesis. 
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Bayesian Signal Processing 3 

3.1 Introduction 

The previous chapter has shown how a model based approach is an important tool for 

the description, transformation, and analysis of musical signals, and how the motiva­

tions for a particular model may come from diverse sources. Once an explicit signal 

model has been specified, it is necessary to assign values to each of the parameters in 

order to make the model representative of the given data. This process is known as 

parameter estimation. In this chapter, probabilistic modelling techniques are described 
'-

which provide a flexible framework for parameter estimation and also the comparison 

of different candidate models. Model selection is an important part of data modelling 

as it allows us to assess the ability of several different models to describe the data whilst 

favouring economy above overfitting. Signal models can be posed in a probabilistic 

form by reasoning about the statistics of the error. Any salient prior information about 

the model parameters can be represented explicitly and incorporated into the modelling 

framework. This can be invaluable for avoiding unrealistic model configurations, ap­

plying physical constraints, or resolving model ambiguities. 

Bayes' theorem provides a calculus for addressing these requirements, and the com­

paratively recent field of Bayesian signal processing has been able to attack a range 

of complex signal processing problems through a process of signal model formula­

tion and parameter estimation. Recent applications include artifact removal, missing 

sample interpolation, and correction of signal clipping and quantisation in audio sig­

nals [54, 125, 151], the restoration of degraded video sequences [74], and spectral 

analysis [5]. 
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Section 3.2 describes how a signal model can be posed in a probabilistic form, and how 

the likelihood function is inadequate for many problems. Bayes' theorem is then in­

troduced in section 3.3 to form a probability distribution over the space of the model 

parameters which allows for the incorporation of prior information and selection be­

tween competing models. The need for a method to perform the complex parameter 

estimation task necessitates the introduction of Markov chain Monte Carlo (MCMC) 

methods in section 3.4. Some of the issues of implementing an efficient MCMC algo­

rithm are discussed in section 3.5 and the use of MCMC for model selection is described 

in section 3 ,~ . 

3.2 Probabilistic signal modelling 

Parametric signal models construct an explicit model of the data with a set of parameters 

which may have a direct physical interpretation (e.g., physical parameters of musical 

instruments), or they may be more abstract (e.g ., as with coefficients of an AR process). 

In either case, it is of interest to find the values of the parameters which produce a close 

approximation to the signal, since knowledge of these parameters enables us to recreate 

the signal, make further inferences about the signal characteristics, or perhaps transform 

the signal by manipulation of the parameters, for instance, to effect time-scaling. 

For a data sample di at time instant i , the model produces Xi which is a function of the 

parameters e, Xi = 9i (e). The error in the reconstruction is ei , and so 

(3.1) 

Naturally, it is desired to reduce the error in the model's approximation by finding the 

set of values which minimises this error, or, more specifically, the sum of the squares of 

the error terms over the length of the signal. Introducing a vector notation to represent 

the sequence of values over the analysis interval of length N it is required to minimise 

the expression 

(3.2) 
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Figure 3.1: The problem of overfitting. The observed data is linear with some additive Gaussian 

noise. The figures show the effect of increasing the order of the polynomial used to model the 

data. As the order, M, of the polynomial increases, the error between the data points and the 

polynomial decreases, since the measurement error is modelled and thus the model loses its 

ability to generalise. 

with respect to all possible values of the model parameters e, 

BLS = argmin IIel1 2
, 

B 
(3.3) 

The least squares parameter estimate produced by this criterion is unsatisfactory in 

many situations. Success is measured solely by the model's proximity to the observation. 

The model is therefore susceptible to overfitting by allowing more parameters to be 

added to the model to reduce the error term. In the most extreme case, when the number 

of parameters is equal to N , the data can be represented with zero error. Figure 3.1 

illustrates the tendency to overfit with increasing model order. 

Overfitting is undesirable for several reasons: 

• Errors in the data are modelled (e.g., measurement error) and so sensitivity to 
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noise is increased. 

• The model loses the ability to generalise since minor variations in the data are 

modelled. 

• The model produced is much larger (and therefore more expensive to represent 

and calculate) than the 'true' underlying model. 

To obtain better parameter estimation criteria, the task is posed in a probabilistic frame­

work. The error, e, is assumed to be a zero-mean Gaussian, independent, identically 

distributed .~id) process with variance (J2. This is generally chosen since the Gaussian 

distribution is the least informative probability distribution consistent with a given sec­

ond moment [12]. This allows the probability of the error sequence to be expressed 

as 
N 

IT Pei (ei I (J2, I) 
i == l 

1 exp [_~] 
(27r(J2)!f 2(J2 

(3.4) 

where I denotes all other prior information known about the problem. The role of I is 

subtle and can be very important, and will be discussed in the next section. A transfor­

mation of variables e H cl is performed so as to produce a probability expression which 

is dependent on the model parameters e, (temporarily omitting the dependence on (J2 

and I for clarity) 

Pd I e (d I e) = Pe (e) I ~~ I (3.5) 

The Jacobian of the transformation is unity for causal systems.1 The likelihood is de­

fined as: 

2 1 [ Ile112] p( die, (J ,I) = !'{ exp - -2 2 . 
(27r(J2) 2 (J 

(3.6) 

The maximum likelihood parameter estimate is that which maximises the likelihood 

expressIOn 

eML = argmax p( die, (J2, I) 
e 

lAs the matrix will be lower triangular with ones on the leading diagonal [113]. 

(3.7) 
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The likelihood expression is sometimes written as L(e; d) to emphasise that it is a func­

tion of the parameters. Strictly speaking, the interpretation of (3.6) is that it is a function 

of the data. 

Modifications of the likelihood expression have been proposed that penalise model 

complexity by adding terms, which are dependent on the number of parameters in the 

model, to the logarithm of the likelihood. Akaike's Information Criterion (AIC) [1], Ris­

sanen's Minimum Description Length (MDL) [120], and a similar measure proposed by 

Schwartz [130], are of this form, and are motivated by information-theoretic consid­

erations. These measures when considered in a probabilistic setting, however, appear 

to make restrictive assumptions about the nature of the parameters. A more flexible 

approach is permitted by Bayesian methods, as discussed in the next section. 

3.3 Bayes'theorem 

A major limitation of the maximum likelihood estimator and other measures such as 

AIC and MDL Is their inability to exploit prior information about the model. This prior 

information may take many forms, but one of the most common cases is to represent 

knowledge about the likely values a parameter may take before the data is observed. 

This may reflect the expected variation ascertained from a number of previous obser­

vations, or the enforcement of physical constraints upon the possible parameter values. 

Bayes' theorem takes account of prior information by transforming the likelihood via 

the a priori probability of the model parameters. 

Bayes' theorem is written as: 

(e I cl I) = P (d le, I) P (e I I) 
p, p(clII) ' (3.8) 

where I represents all prior information and assumptions about the model, p(cl I I) is 

the evidence, which generally may be regarded as a normalising factor, p(e I I) is the 

prior probability density of the parameters before the data is observed, and p (e I cl, I) is 

the posterior or a posteriori probability density. 
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The interpretation of the posterior is rather different to the likelihood. The likelihood 

is the probability the data cl could be observed if the parameters are e. The posterior on 

the other hand is the probability that e are the model parameters, given that the data cl 

was observed. The difference is very important as a model with a high likelihood may 

have a low posterior due to a low prior probability.2 

The maximum a posteriori (MAP) parameter estimate is 

eMAP = argmax p( e J cl, (J2, I) 
e 

(3.9) 

This is supehor to the ML estimate as it can balance the prior expectations against the 

data observed. In constrast, the likelihood is dependent solely on the data and takes no 

account of prior information. In the absence of any prior information about e, where 

all values are equally likely, the MAP and the ML estimates are equivalent. 

3.3.1 Prior probabilities 

Among the criticisms of Bayesian techniques, which have impeded their general accep­

tance until relatively recently, is that the results of experiments using Bayesian tech­

niques could be unduly influenced by the choice of the priors, rather than being solely 

determined by the data itself. This can certainly be true if the priors are not specified 

carefully, but this also embodies much of the power of Bayesian methods. Further, the 

concept of probability as an expression of belief, rather than purely as a frequentist in­

terpretation, is often a cause for concern, and has generated much polemical debate. As 

a vehement defender of the Bayesian paradigm, Jaynes [64] expressed his Desideratum 

of Consistency that, "in two problems where we have the same prior information, we 

should assign the same prior probability", such that two experimenters, given the same 

initial information would assign the same priors. 'Consistency' here means 'consistent 

with the state of prior information'. 

However, in some applications there may be sufficient conviction about the nature of the 

parameters to impose more 'informative' priors. Ardent frequentists are opposed to the 

2 The distinction can sometimes be subtle, but an example should highlight the important difference. 

The probability p(spotslmeasles) is different to p(measles lspots) since, although spots may be an in­

evitable consequence of measles (p(spotslmeasles) = 1), the existence of spots may be due to a number 

of other diseases. Also 'L-d p(d I spots) = 1, and so p(measleslspots) < 1. 
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use of prior probabilities to represent subjective beliefs, but here the possibility of incor­

porating salient prior information into the model is left open. Where little is known of 

the likely values of a parameter it is desirable to assign a prior probability which is non­

informative or vague. The prior should be diffuse compared to the likelihood [9], and 

carry no more information than is available. Maximum entropy priors are often used 

for this purpose as they have the maximum entropy consistent with the prior knowl­

edge [64]. In addition to merely establishing numerical prior probability distributions 

to parameters, there is the flexibility of imposing prior structures for model parameters 

which are dependent on further hyperparameters. 

There is another aspect to the use of prior information. Strictly, when writing proba­

bility expressions p(aJb, I) should be written to mean "the probability of a given band 

any other prior information I we may have". Often, for notational simplicity I is omit­

ted, but its importance shouldn't be underestimated. It embodies the tacit assumptions 

of the model under consideration. All posterior inferences upon model parameters are 

conditional upon I and must be recognised as such. In particular, one of the prime 

assumptions is that the model can form a valid representation of the input data. If the 

observation is a different type of signal to the one that was expected (e.g., a sinusoid 

is expected but a Gaussian is observed) then the resulting parameter estimates will be 

meaningless. Thus it is assumed that the data we encounter will be adequately rep­

resented by the model, or by one of the set of candidate models, which Bernardo and 

Smith [7] describe as an lI1-complete scenario. Jaynes [65] warns of the pitfalls of inade­

quately specifying the states of prior information which can lead to apparent paradoxes 

if I is either ill-specified or not specified at all. Embodied within I is also knowledge, 

or expectation, of the physical behaviour of the system being modelled, which leads 

to the particular choices of the form of the model and the prior distributions of the 

parameters. 

3.3.2 Representation of prior knowledge 

Many authors find the inclusion of subjective prior information in a model unpalatable. 

It is argued that subjectivity has no place in algorithms since it lacks repeatability, as de­

scribed above. Non-Bayesian algorithms, however, may have a more subtle dependence 

upon the state of prior knowledge. For instance, a non-parametric spectral estimation 
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scheme may produce frequency estimates from a spectrogram or other time-frequency 

representation. A method must be specified to extract the desired information from the 

intermediate representation, for instance by picking the highest n peaks or only those 

peaks above a certain threshold. The question arises as to how the number n or the 

threshold is to be determined. Generally, values which tend to perform well for 'typical' 

data might be chosen, but this may still be a subjective decision. For instance, the ap­

plication of a detection threshold 30dB below the signal power is merely an expression 

of the subjective prior knowledge that all signal components of interest will be within 

30dB of the peak power; another experimenter may have chosen a different threshold. 

The differen!e with Bayesian models is that the subjective values can be made explicitly 

part of the model formulation, rather than being embedded in the algorithm. The same 

subjective views may underpin both algorithms but the Bayesian approach makes the 

dependence explicit. 

3.3.3 Marginalisation 

A useful technique available to Bayesian modellers is the ability to perform marginal­

isation on model parameters. Typically it would be employed for removing nuisance 

parameters from consideration, i.e., those parameters which unavoidably form part of 

the model, but about whose values are of little interest. If the parameter space is split 

8 = {81 , 82 } and it is desired to eliminate 82 then it can be marginalised through integra­

tion of the joint posterior of 8, 

p(81 1 d,I) = l2 p(81 , 82 1 d,I) d82 · (3.10) 

Unfortunately, marginalisation integrals are often analytically intractable, and numeri­

cal methods must be used instead (see section 3.4). The conceptual simplifications which 

arise from not having to be concerned about nuisance variables are however generally 

worthwhile. 

3.3.4 Model selection 

Another very powerful aspect to Bayesian analysis is the process of model selection, the 

importance of which has been touched upon briefly up to now. The need for model se­

lection techniques arises from the need to compare several candidate models and assess 
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their suitability in a manner consistent with Ockham's razor: where model parsimony is 

traded off against the goodness-of-fit. In this thesis, model order selection will be used 

to describe the selection between models of the same type which differ in the number 

of components, or in the order of the functional form of the model. The term model 

selection is usually intended to refer to the comparison of models of different types. 

Bayes' theorem provides a unified framework for comparing different types of models 

probabilistically. Bayesian inference has a very important role to play in statistical data 

analysis, as an iterative process of inference and criticism. A model is chosen so that, 

"in the light of the then available knowledge, it best takes account of relevant phenom­

ena in the simplest way possible" [9]. The model is evaluated for its ability to describe 

the data, e.g., by analysing the residuals (which should have the same statistics as the 

assumed error model). Following this criticism the model is modified and the procedure 

repeats. 

A total of K models are proposed, denoted by M k , k = {I, ... ,K}, of which one is 

assumed to be the correct model for the data. The parameters of model Mk are 8k. The 

posterior expression must now also take the model type into consideration 

(8 Mid I) = p(d 18k , Mk,I) p(8k 1 Mk,I) p(Mk 1 I) 
p k , k , P (d 1 I) . (3.11) 

over which infer~nces will be made. If only information about the most likely model 

type is required, then the marginal posterior for Mk is needed,3 

P(Mk 1 d,I) = lk p(8k, Mk 1 d ,I) d8k 

and hence the maximum marginal posterior model is 

;\It = argmax P(Mk 1 d, I). 
Mk 

(3.12) 

(3.13) 

This criterion for model selection can be informally compared to non-Bayesian model 

selection criteria, namely Ale and MDL. Ale is a function of the likelihood with a 

penalisation term for the number of parameters, where for the moment, it is assumed 

that model Mk has k parameters, 

Ale = -21og(maximum of likelihood) + 2k. (3.14) 

3This integration, however, is analytically intractable in most cases. 
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Similarly for MDL, 

MDL = -log(maximum of likelihood) + ~ log(N). 
2 

(3.15) 

The posterior can be written in a similar form, assuming equal priors for all model types 

and noting that the evidence term is a constant, 

It is apparent that AlC and MDL are approximately equivalent to a criterion based upon 

the posterioit but with restrictive assumptions of priors.4 AlC effectively corresponds to 

the assumption p(fh I M k , I) ex: e- k
• Further, making the simplifying assumption that 

all parameters are independent and are uniformally distributed over the same interval 

[0 , Z], AlC corresponds to Z = e. For MDL, the effective prior is P(()k I M k , I) ex: N- k/ 2 

and under similar assumptions this corresponds to a value of Z = N I / 2 • The tendency 

for AlC to overfit is clear when the true range of each parameter is much greater than e. 

MDL tends to select smaller model sizes as it effectively assumes that the range of each 

parameter is larger than for AlC (when N > e2
) and so the prior will be lower. A more 

detailed discussion of model comparison measures is presented by Wu [164]. 

A Bayesian approach to model selection is not limited by the effective assumptions 

embodied in AlC or MDL, principally that all model order coefficients carry equal 

weight and that the cost of a model is function only of the number of terms. The cost 

of a model is also determined by how deterministic the parameters are, in the sense that 

a model with two parameters which have very narrow priors is likely to have a higher 

posterior probability than a model with a single, vague, parameter. 

3.4 Parameter estimation through MCMC 

There are two major aspects to signal modelling - the design of a model to capture the 

structure of the data, and the techniques used to produce parameter estimates for that 

model. Box and Tiao [9] describe the iterative approach to modelling, inference, model 

4This also assumes that the maximum likelihood value e fall s within the range of the prior. 
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appraisal and subsequent reformulation using Bayesian inference as an exploratory tool. 

Hete, it is assumed that the functional form of the model is known, and concentrate on 

the task of parameter estimation. 

Bayesian inference can be applied to the joint posterior to produce the desired statistics 

of the distribution (MAP estimates, moments, marginal posterior estimates, confidence 

intervals, etc.). The form of the joint posterior distribution is often too complex to 

permit the direct calculation of such statistics. To overcome this, Markov chain Monte 

Carlo (MCMC) methods are employed to generate a stream of samples which are drawn 

from the joint posterior distribution. The method exploits the duality between probabil­

ity densities and the samples produced from them. Given a probability density, samples 

can be generated from it. Conversely, given a large number of samples, an estimate of 

their probability distribution - or statistics thereof - can be obtained from Monte 

Carlo integrations. A Markov chain is set up which has the desired posterior distri­

bution as its invariant distribution and whose state space is (in general) the parameter 

space of the model. 

A set of transition kernels are specified which define the transition probabilities between 

states at each iteration. The form of these transitions is dependent upon the type of 

algorithm used.... Once a sufficiently long Markov chain has been produced, Monte 

Carlo integrations over the chain allow Bayesian inference of any desired statistic of the 

posterior. 

3.4.1 Monte-Carlo Integration 

Monte Carlo integration can be employed to produce expectations of functions of a 

parameter, 

E[J(x)] = L f(x) p(x) (3.16) 
xE X 

but, if samples {Xl, ... ,XN } drawn from p(x) are available, the Monte Carlo estimator 

of E[J(x)] is 

(3.1 7) 
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Thus statistics of the distribution p(x) can be inferred when samples Xi rv p(x) are 

available. The estimator is unbiased, so 

lim IE[j(x)] - 11 = 0 
N~oo 

(3.18) 

but the error standard deviation decreases in proportion to VN, so Monte Carlo inte­

gration can be inefficient as many samples may be required for accurate results. 

3.4.2 Marfov chain overview 

This section presents a brief overview of some of the characteristics of Markov chains. 

This discussion will be limited to discrete variables; a more detailed exposition is given 

by Roberts [122]. The extension of these concepts to continuous state spaces is pre­

sented by Tierney [150]. 

The Markov chain represents a series of random variables, {Xl, X2,·· . ,xn }, each of 

which may vary over the state space X of the Markov chain,S and have the property 

that the distribution of each variable depends solely on the previous one, 

(3.19) 

The procession between subsequent states is determined by a transition kernel Tn(x; x) 

which defines the probability of moving from state x to X at the nth point in the chain. 

Hence, the probability of being in state x at step n is calculated from all the paths to it 

from the previous step 

Pn+I(X) = L Pn(x) Tn(x;x) (3.20) 

xEX 

The desired behaviour of the Markov chain is that the series converges to a stationary 

distribution 7f(x), such that further transitions do not affect the probability distribution 

- a property known as positive recurrence: 

(3.21) 

SThe state space is also the parameter space of the model in most cases. Hybrid techniques exist which 

also employ dynamical information in addition to current parameter values, e.g., see [164]. 
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For the chain to converge to the stationary distribution, several conditions have to be 

met. In addition to positive recurrence, the chain must be irreducible, which ensures 

that there is a non-zero probability of reaching all states eventually. The chain must 

also be aperiodic which prevents it from periodically oscillating between sets of states. 

We are interested in Markov chains which are time reversible which requires that the 

condition for detailed balance be satisfied, 

7f(X) T(x; x) = 7f(x) T(x; x). (3.22) 

If the chain satisfies the above conditions then it is ergodic, such that averages over 

the Markov chain converge to the ensemble average, and that the state probabilities 

converge to the stationary distribution, 

hm Pn(x) = 7f(x). 
n~oo 

(3.23) 

The initial portion of the Markov chain is termed the burn-in period, during which the 

chain converges to the stationary distribution. The burn-in is typically discarded. 

3.4.3 The Metropolis-Hastings algorithm 

The Metropolis-Hastings (MH) algorithm [59, 95] is a popular method for constructing 

the Markov chain. It is a versatile algorithm which is often useful when the posterior 

distribution is of a complex non-standard form. A transition kernel q( 0*; Ok) proposes a 

state 0* from the current state Ok using a proposal density which is generally dependent 

on the current state. This state is accepted with a probability Q( Ok, 0*) determined by 

the Metropolis-Hastings acceptance function 

Q(ok, 0*) = min(l, PR(O) TR(O)) (3.24) 

PR(O) = p(O* Id,.) TR(O) = q(Ok; 0*) 
p(Okld,.) q(O*; Ok) 

where q(Ok; 0*) is the probability of proposing the reverse transition from state 0* to 

state Ok. This acceptance function ensures that detailed balance is achieved. This form 

of the MH algorithm is due to a generalisation by Hastings [59] of the original method 

of Metropolis et al. [95] to the case where the proposal distributions are not symmetri­

cal. This is considerably more powerful than the original method, and allows efficient 



82 3. Bayesian Signal Processing 

transition kernels to be designed by tailoring them to the posterior density under con­

sideration. The acceptance probability is a function of the ratio of the posteriors of each 

state (PR) and the transition ratios between these states (TR). The Markovian property 

of the MH algorithm arises as each new state is dependent upon the previous state. 

It is also possible to propose independence sampling steps [149] where the proposal 

is independent of the current state, and so q(e*; ek
) = q(e*). These proposals, if well 

designed, are beneficial for improving the mixing of the Markov chain as the parameter 

space can be explored very quickly and correlations in the Markov chain are reduced. 

It is importi nt to note that different types of transition kernel can be combined in the 

MH algorithm, to exploit the advantages of each type. 

The simplest form of transition kernel is the random walk where the proposal state is 

constructed from a random perturbation to the current state, q(e*; ek ) = q(e* - ek
). 

This is simple to implement, but tends to be very inefficient for global exploration of 

the parameter space, particularly for multimodal distributions. Its success is usually 

critically dependent on the complexity of the posterior distribution and the size of the 

proposal distribution: small steps have a high acceptance rate but do not explore much 

of the posterior distribution, large steps are capable of exploring the parameter space 

but have lower acceptance rates. Random walk kernels can however be useful for 

local exploration of the posterior distribution. Neal [101] suggests a rule of thumb of 

proposing a step of the order of the standard deviation of the width of the posterior 

mode in the most confined dimension. Gilks et al. [47] suggest adjusting the size of the 

standard deviation to obtain an acceptance rate of 20-40%. 

A global MH algorithm proposes a change for all parameters. For all but very sim­

ple models this can be highly inefficient due to the low acceptance probabilities which 

may result from proposing a point in a high dimensional space. A more useful imple­

mentation for larger models performs a proposal for a small set of parameters in turn, 

updating the state if the new parameter values are accepted, or keeping the same val­

ues if it is rejected. This is described as a local MH algorithm, but it is often known 

as single component Metropolis-Hastings or Metropolis-Hastings-within-Gibbs. 6 If a 

move is proposed for the parameter set , C e whilst keeping the remaining parameters 

at their current values, such that e* = {,*, e~b}}' and ek = {'l, e~b}}' then the ratio 

6The Gibbs sampler is introduced in the next section 
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of posteriors reduces to the ratio of full conditionals7 and the transition kernels affect 

only , 

(3.25) 

The full conditionals can be derived from the joint posterior [46] 

(3.26) 

and, since the term on the denominator is not a function of " the full conditional is 

proportional to the joint posterior. The set of parameters which are proposed together 

are generally chosen to be parameters that are highly correlated. Local moves for each 

parameter would have a low probability of acceptance since the other parameters would 

not be changed, so a proposal distribution is formed that can create joint proposals for 

high probability regions of the posterior. The local form of the MH algorithm will 

be employed extensively in the following chapters. It is summarised in algorithm 3.1. 

For generality, the full form of the MH acceptance function is shown, but for single 

component moves it can be simplified as described above. 

3.4.4 The Gibbs sampler 

The Gibbs sampler [44] is another method of constructing a Markov chain with the 

posterior as its invariant distribution. For a parameter space e = {e1 , ... ,e!vI} the nth 

state of the Markov chain is, for each parameter, sampled from the full conditional 

using the most recent values of the other parameters, 

(3.27) 

(3.28) 

7The full conditional distribution of a parameter Bi is the posterior for 8i conditional upon all other 

model parameters, P(Bi I cl , 8-(i) )' 
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Algorithm 3.1: The local (or single component) Metropolis-Hastings algorithm 

initialise 0° E e 
for iteration k = 1 ... Niter do 

for parameter i = 1 ... No do 

create proposal 0; rv q(O;; Ok) 

MH-accept( 0*) Ok ) 

end for 

end for 

~ 

function: MH -accept( 0*) Ok ) 

evaluate Q(O* Ok) = min (1 p(O* I d) q(Ok; 0*)) 
) ) p(Ok I d) q(O*; Ok) 

draw v rv V[O,l) 

if v < Q ( Ok) 0*) then 

accept proposal Ok = 0* 

else 

keep old state Ok 

end if 

This is, in fact, a special case of the single component Metropolis-Hastings algorithm 

using full conditionals as proposal distributions, q(O*; Ok) = p(Oj I d) O_j). The ratio of 

the transition probabilities is the reciprocal of the ratio of the full conditionals and so 

the move is unconditionally accepted. The Gibbs sampler is popular in circumstances 

where the full conditionals are easily sampled from. However, Wu [164] suggests that, 

even in these cases, the Metropolis-Hastings algorithm may be more efficient due to its 

greater mobility around the state-space. Nevertheless there are many statistical prob­

lems, where the probability distributions are of standard forms and can be sampled from 

directly, for which a Gibbs framework is well suited. In these cases a Gibbs scheme may 

be deployed mechanically - the BUGS software (Bayesian inference Using Gibbs Sam­

pling) [137, 148] allows for automation of this process, expressing models in graphical 

form. 

Each transition in the Gibbs sampler changes only one parameter at a time, and the 
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Figure 3.2: Convergence of correlated (left) and uncorrelated (right) parameters with the Gibbs 

Sampler. The progress of the Markov chain is shown. The uncorrelated case is able to explore 

the parameter space much more quickly than the correlated case. 

net effect of the algorithm is a random walk along each parameter in turn. Correlation 

between the parameters reduces the convergence rate markedly [101], as illustrated in 

figure 3.2. A variant on the Gibbs sampler is the Hit & Run algorithm which picks 

a random direction for the co-ordinate axes [127]. It has the advantage that detailed 

balance holds for any distribution of directions, but sampling along all directions must 

be possible. Chen [19] generalises the algorithm to give more flexibility over the choice 

of direction distribution. Gilks and Roberts [48] describe how parameter transforma­

tions can be employed to improve the behaviour of the Markov chain. They also note 

that Metropolis-Hastings proposals can be made along the elliptical major axis which 

would produce a rapidly converging Markov chain. 

3.5 Designing efficient transition kernels 

It is a commonly held belief, amongst non-practitioners, that MCMC methods are far 

too slow to be of use in practical applications. However, significant speed increases 

can be obtained by the design of kernels which are both computationally efficient and 

succeed in exploring the high probability regions of the posterior surface. Combined 

with a good choice of initial values - for instance from the results of an analysis on 

data close temporally or spatially to the current observation, or estimates obtained from 

a fast non-parametric method - respectable performance can be obtained. Although, 
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theoretically, the Markov chain will converge to the posterior distribution regardless of 

the choice of starting value, the length of the burn-in period can be greatly reduced if 

the chain is started in a region of high posterior probability. 

In this section the careful choice of Metropolis-Hastings transition kernels is advocated, 

in order to exploit the posterior characteristics of the model under consideration. 

3.5.1 Types of transition kernel 

For a problem of any appreciable complexity, any MCMC sampling scheme must be 

designed spe~ifically for the particular type of model if an efficient algorithm is desired. 

The inadequacy of random walk samplers for complex multimodal distributions, and 

the likely appearance of non-standard forms for the posterior densities, necessitates 

careful choice of the transition kernels. Here, several generic types of transition kernel 

are identified which achieve different types of movement around the parameter space. 

The kernels may be combined in mixtures or cycles [149], e.g., using a stochastic or 

deterministic selection of a particular kernel in each iteration. 

Global exploration kernels 

Perhaps the most important of the kernels, from an efficiency point of view, are those 

which attempt to propose transitions to high probability regions elsewhere in the pa­

rameter space. These are particularly useful to have during the initial burn-in period of 

the Markov chain. 

Since a sample from the full conditional will result in an unconditional acceptance (cor­

responding to a Gibbs sampler move), drawing a sample from the full conditional is 

often a goal which is unachievable due to the complexity of the conditional distribu­

tion. Consequently, it is desirable to construct a transition kernel which concentrates 

its support in the same regions as the full conditional. 

One method of achieving this is to construct an independence sampling step [149] whose 

proposal distribution approximates the full conditional. The resulting state, if the pro­

posal is accepted, will be independent of the current state. This is beneficial for the 

mixing of the Markov chain as correlations are reduced. It also serves to speed the 

convergence since it is possible to traverse the state space very quickly. It is important 
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that a sample can be drawn from the proposal distribution with a low computational 

burden, otherwise little would be gained over a method which samples from the full 

conditional but at great expense (e.g., rejection sampling [157]). 

Local exploration kernels 

In addition to locating interesting regions of the posterior, it is advantageous to perform 

local explorations. The transition kernels which achieve this are often random pertur­

bations of the current state, such as random walks. These transitions form Markov 

chains which have high correlations between states and they tend to explore the param­

eter space very slowly. Small perturbations are likely to yield a high acceptance rate 

but slow exploration whilst large perturbations can explore more of the local region at 

the expense of a lower acceptance rate. It is also possible to use heavy tailed distribu­

tions for the random walk proposals which are more likely to produce large excursions 

occasionally, for instance using a Cauchy distribution rather than a Gaussian distribu­

tion. Heavy tailed moves may also be achieved by using a Gaussian distribution with a 

variance which may vary over time [52]. 

Related-mode transitions 

Many models are likely to result in multimodal posterior distributions, and, in such 

cases, care must be taken to avoid becoming trapped in local modes. A global ex­

ploration kernel may be useful here, as described previously, but, if it is created as an 

approximation to the full conditional distribution, it may not be able to propose transi­

tions into all modes. Many types of model will generate a posterior distribution whose 

modes which are related, such that, given the location of one mode, a number of others 

may be reached by appealing to the structure of the model. As an example, consider 

a model to detect a periodic pulse train parametrised on the shape of the pulse, the 

location of the first pulse (epoch) and the period. Given the shape and the period, the 

conditional distribution for the epoch will be multimodal with modes separated by the 

period. The conditional distribution of the period will have modes at multiples of the 

true period. Hence, proposals which move the epoch by an amount equal to the period, 
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or multiply the period by a ratio of integers, can be used to explore the related modes 

of the distribution. 

If there is redundancy in the model, such that a particular signal can be modelled identi­

cally in more than one way, then a related-mode transition may be useful for exploring 

the alternative representations, of which it is hoped the most parsimonious model or 

the one most consistent with the prior information is favoured. A specific instance of 

this type of transition kernel, for harmonic signals, is described in §6.3. 

3.6 MCMC for model selection 

Until recently, inference on the posterior probabilities of different models has relied 

upon a separate analysis for each model type as MCMC methods were only applicable 

to models of fixed dimensionality. Reversible jump techniques now exist for variable­

order models where a single sample-based approach is adequate to cover all model 

types. Reversible jump, developed by Green [58], constructs a Markov chain which 

is capable of jumping between parameter subspaces of differing dimensionality. It is 

a generalisation of the Metropolis-Hastings algorithm where the transition kernels can 

create proposals in different parameter subspaces. 

The model is defined by the model type M, taken from the set of all models M· the , 
parameters () are specific to each model type. The joint posterior of this model is 

p(() , M I cl) ex p(d I M, ()) p(() I M) p(M) (3.29) 

In reversible jump, transitions may be of an update type, where the model type is un­

changed and the proposal is within the space of (), or they may be of a subspace tran­

sition type, where the model type is changed along with the parameters. For an update 

move a proposal ()* is sampled, 

(3.30) 

and then accepted according to the M-H acceptance function. The proposal distribution 

for ()* could be dependent upon the previous state, or an independent distribution may 
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be used (see §3.5.1). For a subspace transition move, a joint proposal for {()*,M*} is 

obtained 

(3.31) 

This move may be performed in two steps, firstly, a new model type is proposed and, 

secondly, a new set of parameter values for that model is proposed, 

M* I"V q(M*; ()k , Mk) 

()* I"V q(()*; M *, ()k,M k). 

(3.32) 

(3.33) 

Care must be taken when specifying subspace transition kernels to ensure reversibility 

- typically moves of this sort are birth/death or split/combine moves which increase or 

reduce the number of components by one. This allows for heuristic proposal densities 

to generate parameter values for a new component which are likely to be accepted (e.g., 

from an independence sampling distribution). These methods are becoming popular for 

practical problems: Richardson and Green [119] apply reversible jump techniques to 

mixture distriblttions, Andrieu and Doucet [5] use reversible jump transitions for the 

detection of noisy sinusoids and Troughton and Godsill [152] apply these methods to 

autoregressive time series. 

Other methods have been proposed for variable dimension problems. Carlin and Chib's 

model [17] defines the global parameter space as the product of the parameter spaces 

of all model parameters. This has the disadvantage that linkage densities or pseudo­

priors are required between unused model parameters, and their choice is critical to the 

success of the algorithm. George and McCulloch's stochastic search variable selection 

(SSVS) [45] includes all parameters in the model, but assigns low values for parameters 

which are not deemed important to the model, hence the model size is fixed. Godsill [51] 

unites several of these different methods using a composite model space which can be 

used for common model choice problems such as nested models and variable selection. 
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3.7 Conclusions 

In this chapter a probabilistic approach to signal modelling has been described. The 

likelihood function for the model parameters can be obtained using an assumption of 

Gaussian error statistics, but reliance on the likelihood can lead to overfitting and the 

inability to generalise. The application of Bayes' theorem transforms a state of prior 

knowledge upon the observation of data and produces a probability distribution over 

the parameter space of the model (§3.3). Prior probability distributions can be employed 

to represent available prior knowledge about the model parameters and provide a basis 
.t 

for probabilistic model selection. Bayesian model selection operates consistently with 

Ockham's razor such that overfitting is avoided and the most parsimonious model is 

selected. 

For non-trivial models the parameter estimation task requires sophisticated techniques, 

such as Markov chain Monte Carlo methods, which simulate a Markov chain whose 

stationary distribution is asymptotically equivalent to the posterior distribution of the 

model parameters (§3.4). The Metropolis-Hastings algorithm and related techniques 

are generally regarded to be too slow for practical applications, but this is often as a 

result of poor choices for the transition kernels. Several types of transition kernel have 

been suggested in section 3.5 which exploit the structure of the posterior distribution 

to perform different types of move around the parameter space. The extension of the 

Metropolis-Hastings algorithm to model selection has been described, in particular the 

reversible jump sampler which performs jumps between different subspaces of the pa­

rameter space. 

Detection and Estimation of 

Single Component Models 

4.1 Introduction 

4 

In this chapter a Bayesian signal analysis is developed for the class of single component 

models. This class encompasses signals comprised of a single fundamental element (for 

instance a Gaussian, rectangular pulse or sinusoid) and also those comprised of more 

than one such element, but which can be logically grouped together due to the sharing of 

a common parameter, or due to more abstract Gestalt grouping principles. For instance, 

signals composed of a periodic pulse train or harmonically related sinusoids would be 

classed as singlec omponent models. 

General linear models are employed for modelling signals as the composition of a num­

ber of basis functions. Section 4.2 poses them in a Bayesian setting and shows how 

nuisance variables can be marginalised to obtain a posterior expression for the un­

known basis function parameters. MCMC techniques are employed in section 4.3 to 

draw samples from the posterior distribution for the purposes of Bayesian inference. In 

section 4.4 it is shown how the model can be extended to allow a variable number of 

basis functions, and the modifications required to the Metropolis-Hastings algorithm 

to produce an efficient simulation are described. In section 4.5, changes to the prior 

structure are detailed which alleviate some of the problems associated with model or­

der selection. The extension of the general linear model for time-varying signals is 

discussed in section 4.6, and an analysis framework is introduced which expresses a 

multiple frame model as a Bayesian graphical model. Efficient transition kernels for 

the multiple frame model which exploit correlations between neighbouring frames are 

described in section 4.7. 
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One of the predominant themes in this chapter is the choice of transition kernels in 

the Metropolis-Hastings algorithm, exploiting different aspects of the structure of the 

posterior distribution. Analysis methods based upon MCMC techniques are generally 

held to be far too slow for practical applications. In the literature, little attention ap­

pears to have been directed towards producing efficient implementations. This chapter 

seeks to explore several avenues for efficiency increases by exploiting prior knowledge 

in the formulation of the model and in the function of the algorithm. Where justifiable, 

approximations may be introduced which can yield an order of magnitude increase in 

speed. In many applications, this speed gain may be of far higher importance than the 

resulting slig£t loss of accuracy. Aspects of the material in this chapter are presented 

in [158]. 

4.2 The General Linear Model 

The general linear model (GLM) is a form of model which is extensively employed 

in this thesis, and which has had a brief exposition in section 2.5.1. This is a powerful 

representation for the modelling of 'structured' data, in the sense that there is an a priori 

expectation that the data will conform to a known mathematical form. Knowledge 

of the underlying physical processes generating the data is an important step towards 

obtaining a representative model. On the other hand, the generating mechanism may 

be unclear, as with many problems in statistical inference, but exploratory analyses 

using non-parametric methods, such as from time-frequency representations, may reveal 

apparent structure in the data which could subsequently be captured in a parametric 

model. 

In cases where the data can be well represented by a known parametric form (or as one 

of a number of competing parametric forms), and is such that it can be expressed as the 

linear combination of a number of basis vectors (which need not be orthogonal), then 

a GLM is often an ideal candidate. GLMs, as described here, are well suited to joint 

model selection and parameter estimation - see [125] for a general exposition of their 

role in Bayesian signal processing. GLMs can be used to represent an autoregressive 
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(AR) process [114, 125], and are also popular for regression problems in statistics [61]. 

4.2.1 Formulation 

The signal model is composed of a linear combination of a number of basis functions 

with parameters {cp} which can be concisely written in vector form: 

d = Gb+ e (4.1) 

where G( cp) is the basis matrix whose A;[ columns are the basis vectors (each of length 

N), b are the amplitudes, and e is the error component, usually assumed zero-mean 

Gaussian iid with variance 0";. 

The likelihood can be formulated from the error term 

2 1 [ lid - Gb 112 ] p( d I cp, b, 0" e' I) = N exp - 2 
(27r0"~)2 20"e 

(4.2) 

where for the moment the number of basis functions and the type of model is assumed 

to be known. The posterior is 

( '" b 2 I d I) = p( d I cp, b, 0"; , I) p( cp, b, 0"; I I) 
p 'f" ,O"e , p(d II) (4.3) 

and the prior structure p( cp, b, 0"; I I) must be suitably specified. It is generally convenient 

to assume prior independence for the basis function parameters, the amplitudes, and the 

error variance. 1 Hence the prior can be written 

p(cp, b, 0"; I I) = p(cp I I) p(b I I) p(O"; I I). (4.4) 

Notwithstanding the importance of the state of prior information I (see section 3.3), 

for simplicity of notation it shall be omitted for the remainder of this chapter. The 

prior p( cp) will be highly specific to each type of model under consideration. Several 

cases will be detailed in the next section. Its specification depends upon the strength of 

prior knowledge about the model parameters and there is much potential for the use of 

subjective or empirical knowledge in its formulation. If little is known a priori then it 

should be sufficiently uninformative to prevent biasing the posterior. Different forms of 

the amplitude prior p(b) will be discussed in this chapter. 

10r, more strictly, conditional independence given I. 
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The choice of the error variance prior can be motivated from a few different considera­

tions. One is that it should be uninformative. The Jeffreys prior [66] is a popular choice 

for scale parameters, such as variance, as it is scale-invariant and is also a maximum 

entropy prior. The Jeffreys prior is 

(4.5) 

This prior, however, is improper since its integral is not finite, so limits must be put on 

the prior for it to be made proper. Improper priors are problematic for model com­

parison sinc~ the model choice will be dependent upon the ratio of two unnormalised 

distributions. Djuric et al. describe a method for circumventing this problem by splitting 

the data into estimation and validation sets to determine the unknown proportionality 

constants [30]. 

The simplest prior distribution for b is a uniform distribution 

1 M 

p(b) = BM IT ll[_~,q-l(bm) 
m=l 

(4.6) 

where B is the maximum allowable range for each element bm and M is the number of 

basis functions. If B is sufficiently large to cover all likely values of bi then the value 

which maximises the conditional posterior p(b I d, cjJ, a;, I) is also the value of b which 

minimises the squared error Ile112, 

=0 (4.7) 

and so 

(4.8) 

which is the familiar least-squares estimate. It is further possible to marginalise the 

amplitudes from the posterior [125]. Writing the error term as a quadratic in b, 

lid - Gbl12 = (b - b)\GtG)(b - b) + (dtd - ftf) 

f=Gb 
(4.9) 
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the integration of the exponential term of the likelihood is comprised of the multiplica­

tion of a multivariate Gaussian NM(b; b, a;(GtGfl) and a term which is independent 

of b. The marginalised posterior expression becomes 

p(cjJ, a; I d) = J p(cjJ, b, a; I d) db 

= B-M IGtGI -~ (2na; ) M~N exp [_lld I12 -21IfI12]. 
2ae 

(4.10) 

The effect of the exponential term is similar to its effect in the likelihood. The term 

IIdl12 - IIfl12 is still a measure of the error; f is the least-squares projection of the model 

formed by the parameters {cjJ} onto the data d. The error term, therefore, is the dif­

ference between the energy of the signal and the energy of the least-squares projec­

tion, as a function of {cjJ}. If the basis is composed of orthogonal basis vectors, then 

IIdl12 - IIfl12 = lid - f112. If G formed a complete orthogonal basis set for the data then 

this error would be zero. This posterior expression is sensitive to ill-conditioned basis 

matrices. If the columns of G are close to being linearly dependent then the determinant 

will be small and the posterior may become numerically unstable. 

The adoption of a Jeffreys prior for the error variance allows for its marginalisation 

using the identity2 

(4.11) 

to yield 

p(cjJ I d) ex: ~(c) p(cjJ) 
BM IGtGI 2 nc [lldl12 - IIfl12Jc 

(4.12) 

c = N-/o.1{ 
c 2' 

The posterior is now solely a function of the data and the model parameters {cjJ}. In the 

instances where the basis functions are orthogonal to each other this inevitably leads to 

considerable computational savings, 

(4.13) 

2Adapted from [125]. 
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4.2.2 . Conditional distributions for amplitudes and error variance 

Estimates for the amplitudes and error variance, if required, can be produced from 

their conditional distributions. The conditional distribution for the amplitudes (with 

the error variance marginalised) is 

p(b) 
p(b I d,<p) ex [lid _ GbI12]C:' (4.14) 

When the prior for b is uniform and the least squares value b lies within the non-zero 

range of the prior then the least-squares value also maximises the conditional posterior. 

The conditi~nal posterior for the error distribution, following marginalisation of the 

amplitudes is 

p(<T; I <p, d) c< IGtGl' (~n¥+l exp [_lldll:~:II£1I2l (4.15) 

which is an inverse gamma (IG) distribution 

IG ( 2. N - NI IIdl12 - Ilf112) 
~e , 2' 2 (4.16) 

IG(z; a, (3) 130 
-(0+1) _fi 

f(a)z e z 
(4.17) 

The inverse gamma distribution has a mode at z = 13/ (a + 1) and a mean z = 13/ (a - 1) 

(for a > 1), so an estimate of the error variance is obtained as 

(4.18 ) 

4.2.3 The effect of parameter priors 

To illustrate the effect on the posterior of the parameter priors a GLM is considered 

that models a signal composed of two Gaussians. Both have the same variance ~;, and 

are a fixed distance Tg apart, but have different amplitudes. Both ~; and Tg are known. 

The basis matrix is 

(4.19) 
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The unknown parameter is /1g, the location of the first peak. The prior for /1g is assigned 

a Gaussian distribution, p(/1g) = N(/1g; Pg, ~~) which can be made diffuse if little is 

known a priori, or narrow if compelling prior information is available. 

It is frequently convenient to deal with the log of the posterior since the computer im­

plementation of probabilistic schemes can be prone to arithmetic under flow or overflow 

due to the exponential functions involved. The log posterior is, ignoring additive con­

stants, 

(4.20) 

Figure 4.2 shows the sensitivity of the shape of the posterior density to several parame­

ters. The observed data is shown in figure 4.1. The prior carries a prior expectation that 

the value of /1g is closer to the second peak. The general observation is that compelling 

data (i.e., data which can be modelled with a low error or where many points of data 

are available) outweighs prior knowledge. Where the data is unable to discriminate well 

between different model parameters, prior knowledge compensates. 

4.3 MCMC parameter estimation 

In this section it is shown how MCMC techniques can be employed for parameter 

estimation of a single component signal model. The basis matrix is a function of the 

model parameters <p such that G = G( <p) where <p = {<PI,'" , <P Ncp}. The number of 

basis functions 111 is known a priori and the amplitudes b and error variance er; are 

marginalised. 

A family of proposal distributions qO must be found to suit the model under consider­

ation. As summarised in §3.5, there are several motivations for choosing proposal dis­

tributions according to the desired type of movement around the parameter space. For 

global exploration, the most useful type of move is an independence sampling step [149] 

with a proposal distribution which concentrates its support in similar regions to the full 

conditional. In the case that the proposal is equal to the full conditional then this be­

comes a Gibbs sampler move. Strictly speaking this type of transition might be labelled 



98 4. Detection and Estimation of Single Component Models 

Figure 4.1: Two peak Gaussian data in additive Gaussian noise. 
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Figure 4.2: The effect of parameter priors. Each figure shows the log of the likelihood, prior and 

conditional posterior p(J.Lg I d, e) . The data observed is shown in figure 4.1. The prior is centred 

at {tg = 95. In figure (a) the prior is vague (CT~ is large) and has little effect. The prior standard 

deviation is reduced by a factor of 10 in (b) and 100 in (c) and in this plot the prior dominates 

the likelihood. Figure (d) shows the effect of increasing the noise in the data; prior knowledge 

compensates for poor data. 
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a conditional-independence sampling step since it is conditionally dependent on the 

current values of the other model parameters, and is actually a hybrid between a true 

independence sampling step and a single component transition kernel. 

Algorithm 4.1: Multiple transition kernels for single-component Metropolis-Hastings algorithm 

function: update cPi 

draw u rv V[O ,l] 

if u < /\ ond then 

draw cPi rv qcond (cPi; cPk
) 

else if u < Acond + Aper then 

draw fl i rv qper (fli) 

"'~ = "'~ + fl* 'f'2 'f'2 2 

else 

dra w cPi rv qind ( cPi ) 
end if 

MH-accept( 0*, Ok ) 

function: MH-accept( 0*, Ok ) 

* k '( p(O* ld)q(Ok;e*)) 
evaluate Q(O ,0 ) = mm 1, p(Ok I d) q(O*; Ok) 

draw v rv V[O,l] 

if v < Q(Ok ,O*) then 

accept proposal Ok = 0* 

else 

keep old state Ok 

end if 

The single component Metropolis-Hastings algorithm (algorithm 3.1, §3.4.3) can be 

modified to permit the non-deterministic selection between different types of transition 

kernel. Three types are used in this algorithm, a conditional independence step, a per­

turbation (random walk) step and an independence step, with probabilities Acond, Aper 



100 4. Detection and Estimation of Single Component Models 

and '\nd respectively, where Acond + Aper + Aind = 1. The conditional independence step 

uses qcond(cN; q}) as its proposal distribution. The perturbation step samples a perturba­

tion from a distribution qper(.6.:) where .6.: has the same dimensionality as ch A scheme 

which appears to work well in practice is to non-deterministically select a proposal vari­

ance from a range of several values (e.g., geometrically spaced by a factor of 10); this 

allows local exploration with the opportunity to make larger jumps, and is beneficial for 

the mixing of the Markov chain. The independence sampling step draws its proposal 

from qind(cN). These steps are summarised in algorithm 4.1. 

The posteri<?,[ ratio for the marginalised {b, an model is (from (4.12)) 

p(cjJ* 1 cl) p(cjJ*) IGktGkl~ [llclW - IWI12]E 

p(cjJk 1 d) - p(cjJk) IG*tG*I~ [lldl1 2 - 11£*112]E 
(4.21) 

To achieve a reasonable acceptance rate it is desirable to obtain a transition probability 

similar to the posterior ratio. It is often useful to optimise the evaluation of the projec­

tion energy 11£(cjJncP ) 112 for a range of values of cjJncP ' Specific examples will be presented 

in later chapters. If the conditional distribution for cjJncP is slowly varying then it may 

suffice to calculate the projection energy for a few well-spaced values of cjJ~cP and form a 

piecewise linear continuous proposal distribution between these points. 3 If the form of 

the conditional is more complex then it may be necessary to evaluate many more points 

of the distribution to resolve the peaks of the distribution before forming a proposal 

distribution. It is now considered how efficient independence sampling distributions 

can be constructed for the common case that the parameters of the basis functions can 

be split into two subsets which define shape and location respectively. 

4.3.1 Fixed-scale shape function 

In the Metropolis-Hastings scheme described above, independence sampling steps for 

one parameter are conditioned upon the current values of the others. It is therefore 

possible to consider the proposals for shape and location independently. 

The vector g is a basis function with a fixed shape, for instance a Gaussian with a 

known variance. Its unknown parameter is the location parameter j),g whose conditional 

3 To ensure irreducibility, care must be taken at the endpoints for variables which have infinite support. 
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posterior is 

p(j),g 1 d) 

f 

.'. IIfl12 

ex p(j),g) Igtgl - ~ [lld11 2 - IIfl12tE 
A tIt 

gb = g(g g( g d 

dtg(gtg)-lgtd 

Noting that gtg is a scalar and making the dependence on j),g explicit, 

and, since j),g is a location parameter, the summation can be written 

N 

g(j),g)td = L g(i; j),g) d(i) 
i=l 

N 

= L g(i - j),g; 0) d(i). 
i=l 
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(4.22) 

(4.23) 

(4.24) 

If g is time-reversed to produce the function ~ then a convolution can be used to 

perform the projection for j),g = {I, ... ,N} 

(4.25) 

This is a matched filter which is an intuitive result for finding the location in the obser­

vation of a fixed shape. The projection energy becomes 

(4.26) 

If the energy of the basis function is invariant to changes in location then the denomi­

nator of this expression is constant, as is the determinant in the posterior. 

Gaussian example 

The basis function is parametrised on location j),g and scale (variance) a; 

(4.27) 
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Over 99% of the mass of g is located within ±30-g of the centre and so, for 30-g < /-lg < 
N - 30-g , the energy of the basis function can be considered approximately constant 

for fixed o-g. An expression can be obtained from the observation that the square of a 

Gaussian is also Gaussian with variance of 0-2 /2 9 , 

(4.28) 

At the end points, /-lg ~ 30-9 and /-lg ~ N - 30-g' the energy 11 g (/-lg) 112 should be calculated 

explicitly. This reduces end effects which would otherwise cause the approximation to 

erroneously rise at each end of the distribution. 

1 

4.3.2 Multiple basis functions 

For a basis matrix composed of more than basis function , 

where 

G = [g 1 g2 ... gM] 

IIfl12 = dtG(GtG)-lGtd 

= D(/-lg)t (G(/-lg)tG(/-lg)) - l D(/-lg) 

D (/-lg) = [Dl (/-lg) t '" D M (/-lg) t]t 

Dm(/-lg) = d*g m 

If the basis functions are orthogonal with respect to each other then gtg. 
, t J 

G(/-lg)tG(/-lg) becomes diagonal such that 

(4.29) 

(4.30) 

0, and 

(4.31 ) 

This shows how the output from several matched filters may be combined to calculate 

the projection from a higher order model. 

4.4 Variable model order 

For many applications, the model presented in the previous section is not sufficiently 

flexible. It is often required that not only the parameters of the basis functions, but also 
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the number of basis functions (which is termed the model order) should be determined. 

If the model describes a periodic pulse train and each basis function represents the pulse 

shape at a different location then it is generally desirable to determine the number of 

pulses in the data. 

The incorporation of another parameter into the parameter space of the general linear 

model necessitates a slight change to the prior structure, as the amplitude vector b is 

now explicitly dependent on the number of basis functions M, 

p(cp, b, IVI, 0-;) = p(cpIM) p(b I IV!) p(M) p(o-;) (4.32) 

For generality the prior for the model parameters cp is written to be dependent on M. 

The prior for M may be chosen to reflect prior knowledge about the number of basis 

functions, e.g., a truncated uniform or Poisson distribution. Marginalisation of band 

0-; proceeds as before and the resulting conditional posterior is (cf (4.12)) 

p(cp, N£ I d) ex r(c) Pl(CP I M) p(M) 
BM IGtGI2 1fc [lldl12 - Ilfl12]c 
N -1\11 

c=---
2 

(4.33) 

The complexity--penalisation action of the Bayesian formulation now becomes evident, 

largely through the prior on b. Attempts to increase the model order to produce a better 

fit are met with an increased cost dependent on the range of the amplitudes B. 

A single component updating scheme (see algorithm 3.1, §3.4.3) might choose to up­

date the model order much less often than the other model parameters if the range of 

expected values of 11/1 is small, as will often be the case. For the transition kernels of 

the AI update move (algorithm 4.1), it can be useful to employ an independence step, 

e.g., proposing a value from the prior, M* rv p(AI) and a perturbation step, e.g., ran­

domly choosing between AI* = IVIk - 1 and AI* = Mk + 1. A conditional independence 

step could also be employed, but unless the range of IVI values is large, this may be 

unnecessarily time-consuming. 

A major impediment to the speed of execution of a sampling scheme based upon this 

model is the amount of time required to compute IIfl12 upon each update move; this 

must be evaluated for the current state and the proposal state when the M -H acceptance 

probability is calculated, and involves a matrix inversion. Major savings can be made 
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for the computation when the basis functions are orthogonal. In the implementation, if 

extra values are stored in addition to the parameters of the current state, for instance, 

{fk, 61 , GktGk} and the posterior probability then this can reduce the computational 

overhead quite significantly. In the perturbation move for 111{ described above, where 

the size of the basis matrix is increased, efficiency savings can be made by circumventing 

the need for a large matrix inversion. If the proposal is to increase the model order, then 

this adds new columns to the basis matrix, 

"t 

M * = Mk + 111{1:>. 

G* = [Gk GI:>.] 

The determinant and inverse of G*tG* can subsequently be calculated efficiently, as 

described in appendix A. 

4.4.1 Sensitivity of model order to amplitude prior 

Any attempt to increase the model order is accompanied by an increase in the size of the 

parameter space, since the dimension of the basis function amplitudes increases. The 

improvement in model fit must outweigh the extra cost associated with the increase in 

the size of the parameter space. It is instructive to consider the conditions for which the 

more complex model is favoured by the posterior. 

Consider two model states; the first {lIl{k , cp} is the true model, the second increases 

the model order {1I1{*, cp} where M * = Nlk + 1 but the basis function parameters are 

held constant. It is assumed that the joint posteriors of both states have their dominant 

modes centred at cp with width dcp such that the ratio of the marginal posteriors can be 

approximated by the ratio of the joint posteriors, i.e., 

p(M*/d) p(lIl{*, cp*/d)dcp 
p(lIl{k / d) ~ p(lIl{k , cpk / d) dcp' (4.34) 

Further, it is assumed that the basis vectors are orthonormal, that the priors p( cp , M) 

are equal for both states, and that N » 111{ such that E ~ N/2. At the threshold 

p(M*, cp* / d) = p(lIl{k, cpk / d), the ratio of posteriors reduces t04 

(4.35) 

4The approximation r(c:* )jf(c: k
) ~ J(c: ) is obtained from Stirling's formula, e.g., see [109]. 
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Figure 4.3: Threshold of detection of a variable order single component model using a uniform 

amplitude prior. 

Owing to the orthogonality assumption, the energy of the projection f * can be split into 

the contributions from the kth order model fk and from the additional basis functions 

fl:>. 

(4.36) 

Defining r to be the relative energy of the error absorbed by fl:>. to the residual cl - fk 

(4.37) 

the detection threshold expression can be rewritten as a function of r 

B = ~[l-rrE: (4.38) 

This expression shows how the acceptance of a increase in model order is dependent 

upon the amplitude range prior B and the fractional improvement of fit r.This vari­

ation is shown in figure 4.3 for several values of N. The initial choice of a uniform 

prior for b was motivated by the assumption that it would be relatively uninformative 

as B was to be chosen such that it was sufficiently large to encompass all likely val­

ues of bm, Vm E {1..M}. However, from the above analysis it is apparent that the 
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choice of B has implications for the model order selection, and in choosing a value of B 

which is 'sufficiently large' the sensitivity of the detection is affected. In the next section 

improvements to the prior formulation which remove this dependence are considered. 

In a typical real-world application the signal may be contaminated by crosstalk, echoes 

and other forms of 'intelligible noise' (i.e., noise which shares similar characteristics 

with the desired signal). Owing to the complexity of incorporating these extra factors 

into a model explicitly, a Gaussian error model, such as the one above, is often used. A 

consequence of the preceding analysis is that, unless an incredibly high value is specified 

for B, the model will be perceived to overfit quite considerably since the extraneous 

signal corr'i~onents will also be detected. One may wish to be pragmatic about the 

remedy to this situation. The value of B could be raised to a sufficiently high level 

such that only the dominant components are detected. Alternatively the model can be 

left to overfit and a subsequent inference or post-processing step applies some form 

of thresholding; this, however, is computationally inefficient as detected components 

are then discarded. Both options may still be more attractive than a non-Gaussian error 

formulation. If the signal is composed of multiple components and it is desired to detect 

them all, then an explicit multiple component model is suitable, which is the subject of 
chapter 5. 

4.5 Modifications to prior structure 

The inadequacy of the choice of the uniform prior for the basis function amplitudes 

has been shown in the previous section. A more satisfying prior can be obtained by 

reasoning about the expected signal-to-noise ratio (SNR) of the observation. The SNR 

is expressed as IIGbl12 / IIell2 and note that, since the error term is Gaussian, E[IIell 2 ] = 

a;N; 62 is defined to be the expected SNR of the data, so 

(4.39) 

The Gaussian distribution makes the least assumptions about the specific form of the 

distribution given this second order moment [12], and so a multivariate Gaussian prior 
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is employed 

p(b 14>, NI, a;, 62 ) = N(b; 0, a;~) 

~(4), NI, 62
) = 62 (Gt G)-1 
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(4.40) 

More rigorous motivations for this prior, known as the g-prior, from maximum en­

tropy considerations can be found in Zellner [165] and Andrieu [6]; it is also invariant 

to changes in scale. The Gaussian form has the rather useful property that it can be 

marginalised easily since it is also a conjugate prior. The hyperparameter 62 may be 

specified a priori or treated as an unknown - it acts to control the sensitivity of the 

detection. 

Unlike the uniform prior, the g-prior takes the energy of the basis functions into account 

and is invariant to changes in scale. Also the support of the prior is ]RM and so there is 

no need to ensure that each element of b lies within ±B /2. 

A different prior is also specified for the error variance a;. The Jeffreys prior employed 

in the previous section has the advantages that it is uninformative, invariant to changes 

in scale and can be marginalised easily. On the other hand it is an improper prior 

such that its int~gral over the positive real axis is not finite. A popular choice for scale 

parameters is the inverse gamma distribution, which can be made relatively uninforma­

tive, and reduces to Jeffreys prior as a special case. A further motivation is that it is a 

conjugate prior, as the conditional distribution for a; is an inverse gamma distribution 

(4.16), 

p(a;) 

IG(z; ex, (3) 

Jeffreys prior is obtained when ex 

modified prior dependencies, 

(4.41) 

(4.42) 

0, (3 O. The joint posterior now reflects the 

(4.43) 

The marginalisation of b and a; is performed as described in appendix B to obtain the 
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marginal posterior 

(4.44) 

The conditional distribution for eT; is an inverse Gamma distribution with a mode close 

to cltpcl/(N + 2) 

The conditional distribution for b is a multivariate Gaussian 

p(b I cl, cp, IV!, eT;, ( 2
) = N(b; rn, eT;M) 

M = ~ (GtG) - 1 
HP 

_ t _ ,,2 ~ 

rn - MG cl -I+,)2 b Is 

4.5.1 Marginalisation and joint proposals 

(4.45) 

(4.46) 

If there are high posterior correlations between model parameters then this can have a 

profound negative effect upon the convergence rate of the Markov chain. In this model, 

the amplitude coefficients b are, necessarily, highly correlated with the model parame­

ters {cp, lit} since they respectively describe the amplitudes, parameters and model order 

of the basis functions. By marginalising b some of the problems of slow convergence 

are circumvented, in the sense that updates for b are handled 'automatically' and it is 

not required to explicitly construct proposals for it. The g-prior has also incorporated 

some dependence upon the model parameters in terms of the energy of the basis func­

tions. It is generally convenient to marginalise 'nuisance variables' such as amplitude 

coefficients and error variances as they are usually of little interest, often have high cor­

relations with other parameters, and they increase the dimensionality of the problem. 

In the case of b and eT;, estimates, if required, can be easily obtained from their full 

conditional distributions. 

Suppose that the amplitude coefficients are no longer marginalised from the joint pos­

terior. For a local MH algorithm, any attempt to propose a candidate parameter cp* 
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into a different region of the parameter space, whilst keeping b constant, will have a 

low acceptance probability since it corresponds to a different set of basis functions and 

therefore a different b. In contrast, perturbation moves for cp* generally will not change 

the shape of the basis functions much and so b may not need to be updated. For all other 

moves, however, a change in the component parameters must be accompanied by an up­

date for b. This could be accomplished by sampling from the full conditional (4.46). 

The joint proposal {cp*, b*} will lead to a more efficient exploration of the parameter 

space than either parameter alone. 

4.6 Multiple frame methods 

Many signal processing applications deal with the analysis of signals over some interval 

of time or space. Frequently the signal will be of a time-varying nature and so a frame­

based analysis method is often required, where the parameters are considered constant 

across each frame and the frames are analysed independently. In this section, it is shown 

how a prior expectation of the high correlations between the parameters of adjacent 

frames can be exploited in a Bayesian modelling framework. 

There are several factors involved in selecting a suitable analysis interval in a conven­

tional frame-based analysis method. As the frame length is increased, the variances of 

the parameter estimates are reduced, in the limit, towards the Cramer-Rao lower bound. 

This often carries an extra computational cost if the parameter estimation scheme is not 

O(N). If the signal behaviour changes significantly over time then this can reduce the 

accuracy of the parameter estimates since the original model is no longer strictly correct. 

The choice of N is chosen to trade off accuracy against the rate of time-variation of the 

parameters [60]. Additional constraints on frame size may appear due to the choice of 

basis functions, for instance to capture low frequency behaviour. 

For a large class of signals, the parameters are expected to vary in a slow or well-defined 

manner over time. It is desired to capitalise upon this prior expectation in the model 

structure. One possibility is to explicitly model the entire signal and its time-varying 

parameters. This is likely to lead to a complex model whose parameters are difficult 
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Figure 4.4: A,lsimple graphical model. Statistical dependencies are shown by directed arrows 

such that the parent node points towards the child. 

to estimate. Additionally, the observation consists of a large number of data points 

which requires an O(N) estimation scheme to be efficient. An alternative methodology 

is to assume that the parameters are sufficiently slowly varying such that they can be 

held constant across the duration of a frame. This constant parameter is subsequently 

estimated inside each frame. 

There are several ways in which the dependencies between the parameters in different 

frames can be specified to express the prior expectations. In the next section the concept 

of graphical modelling is introduced as a representation for these dependencies. 

4.6.1 Graphical models 

Graphical models are a convenient method for the representation of the dependencies 

between observations, model parameters and their hyperparameters. They are of partic­

ular benefit as the model increases in complexity, as it affords much simpler reasoning 

about the parameter dependencies. 

Figure 4.4 shows an example of a simple graphical model - each node represents a 

stochastic variable which may be an observation or may be a parameter. The nodes are 

connected by directed arrows and form a directed acyclic graphs. Each arrow denotes 

5More complex forms of graphical models are also possible which are capable of representing deter­

ministic nodes and constants, and distinguish between unknown and observed variables. 
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(a) (b) 

Figure 4.5: Figure (a) shows the Markov blanket of node a as a directed acyclic graph (DAG). 

The corresponding undirected conditional independence ('moral') graph is shown in (b). 

a statistical dependence, i.e., the probability distribution of that variable is conditional 

upon the parents of that node. In the example, a and b are parents of d (a is b's coparent) 

which means that the conditional distribution for d is dependent only on a and b: 

p(dl·)=p(dla,b) (4.47) 

If the set of all nodes is V, the joint distribution for V is: 

p(V) = IT p(vlparents[v]). (4.48) 
vEV 

In order to simulate a Markov chain (e.g. via the Metropolis-Hastings algorithm) for 

the purpose of Bayesian inference, it is required to sample from the full conditional dis­

tributions of each parameter. If the set of all nodes except v is V_{ v}, the full conditional 

distribution for v can be written, 

p(v I V_{v}) ex: all terms containingvinjoint distribution 

ex: p(vlparents[v]) IT p(wlparents[w]). 
(4.49) 

WEchildTen[v] 

The variables which appear in this expression are the Markov blanket of v. As an 

example, the Markov blanket for a is shown in figure 4.S(a) by the shaded nodes. 
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Figure 4.6: Independent frames . 

. ~ 

The benefits of this graphical approach also allow for the possibility of an automatic 

tool for Bayesian inference - in fact, such software exists, BUGS [137, 148] being 

one such example. By specifying probability distributions which can be sampled from 

easily, a Gibbs sampler can be implemented automatically. The ability to obtain full 

conditional distributions in this manner is also beneficial for efficient implementation of 

the Metropolis-Hastings algorithm since the ratio of posteriors in the M-H acceptance 

function reduces to the ratio of the full conditionals for the updated parameters (§3.4.3). 

It is useful to note that nodes with no ascendants usually have prior distributions which 

are constant, and so the constants describing the distributions are usually omitted in the 

interests of clarity. Spiegelhalter et al. provide an interesting case study into the use of 

graphical models [138]. 

The dependencies can be made more explicit by forming an undirected conditional in­

dependence graph, also known as a moral graph. It is constructed from the directed 

acyclic graph by dropping directions and marrying parents ('moralising'). Conditional 

independence is observed through separation. The Markov blanket of node a is shown 

in the moral graph of figure 4.S(b). Node a is connected directly to each variable in its 

Markov blanket. Variables {i , b} are conditionally independent given (that is, separated 

by) f. 

For multiple frames of estimation there are several configurations which might be em­

ployed, as illustrated in figures 4.6-4.8. 
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Figure 4.7: Markovian parameter dependence. 

4.6.2 Independent frames 

In the first configuration, each frame of data is analysed independently of the others 

(figure 4.6). It is the simplest and most naIve approach since it makes the fewest as-

e d h . 2 sum ptions a bout the variation of the model parameters i an t e error vanance (J" e i • 

In a typical time-varying signal processing problem, the parameter inferences over time 

may be tracked or plotted, and further inferences about long-term behaviour made. 

This approach does have the disadvantage that inferences are made at two different 

levels and that Rnowledge assumed or inferred about the long-term behaviour cannot 

affect the low level estimation. 

4.6.3 Markovian dependence 

One way of incorporating basic assumptions about the variation of parameters over 

time is to impose a Markovian dependence between parameters in successive frames 

(figure 4.7). The fundamental assumption of this model is that the parameters vary 

slowly between frames such that the value in one frame is close to that in the previous 

frame. The prior distribution for the parameters is centred upon the estimate obtained 

from the previous frame, with a spread parameter reflecting the expected rate of varia­

tion. This approach is still quite simple to implement as it requires only the specification 

of a different prior to the independent frames method. A further advantage is that a low­

latency implementation is possible (determined by the frame length). The simplest first 

order Markovian dependence means that each estimate of the parameter embodies all 
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Figure 4.8: Hierarchical parameter dependence. 

of its previous history, hence trajectory information cannot be represented unless higher 

order Markovian dependencies are used. 

Hierarchical dependence 

A more powerful approach to ll1Ultiple frame modelling is to explicitly specify a model 

of the parameter variation over time. Variational hyperparameters are employed to de­

scribe the evolution of the parameters over time (figure 4.8). These may reflect prior 

knowledge of the parameter variation in terms of a static prior distribution, or knowl­

edge of the time-varying characteristics of the parameter, for instance constant, linear or 

autoregressive. The parameter space of the model is augmented by these hyperparam­

eters and estimation of the parameters in each frame and also the hyperparameters is 

performed simultaneously. In many applications these may be of more interest than the 

parameters themselves as they describe the underlying variation of the parameters. The 

use of hyperparameters to strengthen the inference for multiple components is known as 

parameter tying in graphical models. A set of Nf successive frames are grouped together 

into a block and, since these are all estimated jointly, this form of analysis will have a 

greater latency than the independent or Markovian methods. The next section will 

be devoted to discussion of this hierarchical modelling scheme for a single component 
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Figure 4.9: The function f (b.. !jJ) i) provides a prior estimate of the parameter cp in frame i. 

Figure 4.10: Graphical model for a single component GLM employing a g-prior for h. 

general linear model. 

4.6.4 Hierarchical multiple frame models 

There is a great deal of flexibility regarding the specification of prior information about 

the variation of the model parameters. One option which is quite generic is to envisage 

a predictor function f (!:::::. !jJ) i) which generates estimates ii of the parameter CPi as a 

function of frame number i (figure 4.9). The prior distribution of CPi is a distribution 
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Figure 4.11: Graphical model for a single component multiple frame GLM with marginalised 

amplitudes and error variances. 

centred upon f(ll<jJ, i) with spread parameter a~, for instance a Gaussian, 

(4.50) 

The variational hyperparametersll<jJ are chosen according to the type of the predictor 

function. The simplest case is for a prior which is constant over the block, f(ll <jJ, i) = k<jJ 

corresponding to ll,p = {k<jJ}. A linear variation could be represented by f (ll<jJ , i) 

k<jJ(l + m<jJi) where ll<jJ = {k<jJ, m<jJ }. 

In many cases, specific knowledge of the absolute values of the parameters will not 

be available. More commonly though, knowledge about the likely variation will be 

available, for instance that the rate of variation of the parameters is constrained to be 

low. In this instance the hyperparameters describing ll <jJ can be regarded as unknowns 

to be determined along with the other parameters. 

A key assumption embedded within this model structure is that the error variance a;i 
within each frame is a priori independent. This is important as it means that the frames 
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are conditionally independent given the variational hyperparameters {lle, an and also 

the error variance can be marginalised in each frame. The likelihood of all frames is the 

product of the likelihood of each frame and the likelihood is not dependent upon the 

variational hyperparameters, 

Nj 

p({di} I {(ha;j,lle,a~) = ITp(diIOi ,a;J (4.51) 
i= l 

The joint posterior is hence obtained 

p( {Oi, a;j, lle, a~ I {di }) ex p( {dJ I {Oi, a;j, lle, a~) p( {Oi, a;j, lle, a~) 

Nj (4.52) 
= IT (p(diIOi, a;J p(Oillle , a~,a;J p(a;J) x p(lle,a~) 

i = l 

General linear model 

Considering the general linear model form introduced earlier, the graphical model for 

a single frame is depicted in figure 4.10. The amplitudes and error variance can be 

marginalised as before to obtain the model structure shown in figure 4.11. The ba­

sis function para~eters cPi are assigned a Gaussian prior whilst the model order prior 

p(.N1i I llM' a~!f) must be a discrete distribution, for instance Poisson or a truncated, dis­

cretised Gaussian. 

It is assumed that the variational hyperparameters for each component are a priori 

independent, 

(4.53) 

In order to simulate a Markov chain with the joint posterior of all block parameters as 

the stationary distribution, the Metropolis-Hastings algorithm is once again employed. 

Its efficient implementation requires careful choice of transition kernels and proposal 

densities. Initially, attention is turned to the full conditional distributions of the model 

parameters. 

The full conditional distributions for the model parameters and hyperparameters can be 

obtained simply by appealing to the structure of the graphical model (from eq. (4.49)). 
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The number of terms in the conditional can be reduced by considering only those in the 

Markov blanket of the parameter of interest. Firstly for the parameters in each frame, 

p( 1>i 1-) = p( 1>i I d i) Jl1i) 6 41) a~) 

ex: p( d i l1>i) Jl1i) p( 1>i 1641) a~) 

p(Jl1i l-) = p( NIi I di ) 1>i) 6 M) a~l[ ) 

and for their hyperparameters 
.1 

ex: p(di l1>i) Jl1i) p(NIi 16M) a~l[ ) 

p(641 1-) = p(641 I {1>i}) a~) 

ex: p( {1>i} 16 41) a~) p(641 ) 

p(a~ I-) = p(a~ I {1>i}) 6 41 ) 

ex: p( {1>i} 1641) a~ ) p( a~). 

The full conditionals for 6 M and a~1[ take on a similar form. 

Choice of predictor function 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

For many types of signal, it is . likely that the variation of parameters with time will 

be sufficiently slow to be adequately modelled by a constant or linear prediction func­

tion. Naturally, if the longer term behaviour is well structured, more esoteric prediction 

functions may be appropriate. Other potential forms include sinusoids, AR models and 

splines, but usually the motivation for a particular form comes from knowledge of the 

underlying physical behaviour of the system. In some applications, it may be that the 

variational hyperparameters are in fact of direct interest in the inference, e.g., for de­

tecting trends. The constant and linear prediction functions are now considered, and it 

is shown how they may be integrated into the MCMC simulation scheme. 

Constant prediction function 

The prediction function is taken to be f (6 41) i) = k41' with hyperparameter 6 41 = {k41 }· 

The a priori distribution for the hyperparameter k41 could be perhaps uniform over a 
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range of expected values or some other distribution centred upon (for instance) the k41 

estimate from the previous block. Assuming a Gaussian prior for 1>, the full conditional 

for 6 41 is 

(4.58) 

The exponential term can be written as a Gaussian distribution of k41 ' 

(4.59) 

hence the full conditional for k41 is 

(4.60) 

If the prior is diffuse then the mode of this distribution is E[1>iJ. 

If an inverse gamgIa distribution is adopted for the prior p(a~ ) = IG(a~; CY.41) (341 ), then 

this yields a full conditional which is also inverse gamma 

(4.61) 

The mode of this distribution is close to -

Linear prediction function 

An alternative to a constant predictor is a linear predictor, which has a number of 

benefits. Having an extra degree of freedom, the function would naturally produce a 

better fit to the parameters than a constant predictor without excessive overfitting. It 

also means that the parameter values over each block can be made piecewise linear 

continuous (PLC) such that the values over subsequent blocks of Nf frames can be 

aligned. Constraints could potentially be put on the prior probability distributions of 
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the hyperparameters to reflect this extra information - this step is simply extrapolating 

from the assumption of predictable behaviour over Nf frames to longer time-scales. 

The prediction function is written as f (6..4>, i) = k4> + m 4> (i - N ), with hyperparameters 

6.. 4> = {k 4> ' m4> } and N = (Nf + 1)/2. This parametrisation is chosen since it makes 

the conditional posteriors of k4> and m 4> conditionally independent; this occurs since 

changes in m 4> cause a rotation about (k4>' N ) rather than about the origin. Expanding 

the quadratic term in the full conditional firstly as a quadratic in k4> 

Nf 
~ - 2 ~(<pi - k4>-m4> (i - N)) 
i= l 

Nf Nf 

= L(<Pi - m 4> (i - N)) 2 - 2k4> L(<Pi - m 4> (i - N)) + Nf k~, 
~l ~l 

( 

Nf <po ) 2 

= N f k4> - L N
2 + C 

i= l f 

(4.62) 

and so the full conditional for k4> is a product of its prior and a Gaussian as in the 

constant predictor case 

( 

N f ,.h 2) 'f'i a 4> 
p(k4> l{ di } , ·) ex: p(k4» x N k4>; L N ' N 

i=l f f 

Similarly expanding as a quadratic in m4> 

N f 

L(<Pi - k4>-m4> (i - N)) 2 
i=l 

i=l 

(4.63) 

(4.64) 

(4.65) 
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There is therefore little extra computation penalty in using a linear prediction function 

model, since the sampling step would only require two draws from univariate Gaus­

sians, which can be done efficiently. When the prior isn't very diffuse and the Gaussians 

are used as proposals for a Metropolis-Hastings step, acceptance of the proposal is a 

function of the ratio of full conditionals which can be calculated much more efficiently 

than the full joint posterior. 

4.7 Transition kernels for multiple frame methods 

A naive implementation of the Metropolis-Hastings algorithm for the multiple frame 

model would simply iterate through the update moves for each parameter and hyperpa­

rameter in turn. The effect is that each frame samples its parameters using conditional 

independence, independence and perturbation steps as before (see §3.4.3), whilst the 

hyperparameter updates adapt to the mean of the values in each frame. 

Convergence for this algorithm could be slow if there is an outlier or a second interfering 

component in one of the frames, as this will distort the value of 6.. 4> from the mean of the 

parameter values which are close together. Moves towards the global maximum may in 

fact be rejected since there are high posterior correlations between {NId and 6.. Jv[ and 

between {<Pi} and 6.. 4> , so the proposal of a new parameter value should be accompanied 

by an update of its hyperparameters. It is also inefficient as the assumption of slowly 

varying parameters is not being fully exploited. A more efficient scheme is possible 

by recognising the dependence between the parameters { <Pi } and their hyperparameters 

{6..4>' an such that a move is proposed jointly for them. 

For the purposes of producing an efficient proposal distribution, the correlation be­

tween the parameters is made more explicit. A reparameterisation is employed <Pi = 

f(6.. 4> , i) + ~i which represents the value of the parameter in each frame as a deviation 

from the predictor f (6.. 4> , i). The likelihood in each frame is now a function of 6.. 4> and 

~i ' The full conditional for 6.. 4> therefore is dependent upon all the observations {dd, 

(4.66) 
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A conditional independence sampling distribution for t:.r/> can be produced from this full 

conditional by evaluating it for a range of values of t:.r/> with the deviations ~i set to zero. 

A proposal distribution q(t:.~) is therefore formed 

(4.67) 

which is conditionally independent upon the current model order terms {Mi }. The 

proposal value is sampled from it 

(4.68) 

.1 
Proposals for the other parameters can be generated from their full conditionals using 

the proposed hyperparameter but with a fixed variance6 a;rop 

CP: rv q( (/J: ; t:.;) 

q( CP: ; t:.;) = p( CP: I t:.;, a;rop) p( di I CP:, l\I[n 
(4.69) 

Finally an update move for (a~)* is proposed 

(4.70) 

where q((a~)*;.) is the full conditional (4.61). This joint updating scheme is sum­

marised in algorithm 4.2. 

The main computational burden of this method is the generation of candidate values 

for the t:.~ proposal (4.67). This requires the marginalised likelihood p(di I CPi, A1i) to be 

evaluated for each frame. This expression also appears in the full conditional of each CPi 

and so great computational savings can be made by firstly calculating the marginalised 

likelihood separately for each frame. The hyperparameter proposal distribution is then 

formed from the product of the likelihoods and the hyperparameter prior and then the 

parameter proposals can be produced from the product of the likelihoods and their 

pnors. 

Major efficiency savings may also be made if the distribution q(t:.~) is calculated initially 

using a value l'.1i which is held constant over all frames, perhaps taken from the mean 

6This is necessary because the basis function parameters should be independent of the current state, 

and so (a~)k should not be used. A scheme which selects from several fixed values of agrop could also be 

employed, as described in §4.3. 
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of the prior. The proposal could be evaluated for a range of values over the support of 

CPi ' If it is expensive to calculate a large number of points then it may be possible to use 

fewer points and then create a piecewise linear distribution, which can subsequently be 

sampled with a very small overhead. The ratio of transition probabilities required for 

evaluation of the M-H acceptance function is 

q( t:.~) q( (a~)k ; t:.~, {cpf}) 11 q( cp7 ; t:.~) 
q(t:.~) q((a~)*; t:.~,{cpi}) lliq(cpi; t:.~)' 

Algorithm 4.2: Joint update move for basis function parameters 

function: Block update: { {CPi}, t:.r/>, an 

Generate proposal distribution q(t:.~) for current {Mi} 

t:.~ rv q(t:.~) 

for i = 1 .. . Nf do 

cpi rv q( cpi ; t:.~) 
end for 

(a~)* rv q((a~)*; t:.~, {cpi}) 
MH-accept(l1*, (}k ) 

(4.71) 

The update move for the model order parameters follows similar lines. For given {CPi} a 

proposal distribution q(t:.ivI) can be generated using several values of t:.M. Matrix parti­

tioning techniques for efficiently evaluating extra basis functions may be useful here, as 

discussed in appendix A. Perturbation steps for {Mi} from a distribution q(Mt ; t:.M) 
and an update of (a~)* then follow. 

These block update moves from the parameters and model order may also be combined 

with perturbation moves separately for each Mi and CPi. This allows the parameters 

to adapt to the local variation in each frame. On each iteration there is a probability 

Ablock that the block update move is chosen, otherwise local updates are employed. 

The local updates are perturbation steps where a candidate value is sampled from a 

distribution centred upon the current value and then accepted according to the M-H 
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acceptance function. The hyperparameters are then updated by sampling from their full 

conditionals. This method is summarised in algorithm 4.3. 

Algorithm 4.3: Single component multiple frame Metropolis-Hastings scheme with local and 

joint update moves 

for n i = 1 ... Niter do 

u rv 1IJ[O,l) 

if (u < Ablock ) then 

Block uf date { {cPi }, .6. </>, O"n 

Block update { {Mi } , .6. M , O"~!{ } 

else 

for i = 1 .. . N f do 

Perturbation update cPi 

Perturbation update ]l,1i 

end for 

Update .6.</> , O"~ 

Update .6. M , O"~!{ 

end if 

end for 

4.7.1 Multiple frame simulation 

An example is now presented to illustrate the use of the multiple frame model. The 

model is used to represent a rectangular pulse in white Gaussian noise whose width y 

is unknown and whose location in each frame Xi is known to be approximately con­

stant with mean c and variance O"~ which are also unknown. Extra rectangular pulses 

are added in two frames of data to simulate a typical application where the signal is 

prone to crosstalk or echoes. The estimation task is to find the MAP estimates of 

{c, O"~, y , b, {Xi }Nj }? 

7The order of this model is fixed, Mi = I , 'Vi. 
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Figure 4.12: Rectangular pulse data used for multiple frame example. Frames 2 and 3 also 

contain interfering pulse components. The MAP estimate model reconstructions are shown as 

dotted lines. 

The basis function' of the rectangular pulse is 

(4.72) 

The projection term d~Pidi in the integrated likelihood (4.44) can be considerably sim­

plified for this basis function 

lid 11 2 _ 6
2 11 L:~:;, di (x)11 2 

l (1 + ( 2) Y (4.73) 

The projection can also be calculated for candidate values of Xi = 1 .. . N for a given y 

by performing the convolution of a vector of ones of length y with the data, as described 

in §4.3.1. The method of algorithm 4.3 is employed using a combination of joint up­

dates over the entire block (for {c, O"~, {Xi } Nj}) and perturbations of {Xi } Nj followed by 

hyperparameter updates. 

The data used in this example is shown in figure 4.12. A set of rectangular pulses with 

start locations centred upon a mean value c = 139 were generated and white Gaussian 
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Figure 4.13: Output of the Markov chain for the hyperparameter c and location parameters Xi· 

noise was added. The signal-to-noise ratio in each frame was approximately -3dB. In­

terference pulses of similar amplitude were added in two of the frames. The output of 

the Markov chain for the hyperparameter c and parameters Xi is shown in figure 4.13. 

The joint update move executed on the first iteration succeeds in locating the correct 

region of the posterior distribution for c and { Xi }' Detection of the interfering terms 

is suppressed by virtue of a sufficiently low choice for (}~rop (25 in this instance). A 

method which estimates each frame independently or even with a Markovian depen­

dence may be likely to detect the strong interfering components of frames 2 and 3. This 

method however, which explicitly assumes that the pulses occur at similar locations 

in each frame, detects the correct locations jointly. The MAP estimates for the model 

parameters were taken from the state of the Markov chain with the highest posterior 

probability. The reconstructions formed from these estimates are shown in figure 4.12 

superimposed over the data with dotted lines. All were within one sample of the correct 

values. 
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4.8 Conclusions 

The single component general linear model is a flexible model for many applications. 

This chapter has detailed its formulation and simulation-based techniques for parame­

ter estimation. Complex models can be computationally expensive to simulate and so 

particular attention has been paid to the choice of efficient transition kernels within a 

Metropolis-Hastings algorithm. Prior knowledge of the model structure is employed to 

produce efficient blocking schemes and transition kernels. 

The extension of the basic model to deal with time-varying signals has been addressed, 

exploiting the high correlations which typically occur between adjacent frames of data. 

A hierarchical graphical modelling framework was introduced to express the functional 

form of the time variation of the parameters. On the assumption that the parameters 

vary slowly over time, an efficient joint update move can be implemented for the corre­

lated parameters. It is often the time-varying behaviour of signal parameters which is 

of interest, and in this framework it is possible to model this behaviour explicitly rather 

than conduct independent-frame analyses and then make inferences on the results. Even 

longer term behaviour may be modelled by specifying Markovian hyperpriors such that 

the variational hyperparameters are a priori dependent upon the inferred value in the 

previous block. ~ 

The common assumption of a Gaussian error is not always justifiable in real-world 

applications and there may be 'intelligible' noise in the signal which is of a similar form 

to the desired component. There are several solutions to this limitation: use of a more 

appropriate error model, use of a multiple component model (discussed in chapter 5), 

or use of a single component model robust to this form of error. An example has shown 

how this may be achieved for a single component multiple frame model. Knowledge of 

the expected time-variation of the parameters is exploited to specify proposal densities 

for joint update moves. 

A final benefit of a multiple frame approach is that it can actually be substantially more 

efficient than a method which analyses frames independently. The multiple frame tech­

nique exploits the redundancies inherent in data whose characteristics have high corre­

lations by searching explicitly for the commonality rather than estimating parameters 

first and then finding common characteristics as a post-processing step. 
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Detection and Estimation of 

.Multiple Component Models 

5.1 Introduction 

5 

In chapter 4 a modelling framework for a single component signal was presented. In 

this chapter, the model is generalised to signals which consist of an additive mixture 

of a number of different components. There are two motivations for this more general 

model. Firstly, the detection and estimation of multiple signal components within a mix­

ture is an important signal processing problem with applications in audio processing, 

communications and image processing. The second motivation is that many ostensibly 

single component signals found in practical applications deviate substantially from the 

assumptions inherent in a single component model, particularly that the observation 

can be modelled as a single component with a Gaussian error. There are many effects 

in 'real-world' signals which cause this deviation from ideal behaviour, of which some 

of the most common are: 

• Interfering components: one component is prominent in the mixture but others 

are present at a lower level, e.g., due to crosstalk or the inability at the source 

to isolate a single component entirely, as with desktop microphones picking up 

nearby speakers 

• Non-linearity: distortion in the signal path or the characteristics of a transducer 

may introduce extra components which are correlated with the component of 

interest but which are not represented in the model 

• Modelling error: the model is generally idealised and will have made a number of 

simplifying assumptions about the nature of the data 
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The effect of all of these is that the assumption of a Gaussian i.i.d. error term may no 

longer be tenable. The multiple frame methods of chapter 4 show how the non-ideal 

conditions of real-world signal processing may be countered by exploitation of the prior 

expectations of the time-varying behaviour of the signal. In many cases, however, it 

is preferable to recover all of the interesting signal components from a mixture and 

perform inference at a higher level as to whether the component is really of interest. 

This chapter describes methods suited to the analysis of signals which are composed of 

linear mixtures of multiple homogeneous or heterogeneous components. The number 

of each type of component (if any), their model orders and parameter values are all 

unknown a prpri. 

In section 5.2 the multiple component general linear model is formulated and posed in a 

Bayesian framework. Section 5.1 describes how MCMC methods may be applied to the 

parameter estimation problem, and in particular the use of reversible jump techniques 

for dealing with variable numbers of components. A major emphasis is put on the 

development of efficient techniques for multiple component detection and estimation to 

make real-time MCMC simulation viable. A heterogeneous mixture example follows in 

section 5.4. Section 5.5 extends the multiple component model to time-varying signals, 

expressed in terms of a Bayesian graphical model extending across multiple frames with 

correlated parameters. 

5.2 The multiple component general linear model 

5.2.1 Model formulation 

The general linear model of section 4.2 can be generalised for a multiple component 

signal, 

d = LGqbq +e. 
qEIQ 

(5.1) 

There are a maximum of Q components, each of which can be 'switched into' the model 

when a binary indicator variable r q is true. The set of all component indices which are 
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switched on is Q = {q : r q = 1, q = 1 ... Q}. The corresponding model composition 

is written as M IQ such that p(MIQ ) = p( {rq}). The parameters of this model are {eq}1Q 

where eq = {bq, CPq, Mq}.l 

For compactness of notation therefore, the joint posterior distribution over all candidate 

models is written as p(MIQ' {eq}lQ, a:ld). This representation follows that of Green's re­

versible jump [58] (amongst others) where a posterior probability distribution is defined 

over the union of the products of each candidate model and its parameters. All inference 

is then based upon this distribution. 

It may be noted that the sum of a number of GLMs can itself be written as a single 

GLM by extending the number of columns in the basis matrix since a GLM is defined 

as the sum of a number of basis functions. Therefore the question arises as to how 

to determine the best grouping of basis functions into components. The intuitive solu­

tion is to group the basis functions by their statistical or logical dependencies. Gestalt 

grouping principles (see §2.4.4) may be employed for data which has a perceptual sig­

nificance. Such principles include similarity (proximity in time, space or parameters), 

common fate (characteristics common to a number of elements), and good continuation 

(favouring smooth variation over large jumps). 

For instance if a m"Odel is created to represent a stream of rectangular pulses then this 

would be regarded as a single signal component if the pulses have a common shape 

function and regular spacing. Conversely, a stream of pulses with different shapes and 

irregular spacing share few attributes and so would be considered as separate com­

ponents. In theory any grouping of the parameters could be chosen, but much more 

efficient algorithms can be produced if the parameters with high posterior correlations 

are grouped together. 

For the model composition MIQ the model equation (5.1) is rewritten in terms of a single 

GLM by forming the composite basis matrix GC and corresponding vector of linear 

coefficients bC, each constructed as the concatenation of the components q E Q. The 

indexing variable l is introduced, such that Q = {h, l2,' .. ,lNQ}, h < l2 < ... < lNQ' 

lThe following shorthand is used to denote the parameters of all model components currently in­

cluded, {Bq}Q = {Bq : q E \Q}. 
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G C = [Gl1 G l2 ... GlNQ l 

bC = [bf bf .. , bf It 
1 2 NQ 

The data is therefore expressed as 

(5.2) 

(5.3) 

which for a fixed model composition is a function of only the parameters in M IQ! , that 

is {6)Q} 1Q! . 

.1 

5.2.2 Bayesian formulation 

Predictably, the estimation task is much more difficult than it is for a single component 

model. It is desired to determine which of the Q components are present in the model 

(i.e., a subset selection problem), and for each of these components, the parameters 

of Gq, the amplitudes of each basis vector b q and the number of columns JvIq. The 

estimation task now encompasses model subset selection, model order selection and 

parameter estimation. In the words of Richardson and Green [119], "the number of 

things you don't know is one of the things you don't know". 

The size of the parameter space is now much larger than the single component GLM 

model- there are 2Q candidate models, each with unknown parameters and model size, 

and so an exhaustive search of the parameter space is clearly infeasible. In this section 

an expression is produced for the joint posterior distribution which will subsequently 

be employed in the parameter estimation. 

The likelihood expression for the multiple component model is written in terms of the 

error e 

p(d I M Q, {O' J<" "D = (2",,;) -% exp [-I~~n 
e = d- LGqbq. 

qEIQ! 

An expression for the joint posterior can be obtained from Bayes' theorem as 

(5.4) 

(5.5) 
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and the adopted prior structure is 

(5.6) 

The dependence upon the state of prior knowledge I is implicit and omitted for brevity 

(see §3.3). The error variance is given an inverse gamma prior, 

(5.7) 

It is convenient to partition the parameters of each component as eq = {(jq , bq} where · 

(jq = {<jJq, 1I1q} since the amplitudes are to be marginalised. The basis function parame­

ters (jq are assumed a priori independent, 

p( {eq} 1Q! I M IQ!, 0-; ) = p( {bq} 1Q! I {(jq} lQ! , M IQ!, 0-;) IT p( (jq) (5.8) 
qEIQ! 

From the composite general linear model (5.3) a prior for the amplitudes is defined for 

the composite amplitude vector b. A g-prior is used which is relatively uninformative 

and has useful analytical properties, as described in the previous chapter. 

~C 

N(O , o-;~C ) 

62 (GctG c)- 1 

(5.9) 

If the basis matrices are orthogonal to each other, i.e., where GitGj = O[MiX Mj]' i i- j 

then this is equivalent to ascribing independent priors p(bq I (jq, 0-; ) = N (0, o-; ~q) where 

~q = 62 (Gq tGq)-1 for q E Q. Following the marginalisation of this composite ampli­

tude vector and also the error variance 0-; , the marginal joint posterior is obtained. The 

marginalisation is detailed in appendix B.1. 

(5.10) 

qEIQ! 

p c = I _ ~GC(Gc tGC ) -lGc t. 
N 1 + 62 

(5.11) 



134 5. Detection and Estimation of Multiple Component Models 

The prior probability of the model composition M cQ is 

(5.12) 

In the instance that all components are of the same type and are a priori independent, 

this simplifies to p(McQ ) = TI~=lP(rq). Typically a Bernoulli prior is employed, p(rq) = 

(arq )rq (1- arq )(1- r
q
) as this allows us to assign an independent prior probability for the 

inclusion of each component. A Poisson prior on the number of components is more 

commonly found in the literature (e.g., [5, 23]). This model is intended to be more 

generic insofar as heterogeneous as well as homogeneous component mixtures may be 

represented. F<;ir heterogeneous mixtures it is generally not meaningful to reason a 

priori about the total number of different components. A further reason for the choice 

of Bernoulli priors is that each component may have established a 'context' in previous 

observations and it is desired to track the evolution of individual components over time. 

Hence it is more important to reason about the evolution of a collection of individual 

components rather than the evolution of their number. 

5.3 Simulation and inference 

The posterior distribution is defined over the union of the product of each model and 

its parameters, for notational simplicity, the shorthand 'ljJ = {M cQ' {eq} cQ } is introduced 

to refer to the model state. A Markov chain is simulated with the desired posterior dis­

tribution as its stationary distribution. The method employed is in the spirit of Green's 

reversible jump [58] and Carlin and Chib's composite model space [17]. The algorithm 

follows similar lines to that of Godsill's variable selection [51] and the sinusoidal esti­

mation technique of Andrieu and Doucet [5], where transitions are performed between 

different subs paces according to the number of components included within the model. 

As the parameters of each component are assumed to be more highly correlated with 

each other than with other components (reflected in the choice of independent or con­

ditionally independent priors), the blocking scheme adopted is that parameters of each 

component are updated together. More sophisticated update moves to split or combine 

pairs of components could also be incorporated (for instance see [119, 5]). 
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The basic method, employing the Metropolis-Hastings algorithm, for a multiple signal 

component model is shown in algorithm 5.1. Upon each iteration all components are 

updated. With probability Aswitch the model composition is updated by trying to switch 

the component on or off (discussed later) and with probability (1 - Aswitch) the compo­

nent parameters gq are updated. This section and the next will discuss this parameter 

update move. 

Algorithm 5.1: Metropolis-Hastings algorithm for multiple component signals 

initialise 'ljJ0 = {M~, {e} ~ } 
for iteration k = 1 ... Niter do 

for component q = 1 ... Q do 

u f'V 1U[O,l] 

if U < Aswitch then 

Birth-Death( q ) 

else 

if rq = 1 then 

Update eq 

end if 

end if 

end for 

end for 

The form of the eq update move is shown in algorithm 5.2. There is a non-deterministic 

choice between three types of transition: an independence step, conditional indepen­

dence step and perturbation step. The motivation for using each of these transition 

types is discussed in §3.5 and some specific examples for parameters of the generallin­

ear model are highlighted in §4.3. The independence sampling step draws a proposal 

from a distribution which is independent of the current state and the perturbation step 

draws a sample from a distribution centred upon the previous state. There is a great 

deal more flexibility in the treatment of the conditional independence step, which is now 

considered. 
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Algorithm 5.2: Parameter update move for the multiple component algorithm 

function: Update iJq 

u rv U[O,l] 

if u < \nd Wen 

iJq* rv qind (iJq*) 

else if u < Aind + Acond then 

iJq* rv qcond (iJq* ; {iJq} ~ {q}) 

else 

e-q* (e-q* . e-qk ) rv qpert , 

end if 

MH-accept( 'IjJ*, 'ljJk ) 

function: MH-accept( 'IjJ*, 'ljJk ) 
* k _ . ( p('IjJ*ld)q('ljJk;'IjJ*)) 

evaluateQ('IjJ,'IjJ) -mm l'p('ljJk Id) q('IjJ*;'ljJk) 

draw v rv U[O,1] 

if v < Q('IjJ*, 'ljJk) then 

accept proposal 'ljJk+l = 'IjJ* 

else 

keep old state 'ljJk+1 = 'ljJk 

end if 
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By separating the contributions of each component to the model, it is possible to draw 

a proposal from the full conditional distribution of each component 

(5.13) 

This distribution is conditional upon the current state of the other components {iJq}_{q} 

and the current model composition MIQ. The full conditional can be obtained from the 

joint posterior 

(5.14) 

but since the denominator is not a function of iJq, it will cancel out in the MH acceptance 

function, so the full conditional is proportional to the joint posterior. In fact, it is only 

required to consider the terms of the joint posterior which are functions of iJq. This can 

potentially result in more efficiency savings by eliminating unnecessary calculations. 

However, in this instance a large matrix inversion is still required to calculate the joint 

posterior, eq. (5.10). The matrix pc is a function of {iJq}1Q and its construction requires 

the inversion of G~Gc where Gc is the composite basis matrix discussed earlier. Some 

efficiency gains can be made by partitioning Gc (see appendix A), but this still involves 

a large matrix inversion. Much greater savings can be achieved by a reformulation of 

the model. 

5.3.1 Residual methods for mixtures of GLMs 

An intuitive approach to the analysis of a multi-component signal would be to produce 

iteratively estimates for each component in turn, subtract the estimated component from 

the data, and then continue for the next component using the resulting residual. This is 

the spirit of the approach described in this section, except that the Metropolis-Hastings 

algorithm is more sophisticated than a simple iterative algorithm - such a method 

would perhaps optimise the parameters one at a time and would be likely to get stuck 

in local maxima. Stochastic methods such as MCMC help to overcome this problem by 

making the entire parameter space accessible rather than simply heading towards local 

maxima. Li and Djuric [79] describe an alternative deterministic scheme that iteratively 

evaluates the conditional distributions for each component, circumventing the need for 

integrations over high dimensions. 
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When considering component q, the residual r q is formed from all the other components 

currently included in the model, and express the error in terms of the component q 

parameters and its residual, 

r q = d- L Gq'bq' 
q' EIQ 
q'#q 

... e = iq-Gqbq 

(5.15) 

such that a single GLM is formed. This last equation is used as the model equation, and 

marginalisation of b q and er; is performed to obtain an expression for the conditional 

posterior .it 

(5.16) 

Ideally, it is desired to use this expression in place of the joint posterior (5.10) since the 

residual formulation can be calculated much more efficiently - the resulting matrix in­

versions will be O((lIJq)3) rather than O((L:qE lQ lIJq)3). However, the above expression 

corresponds to a different model from the one which was initially of interest, since b q 

has been marginalised independently for each q, rather than marginalising a composite 

vector be for all components simultaneously. It transpires that, if the basis matrices are 

approximately orthogonal with respect to each other, the following approximation may 

be made 

(5.17) 

so that the conditional posterior expression (5.16) may be used, instead of evaluating 

the entire joint distribution. The justification for this relation is detailed in appendix B.3; 

essentially it exploits the orthogonality of the components since the energy of the sum 

of components is equal to the sum of the energies of the individual components. 

Furthermore, if the columns of the basis matrix Gq are approximately orthogonal and 

N is large such that (GqtGq)-l ~ kcIM then 

(5.18) 

This expression can be even more efficient to calculate as it doesn't require a matrix 

inversion, and can be of great use for the design of efficient transition kernels. If a fast 
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method of calculating the projection of a basis function onto data is available, this may 

be employed to calculate IIGqtrql12 for a range of parameter values (this is illustrated 

for several types of basis function in §4.3 and §5.4). Hence a piecewise linear contin­

uous approximation to the conditional posterior may be made very efficiently which 

could then be used as an independence sampling distribution. Independence samplers 

[149] are very beneficial as they improve the mixing of the Markov chain by reducing 

serial correlations and can produce rapid convergence to the posterior distribution. Dis­

crete Fourier Transforms have been harnessed to perform the projection of data onto 

sinusoidal basis functions for the purposes of constructing independence sampling dis- . 

tributions in [5, 158, 161]. Section 4.3 shows how these distributions may be calculated 

efficiently for different types of basis function parameters. Chapter 6 illustrates the use 

of harmonic basis functions. 

There are two ways in which this approximation may be used to produce a more ef­

ficient simulation. In the first method, the approximation to the full conditional and 

the projection assumption above are employed to produce a proposal distribution for a 

range of candidate parameter values. A proposal is sampled from this distribution and is 

accepted according to the M-H acceptance function, so the sample produced is an exact 

sample from the posterior. The second method generates a proposal in the same fashion 

but substitutes the ratio of posteriors in the M-H acceptance function with the ratio of 

full conditionals. The sample produced is not an exact sample from the posterior distri­

bution, but where the orthogonality assumption is justified, this slight loss of accuracy 

may be tolerable, considering the major efficiency improvements. The cost of evaluating 

the joint posterior is O(NJ3Q3) compared to O(M3) for the approximation. 

5.3.2 Residual-dependent and signal-dependent kernels 

This section distinguishes between two types of transition kernel- those which use in­

dependence sampling distributions and those which use conditional independence sam­

pling distributions. In the former the proposal is independent of the current state of the 

Markov chain as it is formed as a function of the original observation d. For conve­

nience, this is termed a signal-dependent kernel. The conditional independence sampling 

distribution is independent of the current state of the component under consideration, 

but dependent upon the state of the other components. This will be termed the residual-
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dependent kernel as the proposal distribution is a function of the current residual (S .1S) 

and is therefore dependent upon all the other components. Both of these types of tran­

sition kernel are very important in the operation of the Metropolis-Hastings algorithm. 

The signal-dependent kernel may be useful for identifying the dominant modes of the 

posterior distribution but is unsuitable for the detection of weaker components. Sam­

pling with this kernel reduces correlations in the Markov chain and is good for exploring 

different regions of the posterior distribution, allowing the escape from local maxima. 

The residual-dependent kernel is good for rapid convergence of the Markov chain once 

the dominant components have been detected. These are subtracted from the original 

signal and a prop-bsal is generated based upon the residual waveform. In this manner, 

weaker components can also be detected rapidly. These two types of transition kernel 

can also be combined with perturbation steps to perform local exploration of posterior 

modes, as shown in algorithm S .2. 

The full conditional for the parameters of the ath component ea for the case that r a = 1 

IS 

(ea I {eq} M d) ex p(e
a
) 

p -{a}, IQ, (1 + (52)¥- [dtd-l!~2 dtGC(GCt G c,)-lGCtdr 
(S.19) 

It is desired to sample from this distribution, but the evaluation of the term (dtd)-l 
will be expensive, particularly for models with many components. In the case of signal­

dependent kernels, a proposal distribution can be calculated for each type of component 

once at the start of the algorithm. A single component model is constructed for each 

component type, i.e., GC = Ga. Therefore an independence sampling distribution can 

be constructed as 

(S.20) 

For conditional independence steps, some of the techniques of §S.3.1 can be employed 

to simplify this expression and produce approximations to it. The use of the residual is 

particularly beneficial as it is no longer necessary to calculate the composite basis matrix 

GC. In this instance, the full conditional can be written 

(S.21) 
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and so 

(S.22) 

Since the residual r a is dependent on the current state of the other components the 

proposal distribution must be recalculated each time it is used, so it is necessary to 

make its calculation very efficient. 

5.3.3 Sampling for indicator variables 

Some efficient methods for sampling the parameters of the model components in terms 

of update moves have been described in the previous sections. Transition kernels are 

now considered which traverse different subspaces of the posterior distribution in order 

to effectively update the model composition M IQ. 

The simplest transition between different subspaces of the composite model space is via 

a birth or death move. In these moves a single component is switched into or out of the 

model, keeping all other component parameters constant. The birth move is described 

first - in satisfying the reversibility requirements of the Markov chain, the probability 

of the corresponding, death proposal must also be evaluated. When a component is 

switched on, the subspace of the current state is extended to include that component's 

parameter space. A proposal density generates a proposal in this new parameter sub­

space. It is important to use a proposal density which is capable of generating moves 

into high probability regions, otherwise the Markov chain will be slow to explore the 

high posterior subspaces. Where quite compelling prior information is available in the 

form of a low variance prior density, then sampling a proposal value from the prior 

may be attractive. Such specific prior information will rarely be available and the prior 

is often diffuse compared with the likelihood. Hence in this section attention is directed 

towards the specification of more efficient transition kernels for birth and death moves. 

Consider the transition for the birth ('switching on') of component a. The current and 

proposal states are written as 'ljJk = {MQI', {eq}~ } and 'ljJ* = {M IQl* ,{eq}Q.} respec­

tively. In terms of the indicator variables, the birth proposal requires that (ra)k = 0 and 

(ra)* = 1. Hence the proposed model composition is Q* = ~ U {a}. The proposal 

parameter space now also encompasses the parameters for the component ea, therefore 
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the transition kernel must propose a value for ga· . A conditional independence distribu­

tion is employed, ga' rv qcond (ga' ; {gq}~, M Q* ). This reversible jump birth/death move 

is highlighted in algorithm 5.3. 

Algorithm 5.3: Birth-Death reversible jump move for multiple component model 

function: Birth-Death( q ) 

if rqk = 1 then 

r q' = 0 

else .1 

r q' = 1 

gq' rv qcond (gq. ; {gq}~, M Q* ) 

end if 

MH-accept( 'IjJ* , 'ljJk ) 

The ratio of transition probabilities is required to calculate the Metropolis-Hastings 

acceptance function (algorithm 5.2). For the birth move of component q this is 

TRbirth ( 'IjJ ) . 

and for the death move, 

TRdeath ('IjJ ) 
q(rk) qcond (gqk ; {gq}Q., M Q'< ) 

q(r*) 

(5.23) 

(5.24) 

where qcond (gqk ; {gq}Q., M Q'< ) is the probability density function for the proposal of the 

previous state gqk from the corresponding birth move. 

The conditional independence distribution may be the same one used by the parameter 

update step, i.e., a residual-dependent distribution as described in §5.3.2, 

(5.25) 

It is very important that this distribution is normalised since unlike the parameter update 

moves the normalisation constant will not cancel out of the transition probability ratio. 
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5.3.4 Non-marginalised amplitudes 

It is possible to capitalise upon the more efficient residual-dependent kernels described 

in §5.3.1 whilst still producing an exact sample from the posterior distribution. Major 

efficiency achievements are possible by introducing an approximation to the full con­

ditional which is used in the generation of proposal distributions. This approximation 

may also be used in the ratio of posteriors of the M-H acceptance function, resulting in 

a speed increase at the expense of approximate sampling from the posterior. An alterna­

tive approach may be to suppress the marginalisation of the basis function amplitudes 

and incorporate sampling for the amplitudes into the simulation scheme. The approxi­

mate form of the full conditional may still be employed, however, to generate efficient 

proposals for gq. Using the sampled value of gq' , an update move for bq is executed 

by sampling from a distribution approximately equal to its full conditional (4.46) (as 

described in §4.5.1), 

bq * = (Gq· tGq· )- lGq·t d 
(5.26) bq* rv N (bq*. ~bq* (F o-2(Gq· tGq·)-1) 

, 1 + ()"2 , 1 + 6"2 e . 

The proposal is accepted according to the M -H acceptance function and therefore is 

an exact sample from the posterior achieved with similar computational overhead as 

the approximate method. There are several variations possible on this scheme. This 

is a signal-dependent kernel; the observation d could be substituted for the residual rq 

for a residual-dependent kernel. Alternatively the move could be a joint update for the 

composite amplitude vector bc' in which case, the above step would be an exact sample 

from the full conditional, but the matrix inversion makes the update very inefficient. 

Where applicable, orthogonality assumptions may be employed to simplify (5.26). 

5.4 Multiple component example 

To illustrate the design of an algorithm for detection and estimation of multiple com­

ponents, an example is presented where a signal is composed of an unknown number 

of sinusoids, Gaussians and step functions. Firstly the formulation of the model and 
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its prior structure is introduced, and then efficient proposal distributions for each of 

the component types are described. Techniques for Bayesian spectrum estimation with 

multiple sinusoids are described in [5, 32]. The characterisation of gamma-ray emission 

spectra in terms of multiple Gaussian peaks is described in [23]. The representation of 

musical signals as the sum of harmonic sinusoids is discussed in chapter 6. 

5.4.1 Model formulation and priors 

Step function 

The step location h is bounded 1 :S h :S N and the basis matrix defined as 

G st =[9st(1) 9st(2) ... 9st(N)]t 

( .) _ { 0 if i < h 
9st z -

1 if i > h 

(5.27) 

For discrete h the prior is h E {1, ... ,N}, 

p(h) = l/N. (5.28) 

Sinusoid 

A sinusoid can be represented using an in-phase and quadrature form so that for large 

N it can be expressed in terms of two approximately orthogonal basis vectors 

G sin = 

sin(O) 

sin(w dT) 

cos(O) 

cos(w dT) 

sin((N - l)w dT) cos((N - l)w dT) 

For continuous frequency w a uniform prior is used 

p(w) = 1/ err Fs) = dT {rr. 

(5.29) 

(5.30) 
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Gaussian 

The Gaussian basis matrix is defined as 

Gc =[9c(1) 9c(2) ... 9c(N)]t 
(5.31) 

1 1 exp [ (i - j.t)2] 
(21[0"2)"2 20"2 

For discrete j.t E {1, ... ,N} and continuous 0" E [O"\o,O"hi] the following independent 

priors are adopted 

p(j.t) = l/N 
(5.32) 

p(O") = l/(O"hi - 0"\0)' 

5.4.2 Proposal distributions 

For each of the three types of component under consideration, simplifications or ap­

proximations to the full conditional densities are produced in order to obtain a set of 

efficient transition kernels. In each case, d may refer to the signal vector or to the resid­

ual depending on the type of kernel required. In most cases, it is desired to simplify the 

projection term (dtG(GtG) - lGtd) for the particular structure of each G. 

Step function 

For the step function, G~tGst is a scalar, 

(5.33) 

Projection of data onto the basis matrix is simply achieved for a given h: 

(5.34) 

which can be calculated efficiently for all h values using a cumulative sum, and hence 

the proposal distribution can be evaluated as 

q(h) ex: [dtd-~ (L~h d(i) )2]-£ p(h). 
1 + 02 N - h + 1 

(5.35) 
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Sinusoid 

If N is large and w » 2n/(N dT) then the columns of Gsin are approximately orthogo­

nal, 

(5.36) 

An expression for the energy of the projection IIG~ind 11 2 for a given wneeds to be found 

t [2::1 d(i) sin(w(i - 1) dT)] 
Gsin(w) d= 2::1 d(i) cos(w(i _ 1) dT) (5.37) 

:·IIG,;o(wI)'dI1
2 

= (t. d(i) sin(w(i - 1) dT) r + (t. d(i) cos(w(i - 1) dT)), 

This form appears similar to the magnitude of the DFT 

N [ 2nj(k - l)(n - 1)] 
X(k) = Lx(n) exp - N 

n = l 

(5.38) 

~ () (2n(k - l)(n - 1)) . ~ ( ) . (2n(k -l)(n - 1)) 
= L..-t x n cos N - J L..-t x n SIll N 

n=l n=l 

2 (~() (2n(k -l)(n _1)))2 (~()' (2n(k -l)(n _1)) )2 
IX(k)1 = L..-t x n COS N + L..-t x n SIll N 

n=l n=l 

(5.39) 

Hence with x d and n i, 

W= 
2n(k - 1) 

NdT 
(5.40) 

This allows us to produce a proposal distribution for a discrete set of values w spaced 

at intervals of 2n/( N dT). A high resolution FFT might be employed for the signal­

dependent kernel whilst a lower resolution might be used for the residual-dependent 

kernel as it will be executed many times. This proposal distribution is discrete whilst 

the parameter w is continuous so it is necessary to either introduce a small random 

perturbation to the sampled value or to sample from an interpolated distribution. The 

expression for the discrete proposal distribution is then 

q(w') ex: [lld l12 - N(:~ 02) ID(w') • D(w') 12] -t: p(w') 
(5.41) 

where D = fft(d) 

5.4. Multiple component example 147 

Gaussian 

To calculate G~Gc it is observed that the square of a Gaussian function N(p" (}2) is also 

Gaussian N(p" (}2/2) and calculation of the normalisation factor leads to (for large N) 

N 

GhGc = L(9C(i))2 
(5.42) i=l 

As the shape of the Gaussian is a function of the variance only, if the variance is held 

constant then the projection of the basis function onto the data can be performed for a 

range of p, values by convolution. 

N 

Gh(p,)d = L d(i) 9c(i; p" (}2) 
i=l (5.43) 
N 

= L d(i) 9c(P, - i; 0, (}2) 
i = l 

A proposal distribution for discrete p, can now be constructed 

[ 
02 ] -t: 

q(p,; (}2) ex: IIdl12 
-1 + 02 V 4n(}2 (D(p,))2 p(p,) 

(5.44 ) 

D = d * gC((}2) 

where gC((}2) is a zero mean Gaussian. This proposal distribution is dependent on the 

chosen value of (}2. The distribution could therefore be evaluated for several values of 

(}2 to form a joint proposal distribution q(p" (}2) = q(p,; (}2) q( (}2). 

5.4.3 Results 

Three experiments were performed using different numbers of components, signal to 

noise ratios and iteration counts. In each case the maximum number of components 

of each type Q was specified and then the data was generated randomly. The other 

parameters were generated randomly from uniform distributions. White Gaussian noise 

was added to each dataset. The frame length was N = 500 samples and the first 20% of 

all iterations were discarded as burn-in. The three experimental runs had the following 

parameter values: 
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• Dataset 1: Q = 2, SNR=20dB, N iter = 200. 

• Dataset 2: Q = 4, SNR=20dB, Nite7, = 500. 

• Dataset 3: Q = 4, SNR=10dB, N iter = 500. 

Three graphs are shown for each dataset. The top graph shows the original noisy data 

vector with the MAP estimate reconstructions superimposed. There are two estimates: 

one obtained from histogramming the Markov chain output and another from the high­

est posterior state emitted by the Markov chain. The second plot shows the value of 

the indicator v~riable over the run of the Markov chain - the first Q components are 

Gaussians, the next Q are sinusoids and the last Q are step functions. The final plot 

shows the log-posterior for each iteration of the Markov chain. 

For the first data set, the Markov chain detects the stronger components within the first 

few iterations, then refines the estimates, getting very close to the MAP state within 35 

iterations. The second run increases the size of the model to a maximum of Q = 4 of 

each type of component. Once again, the significant components are detected in the 

first few iterations and after 80 iterations a near optimal state is reached, where the 

weaker components in the mixture have also been identified. The plot of the indicator 

variables shows how the main components (5,8,11) are detected with a high (marginal) 

posterior probability p(rqld) and how overfitting is avoided as components close to the 

threshold of detection are switched on for fewer iterations. The third run shows the 

effect of reducing the SNR. The main components are detected rather more slowly than 

in the previous examples and the model uncertainty is reflected in the large number of 

transitions in the switch variable plot. More iterations are clearly needed to get reliable 

parameter estimates when the SNR is low. 

The model used for these examples does not incorporate any identifiability criterion for 

the ordering of the signal components. The intention of the model structure is that over 

longer timescales each component has its own context, and identifiability is established 

through the parameter priors: each component has a prior centred upon some predicted 

value according to its previous history. The multiple frame methods of the next section 

reinforce the concept of signal context by joint modelling of several frames of data with 

Markovian dependencies between blocks. 

5.5. Multiple component, multiple frame models 

3~----__ ~ ________ ~ ______ ~ ________ ~ ______ ~ 

2 

o 

-1 

-2 

-30~------no~. 1-------n0~.2~----~0~.3------~0~.4------~0. S 

2 

: , 
" 

111111 Pi. __ I.~. 5 

6 

• .• .e ;. •• 120 140 160 180 200 

-700r----===========:::::====::::::====::::==~ 
-800 

-900 

- 1000 

·~-1100 
§. 
.3-1200 

- 1300 

-1400 

-1500 

-1 6000~------~S~0;---------:';-;!0;;:;-0---------::-' S~0::---------"J200 
Itera tion 

149 

Figure 5.1: Dataset 1: Q = 2, SNR=20dB, Niter = 200. Components 1-2 are Gaussians, 3-4 are 
sinusoids and 5-6 are step functions. 

5.5 Multiple component, multiple frame models 

In the previous sections of this chapter the multiple component signal model has been 

presented. In chapter 4, a technique for the detection and estimation of time-varying 

signals was presented which employs hyperparameters for the basis function parameter 
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Figure 5.2: Dataset 2: Q = 4, SNR=20dB, Niter = 500. Components 1-4 are Gaussians, 5-8 are 

sinusoids and 9-12 are step functions. 

5.5. Multiple component, multiple frame models 
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Figure 5.3: Dataset 3: Q = 4, SNR=10dB, Niter = 500. Components 1-4 are Gaussians, 5-8 are 

sinusoids and 9-12 are step functions. 
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priors in order to perform a joint estimation over multiple frames. In this section, these 

two schemes are combined to produce a highly general technique for the detection and 

estimation of time-varying multiple component signals. 

It is assumed that the basis function parameters and model order varies either slowly 

over time or according to a known functional form (e.g., a linear variation). The pa­

rameter dependencies are expressed in terms of a Bayesian graphical model, and the 

structure, much simplified, is shown in figure 5.4. Once again, the basis function am­

plitudes hi and the error variances a;i have been marginalised. 

Variational hyperparameters have been specified for the basis function parameters 

{ 6.<jJq , a~q} and t~e model order parameters {6. Mq , a~l{q }. Each component q E Q has its 

own set of variational hyperparameters across the block (a block is the collection of N j 

successive frames). The use of multiple components is indicated by the 'plates' in the 

figure, such that each hyperparameter plate is a dependency of the corresponding plates 

for each frame i. For notational simplicity the variational hyperparameters are grouped 

as .6. = {6.<jJq, a~q, 6.Mq, a~l{q} and the parameters of the model with composition Q as 

e = {{efh~,Nf }.2 

The joint posterior of this model is 

Nf 
p(e,.6., M Q I {~}) = IT [p(d i 18)] p(e 1.6., M Q) p(.6.1 M Q) p(MQ) (5.45) 

i=l 

Appealing to the conditional independence structure of figure 5.4 these can be written 

in terms of their dependencies, 

p(di I e) 

p(e 1.6., M Q) 

p(.6.1 M Q) 

p(MQ) 

= p(di I {enQ) 

= Il~l IlqEQ P (ef 16.<jJq, a~q ) p (!Ylll6. Mq , at[q) 

= IlqEQ p( 6.<jJq ) p( a~q) p( 6.Mq) p(a~q) 

= IlqEQP(rq). 

(5.46) 

(5.4 7) 

(5.48) 

(5.49) 

The dependencies of the basis function parameters and the variational hyperparameters 

are shown more explicitly in figures 5.5 and 5.6. The model is structured so that the 

model composition M Q is the same across the entire block, hence an indicator variable 

with value r q = 1 signifies that q E Q for frames i = 1 ... N j . 

2The double subscript notation is a shorthand such that {ef} Q, N/ = {{ef}QEQ}i=l:Nj' 
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q E Q 

Figure 5.4: Simplified graphical model for a multiple component multiple frame GLM with 

marginalised amplitudes and error variances. 

q' E Q, q' i- q 

Figure 5.5: Graphical model showing the dependencies of <Pi and Mr 
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Figure 5.6: Graphical model showing the dependencies of 6. 4>q and a~q . The dependencies of 

the model order hyperparameters are identical with M substituted for rp. 

A method of simulating a Markov chain with the above joint posterior distribution is 

shown in algorithm 5.4. The method exploits the high correlations between parameters 

of a single component across multiple frames and also the prior independence between 

different components. 

Algorithm 5.4: Multiple component multiple frame Metropolis-Hastings scheme with local and 

joint update moves (single iteration shown) 

for q = 1 ... Q do 

v rv lIJ[O ,l) 

if v < Aswitch then 

Birth-Death( q ) 

else if r q = 1 then 

u rv lIJ[O ,l) 

if (u < Ablock) then 

{Update model composition} 

Block update { {cp;, lVln Nf ' 6. 4>q, a~q, 6. M q, a~!{q } {Update block parameters} 

else 

Perturbation update( q ) 

end if 

end if 

end for 
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On each iteration, each component is updated in turn. A non-deterministic choice is 

made between a subspace transition (birth/death move) or a parameter update move 

(if the current component is included in the model). The parameter update may be of 

two types. It may be a joint block update move where all the parameters and hyperpa­

rameters of one component are updated together or it may be comprised of individual 

perturbations of the frame parameters followed by an update of the frame hyperparam­

eters from their full conditionals. Each of these transitions will now be discussed. 

5.5.1 Component birth/death move 

The birth/death move for a component is now more complex than in the single frame 

case as it is necessary to propose values for the component in each frame and also 

for the variational hyperparameters. For a birth move the improvement in model fit 

provided by the extra component must outweigh the extra cost of increasing the size 

of the parameter space, in accordance with Ockham's razor. The reversible-jump birth 

move is described below. 

A value for 6. ivlq is sampled from an independent proposal distribution which may be 

equivalent to its prior. If successive blocks are modelled with Markovian hyperpriors 

linking 6. Mq in each block then this distribution will be able to take advantage of previ­

ous estimations. Values of Mt are sampled from a distribution centred upon 6. ivlq. 

6.~!{q rv q(6.~Iq ) 

lVli
q * rv q(Ml*; 6.~q) 

(5.50) 

(5.51) 

Using these model order values, a proposal distribution is formed for the basis function 

parameters 6.;q in the same manner as §4. 7. In the basis functions the substitution 

cp; = f (6. 4>q, i) is made, corresponding to the assumption that the deviation from the 

predictor value will be small in each frame, 

q(6.~q ; { lVlnNf) ex p(6.~q ) II[d~Pfdi + 2,6er t: · 

6. ~q rv q(6.~q ; {Mn Nf) 

(5.52) 

(5.53) 

where Pr is as defined in (5 .11) . If the basis functions are approximately orthogonal 

then major efficiency savings can be made by using the residual vector rather than the 
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data vector as described in §5.3.1. A proposal for 6 ;q is generated from the above 

distribution and proposals for {<Pi *} Nj are obtained from their full conditionals using 

the proposed 6; value, a fixed hyperparameter variance (see §4.7) and the proposed 

model order.3 

(5.54) 

Finally updates for ((J~q)* and ((J~,fq ) * are proposed which are samples from the full 

conditionals (4.61), 

.t 
((J~q ) * rv q(((J~q ) *; 6 ;q, { <pr}Nj ) 

((J~,fq) * rv q(((J~[q ) *; 6~,fq, {Mt }Nj )' 

The ratio of transition probabilities for the birth move is 

q(Bk, is.k, M tf1' ; B*, is. *, M Q* ) _ 
q(e*, 6 *, M Q*; ek,6 k,M rr,t ) 

(5.55) 

(5.56) 

The transition probability ratio for the death move is the reciprocal of the above with 

the current and proposal states swapped. This update move is summarised in algo­

rithm 5.5. 

5.5.2 Joint block update move 

The joint block update move is a conditional independence sampling step which gen­

erates a proposal for all the parameters pertaining to one component. The proposal is 

independent of the current component state but conditional upon the current state of 

the other components. The purpose of this move is an attempt to locate a region of high 

posterior probability which accounts for a high proportion of the energy of the residual 

formed by the other components. 

3Note that these distributions are implicitly conditioned upon the state of the other components. 
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Algorithm 5.5: Birth-Death reversible jump move for multiple frame, multiple component model 

function: Birth-Death( q ) 

if rqk = 1 then 

r q* = 0 

else 

rq* = 1 

6 ~,fq rv q(6 ~[q) 

for i = 1 .. . NI do 

]vf i
q 

* rv q( lVl i
q 

*; 6 ~q ) 

end for 

6 ;q rv q(6;q; { ~1iq * } Nj ) 

for i = 1 . .. NI do 

<pr rv q( <pr ; 6 ;q) 

end for 

((J~q )* rv q(((J~q ) *; 6 ;q, {<pr }Nj) 

((J~q) * rv q(((J~,fq ) *; 6~,fq , { lVlt}Nj) 

end if 

MH-accept( {B*, is. *, M Q* } , {Bk ,L~ k, M rr,t } ) 

{Death move} 

{Birth move} 

{Sample model order terms} 

{Sample basis function parameters} 

{Sample hyperparameters} 
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The update move employs the same proposal distributions as in §5.5.1, generating inde­

pendent samples for .6.~!{q from the prior and then sampling {lIdl*} Nf from perturbations 

about .6.~q. Using these model order values a proposal distribution for .6.~q is obtained 

from (5.52) and then {<pt}Nf are sampled from their full conditionals using the new hy­

perparameter value. The variance hyperparameters are also updated by sampling from 

their full conditionals. This joint updating scheme is summarised in algorithm 5.6. 

Algorithm 5.6: Joint update move for basis function parameters 

function: Block update: { {<p{ ) 1\IIn Nf) .6.q,q) (j~q) .6.Mq ) (j'fvJq} 

.6. ~!{q rv q (.6. ~!{q ) { Sample model order terms} 

for i = 1 ... Nf do 

1\IIiq * rv q (1\IIiq *; .6. ~fq ) 

end for 

.6.~q rv q(.6.~q; {Ml*}Nf) 

for i = 1 ... Nf do 
A.q * rv (A.q *. J\ * Mq *) 
'Pt q 'Pt , Dq,q ) t 

end for 

((j~q)* rv q(((j~q)*; .6.~q) {<Pt}Nf) 

((j~q)* rv q(((j1[q)*; .6.~!{q) {Ml*}Nf) 

MH -accept( {e*, is, *}) {ek, is, k} ) 

5.5.3 Perturbation update 

{Sample basis function parameters} 

{Sample hyperparameters} 

The perturbation update move is shown in algorithm 5.7. Non-deterministically a frame 

is chosen to be updated. A further non-deterministic choice is made whether to update 

the basis function parameters or the model order parameters. In either case, the frame 

parameter proposal is generated from a perturbation about the current value and then 

the variational hyperparameters are sampled from their full conditionals (§4.6.4). 
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Algorithm 5.7: Perturbation update for multiple frame multiple component model 

function: Perturbation update( q ) 

U {Select a frame to update} n rv {l...Nf} 

U rv U[O ,l] 

if U < Abasis then 

<Ph* rv q(<Ph*; <Phk) {Update basis function parameters} 

(.6.~q)* rv q((.6.~q)*; <Ph*' {<Phk}-{n}) 

((j~q)* rv q(((j~q)*; .6.~q) <Ph*' {<Phk} - {n}) 

else 

lI;Jq* rv q(lI;Jq*· Mqk) {Update model order parameters} n n' n 
(.6.1!{q)* rv q((.6.~q)*; 1\II~*, {M~k}_{n}) 

((j~q)* rv q(((j~!{q)*; .6.~q, M~*, {1\II~k}_{n}) 

end if 

MH-accept( {e*, is,*}) {ek) is,k} ) 

5.6 Conclusions 

This chapter has presented a generic framework for the analysis of homogeneous or 

heterogeneous multiple component signals. A Bayesian formulation based upon general 

linear models affords a powerful representation which allows prior information to be 

incorporated about likely model parameters. A Metropolis-Hastings algorithm employ­

ing reversible jumps allows the construction of a Markov chain that can jump across 

parameter subspaces, since the joint posterior distribution is of variable dimensional­

ity. An algorithm is presented which employs several different types of transition kernel 

based upon the original data vector and upon the residual to efficiently detect both 

strong and weak components in a mixture. The model is extended for time-varying 

signals that have highly correlated parameters between frames, and transition kernels 

exploiting this structure are created. The application of the multiple component model 

to musical signals is detailed in the next chapter. 
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Application to Monophonic 

Musical Signals 

6.1 Introduction 

6 

This chapter unites some of the most important aspects of the previous chapters for the 

construction of a model suitable for the analysis of musical signals. Some of the impor­

tant considerations specific to musical signals, which have been described in chapter 2, 

will be applied in this chapter. The findings of psychoacoustic and perceptual psycho­

logical research are very significant for musical signals: the nature of pitch perception 

and Gestalt grouping principles are of particular interest. Musical modelling techniques 

are important for the highest levels of modelling and inference. Signal processing tech­

niques provide the calculus for the description of signals and methods for the physical 

modelling of musical instruments. 

Chapter 3 has reviewed the use of Bayesian techniques for the parameter estimation of 

complex models. Chapters 4 and 5 have described an hierarchical Bayesian approach 

to signal modelling for signals that can be represented in terms of a single component 

or multiple components, with parameters that vary over time. 

This chapter applies these techniques to the problem of pitch estimation for monophonic 

musical signals. Monophonic musical signals are modelled as a set of time-varying 

harmonically-related sinusoids. Parameter estimation is performed using MCMC meth­

ods and the structure of harmonic sinusoids model is exploited to obtain efficient pro­

posal densities. Various aspects of the material in this chapter have been presented 

in [158, 159, 160, 161]. 

Section 6.2 introduces the motivation for the harmonic model and its formulation. It is 
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shown how proposal distributions can be formed from the periodogram for an efficient 

MCMC implementation. Section 6.3 describes the construction of a monophonic pitch 

detector, with particular attention paid to the construction of efficient transition ker­

nels that exploit the structure of the posterior distribution. Harmonic transforms are 

employed to obtain independence sampling proposal distributions for a large number 

of candidate frequencies at low computational cost. Harmonic transition kernels are 

employed to explore related modes of the posterior distribution. Section 6.4 constructs 

a more robust monophonic model by jointly modelling the signal over multiple frames, 

under the assumption of slow parameter variation. Transition kernels exploiting this as­

sumption allow p\ oposal distributions to be constructed that quickly locate frequency 

regions which have significant energy over all time frames. Some pitch estimation exam­

ples are shown, along with an illustration of the different harmonic character of several 

musical instruments. 

The main emphasis of this chapter is the construction of an efficient parameter estima­

tion scheme. Conventionally, MCMC simulation-based methods operate many thou­

sands of times slower than real-time. By carefully exercising certain approximations 

and assumptions about the nature of musical signals, simplifications can be introduced 

that drastically reduce the computational load. Furthermore, with careful coding and 

good estimates as initial Markov chain values, performance approaching the order of 

real-time is a viable prospect. 

6.2 Harmonic modelling 

One of the most popular interpretations of pitch perception is that pitch is generally per­

ceived to be the fundamental frequency of a harmonic set of pure tones (i.e., sinusoids). 

The sinusoids need not be perfectly harmonic - a distinct pitch can be perceived even 

with frequency deviations of a few percent [98, 99] (see also §2.2.2). Nor is it required 

that all the harmonic frequencies be present; the fundamental and lower harmonics 

can be removed whilst still evoking the same perception of pitch (called low pitch, 

see §2.2.1). In their steady state, musical instruments that evoke a definite sensation of 
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pitch 1 can be modelled well by a harmonic series, since the periodic signals that are pro­

duced can be represented in terms of a harmonic set of sinusoids. In contrast to some 

of the techniques in the literature, e.g., [39,90, 140], the signal is modelled explicitly as 

harmonic, rather than firstly extracting a set of sinusoids and then applying a harmonic 

grouping as a subsequent step. This is consistent with the principle of exploiting prior 

expectations of the structure of the data in order to construct a suitable model. 

6.2.1 Formulation 

A single musical note is constructed from the sum of a set of H harmonically related 

sinusoids with fundamental frequency w, and can be represented in terms of a General 

Linear Model. The basis matrix for the note is formed from in-phase and quadrature 

sinusoidal components, 

G = [s(w) ... s(Hw) c(w) ... c(Hw)] 

s(w) = [sin(wtl) sin(wt2) ... sin(wtN)]t 

c(w) = [COS(wtl) COS(wt2) ... COS(wtN)]t 
(6.1) 

ti = i/ is· 

The harmonic amplitudes are represented by a vector b of length 2H. The GLM for­

mulation allows the amplitudes to be marginalised; if required, estimates may be ob­

tained from the least-squares value b, or from the full conditional. For large Nand 

w » 27r is/ N, where is is the sampling frequency, the basis matrix is approximately 

orthogonal and independent of w, 

(6.2) 

such that least-squares estimates for b can be efficiently obtained from the projections 

of each of the basis functions onto the observation, b ;:::;:, (2/N) Gtd. 

6.2.2 Periodogram estimator 

Suppose that the model is used to represent a single sinusoid of arbitrary phase, i.e., 

H = 1. If a g-prior is used for b and an inverse gamma prior used for the error variance 

lTo make the distinction with unpitched percussion, for instance. 
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then the marginal posterior for w is (from 4.44) 

(6.3) 

Further, if a uniform prior is employed for w, the MAP estimate for the frequency is 

that which maximises Ilf112. Owing to the orthogonality of in-phase and quadrature 

components this can be expressed as 

(6.4) 

which is the magrrtude of the Fourier spectrum for the observation d (see also §5.4.2). 

Hence the frequency that maximises the Fourier spectrum is the optimal estimator for 

a single sinusoid in white Gaussian noise; a result observed by Bretthorst [12], who 

termed the projection energy the Schuster periodogram (after [129]). This interpretation 

is interesting as it shows the role of the Fourier transform as an estimator rather than 

as a transformation. It provides a vindication for spectrum peak-picking as a frequency 

estimation scheme, but also draws attention to the limitation that the estimator is only 

valid for an observation consisting of a single sinusoid. 

6.2.3 Posterior distribution 

For a single note (monophonic) model, the posterior distribution for {w, H} is 

(6.5) 

Figure 6.1 shows the marginal posterior densities for Hand w for a frame of mono­

phonic saxophone data. The following prior distributions are used: p(w) = 1IJ(w) , 

p(H) = Poisson(5), p((J2) = IG(l , 0.01) and the g-prior parameter for p(b) is 8
2 = 100. 

The frequency posterior has several marked peaks (note the logarithmic scale) at the 

apparent fundamental frequency of the harmonic series, and also at fractions and inte­

ger multiples of that frequency. This phenomenon is a common cause of octave errors, 

also known as pitch period doubling; it arises since all the harmonics of ware also 

harmonics of win, for integer n. The model order penalisation in the posterior ensures 

that the most parsimonious model is chosen. The frequency posterior distribution has 

very narrow modes (in the case of figure 6.1 a frequency grid of around 2Hz is required 
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Figure 6.1: Marginal posteriors for Hand w for a frame of monophonic saxophone data, drawn 

on a logarithmic probability scale. The fundamental frequency of the data and perceived pitch 

of the sound is 423Hz. 

to resolve the peaks), and hence a large number of points would be required to en­

sure detection of the global maximum, which is computationally expensive. Another 

issue arising is that, due to the extreme orders of magnitude between the peaks of the 

posterior, the influence of parameter priors will be minimal unless the prior is very in­

formative; this may be significant if the prior structure is in some way compensating for 

modelling errors. 

The MAP estimate for this data is w I (21f) = 423Hz, H = 22. The MAP reconstruction is 

shown in figure 6.2; in the top plot, the observed signal and the residual error, obtained 

using the MAP parameter estimates, are shown. This demonstrates how the harmonic 

model is capable of a high quality reconstruction for steady state signals. The lower 

plot shows the residual error, drawn to a different scale. There appears to be slight ar­

tifacts in the residual at locations separated by the pitch period. These may be partially 

attributed to aperiodic excitation; in some manually excited instruments, the excitation 

is generated as a result of the chaotic oscillations of the lips (brass instruments), reeds 

(wind instruments) or vocal folds (singing) due to the turbulent streaming of air. This 

excitation is unlikely to be perfectly periodic, particularly at low frequencies, and leads 
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Figure 6.2: Model fit for saxophone data. The top plot shows the observation and the residual 

error obtained using the MAP estimate. The lower plot shows the error signal on a different 

scale. 

to an effect termed vocal fry [123]. This may be observed in speech when the intonation 

goes down at the end of a sentence and the glottal pulses start to become irregular as a 

result of the breakdown of the chaotic oscillation. The magnitudes2 of the harmonics 

for the MAP parameter estimates are shown in figure 6.3, where the rich spectral char­

acter of the saxophone is apparent. The harmonic characteristics will be explored in the 

next section. 

6.2.4 Harmonic transform 

Since the evaluation of the posterior at a finely spaced frequency grid is computationally 

expensive, particularly for high values of H, a more efficient method for calculating the 

energy of the projection for a range of frequencies is required. The method outlined 

2The harmonic magnitudes a are defined in terms of the in-phase and harmonic amplitudes as ah = 

(b~ + b~+H )1 /2, h = 1 ... H . 
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Figure 6.3: Saxophone harmonic magnitudes for the MAP parameter estimates. 
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in this section builds upon the frequency estimator interpretation of the periodogram 

described in §6.2.2. 

The order P harmonic transform 1-lp(x, l) of a signal x is defined as, 

p 

1-lp(x, l) = L X;[l] Xp[l], 
p= l 

(6.6) 
Nfft [2 l( 1)] Xp[l] = L x [n] exp _j 7fP ;;-
n=l Ht 

where l is the frequency bin number (l = 1 ... L, L = lNHt/ PJ), and it is assumed 

that x has been zero-padded to length Nfft. The transform can be calculated from the 

FFT of x, since Xp[l] = Xdpl] , to obtain a frequency grid spacing of fs/Nfft. The 

transform calculates the energy of the frequency components at multiples of 1 ... P 

times the frequency of each bin. Due to the Nyquist limit, L may need to be reduced 

for higher frequencies to ensure that pL < Nfft /2. 

The energy of the projection for {w, H} can then be approximated by 

(6.7) 

For H = 1 this reduces to the single sinusoid case described in §5.4.2. In figure 6.4, 

the conditional posterior for w for the saxophone data is evaluated for the marginal 

* The harm' f f . 
. . '1 . O~IC trans orm e fectlvely constructs a Schroder histogram [128] and 
~s :~~~~ In orm to the harr~onic sum spectrum and (log) harmonic product 
p , e.g. , see W. Hess, Pitch Determination of Speech Signals, Springer. 



168 6. Application to Monophonic Musical Signals 

10- 2 0 

10- 4 0 

600 800 1000 1200 1400 
ro/ 2n 

. t 

Figure 6.4: Conditional distribution p(wIH, d) using the marginal MAP estimate of H, using the 

saxophone data set. The harmonic transform is used to approximately evaluate the posterior 

over a fine frequency grid. 

MAP estimate of H using the harmonic transform. The data, of length N = 800, is 

zero-padded to 8192 points to produce a frequency grid spaced at 5Hz intervals, which 

is fine enough to . locate the main peak at 423Hz. The harmonic transform is a useful 

tool for the generation of proposal distributions, which will be described in subsequent 

sections in this chapter. 

6.3 Monophonic pitch detection 

In this section the harmonic model is employed for monophonic (single note) pitch esti­

mation. It is shown how MCMC techniques may be used for the parameter estimation, 

and then that the model can be extended over multiple frames for time-varying sig­

nals. This model lays the foundations for the polyphonic detector described in the next 

section. 
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6.3.1 MCMC techniques 

For a: monophonic model, the two parameters to be estimated are the fundamental fre­

quency wand the number of harmonics H. The previous section has highlighted some 

of the difficulties of attempting to maximise the posterior distribution by evaluating it 

for a range of values of wand H. In particular, the requirement of high frequency res­

olution to ensure that the global maximum is detected is a matter of concern. A local 

Metropolis-Hastings algorithm (§3.4.3) may be applied instead to produce frequency 

estimates which are not limited by the resolution of a frequency grid, while still en­

suring that the high probability regions of the posterior distribution may be explored 

efficiently . 

Three types of transition kernel are employed that exploit features of the posterior 

distribution (originally presented in [158]). Each performs a specific type of movement 

around the posterior distribution, as discussed in §3.5. 

Independence sampler 

The first transition kernel is an independence sampling step where a proposal {w*, H * } 

is generated that is independent of the current state of the Markov chain. A value for 

H * is first sampled from a distribution q(H*); the prior could be used, for instance, since 

this represents the prior expectations for H. Using this value, a proposal distribution 

for w* is constructed using the harmonic transform (6.7). 

H * rv q(H*) 
(6.8) 

w* rv q(w*; H *) 

where 

L 

( *. H*) = """" N ( *. 27r 1s l 2) q w , L...J w , N ,rJw 
1= 1 1ft 

[ 
62 ] - € 

x (1 + 62 )- w IIdl1 2 
- N(: + 62 ) 1-lH* (d, l) + 2f3e p(w*) (6.9) 

The term in square brackets is a function of the difference in energy of the observation 

and the projection of a harmonic set with H * harmonics and a fundamental frequency of 
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lfs/ Nfft. The distribution is constructed as a Gaussian mixture distribution with ampli­

tudes at each FFT bin frequency determined by the harmonic transform. The variance 

(J~ is chosen to be of the order of the square of the frequency bin size. This transi­

tion kernel is very effective for rapid convergence of the Markov chain as the dominant 

modes are easily identified. It may be useful on occasion to make the distribution more 

diffuse by reducing the exponent c by a factor of 10 or more to encourage other peaks 

besides the dominant one to be explored. This technique for employing periodogram 

estimates for independence sampling steps is similar to that presented by Andrieu and 

Doucet [5], but extends the method to harmonically related sinusoids using the har­

monic transform. ,t 

Harmonic transition kernel 

The second transition kernel is intended to alleviate the problems caused by octave er­

rors. A joint move for {w* ) H*} is proposed that jumps between the related modes of 

the posterior distribution. The frequencies of the modes are related by a factor of a 

ratio of integers, and the number of harmonics by the inverse of that amount. This 

kernel is useful as the harmonic representation is not unique: the signal produced by a 

given set of harmonic sinusoids can be represented equally well by another harmonic 

series with half the fundamental frequency of the original and twice the number of har­

monics. Since half of these new harmonics will be of zero amplitude, the representation 

is not efficient, and the complexity penalisation of the posterior ensures that the more 

economical representation will be favoured. Given the sharply peaked nature of the pos­

terior distribution, it is likely that an independence sampling step (as described above) 

will propose a move to a mode that is related to the global maximum; this transition 

kernel will explore the harmonically related modes in search of the global maximum. 

A value r is sampled from a set of ratios of integers R. The frequency proposal is 

the factor r multiplied by the current value and the number of harmonics is reduced 

by the same factor. To ensure reversibility, a slight modification must be made, such 

that the H* proposal is drawn from a distribution centred upon l Hk /r J (e.g., a Poisson 
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distribution), to account for the case that Hk is not exactly divisible by r. 

(6.10) 

The set R = {~) ~) ~) ~) 2) 3} works well in practice. Increasing the weighting of ~ and 2 

can be useful, as the most commonly encountered octave errors in practice are factors 

of two. Care must be taken to ensure that wH does not exceed the Nyquist frequency; 

this may necessitate truncation of the proposal distribution. 

Perturbation kernel 

The third transition kernel used is a perturbation kernel, or random walk sampler. This 

move is used for local exploration of the posterior modes. Perturbations are applied in­

dependently for wand H. For the fundamental frequency parameter, a value is sampled 

from a narrow distribution centred upon the value of the current state wk , 

(6.11) 

The standard deviation of the proposal distribution is chosen to be of the same order 

of magnitude as the modes of the posterior distribution (typically several Hz). The 

harmonic number parameter is sampled from a distribution centred upon the current 

value Hk, e.g., perhaps using a Poisson distribution, 

(6.12) 

6.3.2 Monophonic analysis example 

The methods of this section are employed for the analysis of a monophonic extract; the 

data set sax is used, which is a 5 second solo saxophone melody. A uniform prior is 

used for wand a Poisson prior with variance of 6 is used for H. Each frame of data (of 

length 22ms) is analysed individually, and a hop size of half the frame length is used. 

The MAP estimates for ware shown in figure 6.5. The MAP estimates are obtained from 

the point in the Markov chain with the highest probability density; MAP estimates are 
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Figure 6.5: Frequency tracks for independent frame model. Dataset is monophonic sample sax. 

used since a point pitch estimate is required rather than more detailed inferences about 

the posterior distribution. The method picks up much of the fine frequency detail of 

the performance, for instance the abrupt pitch discontinuities at note boundaries (e.g., 

frame 50), note slurs (frames 80-120) and vibrato (frames 150-200). However, the 

number of outliers scattered about the plot is striking. Further inspection shows that 

these almost entirely fall at note boundaries, in the abrupt transition between one note 

and the next, where the data is likely to be rapidly time-varying. Moreover, virtually all 

of the outliers are at half the frequency of the underlying variation, and hence are the 

manifestations of octave errors. 

Figure 6.6 shows frame 7 of the dataset sax, which generates an octave error in fig­

ure 6.5. The first note apparent from the frequency track is in fact composed of two 

overlapping notes very close in pitch, and the indistinct region around frames 10-20 

happens to be around 20dB lower in power than frames 0-5 and 30-50. In this region, 

the first note decays, but natural reverberation acts to sustain the sound for a short time 
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Figure 6.6: Rapidly varying data from frame 7 of dataset sax. 
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Figure 6.7: Marginal frequency posterior for rapidly varying saxophone data. Note the two sets 

of peaks in the major modes . 



174 6. Application to Monophonic Musical Signals 

after the excitation has been removed. When the attack for the next note starts, a com­

mon characteristic of many manually excited instruments is that the note starts flat (i.e., 

of lower pitch) and the player increases the pitch until it is in tune - it is fairly rare for 

players to start sharp of the desired pitch and then go flat. The posterior distribution 

for this frame of data is shown in figure 6.7. The location of two sets of closely-spaced 

peaks is quite clear. Although the dominant modes are located around the factors of 

420Hz, each major mode has two 'sub-peaks' - the higher of the two corresponding 

to the decay of the previous note whilst the lower corresponds to the onset of the next 

note which is starting flat. The octave error is likely to have arisen since the reduction of 

fundamental freqlJ&ncy by a factor of two yields an extra degree of freedom to explain 

the 'beating' of the two close frequencies. 

The construction of a more accurate model to handle the abrupt frequency changes and 

overlap of consecutive notes is arguably an excessively complex solution.3 The model 

will seek to explain these problem regions in terms of a harmonic series, which may 

produce a (mathematically) reasonable fit. However, in a perceptual sense, these esti­

mates may be meaningless. For instance, the few artifacts which appear in figure 6.5 

generally occur in regions where there is a transition between notes, or where the signal 

energy is very low. In these regions, the perception of pitch is itself not well-defined. 

The human auditory apparatus requires reasonably steady-state stimuli in order to de­

termine a pitch. This suggests that some subsequent processing is required upon the raw 

output of the Markov chain. Applying a threshold at a low power level generally has 

the desired effect of suppressing these artifacts. This could be incorporated into an in­

ference scheme by assigning a 'labelling' variable to each frame which signifies whether 

the inference is deemed to be perceptually significant. 

The behaviour in the steady state, however, is captured well by the model. Further, the 

generally smooth variation in pitch makes a multiple frame model well suited to this 

form of data. The next section considers a multiple frame approach which provides 

more robustness against problems of the type encountered in this example. 

3Such an approach however might incorporate the detection of parameter changepoints, e.g., as 

demonstrated by [110, 125], or musically probable note transitions, as demonstrated by [70]. 
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Figure 6.8: Dependencies for monophonic multiple frame model. 

6.4 Multiple frame model 

The monophonic example in the previous section employs an independent analysis for 

each frame. Great increases in robustness can be obtained by explicitly modelling the 

slow variation of the fundamental frequency and model order over time. The methods 

of section 4.7 are drawn upon here to produce efficient simulations for a multiple frame 

model. 

The graphical model showing the parameter dependencies is shown in figure 6.8. The 

hyperparameters {~w , a~} govern the underlying pitch variation across the block, whilst 

~H governs the variation of the number of harmonics (model order).4 These parameters 

describe a specific functional form of evolution over time; in the simplest case, a near­

constant value across each block is assumed. 

The model equation is 

(6.13 ) 

4Since a Poisson distribution is adopted for the prior on H i , a spread hyperparameter is not required. 
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The priors for this model are 

P(Wi 16w ) (J~) = LN(Wi ; 6 w ) (J~) 

p( 6 w ) = 1IJ[Wlow , Whighl 

p(J~) = IG(aw ) f3w) 

p(Hi 16H) = Poisson(Hi; 6H) 

P(6H) = Poisson(6H; Ho). 

(6.14) 

A log-normal distribution is used for the Wi prior. This is chosen because of the logarith­

mic nature of the fre1uency axis, and corresponds to log(~i) being nor~ally. distributed 

as N(log(6w )) (J~). This also circumvents problems which would anse with a Gaus­

sian frequency prior, for instance, needing to truncate the prior at Wi = 0 (since the 

log-Normal distribution is only defined for W > 0). For the harmonic transition ker­

nel, where all frequencies are multiplied by a constant, the variance of the frequencies 

across the block will increase, but the variance of the log frequencies will stay constant. 

The prior for the frequency hyperparameter 6 w is chosen to be a uniform distribution 

over the expected range of pitches (e.g., lOO-1000Hz) but this could be changed to be 

a Markovian prior centred upon the estimated value from the previous block, to in­

crease the parameter dependencies over longer timescales. The logarithmic frequency 

characteristic also has musical connotations. The distance between pitches is measured 

in terms of their ratio rather than their difference, such that a factor of two separation 

is an octave. The octave scale is split into twelve semitone steps, each separated by a 

factor of 2i/12 (roughly a 6% increase per semitone step). The unit of log pitch is some­

times called height, which relates to the two-dimensional nature of pitch perception in 

terms of height and chroma (see §2.4.1). 

6.4.1 Transition kernels 

The joint posterior for the model is 

Nf 
p(6w ) p(J~) P(6H) IT p( di I wi) Hi) P(Hi) P(Wi 16w ) (J~). (6.15) 

i=l 
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The method required to simulate a Markov chain from this posterior distribution is 

essentially that of algorithm 4.3 (in §4.7) with the exception that there are two forms of 

block update move - one independent and one dependent. The first block update move 

is an independent sampling step which is intended to locate high probability regions of 

the posterior for notes which are strong across all frames in the block. A value for the 

6H hyperparameter is sampled from an independent proposal distribution, and then 

values Hi in each frame are sampled from distributions centred upon 61£ 

6k r-v q(6k) 
(6.16) 

Ht r-v q(Ht; 6k) i = 1 ... N f 

A proposal distribution is then formed for 6 w on the assumption that the frequency 

deviations in each frame are negligible, 

6: r-v q(6: ; {Ht} Nf) 
(6.17) 

q(6:; {Ht}Nf) ex (1 +P6\~:biH: IT [lldi l12 - 1 !2621If:112 + 2f3e]-E 
z 

where f; is the projection obtained in frame i, setting Wi = 6:. This distribution may 

evaluated for a large number of 6: values using the harmonic transform for each frame, 

e.g., as shown in (6.9). The frequency for each frame is obtained as a small perturbation 

about the sampled value of 6:, 

i = 1 ... Nf . (6.18) 

An update for (J~ is also performed by sampling a value from its full conditional (4.61), 

(6.19) 

The second block update move is dependent upon the current state and is used to correct 

for octave errors by finding a more economical model representation. It employs a 

harmonic transition kernel across the entire block, 

r r-v 1IJ R 

6: = r6~ 

w; = rwf i = 1 ... Nf 

6k r-v q(6k; l6~dr J) 

Htr-vq(Ht; lHikjrJ) i=l .. . N f 

(6.20) 
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The proposal distributions for 6.H and Hi are chosen to satisfy the reversibility issues 

described in the previous section. 

The third form of move is a perturbation step, applied non-deterministically to the fre­

quency or harmonic number parameter in one of the frames. It is followed by an update 

for the corresponding hyperparameters from their full conditionals. For a frequency 

perturbation, 

. 1U J rv {1...Nj} 

w* rv q(w*' wk) 
J J' J 

6.: rv p(6.: ! wj, {w~} _ {j}, (a~)k) 
(6.21) 

(a~)* rv p( (a~)* !6.:,wj, {wf}-{j})' 

Similarly for a harmonic number perturbation, 

. 1U 
Jrv {1...Nj} 

H* rv q(H~' Hk) 
J J' J 

(6.22) 

6.~ rv q(6.~; Hj, {Hf} _{j}) 

6.4.2 Monophonic multiple frame example 

Figure 6.9 shows the results of a multiple-frame monophonic analysis on the sax data set 

using a block size of Nf = 5 (110ms). A comparison with the independent frames 

method of the previous section shows that the fine frequency detail of figure 6.5 is 

preserved, whilst the artifacts have almost entirely disappeared. In the problem regions 

such as between note transitions and in areas of low power, the signal deviates from 

its steady-state harmonic behaviour and so the strength of evidence for a particular 

fundamental frequency will be low. In these instances, prior information compensates 

for indeterminate data, and the strong evidence provided by the nearby steady-state 

frames of data will be dominant. Figure 6.10 shows the pitch estimates for the dataset 

memory, which is a vocal melody. Once again, the fine detail of the performance has been 

captured, for instance the vibrato around frames 420-480 and 530-600, and the slurs 

between notes, e.g., frames 20-50. There are several regions on the graph where the 

pitch estimate is rather indistinct. These largely correspond to unvoiced regions where 

the glottal excitation has stopped or is masked by an unvoiced sound such as sibilants 
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Figure 6.9: Multiple frame model for monophonic data. Dataset: sax. 
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(as in's'), fricatives (as in 'f') or plosives (as in 't'). The vocal data has a sibilant sound 

in frames 300-330, fricatives in frames 130-150 and 520-540 and plosives around 

frames 75 and 680. In singing, it is generally the case that most of the sung regions are 

voiced, with a more-or-Iess continuous glottal excitation, as compared to speech which 

tends to be more punctuated. 

6.4.3 Harmonic evolution 

In addition to the extraction of a pitch inference over time, the model order and har­

monic amplitudes are also estimated. These can be displayed on a harmonic magnitude 

plot which shows the evolution of the sound over time. Figure 6.11 shows the evo­

lution of data set sax which is a 5 second monophonic saxophone melody. 5 The rich 

SNo overlap between frames is used in these examples, and so the frame numbers differ by a factor of 

two from those in figures 6.9 and 6.10. 
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Figure 6.10: Multiple frame model for monophonic vocal data. Dataset: memory. 

harmonic character of the saxophone (in common with brass instruments in general) is 

apparent, with prominent amplitudes for the first 20 harmonics. There is also a strong 

third harmonic which can just be discerned in the plot. 

Figure 6.12 shows the harmonic magnitude plot for dataset memory which is an 8 sec­

ond vocal melody. Most of the signal energy is contained within the first six harmonics 

and the amplitudes decrease substantially after the 10th harmonic. The occasional sig­

nificant amplitudes between harmonics 15-20 arise due to the singer's (ormant, which 

occurs in male singers; the third and fourth formants lie in the region of 2.5-3kHz, 

reinforcing the harmonic amplitudes in this frequency range for steady-state voicing. 

Figure 6.13 shows the markedly different characteristic of the flute. The flute tone is 

rather pure with only the first 3 or 4 harmonics having appreciable amplitude. The 

second harmonic is very strong in this instance, which can sometimes lead to octave 

errors. There is some very deep vibrato in frames 80 to 150 which modulates the 
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Figure 6.11: Harmonic magnitudes for sax. 

amplitudes of the harmonics. This is consistent with the observations of Mellody and 

Wakefield [94], who noted that the perception of vibrato in violin sounds is actually 

dominated by the extreme amplitude modulation rather than the comparatively small 

frequency modulation. 

6.5 Conclusions 

This chapter has described the application of single component harmonic models to 

monophonic musical signals. The characteristics of the harmonic model and its poste­

rior distribution have been described. The harmonic transform allows the conditional 

frequency distribution to be evaluated for a large number of candidate values at low 

computational cost, since it can employ highly optimised FFT routines, with extra zero 

padding leading to more resolution in the proposal distribution. Some new types of 

transition kernel are presented that exploit the characteristics and redundancy of har­

monic models: an independence sampling step employs estimates from the harmonic 
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transform to rapidly find the dominant modes of the posterior distribution, and a har­

monic transition kernel explores related modes of the distribution to reduce the in­

cidence of octave errors. Efficient transition for joint multiple frame estimation and 

detection are shown. 
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,1 

Application to Polyphonic 

Pitch Detection 

7.1 Introduction 

7 

In this chapter, polyphonic musical signals are modelled hierarchically as a set of time­

varying notes, where each note is comprised of a set of harmonically related sinusoids. 

The multiple component model of chapter 5 is employed, together with the harmonic 

model of chapter 6. The hierarchical model incorporates both horizontal and vertical 

Gestalt grouping mechanisms, as described in chapter 2. The techniques for producing 

efficient proposal distributions based upon signal- and residual-dependent kernels are 

employed, using the harmonic transform to evaluate proposals for a wide range of 

frequencies at low computational cost. 

Section 7.2 describes the motivation for the polyphonic model and its formulation. The 

importance of the interpretation of the model composition and the concept of signal 

context for component identifiability and perceptual streaming are discussed. The tran­

sition kernels used in the simulation scheme are also presented, employing reversible 

jump moves for dealing with the variable sized parameter space of the model. The ex­

tension to multiple frame joint detection and estimation is presented in section 7.3 and 

the transition kernels required for an efficient simulation are described. Some simulation 

results for synthetic and real polyphonic datasets are shown in section 7.4. Section 7.5 

discusses some of the problems encountered in musical signals and describes some of 

the advantages and limitations of the harmonic model. 

Once again in this chapter, emphasis is put on the development of efficient techniques 

for MCMC simulation by careful choice of approximations and assumptions, and by 
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exploiting the structure of the harmonic models and its posterior distributions. 

7.2 Single frame polyphonic model 

7.2.1 Motivation 

A signal comprised of polyphonic musical data may be regarded as a multiple compo­

nent signal. The cO~ltituent notes may arrive from separate sources (i.e., instruments) 

or from different oscillating systems in a single instrument (e.g., the individual strings 

of a guitar or piano). Hence it seems reasonable to assume prior independence for the 

notes, by virtue of their (maybe only approximate) physical independence. The ab­

straction of a musical note is a sensible one; it effects a logical grouping for the large 

collection of sinusoids present in the observation. On a physical level, it groups those 

sinusoids which have come from the same resonant system of one instrument, and on a 

perceptual level it corresponds to the percept of a note, which, in many applications, is 

the desired object for inference. 1 The perceptual organisation of sinusoids into musical 

notes is largely determined by Gestalt grouping cues. The predominant cues are com­

mon harmonicity and common onset (see §2.2.2). The multiple component harmonic 

model provides such a grouping mechanism, where each note constitutes a signal com­

ponent. Common harmonicity is represented explicitly by the model; common onset is 

more implicit, and is represented through the variational hyperparameter for the num­

ber of harmonics over time in the multiple frame model. The next section considers a 

single frame approach to polyphonic signal modelling. Section 7.3 describes a multiple 

frame model which achieves a robust pitch analysis than the independent frame model. 

The model equation is 

d = LGqbq +e. 
qEIQl 

(7.1) 

The multiple component harmonic model assumes prior independence between its com­

ponents. The parameter space of the model is {{ wq, Hq} lQl, M IQl } where the model pa­

l By contrast, in an audio coding application this level of inference may not be required; the individual 

sinusoidal frequency tracks may be of more interest. 
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Figure 7.1: Dependencies for the polyphonic single frame model. 

rameters and also the model composition are to be estimated; the graphical model for 

this model is shown in figure 7.1. The simulation scheme for the model employs re­

versible jump moves to make transitions across subspaces of the model. The techniques 

described in §5.3.1 for obtaining efficient transition kernels by employing the residual 

waveform are also applied in this section to reduce the computational requirements 

significantly and enable processing at speeds approaching the order of real time. 

7.2.2 Model composition 

The model composition M IQl (i.e., the number of notes) is unknown and is to be esti­

mated along with the fundamental frequency and number of harmonics of each note. 

The model can be expressed as a single GLM by forming the composite basis ma­

trix (5.2) for the components that are switched on. The inclusion of each component is 

controlled by a Boolean indicator variable r q
• Hence the problem of finding the notes 

which are switched on is one of subset selection rather than of model order selection. 

This interpretation differs from similar techniques in the literature, e.g., [5,51,58], who 

propose reversible jump schemes for detecting the number of components in a mixture 

by considering the number of components to be an explicit parameter of the model. 

The use of indicator variables is a different type of parametrisation which allows for the 

specification of different prior expectations for each component. The example in §5.4 

illustrates how this may be employed for the detection and estimation of heterogeneous 

mixtures. For musical signals, this parametrisation allows each component to form a 

stream over time, such that a context is built up for each component on the basis of 
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its past history. This dependence is formed through the parameter priors: for a single 

frame method the dependence could be Markovian, based upon the behaviour in the 

previous frame. For a multiple frame model, the dependence is represented between 

frames by the block hyperparameters, which may be assigned a Markovian dependence 

between blocks. 

This parametrisation reflects the role of streaming in human perception (see also §2.4.4). 

A stimulus must build up a context for itself over time before it is accepted as a meaning­

ful entity such as a note. Once the context for one note has been established, the addi­

tion of a second note at a later instant in time will be regarded as a new note, even if the 

pitch is almost ident'tcal. If, however, both notes are presented simultaneously, then they 

may be perceived as a single note, since a context has not been established for either. 

Players in an ensemble produce onset asynchronies of the order of 30-100ms [118], 

which is generally sufficient to perceive the notes individually. By contrast, gamelans 

are played in pairs and are inharmonic, so that two chimes struck at the same time 

are perceived as one event, since we can no longer appeal to common harmonicity as a 

grouping cue [75]. The importance of horizontal and vertical mechanisms of grouping 

has been appreciated by several authors in the field of musical signal processing, for 

instance [18, 39, 70]. 

7.2.3 Transition kernels 

The simulation scheme employed for multiple notes is based largely on that of algo­

rithm 5.1 in §5.3. A non-deterministic choice is made between a note birth-death move 

and an update move for a single note on each iteration. The update move is similar to 

that described in algorithm 5.2 except that four transition kernels are used rather than 

three. 

Independence sampling kernel 

This is a signal-dependent kernel (see §5.3.2) which is calculated before the start of the 

Metropolis-Hastings algorithm. A proposal distribution is generated by constructing a 

monophonic harmonic model from the observed signal d. A value Hq * is sampled from 

a distribution centred upon a value Ho which represents roughly the expected number 
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of harmonics (and hence may also be the mean of the prior for Hq). A value of Ho = 6 

works well for a wide variety of sounds, since many instruments have most of their 

energy concentrated in the first six harmonics. The first six harmonics are also the ones 

which have the most influence on pitch perception [98]. A proposal distribution for wq * 

is also generated using the value Ho, 

Hq* rv q(Hq*; Ho) 

wq* rv q(wq*; Ho). 
(7.2) 

This distribution is approximated using the harmonic transform, since this allows cal­

culation of the proposal distribution over many frequency points in a computationally 

efficient manner. The proposal of (6.9) is used but with H* replaced with Ho since this 

distribution can be calculated at the outset of the simulation. A more sophisticated 

approach might be to generate this distribution for several values of H and then draw 

{wq*, Hq *} jointly from the resulting two-dimensional distribution. This is computa­

tionally more expensive than evaluating the distribution for a single H value, but the 

FFT only has to be calculated once. It may be useful where it is expected that the data 

might be comprised of several notes with different numbers of harmonics. The extra 

computational expense incurred in increasing the amount of zero-padding in the FFT 

may be worthwhile since this will go some way towards reducing octave errors, due to 

the very narrow peaks of the posterior distribution. 

Conditional independence sampling kernel 

The conditional independence sampling kernel generates a proposal distribution based 

upon the residual. The approach is analogous to an iterative 'estimate-and-subtract' 

method, where the estimates for each note are made using the residual waveform of the 

original observation minus the reconstructions of the other components. In this scheme, 

a proposal distribution is created using a single note model from the residual r q
, 

r q = d- L Gq'bq' 
q' EIQl 
q' :/=q 

(7.3) 
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where the value for bq' could be obtained from the least-squares estimate or as a sample 

from the full conditional. The orthogonality of the harmonic model is exploited2 to 

allow the resulting distribution to be used as an approximation to the full conditional, 

(7.4) 

where eq = {wq, Hq}. The background behind this relation is described in §5.3.1. A 

value for Hq * is drawn from an independent proposal distribution q(Hq *). The proposal 

for wq * is then drawn from a distribution constructed using the residual, 

Hq* rv q(Hq *) 

wq* rv q(wq*; Hq* , {wqk, Hqk}_{q})' 
(7.5) .1 

The proposal employs the harmonic transform 

(7.6) 

Harmonic transition kernel 

A dependent kernel employing a harmonic transition move is also used. This kernel is 

used to move around the related modes of the posterior distribution, in the hope that a 

more efficient representation may be obtained, 

(7.7) 

Perturbation kernel 

A perturbation kernel allows the Markov chain to explore local modes, which, com­

bined with the harmonic transition kernel, is important for avoiding octave errors. It 

2The harmonic model is approximately orthogonal as long as N is large and that no harmonics are 

shared between notes. The validity of this assumption in the context of musical signals will be discussed 

later in this chapter. 
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is decided non-deterministic ally whether to propose a perturbation for the harmonic 

number or for the fundamental frequency, 

(7.8) 

or 

(7.9) 

Birth-death move 

A birth-death move is proposed which performs a reversible jump between subspaces of 

the model. The four transition kernels described above are all 'local' to the note under 

consideration, as they update the state for a single note. The birth-death move also 

proposes a change in the model composition M Q, although the states of the other notes 

are not affected. The basic birth-death move is described in algorithm 5.3. If the current 

note q is switched off, then the birth move is executed, such that the proposal model 

composition M Q+ now includes the current note, Q* = ~ U {q}. A proposal must be 

formed for {wq *, Hq *}. This is done using the conditional independence sampling kernel 

described in (7.5) and (7.6). A proposal value for Hq * is sampled from an independent 

distribution that is then used in the proposal distribution for wq *. The distribution (7.6) 

is constructed with the harmonic transform of the residual rq to ensure that there is 

a high probability of locating a mode of the posterior distribution that hasn't already 

been accounted for by another note. The corresponding death move, proposed if the 

note is currently included in the model, proposes switching off the current note. 

This form of birth-death move is very important for rapid convergence of the Markov 

chain since it is very likely to propose moves into high probability regions of the poste­

rior distribution. The use of the residual waveform rather than the observation allows 

weaker components to be detected once the stronger components have been found. 
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7.3 Multiple frame polyphonic model 

Polyphonic pitch estimation is a more complex task than finding the fundamental fre­

quencies in successive frames of data. Such a method would be very 'short-sighted' in 

the sense that inferences about the underlying pitches cannot be reliably made over 

such short time scales. Many sinusoidal analysis techniques, following the lead of 

McAulay and Quatieri [89, 112] acknowledge the importance of directly incorporat­

ing time-varying frequencies and amplitudes, rather than presenting a set of discrete 

frequency estimates at each instant in time. These techniques are largely biased towards 

audio coding and trarf-sformation applications. In the former, the goal is to obtain a 

compact representation of the data that can be used to generate a high-quality resyn-

thesis of the signal. 

The parametrisation of time-varying frequency tracks exploits the redundancy in the 

relatively slow variation of frequency over time. Most such techniques rely upon an 

independent analysis in each frame, e.g., from spectrum peak-picking, and then form 

frequency tracks as a subsequent step. McAulay and Quatieri find the tracks that min­

imise the differences between frequencies in successive frames [89]. Serra creates a set of 

frequency guides that are created and destroyed dynamically, but which are allowed to 

'sleep' for several frames if the evidence for that frequency is temporarily absent [131]. 

Rodet uses a probabilistic method which is applied globally to the entire set of frequency 

estimates. the method uses a Hidden Markov Model to find an optimal set of smooth , 
frequency tracks [33, 123]. 

The conceptual jump between sets of frequencies at discrete instants in time to continu­

ously varying frequency tracks is analogous to the psychological streaming mechanisms 

used for horizontal grouping. For instance, melodies are heard as a pitch moving in 

time, rather than a set of separate events [24]. The horizontal and vertical Gestalt 

grouping mechanisms favour coherent behaviour of the frequency tracks: common har­

monicity and common onset for vertical grouping, and similarity and good continuity 

for horizontal grouping. 

Therefore, rather than performing pitch estimation independently in each frame of data, 

inference is performed over longer time scales. The time-varying nature of musical 

signals puts an upper limit upon the length of the analysis window, but the parameters of 
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Figure 7.2: Polyphonic multiple frame harmonic graphical model. 

the signal are assumed to vary slowly over time and are assumed constant across analysis 

windows of the order, of 20ms. For a sound to be perceived as a note it must have a 

duration of several frames. A model that assumes notes sound continually across a block 

of several frames will detect the most 'stable' notes. An independent frame analysis 

invariably generates more pitch hypotheses than are perceived to be present. Extra 

sinusoids appear in the data to 'explain' transient signal components, inharmonicities 

and non-linearities such as vocal fry.3 Many of these artifacts do not appear in the 

inference if the constraint of requiring a component across all frames in the block is 

present. 

A graphical model to represent the multiple frame polyphonic model is shown in fig­

ure 7.2. Blocks are formed from N j frames (typically 5-10), and each note is associated 

with an underlying context, with frequency ~wq and ~Hq harmonics. The frequency 

and number of harmonics in each frame is assumed to be close to the underlying value, 

and so the priors for the parameters in each frame are dependent on the variational 

3 A sinusoids plus residual model may be better for representing these artifacts, if explicit inferences 

about them are required. [57, 123, 131]. 
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hyperparameters 6f the block. Dependencies at a higher level could also be represented 

by a Markovian prior on the variational hyperparameters, which would associate the 

detected note with similar frequencies in previous blocks. 

7.3.1 Simulation scheme 

The priors for each note in the multiple frame model are the same as those listed in §6.4. 

The joint posterior for the model is 

p( {{ W{, H?} NJ ,6.wq, o-3q, 6.Hq hl' 1 {dd NJ) ex 

i 1 IT [P(di I {W{, H?hJ) ITp(W{ l6.wq, o-3q) P(Hiq I6.Hq) 
i=l qE iQl 

x IT [p(6.W q) p(o-3q) p(6.Hq)] p(MiQl ). (7.10) 
qE iQl 

The simulation scheme used for the multiple frame polyphonic model combines the 

multiple component scheme of algorithm 5.4 (in §5.5) with the transition kernels specific 

to harmonic signals discussed in the previous sections of this chapter. On each iteration 

of the algorithm, the state for each note is updated using one of a number of transition 

kernels. 

One candidate is a block update move that updates the state of a given note across 

all frames in the block. It is a conditional independence sampling step that generates 

its proposals from the residual rq ; it is described in more detail in §5.6. A value for 

6.'Hq is proposed from an independent distribution, and then a proposal distribution for 

6.:q is constructed by assuming that the deviation of frequency in each frame will be 

small· the distribution is of the form of (5.52), which is obtained from the product of , 
the likelihood in all frames after substituting 6.wq for W{. The harmonic transform is 

evaluated in each frame to obtain a distribution that can quickly identify components 

with similar fundamental frequency across all frames, 
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Proposals for the parameters of each frame are obtained from perturbations of the 

hyperparameters. A proposal for the hyperparameter variance, o-~q is generated from its 

full conditional distribution (4.61). 

Another move is the birth-death move, shown in greater detail in §5.5.1. For the birth 

move, a proposal for all the parameters of the new note across the entire block is gen­

erated using the conditional independence distribution described above. For the death 

move, this distribution must also be calculated to evaluate the probability that the cur­

rent state would have been generated from the proposal in the reverse transition. 

There are two types of dependent transition kernel used. One is a joint block update 

which proposes a harmonic transition for the parameters and hyperparameters over the 

whole block, as shown in (6.20). The second type of move is a perturbation applied non­

deterministic ally to either the fundamental frequency W{ or number of harmonics H? of 

a randomly chosen note in a randomly chosen frame. This is followed by an update of 

the hyperparameters of the note, obtained by sampling from their full conditionals; this 

step is also described in §5.5.3. 

7.4 Simulation results 

7.4.1 Synthetic harmonic data 

A synthetic data set is generated with three sets of harmonic series present. Two sets 

have similar amplitudes and the third is around 20dB lower. The fundamental frequen­

cies of two components vary linearly over time, whilst the frequency of the other is 

modulated at around 7Hz4 and each has between 4 and 6 harmonics. The top plot of 

figure 7.3 shows the MAP estimates for the fundamental frequencies. The lower plot 

shows the energy of the components in each frame relative to the signal energy. The 

general frequency trend of each component is clearly visible. There are several areas 

however where the detection has failed to pick out all three components. In the initial 

region of frames 1-10, two of the frequencies cross. This which precludes the detection 

4This corresponds to the typical vibrato rate of acoustic instruments. 
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Figure 7.3: Synthetic polyphonic data. Dataset: synharm. The top plot shows the frequency 

tracks, and the lower plot shows the energy of each component. Estimation of the weakest 

component becomes difficult when its harmonics are close to those of the stronger components. 

of the component with the lower amplitude. Around frames 41-45 the frequency track 

of the lowest component crosses the half~frequency of the highest component. In the 

area around frame 90 the detection is disrupted by the crossing of harmonics of the 

lower and middle frequency tracks. 

The detection of all components is generally good - the two stronger components 

are picked up in most frames, whilst the weaker component is found for the frames 

that do not have a clash of harmonics. These problems occur since the basis matrix is 

rank deficient: two components share a harmonic and the model is unable to determine 

how much of the harmonic each component is entitled to have. The simulation was 

run for 100 iterations in each frame. The algorithm is designed to converge to the 

high probability regions of the posterior very quickly, which is achieved through the 

combination of conditional independence sampling using the residual, and harmonic 
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Figure 7.4: Splitting of two independent monophonic sources. Dataset: saxmem. 
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transitions for the elimination of octave errors. With careful implementation, results of 

the order of real-time are achievable. 

7.4.2 Duophonic example 

One of the fundamental assumptions behind the polyphonic model is that the com­

ponents (notes) are a priori independent. The motivation for this is that the physical 

systems creating each note are likely to have a high degree of physical independence, 

in addition to being a simplifying assumption. The dataset saxmem is created from the 

addition of two independent monophonic melodies, one from a saxophone (see also 

figure 6.9) and one vocal sample (the first 430 frames of figure 6.10). The superposition 

of the pitch contours obtained from the monophonic analysis of each sample separately 

is shown in the top plot of figure 7.4. An analysis with a two-note (duophonic) model 

yields a set of pitch estimates shown in the lower plot. Agreement between the two 
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plots is very good. Most of the two melodies have been detected. The only areas where 

a pitch hasn't been detected are around frames 40-50, where the vocal part coincides 

with half of the saxophone pitch, and frames 300-330, which is a sibilant region in the 

vocal part (and hence there isn't a perceivable pitch in that region). 

One limitation of the detection is the inability to follow either melodic line, i.e., the 

inability to horizontal group the frequency tracks into the correct melodic streams. A 

prior distribution for the hyperparameters that is based purely on the distance between 

the pitches in adjacent blocks is inadequate to determine the correct horizontal group­

ing, since the melodic lines are not continuous (there are occasional jumps) and are not 

mutually disjoint. Evert if trajectory information were to be incorporated into the prior 

structure, the model would still be unable to resolve many of the problem regions. From 

visual inspection of the top plot, it is sometimes difficult to discern the correct grouping, 

particularly around frames 210-240 and 380-400. To achieve good melodic grouping 

it would also be necessary to impose continuity constraints on the spectral character­

istics of the melodic lines (in this instance, the relative harmonic amplitudes are very 

different for saxophone and voice, see figures 6.11 and 6.12), or to have a better model 

of pitch variation that can represent the discontinuities inherent in melodies. 

7.4.3 Polyphonic piano examples 

Figure 7.5 shows the pitch estimates for a polyphonic piano excerpt with 2-3 note 

polyphony. The data was created using a piano preset on a synthesiser, and all of 

the notes were played at a similar level. The frequency axis is on a logarithmic scale, 

marked with the approximate locations of the note 'C' in each octave, with middle C 

close to 260Hz. The darkness of each point on the plot is proportional to the log of the 

energy of each note. The algorithm works well on this synthetic data as the oscillators 

are very stable and many of the artifacts of real pianos, for instance inharmonicity and 

non-linearities, are absent.s The assumption of slow frequency variation is very well 

suited to piano tones. The fixed length of piano strings and the constraint of a 12-tone 

keyboard means that frequencies are constant over the duration of a note. 

5However, many synthesiser manufacturers strive for realism by modelling such effects or sampling 

real piano sounds. 
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Figure 7.5: Synthesised polyphonic piano example. Dataset: piantun. 

The pitch estimates fo; an extract played by an acoustic piano are shown in figure 7.6. 

The range of note amplitudes is much greater in this instance and the recording is very 

reverberant. The detection is not as robust as for the synthetic case, and due to the 

high levels of reverberation repeated notes are not picked up as separate entities as the 

sound continues across the rest between the notes. A number of very faint lines are just 

visible, particularly in the top left corner of the plot. Most of these lines fall close to 

harmonic frequencies of the middle C note that occurs between frames 5-50; lines at 

the C in the next octave (520Hz), the G above (780Hz) and the E above that (1320Hz) 

are at multiples of 2, 3, and 5 respectively. Hence these are likely to be caused by slight 

inharmonicities of the piano, which is more extreme in the lower notes due to the width 

of the bass strings. The left hand part of the piano melody is a C-E-G-E-C arpeggio; the 

right hand part starts around frame 180. 

A second acoustic piano extract is shown in figure 7.7. This tune has a more chordal 

left hand part, which is clearly visible in the 130-260Hz octave. It is difficult to tell 
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Figure 7.6: Acoustic polyphonic piano example. Dataset: granpre. 

whether all of the notes in the octave above are actually being played or whether they 

are octave errors. The fast right hand arpeggio between frames 210-260 is captured 

well by the model. 

7.5 Appraisal of the harmonic model 

In this section the performance of the polyphonic harmonic model is assessed in terms 

of its suitability for musical signals, and the validity of the assumptions made in its 

formulation. Many of the problems that arise in real signals are discussed. 
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Figure 7.7: Acoustic polyphonic piano example. Dataset: wow. 
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Probabilistic model To the best of the author's knowledge, this is the first probabilistic 

treatment of the polyphonic pitch estimation problem, allowing for the incorpo­

ration of subjective or statistical information into the prior structure of the model. 

The use of MCMC methods for the posterior simulation allow a flexible choice of 

model structure. 

Integrated model The model jointly deals with low-level (signal) and also high-level 

(note) aspects, and prior information can be harnessed at each level. It is ex­

tensible to higher levels of modelling to represent musical structure such as note 

timing [115] or note transitions [70]. Encapsulation is achieved through condi­

tional independence and graphical model separation, rather than by using a series 

of isolated black boxes (cf. [140]). 

Good steady state representation Many (pitched) musical instruments can be modelled 
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well by a harmonic model since in order to produce a definite, unambiguous sensa­

tion of pitch, they must oscillate in a steady state for a period of time of the order 

of 20-100ms. The draft MPEG-4 standard [67] now has the capability of cod­

ing a harmonic series, since this results in a more efficient coding scheme [111]. 6 

The multiple frame method allows slowly time-varying signals to be modelled by 

assuming the parameters can be held fixed in each frame. 

Meaningful parametrisation The parameters of the model map onto the perceptual do­

main: for most harmonic stimuli, the perceived pitch is equal to the fundamental 

frequency of the harmonic set of sinusoids, hence the prior structure can explicitly 

impose prior beli~fs upon the pitch variation. This would not be easily possible 

with (for instance) a model parametrised on AR coefficients or pole locations. 

Parametric model Since the model is parametric, pitch estimation is just one possible 

output. The harmonic character of the instruments can also be investigated, the 

parameters could be used for audio coding, or the signal could be resynthesised, 

which may be of interest for a signal separation application. 

Resolution The frequency resolution of the estimation scheme is not limited by DFT 

resolution. The DFT is harnessed to provide estimates of the high probability re­

gions of the posterior, and then the MCMC simulation locally explores the modes 

of the distribution. Similarly, the resolution is not limited by a fixed semitone grid 

as with a musically tempered scale (cf. [103, 143]). 

Generality of assumptions The assumptions made in the model are rather general, such 

that the model may be applied to a wide range of instruments. If extra knowledge 

is known about a particular instrument, e.g., that pianos have no frequency devi­

ation, then this may be incorporated into the model. Some polyphonic estimation 

techniques require each note of one specific instrument to be recorded in isolation, 

and the detection will only work for that one instrument, which is impractical in 

many applications [72, 124]. 

6However, only a single harmonic series is employed which is only of practical benefit for monophonic 

signals. 
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7.5.2 Limitations 

Rapid variation Musical signals generally exhibit a rapid variation, and short steady 

state regions are punctuated by transient events and time-varying artifacts. Fre­

quencies may vary rapidly, particularly during note attacks, and the pitch contour 

may have large discontinuities at note boundaries. Notes may start at any point 

in time rather than at block boundaries. Deep vibrato may also lead to modelling 

errors. 

Non-Gaussian error In addition to the rapid variations, many instruments, particularly 

percussive ones such as guitars and pianos, produce transients when struck. The 

breath noise produced by flautists and bow noise caused by string players are 

coloured and are essential to the character of the sound. When a model of these 

sounds is resynthesised without the noise, the result sounds quite unnatural. For 

coding or separation purposes, the transient and noise components could be sep­

arately represented, e.g., as with [131]. 

Inharmonicity and aperiodicity Not all instruments are perfectly harmonic. The piano 

in particular has distinct inharmonicities for the lower strings, as a result of their 

finite width and effects of stretching.7 The excitation of some instruments may 

have some degree of aperiodicity as a result of the chaotic oscillations causing the 

excitation, for instance vocal fry and bow friction [123], whereas the harmonic 

model assumes periodic oscillations. 

Choice of prior values It is difficult to determine how strong prior information should 

be, particularly when applying subjective information. It may be possible to de­

termine good values for some priors from statistical observations, but for some 

parameter priors (for instance the variance of the fundamental frequency hyper­

parameter) it can be difficult to produce a value that represents the prior beliefs. 

A major risk is that the prior may be compensating for modelling errors, and 

the extreme values required to exert an influence over the likelihood may appear 

intuitively implausible. 

Crisp inferences In an application such as pitch estimation, crisp inferences are gener-

7This phenomenon has been exploited by some authors to separate and identify harmonics [73, 124]. 
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ally required; i.e., the desired output is to determine the notes that are present in 

the observation. It is apparent from some of the polyphonic pitch plots shown 

in the previous section that many more note hypotheses are produced than are 

audible. Many of these occur because of modelling errors such as inharmonicity 

(note that they are more prevalent in the acoustic example of figure 7.6 than the 

synthetic example of figure 7.5). The extension of the model to include a higher 

level 'label' which would mark the salience or significance of each note could be 

one way to achieve a more meaningful result for pitch estimation applications. 

Horizontal grouping The multiple frame method works well for horizontal grouping 

over short intervi ls (of the order of 100-200ms), but grouping for longer dura­

tions is not as good. This arises partly from the limitations of the pitch variation 

model, and partly from the difficultly in choosing a suitable value for the prior 

variance for the frequency hyperparameter. 

Independence and orthogonality The model assumes prior independence between the 

components. However, the principles governing Western harmony specify re­

lations between pitches that sound concordant when played together; musical 

chords are formed from combinations of pitches in particular ratios, e.g., 4:5:6 

for major chords. Hence the pitches that may be sounding concurrently are likely 

to be correlated. This presents another problem: since harmony is dictated by 

pitches related by ratios of integers, this means that several notes may share har­

monics. The composite basis matrix produced to model several such notes now 

becomes rank deficient and the basis matrices are no longer orthogonal. 

What is more likely to happen in practice is that two notes that are harmonically 

related will be detected as a single note with a fundamental equal to the harmonic 

root of the two note pitches. This accounts for the inability of most algorithms and 

the human auditory apparatus to hear two simultaneous notes an octave apart. If 

the notes start at different instants in time then this can help a listener to perceive 

the notes separately. In this model, if harmonic amplitude information is also 

included in the multiple frame hyperparameters then this may yield a method of 

resolving octave ambiguities. There are a few cases in figure 7.7 where chords 

containing octaves have been detected (e.g., around frames 100 and ISO); this is 

possible partly due to the context which has been established by one of the notes 
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before the other sounds, and also due to the slight tuning variations that are likely 

to occur in practice (piano octaves are slightly stretched, as described in §2.2.2), 

which may be sufficient to make the basis matrix orthogonal once more. 

7.5.3 Suitability of MCMC methods 

The model equation is sufficiently complex to preclude a closed-form solution. The 

model space is sufficiently large and the posterior distribution has fine detail that makes 

an exhaustive evaluation of the whole parameter space impractical. Consequently, a 

numerical method employing Markov chain Monte Carlo techniques is employed. The 

most common criticism of MCMC methods is that they are inherently very slow and 

require thousands of iterations. In this thesis it is shown that algorithms employing 

MCMC techniques can be implemented in a much more efficient manner making real­

time processing a possibility. In the applications described in this chapter, point esti­

mates are required rather than inferences about the whole of the posterior distribution. 

As such, the goal of the simulation is to locate the dominant modes of the posterior 

distribution and then perform a local exploration to find high-resolution frequency esti­

mates. In all the examples shown in this chapter, the best estimates produced after 100 

iterations8 are employed. 

The choice of transition kernels is a major contribution to the efficiency of the al­

gorithm. The use of orthogonality assumptions and approximations allows the con­

struction of efficient proposal distributions that are capable of locating high probability 

modes very quickly, whilst the use of residual-dependent kernels allows the algorithm 

to find weaker components within the mixture. Many computational savings may be 

made when implementing the Metropolis-Hastings algorithm, such as caching calcula­

tions of residuals, projections and probabilities for each state. The ratios of posteriors 

calculated in the M-H acceptance step can also be simplified by appealing to conditional 

independence from the graphical model. The methods in this chapter also initialise the 

Markov chain in each block with the MAP estimates of the previous block. In many 

cases this starts the chain off in a region of high probability. 

Above implementational and speed considerations, the use of MCMC methods allows a 

8Determined as the states of the Markov chain with the highest posterior probability. 
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very flexible choice of model structure, particularly for parameter priors. The choice of 

priors reflects the expected behaviour of the signal, and the imposition of dependences 

between parameters in adjacent blocks leads to a model which is more robust to mod­

elling spurious transients. The model hierarchy is also extensible, such that higher levels 

of structure may be imposed and inferences made in the problem domain rather than in 

the signal domain. 

.1 7.6 Conclusions 

This chapter applies the multiple component model of chapter 5 and the harmonic 

model of chapter 6 to polyphonic audio data. The structure of the harmonic model 

and the problems that arise in its implementation are discussed. Methods for approxi­

mating the posterior distribution using the harmonic transform are described that allow 

efficient calculation of the distribution for a large number of candidate frequencies. The 

transition kernels required for an efficient simulation scheme are described; these pro­

vide a means of efficiently exploring the posterior distribution by exploiting its features 

and its redundancies. The model is extended to the joint detection and estimation over 

multiple frames, associating the hyperparameter of each component over time with a 

signal context. Typically, no more than around 100 iterations are required for the sim­

ulation in each block to produce the polyphonic pitch estimates, which is possible due 

to the careful choice of proposal distributions that can rapidly explore the posterior 

distribution. Some of the benefits and limitations of the harmonic model are discussed, 

along with a discussion of the validity of some of the model's assumptions. 

Conclusions and Future 

Research 

8.1 Conclusions 

8 

This thesis has presented techniques for the modelling of signals that can be represented 

in terms of a homogeneous or heterogeneous mixture of time-varying components. This 

model has been applied to the problem of modelling monophonic and polyphonic mu­

sical data, with a particular emphasis on pitch estimation. An hierarchical model has 

been described that captures the essential characteristics of musical signals in terms of 

the short-term time variation of a collection of harmonically related sinusoids. These 

two dimensions of structure correlate with Gestalt psychological grouping principles, 

which determine the perception of musical signals as a collection of melodic streams. 

The importance of both high and low levels of modelling has been emphasised, and the 

contribution of knowledge from areas of signal processing, music and perceptual psy­

chology have been shown to be valuable in the formulation of a musical signal model. 

The model is posed within a Bayesian framework, allowing for the specification of prior 

information about the model parameters. Markov chain Monte Carlo techniques have 

been employed to simulate a stream of samples from the joint posterior distribution for 

the purposes of Bayesian inference. The simulation schemes employ efficient transition 

kernels that are tailored to the models under consideration. Model structure is exploited 

to yield transition kernels that are capable of rapidly exploring the parameter space. 

A combination of independent, conditionally independent and perturbation transition 

kernels have been employed to rapidly detect both strong and weak components in 

the mixture. Novel forms of transition kernel exploiting the structure of the harmonic 

model have also been presented. An emphasis on efficiency has yielded techniques that 
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may allow implerrientations of MCMC simulations several orders of magnitude faster 

than are usually achieved. 

8.2 Discussion 

8.2.1 Importance of high level modelling 

This thesis has empha~ised how many different forms of knowledge are important in 

the construction of a model for musical signals. A technique based upon signal pro­

cessing alone will be of limited success. Musical signals have many irregularities, they 

are generally not produced by stable oscillators, but rather as the acoustical response 

to instruments excited manually by human beings. Information is not transferred by 

the signal in a well-determined way (in contrast to communications channels) as the 

musician is able to vary the performance in a subjective manner, applying his/her own 

means of expression. No two performances of a particular tune will be identical, and 

there may be many possible interpretations of the same observation. 

Musical signals can be ambiguous in many different ways. For instance if a harmoni­

cally related set of sinusoids are staggered in time such that the fundamental is presented 

first, and then successive harmonics are added a short time later then each will initially 

be perceived as a discrete pitch, but will gradually fade into the percept of the underly­

ing complex tone pitch [27]. If all harmonics are presented simultaneously then only a 

single note percept will be formed. This mechanism is also important to the perception 

of chords, where it is easier to discern the individual pitches in the chord if there is a 

delay between the note onsets. 

Signal processing methods usually operate in the short-term and lack a notion of con­

text. Context provides important information about the signal and it is often desired 

to infer context from a signal as a goal of the estimation task. By way of illustration, 

consider the problem of tracking the pitches of several instruments playing concurrently 

(see also figures 7.3 and 7.4). It is highly likely that some of the parts may cross, and 

so it would appear that trajectory information must be incorporated within the track­

ing. Musical notes are not continuous, however: the notes in a melody are typically 
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discontinuous in time and pitch. The identification of the crossing frequency tracks 

now requires information about amplitudes and timbre, which is a multidimensional 

attribute of sound and cannot be simply expressed in a mathematical form. Neverthe­

less, tracking methods are important for the related problems of resolving individual 

sinusoidal components [33, 89]. 

There is another major limitation in using signal processing methods for musical signals. 

Whilst these techniques are able to produce optimal parameter estimates for given mod­

els, these parameters are optimal in a mathematical sense, rather than in a perceptual 

sense. That is to say that an algorithm to calculate the fundamental frequency of a har­

monic series will not necessarily produce an estimate of the pitch. Octave errors may 

arise due to the pitch ambiguity of certain sounds where even different subjects may 

classify the pitch differently. A plot of fundamental frequency over time therefore may 

generate quite a different picture to the expected visual representation of a tune. These 

artifacts may also occur due to the violation of some modelling assumptions, e.g., rapid 

time variation, non-linearity or inharmonicity, but the specification of a more general 

model may be prohibitively complex. If the goal is to produce an audio coding appli­

cation then this is probably of little concern. For musical applications, however, the 

interpretation is of much more interest than the raw parameter values. The detection of 

chords isa further example where the mathematical solution will be different to the per­

ceptual solution, as the mathematical solution will usually be the detection of a single 

harmonic series with a harmonic root an octave or so below the constituent notes. 

Psychoacoustic modelling techniques are necessarily detector-oriented rather than data­

oriented, but since the data contains all the information being transmitted from the 

player then why is it necessary to model the auditory system at all? A degree of inter­

pretation is required to map physical parameters of sound onto their perceptual corre­

lates, which are of greater interest for applications such as musical transcription. The 

Gestalt principles of grouping and streaming are of great importance for being able to 

interpret naked sinusoids in terms of meaningful higher level structures of notes, chords 

and melodies. 

Musical models operate at a higher level still, although in much of the literature they are 

largely extensions of perceptual grouping and streaming models. Musical models have 

a more explicit recognition of context, in terms of concepts such as key and metre, and 

I' 
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inferences are often made about rhythmic, melodic and harmonic structure. Such mod­

els tend to operate upon raw note or note stream data, rather than at the signal level. 

The signal processing problems of (for instance) calculating the pitches of a polyphonic 

music signal are assumed to be solved. 

8.2.2 Completing the loop 

Each of the above areas contribute very important elements to musical signal processing 

problems and so it seems obvious that the natural way to incorporate the important as­

pects of each is to 'comilete the loop'. That is, signal processing methods benefit greatly 

from the availability of salient prior information and the imposition of structure, whilst 

psycho acoustic and musical models rely on accurate estimates of signal parameters such 

as timbre. This could be achieved in two ways - either by feedback of high level in­

ferences to the low level model or by imposing a hierarchical model from the outset. 

The latter approach has been the preferred one in this thesis. A Bayesian modelling 

framework is able to make use of prior information at all levels and mediate the effects 

of external factors through latent variables. It provides a calculus for the probabilistic 

comparison of different models or model orders, and using MCMC methods, estimation 

of the correct model and the estimation of its parameters are performed simultaneously. 

Also significant in this approach is that the highest and lowest level parameters in the 

model are estimated simultaneously. Hence, there is a bootstrapping effect as all levels 

exert an influence upon the final model state. For instance, suppose that the likely 

pitches of each note in a piece of music are dependent on the key, but the key is unknown 

a priori. A model is constructed such that the priors for the pitches are dependent on 

the key but then the key is considered an unknown parameter and it is assigned a 

prior that accounts the prior knowledge of likely key distributions. A simulation and 

subsequently Bayesian inference on the model will provide estimates of both key and 

individual pitches. 

8.2.3 The need for hierarchical modelling and feedback 

Most methods used in actual applications will have parameters which must be 'tweaked' 

to provide an output which is acceptable to the user. It is apparent from the examples 
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of chapter 7 that the raw output of the model provides much more information than 

is required. It is generally required to determine some threshold for which the detected 

'notes' become salient entities, in order to produce a more meaningful and useful in­

ference. It is difficult to specify, a priori, parameters such as thresholds of detection as 

they are dependent on so many factors: the style of music, the instrumentation used, 

the quality of the recording and the dynamics of the music. 

A design parameter such as the detection threshold should be signal-adaptive to respond 

to changes in the signal energy and noise conditions. However it should only exhibit 

a slow variation over time and be dependent upon the local context. More intelligent 

determination of the threshold could be made if we knew a priori about the dynamic 

range of the music and the noise characteristics. These statistics could potentially be 

incorporated into the model as unknowns and estimated together with the other model 

parameters. Other latent parameters pertaining to high-level characteristics such as (for 

instance) dynamic range, note repetition rate, noise floor, etc. could be incorporated 

into the model, e.g., as high level hyperparameters of the Bayesian graphical model. 

This modelling paradigm conflicts with a number of approaches found in the literature. 

Most significantly, few models refer to the specification of design parameters and how 

they may be elicited from the data. Some models assume a detailed knowledge of the in­

strument characteristics, for instance isolated recordings of each note, which is generally 

impractical [72, 124]. The importance of context is unfortunately not acknowledged in 

many signal processing references. 

This paradigm also conflicts with the arguments of Sterian and Wakefield [140] who 

suggest that components in the processing architecture should be kept separate with 

no feedback paths, such that the performance of each component can be assessed sep­

arately. Whilst this 'black box' approach has definite advantages in terms of the sim­

plicity of high level design and interchangeability of components, this assumes that each 

module has a well defined task that can be objectively assessed. It also assumes that each 

module can perform its task using solely the data provided by its input stage. A method 

with separate non-communicating processing modules is unable to make full use of the 

data by not being able to make use of the inferences produced by other components 

later in the processing chain. A fundamental tenet of engineering and computer science 

favours the black box approach to component encapsulation. The box inputs and out-
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puts are precisely defined but the internal workings are obscured from view. Knowledge 

cannot easily be shared between components if they are separated, and the attempt to 

share knowledge would make the design of independent components difficult. 

In contrast, knowledge is automatically shared between the different levels of a hierar­

chical Bayesian model. The process of Bayesian inference is frequently likened to learn­

ing, due to the ability to modify prior knowledge in the .light of experience; a model 

that is capable of learning is data-adaptive. As available computing power increases, 

statistical modelling of signals holds great potential for the next generation of signal 

processing methods. Models that are capable of representing many levels of structure 

and that can learn thro~h inference on the highest levels have the potential to revolu­

tionise many signal processing problems as they can produce inferences in the problem 

domain as well as in the signal domain. It is hoped that the work presented in this thesis 

contributes towards that goal. 

8.3 Future research 

There are a great many outstanding problems concerned with the modelling of poly­

phonic musical signals. In this section, some possible extensions to the research pre­

sented in this thesis are described. 

8.3.1 Timbral context 

The model can be parametrised in terms of the magnitude and phase of the harmonic 

sinusoids, rather than the in-phase and quadrature representation currently used. It is 

more intuitive to specify prior information about the harmonic magnitudes than for 

the in-phase and quadrature amplitudes. Over short time periods (rv 200ms), the rel­

ative magnitudes of the harmonic components vary slowly, and so variational hyper­

parameters (the timbral context) may be specified for them to improve the robustness 

of the multiple frame joint estimation scheme. This would also allow for improved 

inter-block horizontal grouping (for the formation of melodic streams) since the relative 

harmonic magnitudes of different instruments are likely to be markedly different. An 
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Figure 8.1: A high level conceptual graphical model for the representation of musical signals. 

Low level signal structure is represented by notes whose parameters are dependent on various 

forms of musical context. 

added benefit arises from the ability to identify harmonic roots and octave errors from 

their distinctive harmonic magnitudes (i.e., many components of zero amplitude). 

8.3.2 High level modelling 

The current model of signal context currently contains very little information about 

the underlying state of the note, namely the fundamental frequency and number of 

harmonics. This could be extended to include more high-level musical information as 

shown in figure 8.1. In addition to the basic variation of the note parameters, the 

priors of each note over time are also conditioned on their timbral context. For a 

collection of monophonic instruments, each timbral context may be different and enable 

identifiability of the melodic streams. For a polyphonic instrument, knowledge of the 

timbral context may enable the resolution of chords. Higher levels of musical structure 

impose a conditional independence between components. This could include a chordal 

context, which specifies prior information about the likely pitch values, and a rhythmic 

context which specifies the likely instants of note onsets. 
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8.3.3 Beat inference 

Most of the previous discussion has centred upon pitch estimation, but another impor­

tant aspect of musical signals is detection of the rhythmic structure. A 'metrical grid' 

is superimposed upon the signal, on the assumption that note onsets are likely to co­

incide with beat locations, with a lower probability of occurring halfway between beat 

locations. A general linear model can be constructed to estimate the parameters of the 

metrical grid - onset location, number of beats and periodicity, using the GLM tech­

niques described in chapters 4 and 5. Knowledge of the metrical grid leads to the ability 

to predict the likely instants of note onsets in the future, which could be integrated into 

the high level modelling scheme described above. 

8.3.4 Software for multiple component analysis 

The multiple component mixture techniques described in chapter 5 are applicable to 

a wide range of problems beyond harmonic signals. Work is currently under way to 

provide a set of C++ classes that encapsulate the characteristics of general linear models 

and perform highly optimised MCMC simulations for various standard types of basis 

function such as those with variable scale, offset or periodicity. 
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Block matrix inversion A 
Many of the update moves for general linear models require a matrix inversion. When 

the number of basis functions is increased, this results in a large matrix inversion. How­

ever, using matrix partitioning techniques, this computational burden can be signifi­

cantly reduced. Firstly the general case of inverting a partitioned matrix is considered, 

and then it is applied to the updating of GLM basis matrices. 

A.1 Inverse by partitioning 

Given the matrix X 

(A.l) 

the inverse, X-I, is to be calculated, 

X-l = [~ ~ 1 (A.2) 

It is assumed that S is square and nonsingular (ie invertible). An efficient calculation 

scheme is described by Press et al. [109, §2.7], 

A = 5 - 1 (A.3) 

B=AR (A.4) 

P = (P _ Q(B)) - l (A.S) 

0= -PQA (A.6) 
A A 

R= -BP (A.7) 

S = A -BO (A.8) 
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Also, the determinant can be found: 

IXI = 151 Ip - Q5- 1 RI 
151 

-IFI' 

A.2 Use with basis matrices 
.t 

(A.9) 

To use with a partitioned basis matrix G = [Gv + Gc], split into variable and constant 

(known) components, (GtG(1 is to be calculated, 

r [G;Gv X= 
G~Gv 

(A.l0) 

X - I = (GtG)-1 (A.ll) 

Calculating F, Q, R, S as above with A 

A(G~Gv)' 

G~Gc (which is precalculated) and B = 

f= Gb 

= [GJ>v + GJ>cl· 

Also to compute IGtGI, use (A.9) and the precalculated matrix G~Gc, 

(A.12) 

(A.13 ) 

(A.14) 

(A.15) 

(A.16) 

Marginalisation of 

amplitude parameters and 
• error vartance 

B.1 Amplitude parameters 

B 

For the case of a model described by a single GLM, the linear amplitudes b and error 

variance 0"; are to be marginalised. The adoption of a g-prior allows the linear ampli­

tudes to be integrated out since this is a conjugate prior. It also has other advantages, 

as mentioned in §4.5. 

The exponential term can be expanded in terms of a Gaussian 

where 

lid - Gbl1 2 + bt~-lb = dtd + btGtGb-2dtGb + bt~-lb 
= dtd + (b - m/M-1 (b - m)+A 

M - I = GtG + ~- 1 = GtG (1 + 6- 2 ) 

m = MGtd = 6
2 

(GtG)-IGtd 
1 + 62 

A = -mt M - 1m = - dtGMGtd 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 
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1 

and the normalisation term of the Gaussian is I 21fCl;M I "2 • Proceeding with the integra-

tion, 

(B.6) 

(B.7) 

The full conditional for b is 

(B.8) 

which can be used to generate estimates for b given the current values of the other 

parameters. The mean of the full conditional is m and limp-+oo m = b ls where bls is the 

least-squares estimate of b. 

B.2 Error variance 

From here it is also possible to marginalise the error variance if a conjugate prior is 

employed, for instance, an inverse gamma distribution, p(CI;) rv IG(a e, ,Be ), of which the 

Jeffreys prior [66] is a special case. Jeffreys prior is a popular choice for scale variables 

such as error variance, since it is invariant to scale changes and is also a maximum 

entropy prior. However, it is improper and so lower and upper bounds would usually 

be imposed to make it proper. The inverse gamma distribution is a popular choice for 

scale parameters as it can often be marginalised easily, it is proper for a e > 0, ,Be > 0, 

and can be sampled from efficiently. 

p( d I cp, A;J, ( 2 ) = (1 + (2)-¥ t OO p(CJ; ) (21fCl; )-if exp [- d
t
P

2
d] dCl; h 2~ 

(B.9) 

( 
i(2 ) _ M (2,Be )Q:e r(c) N 

= 1 + u 2 N ,c = - + a e 
r(a e ) 1fT [dtpd + 2,Be]E 2 

(B.I0) 

Since {ae , ,Be, N } are constant for all models then this simplifies to 

(B.ll) 
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and hence we obtain the expression for the joint marginal posterior of the model pa­

rameters for the case of a single component: 

p( cp , NI I d ,( 2
) ex: p( d I cp, lvI , ( 2

) p( cp, A;J ) 

= (1 + (2)-"1 [dtpd + 2,Bet Ep(cp, M). 

(B.12) 

(B.13) 

In this expression, 62 , which we have used as our expected signal to noise ratio, acts as a 

sensitivity control. The A;J /2 term is a penalisation term which reduces the posterior as 

the model order A;J increases, and dtpd is the squared error. The exponent c increases 

the weight of the likelihood against the prior as more data is available, and it is apparent · 

that in order for the prior on Cl; to be uninformative, a e « N/2 and ,Be « dt Pd/2. 

With a high value of 62
, a model of high order must produce an appreciably lower error 

term to obtain a higher posterior probability. This is the mechanism by which Bayesian 

methods prevent over fitting by trading off model fit against model complexity. The 

posterior is also affected by the parameter priors p( cp, NI) which will be specific to the 

model under consideration. The full conditional for the error variance is 

p(CI; ld, cp, A;J, ( 2
) = IG(CI;; If + a e , dt~d + ,Be ) 

which for small ae,,Be has its mode at approximately dtPd/(N + 2). 

(B.14) 

B.3 Approximation of conditional residual to joint 

marginal posterior 

In §5.3.1 it is shown how the full conditional for gq can be approximated as a func­

tion of the residual. Here, some justification is given for the simplification. The full 

conditional of interest is p(gq I {gq}_q, M i()l , d) which is proportional to the joint pos­

terior p( {gq} i()l' M i()l l d) (all terms which aren't a function of gq will cancel out in the 

Metropolis-Hastings acceptance function and can be ignored). The marginal condi­

tional posterior for gq can be written in a similar form to (5.10) but using the residual 

r q instead, 

(B.15) 

Ir-'I 
I 
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The key assumption is that the basis matrices of all components are approximately 

orthogonal with respect to one another, or GqtGq' ~ O[MQx M q], Vq , q' E Q, q #- q'. A 

second assumption is that the expected SNR, 62
, is large. Expanding the expression 

rq tpqrq , 

rqtpqrq ~ lid - zl1 2 - ~dtGq(Gqt Gq) -lGqt d 
1 + 62 

.1 

(B.16) 

(B.17) 

Now expanding the lid - zl1 2 term and substituting for the least squares estimates £q = 

(GqtGq)-lGqtd, to which the MAP estimates tend for large 62, 

lid - zl1 2 = dtd + z tz -2dtz 

= dtd+11 L Gq'bq'I1 2 - 2 L dtGq'b q' 
~EQ ~ EQ 
q'-:f.q q' -:f.q 

= dtd + L IIGq'bq'I1 2 
- 2 L dtGq'b

q
' 

= dtd- L dtGq' (Gq' t Gq' )- lGq,t d 

rqtpqrq ~ dtd- L dtGq(GqtGq) - lGqt d. 
qEQ 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

If the orthogonality assumption is applied to the joint posterior, the composite matrix 

p c becomes block diagonal, and so (from (5.10)), 

p( {(jq}Q, M Q I d) ex (1 + 62)--¥- [dtp cd + 2,Bet c p( {(jq}Q I M Q) 

dtpcd ~ dtd- L dtGq(GqtGq) - lGqt d 
qEQ 

(B.23) 

(B.24) 

therefore dtp cd ~ rqtpqrq. The prior independence of {{jq} means that p( {(jq}Q I M Q) = 

IlqEQ P({jq), so cancelling terms which aren't a function of {jq leads to the result 

(B.25) 
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This simplification allows more efficient transition kernels to be designed. If the basis 

matrices are not orthogonal with respect to each other, then this may still yield a useful 

result which may put support in the high probability regions of the full conditional 

for {jq. Proposals are still evaluated with respect to the joint posterior by the MH 

acceptance function, so if the orthogonality assumptions are not valid, then a lower 

acceptance rate would be expected but the stationary distribution of the Markov chain 

would still be the joint posterior. 
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. .t 

Accompanying CD c 
A CD containing sound files of the monophonic and polyphonic examples in chapters 6 

and 7 accompanies this thesis. The enhanced-mode CD contains a CD-ROM data track. 

The file index. html contains the example sounds and accompanying figures . 

The track listing of the audio section of the CD is as follows 

1. (data track - do not play) 

2. sax (monophonic) 

3. memory (monophonic) 

4. flute (monophonic) 

5. synharm (synthetic polyphonic) 

6. saxmem (sax and memory superimposed) 

7. piantun (synthesised piano tune) 

8. granpre (acoustic piano tune) 

9. wow (acoustic piano tune) 
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