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Smeared-crack finite element (FE) analyses of reinforced-concrete beams strengthened with prestressed carbon-

fibre-reinforced polymer (CFRP) shear straps have shown that, at high load levels, the stresses in the straps

predicted by the FE analyses were less than the observed experimental values. As the straps are elastic and brittle

it is important to investigate this anomaly since otherwise the FE predictions of CFRP shear-strengthened

structures could prove to be unconservative. It was postulated that the concrete crack models used in the analyses

were inadequate and thus the current work focuses on the FE modelling of cracks subjected to tension and shearing

actions. Details of nonlinear FE analyses of the crack behaviour are presented and it is concluded that it is

necessary to incorporate advanced crack models in order accurately to predict the stress in the CFRP reinforcing

elements.

Introduction

Smeared cracked approaches are commonly used in

the nonlinear finite element (NLFE) analysis of con-

crete. In a smeared-crack formulation, cracked concrete

is considered as a continuum and cracked material

properties are associated with the element. Advantages

of this approach (over a discrete crack model) are faster

computation and improved numerical stability. For a

brittle nonlinear material such as concrete, however,

these finite element models are fundamentally load-

history dependent and the predicted behaviour relies on

the concrete models used to represent the cracked ma-

terial behaviour. The situation is further complicated by

the need to consider the direction of crack opening and

the fact that a given crack can be in a state of loading,

unloading or reloading.

For ease of incorporation into finite element (FE)

code and for general numerical robustness, fairly sim-

ple concrete crack models are typically used as the

default choice in most commercial FE programs. In

many steel-reinforced concrete applications, where the

yielding of the steel reinforcement will lead to redis-

tribution, these models are acceptable and further re-

finement is not required. This is, however, not

necessarily the case in other applications. For example,

there has been a growing use of carbon-fibre-reinforced

polymers (CFRPs) for the strengthening and repair of

existing reinforced-concrete structures. To date, any

additional external CFRP reinforcement applied to a

structure has typically been passive, but prestressed

CFRP systems are also being developed.1 Such applica-

tions raise a number of considerations including: CFRP

is a brittle elastic material; an existing structure may be

cracked prior to strengthening; and the addition of any

prestress will influence the stress transfer across a

crack.

As the CFRP reinforcement does not yield, a know-

ledge of the true stresses in these reinforcing elements

is essential. If the stresses in the CFRP are not correctly

modelled, it is possible that the stress predictions will

be unconservative. Indeed, smeared-crack FE analyses

of reinforced-concrete beams strengthened with exter-

nal prestressed CFRP vertical shear straps using a con-

stant-beta shear-cracking model (which will be

described in greater detail later), underestimated the

peak stresses in the CFRP straps and did not predict a

strap failure, even when strap failures had been ob-

served experimentally. This major limitation of the

analyses was attributed to the crack models used in the

FE analyses.2 An additional factor is that an existing

structure will have been subjected to a complex load

history with numerous loading, unloading and reload-
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ing phases. If the concrete has cracked, then residual

normal and/or shear displacements would be expected.

In most commercial FE codes, the default unloading

and reloading crack models do not include any residual

deformations. Furthermore, if the external CFRP rein-

forcement is prestressed, it would be expected that the

prestress force would help to close any existing shear

cracks and thereby reduce the crack widths. As the

beam is subjected to further loading/unloading and

reloading cycles, the reinforcement would also affect

the stress transfer between the CFRP reinforcement and

the cracked concrete as cracks open and close.

To investigate the influence of different crack models

on the predicted behaviour, normal and shear cracking

models that incorporate the nonlinear behaviour of

cracks and also loading, unloading and reloading are

considered in the current paper. The aim of undertaking

these comparisons was to help to explain the potential

cause of the underestimation of the maximum strap

stress predictions in the FE analyses of reinforced-

concrete beams strengthened with prestressed CFRP

straps2 and provide guidance for the selection of appro-

priate concrete crack models.

Crack models

Normal crack models, where the crack opening is

perpendicular to the crack, and shear crack models,

where the relative movement is along the crack axis,

have been developed. Typically, experiments to observe

the normal or shear crack behaviour are carried out and

general numerical material models are then formulated

using parameters such as the concrete strength proper-

ties or aggregate size.

In the most comprehensive case, a crack model

would cover the entire loading regime. This would

include the formation of new cracks (loading), crack

closing (unloading) and the reopening of existing

cracks (reloading). As will be discussed, however, some

models have only been developed for a particular sub-

set of loading stages.

Normal crack models

Experimental studies. Evans and Marathe are

credited by Bazant and Planas3 with developing prob-

ably the oldest experiments designed to measure the

stress strain behaviour of concrete in direct tension.

More recently, a number of further studies4–7 have all

furnished information on the softening behaviour of

cracks.

Important parameters that have evolved from the

experimental studies are the shape of the softening

curve and the fracture energy. The softening curve

represents the relationship between the applied force

and displacement quantities (which can also be ex-

pressed as stress versus displacement, stress versus

strain, etc.) during loading. The fracture energy, Gf ,

represents the energy consumed in forming the crack.

In order to consider the unloading and reloading be-

haviour, cyclic tests are required. The number of cyclic

experimental studies, where a specimen is subjected to

a number of unloading and reloading cycles at various

loading stages, is however somewhat more limited than

studies where a specimen is loaded monotonically to

failure. Work by Gopalaratnam and Shah6 and Yanke-

levsky and Reinhardt8 has provided information on the

cyclic behaviour of concrete and typical results8 show

that the monotonic curve forms an envelope from

which unloading starts (see Fig. 1). The unloading

curve is highly nonlinear, there are residual deforma-

tions when the specimen is unloaded and the amount of

residual deformation at zero stress depends on the level

of maximum strain attained.

Numerical formulation. Different shapes of load-

ing (softening) curves for cracks in normal tension

have been proposed, namely linear or nonlinear soft-

ening models.5 For ease of incorporation into FE

models, Gf is typically related to the concrete com-

pressive or tensile strength. From the assumed shape

of the softening curve and a knowledge of Gf , the

loading curve can then be developed.

To model the cyclic response, Yankelevsky and

Reinhardt formulated a normal crack model that tracks

the unloading and reloading curve.4 The shape of the

model is shown schematically in Fig. 2. The model

incorporates a rather complex nonlinear response dur-

ing unloading and reloading which leads to permanent

deformations and is consistent with what is observed

experimentally (see Fig. 1).

The procedure for generating the unloading or re-

loading curve starts by establishing defined critical

stress points, known as focal points, based on the

tensile strength of the concrete. The corresponding

displacement values for the focal points are obtained

Monotonic
curve

Cyclic curve

Strain

Stress

Fig. 1. Schematic example of monotonic and cyclic response

of normal cracks after Ref [8]
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using the stress and the Young’s modulus of elasticity

of concrete in compression. The mapping of the un-

loading and reloading curves then requires various geo-

metric constructions using the focal points and

intersections with the axes (see Ref. [4] for further

details).

Shear crack models

Experimental studies. The testing of cracked con-

crete in shear has also been carried out.9–15 In these

tests, normal cracks are initially formed and then

sheared (a typical test set-up is shown in Fig. 3).

Depending on the experimental set-up and procedure,

the main parameters considered are the crack width,

concrete strength, aggregate size, surface roughness

of the crack plane and restraint provided by any

reinforcement crossing the crack.

Typical results show that the shear stiffness is mainly

a function of the normal crack opening9,10 and that the

aggregate size and shape of aggregate seem to have

very little influence on the behaviour.9 The level of

restraint, which to an extent is defined by the test

procedure, is also important and, for example, compres-

sive stresses develop if the crack is not allowed to

dilate. Tests where the perpendicular stress is zero11 or

the ratio of crack opening to shear displacement is kept

constant15 have been conducted. A further variation is

to fix the normal stress perpendicular to the shear

cracks and then allow the normal crack width to in-

crease during shearing.16

Cyclic shear tests have also been performed, for

example Refs [9, 16, 17], and the experimental set-up

is similar to that used for monotonic testing. Failure

under cyclic loading is no different from that experi-

enced in monotonic loading and depends on the crack

width.9 The major difference is the accumulation of

residual shear displacements with progressive loading.

The crack surfaces sustain more damage with repeated

loading. In particular, any surface irregularities are

worn down while the aggregate tends to become

rounded.

Numerical formulation. Unfortunately it was not

possible to find a single nonlinear shear crack model

that was applicable for all stages of loading/unloading

and reloading. Thus, in the current work, a nonlinear

loading model12 was combined with a nonlinear un-

loading/reloading model.17

Yoshikawa et al.12 formulated a comprehensive mod-

el for shear crack loading using the following relation-

ship between the shear stress, �cnt, the normal stress, � c
n,

the shear displacement, �t, and the normal crack open-

ing, �n

d�cnt
d� c

n

� �
¼ kt

1 � 1� �ð Þ=�d
�1=�f 1= �f�dð Þ

� �
d�t
d�n

� �
(1)

where
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Fig. 2. Normal crack unloading and reloading model
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Fig. 3. Shear test
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kt ¼
@�cnt
@�t

kn ¼
@� c

n

@�n
�f ¼ � @�cnt

@� c
n

�d ¼
@�n
@�t

� �
� ¼ �f�dkn=kt

(2)

and kt ¼ the shear stiffness; kn ¼ the normal stiffness;

�f ¼ the frictional coefficient and �d ¼ the dilatancy

ratio.

A further loading model was proposed by Heuze and

Barbour18 who used a more physical approach by con-

sidering a shear crack that is restrained (as shown in

Fig. 4). When such a crack is sheared (�t), the two

blocks will override causing an increase in the crack

opening (�n). At the same time the blocks will be

pushed back by the boundary restraints and thus these

compressive forces will attempt to close the crack. The

normal opening �n is taken to be a function of the

shear displacement �t and the normal stress � c
n, but the

shear stress �cnt is a function of the shear displacement

�t only. This decoupling of the dilatancy effects leads

to a much simpler relationship where the final matrix

is a special case of Yoshikawa et al.’s framework with

� ¼ 1.

d� c
n

d�cnt

� �
¼ kt

1= �f�dð Þ �1=�f
0 1

� �
@�n
@�t

� �
(3)

Note that the matrix has been reordered to be consistent

with the convention used in the derivations to follow.

For shear crack unloading and reloading, the model

developed by Jimenez et al.17 was incorporated. The

model can be described using Fig. 5 where the idea-

lised load–shear displacement is shown.

The unloading follows a bilinear curve until reload-

ing starts or loading in the opposite sense is activated.

The residual displacement exhibited when the specimen

in unloaded is expressed as a fraction ø of the maxi-

mum shear displacement. The shear stress and displace-

ment at which the change in reloading stiffness occurs

is expressed as a proportion Łs of the shear stress � and

a proportion � of the shear displacement �t associated
with �. Upon unloading, a residual slip will result.

For a typical shear crack, the resulting combined

loading model12 and unloading/reloading model17 is

shown schematically in Fig. 6.

Important features

For both normal and shear crack loading, it appears

that the monotonic loading envelope is broadly similar

to the cyclic loading envelope. The key difference is

that when a specimen is unloaded and reloaded in a

cyclic fashion, residual displacements are manifested

during unloading and the stiffness on reloading reduces

as damage accumulates.

It is thus the treatment of unloading and reloading

and residual deformations that is of most interest and

will be the focus of the current work.

Smeared-crack FE formulation

Normal and shear crack behaviour are two primary

sources of nonlinear effects in RC structures and need
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Fig. 4. Restrained shear crack
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to be incorporated in FE programs if meaningful results

are to be obtained. In the following, the crack stiffness

derivation proposed by de Borst19 will be summarised.

The representation of cracks in a smeared-crack analy-

sis will also be highlighted.

Consider an element with a crack band cb shown in

Fig. 7. The global axes are denoted, (x, y) and the local

axes, (t, n) are aligned with the crack of angle Ł meas-

ured anticlockwise with respect to the global x axis.

The change in total strain d� within the crack band in

the global direction can be decomposed into the change

in elastic strain d�e and the change in fracture strain

d� f

d� ¼ d�e þ d� f (4)

In matrix form, equation (4) becomes (two-dimensional

plane stress analysis)

d�x
d� y
d�xy

8<
:

9=
; ¼

d�ex
d�ey
d�exy

8<
:

9=
;þ

d� f
x

d� f
y

d� f
xy

8><
>:

9>=
>; (5)

The change in local fracture strains de f (i.e. det and

den) of a particular crack of angle Ł can be written

with respect to the change in global crack strain d� f as

d� f ¼ Nde f where de f ¼ den
det

� �
(6)

where N is the crack angle transformation matrix. For

multiple cracks at the same integration point, equation

(6) becomes

d� f ¼ N1de
f
1 þ N2de

f
2 þ N3de

f
3 þ . . . þ Nide

f
i

(7)

where each Ni is the crack angle matrix of each parti-

cular crack. The local crack stress ds on the crack is

related to the global change in stress as

ds ¼ NTd� (8)

where ds ¼ dsn
dst

� �
and d� ¼

d� x

d� y

d� xy

8<
:

9=
;

The constitutive relationship between the local crack

stresses and local crack strains is given by

ds ¼ Dcrde f (9)

where Dcr is the cracked stiffness matrix. The change

in stress in the global direction is also related to the

global elastic strains by

d� ¼ Ded�e (10)

where De is the elastic stiffness matrix. Substituting

equations (9) and (10) into equation (8) and using

equations (4) and (6) leads to

de f ¼ Dcr þ NTDeN½ ��1
NTDed� (11)

Combining equations (4), (6), (10) and (11) results in

an expression for d�

d� ¼ [De � DeN Dcr þ NTDeNð Þ�1
NTDe]d� (12)

The change in global strain is therefore related to the

change in the global stress resulting in the constitutive

relation for cracked concrete.

The Dcr matrix introduced in equation (9) can be

thought of as being made up of the normal crack stiff-

ness Dcr
n and the shear crack stiffness, Dcr

t i.e.

Dcr ¼ Dcr
n þ Dcr

t . For normal crack opening, the Dcr
n

matrix has the form

Dcr
n ¼ kc 0

0 0

� �
(13)

where kc is the softening modulus. For a shear crack,

the Dcr
t matrix has the form

Dcr
t ¼ knn knt

ktn ktt

� �
(14)

It is the constituent terms of the Dcr
n and Dcr

t crack

matrices, that is, kc, knn, knt, ktn and ktt which are

required in order to carry out an FE analysis. The

experiments and numerical models described in the

section on crack models have shown that these para-

meters are not constant, but depend on the width of a

crack and also the stage of loading. The modelling of

the crack behaviour is thus complex since a given crack

can be in state of loading, unloading or reloading either

in tension or in shear and appropriate parameters need

to be used to reflect this behaviour. Moreover, in com-

mercial FE packages such as DIANA,20 the FE pro-

gram used in the current work, the ability to

incorporate advanced crack models is limited. It was

therefore necessary to write a finite element pro-

gramme (CamFEA), a visual C++ object-oriented pro-

gramme, to consider a wider range of crack models.2

In the following, the FE predictions using advanced

crack models in CamFEA are compared with those

using the simpler default crack models found in a

commercial FE software program. As the emphasis is

to compare the behaviour of different models and how

L

cb

x

y

n

t

t

n

θ

Fig. 7. Crack band width

Nonlinear FE analysis of cracks in tension and shear
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they influence the stress transfer, the FE meshes used

in the examples are relatively simple.

Normal crack matrix: Dcr
n

The modulus coefficient kc in equation (13) refers to

the tangent of the curve of stress versus crack fracture

strain. However, in most experiments it is the total

strain d� that is measured and the elastic strains must

be subtracted before the modulus can be determined

and used. If concrete is considered as a brittle material

with no softening behaviour then kc ¼0. However, for

the modelling of tension softening kc must be assigned

an appropriate value.

Normal crack models

In the current work, only a linear loading (softening)

model will be considered since, as discussed, the fea-

ture of most interest in the normal crack representation

was not the shape of the loading curve but the treat-

ment of unloading and reloading and the residual defor-

mations. The linear softening model was combined

with two different unloading/reloading models (denoted

models (a) and (b)).

Normal crack model (a): linear softening with non-

linear unloading and reloading and residual deforma-

tions. Yankelevsky and Reinhardt’s4 numerical

model mimics the experimentally observed behaviour

when normal cracks are unloaded and reloaded. The

relationship between dsn and den (which represents

the coefficient kc) can be inferred from curves such

as those shown schematically in Fig. 2. This relation-

ship was therefore programmed into CamFEA. The

model includes nonlinear unloading/reloading and

takes into account residual deformations.

Normal crack model (b): linear softening with

linear unloading and reloading and no residual defor-

mations. A linear unloading/reloading model with

no residual deformations was the default choice in

the commercial FE program used. The advantage was

that linear softening without permanent deformations

is fairly straightforward and robust. Once a crack

forms, the softening gradient is used. If the crack is

loading or unloading, a secant gradient from the loca-

tion of unloading is followed. This model does not,

however, include any residual deformations and thus

does not fully represent the experimental trends (see

Fig. 1).

FE model: benchmarking example

A simple example was used to compare the behav-

iour of the concrete models. The properties of the con-

crete are given in Table 1. The fracture energy, Gf ¼
0.125 N/mm used in the linear softening model was

estimated such that a crack opening of 0.1 mm will

result in no stress transfer.

Figure 8(a) shows a single unreinforced-concrete

finite element. The element is loaded and unloaded in

tension by forces Fh . Fig. 8(b) shows the same element

but with the addition of an internal steel reinforcing bar

with perfect bond.

FE results

In Fig. 9 it can be seen that the unloading and

reloading stiffness results for the unreinforced element

reflect the input models. The results obtained using

crack model (b) (with no permanent deformations) dif-

fer from those of crack model (a). The implications are

that if permanent deformations are not modelled, not

only will the residual deformations be incorrect but

also the reloading stiffness of the structure will not be

correctly predicted.

If the element is reinforced with an internal rein-

forcing bar, then the existence of permanent deforma-

tions will affect the residual stress in the reinforcement.

Fig. 10(a) shows the load–displacement response for

the reinforced model after loading and unloading to its

initial state. The stresses in the reinforcement are

shown in Fig. 10(b). With model (b), the residual stress

in the reinforcement is zero and the structure unloads

to its original state and all the cracks have closed. With

model (a), in the state where there is no external load,

there are still residual stresses in the reinforcement with

some permanent crack openings. Additional forces

would be required to completely close the cracks. In

effect, although the external load applied might be the

same, the state of stress in the concrete and the rein-

Table 1. Input for FE analysis

Concrete

Mesh width 40 mm – 4 3 aggregate size

Thickness 1 mm

Aggregate size 10 mm

Crack band width 40 mm – equal to element width

ft 2.5 N/mm2

fc 40 N/mm2

Gf 0.125 N/mm (linear softening models)

Young’s modulus 20 000 N/mm2

�sr 0.2 (for Beta models)

Steel reinforcement

Area 1 mm2

Young’s modulus 200 000 N/mm2

Strap reinforcement

Area 2 mm2

Young’s modulus 130 000 N/mm2

Kesse and Lees
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forcement crossing the cracks may be quite different

depending on the models used in the analysis.

Since the influence of partially closed cracks on the

shear behaviour will be of particular interest, normal

crack model (a) will be used in all the examples hence-

forth so that the influence of residual normal deforma-

tions on the shear crack results can be observed.

Shear crack models: Dcr
t

Concrete models

Both nonlinear and linear shear crack models were

considered.

Nonlinear shear crack model – (NL model). The

cracked shear stiffness matrix, where the shear stress

is decoupled from the normal displacement and hence

ktn¼0 [equation (3)] can be represented as

Dcr
t ¼ knn knt

0 ktt

� �
(15)

Again, the matrix coefficients can be deduced from

experimental results such as those described in the

above section on shear crack models and the combined

loading model12 and unloading/reloading model17

shown schematically in Fig. 6 was implemented into

CamFEA.

For the loading curve, the expressions for the various

coefficients proposed by Yoshikawa et al. were imple-

mented. Yoshikawa et al. calibrated their model using

data from relevant experiments in the literature (please

see Ref. [12] for further details).

For the unloading and reloading branch, the average

values selected for the coefficients Łs and � were 0.1

and 0.7 respectively (see Fig. 5). These values were

based on experimental results by Jimenez et al.17

Linear shear crack constant-beta model: loading,

unloading and reloading. The use of a constant-beta

shear crack model is a common option in FE pro-

grams. A constant-beta model treats loading, unload-

ing and reloading as the same process by introducing

a shear retention factor �sr, that is multiplied by the

elastic shear modulus to represent the cracked shear

modulus. It is thus very simple and straightforward

and presents no difficulties in terms of formulating

the cracked stiffness matrix. In matrix form, all the

coefficients of Dcr
t are set to zero except ktt, which

40
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is equated to �srG where G is the elastic shear

modulus, that is

Dcr
t ¼ 0 0

0 �srG

� �
(16)

There remains the question of how to select an appro-

priate value of �sr. In the early stages of loading, a

fairly high value is likely to be appropriate. As more

and more cracking occurs, however, the shear stiffness

will drop and thus �sr should decrease. In more ad-

vanced beta crack models, the value of beta is thus a

function of the crack width. A constant value of �sr of
0.2 is used here but the best choice of beta will depend

on the problem and, in the absence of experimental

calibration, it is difficult to determine an appropriate

value.

FE model: benchmarking example

The three concrete-element FE mesh shown in Fig.

11 was used to analyse cracks subjected to shear forces.

The elements labelled 1 and 3 are both elastic and do

not crack whilst element 2 has the properties shown in

Table 1. The analysis commences by displacing the

mesh horizontally so that tensile stresses develop and a

normal crack forms in element 2. The crack formed in

element 2 is then subjected to shear stresses by displa-

cing element 3 vertically.

To investigate the influence of normal crack opening

on the shear behaviour, two different cases were con-

sidered. In the first case, the structure was displaced up

to a level corresponding to a normal strain of 0.001

(cr1). A shear displacement was then applied. In the

second case, the normal crack strain was approximately

0.002 (cr2) prior to the application of the shear displa-

cement. The analysis was therefore performed under

variable end restraint.

FE results

Figure 12 shows the applied shear load versus shear

displacement for both the constant-beta model (Beta)

and the nonlinear model (NL). The constant-beta model

predicted that the stiffness decreased as a result of a

larger initial normal crack strain but, irrespective of the

normal crack width at which shearing commenced, the

peak load predictions were similar. Furthermore, it also

did not predict a maximum shear stress that the con-

crete could carry and hence would not be able to

predict failure unless some other mechanism is present.

In contrast, the nonlinear model results in Fig. 12

show that both the stiffness and peak load depend on

the normal crack opening. The bigger the initial crack

opening, the smaller the element stiffness. The stiffness

was also not constant but varied with shear slip. The

model tended to predict a maximum shear stress that

the cracked element could carry and thus could predict

failure owing to the loss of aggregate interlock. Note

that the results shown were all stopped after a specified

number of iterations when the main differences had

been observed. The normal stress at a typical integra-

tion point of element 2 is shown in Fig. 13. In the

constant-beta model there is no change in the normal

stress after shearing commenced while the nonlinear

model predicts a drop in the tensile stress carried across

the crack. Eventually compressive forces develop

across this interface.

If the constant-beta model is used, it is assumed that

the concrete will always carry a constant portion of the

shear force and the remainder of the shear force will be

carried by other elements. In the nonlinear model, how-

ever, the shear loads depend on the crack opening and

ultimately an element will be unable to sustain further

loads thus transferring most of the load to the other

load-carrying members.

The stiffness variation is also expected to influence

the overall structural behaviour. In the nonlinear model,

the stiffness degrades as the shearing force and crack

widths increase while in the beta model a constant

stiffness is maintained. The implications of this might

be that the stiffness of the structure would not change

to reflect crack widening and increased shearing as the

applied loads are increased.

In order for the constant-beta model to predict fail-

ure, multiple cracks must be allowed to form at an

integration point. The fixed single crack model used in

the analysis becomes less accurate as the principal

stress directions rotate. Allowing multiple cracks to

form will lead to a reduction in the stiffness terms

leading to an unstable element (see equation (11)). The

difficulties in this approach are therefore in determin-

1 2 3

40
 m

m

40 mm 40 mm 40 mm

Normal
displacement

Shear
displacement

Element being
tested

Fig. 11. FE mesh for shear test

S
he

ar
 fo

rc
e:

 N

0·000 0·050 0·100 0·150 0·200 0·250 0·300 0·350 0·400 0·450

Displacement: mm

Beta cr2

0

100

200

300

400

500

600

NL cr2

NL cr1

Beta cr1

Fig. 12. Comparison of shear behaviour

Kesse and Lees

240 Magazine of Concrete Research, 2007, 59, No. 4



ing the criteria for multiple cracking and also the possi-

bility of creating a spurious failure mechanism if the

cracked stiffness matrix becomes indeterminate.21

Influence of prestressed CFRP strap on

concrete shear behaviour

Once the concrete models of interest were developed,

it was possible to consider the influence of a pre-

stressed elastic CFRP reinforcing element on the crack

behaviour. In an existing structure requiring shear

strengthening, cracks might exist before the vertical

unbonded CFRP straps are incorporated. These cracks

will normally be partially unloaded (dead loads would

remain) and then the shear strap prestressed before the

structure is subjected to additional loading. Even in

beams where shear cracks form, normal crack opening

occurs first followed by shearing.3

A model to mimic this sequence was developed (see

Fig. 14) using the input parameters shown in Table 1.

The horizontal forces Fh, are applied first in order for a

crack to form. The direction of these forces is then

reversed such that the value of Fh is zero, that is, there

is no external load but some residual deformations

exist. The unbonded strap is then prestressed and the

shear forces Fv applied until failure or the analysis was

stopped. Note that if the initial prestress level is varied,

the extent of crack closure will also vary. The applied

shear force Fv and the vertical displacement at node 5

are used as the reference force and displacement re-

spectively for discussing the load–displacement plots.

Figure 15 shows the load–displacement plots for the

case where the initial prestress level was varied (125,

130 and 135 MPa) but the cross-sectional area of the

reinforcement was constant (2 mm2). Two different

shear models were used for the cracks (the constant-

beta model (Beta) and the NL model). The NL model

predicts a response with a varying stiffness and also a

peak shear force. The stiffness and the peak load both

increase with an increasing prestress force. The Beta

model on the other hand predicts a linear response with

only a minor change in stiffness even as the shearing

strain increases drastically. The various levels of pres-

tress did not seem to influence the maximum shear load

(the analysis was stopped at the values shown in the

plot).

Figure 16 shows the stress in the strap during the

shearing stage. The NL model predicted a nonlinear

rise in the stress in the strap. The rate of change of

stress was inversely related to the prestress level. Ini-

tially the stress in the strap NL-135P was the highest

but this reversed at a certain stage such that the stress

in strap NL-125P became the highest. There is also a

drastic increase in the stress gain at stresses above

around 225 MPa. In combination with Fig. 17, which
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shows the shear stress variation at an integration point

in the concrete, it can be seen that, as the concrete is

reaching its peak capacity, all the additional shear

forces are transferred to the strap causing a dramatic

rise in strap stress. The initial prestress levels influ-

enced the concrete behaviour and hence differences in

the concrete behaviour affected the final rise in strap

stresses.

For a given ultimate strap stress, these results would

imply that the strap in NL-125P would fail before the

strap of NL-135P and also the maximum shear load at

failure for strap NL-125P will be less than in strap NL-

135P. In effect the initial prestress level has influenced

both the failure of the strap and the peak load sustained

by the element. This has been largely a result of the

stage at which the concrete reached its peak capacity

and all the subsequent loads were transferred to the

strap.

In contrast, the stress in the strap in the beta model

varies linearly with the strap in Beta-135P reaching a

higher stress at a lower load than strap in Beta-125P.

The shear stress variation in the concrete shown in Fig.

17 shows the constant nature of the Beta model. In

effect the concrete will always carry a certain amount

of shear and the rest of the load will be taken up by the

strap. Since beta is a constant value this load sharing

will always be constant. The small nonlinear variations

shown towards the end of the analysis are attributable

to the effects of the principal stress angles deviating

from the fixed crack angle.

Comments on FE modelling

The parameters used in the analyses detailed above

were for comparative purposes only. In many cases only

a single element was used and full-size beam analyses

will be required to enable further details of some of the

parameters to be quantified.

In developing the nonlinear models for shear, numer-

ous difficulties arose. The main difficulty was the rela-

tionship between the shear slip and the normal stress

that develops along the crack. Experimental data on the

loading range in shear are fairly abundant but very

limited results exist for unloading and reloading. Since

softening models are used in the FE analysis care had

to be taken to ensure that the models did load and

unload properly.

The programming technique used in CamFEA was

such that a huge volume of data had to be stored for

each crack so that a decision on whether the element

was loading or unloading or reloading in shear could

be taken. These data points served as existing marked

points to which subsequent strains were compared and

a decision taken as to which direction the analysis

should then proceed.

In plasticity formulations, where similar cycles of

loading, unloading and reloading occur, yield functions

are used and the gradients of these yield functions

provide a fairly straightforward criterion for a decision

to be taken regarding loading, unloading or reloading.

Mathematical formulations such as those used in plasti-

city are required with regard to fracture in concrete to

aid in the implementation of some of the very good

advanced models that have been derived. Without more

advanced formulations, it is difficult for commercial

software to incorporate nonlinear models as the techni-

ques used in CamFEA are prone to errors and spurious

unloading and reloading may occur. In contrast, the

constant-beta model is simple and very robust. There

are no difficulties with the unloading or reloading be-

haviour and no need to consider the normal stress

perpendicular to a crack.

Discussion

The FE case studies help to explain why the CFRP

stresses predicted using conventional FE models were

lower than the experimental values in beams strength-

ened with prestressed CFRP shear straps. In the experi-

mental beams where a strap failed, the measured strap

strains increased dramatically in the later stages of test-

ing. This coincided with increased crack opening and a

diminishing concrete shear contribution. The FE pre-

dictions using a constant-beta model will not, however,

capture this effect as the model fails to account for the

widening and shearing influence of the cracks on the
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structural stiffness. The constant-beta model is there-

fore unable to reflect the reduction in the ability of the

concrete to carry load as the crack displacements in-

crease and the subsequent increase in the stress in the

CFRP reinforcement. An unexpected stress transfer is a

particular concern with prestressed straps since the ini-

tial prestress reduces the reserve strain capacity that is

available after cracking. As a result, it is possible to

erroneously miss the potential for failure owing to a

strap breaking and indeed, this was the case in the

predictions for several of the experimental CFRP

strengthened beams.22

If ductile reinforcement had been used, the large

transfer of stress at the break down of aggregate inter-

lock would lead to a transfer of load to the reinforce-

ment which might result in the yielding of the

reinforcement and a certain amount of redistribution.

With an FRP reinforcing element, however, there is no

yielding and the stress transfer may exceed the ultimate

capacity of the reinforcing element leading to instanta-

neous failure. Hence in the analysis of cracked concrete

with highly stressed FRP reinforcement, attempts must

be made to predict the actual stresses in both the con-

crete and the brittle reinforcement.

When investigating the behaviour of existing cracked

reinforced concrete structures, the stress transfer during

unloading and reloading will also be of importance.

The use of crack models which do not take into ac-

count the possibility of residual deformations may

again underestimate the stress transferred into the rein-

forcement. Hence, if the shear behaviour is not mod-

elled nonlinearly and no permanent normal or shear

crack deformations are allowed then the stiffness pre-

dictions would deviate from the real behaviour and the

results would be misleading.

The beneficial effect of prestressing and the corre-

sponding enhancement of the inherent concrete shear

strength will also not be fully captured when a con-

stant-beta model is used. In particular, the strength gain

will not be merely a result of the addition of the strap

capacity but there will be an additional benefit owing

to aggregate interlock enhancement. This gain in

strength seems to be a function of the prestress force in

the strap (see Fig. 15).

With the constant-beta method, there is also a diffi-

culty in the selection of an appropriate value for beta.

The results have shown such a strong interaction be-

tween the stress in the concrete and the crack width

that the use of a single beta value would not be able to

capture all the possible influences during all phases of

loading. Hence, if a single beta value is selected, it is

important to bear in mind that stress transfer and stiff-

ness predictions might all be in error. Within DIANA

there is a more advanced beta crack model where the

value of beta is a function of the crack width. This

refinement would potentially give improved results but

unfortunately this model was not supported in the ver-

sion of software used.

The nonlinear models used in CamFEA appeared to

be able to predict key features of the stress transfer

from the concrete into the strap. However, this program

is currently only able to analyse structures with a lim-

ited number of elements so it has not yet been possible

to model beams using the nonlinear shear cracking

models. In addition, it is expected that with a larger

number of elements using the advanced nonlinear mod-

els, the solutions become more and more complex and

indeed convergence may be an issue. One advantage of

the constant-beta model is that it is numerically fairly

robust.

These initial studies demonstrate the importance of

the proper selection of crack models when conducting

FE analyses of cracked concrete prestressed with brittle

FRP reinforcement.

Conclusions

The current paper has investigated the selection of

normal and shear crack models in a smeared-crack FE

analysis of concrete. A benchmarking study of normal

crack models showed that the treatment of residual

deformations during unloading and reloading was im-

portant. Furthermore, the normal crack behaviour must

be properly represented in order for the shear behaviour

to be correctly modelled since there is a coupling be-

tween the normal and shear components in advanced

shear crack models. In terms of the shear models, the

use of a nonlinear model captures the experimentally

observed loss in shear stiffness with increasing loading

and also the influence of the normal crack opening and

additional prestress force on the behaviour. In contrast,

a constant shear retention model only provides a simple

approximation of the shear stiffness. While the con-

stant-beta model is numerically robust, it was not able

adequately to reflect the behaviour of concrete with a

prestressed CFRP reinforcing element. A particular

concern was that once extensive cracking has occurred,

the stresses in the CFRP reinforcement may well be

underestimated when a constant-beta model commonly

found in commercial FE programs is used. Indeed, this

is consistent with results reported elsewhere where the

stresses in external CFRP shear straps were underpre-

dicted during the later stages of loading.2
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