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Abstract 
A retrofitting technique has been developed that uses carbon fiber reinforced polymer 

(CFRP) straps to increase the shear capacity of reinforced concrete beams. The vertical 

straps are not bonded to the beam but are instead anchored against the beam which makes 

this technique potentially more effective than bonded FRP retrofitting techniques. 

However it also means that models for bonded FRPs are not appropriate for use with the 

straps. Instead a model based on a shear friction approach has been developed where the 

strain in the straps is calculated based on a term that accounts for the effects of prestress 

and additional strain in the strap due to shear crack opening. The model can either 

consider the shear reinforcement to be smeared along the length of the beam or discrete 

elements. The ‘smeared’ model was checked against an experimental database consisting 

of rectangular, T- and deep beams both in terms of predicted capacity and predicted strain 

in the straps. Overall the ‘smeared’ model predicted the capacity of the specimens and, 

with some adjustments, the strains quite accurately. There were however cases when it 

was more appropriate to use the ‘discrete’ model such as when the transverse 

reinforcement ratio was low or when the transverse reinforcement spacing was high. 

Further experimental data is required to fully validate the models and to determine 

appropriate limits on the use of the ‘smeared’ model and the ‘discrete’ model. However 

the initial results are promising.  
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Introduction 
 

Globally the need to both maintain and expand civil infrastructure is increasingly at odds 

with decreasing government budgets. In the case of existing Reinforced Concrete (RC) 

structures, many have insufficient shear capacity due to increased loading requirements, 

designs based on earlier less-conservative codes, corrosion of the transverse reinforcing 

steel or increased flexural capacity as a result of retrofitting.  

 

Much of the research relating to the shear retrofitting of RC beams using FRPs has 

investigated bonded FRP fabrics or sheets. The capacity enhancement provided by 

bonded solutions is often limited by how effectively force can be transferred to the FRP, 

which is a function of the bond between the concrete and the FRP as well as the FRP 

development length. Some of these issues can be overcome by fully wrapping beams (e.g. 

Melo et al. 2003) but such installations may not be practical in typical slab-on-beam type 

construction. 

 

The current work focuses on a FRP retrofitting technique that uses unbonded Carbon 

FRP (CFRP) straps.  This system, first proposed by Winistoefer (1999), uses CFRP straps 

wrapped around the cross section of a beam as illustrated in Fig. 1. The straps are 

installed at discrete locations along the length of the beam.  The number of loops in the 

strap can be varied depending on the shear capacity required as only the outermost layer 

must be connected to the next layer by welding the thermoplastic matrices together in 

order to form a closed loop. When load is applied to the strap, the inner loops tighten 

against the closed outer loop allowing each layer to take approximately the same amount 

of tension. These straps can also be prestressed with an initial force which can have a 

beneficial effect on the capacity of some specimens as will be discussed later.  

 

 A number of models exist for calculating the shear enhancement provided by FRPs 

(Berset 1992, Deniaud and Cheng 2001 and 2003, Khalifa et al. 1998) but these models 

are intended for passive bonded continuous FRP sheets. In contrast, the CFRP straps are 

unbonded, prestressed (if required by the design), and installed at discrete locations. Each 
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of these characteristics leads to challenges when developing a model for calculating the 

retrofitted strength of the structure. As the straps are unbonded, the strain in the strap is 

not controlled by localized behaviour in the region of a crack as it would be for a bonded 

system. Rather strap strain is a function of the strain due to the initial prestress, εprestress, 

plus an additional strain component at the location of the strap, εcr, which is calculated by 

summing the crack openings over the height of the strap and dividing the total 

displacement by the unbonded length of the strap.  As the straps are discrete elements, 

failure planes can potentially form between individual straps. The impact of the strap 

strain in terms of creating a clamping stress across the shear cracks is a further 

consideration. Research (Walraven 1981) has shown that increasing clamping action 

reduces the crack widths and thus enhances the concrete contribution to the shear 

capacity. 

 

As with all FRPs, the brittle-elastic material behaviour leads to two further complications. 

First the strain in the straps must be accurately known in order to calculate their 

contribution to the overall shear capacity. Second, because the material is brittle the 

assumption of plasticity cannot be made as it is with steel transverse reinforcement. In 

fact, if the FRP strain is not predicted correctly then strap rupture may be missed, which 

could lead to overestimates of capacity or incorrect predictions of the failure mode.  

 

A review of a number of existing shear theories (Hoult and Lees 2007) was conducted to 

determine how easily a given model could be adapted to incorporate CFRP straps and 

also the ability of the model to predict the ultimate capacities of CFRP strap strengthened 

beams.  As a result of this review, a model proposed by Loov (1998) based on a shear 

friction approach was identified as having promise and will be the focus of the work 

reported here. As mentioned previously, it is critical to know the strain in the CFRP 

straps due to crack openings, εcr. However, the Loov model as originally developed does 

not have an approach for the calculation of crack widths and so a formulation for 

calculating crack widths proposed by Vecchio and Collins (1986) will be introduced. 

Furthermore, the Loov model is for rectangular specimens and so an extension of the 

model by Deniaud and Cheng (2003) that allows it to be used for T-beams will also be 
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presented so that the model can be applied to a more extensive experimental database. 

Deniaud and Cheng developed their model for use with FRP retrofitted beams, however, 

the FRP contribution was intended for bonded systems and so will not be presented here. 

 

By combining the work of Loov, Deniaud and Cheng, and Vecchio and Collins, this 

paper will introduce a shear friction formulation that is applicable to both rectangular and 

T-beam sections and will highlight the modifications required to incorporate the CFRP 

straps.  The importance of the clamping action created by the straps and the implications 

of their discrete nature are investigated to determine whether simplifying assumptions 

can be incorporated without an undue loss of accuracy.  To confirm the generality of the 

approach, the predictions are compared with a database of experimental specimens 

including rectangular, T- and deep beams.  

 

Shear Friction Modelling and Design Approaches 
 

The concept of shear friction assumes that, after concrete cracks, shear stresses can still 

be carried across the crack. This is due to the fact that cracks in concrete are never 

completely smooth and as one side of the crack moves relative to the other the rough 

crack faces wedge against one another. Numerous different shear friction models which 

relate the shear stress, v, that can be carried across a crack to the clamping stress 

perpendicular to the crack, σ , are available in the literature (e.g. Walraven 1981, 

Walraven et al. 1987).   This ability of concrete to carry shear across a crack is reflected, 

to a greater or lesser extent, in a number of design approaches to determine the ultimate 

shear capacity of reinforced concrete beams. Of particular interest in the current work is a 

shear friction approach developed by Loov for rectangular beams which has been 

extended for use with T-beams. 

 

Loov Shear Friction Approach Applied to Rectangular Beams 
 

Loov (1998) proposed that the relationship between σ  and v is a function of the concrete 

compressive strength,  and a parameter, k where: '
cf
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'
cfkv σ=          (1) 

 

The parameter k is analogous to a coefficient of friction and was initially proposed to be 

0.6 by Kumaraguru (1992) based on an analysis of push-off tests conducted by Walraven 

et al. (1987), Hofbeck et al. (1969) and Mattock and Hawkins (1972). Loov and Peng 

(1998) suggested that k also depends on the concrete strength:  

 

         (2) 

 

where  is in MPa.     

 

Loov proposes that the crack shear and clamping stresses can be considered in an average 

sense and represented as resultant forces acting on a structure subjected to applied loads 

as illustrated by the combination of forces shown in Fig. 2(a). This representation 

assumes a crack has formed at an angle θ and the force in the longitudinal reinforcement, 

T, the total force in the transverse reinforcement, ΣTv, the shear friction force S (the 

resultant of the shear stress, v, in equation 1) and associated clamping force R (the 

resultant of the clamping stress, σ, in equation 1) all act to resist the total applied shear 

force, Vn, axial force, N (where present) and applied moment M.  In this model the 

clamping force, R, is a function of the force in the longitudinal reinforcement, T, and the 

crack angle, θ. The crack angle is also affected by the total transverse reinforcement 

contribution, ΣTv, which then indirectly affects the clamping force as will be discussed 

later. It should also be noted that any dowel action contributed by the reinforcement has 

been neglected. By resolving the forces in Fig 2(a) in the direction parallel and 

perpendicular to the crack and incorporating a simplifying assumption for the force T, the 

nominal ultimate shear strength, Vn, of a rectangular RC beam with steel stirrups with no 

axial load can be calculated as (for further details see Loov (1998)): 

  

        (3) 

( ) 5012 40 .f.k .'
c ≤=

−

'
cf

vvwcn nThbfkV += θtan25.0 '2
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Where bw is the width of the web in mm, h is the total height of the section in mm, Tv is 

the force in Newtons in an individual transverse reinforcement element and nv is the 

number of transverse reinforcement elements crossed by the crack. In equation (3), all 

safety factors have been set to unity in order to check the accuracy of the model. 

 

The internal transverse steel reinforcement is treated as a series of discrete elements and 

equation (3) is evaluated by considering potential failure planes as illustrated in Fig. 2(b). 

If the crack crosses an internal steel link, the stirrup is assumed to yield. Calculating the 

minimum shear strength then becomes an optimization problem.  The concrete 

contribution is minimized when the shear crack angle is a minimum (i.e. Plane 3 in Fig. 

2(b)) whereas to minimize the transverse reinforcement contribution the plane that 

crosses the fewest reinforcement elements is critical (i.e. Plane 1 in Fig. 2(b)). Loov 

(1998) suggests limits on Vn (since for higher values of θ, Vn would approach infinity) 

which depend on the concrete strength. 

 

Extensions to the Shear Friction Approach Required for T-beams 
 

Many existing structures are not rectangular and the versatility to represent slab-on-beam 

or T-beam type structures in a shear design approach is an advantage. To extend the Loov 

approach for use with T-beams, where the web and flange areas, shear resistance and 

crack angles potentially differ, Deniaud and Cheng (2003) modified Equation 3 as 

follows: 

 

 ( ) vvfcffwcwwcn nTAkAkfV ++= θθ tantan25.0 22'     (4) 

 

where Acw is the area of the web contributing to the shear force, θw is the crack angle in 

the web, Acf is the area of the flange contributing to shear friction and θf is the crack angle 

in the flange. The effective concrete areas Acw and Acf as proposed by Tozser and Loov 

(1999) are illustrated in Fig. 3.  To determine the appropriate values of kw and kf, Deniaud 

and Cheng extrapolated the research of Kumaraguru (1992) who suggested that k = 0.6 
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was appropriate for beams because it was conservative for the uncracked regions and 

unconservative for the cracked regions. They therefore suggest a value of 0.5 for kw in the 

cracked web and 0.7 for kf in the largely uncracked flange. The critical values of θw and θf 

are determined by considering different failure planes and finding the minimum value of 

Vn.  

 

Vecchio and Collins Crack Width Model 
 

As mentioned previously, in order to estimate the strain in the CFRP straps due to crack 

opening, εcr, an estimate of the shear crack width, w, will be required. Unfortunately the 

Loov shear friction model represented in Equation 1 does not explicitly calculate the 

crack width.  This limitation could be overcome if it were possible to associate the 

applied shear stress with a given crack opening while maintaining the integrity of the 

overall design approach. Duthinth (1999) summarized a number of possible shear friction 

models and found that most shear friction models are calibrated against the same push-off 

tests, namely those performed by Walraven (1981).  The reported models generally 

showed a reasonable agreement for a crack width of 0.5 mm and applied stresses less 

than about 8-10 MPa but for higher stresses and larger crack widths the model predictions 

diverged.   

 

Equation 1 has also been calibrated against Walraven’s push-off tests (Kumaraguru 1992) 

which would imply a certain compatibility with other shear friction models, some of 

which include a crack width term, that have been calibrated against similar push-off test 

results. One example of such a model is that of Vecchio and Collins (1986).  In their 

model, the crack width, w, can be estimated using equations 5 and 6:  
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where , v'
cf , cimaxv  and σ  are in MPa while w and the maximum aggregate diameter, 

aagg, s make a distinction between  localized stress 

, where aggregates come into contact along the crack face and the 

sferred across the crack face . 

 

Incorporation of the CFRP Straps 
 

The form of equations 3 and 4 are such that additional CFRP reinforcement can be 

included as an additional term.  However, two modifications to the shear friction 

formulations were developed in the current work in order to include the unbonded 

prestressed CFRP strap reinforcement.    

 

The first modification was to develop a ‘smeared’ version of the Loov (1998) and 

Deniaud and Cheng (2003) models. This was done in order to reduce the complexity of 

the analysis. In the original Loov formulation, discrete transverse reinforcement elements 

are considered to determine the critical crack angle. However in a region of constant 

shear when the CFRP straps are included at a potentially different spacing to the internal 

steel reinforcement the number of failure plane locations and angles, and corresponding 

iterations required to calculate the critical failure plane, increase dramatically. By using a 

‘smeared’ approach the designer need only vary the crack angle (and not the location of 

the crack angle along the beam) to obtain the optimum solution. However, there are areas 

where a smeared approach may not be appropriate as will be discussed later and so the 

discrete version of the model will also be presented. The second modification involves 

the inclusion of a term, FFRP, to account for the addition of the CFRP straps.  

 

The resulting T-beam formulations with these two new developments for members with 

internal stirrups and external prestressed CFRP straps will be highlighted in the 

following.  A similar approach was used for the rectangular beam predictions with the 

exception that only ‘web’ terms were considered and equation 2 was used to calculate k. 

The shear capacity of a T-beam with external CFRP reinforcement can be determined as: 

 are in mm. Vecchio and Collin

ns, maxcivconcentratio

average stress that is tran v
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 ( ) FRPvfcffwcwwcn FFAkAkfV +++= θθ tantan25.0 22'  (N)   (7) 

 

where Fv is the contribution from the internal transverse steel reinforcement and FFRP is 

the contribution of the CFRP straps.  When a ‘discrete’ version of the model is 

considered (i.e. the optimum value of nominal shear force, Vn, is found by checking all 

the potential failure planes along the full length of the beam) then the terms Fv and FFRP 

can be determined using equations 8a and 8b:  

 

yvsvvflangeyvsvvwebv fAnfAnF +=  (N)      (8a) 

 ( ) )( prestressFRPFRPFRPflangecrprestressFRPFRPFRPwebFRP EAnEAnF εεε ++=   (N) (8b) 

  

where the area of the internal transverse reinforcement, , and the area of the CFRP 

straps, , are both taken in mm2. The yield strength of the internal transverse 

reinforcement, , and the modulus of elasticity for the CFRP, , are both given in 

er of internal transverse reinforcem sing the web, , 

and the flange, , as well as the number of CFRP straps cross ng the crack

web, , are also required.  

 

The analogous transverse reinforcement contributions for the ‘smeared’ model are: 
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where 

FRPflangeFRPwebFRP FFF +=

wv

sv
v bs

A
=ρ  

 sv = spacing of internal transverse reinforcement (mm) 

Lvweb = (h – hf – cv)/tanθw (mm) 

  Lvflange = (hf – cv)/tanθf (mm) 
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( )crprestressFRPFRPwebwFRPFRPweb ELbF εερ +=    

LFRPweb = (h – hf  – cFRPB)/tanθw (mm) 

  ( )prestressFRPFRPflangewFRPFRPflange ELbF ερ=  (N) 

  LFRPflange = (hf – cFRPT)/tanθf  (mm) 

 

Equations 9a and 9b require the full height of the section, h, the height of the flange, hf, 

the clear vertical cover to the internal transverse steel reinforcement, cv, the cover to the 

CFRP strap on the bottom of the beam, cFRPB, and the cover to the CFRP strap on top of 

the beam, cFRPT, which are also illustrated in Fig. 3 as inputs. Note that the cover to the 

top surface of the strap is taken into account to reflect cases where the strap does not 

extend to the top of the beam (see Fig. 3), which is the case when the straps are installed 

when access to the beam is from the underside only as discussed by Hoult and Lees (in 

press).   

 

In equations 8a and 9a, any transverse steel reinforcement crossed by a crack is assumed 

to yield.  In equations 8b and 9b, the prestressed CFRP straps are brittle elastic elements 

and so the strap force in the web is a function of both the initial prestrain and the crack 

opening strain.  However, the CFRP strap contribution in the flange is considered to be 

dependant only on the level of prestress in the strap. This is because if one assumes that kf 

is equal to 0.7 because the flange is largely uncracked (Deniaud and Cheng 2003), it is 

then unreasonable to base the CFRP strap contribution on a crack width strain term. Thus 

the CFRP strap contribution to the flange capacity is based on the strain due to prestress 

only. 

 

To determine the crack opening strain, Loov’s shear friction model (equation 1) was 

calibrated with Vecchio and Collins model (equations 5 and 6). The relationship between 

varying values of clamping stress, σ , and shear stress, v, using equation 1 is plotted in 

Fig. 4 for k=0.6 with Fig. 4 are the crack widths for varying 

values of clamping and shear stresses based on equations 5 and 6 and assuming a 

maximum aggregate diameter, aagg, of 10 mm. As mentioned previously, it is felt that 

'
cf = 30 MPa.  Also plotted in 

 10



 

comparing these two models is reasonable as they are both the result of regression 

analysis using similar data from push-off tests.  From Fig. 4 it can be seen that within a 

band of crack widths between 0.5 and 0.7 mm, the approaches appear to give consistent 

results except for very low levels of clamping stress and for clamping stresses above 5 

MPa (which is considerably higher than the clamping stresses provided by the straps in 

the experimental studies). This indicates that for a given  (in MPa) and aagg, one could 

assume the crack width to be constant without a significant loss of accuracy.   For 

example, for aagg = 10 mm, the aggregate size used in the current work, this relationship 

was plotted for a variety of concrete strengths and the following approximation was 

developed: 

'
cf

 

 03.05.15
' +=

cf
w         (10) 

Although not presented here, further expressions can be developed to reflect the 

dependency on aagg.  The crack width calculated using equation 10 is oriented 

perpendicular to the direction of the crack but can be resolved to find the associated 

opening in the vertical direction. Since the prestressed CFRP straps are not bonded to the 

surface of the beam, the resulting additional strain in the s rap due to cracking can 

therefore be calculated using equation (11). 

 

 

t

θ
ε

cosFRP
cr h

w
=         (11) 

 

where  can be taken as the height of the strap between the strap supports.   

 

Shear and Flexural Capacity Solution Procedures 

 
To determine the shear capacity of the beam, it is necessary to iterate through the possible 

crack planes until a minimum solution is determined. In a region of constant shear, for 

the ‘smeared’ model only the crack angles need to be varied as the same ‘smeared’ 

reinforcement acts throughout the span. Although this approach may initially seem 

FRPh
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complicated, it is based on geometric and material parameters that should be available to 

the designer. Through the use of a spreadsheet, the minimum value of Vn can be 

determined quite expediently and the solution procedure is summarised in Fig 5.  

 

In addition to finding the minimum value of the shear force carrying capacity, Vn, there 

are two additional considerations based on the force balance shown in Fig 2(a) that need 

to be discussed. First of all, equation 7 was derived without the need to consider moment 

equilibrium.  This is a useful simplification but one repercussion is that there is then no 

requirement to calculate the location of the resultant R to obtain the shear capacity. 

However this means that the location of the resultant may not occur within the section 

thus invalidating the solution without the designer realizing.   It was therefore important 

to conduct a check here to confirm that the location of R remained plausible to ensure the 

solution and proposed model are reasonable (e.g. R should lie within the half of the cross 

section that is in compression for simply supported beams). This was done by taking 

moments about a point on the critical crack plane, in this case at the location of the force 

T, once the optimum solution for Vn had been determined as the angle of the crack plane 

was known. When taking moments with the discrete model the exact location of each 

transverse reinforcement element was known whilst in the smeared approach it was 

easiest to ‘lump’ the traverse reinforcement force at the centre of the critical plane. The 

resultant force, R, was located for each specimen in this study was found to lie within the 

section in all cases, suggesting that the current approach is feasible. Designers wishing to 

ensure that the resultant force falls within the section under consideration are directed 

towards the original work by Loov (1998) where the full set of equations required to do 

this are presented.    

 

A further point of note is that in the calculations an optimum value of the force in the 

longitudinal reinforcement, T, was used with the maximum value being equal to the force 

required to yield the reinforcement. A simplification proposed by Loov that was referred 

to earlier.  However, as the relationship between S and R is fixed, then for a given crack 

angle, only changes in the force T in the longitudinal reinforcement will have a direct 

influence on the clamping force R.  A possible enhancement to the model would be to 
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have the clamping force R be dependant on the force in the transverse reinforcement as 

well as the force in the longitudinal reinforcement. However, there appears to be no 

simple way to incorporate possible interactions as a result of an increased clamping force 

due to the strap strains without developing further equations, such as consideration of 

moment equilibrium to calculate T directly, which would also require further iterations.  

Since, as will be demonstrated later, using the optimum value of T appears to result in 

reasonable estimates of shear capacity, it was felt that adding another level of iterations 

would make this model less useful for design with no great improvement in accuracy.  

 

In the absence of a flexural moment calculation in the shear friction approach, the 

flexural capacity of the reinforced concrete beam needs to be  calculated using either 

code equations or analysis software. In the results presented here, an analysis package 

called Response2000 (Bentz and Collins 2000) was used to obtain the flexural capacity of 

each specimen. 

 

 

Experimental Database 
 

The predictive method was benchmarked against an experimental database which 

includes unstrengthened and CFRP strap-strengthened rectangular, T- and deep beams. 

So while there is typically only a single beam tested for each combination of parameters, 

the database still represents a broad range of parameters. 

 

Rectangular Specimens 

 

A series of tests on rectangular beams was undertaken by Kesse and Lees (2007). The 

main variables examined in the experimental program were the strap spacing, sFRP, 

number of CFRP strap loops and initial prestress in the straps. The main test parameters 

including the rupture strength of the strap fuCFRP can be found in Table 1. The specimen 

cross-section is illustrated in Fig. 6(a) and the transverse reinforcing layout and overall 

test dimensions are given in Fig. 6(b). The specimens were tested as cantilevers to more 
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effectively isolate the critical shear span. The longitudinal reinforcement ratio for all 

these specimens was 2.66%. The specimens were designed so that the difference between 

the unretrofitted control specimen shear capacity and flexural capacity was approximately 

85% to better gauge the effect of adding the CFRP straps. Each of the specimens was 

tested to failure by increasing the applied load at the end of the cantilever using a 

hydraulic jack. Details of the experimental test set-up, CFRP strap installation technique 

and testing procedure can be found in Kesse and Lees (2007). 

 

Whereas the unstrengthened control beam failed in shear, Kesse and Lees found that if 

the strap spacing was smaller than the effective depth of the beam and a sufficient 

number of strap loops were used, equivalent strengthened beams failed in flexure. In 

addition, for the particular specimen geometry tested, the effect of CFRP strap prestress 

on the overall beam capacity appeared not to be very significant. 

 

T-beam Specimens 

 

T-beam tests by Kesse et al. (2001) were combined with selected results from Hoult 

(2005) to form the T-beam database considered here.  Kesse et al. (2001) tested two T-

beams. The first was a control specimen and the second was retrofitted with the CFRP 

straps. Three specimens tested by Hoult (2005), consisting of one control and two 

retrofitted specimens which, with the exception of the concrete strength, had nominally 

identical material and geometric properties to the specimens tested by Kesse et al. are 

also included. The cross-section and reinforcement layout for all five specimens is given 

in Fig. 7(a). The transverse reinforcement layout and overall testing dimensions are given 

in Fig. 7(b). The key testing parameters are presented in Table 2. The longitudinal 

reinforcement ratio for all T-specimens was 4.36%. The specimens were designed so that 

the difference between the unretrofitted control specimen shear capacity and flexural 

capacity was approximately 50% so that, as with the rectangular specimens, the effect of 

the CFRP straps could be distinguished more clearly. The beams were tested in four-point 

bending using a gradually increasing load applied by two hydraulic jacks. Details of the 
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experimental test set-up, CFRP strap installation technique and testing procedure can be 

found in Hoult (2005). 

 

In the specimens tested by Kesse et al. the straps were installed through grooves in the 

flange and supported by metal pads on the top and bottom of the specimen as illustrated 

in Fig. 1. In the specimens tested by Hoult the straps were instead installed so that access 

to the top surface of the beam was not required as illustrated in Fig. 7(a). The top cover 

to the straps, cFRPT, in these specimens and as used in the model was 20 mm.  In all cases, 

considerable increases in capacity were achieved with the strengthening system. 

 

Deep Beam Specimens 

 

A series of five deep beam specimens was tested by Stenger (2000). The cross section of 

each specimen is given in Fig. 8(a) while the layout of the transverse reinforcement is 

given in Fig. 8(b). The key testing parameters are given in Table 3. The longitudinal 

reinforcement ratio was 1.95%. As was the case for the other test series, the specimens 

were designed so that the difference between the unretrofitted specimen shear capacity 

and the retrofitted specimen capacity was significant to determine the effect of the CFRP 

straps. By displacing one end of the specimen relative to the other an increasing shear 

force that was constant along the length of the specimen was applied up to failure. Details 

of the experimental test set-up, CFRP strap installation technique and testing procedure 

can be found in Stenger (2000). Specimens ST1, ST4 and ST5, which had strap prestress 

levels of 56% of the ultimate strap capacity, saw significant increases in their load 

carrying capacity versus the control specimen, ST2. Specimen ST3, with a prestress of 

only 4% of the ultimate strap capacity, failed at a load very close to that of the control 

specimen. Unlike Kesse and Lees (2007), Stenger found that the amount of prestress in 

the CFRP straps had a considerable impact on the overall specimen capacity suggesting 

that the specimen depth is an important factor.    
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Smeared Model Verification 
 
As discussed, both a ‘smeared’ and a ‘discrete’ formulation have been developed.  In the 

following, the ‘smeared’ results will be presented to determine the ability to predict the 

unstrengthened and strengthened capacity of the beams and to compare the influence of 

the clamping force. The limitations of this ‘smeared’ assumption will then be explored by 

comparing selected results with those obtained with the ‘discrete’ approach.   

 

Table 4 gives the experimental capacity for each specimen (Vexp), the predicted capacity 

from the smeared model (Vpred) and the ratio Vpred / Vexp for that model. Table 4 also 

provides the experimental failure mode (FMexp), the predicted failure mode (FMpred) for 

the ‘smeared’ model and the predicted crack angles (θpred) where this is the crack angle in 

the web for the T-beam specimens. Finally, the experimental strap strain at failure (εexp @ 

failure), the experimental strap strain at predicted failure (εexp @ pred failure), the 

predicted strap strain using the ‘smeared’ model (εprestress + εcr) and the predicted 

maximum strap strain at failure (εmax) are also indicated. 

 

Load Carrying Capacity Predictions 
 

Overall the model predicted the maximum load carrying capacity of the specimens well 

with a mean Vpred / Vexp ratio of 0.94 and a Coefficient of Variation (C.OV.) of 0.08, 

which suggests the model is both accurate and precise.  

 

Unstrengthened control beam predictions 

 
The capacities of the unstrengthened control beams were predicted well with the caveat 

that the strength of the rectangular control beam B2-ns-nl was overestimated and the 

capacity of deep beam ST2 was underestimated.  For specimen B2-ns-nl, this appears to 

have been due to the use of the ‘smeared’ assumption as will be discussed later. The 

accurate prediction of the unstrengthened T-beam capacities is encouraging, as many 

existing code models tend to be conservative for T-beams (Zoeheary et al. 1998). 
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Strengthened beam predictions 

 
The mode of failure (shear versus flexure) was generally well-predicted.  However, all 

the shear failures were predicted to be concrete shear failures and the rupturing of the 

CFRP straps was predicted with limited success for the ‘smeared’ model.  The strap 

strains presented in Table 4 indicate that the experimental strap strains at failure (εexp @ 

failure) for the specimens where strap rupture occurred are generally underestimated by 

the model. This is believed to be due to the fact that the strap strains given by the model 

are based on average shear stresses and are therefore average strains. The experimental 

strains, on the other hand, are from straps that could potentially cross the crack at any 

point along its length. If the straps crossed the crack at the location of maximum width, 

for example, the measured strains would be higher than the predicted strains. To better 

reflect this behaviour, an equation for the maximum predicted strap strain is developed by 

assuming that the crack width varies linearly from a minimum of 0 at the tip of the crack 

to a maximum value of 2w at the end of a crack that extends over the full height of the 

section. This is a simplification as shear cracks in beams have varying widths as well as 

varying angles along their length and do not typically extend over the full height of the 

section but it will allow an upper limit to be calculated.  The resulting maximum 

predicted strain, εmax, in a strap using the ‘smeared’ model can be found from: 

 

 crprestressmax εεε 2+=         (12) 

 

The resulting εmax calculated for each specimen has been included in Table 4 and 

generally provides a reasonable upper limit of the strap strain with the notable exception 

of B12-2s-10l-5p.  In specimen B12-2s-10l-5p, a beam with a low level of prestress, the 

experimental crack angles were similar to those predicted by the model and, although not 

presented here, the predicted failure load using the ‘discrete’ model was similar to that 

using the ‘smeared’ model.  Yet the predicted strap strains for the specimen were much 

lower than the experimental strains at failure.  This result requires further examination as 

slender specimens with low levels of prestress potentially have fundamentally different 

behaviour.  In this case it is possible that as the cracks opened the concrete contribution 
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decreased but the additional strain in the CFRP strap caused by the wider cracks allowed 

for the shear force to be transferred into the straps until they too ruptured. However, the 

model will give conservative load carrying capacity predictions as it uses the strap strains 

that are developed when the concrete contribution is a maximum and thus any additional 

strap strains after this point are ignored. This is illustrated by comparing the experimental 

strap strains at the predicted failure load of 83 kN to those calculated by the model (an 

experimental strain, εexp @ pred failure, = 0.0040 versus a predicted strain, εmax, of 

approximately 0.0043). It was only after an applied load of approximately 83kN that the 

strap strains began to increase dramatically for this specimen.  

 

The model was also able to reflect the beneficial effects of prestress.  For example, the 

difference in the predicted capacities of ST3 (with a prestress of 4%) versus ST4 and ST5 

with 56% prestress were consistent with the experimental observations.  The increase in 

crack angle due to increasing prestressing force was also apparent with the predicted 

failure angle of 42° being much steeper for ST4 (and ST5) than the 31°  angle predicted 

for ST3. By increasing the crack angle the prestress in the straps indirectly increases the 

clamping stress by increasing the value of T, which as mentioned before is a function of 

the crack angle. The predicted crack angles were generally consistent with the 

experimental crack angles with the exception of B9-1s-10l-50p.  This incorrect prediction 

is believed to be due to the smearing assumption and will be discussed in more detail in 

the next section.   

 

Discrete versus Smeared Strap Model 
 

In the ‘smeared’ model the exact location of the reinforcement relative to the failure 

plane is irrelevant. In the ‘discrete’ model, the location of the reinforcement will 

influence the location of the critical failure plane. In general the ‘smeared’ model is much 

easier to use in a region of constant shear as it only requires the designer to vary the crack 

angles, which as outlined earlier can be done quite easily with a spreadsheet. The 

‘discrete’ approach on the other hand requires the designer to iterate through a number of 

different crack plane angles and locations, which if the internal steel transverse 
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reinforcement spacing and CFRP strap spacing are different, as was the case in all three 

experimental studies, can be quite time consuming. There is also a greater potential for 

error if the designer fails to check all the potential combinations and misses the critical 

one. As such the focus of this paper has been on the ‘smeared’ approach as it seems 

preferrable in terms of efficiency and simplicity. Indeed if the internal and external 

reinforcement spacing to effective depth ratios are small, then the differences in the 

predicted capacities using the ‘smeared’ versus the ‘discrete’ approach are not expected 

to be great. However, if these ratios are large, the smearing assumption may no longer be 

valid and it is necessary to determine the location of the critical failure plane to 

accurately determine the beam’s capacity.  This effect is compounded if the contribution 

of an individual transverse reinforcement element is also high (i.e. high transverse 

reinforcing ratios or high strap prestress) since the deviation of the ‘discrete’ from the 

‘smeared’ behaviour is made more significant by the large increases in capacity at the 

discrete locations of each reinforcing element. 

 

Fig. 9(a) gives the results of the maximum shear force carrying capacity versus the crack 

angle (θ) for the ‘smeared’ and ‘discrete’ models for two specimens: B2-ns-nl, an 

unstrengthened rectangular section and B10-2s-5l-50p, a strengthened rectangular 

specimen with two straps of relatively low stiffness. It can be seen in Fig. 9(a) that there 

is a step in the capacity each time an internal steel stirrup or external CFRP strap is 

crossed.  The strap locations are represented as discrete changes in capacity although in 

practice there will be a region of influence around the strap support pads. Also presented 

in Fig. 9(a) is a line indicating the crack angle at which the force, T, in the longitudinal 

reinforcement from Loov’s (1998) model exceeds the yield strength of the reinforcement. 

Since the clamping force is a function of T, this limits the amount of force that can be 

transferred through shear friction for crack angles greater than this value. However, as 

can be seen from Fig. 9(a), the angles at which this occurs are well above those observed 

in the experiments. 

 

Examining Fig. 9(a) one can see that the ‘smeared’ model provides a slightly 

unconservative estimate of the control specimen capacity whereas using the ‘discrete’ 

 19



 

model provides an accurate prediction of not only the specimen capacity but also the 

failure crack angle. It is perhaps not surprising that a discrete approach is more effective 

for predicting the capacity of specimen B2-ns-nl since it had a small transverse 

reinforcement ratio suggesting that the assumption of smeared reinforcement could be 

inappropriate. In the case of specimen B10-2s-5l-50p the ‘discrete’ approach again 

provides an accurate prediction of the failure load and crack angle (see Fig. 9(b)). Thus it 

seems that for some specimens where the smeared reinforcement assumption is 

inappropriate it is possible to achieve better estimates of the specimen capacity by 

considering the transverse reinforcement as discrete elements. In general though, well 

detailed CFRP strap retrofitting systems with appropriate levels of strap stiffness, spacing 

and prestress seem to be predicted effectively by the simpler ‘smeared’ model. However, 

a larger database of specimens will be required before the limits of the ‘smeared’ model 

can be known with certainty and thus applied to design.  

 

The requirements set out for this model were to effectively account for the unbonded and 

prestressed nature of the CFRP straps, to attempt to account for the clamping effects 

provided by the straps, to establish when strap rupture governs, and to determine if a 

smeared reinforcement assumption was reasonable. By determining the crack widths at 

the level of maximum shear friction capacity, the unbonded and prestressed nature of the 

straps could be addressed by calculating the strain due to prestress and cracking over the 

full height of the strap. An upper limit could then be calculated for this strap strain which 

in most cases seems to accurately predict if rupture will occur. The effects of clamping 

provided by the prestress were reflected indirectly by the increase in the crack angle 

which then increased the clamping provided by the longitudinal reinforcement. The best 

illustration of this effect was provided by the deep beam predictions. Finally the 

assumption of smeared reinforcement behaviour appeared to be reasonable for specimens 

with sufficient levels of transverse reinforcement as long as the spacing was controlled. 

This result correlates well with typical design code approaches that also specify minimum 

transverse reinforcement areas and maximum spacing limits. Overall the model seems to 

account for all of the critical variables resulting in fairly accurate predictions of specimen 

behaviour. 
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Conclusions 
 

A shear friction based approach incorporating crack widths has been used to develop two 

models to predict the capacity of beams with and without CFRP strap retrofitting. One of 

these models considered the transverse reinforcement elements, both the steel stirrups and 

CFRP straps, to be smeared along the length of the beam. A second model considered the 

transverse reinforcement to be a series of discrete elements where the maximum shear 

strength was calculated by varying the angle of the crack plane. Both of these approaches 

were found to be accurate in terms of predicting the capacity of the specimens in the test 

database composed of rectangular, T- and deep beams. The ‘smeared’ approach was the 

easier to employ numerically requiring only the crack angle to be varied to find the 

optimum solution. This method produced accurate estimates in terms of specimen 

capacity and can also produce a realistic upper limit on the strap strains for most 

specimens. For specimens where the transverse reinforcement cannot reasonably be 

assumed to be smeared (e.g. the spacing of the elements is too large), the ‘discrete’ model 

can be used to offer better estimates of specimen capacity. Though the models were 

found to work well in most cases, the capacity of a rectangular specimen with low initial 

prestress was not predicted well. This result indicates the need for further testing in order 

to validate the models but the results to date suggest that the models are both accurate and 

precise for a variety of specimen types. 
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Table 1 – Rectangular Specimen Parameters 
 

Specimen sFRP 

(mm) 

No. of 

Loops 

Strap Area 

(mm2) 

EFRP 

(MPa) 

fuCFRP (MPa) 

(% prestress) 

fyv 

(MPa) 

fcu / f’c 

(MPa) 

B2-ns-nl NA 0 0 130000 1430 (0) 400 62.3 / 49.8 

B5-2s-10l-50p 230 10 38.4 130000 1430 (50) 400 49.7 / 39.8 

B6-1s-5l-50p 690 5 19.2 130000 1430 (50) 400 47.9 / 38.3 

B7-1s-5l-50p* 690 5 19.2 130000 1430 (50) 400 43.5 / 34.8 

B8-2s-10l-50p* 230 10 38.4 130000 1430 (50) 400 44.0 / 35.2 

B9-1s-10l-50p 690 10 38.4 130000 1430 (50) 400 41.0 / 32.8 

B10-2s-5l-50p 230 5 19.2 130000 1430 (50) 400 43.5 / 34.8 

B11-2s-10l-25p 230 10 38.4 130000 1430 (25) 400 45.9 / 36.7 

B12-2s-10l-5p 230 10 38.4 130000 1430 (5) 400 45.9 / 36.7 

*  specimens were preloaded to 34kN before the retrofit was installed 

 

 

 

 

Table 2 – T-beam Specimen Properties 

 

Specimen sFRP 

(mm) 

No. of 

Loops 

Strap Area 

(mm2) 

EFRP 

(MPa) 

fuCFRP (MPa) 

(% prestress) 

fyv 

(MPa) 

fcu / f’c 

(MPa) 

B1/25 0 0 0 NA NA 578 24.8 / 19.8 

B6/30/C/44 250 10 38.4 121000 1536 (25) 578 43.9 / 35.1 

B7/30/G/36 200 10 38.4 121000 1536 (25) 578 36.1 / 28.9 

Control 0 0 0 NA NA 380 50 / 40 

Retrofit 200 10 38.4 121000 1536 (50) 380 45 / 36 
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Table 3 – Deep Beam Specimen Properties 

 

Specimen sFRP 

(mm) 

No. of 

Loops 

Strap Area 

(mm2) 

EFRP 

(MPa) 

fuCFRP (MPa) 

(% prestress) 

fyv 

(MPa) 

fcu / f’c 

(MPa) 

ST1 500 25 96 130000 1200 (56) 605 36 / 28.8 

ST2 NA 0 0 NA NA 605 36.8 / 29.4 

ST3 500 25 96 130000 1200 (4) 605 39.2 / 31.4 

ST4** 500 25 96 130000 1200 (56) 605 37.6 / 30.1 

ST5*** 500 25 96 130000 1200 (56) 605 39.1 / 31.3 

**  specimen were preloaded to 350kN before the retrofit was installed 

*** specimen was loaded up to 67% of the maximum shear capacity in one direction then 

loaded to failure in the opposite direction 

 

 

 

 

 

 

 



 

Table 4 – Beam Modelling Results 

Specimen Vexp 
(kN) 

Vpred 
(kN) 

expV
Vpred  

FMexp FMpred θpred 
(°) 

εexp 
@ 

failure 

εexp 
@ pred 
failure 

εprestress 
+ εcr 

εmax 
 

B2-ns-nl 52 56.1 1.08 S.C. S.C. 23 - - - - 
B5-2s-10l-50p 97.7 88.4 0.90 Flexure Flexure 39 0.0063 0.0060 0.0075 0.0095 
B6-1s-5l-50p 81.2 70.3 0.87 S.S. S.C. 27  0.0081 0.0062 0.0072 0.0090 
B7-1s-5l-50p* 75.5 68.9 0.91 S.S. S.C. 28 N.A. N.A. 0.0074 0.0093 
B8-2s-10l-50p* 96.1 89.9 0.94 Flexure Flexure 41 N.A. N.A. 0.0078 0.0100 
B9-1s-10l-50p 87.6 80.0 0.91 S.C. S.C. 32  0.0068 0.0061 0.0076 0.0098 
B10-2s-5l-50p 79.8 87.0 1.09 S.S. Flexure 35 0.0108 - 0.0076 0.0096 
B11-2s-10l-25p 97 87.0 0.90 Flexure Flexure 35  0.0072 0.0054 0.0047 0.0067 
B12-2s-10l-5p 89 83.0 0.93 S.S. S.C. 30  0.0111 0.0040 0.0024 0.0043 
Control 100 99.4 0.99 S.C. S.C. 28 -  - - 
Retrofit 148 143.0 0.97 Flexure Flexure 44 0.0090  0.0071 0.0091 
B1/25 88.2 87.8 1.00 S.C. S.C. 42 -  - - 
B6/30/C/44 140.9 136.0 0.97 S.C. Flexure 41 0.0075 0.0066 0.0047 0.0069 
B7/30/G/36 134.7 132.0 0.98 Flexure Flexure 44 0.0063 0.0061 0.0053 0.0081 
ST1 703 600 0.85 Shear S.C. 43 N.A. N.A. 0.0058 0.0064 
ST2 465 371 0.80 Shear S.C. 29 -  - - 
ST3 479 429 0.90 Shear S.C. 31 N.A. N.A. 0.0009 0.0014 
ST4** 677 613 0.91 Shear S.C. 42 N.A. N.A. 0.0058 0.0064 
ST5*** 647 624 0.96 Shear S.C. 42 N.A. N.A. 0.0057 0.0063 

 Mean 0.94  
COV 0.08 

*  specimens were preloaded to 34  before the retrofit was installed 
**  specimen were preloaded to 350kN before the retrofit was installed 
*** specimen was loaded up to 67% of the maximum shear capacity in one direction then loaded to failure in the opposite direction 
S.C. – shear failure in the concrete 
S.S. – shear failure due to CFRP strap rupture 
N.A. – not available

kN
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Fig. 1 – CFRP strap configuration 

 

 
(a) 

 
(b) 

Fig. 2 – Model as proposed by Loov (1998) (a) Equilibrium across the crack (b) 

Potential shear planes 
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Fig. 3 – Effective areas and dimensions for use with equation (10) 

 

Fig. 4 – Comparison of the Loov (1998) shear friction approach and the Vecchio and 

Collins (1986) crack width model with '
cf = 30 MPa, aagg = 10 mm 
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Fig. 5 – Solution procedure for constant shear 
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   (a) 

 
   (b) 

Fig. 6 – Rectangular specimen layout (a) Cross-section and (b) Transverse layout 
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   (a) 

 

 
   (b) 

 

Fig. 7 – T-beam specimen layout (a) Cross-section (b) Transverse layout  
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   (a) 

 

 
   (b) 

 

Fig. 8 – Deep beam specimen layout (a) Cross-section (b) Transverse layout 
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(a) 

 
(b) 

 

Fig. 9 – Comparison of Discrete versus Smeared Models (a) Plot of discrete vs. 

smeared results (b) Specimen B10-2s-5l-50p at failure 


	Vecchio and Collins Crack Width Model

