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Abstract 

As a means of characterising the diffusion parameters of  fibre reinforced polymer 

(FRP) composites within a relatively short time frame, the potential use of short term 

tests on epoxy films to predict the long-term behaviour is investigated.   Reference is 

made to the literature to assess the effectiveness of Fickian and anomalous diffusion 

models to describe solution uptake in epoxies. The influence of differing exposure 

conditions on the diffusion in epoxies, in particular the effect of solution type and 

temperature, are explored.  Experimental results, where the solution uptake in 

desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix 

subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 

20 or 60 °C, are also presented.  It was found that the type of solution did not 

significantly influence the diffusion behaviour at 20°C and that the mass uptake profile 

was anomalous.  Exposure to 60°C accelerated the initial diffusion behaviour and 

appeared to raise the level of saturation. In spite of the accelerated approach, conclusive 

values of uptake at saturation remained elusive even at an exposure period of 5 years. 

This finding questions the viability of using short-term thin film results to predict the 

long-term mechanical performance of FRP materials.  
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1. Introduction  

The in-service lifetime of many civil engineering structures can be 50-100 years and so 

durable materials are essential.  There has been a growing interest in the use of carbon 

fibre reinforced polymer (CFRP) reinforcement as internal passive or prestressed 

reinforcement for concrete.  One promising application area is in marine environments 

where conventional steel reinforcement is susceptible to corrosion.  But the challenge is 

to predict how the CFRP reinforcing materials will behave over the coming decades 

when embedded in concrete and exposed to aggressive solution environments.    

 

Exposure to solutions can potentially change the FRP mechanical properties. The 

uptake of solutions in epoxy matrix FRPs is widely acknowledged as occurring in the 

matrix, whilst the carbon fibres are assumed impermeable in comparison, e.g. 

[1],[2],[3]. On entering the matrix, aqueous solutions chemically interact with the 

material. The epoxy is plasticized as the polymer chains are forced apart, resulting in 

macro-scale swelling [4] and softening of the material that can then have an impact on 

resin-dominated properties such as the CFRP dowel strength [5].  Experimental 

programmes to investigate the effects of solution uptake on FRP tendon properties can 

be devised.  However the problem arises that cylindrical FRP tendons often have a 

relatively large diameter and a high fibre volume fraction so the timeframe to conduct 

uptake tests to saturation on actual tendons becomes prohibitive.  Therefore the 

possibility of inferring the longer-term FRP tendon behavior from shorter-term thin film 

tests on epoxy-only samples provides a potential means to extrapolate the behavior.  

However, to do so, a number of inter-related research components are required.  The 

first is to establish the baseline behavior of thin films exposed to appropriate solution 

environments.  The time to saturation, the repeatability and reliability of the 

measurements, the modeling of the uptake behavior, and the scope for viably 

accelerating the uptake through the use of higher temperatures all need to be 

established.  Once this baseline exists it is necessary to link the thin-film behavior to 

that of a CFRP tendon.  The final piece is to then determine the relationship between the 

tendon mass uptake and the CFRP mechanical properties and thereby conclude whether 

these outcomes could be predicted on the basis of the thin film baseline measurements.   

 

The focus of the current paper is to present the foundation step to establish the baseline 

moisture uptake behaviour of thin films of epoxy subjected to solutions that may be 

typical in civil engineering concrete applications, namely; water, salt water and concrete 
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pore solution. This work will be conducted and critiqued with due recognition of the 

overarching aim which is to use the thin film diffusion results to infer CFRP tendon 

mechanical properties.  A companion paper will then discuss the additional modelling 

and experiments required to connect thin film results to predictions of the corresponding 

behaviour in an FRP tendon.   

 

2. Diffusion in Epoxies 

Epoxies are acknowledged to have attractive physical properties, such as a high 

strength, toughness and chemical resistance [6],[7] which are desirable in civil 

engineering applications.  An epoxy matrix is formed by curing an epoxy polymer with 

a hardener resulting in a crosslinked finished product [7].   Epoxies are permeable to 

aqueous solutions because of the free space that exists between the molecular chains 

into which water molecules can move [8]. A further driver of aqueous solution uptake is 

the affinity between the hydroxyl (OH) polar groups on the crosslinked epoxy and the 

polar water molecules [9].   The chemistry of an epoxy has been shown to have a 

substantial effect on moisture uptake. Wright has noted that water absorption may differ 

by a factor of ten between different resin types, and a factor of three for a single resin 

having different curing formulations [10]. More specifically, diffusion in epoxies has 

been shown to be a function of the ratio of resin to hardener [9] and the density of 

hydrophilic groups [11].  As it is difficult to predict the exact nature of uptake in 

epoxies, experimental observation is frequently used as a method of characterising the 

durability. In particular, thin film specimens with a high ratio of surface area to volume 

are used to study diffusion.  These specimens exhibit relatively rapid saturation and the 

thin-film moisture uptake measurements can be incorporated into relevant diffusion 

models to yield the desired material diffusion parameters in as short a time frame as 

possible. 

 

The moisture uptake transport process in epoxies is generally considered to be 

dominated by diffusion.  However, the selection of an appropriate diffusion model to 

describe the behaviour is a challenge and the most appropriate choice depends on many 

factors including the observed behaviour and the required balance of model accuracy 

and mathematical complexity. In the following, both Fickian and anomalous models 

will be discussed in the context of unidirectional diffusion.  
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2.1 Fickian Diffusion 

A Fickian diffusion model is a robust starting point given its prevalent use and 

widespread acceptance.  Further details can be found in Crank [12].    Fick’s first and 

second laws for one-dimensional diffusion are shown in Equations (1) and (2).   
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These expressions relate the rate of transfer of diffusing substance per unit area, F, to its 

concentration, C, in the direction of diffusion, x, perpendicular to the unit area 

considered. The diffusion coefficient, D, is a function of how permeable a given 

material is to a given solution over time, t.  For a thin film, a common boundary 

condition is to assume that a material is initially dry and is then exposed to moisture of a 

constant concentration at its surface. The outermost layer of the material is assumed to 

become immediately saturated and thereafter maintains a solution concentration of C0, 

at its surface.  The incorporation of these boundary conditions leads to an expression for 

the solution concentration in the film at any position and time: 
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The percentage mass increase of a specimen can be calculated from the concentration 

profile e.g. measured in moles/cm3 within the material. The key linking term is the 

effective molar mass of the relevant solution Meff.  The relationship between solution 

concentration in a material at saturation, C0, and the percentage mass increase in the 

specimen at saturation, M∞, is shown in Equation (4).  
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The mass uptake at time t , Mt , can be calculated using relationships between solution 

concentration and mass uptake and integrating the concentration gradient over the 

specimen thickness (Equations 3 and 4) to give: 
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In addition, Crank [11] showed that for thin film specimens, the diffusion coefficient of 

a material can be determined directly from the initially linear relationship between 

solution uptake and the square root of time: 
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According to Fickian diffusion, this expression should hold until the specimens are at 

least 60 % saturated after which the percentage mass increase should become concave 

against the abscissa [13] as shown schematically in Fig. 1.  

 

2.2 Non-Fickian Diffusion 

Two principal causes of Non-Fickian, or anomalous, diffusion of moisture in epoxies 

are severe degradation, which encompasses macro-scale breakdown, or milder solution-

polymer interactions.  Severe degradation is shown indicatively in Fig. 1 but will not be 

investigated in detail in this study.  The possibility of degradation nevertheless remains 

a consideration, in particular with some of the higher temperature studies reported later. 

Anomalous diffusion due to solution-polymer interactions can be attributed to two 

phenomena which can be inter-related: the chemical interaction between the diffusing 

solution and the polymer, and the relaxation of the epoxy structure.   In Fickian 

diffusion, the former mechanism is not taken into account and any relaxation of the 

material due to solution uptake is assumed to occur much more rapidly than the rate of 

diffusion [12].  Yet in practice, during the uptake of aqueous solutions into epoxies, 

there is simultaneous diffusion and hydrogen bonding occurring and the material will 

swell and relax at a limited rate.  

 

A number of experimental investigations have reported anomalous diffusion attributed 

to milder solution-polymer interactions where the uptake behaviour is seen to ‘drift’ 
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upwards (see Fig. 1) after an initially linear relationship between percentage mass 

increase and the square root of time [2][9][14-21]. The degree of this behaviour may 

even be dependent on the geometry of the test specimens [22]. The upward drift has 

been observed to proceed at a considerably slower rate than the initial behaviour which 

greatly prolongs the time to saturation.  As a result the majority of the aforementioned 

experimental investigations do not observe saturation in the epoxies studied. 

 

2.3 Anomalous Diffusion Modelling 

Attempts have been made to model anomalous diffusion in epoxies. The most common 

categories of model used are time-dependent [15][23], concentration-dependent [20], 

relaxation-dependent [2][9] [12] [15][17][19] methods or methods that assign dual-

phases to either the polymer (Jacob-Jones model) [14][15], the moisture (Langmuir 

model) [18] or uptake process in general [22] [24]. All of these methods rely on 

experimental observation in order to specify suitable parameters for anomalous 

diffusion models.   Glaskova et al [15] quantified the effectiveness of a number of the 

above techniques for a selected epoxy, and found the Langmuir and relaxation models 

to be particularly effective. In the following, the Langmuir method was selected to 

model anomalous diffusion due to its reported effectiveness [15][16][18], its basis on 

scientific principle and its ability in principle to forecast percentage mass increase at 

saturation from a set of experimental results where saturation has not yet occurred.   

 

2.4 Langmuir diffusion modelling 

The Langmuir model considers the effect of diffusing molecules interacting with the 

epoxy polymer simultaneously with the occurrence of diffusion. As diffusing molecules 

move through the polymer they may become bound, with a probability γ, and bound 

molecules may again become free to diffuse, with probability, β,  Thus the Fickian 

diffusion process is simultaneously augmented with molecules becoming free, and 

diminished with molecules becoming bound. Carter and Kibler [18] are widely 

acknowledged as having formulated the model proposed in 1978, though a similar 

approach was described by Crank [12] in 1975. A summary of the Langmuir model 

outlined by Carter and Kibler [18] follows.   

 

The model assumes that molecules of solution entering a material are free, i.e. unbound, 

and can proceed to diffuse in a Fickian-like manner with an associated diffusion 

coefficient  DL. The concentration of free molecules at a given position is denoted as n 
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rather than C. At any given time and position within the material, there is a probability, 

γ, that free molecules will become bound to the epoxy. The concentration of bound 

molecules at any point is denoted by N and there is a probability, β, that bound 

molecules will become free. At equilibrium, the relationship between free molecule 

concentration, n∞, and bound molecule concentration, N∞, is: 

 

∞∞ = Nn βγ           (7) 

 

The binding and freeing of molecules proceeds throughout the diffusion process, and so 

reduces and augments respectively the concentration of free molecules that are able to 

diffuse from any given point where: 
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An exact solution for the concentration of free and bound molecules within a thin film, 

of thickness l, of initially dry material exposed to moisture at a constant concentration is 

derived in [18].  A simplified approximation for the relative mass uptake, valid when 2γ 

and 2β are much smaller than κ  is presented as: 
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The Langmuir type relationship between solution concentration at saturation and 

percentage mass increase in a thin film is: 
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Two further approximations can be used in conjunction with Equation (10).   When 

exposure times are short, and uptake proceeds linearly with the square root of time,  
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is a valid approximation. When exposure times are sufficiently long, corresponding to 

post-linear uptake behaviour, and κt is large compared to unity, the uptake behaviour 

can be approximated as: 
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By differentiating Equation (14),  β and then γ  can be calculated from experimental 

data of the mass uptake with time where: 
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3. Solution dependency 

Of particular interest in the current work is the effect of the solution on the moisture 

uptake.  Common in-service conditions for FRP tendons include exposure to water (W), 

salt water (SW) and concrete pore solution (CPS) and thus a review of experimental 

studies relating to the behaviour of epoxies subjected to similar environments was 

undertaken [25-29]. Unless otherwise stated, Fickian models were used by the authors 

to infer the diffusion coefficients.  
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3.1 Water and Salt water 

Table 1 compares the diffusion coefficients and percentage mass increase at saturation 

in epoxies when submerged in either water or salt water solutions.   With the exception 

of the 22 °C results from [27], the findings suggest that the presence of sodium chloride 

salts in the diffusing water acts to decrease the percentage mass increase at saturation.  

The cited reasoning [25][26][28] for the reduction was due to reverse osmosis occurring 

when water absorbed into a composite forms an electrolyte as it dissolves water-soluble 

substances within the polymer. Chin et al. [27] also noted that when studying solution 

uptake in salt water solutions at 60 oC, mass loss associated with serious degradation 

was observed, which was not evident in epoxies exposed to water at equivalent 

temperatures. This indicates that salt solutions can precipitate more serious material 

degradation at higher temperatures.  

 

There are no clear trends as to the effects of salt water solution on diffusivity.  

Kahraman and Al-Harthi [25] attribute an increased diffusivity to the ability of the salt 

solutions to form micro-cavities in the epoxies. Room temperature results for 3.5% [27] 

or 5% [28] salt concentration solutions also suggest a higher diffusivity when compared 

with water.  In contrast, the similarity of the measured diffusivity in water and salt water 

solutions led Soulier et al [3] to infer from their experimental findings that the diffusion 

was concentration independent.  

 

As the literature is inconclusive, it is seems that the presence of salts in an aqueous 

exposure environment could either increase or decrease the rate of uptake and 

equilibrium moisture content, depending on the specific chemistry of the epoxy, cure 

cycle, cure state and exposure temperature. 

 

3.2 Alkaline solutions 

Experiments investigating the effect of alkalinity on diffusion in epoxy matrices (see 

Table 2) have generally found it to either have no effect [29] (although these tests were 

conducted on composites), or to increase both the diffusivity and percentage mass 

increase in the material at saturation. Yang, Xian and Karbhari [28] stated that greater 

matrix deterioration was the reason for the observed higher percentage mass increase at 

saturation in the alkali solutions. Furthermore, at elevated temperatures, alkali solutions 

have been seen to precipitate serious material degradation not seen in specimens 

exposed to water at the same temperature (Chin et al. [27]) which, as with salt water 
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solution, suggests that alkali solutions can precipitate more serious material degradation 

at higher temperatures.   

 

4. Experimental Results  

The significance of the exact nature of the diffusing solution is evaluated by considering 

absorption of water, salt water and concrete pore solution in thin films of epoxy 

materials.  Additional factors taken into consideration include the initial moisture 

content and the effect of temperature.  In the following, the thin film preparation and the 

relevant preconditioning and exposure conditions of the experimental specimens will be 

detailed. 

 

 4.1    Epoxy sample preparation 

The epoxy studied was an EPR4434/EPH943.  The EPR4434 resin consists of 25-50% 

1,6-Hexanediol diglycidyl ether, 25-50% Methylenedianiline and 25-50%, Bisphenol F 

diglycidyl ether (DGEBF).  The EPH943 hardener is 100% Isophoronediamine. 

 

Thin films were prepared in an aluminium alloy plate containing a machined flat 

channel of width 40 mm, length 160 mm and nominal depth 0.3 mm. Quantities of resin 

and hardener were weighed out according to the proprietary mixing ratio, and 

thoroughly mixed. The mixture was degassed at an absolute pressure of 1.5 kPa. A 

quantity of the epoxy was deposited towards one end of the mould and, in accordance 

with the ASTM standard D 823-87 [30], a hand-held drawdown method was used to 

spread the epoxy evenly over the channel.   The films were cured in an oven using a 

proprietary curing cycle. The exact details of the cure cycle are confidential but during 

the curing process the films were heated to a maximum temperature of 195°C.  Given 

the adhesive, brittle nature of epoxies, demoulding thin films of the material without 

damaging them was a challenge.  The technique developed was to demould the 

specimens by cutting the hot, ductile epoxy away from the sides of the channel with a 

scalpel, before prising a thin aluminium shim between the mould and the film strip. 

After the film strip had cooled to ambient temperature, it was scored using a scalpel 

then snapped into individual specimens.  The glass transition temperature (Tg) values 

measured from two differential scanning calorimetry (DSC) tests were 132.9 and  

141.0 °C, which compared favourably to the values reported by the manufacturer of 

between 135.5 and 145 °C measured by dynamic mechanical thermal analysis (DMTA). 
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To investigate the influence of initial moisture in the specimen on the uptake 

characteristics, some samples were preconditioned using desiccation to remove any 

moisture in the sample.  The desiccated thin film samples were placed in a desiccator at 

a room temperature of approximately 20 oC.   

 

4.2    Moisture Uptake 

The samples of the epoxy matrix were submerged in either distilled water (W), salt 

water (SW), or an alkaline solution to simulate exposure to concrete pore solution 

(CPS).  The salt water and concrete pore solutions were formulated as described by 

Chin et. al.[26]. The salt water solution comprised of 3.5 % by mass sodium chloride 

and deionised water. Unfortunately there is no general consensus in the literature about 

the chemical composition of concrete pore solution (see Table 2). The concrete pore 

solution used here comprised of 0.68 % by mass sodium hydroxide (NaOH), 1.8 % by 

mass potassium hydroxide (KOH) and 0.5 % by mass calcium hydroxide Ca(OH)2 

based on [27]. Tests showed the pH of the solution to be 13.5.   However, it was noted 

that the concentration of Ca(OH)2  was much higher than that noted in the baseline 

Christensen [31] reference. Despite this discrepancy, even at the lower concentration, 

experiments showed that the Ca(OH)2  was in excess of that required for saturation.  

 

The thickness of each film was measured in seven places using a Universal Horizontal 

Metroscope of 100 nm resolution.   The dry samples were then weighed, before being 

submerged in individual containers of W, SW or CPS and stored at either 20 oC in a 

temperature controlled lab or placed in an oven maintained at 60 oC for the duration of 

the test.  Gravimetric sorption was used to measure the solution uptake: the films were 

removed from solution, rinsed in deionised water, blotted dry, then weighed before 

being returned to solution. This method was repeated twice for each film at each time 

interval. The percentage mass increase at time t , Mt, based on the measured mass, mt  

for each film was calculated as: 

 

 M
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M∞ can be measured experimentally from a specimen’s mass at saturation, m∞, and its 

dry mass, m0 where: 

 

 11



 

M
m m

m∞
∞=
−⎡

⎣
⎢

⎤

⎦
⎥100 0

0

         (18)

  

When calculating the mass uptake in the salt water solution, it was assumed the solution 

was a homogeneous mixture of dissociated water molecules, aqueous sodium ions and 

aqueous chloride ions. This may not strictly be the case.  However, by formulating 

models based on macro effects of diffusion, i.e. the experimentally observed mass 

increase behaviour, it is possible to simplify the modelling without the need to consider 

this in-depth aspect of diffusion chemistry. Thus an average molecule mass was 

calculated based on the ratios of molecules per litre of solution. 

 

4.3    Experimental series and results 

The experimental programme is summarised in Table 3.  The notation used to denote 

each sample is a prefix of two letters which denote the solution type where W=water, 

SW=salt water and CPS=concrete pore solution, followed by the numerical value of the 

temperature, either 20 °C or 60 °C, a further letter indicates the initial moisture state 

where U=undesiccated and D=desiccated and the final ‘F’ indicates that the sample is a 

film.  Hence SW-20-U-F would be a non-desiccated thin film sample subjected to salt 

water at 20 °C.  The average thin film dimensions, including the film thickness, are also 

shown in the Table.    As discussed, the main parameters were the initial moisture 

condition (with or without desiccation), the exposure conditions and the temperature.    

The mass uptake results are plotted in Figure 2 where each data point represents the 

average of either five or three specimens (see Table 3).  Error bars illustrate 95 % 

confidence limits assuming a normal distribution of data.  

 

The measurements for the desiccated and undesiccated specimens were taken over an 

initial period of around 100 days and 500 days respectively.  Even after this time, the 

films did not appear to be saturated.  An opportunity then arose to take a further set of 

readings after around 800 days and 1800 days exposure of the desiccated and 

undesiccated specimens respectively.  Although some of the 60 oC samples had dried 

out and had to be discarded, these later, albeit limited, readings will be used to give an 

indication of the robustness of the predictions and observations based on the initial 

measurement period.    
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By considering the undesiccated specimens subjected to different exposure conditions, 

the uptake behaviour appears to be solution-independent for the most part, with the 

solution uptake generally greater in water than in salt water or concrete pore solution at 

20 oC.  After the initial linear relationship between percentage mass increase and the 

square root of time, a pronounced ‘upward drift’ is evident suggesting Langmuir-type 

diffusion is occurring.    

 

The effect of desiccation can be determined by comparing SW-20-U-F and SW-20-D-F.  

The desiccated results had a higher mass uptake at a given time and seemed to display a 

smaller scatter.  Based on the 100 day results, the temperature comparison (SW-20-D-F 

and SW-60-D-F) suggested that although the initial uptake slopes differed, the 

specimens were converging to similar values with increasing saturation.  However, the 

later readings at 800 days exposure show a marked divergence in mass uptake 

suggesting the higher temperature exposure increased the propensity for uptake.  As the 

experiments progressed, it was noted that the films exposed at 60 oC darkened in 

appearance, whereas the films exposed at 20 oC did not. However, no visual cracking in 

the films exposed at 60 oC could be observed in optical microscope images taken at 20 

and 50 times magnification at 450 days.    

 

5 Diffusion Modelling  

Both the Fickian and Langmuir diffusion parameters were calculated from the 

experimental results based on the initial measurement period.  In the Fickian model, the 

two necessary parameters to obtain are the percentage mass increase at saturation, M∞, 

and the diffusion coefficient, D.  The diffusion coefficient is calculated from the initial 

linear slope of the experimental data curves shown in Figure 2.  A least squares analysis 

was used to obtain the best fit.  The diffusion coefficient can then be calculated by 

rearranging Equation (6) and substituting in M∞ , which is taken to correspond to the 

mass uptake reading at either 100 days (for the desiccated specimens) or 500 days (for 

the undesiccated specimens), and the calculated best fit value of the slope.   

 

The first step in constructing a Langmuir model to describe the experimental results is 

to obtain the parameters β and γ  based on equations 15 and 16.   To obtain β  from the 

experimental results, Carter and Kibler [18] describe fitting a curve through the 

experimental results at longer times but further details were not provided.   In a review 

of other studies that have utilised the Langmuir method, the description of how the 
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Langmuir parameters were inferred was either omitted, reference [32] was made to 

Carter and Kibler, or regression techniques were cited e.g.[33], [34].  Suri and Perreux 

[34], who used a non-linear regression to fit of the experimental data, highlighted that 

there are accuracy problems in calculating β using ‘highly unstable’ numerical 

derivatives. Bonniau and Bunsell [35] used a minimum variances method, that solves 

four simultaneous equations expressed in terms of β, γ, D and M∞. Though they found 

the method to be effective, it does require the experimental observation of M∞, which is 

a prohibitive restraint when saturation tends to occur only after extended periods of 

time.  

 

In the current work, two methods were subsequently employed and compared to 

evaluate the β and γ coefficients. The first was a numerical point-by-point method 

where average values of β and γ were calculated from the experimental data. The 

second method used the Simplex algorithm to evaluate a non-linear regression fit to the 

experimental data.  The benefit of the numerical method was its simplicity.  However, 

the non-uniform spacing of the data points and the experimental scatter presented 

difficulties in accurately calculating the first and second derivatives at each 

experimental data point. The result was a considerable fluctuation in what should be 

constant values of γ and β . Given these limitations a non-linear regression approach 

was preferred and an equation of the form:  

 

( ) κκβγλ /1,2,2,exp >><<−+≈ ttBAM t      (19) 

 

was sought to satisfy the exponential long term behaviour approximation during the 

initial measurement period.  The parameters A, B and λ were evaluated by minimising 

the least squares error of Equation 14 to the experimental data points using the Simplex 

algorithm, implemented in MATLAB by X.S. Yang.    From these values, β  could be 

calculated directly from λ, and subsequent parameters γ, M∞,L, κ, and DL were then 

determined.  The solutions were checked to ensure the validity of the Langmuir 

modelling namely that, the values of γ and β should be much smaller than κ,  t >> 1/κ 

and that only data points that lie at times when the approximation converges with the 

governing behaviour equation.   
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One drawback of the regression analysis is that minimising the square of the error does 

not necessarily accurately represent the trend in the later data points, an important 

aspect of forecasting future behaviour.  So there can be a scenario where the model 

predicts that saturation has all but occurred but the trend in the last few data points 

suggests otherwise.  The calculated Langmuir parameters from the regression fit also 

depend on the time of the selected starting mass uptake point since, when earlier data 

points are discounted, greater weighting is effectively put on the later points, and the 

predicted percentage mass increase at saturation then rises.  

 

5.1 Modelling results and calculated parameters  

In Table 4, the Fickian diffusion parameters for the salt water and concrete pore solution 

are calculated relative to the water results to facilitate comparison with results in the 

literature.   The salt water results seem to be similar to those obtained by Soulier et al. 

[3] for a solution with a similar concentration.  However, whereas a number of 

researchers found that M∞,CPS/M∞,W was greater than 1 (see Table 2), in the current work 

this ratio was slightly less than 1.  

 

Since the general shape of the uptake curves were broadly similar across solutions, only 

the salt water results will be presented here to highlight the differences between the 

Langmuir and Fickian predictions. Fig. 3 compares the long term predictions of the two 

models based on the initial measurement period. As expected, this figure shows that by 

dictating the percentage mass increase at a given time, there is a good agreement 

between the experimental results and the Fickian model at that juncture and the 

agreement is also good in the initial linear portion of the curve. However, at 

intermediate times, the Fickian model considerably overestimates the percentage mass 

increase. Furthermore, the later measurements show that, as further uptake continues to 

occur, the Fickian model underestimates the true percentage mass increase at saturation. 

In general the Langmuir model appears to be a better predictor than the Fickian model 

as an indicator of the experimental data during the initial measurement phase. But again, 

the longer-term mass increases were underestimated in light of the 800 and 1800 day 

findings.   The calculated diffusion parameters for the initial measurement periods are 

shown in Table 5 where the mass uptake at ‘saturation’ is denoted as M∞,F  and M∞,L   

and the diffusion coefficients De,F and De,L for the Fickian and Langmuir models 

respectively.  
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5.2 Initial moisture content 

It is of note that the parameters differ depending on whether the films were desiccated 

or not.  The desiccated result is a purer measurement, but it is of interest to investigate 

how undesiccated results could be adjusted accordingly.  With the desiccated specimens 

it was found that most of the mass loss occurred in the first couple of days of 

desiccation and after 19 days, where the mass readings had become more stable, the 

average mass loss was 1.40%.  The undesiccated specimens were made in a series of 

batches, and stored in a laboratory with an average relative humidity of 45% for no 

more than 6 days before testing began.  Carter and Kibler [18] proposed a knockdown 

factor to account for humidity and suggests that the mass uptake after exposure to 45% 

RH would be 1/3 of that of the submerged saturated mass uptake in water.   Using the 

desiccated mass at saturation, this also gives an expected moisture uptake of 1.39% 

which is consistent with the measured desiccation results.  A positive correlation 

between the magnitude of the drift and the relative humidity was reported in all studies 

in which it was a variable [2][9][15][17].   

 

If the drying process is assumed not to have had a major effect on the behaviour, then 

the diffusion coefficients for the desiccated and undesiccated films each at 20 oC should 

be the same. The discrepancy in Table 5 is caused by the differing times at which the 

diffusion coefficients were calculated based on available data: after 500 days exposure 

for the undesiccated films, and 100 days exposure for the desiccated films. Calculation 

of the diffusion coefficient for undesiccated films after a comparable period of exposure 

of approximately 100 days yields a Fickian diffusion coefficient of 4.499 × 10-5 

cm2/day, significantly more similar to that of the desiccated films. 

 

The Langmuir parameters reflect a certain concentration dependency of an initial 

moisture content since the percentage of bound and unbound molecules potentially 

change with concentration.  This can be seen in Table 5 where the ratios of ((γ + β)/γ)2 

for the desiccated and non-desiccated samples are compared. 

 

5.3 Temperature 

The desiccated diffusivity at 60°C was found to be approximately four times that at 

20°C.  At 100 days the mass uptake at both temperatures was found to differ by only 

6% but after 800 days the difference was 36%.Work by others has found the degree of 

non-Fickian behaviour to be temperature dependent and, as the exposure temperature 
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increases, so does the strength of the upward drift [2][9][16][21]. At higher 

temperatures levels, (Roy et al. [23] @ 70 oC and Popineau et al. [16] @ 60 oC) the 

corresponding increase in upward drift can cause a sufficient shortening in the period 

taken to reach saturation such that a Fickian prediction of uptake behaviour is a better 

representation than at lower temperatures.  However, this behaviour may also be the 

result of some breakdown of the polymer resulting in a decrease in mass which offsets 

any upwards drift.   In the current work, the higher temperature uptake at 60°C was 

anomalous which contradicts these findings.  The experimental  trends are more 

consistent with the 3-year deionised water exposure results from [28] where the 

maximum mass uptake in thin films at 60°C (6.38%) was found to be much greater than 

at 37.8°C (1.86%) and  23°C (0.83%). 

 

6. Discussion 

The highest mass uptake in the thin films was noted after exposure to water but broadly 

speaking the salt water, water and concrete pore solution 20 °C uptake results were 

similar. The influence of the solution type did not appear to be time-dependent but the 

mass in the thin films did continue to increase with time.  Marked differences between 

the mass uptake at the end of the initial measurement period at 100 (≈0.3 years) or 500 

days (≈1.4 years), and the later readings at 800 (≈2.2 years) or 1800 days (≈4.9 years) 

were noted. 

 

The dependency of the calculated diffusion parameters on the mass at saturation is an 

issue in terms of developing model predictions.  Using diffusion parameters obtained 

from the initial measurement period, neither the Fickian nor the Langmuir models gave 

an accurate prediction of the later readings, even when exposure was accelerated at 60 
oC. It has also been noted elsewhere that even after 36 months of exposure, final 

equilibrium may not have been reached [28].  This means that the parameters reported 

here, and in many studies elsewhere, can only be considered as approximate and are 

highly dependent on the length of time over which the solution uptake is measured.  

Unfortunately, the need to leave the thin films for extended periods of time negates the 

advantages of using thin films as a means to identify parameters in a short timeframe.   

So while the thin film tests can be used as a powerful relative measure to identify 

solution dependency, the value for the long-term extrapolation of the performance of a 

CFRP requires further investigation. 
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The desiccated results had less scatter than the undessicated results but the effect of the 

initial equilibrium moisture content in the thin film on the mass uptake was 

inconclusive.  It would be expected that the initial moisture content would represent an 

offset in terms of the total percentage mass increase.  From the trend of the mass uptake 

readings e.g. after 800 days for the desiccated and 1500 days for the undesiccated films 

were similar (≈ 4.5%), it is not yet clear whether the initial moisture content is 

insignificant compared to the uptake capacity of the thin films at saturation. 

 

The use of higher temperatures seemed to accelerate the uptake in the early stages of 

exposure and again in the later stages of exposure. The difference between the initial 

measurement period results and the later readings was more striking in the case of 60 °C 

exposure than for 20 °C which suggests that the uptake mechanisms depend on the 

exposure temperature.  Additional temperatures should be tested to investigate the 

relationship between the diffusion and temperature and to develop Arrhenius plots.  

However, the reason for using higher temperatures was primarily to accelerate the 

uptake and thereby shorten the required length of time for the experiments.  So a 

temperature dependency limits the viability of using short-term accelerated thin film 

measurements unless they can provide an indication of the long-term performance of a 

CFRP tendon subjected to lower temperatures.   

 

Chemical testing of the samples at each stage of the experimental programme e.g. after 

curing, after heating to 60 °C and after immersion in solution, would help to identify 

any chemical changes in the thin films and to quantify the relationship between the 

chemical composition and the observed behaviour.   This should be the subject of future 

work.  A further question is whether thin film uptake results can be reliably extrapolated 

to predict the mechanical performance of a CFRP tendon.  This is also an area for 

further study. 

 

7. Conclusions 

Solution uptake in epoxies has been found to depend on the exposure temperature, the 

solution type, and the matrix material.  The behaviour can be modelled as Fickian or 

using anomalous, Non-Fickian, diffusion models.  The uptake behaviour of thin films 

are widely used to determine the relevant diffusion parameters. 
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In the tests reported here, the type of solution, either water, salt water or a concrete pore 

solution, did not have a significant effect on the solution uptake.    Anomalous diffusion 

was observed in the epoxy at 20 oC and 60 oC, although no mass loss, associated with 

severe degradation, was observed.  To observe saturation experimentally, the use of 

higher temperatures (60°C) as a means of acceleration, led to a higher initial diffusion 

coefficient, and a higher mass uptake, than that obtained in specimens exposed to 20°C.  

However, work by others suggests that higher temperatures may alter the nature of 

diffusion in composites.   It is preferable to desiccate specimens prior to testing, as this 

allows the true value, rather than perceived value, of moisture content at saturation to be 

observed. None-the-less, initial moisture content may be insignificant compared to the 

uptake capacity of the thin films at saturation. 

 

Using the experimental results, Fickian and Langmuir diffusion parameters were 

calculated for the epoxy at 20 oC and 60 oC.  A Fickian model gave a poor 

approximation to the uptake behaviour at intermediate times and was sensitive to the 

value used for the mass at saturation.  The Langmuir diffusion model was found to more 

effectively model the anomalous diffusion in the epoxy.  A regression analysis was used 

to determine the Langmuir parameters but one limitation was that, although the 

regression analysis minimises the error between the predicted behaviour and the 

experimental results, the later trends in experimental points are not necessarily 

accurately represented which will affect the predicted mass at saturation.  

 

In spite of the accelerated approach, conclusive values of uptake at saturation remained 

elusive even at an exposure period of 5 years. This finding questions the viability of 

using short-term thin film results to predict the long-term mechanical performance of 

FRP materials. 
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Table 1. Experimental evaluation of diffusion parameters for epoxies in salt 
solutions 
 

 
 

Water parameters 
 

Temp 

Salt solution 
concentration 

% wt 

Ratio 
M∞,SW/M∞,W 

Ratio 
DSW/DW 

(Fickian) 
Comments 

Kahraman & 
Al-Harthi [25]  

 

M∞,W ≈ 9% (300 days) 
DW  ≈  3.46×10-5 cm2/day 

room  0.01 0.85 0.92 

 
room 0.1 0.79 1.06 
room  2.8 0.69 1.58 
room  5.5 0.60 1.39 

Tai & 
Szklarska-
Smialowska 
[26] 

 room 0.010 0.77 No data 
Results for 
“Adhesive 
A” 

M∞,W = 7.5% (49 days) room 0.10 0.59 No data 
 room 2.8 0.58 No data 
 room 3.5 0.23 No data 

Chin et al. 
[27]  

M∞,W = 1.42% (≈20 days) 
DW = 4.85×10-5 cm2/day 

 

22°C 3.5 1.26 1.96 
 

M∞,W = 2.00% (≈17 days) 
DW = 1.18×10-3 cm2/day 

 

60°C 3.5 0.965 0.63 

Yang et al 
[28] 

 
M∞,W(stage 1) = 0.76%  
Mmax,W= 0.83% (1080 days) 
DW(stage 1) = 2.95×10-5 cm2/day
  

 
 
23°C 

5 

0.26 
(stage 1)

൞

௠௔௫,ௌௐܯ

௠௔௫,ௐܯ

 

ൌ
0.35

ൢ 

1.8 
(stage 1) 

 
 
 

 

Two stage 
Fickian 
model 

Soulier et 
al.[3] 

 
 

M∞,W = 2.7 % 
DW = 3.72 ×10-4 cm2/day 

37°C 0.9 0.98 0.97 

 

37°C 3.5 0.94 No data 
37°C 7 0.93 0.98 
37°C 15 0.87 0.82 
37°C 35 0.69 0.90 
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Table 2. Experimental evaluation of diffusion parameters for epoxies in alkaline 
solutions 
 

 

 Water parameters Temp pH Solution details M∞,CPS/M∞,W DCPS/DW Comments 

Chin et 
al.[27] 

 
M∞,W = 1.42% (≈20 days) 
DW = 4.58×10-5 cm2/day 

 
22°C 

 
 

 
13.5 

NaOH: 0.68 % 
wt. 
KOH: 1.8 % wt. 
Ca(OH)2: 0.5 % 
wt.  

1.15 1.26 

 
 
M∞,W = 2.00% (≈17 days) 
DW = 1.18×10-3 cm2/day 

 
60°C 0.94 0.72 

Yang et  
al [28]  

 
 
M∞,W(stage 1) = 0.76%  
Mmax,W = 0.83% (1080 days) 
DW(stage 1) = 2.95×10-5 cm2/day 
 

 
 
 
23°C 

 
 
 
8.5 Concrete 

leachate 

൞

௠௔௫,஼௉ௌܯ

௠௔௫,ௐܯ
ൌ
1.84

ൢ 

 
0.88 

(stage 1) 
 

1.29 
(stage 1) 

 
 

 

Two stage 
Fickian 
model 

 
Tsotsis 
and Lee 
[29] 
 

 
M∞,W = 6.6 % 
DW = 1.78 ×10-2 cm2/day 

100oC 
 

8.5 
 

Ca(OH)2 ≈ 1 ≈ 1 
Epoxy 
specimens 
containing 
carbon 
fibres  

100oC 10.5 Ca(OH)2 ≈ 1 ≈ 1 

 

Table 3. Experimental evaluation of thin film epoxy specimens 

Notation Dimensions 
(mm) 

Desic
cation 

Age at 
testing 

Series SW W CPS 20° 60° No. 
samples 

SW-20-U-F 40×35×0.3398 N ≤ 6 
days 

1 X   X  5 

W-20-U-F 40×35×0.3415 N ≤ 6 
days 

1  X  X  5 

CPS-20-U-F 40×35×0.3393 N ≤ 6 
days 

1   X X  5 

SW-20-D-F 38×18×0.3488 Y 2 yrs 3 X   X  3 
SW-60-D-F 38×18×0.3359 Y 2 yrs 3 X    X 3 
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Table 4. Relative Fickian diffusion parameters for thin films exposed to water, salt 
water and CPS at 20 °C 

 

Water parameters Salt solution 
details 

M∞,SW/M∞,W DSW/DW 
CPS Solution 
details 

M∞,CPS/M∞,W DCPS/DW 

M∞,W  =  3.893% 
 DW = 3.074×10−5 
(cm2/day) 

 
3.5% wt 

 
0.925 

 
0.99 

NaOH: 0.68 % wt 
KOH: 1.8 % wt 
Ca(OH)2: 0.5 % 
wt  

0.924 0.990 

 

 
Table 5. Fickian and Langmuir diffusion parameters for thin films exposed to salt 
water  
 

Diffusion type  SW-20-U-F SW-20-D-F SW-60-D-F 

Fickian De,F (cm2/day) 2.999×10−5 4.820×10−5 2.187×10−4 
M∞,F (%) 3.599 4.174 4.416 

Langmuir β  (day−1) 0.008873 0.04726 0.03139 

γ  (day−1) 0.003910 0.02420 0.01163 

 ((β+γ )/ γ)^2 2.076 2.286 1.878 
De,L (cm2/day) 6.432×10−5 1.095×10−4 4.008×10−4 
M∞,L (%) 3.549 4.188 4.470 
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Figure 1. Illustrations of differing types of uptake behaviour in epoxies 

 

 

 

 

Figure 2. Thin film experimental results for the percentage mass increase with time 
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Figure 3. Fickian and Langmuir predictions for long-term mass uptake behaviour 

 

 


	Water, salt water and alkaline solution uptake in epoxy thin films
	P. Scott1 and J. M. Lees2
	Abstract
	1. Introduction 
	2. Diffusion in Epoxies
	3. Solution dependency
	4. Experimental Results 
	6. Discussion
	7. Conclusions
	Acknowledgements
	The authors are very grateful to SACAC Ltd, Dr. Giovanni Terrasi (EMPA) and Mr Len Howlett, Dr. Athina Markaki and Dr. Rod Lynch from the University of Cambridge for their support with this research programme. The first author was funded through an EPSRC Doctoral Training Award.
	References

