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SUMMARY 

This study presents rigid-plastic methods of analysis of shear failure in reinforced 

concrete (R. C.) wall-beam type structures when subjected to in-plane loading. The 

upper-bound approach is emphasised. 

Present shear design practice (e.g. BS8110:1985) relies much upon empirical solu

tions, but it is inadequately substantiated by theoretical analyses when compared with 

design against bending moments. Review of previous work on shear failure in R. C. 

beams demonstrates the need for a rational analysis approach which broadly repre

sents the important physical characteristics and mechanics of shear failure and which 

can reliably predict the shear capacity. The rigorous theory of plasticity in shear which 

was introduced by researchers in Denmark in the early 1970's has proved successful for 

some limited cases. At failure, a simple kinematic rigid-plastic solution was derived 

for a stringer model with a straight 'yield line'. Recently, evidence has emerged that 

the best single yield line between two rigid wall portions may well be curved and not 

straight. There are different stress states in yield lines and consequently three types 

of yield line are identified in analysis. These E.ndings enable us to apply for the first 

time combinations of yield lines to analyse shear failure m echanisms of R. C. wall-beam 

type structures. The principles of rigid-body plane motion are used to describe the 

deformations of failure mechanisms. The search for the best mechanism at failure is 

made automatically by computer. The model predicts reasonably well the strength 

and mechanism for the test results reported in literature. The model is extended to a 

wall-beam with openings loaded in plane. 

Tests were made on shallow beams without shear reinforcement and deep beams 

with and without web openings to study the accuracy of the fundamental calculations 

made by the model. The most critical mechanism predicted by the model is reasonably 

representative of the observed failure mechanism. The strength prediction is in sub

stantial agreement with the experimental tests. The conclusions drawn from the study 

are: (1) If a correct mechanism is predicted then a rigid-plastic solution is close to the 

true behaviour otherwise it is an upper bound, and (2) The plastic solution of R. C. is 

only an approximate solution. 
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NOTATION 

Notes: All notations and symbols are defined where they first appear in the 
text. For convenience, the commonly used symbols are listed below. 

CS 

CVR 

D,Do 

L 

NE 

NEC 

NYL 

NL 

P 

P 

PPRS 

PPRL 

SSR 

T 

{T} 
V 

cross sectional area of horizontal web steel bar 

cross sectional area of inclined or vertical web steel bar 

non-dimensional compressive force in an equilibrium check, Chapter 3 

central span ratio, e/ h, see Fig.3.9(b) 

cover ratio, i.e. position of horizontal bar above the soffit. 
Non-dimensional measurement, see Fig.3.9(b) 

general notations for the rate of energy dissipation 

matrix of displacement at boundary 

modulus of elasticity of concrete. Subscript t IS used to define the 
tangential modulus of concrete softening 

fracture energy per unit area of fracture surface 

. aggregate interlock action 

an arbitrary selected linear dimension of wall-beam. Normally H = h, 
the overall depth of section 

span of simply support,ed beam 

the length of yield line TYPE I1, see Fig.Bl 

moment of the forces acting on the projection length of yield line in 
compression and tension. No subscript is meant for compression case 
only. Normalised quantities 

number of rigid blocks in a mechanism (indicate by subscript i) 

number of boundary conditions 

number of yield lines in a mechanism (indicate by subscript j) 

number of loads per block (indicate by subscript n) 

applied loads in-plane (general). Subscript c is used to indicate the 
collapse load 

applied load. A vector quantity 

half support bearing plate ratio, PI / h 

half load bearing plate ratio, P2 / h 

clear shear span to depth ratio, a/ h, or shear span to depth ratio 

tensile force in longitudinal steel bar (general) 

non-dimensional tensile force. Used in equilibrium check in Chapter 3 

transformation matrix , equation (3.18) 

shear force (general) 
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w 

a 

b 

c 

d 

{ doi} 

e 

J 

fe 

f~ 

feu 

p 

s 

shear in compression zone 

dowel action 

non-dimensional shear force. Used in equilibrium check in Chapter 3 

internal energy dissipation rate over a definite length of yield line 
(general) 

external work by applied loads 

total internal energy dissipation 

coordinate of the instantaneous centre of relative rotation for a yield line 
with reference to global axes. Subscript j = 1,2, ... , NY L, is omitted if 
there is only one yield line. Non-dimensional measurement 

clear shear span. Subscript t is used to indicate total shear span 

the element thickness or the width of cross section 

concrete cover to main longitudinal steel above the soffit, see Fig.3.9( a) 

the effective depth of section 

matrix for rigid block displacement, i = 1,2, ... , NB 

size of maximum aggregate 

central span between two symmetrical point load, see Fig.3.9(a) 

displacement at applied load point. A vector quantity 

concrete cylinder compressive strength or concrete strength, N /mm2 

characteristic concrete cylinder compressive strength, N/mm2 

concrete cube compressive strength, N /mm2 

concrete tensile strength, N/mm2 

yield stress of horizontal web steel bar, N/mm2 

yield stress of inclined or vertical web steel bar, N /mm 2 

the overall depth of section 

the length of yield line TYPE Ill, see Fig.3.8. Subscripts x and y are 
used to indicate the projection length on to X- and Y-axis 

half length of bearing plate. Subscripts 1 and 2 are used to indicate 
support and loading plate respectively 

the horizontal spacing of inclined or vertical web steel bars 

coordinate for the bottom terminal of the yield line. Non-dimensional 
measurement 

coordinate for the top terminal of the yield line. Non-dimensional 
measurement 

coordinate of turning point in yield line TYPE I where tangent is parallel 
to X-or Y-axis. Non-dimensional measurement 

coordinate point on the boundary where the displacement are specified. 
Non-dimensional measurement 
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(x, y), (x', y') arbitrary coordinate with respect to global and local axes. Non
dimensional measurement 

.6. the thickness of the discontinuity zone in Chapter 3 or an arbitrary 
selected linear displacement datum in Ohapter 4 

Uoi, Voi, Woi rigid block displacement components with reference to global axes. 

v 

Vt 

Pt 

CJ, € 

(f3B,D) 

f 'nt 

r 

r/ fe 

i = 1,2, ... ,NB 

effectiveness factor of concrete strength. Subscripts B is meant for 
flexural and b for bearing 

effective tensile strength ratio of concrete = ptft! fe 

effectiveness factor of tensile strength 

stress, strain (general) 

principal stresses 

principal strains 

strains in normal and tangential direction 

strain rate (general) 

load factor 

arbitrary angles or constants 

the strut inclination angle to beam axis 

axis rotation, 0 ~ Cioj ~ 27r,j = 1,2, ... , NY L. Subscript j is omitted if 
j = 1 

web steel inclination angle to beam axis 

variables to define the non-dimensional of fracture length and area of 
cracked zone, Chapter 6 

linear displacement at a point on boundary: f3 Bangle 0 to 3600 and D 
the magnitude of displacement 

angle between the normal to yield line to the direction of displacement 

shear strain in space n - t 

relative displacement rate across yield line. Subscripts nand t are used 
to indicate the normal and tangential component of displacement 

horizontal steel bar parameter, = Asfy/bhfe. Subscripts t and b indicate 
the top and bottom steel respectively 

vertical steel bar parameter, = Aswfyw/bsfc 

relative rotation. j = 1,2, ... , NY L. Subscript is omitted if j = 1 

shear stress = V/bh, N/mm2 

shear stress ratio or shear strength 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The problem of shear strength in reinforced concrete 'wall-beam' structures such 

as shallow and deep beams, wall panels, and corbels has been studied extensively 

in the past. The applications of such structures are widespread in practice. Earlier 

research work was mainly concerned with obtaining strength with less attention given 

to understanding of the actual behaviour in shear failure. There are two kinds of 

distinctly different solution to the problems: firstly, empirical- fully and semi-empirical 

[3,9] , and secondly, a mixture of experimental observation and the rigorous theory of 

plasticity [22]. The former is practically conservative for the range of examined data 

but no clear mechanical model of the behaviour is involved. The latter is more rational. 

nevertheless the progress towards a better formulation of theory is still being made [90]. 

In shear design, it has been suggested recently [77] that one of the most important 

advances in the next decade will be the extension of plasticity theory. Indeed, advances 

are noted in tlie past two years [32,79,105]. The design philosophies for shear using 

the plasticity theory are based on the analogy between reinforced concrete element 

and equilibrium truss model. The method thus disregards the important behaviour at 

failure which can be described by the geometry of the deformation. The approach at 

least to some extent represents the physical characteristics of shear transfer in beams , 

and most important the method departs from the conventional procedure in which the 

shear capacity is viewed as being the sum of two independent contributions by (i) the 

concrete and longitudinal steel alone and (ii) the web steel. 

The earliest application of plasticity theory to analyse shear strength in reinforced 

concrete must be credited to Danish researchers [17,91-95]. To date they have obtained 

solutions to simple cases, but difficulty still exists in formulating a rational analyti

cal solution for many practical problems [90]. Two approaches are used: static and 
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kinematic analysis. The static approach is most suitable for design purposes where re

inforcements are needed. The kinematic approach is far less developed than the static 

analysis. The earlier kinematic analysis was subjected to some debate [13,63]. An 

interesting improvement has been made in recent years and deserves further consid

eration [59]. Although the structural behaviour can be described by the geometry of 

the deformation as implied by the kinematic approach, the existing methods are not 

systematically developed to be readily extendable to structures of differe~t geometry. 

Following on from this, there is therefore a need for a method which can predict 

reasonably closely the shear failure load and the shear failure mode of reinforced con

crete. The author's twin interests lie in the proposal of using the kinematic approach of 

rigid-plastic theory starting from basic principles, and an attempt to lay the foundation 

to a theoretical study of a more complex mechanism of failure. 

1.2 Aims and Scope of the Thesis 

The aims of the research described in this dissertation are to use the rigid-plastic 

theory to: 

1. develop a rational analysis procedure that can be used to predict the shear 

strength and the geometry of deformation at failure, 

2. describe the relatively complex mechanisms of failure encountered in practical 

structures such as walls with openings, and 

3. carry out experimental tests to validate the theoretical prediction and to verify 

the assumptions made. 

In the next chapter the background of previous research on shear will be examined 

with two objectives. First, to understand the fundamentals of shear failure and the 

features of shear transfer within the failure zones, and secondly to review and discuss 

the current state of plasticity solutions for the shear problem. The flexural capacity 

and the bearing crushing limit are also analysed by a plastic approach. These two types 

of failure are considered as the limiting cases to shear failure. A short review of current 
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design practice to highlight the need of further research on shear is included in the last 

part of the chapter. 

In Chapter 3, the fundamental assumptions of plasticity are first discussed. Using 

these assumptions, the energy dissipation is derived and three types of 'yield line' 

between rigid wall portions at failure are identified accordingly. An approach to solve 

the work equation is proposed for simple cases, and three worked examples are given. 

New solutions are then compared with the existing solutions. 

Chapter 4 deals with an attempt to generalise the solution procedure. Modelling 

of complex mechanisms of failure is the main subject of the chapter. The principles of 

plane rigid body motion are used to describe the mechanism and followed by worked 

examples. Comparisons between the theoretical predictions and the reported test re

sults on the strength of deep beams with various details are made as the first stage 

to ensuring the reliability of the developed model. Techniques to model the failure of 

deep beams with web openings are discussed as the second part of the chapter and fol

lowed by comparison between the predictions and test results. The chapter closes with 

discussion of the effect of non-zero tensile concrete strength (perhaps due to embedded 

fibres) on the prediction of shear strength . 

. Chapter 5 deals entirely with experimental work. The test details and the results 

are first presented and discussed. Verifications of the theory are made and discussed 

in the subsequent sections. 

The sixth chapter deals with tests on small beams as part of an attempt to present 

a reappraisal of shear failure in shallow beams. The developed theory is examined in 

relation to the size effect on the shear strength. The size effect from the point of view 

of fracture mechanics is discussed. The potential application of the theory of fracture 

mechanics to reinforced concrete structures is introduced, in which the focus is on the 

effect of the structural size on strength. 

Finally, in Chapter 7, the conclusions from the preceding chapters are summarised 

and some recommendations of areas for further study are made. 
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CHAPTER 2 

RESEARCH ON SHEAR STRENGTH 

OF WALL-BEAM REINFORCED 

CONCRETE STRUCTURES 

2.1 Introduction and Scope 

Progress towards a better understanding of the problem of ultimate shear strength 

of reinforced concrete structural wall-beam elements loaded in-plane is reviewed and 

critically discussed in this chapter. The type of reinforced concrete structure for which 

shear is critical is usually required to sustain a combined action of both shear and 

moment. A wall element which is loaded and deformed in plane thus comes under the 

scope of this definition. Very deep members can fail by out-of-plane instability [36,70], 

a phenomenon not studied here. 

Strength in shear depends closely on the type of loading. The reported test data on 

shallow and deep beams reveal that uniformly distributed top loading is not a critical 

loading type in shear [36,37,46,62,76,100,113J. Leonhardt and Walther [76J report tests 

on shallow beams in which identical beams with uniformly distributed load sustained 

almost twice the shear force as for the two-point loading system. This is also true for 

deep beams [37,100J. In a test with two- or one-point loading system, the maximum 

moment and shear act on a definite critical section but this is not true for uniformly 

distributed load where the critical section is not very clear since maximum moment 

and shear force occur at different sections: a value between 0.25L to 0.50L from the 

centre of the support has been used [35,39,62,67,100]' where L is the simply supported 

span. 

The superior resistance of concrete to compressive stress compared to direct ten

sion influences the shear strength. Top loading through a bearing plate develops a 
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high biaxial compressive stress zone underneath the bearing [60,71J and web compres

sion, but a similar effect is not produced by the bottom or indirect loading types 

[46,113J. No bottom loading system is included in the present study of shear strength 

of wall-beam structures, although it is known that the bottom loading system produces 

severe damage and consequently lower load carrying capacity of beams tested in shear 

[4,36,46, 113J. 

The chapter begins by looking at the background research on related problems such 

as the modes of shear failure and the mechanism of shear transfer in reinforced concrete 

structures . Some earlier mechanical models to describe the shear failure are examined 

in subsequent sections. Particular useful results of limit analysis on shear failure are 

then examined in some depth. Two special cases, flexural failure and local crushing, 

which normally influence the shear failure are also analysed. The next section deals 

with the background of existing design procedure. One point which has been found 

to influence the design practice is the difficulty to obtain a rational model suitable for 

analysis of shear problems. In conclusion, we indicate the need for further improvement 

to shear analysis of reinforced concrete wall-beam structures. 

2.2 Mode of Shear Failure and Mechanism of Shear Transfer 

2.2.1 Characteristics of Shear Failure 

The shear failure mode of a beam, shallow or deep, is found experimentally to 

be primarily dependent upon the shear-span/depth ratio a/h as shown in Fig.2.1 
( ) 
A [4,35,37,60,78,113]' but a shallow beam with a/h ratio greater than approximately six 

usually fails by bending (Mode I). For a/ h ratios between about 2.5 and 6.0 the failure 

normally initiates from flexural cracks and the beam collapses essentially by prominent 

inclined cracking (Mode H). Cracking may also propagate toward the support along the 

main reinforcement and give shear-bond failure. An independent major inclined crack 

or splitting diagonal crack which leads to excessive destruction of concrete in the shear 

span is a normal mode of failure for a lower a/ h ratio (Mode IH). At post cracking 
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stage the beam behaves like a flat arch and the capacity increases from that in Mode 

II which is also dependent upon the amount of main steel. 

The inclined cracking for a relatively high a/ h ratio, i.e. within the range 2.5 < 

a/h < 6.0, could be associated with either the diagonal-tension failure mode, Fig.2.2(a) 

or the shear-bond failure mode, Fig.2.2(b). At lower a/ h ratios, say between 1.0 to 2.5, 

a crushing concrete · compression zone above the inclined crack is a usual feature at 

failure: this is called shear-compression failure mode, Fig.2.2( c). Further reduction in 

a/ h ratio will cause the beam to behave like a deep beam and the failure is described 

as the deep beam failure mode (Mode IV), see Fig.2.2( d). The mode of failure is not 

dependent upon the amount of main steel [4,37,67J. 

In a deep beam failure mode, the failure surface appears to be initiated by inclined 

cracking due to the principal tension across the line joining the load and reaction, akin 

to the splitting of a cylinder under diametral compression in a Brazilian test [20,100J. 

Furthermore, a significant combined tension-compression stress state exists across and 

along that line [24,60,71J and as a result two types of failure are commonly observed: 

the near-straight tensile failure surface and the diagonal crushing. In the post cracking 

stage the beam behaves like a tied-arch, with two distinct web concrete struts and 

tensile bars as the tie member. A considerable reserve of strength is available beyond 

the inclined cracking load before the arch member fails [15,37,66,100,109J. A shallow 

beam but with a short shear-span/depth ratio behaves almost identically with the deep 

beam mode [20,38,87]. 

Therefore, the shear failure of a beam is characterised by a significant combination 

of inclined cracking or diagonal cracking and concrete crushing within a shear span and 

shows a relatively small deflection. The final failure takes place either simultaneously 

with, or subsequent to, the formation of the inclined crack and crushing of concrete 

[5,21,37,60,67,100,113] . 

The shear modes of failure summarised in Fig.2.1 are physical phenomena which 

are observed for beams tested to failure in shear. It is also observed in tests that 

the contribution of web steel does not change the fundamental mode of shear failure 



[37,62 ,66,68,109]. However the real system of shear transfer in a cracked concrete beam 

is still not completely understood and this is examined next . 

2.2.2 Mechanisms of Shear Transfer 

No real agreement has yet been arrived at on the system of shear transfer in a shear 

failure [45,71,83,101]. The conventional shear design procedures [3,9] assume that the 

shear strength of a reinforced concrete beam is a summation of the contributions of 

(1) the concrete and the longitudinal steel as if there was no shear reinforcement , and 

(2) the shear reinforcement. The contribution (1) reaches its maximum level when 

the 'shear capacity' of a critical section is reached. At this stage 'diagonal failure ' 

is imminent. Much work has been reported on the concrete contribution [4], usually 

concentrated on the isolation of each system of shear transfer within the failure zone 

[16,45,53,60,81 ,82,111,114J. In the following subsections we examine two major works 

on the shear strength in relation to the system of shear transfer by the concrete in con

junction with the longitudinal steel. The shear reinforcement contribution is examined 

in subsection 2.3.1. 

2.2.2.1 Con~rete Teeth Analogy 

Many different approaches have been tried to describe the fundamental shear trans

fer. The approach adopted by Kani [60,62J is that the causes of diagonal failure are 

associated with the transfer to the support of both the longitudinal compressive force 

C, due to bending action, and the shear force V, of which C should be more influential 

and normally several times larger than V, see Fig.2.3(b). The overall strength comes 

from the concrete teeth or concrete cantilever elements found in the zone with flexural 

cracks resisting the force transmitted to them from steel through bond in the shear 

span. The structure at this stage appears as a comb-like structure, Fig.2.3(a). 

The flexural capacity of an isolated concrete cantilever is directly related to the 

shear-span/ effective-depth ratios (a/d) and the diagonal failure could be caused by the 

loss or significant reduction of the flexural stiffness of the concrete cantilever [60J. Thus, 
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the ultimate moment at which the concrete teeth break away can be expressed as 

(2.1) 

where k' is a constant which depends on the geometry of concrete teeth, and Mf is the 

flexural capacity of cross section. 

Failure might not take place immediately after the load carrying capacity of the 

concrete teeth is exceeded; as a result of further loading, the active cross section of the 

beam is reduced but a tied concrete arch may remain to take the load, Fig.2.3(b). The 

capacity of the remaining arch depends on the internal stress distribution, the extent 

of compressive zone and the effect of buckling of such slender arch [60J. The ultimate 

bending moment of the arch can be expressed as 

(2.2) 

where the factor k"(> 1.0) is introduced to take into account that the stress is enhanced 

at the critical section which is located in a region of biaxlal compression underneath 

the concentrated load close to the arch crown. The factor is thus related to the width of 

the plate under the loading point [60,80], where higher stresses are necessary to bring 

about failure than in the case of uniaxial compression as present in flexural failure. 

Tied arch action is typical of deep beam behaviour [37,100 . 

Kotsovos [71 J in his recent reappraisal of the mechanism of shear failure emphasizes 

the concept by Kani regarding the variation of shear strength with shear-span/effective

depth ratios. He examined the equilibrium of a section and traced the shape of the 

'compressive force path' which varied from a curved path comprising two near-linear 

portions connected by a smooth curve in a moderately long shear span to near-linear 

path for a shorter shear span, see Fig.2.3(b). 

Both approaches, the concrete teeth analogy by Kani and the compressive force 

path by Kotsovos, provide similar analytical expressions for critical moment, equations 

(2.1) and (2.2), with respect to a/ d ratios, plotted in Fig.2.4. The influence of the 

amount of the main steel is to vary the position of the valley as shown in Fig.2.4 
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which in turn reflects the range of a/ d ratios that is vulnerable to shear failure. For a 

constant reinforcement ratio this method predicts a weaker strength for a beam with 

bigger depth [62J. 

2.2.2.2 Interface and Compression Zone Shear Transfer 

It is an accepted fact that shear transfer is not just by concrete cantilever action, 

but also in two other ways: through the compression zone and across the crack faces 

by aggregate interlock and dowel action [45,49,53,81-83,114,122J. Evidence for these 

contributions to shear transfer is the fact that the critical crack is always inclined to 

the span and the transverse load. If these effects are neglected, failure of the system 

would occur purely due to the tensile stress at the cantilever root and the critical 

crack would be almost vertical. The aggregate interlock and the dowel action are 

interdependent and functions of crack width and shear displacement across the cracks 

[45,83,108,111,114,122J. At an earlier stage where the crack width is small the aggregate 

interlock is the most effective, but it is slowly dominated by the dowel action as the 

crack width and shear displacement increase at failure. Next in the order of effectiveness 

is the compression zone shear transfer. 

Thus the shear transfer is effectively a combination of three major actions: the 

action of the compression zone above the inclined cracking in the shear span, the inter

face shear transfer by aggregate interlock action, and the dowel action, see Fig.2.5( a). 

Many experimental tests to isolate the individual effects have been reported. Smith 

and Fereig [108] found that both the interface effects across rough cracks in concrete, 

the aggregate interlock G and the dowel action Vd, are substantial: the former being 

about 60% of shear at inclined cracking, decreasing to 30% of the shear at failure and 

the latter, although about 10% of the shear at inclined cracking, increasing to 40% of 

the shear at failure. The shear carried by the concrete compression zone Vco is approx

imately in the range of 25% to 35% of the total shear. Similar qualitative evidence was 

obtained in the earlier study by Taylor [114]. 

Walraven and Reinhardt [122] studied the shear transfer across cracks by aggregate 
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interlock, by both experimental and analytical approaches . They modelled the concrete 

as a two-phase material of aggregate and cement matrix. The crack surface is idealised 

to contain randomly distributed rigid spheres of a range of sizes, embedded to various 

depths within a much weaker rigid-plastic matrix. The shear force is resisted by a 

combination of crushing and sliding of rigid spheres into and over the softer cement 

matrix. The analysis is made such that as a result of wedging action when the crack 

faces are subjected to a shearing load, the stresses at the contact area are in equilibrium. 

The normal and shearing stresses at the crack, are expressed as functions of the matrix 

yielding stress and the total effective contact area! at the interface. 

Fenwick and Paulay [45] and later Hamadi and Regan [49] included the contri

bution of aggregate interlock and dowel action in the local equilibrium of a concrete 

cantilever which is fixed in the compression zone, see Fig.2.5(b). The moment of the 

bond forces is resisted partly by flexure of the concrete cantilever and partly by couples 

between the vertical interlock and dowel forces at the cracks. 

2.2.3 General Remarks 

The individual contributions to shear transfer may be studied quantitatively, but 

the overall system of shear transfer is hard to analyse and relate to the shear strength of 

a structural element . Shear transfer is a combination of different actions: the concrete 

compression zone, the aggregate interlock and the dowel action and they respond in a 

staggered manner. The main factors that influence these actions are the amount and 

type reinforcement steel, size of beams, and the material properties. 

In a short shear span and a deep beam, once inclined or diagonal cracking has 

initiated load transfer is by arch action. The crushing strength or the diagonal tension 

failure of one of the two concrete arch ribs will give the strength of these structures in 

shear. 

! Total projecting area of rigid sphere in X- and Y-plane, obtained from statistical analysis. 
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2.3 Useful Analogies for Behaviour in Shear 

2.3.1 The Truss Analogy 

In beams with web shear reinforcement, the inclined cracking within the shear 

span destroys the original structural system which is replaced by a truss or arch action 

or a combination of both actions. The truss action in shear failure is analysed by using 

a truss analogy principle [10]. The term truss analogy is more appropriate to apply to 

a medium and moderately large shear span and the arch analogy is relevant to a short 

shear span. The strength of the arch, if adequately tied, is limited by the ability of 

concrete arch ribs to resist the inclined thrust action and the method of analysis will 

be reviewed in the next subsection. 

The analogy of a pin-jointed truss (classically with 45° angles, ref. 10) to simulate 

the action of a reinforced concrete beam subjected to shear and bending was originated 

at the turn of this century by Ritter and Morsh (quoted from ref. 5) . The longitudinal 

steel in the tension zone is analogous to tension chord (Fig.2.6), the shear reinforcements 

(vertical or inclined) are the tension ties whilst the concrete between diagonal cracks 

and in the compression zone acts as compressive struts. The forces act on the sections 

shown in Fig.2.6(b) and for equilibrium give rise to the following conditions, 

V:S Aswfyw(;) sinO's(cot8c + cotO's) (2.3) 

(2.4) 

where 8c and O's are the strut and the web steel inclination angles to the beam axis, 

respectively, and 1/ fc is the effective compressive strength. The equations show that 

the shear resistance is governed by one of the two failure criteria: the web steel yielding 

and web concrete crushing. 

There are two types of truss models: fixed [5,50] and variable- [31,47,95] angle of 

inclination of the diagonal concrete struts. In a fixed angle truss 8c is taken as 45 degrees 

(Fig.2.6(a)). Test data [33,50] reveal that the classical truss model produces typically a 

conservative prediction of shear strength, particularly for beams with small amounts of 
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'web reinforcement. However the model fails to provide a more general basic explanation 

of the behaviour of reinforced concrete beams in shear. Furthermore equilibrium allows 
/ 

variation of the angle of inclination which in turn depends on the volume ratio of 

transverse to longitudinal steel reinforcements [31,33,119]. A flatter strut or concrete 

compression diagonal inclination could redistribute forces better within the web [47,94] . 

This is the beginning of an improvement to the fixed-angle truss. 

The variable-angle truss model includes two different and independently developed 

truss models. The first was developed in North America by Collins [33] from an elastic

plastic theory. The second is the plasticity truss model [95 ,119] developed in Europe. 

Collins developed the theory to predict the full behavioural response of reinforced con

crete members in shear by using the diagonal compression field theory (c.f. Calladine, 

ref. 25). He assumed that the shear in the web will be carried by a field of diagonal 

compression (i.e. equivalent to concrete struts in a truss model) inclined at a certain 

angle, not usually at 45 degrees. The stress-strain characteristics of the constituent 

materials are incorporated in this model. The actual inclination angle is determined 

as soon as the conditions of equilibrium and compatibility within the web element are 

satisfied. He found that for a typical reinforced concrete beam loaded only in shear the 

angle of inclination is lower than 45 degrees. The method is claimed to be simplified 

[31] although there are several parameters which need to be defined empirically. 

Researchers in Europe (e.g. references 47, 94 and 95), before Collins, focussed 

attention on generalization of the truss analogy. Initially Lampert and Thurlimann 

[75] introduced the variable-angle truss to analyse the torsion problem in a box beam 

of rectangular cross-section. Subsequently the method was extended to analyse shear in 

reinforced concrete beams [47,94]. In the analysis, the theory of plasticity is used, hence 

it is referred to as the plasticity truss model. The failure criteria, concrete crushing 

limit 1/ fe and the yielding of the web reinforcement, define the limits to the equations 

(2.3) and (2.4). The concrete crushing limit is the plastic compressive strength which is 

less than the uniaxial compressive strength as implied by a reduction factor or 'concrete 

effectiveness factor' 1/( < 1.0). This factor is introduced to allow for reduction of concrete 



strength within the web due to the presence of multiple cra,cks, the interaction between 
r 

web steel and concrete, and to account for the limited ductility of the concrete, as 

demonstrated in tests [17,33,74,90J. 

The plasticity truss model is used to assess the total shear strength and there is 

no addition of separate concrete and web-steel contributions. For simultaneous vertical 

web-steel yield and concrete crushing, the shear strength is predicted by [94,95J: 

or 

/I 
for 

2 

for 

/I 
~>-

2 

/I ./, < -
'1-'-2 (2.5a) 

(2.5b) 

and if both main longitudinal and vertical web-steel are yielding at failure but the web 

concrete does not crush, then the shear strength is calculated from [90], 

where the following parameters are introduced, 

q, = Asfy 
bhfc 

and 

(2 .6) 

(2.7) 

Other notations have their usual definitions. Equations (2.5) and (2.6) are derived 

based on unlimited variation of Bc to accommodate equilibrium. 

The angle of inclination of the concrete struts in the variable-angle truss models -

both Collins' and plasticity truss - are influenced considerably by the ratio of transverse 

to longitudinal steel reinforcement. The models also take into consideration that the 

concrete struts in reinforced concrete beams form a fan pattern near the support and 

under concentrated load, in particular [31,47,79,119J. 

A comparison between the plasticity and Collins' trusses has been made by Camp-

bell et al. [27J. They found that both models produced almost the same prediction for 

the shear strength of reinforced concrete beams with small amounts of shear reinforce

ment, but the plasticity model requires only a single empirical parameter compared to 

several empirical parameters for the variable-angle truss by Collins. 
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2.3.2 The Split-Cylinder Analogy 

The shear failure mode of a short shear span beam, which is initiated by a near-

straight inclined crack joining the support to the load point, is analogous to the split

ting cylinder test [20,67,100]. Thus shear resistance of this class of beam which includes 

deep beams is related to the tensile strength of concrete to resist the splitting along 

the prescribed fracture line in an arch rib, see Fig.2.2( d). In a cylinder test the tensile 

strength is calculated from equation it = 2P/7rdcy lcy , where P is the diametral com

pressive force, dcy and Icy are, respectively, the diameter and the length of the concrete 

cylinder. 

Brock [20] was the first to formulate the split-cylinder analogy. He resolved the 

vertical load V into two components, see Fig.2.7: one along horizontal = V cot B f 

and another along the diameter of an hypothetical circle that passes through the load 

and the reaction point = VcosecB f . The active force that causes the splitting is the 

diametral compressive force or thrust and the final equation is given as 

7r 
V cosecB f = 2" bh it cosecB f (2.8a) 

where B f = inclination of failure surface to horizontal axis, hence 

7r 
V = 2"bhit = 1.57bhit (2.8b) 

where it is the cylinder splitting tensile strength of the concrete. 

Later, Ramakrishnan and Ananthanarayana [100] adopted such an approach and 

introduced a similar expression to predict the strength of deep beams: 

V = B'K"'bhit (2.9) 

where B' is a shear span coefficient and Kill is an empirical fit to the experimental 

data. The horizontal component of the force produces a bending effect, see Fig.2.7. A 

lower bound of Kill va1ue was suggested as 1.12 and the coefficient B' was taken as 

unity. 
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The failure of shallow beams with shear-span/depth ratio less than 1.0 was likened 

to the splitting of a cylinder by Desayi [38J. However the proposed formulation produces 

a prediction which in general does not correlate with the experimental trend. 

Equations (2.8) and (2.9) are independent of shear-span/depth ratio, the relative 

proportion of longitudinal reinforcement and the effect of web reinforcement. Each was 

proposed for ultimate load neglecting the reserve of strength beyond diagonal cracking 

as observed in many beam tests [37,66,68,100J. This reserve varied with the type of 

concrete and the concrete strengths: in deep beams the reserve of strength was generally 

much higher than in shallow beams and should not be ignored [15,67J. 

Extensive research by a team at Nottingham and Cambridge on deep beams during 

1970s [66-69,73] led to a proposed semi-empirical equation to calculate ultimate shear 

strength. It enhances the basic idea of the split-cylinder analogy and therefore improves 

the strength prediction compared to equation (2.8) or (2.9) . Two factors are explicitly 

included in the equation: the shear-span/depth ratio to explain the experimental ob

servation, and the reserve of strength beyond diagonal cracking which is contributed 

mainly by web steel [67J. 

Thus the proposed equation takes the following form: 

(2.10) 

The three numerical coefficients Cl, C2 and C3 were determined by least square analysis 

to fit the test data where the best value for C3 was 0.35. Cl and C2 are the coefficients 

related to material types. The other symbols in equation are defined in Fig.2.8. 

The first term on the right-hand side of equation (2.10) is the concrete contribu

tion to represent the load at which the critical diagonal crack will form in a splitting 

mode. The quantity Clftbh is the term derived from a split-cylinder analogy similar 

to the equation (2.8) or (2.9). The parameter (1 - C3 a/h) accounts for experimental 

observations regarding the way the ultimate shear capacity varies with the clear-shear 

span which was also previously adopted by de Paiva and Siess but with C3 = 0.6 [37]. 
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The second term on the right-hand side of equation (2.10) is the web-steel contri

bution. The summation considers the main steel as one of the web steel bars. 

Equation (2.10) does not depend on the strength of web steel as it is assumed 

that no steel yields at ultimate. Application of equation (2 .10) was originally limited 

to deep beams with shear-span/depth ratios in the range of 0.23 to 0.70 for which the 

empirical parameters Cl, C2 and C3 are derived [67]. 

2.3.3 General Remarks 

Both the classical fixed-angle truss and the split-cylinder analogy VIew shear 

strength as the added contributions of two parts, the concrete and web-steel. How

ever the plasticity truss assesses the total shear strength at one go. 

A common disadvantage of the classical approach is that the models completely 

ignore the favourable interaction between the web reinforcement and other secondary 

actions: the aggregate interlock and the dowel force action. In principle, the shear 

strength of concrete is assessed by using the principal stress criterion for an unreinforced 

web. The classical truss analogy is used to assess the web-steel contribution to be added 

to the concrete contribution. 

Thus the plasticity approach which accounts for the complex interactions within 

the reinforced concrete element is more reasonable. In fact the plasticity truss is the 

first model to depart from the classical approach. Further discussion on the application 

of the theory of plasticity will follow. 
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2.4 Rigid-plastic Methods - Analysis and Modelling of Shear Failure 

2.4.1 Introduction 

An application of the theory of plasticity to analyse reinforced concrete structures 

at collapse i.e. at the onset of large irreversible deformations, would rely on one of 

three limit theorems. Following Calladine [26], the Lower- and Upper-Bound theorems 

are stated as follow: 

The Lower-Bound theorem or statical approach: I.If any stress distribution 

throughout the structure can be found which is everywhere in equilibrium internally 

and balances certain external loads and at the same time does not violate the yield 

condition, those loads will be carried safely by the structure. " 

The Upper-Bound theorem or kinematical approach: "If an estimate of the plastic 

collapse load of a body is made by equating internal rate of dissipation of energy to the 

rate at which external forces do work in any postulated mechanism of deformation of 

the body, the estimate will be either high, or correct. " 

The third is the uniqueness theorem. If a lowest upper bound and a highest 

lower bound coincide then they constitute the single complete 'exact' solution for the 

problem. 

Application of the theory to reinforced concrete beams in shear was pioneered by 

Nielsen, who derived the strength of point-loaded beams by using the lower bound 

technique, assuming that the crushing of the web concrete was critical [91J. The sim

plest model to describe the reinforced concrete materials, yet producing very promising 

results, is by a rigid-perfectly plastic model. The solutions to follow are based on 

the application of this basic assumption. Description of each constituent material and 

the necessary assumptions made in the theory of plasticity of reinforced concrete are 

discussed in the next chapter. 

A lower bound approach by plasticity truss model is accepted in practice with 

some empirical modifications [22,32J. In the following sections other lower bound and 

upper bound solutions are presented and their limitations are critically discussed. 
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2.4.2 Lower Bound Solutions 

The lower bound solution, which equally applies for slender and deep beams, is 

based on the Danish work [59,90-95J. The concept has been extended by Marti [79J. 

The solution for a simple case with top concentrated loads is presented below. 

The beam is assumed to act as an arch, being a slender arch for normal beams and 

a 'normal arch' for deep beams, as shown in Fig.2.9. The size of the bearings, under 

the concentrated loads and supports, is of decisive importance and determined by the 

bearing stresses fb. In the simple plasticity theory the maximum bearing stress is the 

compressive strength v fe. Statically admissible stress fields are developed by replacing 

the truss members (Fig.2.6( a)) by ribs with finite dimensions. The pin connections of 

the trusses correspond to biaxially stressed nodal zones. The procedure to determine 

the statically admissible stress fields in an arch action are by nature geometrical. In 

most cases, the final stress fields are found from a complex combination of strut and 

tie action, and/or arch and fan action [79,91J. 

Fig.2.9 is the statically admissible stress distribution for two symmetrical point 

loads with concrete cover c = yd2. Shaded regions are assumed to be subjected to 

biaxial compression. Regions AGED and BCGH are in uniaxial compression. For 

a single point load or two unsymmetrical point loads on deep beams, possible stress 

fields are shown in Fig.2.10 [90], where transfer of the compression of the arch to the 

tensile reinforcement bars in the support regions is by bond. The average shear stress 

in sections AB and CD in Fig.2.10, together with the normal stress in these sections, 

will certainly not exceed the yield condition, but the bond and local stresses around 

the bars may be considerably greater, and need a separate study [6,90J. 

Let us consider a special case where P = PI = P2 and y = YI = Y2 < h/2. The 

admissible stress field remains as shown in Fig.2.9, whence: 

so that 

(2.11) 
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The solution to (2.11) gives a relation between two variables P and y, 

P = ~ [Ja2 + 4y(h - y) - a] 

This means that when y = h/2 the bearing plate is at its maximum, 

pmax = ~ [Ja2 + h2 
- a] 

In other situations, y is calculated from the stress behind the anchor plate, i.e. 

or y = Asfy/bvfc. A fixed c = yd2 = y/2 is assumed in this case, hence 

1>h 
y=

v 

(2.12) 

(2.13) 

(2.14) 

For y < h/2 or 1> < v /2, the bearing plate size P is found by substituting equation 

(2.14) into equation (2.12). A lower bound solution is calculated from V = bpvfc and 

thus the highest lower bound solution for beams without shear reinforcement is derived, 

equation (2.15) [92], 

or 

for 

for 

v 
1»-

2 

v 
1><- 2 (2.15a) 

(2.15b) 

The solution is also valid for corbels with a point load at the end and no other 

reinforcement but a longitudinal steel bar [58]. 

Recently, J.F. Jensen [59] presented an extended version of lower bound analysis 

to account for the influence of steel position c above the soffit and the size PI of bearing 

plate over the support, see Fig.2.9. Four types of admissible stress field were devised, 

see Fig.2.11: in (a) and (b) there is bond stress on the tension chord, and (d) utilises 

full strength under the loading plate and behind the anchor plate. From these fields, for 

various ranges of c and PI, explicit expressions for the strength can be derived [59] and 

2-16 



The solution to (2.11) gives a relation between two variables P and y, 

P= ~ [v'a2 +4y(h-y)-a] 

This means that when y = h/2 the bearing plate is at its maximum, 

Pmax = ~ [v'a2 + h2 
- a] 

In other situations, y is calculated from the stress behind the anchor plate, i.e. 

or y = Asly/bvle. A fixed c = Yd2 = y/2 is assumed in this case, hence 

iph 
y=

v 

(2.12) 

(2.13) 

(2.14) 

For y < h/2 or ip < v /2, the bearing plate size P is found by substituting equation 

(2.14) into equation (2.12). A lower bound solution is calculated from V = bpv le and 

thus the highest lower bound solution for beams without shear reinforcement is derived, 

equation (2.15) [92], 

or 

for 

for 

v 
ip>-

2 

v 
ip<

- 2 (2.15a) 

(2.15b) 

The solution is also valid for corbels with a point load at the end and no other 

reinforcement but a longitudinal steel bar [58]. 

Recently, J .F. Jensen [59] presented an extended version of lower bound analysis 

to account for the influence of steel position c above the soffit and the size PI of bearing 

plate over the support, see Fig.2.9. Four types of admissible stress field were devised, 

see Fig.2.11: in (a) and (b) there is bond stress on the tension chord, and (d) utilises 

full strength under the loading plate and behind the anchor plate. From these fields, for 

various ranges of c and PI, explicit expressions for the strength can be derived [59] and 
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show that shear capacity depends in a complex way on material strength, steel position 

and support plate size. The solution by Jensen for a sufficiently strong reinforcement, 

is summarised by equations (2.16): 

when c ::; ~ 

r PI 
-=v-
fe h 

for PI::; ;>11 

r [(2ac + hpI)(h - 2c) 1 
fe = v h( h - 2c)2 + h( a + pd2 for Pll::; PI ::; P12 

~ = ~ [J(2a + pd2 + 4(h - c)2 - (2a + pd] 
fe 2h 

for P12::; PI 

and when c ~ ~ 

r PI 
-=v-
fe h 

for PI::; P13 

for P13::; PI 

where these limits are introduced 

Pll = ~ [J a 2 + 8c( h - 2c) - a] 

P12 = (h~c2C) [Ja2 +4c(h-c)+a]-a 

P13 = ~ [Ja2 +2(h-2c)2 -a] 

(2 .16a) 

(2.16b) 

(2.16c) 

(2.16d) 

(2.16e) 

(2.16J) 

(2.16g) 

(2.16h) 

Equation (2.16b) is derived from vertical equilibrium of forces over the support 

plate in Fig.2.11(a), and equations (2.16c) and (2.16e) are obtained from the moment 

equilibrium of forces in Fig.2.11(b) and (c) respectively. The derivation is based on the 

assumption that a full biaxial compression v fc is utilised under the load bearing, that 

IS 

rh 
P2=

vfc 
(2.17) 

The various limits in equations (2.16) are obtained from the geometrical and local 

crushing considerations where in all cases PI is greater than the minimum requirement. 



In the case of steel yielding at failure, the stress field in Fig.2.11(d) is used by 

J ensen. Taking the moment equilibrium of section, that is 

PI P2 ( <Ph) V(-+a+-)=T h-c--
2 2 2 

and by substituting P2 = (r /v fc)h, T = Asfy, <P = Asfy/bhfc and r V/bh, the 

strength equation for the longitudinal steel yield is derived, 

(2.18) 

Again, apart from dependence on the material strengths, the shear capacity of 

beams depends on the steel position and support plate size. 

2.4.3 Upper Bound Models 

An important step towards modelling the failure mechanism in a coherent plastic 

theory of shear failure in reinforced concrete beams was taken by a research group 

in Denmark during the 1970s. Based on a straight 'yield line' mechanism, Nielsen et 

al. [92-94] and Braestrup [17,19] studied a wide range of cases which include shear 

failure in beams without shear reinforcement, and beams with vertical and inclined 

shear reinforcement as well as corbels and T-beams [58]. 

The shear failure mechanism is modelled as a stringer beam with a straight yield 

line (a narrow zone of concentrated plastic deformation) in which the energy dissipated 

per unit length of yield line is given by [57], 

(2.19) 

where b is the beam thickness and, is the angle between the yield line normal and the 

direction of the relative displacement rate t5 . The materials are assumed to be rigid 

plastic. The Danish model and corresponding upper bound solution is first examined. 

In subsequent sections other upper bound solutions are briefly reviewed followed by 

upper bound solutions for secondary failures. 
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2.4.3.1 Upper Bound Solution by Nielsen et al. 

Fig.2.12 shows a stringer beam model with the proposed shear failure mechanism. 

It is an idealisation of a shear span of a beam with shear reinforcement inclined at the 

angle O's to the beam axis. The beam is subjected to the vertical force V. The assumed 

mechanism is a single straight yield line inclined at an a.ngle j3 to the beam axis. The 

relative displacement rate 8 inclined at an angle 0' to the beam normal is assumed to 

be uniform along the yield line. Thus at failure the rigid blocks adjacent to the yield 

line translate without any rotation. When 0' > 0 the top and bottom stringers are 

assumed to be yielding in tension. 

In the analysis all longitudinal web steel is summed-up and the longitudinal steel 

parameter is re-defined for this subsection only, 

(2.20) 

The rate of internal energy dissipation for a relative displacement rate 8 is a sum-

mation of contributions by concrete, longitudinal web steel and shear reinforcement , 

I.e. 

W I = W le + W h + W Is 

where 
bh 

W le = . j3 8 v j e [1 - cos( j3 - 0')] 
2S111 ' 

Wh = L Asjy8sinO' 

and 

[
hsin(j3+ O's)] . 

WIs = Aswjyw . j3 . 8S111(O's + 0') 
S SIn sIn O's 

The limiting range of the variable angles 0' and j3 are, 

and 
a 

- cot O's < cot j3 < -- - h 

(2.21) 

(2.22) 

The lower limit of cot j3 in equation (2.22) indicates that it permits yield line 

inclinations j3 > -¥- but (j3+O's) < 7r to avoid causing compression of shear reinforcement. 

The upper limit on cot j3 is imposed by the geometry and loading system, see Fig.2.12. 

For convenience we note these limits as j3max and j3min and use them in Fig.2.13. 
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The rate of external work done by the loading is 

Hr E = V 8 cos a 

The work equation WE = W I then yields an upper bound solution: 

~ = l/ [1 - P cos a cos f3 - fl sin a sin f3 + I'\, sin a cos f3 + I'\, cos a sin f3] 
fe 2 cos a sin f3 

where the following parameters are introduced: 

1 2 tP . 2 
P = - - sm as 

l/ 

2 <I> 1[J 2 
fl = 1 - - - 2 - cos as 

l/ l/ 

2
1[J . 

I'\, = - cos as SIn as 
l/ 

- tP tP=-.-
sIn as 

and <I> and tP are defined by equation (2.7). 

(2.23) 

(2.24) 

(2.25) 

The least upper bound is determined by minimising equation (2.24) with respect 

to variable angles a and f3 giving 

:a (;e) = 0 = sin a - fl sin f3 + I'\, cos f3 

:f3 (;e) = 0 = p cos a - cos f3 - I'\, sin a 

Braestrup [19] gives the following solution to these equations: 

cot f3 = 
1 [p 1 - 1" - K' 1 

1- 1'\,2 
- I'\,fl 1 - p2 _ 1'\,2 

1 [I' 1- p' - K' 1 tan a = 1 - 1'\,2 1 2 2 - I-lP -I-l -I'\, 

(2.26a) 

(2.26b) 

The upper bound solution of equation (2.24) varies with functions <I> and 1[J with six 

domains of possible solutions to equation (2.24), as shown in Fig.2.13. Each boundary 

to the domains is related to a certain limit on the amount of longitudinal and shear steel. 

The expressions for the boundaries are determined from geometrical consideration of 

the mechanism (inserts in Fig.2.13) when the limits to the angles a and f3 are imposed 
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accordingly [19,94]. For a vertical shear reinforcement case the boundaries to the 

domains with strong reinforcement, in Fig.2.13, are straight lines along 1fi = v/2 and 

<I> = v/2. 

A complete range of upper bound solution to equation (2.24) can be summarised 

as follows to correspond with six domains in Fig.2.13: 

CA) Longitudinal Steel Yielding 

(i) Special Case 1: No shear reinforcement 

The conditions of mechanism and the lowest upper bound solution are: 

cot f3 = (_a h) 

(2.27) 

This particular solution lies on the vertical axis from 0 to A in Fig.2.13. 

Cii) Domain 1: Weak shear reinforcement 

In this case both steel sets yield at failure, 

(2.28a) 

If O's = 1r /2 i.e. vertical shear reinforcement, the solution reduces to: 

(2 .28b) 

(iii) Domain 2: Moderate shear reinforcement 

The solution for which none of the variable angles are at limits. Substituting 

solution (2.26) into (2.24), the lowest upper bound solution is derived: 

T 
(2 .29a) 
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For beams with vertical shear reinforcement, K = 0, the equation reduces to 

~ = ~ [V<1>(/I - <1»V1/;(/I -1/;)] 
le /I 

(2.29b) 

Comparing equations (2.28) and (2.29) we found that the conditions leading to 

(2.29) are unlikely to control, and the solution is not likely to be much of practical 

interest. Further, it is noted that the solution found in domain 3 which is for strong 

shear reinforcement, is unlikely to be decisive in cases normally met in practice. 

CB) Longitudinal Steel Not Yielding 

(i) Special Case 2: No shear reinforcement 

In this special case the yield line inclination is limited by the geometry, see Fig.2.12, 

that is 

o ~ cot f3 ~ (~) 

For -If; = 0 and Cl' = 0 equation (2.24) reduces to 

~ = ~ (1 - cos f3) 
le 2 sin f3 

By allowing the yield line to incline at the smallest angle, cot f3 = a/ h, the lowest 

upper bound solution is derived for no shear reinforcement and a sufficiently strong 

longitudinal steel, 

(2.30) 

The solution lies above point A in Fig.2.13. 

(ii) Domain 4: Weak shear reinforcement 

The main longitudinal steel is not yielding when Cl' = O. The lowest upper bound 

solution is obtained when cot f3 = a/h, 

r /I [V ( a) 2 ( 2i/J. 2 ) a 1 le = 2 1 + h - 1 - --;; SIll Cl's h (2.31a) 

For vertical shear reinforcement the equation reduces to: 

(2.31b) 



(iii) Domain 5: Moderate shear reinforcement 

Shear reinforcement is yielding, and the solution is giyen as, 

(2.32a) 

In the case of vertical shear reinforcement as = 11'/2, the load carrying capacity is 

~ = y'1jJ(1/ -1jJ) 
le 

(2 .32b) 

Notice that this equation is identical to (2.5a) of plasticity truss model. 

(iv) Domain 6: Strong shear reinforcement 

In this case no steel yields. A solution of equation (2.24) is obtained when cot (3 = 

- cot as and tan 0' = 0, 

;e = ~ cot (~s) 
and for vertical shear reinforcement the solution reduces to 

T 1/ 
2 

(2.33a) 

3 
(2.3!b) 

Note that the solutions in domains 5 and 6, and the two special cases are exact 

according to limit analysis, since identical lower bound solutions exist [92-94]. 

2.4.3.2 An Alternative Upper Bound Solution by Kemp and Al-Safi 

Recently, Kemp and Al-Safi [63] questioned the upper bound solution by Nielsen 

et al. regarding moment equilibrium of the assumed end rigid block, Fig.2.12, but 

without shear reinforcement [93]. An alternative failure mode is proposed as shown in 

Fig.2.14: the end rigid blocks translate U o at the supports and rotate, and the central 

rigid block does not rotate but translates vertically Vo. Thus the relative displacement 

rates are assumed to vary along the yield line and the top stringer does not yield at 

failure. 

An alternative upper bound solution for the bottom longitudinal steel to yield at 

failure is given as follows: 

T 1/ VI + (t)2 VI + (i)2 - [1 + (t)(i)] + ~ 
le - 2' [(i) + (t)] 

(2.34) 
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where <I>b is the bottom reinforcement parameter only, c.f. equations (2.20) and (2.7), 

h is the distance between two stringers, and the displacement parameter r is obtained 

from 

(2.35) 

where 

A= [3(*r -1- Bl 

B = 8~b [2~b + (*r -1] 

The bottom steel does not yield if there is no rotation of the end rigid block which 

limits the validity of (2.34) to the range 

(2.36) 

If a higher amount of steel is used then the solution of equations (2.34) and (2.35) 

coincides with the lowest upper bound solution by Nielsen et al. for beams without 

shear reinforcement and with sufficiently strong longitudinal steel, equation (2.30). 

Beside the complexity of the equations, the alternative solution by Kemp and AI

Safi offers little advantage over Nielsen's solution, and furthermore it ignores the top 

reinforcement contribution altogether which is not necessarily true in a shear failure. 

2.4.3.3 Mechanism with Curved Yield Line by J.F. Jensen 

It has been shown that the failure mechanism for beams without shear reinforce-

ment is best modelled by a curved yield line separating two rigid blocks, see Fig.2.15 

[59]. The yield line is a part of a rectangular hyperbola and the expression for the en

ergy dissipated per unit length of yield line is retained similar to equation (2.19). The 

relative displacement rate along the yield line is not constant as assumed by Nielsen et 

al. [92]. If the centre and the direction of relative rotation are determined, then the 

energy dissipation at failure can be evaluated. (Further details will be given in Chapter 

3). It turns out that for the hyperbola, the internal work can be found from equation 

2-24 



(2.19) using the relative displacement rate Dm and the angle of the displacement direc

tion to normal/m evaluated at the mid-length of the chord for the yield line as shown 

in Fig.2.15 . 

Jensen arrived at the solution by assuming a position of centre of relative rotation, 

0, along the level of reinforcement as shown in Fig.2.15. The lowest upper bound is 

found by optimising the position of 0 or variable angle (3m. The solution obtained 

by this mechanism coincides with the lower bound solution discussed earlier, equation 

(2.16). Point 0 can be on the left or on the right of the support, see Fig.2.15, and the 

corresponding lower bound solution is equation (2.16b) or equation (2.16c) respectively. 

2.4.4 Upper Bound Analysis of Secondary Failures 

Many shear tests are forced to stop prematurely due to interference by other modes 

of failure [4,5,66,76]. Two modes of failure are important: flexural, and local crushing. 

These failure modes can be analysed by the theory of plasticity with relative ease and 

the procedures are outlined below. 

2.4.4.1 Flexural Failure 

The most established and acceptable plastic solution for reinforced concrete beams 

is the solution for the flexural failure. 

Let us consider the flexural mechanism as shown in Fig.2.16(c). It is assumed that 

a relative rotation w occurs about a hinge at a depth y. The shaded area of concrete 

at centre is crushed plastically and the steel yields at failure. The internal dissipation 

for this mechanism is 

vBfc 2 
WI = -2-by w + Asfy(d - y)w 

where VB is the effectiveness factor of concrete in flexure. This factor can be determined 

empirically [90] and it is normally higher than v for shear failure. 

The external work done by the load is 
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Equating the external and internal energy for the work equation, we have 

(2.37) 

The lowest upper bound solution is thus obtained when, 

or 

Inserting into equation (2.36), we have 

(2.38) 

The highest fiexural strength is predicted when y = d or <I> = 1/B(d/h). 

Taking account the geometry of the beam in Fig.2.16(a), and putting T = V/bh, 

the plastic fiexural strength (2.38) can be expressed as, 

for <I> ~ 1/ B (~) 

<I> > VB(~) 
(2.39) 

This fiexural capacity solution always produces a conservative prediction compared 

with the stringer model [92] which predicts the following fiexural capacity, 

~ = <I> / (5:) 
le d 

(2.40) 

The comparison of the two models is given in Fig.2.19. 

The plastic fiexural strength prediction discussed in this section is based on the 

work by Nielsen [90] and Drucker [40]. Note that this solution can also be derived by 

considering the normal stress distribution on yield section and the equilibrium of forces 

in Fig.2.16(b). 
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2.4.4.2 Effect of Plate Size on Bearing Crushing Failure 

A mechanism which is simple yet reliably predicts bearing crushing capacity of 

concrete is a punch model [26,29J. Fig.2.17 shows an idealised two-dimensional punch 

model of concrete thickness b resting on a smooth and frictionless base. The effect of 

friction is neglected in this model as appropriate to the application of plastic theory 

[26J. Block I in figure is a rigid wedge with an angle 2a at the tip. Relative displacement 

8 across the yield line forms an angle 8 to the yield line. 

Assuming concrete resists no tensile strength and no reinforcement crosses the 

yield lines, the work equation for the mechanism in Fig.2.17, is 

hence, 

V bp I [ 1 - sin 8 ] 
= 2 Vb 

e sin a cos( a + 8) 
(2.41) 

where Vb is the concrete effectiveness factor in bearing and p is the size of bearing plate. 

Minimising the load with respect to variable angle a, produces 

Inserting into equation (2.41) and expressing the plate size in terms of shear capacity, 

we have 

P 
h 

1 V 

This solution corresponds to a uniform stress distribution under the bearing. 

(2.42) 

The bearing effectiveness factor Vb is not very important in this case since the tests 

reveal that the concrete strength under the bearing is much higher than the compressive 

strength in shear V le (Vb> V) and it is a function of local confinement [9,91,123J. Thus 

it is safe to analyse the bearing crushing failure with Vb = V in particular if the plate 

size is expressed as a function of shear capacity, equation (2.42). Verification of this will 

be made in the next chapter. In practice the local strength can be further improved 

by providing sufficient local reinforcement within the effective zones and thus helping 

to improve the ductility of concrete at failure [l,106J. 
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2.4.5 Discussions on the Existing Solutions 

1. The lower bound solutions presented aboye are derived without considering 

web reinforcement. To develop complete stress fields, the approach requires a good 

deal of intuition in application. A fully satisfactory stress field is not yet available 

for cases with given shear web reinforcement. Here the plasticity truss models have 

been used to investigate equilibrium between the loads, the reactions, and the internal 

forces in the concrete and in the reinforcement before considering the stresses in detail 

[79]. Though powerful in design, the lower bound approach is not always successful in 

analysis problems and the difficulty is clear [59,73,79]. 

Comparing the lower bound solution and the plasticity truss, see Fig.2.18, indicates 

clearly that the latter (equation (2.32b)) does not correctly predict the strength for the 

case of no web-steel ('IjJ = 0). In fact, as seen from the figure that for a small region of 

low proportion of web steel the truss analogy could seriously underestimate the failure 

load. Perhap one needs more careful consideration of the stresses within the web which 

would improve the prediction by the plasticity truss model. 

2. The mechanism approach provides an important solution for a strong longi

tudinal steel with very weak or no shear reinforcement, equation (2.31b). The plot 

of equations (2.31 b), (2.32b) and (2.33b) for vertical shear reinforcement is shown in 

Fig.2.18. It shows that the prediction by equation (2.31 b) for very small shear reinforce-

ment is more likely to represent the true shear capacity of reinforced concrete beams, 

since the beam shear strength is not zero when 'IjJ = O. In practice, a reasonably good 

prediction has been obtained using the upper bound solution for this class of problems. 

A significant difference between the analysis by a mechanism approach compared 

to statical approach is that the former requires no separation in analysis between beams 

with and without shear reinforcement. This advantage is very useful in developing a 

rational solution to shear problems. At present the solution is limited to a number of 

special cases and its application to practical problems with multiple longitudinal steel 

and different boundary conditions is yet to be made. 
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3. The failure model with curved yield line proposed by Jensen [59] is more realistic 

compared to the stringer model by Nielsen et al. [92] and Kemp and AI-Safi [63J. The 

model also takes into account the position of longitudinal steel reinforcement above the 

soffit and the size of support plate. However, the present solution is only for beams 

with a single layer of longitudinal steel and without shear reinforcement. 

4. The curved yield line is considered best for two reasons: it is a better presen

tation of the actual failure modes and it has been shown that for one special case the 

mechanism produces a better upper bound solution. 

2.5 Current Practice to Design the Ultimate Shear Strength of Reinforced 

Concrete Beams 

2.5.1 Introduction 

In this section, a brief discussion is given of the background of current practice 

in the design for shear. The analyses used to arrive at the design equations adopted 

by the British, American and European codes are particularly discussed [3,9,22]. An 

attempt is made to compare the approaches for common structural elements. Thus 

the discussion is divided into two parts: the design of shallow or slender beams, and 

short shear span and deep reinforced concrete beams. Shallow or slender beams have 

L/d > 2.0 and/or shear-span/depth ratios greater than 2.5, where Land d are the 

effective span and depth, respectively [23J . 

Test data show that numerous factors influence the shear strength of beams 

[4,5,21,62,78,102,113,121J. Most Codes of practice take account of the major parame

ters directly but with different approaches. 

The design practice in the U.K. and the U.S. is classical. In this conventional de-

sign approach, it is assumed that the ultimate shear strength of beams is contributed 

by the concrete and shear reinforcement separately. That is Vu = Vc + Vs, where Vc 

and Vs denote the strength provided by concrete and by the shear reinforcement re

spectively. The approach to calculate the concrete contribution to shear strength varies 
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considerably with the codes and it is not significant for the part that is contributed by 

the shear reinforcement. 

However, the CEB-FIP Model Code departs from this classical approach and the 

theory of plasticity has been incorporated in the design procedure. A similar change 

has been made in the Canadian design code [32J: the total strength is calculated in one 

go, taking account of all reinforcement present. 

2.5.2 Shallow or Slender Beams 

BS8110 expresses empirically the three major parameters influencing shear failure, 

as well as load carrying capacity, to tabulate the shear cracking capacity of concrete. 

Those parameters are: the ratio of main longitudinal reinforcement, concrete strength 

and size of member. It is emphasized that these parameters are also important to 

the various shear transfer mechanisms [49,81,101,114,122J. Thus the following form of 

equation is used by BS8110: 

v: = k 3 100As (feu) /400 bd 
e bd 25 d (2.43) 

where Ve is the shear capacity of concrete in Newton (N), b is the breadth of the web 

and d is the effective depth; the units are mm, and k is an empirical constant which 

is taken as 0.79. Other symbols have their usual definitions. The constant k also 

takes account of numerous factors which have minor influence on the shear strength of 

beams without shear reinforcement [101,102J. The equation presents the shear capacity 

of reinforced concrete beams without shear reinforcement and takes no direct account 

of shear-span/ depth ratios. 

The concept of principal stress criterion is extended by various researchers which 

led to the American practice. The most important investigation was due to Viest [121J. 

The following general equation for the cracking shear is formulated and was used to 

evaluate the test data, 

(2.44) 
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where A and B are empirical constants depending on seyeral variables, such as the 

geometry of beam, type of loading, the amount and arrangement of reinforcement , 

type of steel, and the interaction between steel and concrete [4,5,11,121] . The shear 

and bending stresses are expressed as functions of V / bd and M / bd?, respectively, to 

take direct account of the actions of shear and moment at a section. Equation (2.44) 

thus directly relates the diagonal tension strength to four major parameters: the cross-

sectional dimensions, the concrete strength, the amount of main longitudinal steel, and 

the ratio of moment to shear at section or equivalent to shear-span/depth ratio. The 

concrete tensile strength, It, is expressed as a direct function of V"fl. Test results from 

194 mostly simply supported rectangular beams without web reinforcement established 

the empirical constants in equation (2.44) [5]. 

The disadvantages of a semi-empirical or an empirical expreSSIOn are obvious: 

there is no guarantee of covering a wide range of problems. The ACI design equation is 

particularly unconservative for the beams without web reinforcement having the main 

steel ratios less than 1 percent [11 ,97,99]' and overestimates the influence of le [87]. 

Unlike the empirical solution by BS8110, the ACI design equation does not account 

directly the size effect [13]. On the other hand the equation for BS8110 was obtained 

from tests on beams having cube strength in the region of 20 to 40 N/mm2 only. 

To evaluate the web-steel contribution to shear capacity, the conventional design 

procedure uses a fixed-truss model and inserts Vs = V, Bc = 45° and z = d into 

expression (2.3) giving 

(2.45) 

Another type of shear prediction is due to CEB-FIP Model Code 1978 [22]. The 

CEB approach is largely based on the theory of plasticity by Grob and Thurlimann [47] 

where a plasticity truss is used to represent cracked concrete with shear reinforcement, 

Fig.2.6. 

Two design methods are recommended by the CEB-FIP Model Code for the pur-

pose of the design of beams with shear reinforcement subjected to shear and bending: 
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Standard method, and Refined method. The first is based on the classical truss model 

with concrete compression diagonals at a fixed angle inclination Bc = 45 degrees, and 

thus it is a semi-empirical approach. The second is the variable angle truss approach: 

it allows the inclination of the concrete compression diagonals in the truss to vary 

between, 

3 5 
- < cotB <-5 c 3 (2.46) 

These limits restrict the distribution of the internal forces at ultimate load [47,118] . 

The variable angle truss approach recognizes the influence of both the web-steel and 

longitudinal reinforcement on the shear strength and utilises basic expressions similar 

to equations (2.3) and (2.4) in 'which the concrete strength is the criterion that governs 

the design. 

2.5.3 Short Shear Span and Deep Reinforced Concrete Beams 

If a major part of the loading acts at a distance of twice the effective depth or 

IS closer to a support, the BS8110 and CEB-FIP Model Codes allow a higher shear 

capacity by multiplying the strength predicted in the above case by an enhancement 

factor, 

d 
Enhancement factor = 2.0( - ) 

a 
(2.4 7) 

This factor is intended to allow for fully-developed arching action at failure and is 

a lower limit to the experimental results. It also applies to corbels and pile-caps [9,50]. 

However, the BS8110 design procedure does not cover deep beams for which designers 

are referred to specialist literature. 

Observations on a substantial reserve of strength beyond the cracking load in deep 

beams show that the enhancement factor on the inclined cracking strength varies in 

the following form; 

a 
Deep Beam, enhancement factor = Al - C3 ( h) 

where Al and C3 are numerical constants. 
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Different values of constants have been tried: de Paiva and Siess [37J proposed 

Al = 1.0 and C3 = 0.6; the values used by Kong et al. [67J are Al = 1.0 and 

C3 = 0.35, and Crist [35J used Al = 3.5 and C3 = 4/3. 

In the design of deep beams, ACI 318M-83 maintains the equation for shear 

strength in shallow beams and a multiplying factor applies to it: equation (2.48) with 

the value of Al and C3 , respectively, equal to 3.5 and 2.5, and the a/h is replaced by 

an equivalent term M/Vd. 

In practice deep beams may be designed based on specialist literature like CIRIA 

Guide No 2 [24], or other documents [23J. It is claimed that the CIRIA guide is widely 

used [70]. In the design of deep flexural members which are loaded on the top, by 

the CIRIA method, equation (2.10) is adopted with these empirical constants: Cl = 

0.44 for normal weight aggregate and = 0.32 for lightweight aggregates; and C2 = 1.95 

N /mm2 for deformed bars and = 0.85 N /mm2 for plain bars. The coefficient C3 is 

retained as 0.35. The CIRIA design equation is safe to apply for shear-span/depth 

ratios from 0.0 to 0.73 [70] 

The CEB-FIP Model Code 1978 [22J does not have a comprehensive design proce

dure for deep beams but only provides detailing recommendations. The method follows 

the 1970 CEB-FIP Recommendations [23]. The main and web steel are designed for 

flexural effect similar to slender beams. 

2.5.4 Remarks 

In conclusion, the enhancement factors introduced as part of the design equations 

are the simplest form of empirical modelling to describe the test data on the reserve 

strength beyond the cracking load. They are not intended to convey any detailed 

information concerning the actual or theoretical mechanism of shear failure. Finally it 

is clear that there is no fully satisfactory and rational theory suitable for the design 

practice but systematic application of the statical approach of plasticity theory [79,105] 

has considerable potential. 
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2.6 Concluding Remarks 

The review and discussions made above have outlined the current state of knowl-

edge on the subject. Emphasis has been given to the analytical solution of rigid-plastic 

analysis and the following comments and remarks are relevant: 

(1) The review shows the inadequacy of the existing approaches and demonstrates 

the need for a rational and coherent approach which closely predicts both the shear 

failure loads and the physical behaviour of shear failure. The classical and modified 

analytical approaches based on the truss and split-cylinder analogies do not clearly 

represent the important physical characteristics of shear failure. Thus the empirical 

and semi-empirical methods, which in most cases separate the concrete and the rein-

forcement contribution as an independent part of shear resistance, are only good as an 

alternative method to predict the shear capacity of reinforced concrete. Furthermore 

the application of the empirical approach is limited to particular cases. 

(2) Considerable difficulties are evident in developing a consistent approach to 

the analysis of shear failure. A particular group of structures is the one that fails 

by Modes III and IV, in Fig.2.1. Hereafter these structures are identified as wall-

beam. Experiments show that the shear resistance is provided by various means of 

shear transfer within the shearing cracks, however it is rather improper to isolate these 

interdependent components in an analysis [111]. The idealised discontinuity surface 

or yield line to represent the failure zone in rigid-plastic approach takes into account 

this observation [94]. Thus the rigid-plastic method tacitly assumes that the effectsof 

each shear transfer components are included at once and explicitly expressed as the 

internal energy dissipation within the yield line. The application of yield line concept 

at present is limited and deserves further exploration and development to cover many 

more practical problems. 
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I (3) There is no real significant difference between the failure mode of deep beams 

and the normal beams with short shear span. One of the main physical factors that 

influence the mode of failure is the shear-span/depth ratio. Although the rigid-plastic 

theory based on stringer beams has been shown to predict reasonably closely the shear 

failure loads using only one empirical parameter (i.e. the effectiveness factor of con-

crete) on a number of limited cases, its application to deep beams is not very clear 

[73] . 
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CHAPTER 3 

ANALYSIS OF SHEAR BY AN 

UPPER BOUND APPROACH 

3.1 Introduction and Fundamental Principles of the Theory 

3.1.1 Introduction 

Based on the review in Chapter 2, a method of calculation of shear capacity using 

the kinematic method on an improved physical model for shear failure is proposed. 

Below, an outline of the hypothesis is given, followed by a description of the model 

which includes three types of yield line at failure. 

The combined shear and bending effect is dealt with in the present work and the 

effect is simply known as 'shear' effect. 

The chapter begins with a discussion of the fundamental principles of the theory 

of plasticity with regard to shear in reinforced concrete. The calibration of the model 

and comparison of the computed shear capacity with the existing rigid plastic solutions 

and reported test results is made in subsequent subsections. 

3.1.2 Fundamental Assumptions 

The usual assumptions in the theory of plasticity for a homogeneous and isotropic 

material [26,41,52] cannot be applied directly to a reinforced concrete structure. The 

implications of applying rigorous plasticity theory to reinforced concrete structures 

were discussed by Drucker [40]. Some of the important assumptions are first outlined 

below: 

1. The materials are assumed to be rigid and perfectly-plastic. This means that 

the elastic deformations up to and at incipient collapse, which are small compared with 
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the subsequent plastic deformations, are neglected. The effect of work hardening and 

strain-softening are neglected; therefore unlimited ductility is assumed. The subject of 

ductility of reinforced concrete is controversial but this assumption is a reasonable one 

to start with [90,106]. 

The concrete is considered as a rigid-perfectly-plastic material obeying the modi

fied Coulomb failure criterion with small or zero tensile cut-off as shown in Fig. 3.1( a). 

Such an idealisation of the yield criterion is well within the observed failure surface 

[74], Fig. 3.1(b). 

A small amount of tensile strength is obtained when the concrete element is 

'isotropically' reinforced either by conventional mesh or by using enough amount of 

fibers [2,89,120]. To account for this contribution the yield criterion may be extended 

as shown by dotted lines in Fig.3.1(a). 

A typical idealised stress-strain relation for steel reinforcement bars is as shown in 

Fig. 3.1 ( c). It is assumed that the bars are only capable of carrying axial tensile and 

compressive stresses. Any dowel effect of the reinforcement is neglected. A perfect bond 

is assumed to exist in the composite action between the concrete and the reinforcement 

in the upper bound solutions. 

"-

2. The structure is considered to be in a state of plane stress. The concrete yield 

criterion as shown in Fig.3.1( a) fulfills the associated flow rule where the plastic strain 

vector is always pointing outward, normal to the yield stress locus. At the corners, the 

strain vector is situated between the adjacent normals. 

3. The 'effective concrete strength' is taken to be the reduced concrete strength, a 

lower value than is measured in conventional tests. The importance of this particular 

assumption is discussed in the following section. 
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3.1.3 The Reduced Concrete Strength 

It is a characteristic of a rigid-plastic idealisation that the material is able to 

undergo an arbitrarily large deformation at a constant stress level. This assumption is 

not always fully satisfied for a reinforced concrete structure [40,52,90,120]. Furthermore 

the ductility of concrete in compression is quite limited and the stress-strain curve has 

a falling branch as shown in Fig.3.1( d). Consequently, the redistribution of the stresses 

which is a condition for the theorems of limit analysis [40 ,41] can only take place at 

the expense of reduction in strength. At the same time, the concrete element sustains 

a complex stress state which is not everywhere under a biaxial compression stress state 

but may be under a weaker combination [71,74]. To apply the theory of plasticity 

to analyse shear in a reinforced concrete structure, the shortcomings are conceded 

by introducing a numerical reduction factor [17] which is also called an 'effectiveness 

factor', 1.1. Hence, the effective concrete strength is equivalent to 1.1 fe, where fe is the 

uniaxial compressive strength and can be measured on cylinders by normal procedure. 

The effective tensile concrete strength, where applicable, is also expressed as a 

fraction 1.It of concrete compressive strength fe. There is not enough evidence to suggest 

that a value higher than one-eighth of the compressive strength is normally achieved 

at failure [89], and the effective value may be much less. 

So far the effectiveness factor is calculated for a specific structure by comparing the 

theoretical calculated capacity with the capacity measured in tests. There appears to 

be a significant variation of the effectiveness factor with concrete strength, the stronger 

the concrete the smaller the factor. This trend is to be expected since 1.1 principally 

is a measure of ductility. Nielsen [90] proposed the following empirical equation for a 

beam with stirrups: 

1.1 = 0.80 _ fe 
200 

(3.1) 

A more complicated empirical equation was suggested [92] for a beam without web 

reinforcement. Some other minor parameters which influence the effectiveness factor 

are the stress concentration at the interaction between steel reinforcements and between 
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steel and concrete [17], the geometry of the structure, and the loading conditions [92J . 

The type of web reinforcement used also influences the effectiveness factor. 

Exner [42J proposed a method to calculate an effectiveness factor on the basis of 

known material stress-strain relationship. Vecchio and Coilins [120] suggested that the 

strength of concrete element is dependent on the tensile strains in the direction normal 

to the compression field and proposed the following expression for the effectiveness 

factor 
1 

v = --------~~~ 
0.8 + 0.341El / Eo I (3.2) 

where El is the co-existing principal tensile strain within the concrete element and Eo 

is the cylinder peak stress strain which is normally taken as 0.002. They assumed that 

there were tensile stresses in the concrete between the diagonal cracks. 

The effectiveness factor is difficult to measure quantitatively. Test data have shown 

that the variation of the effectiveness factor is significant. For example, wall structures 

which fail in shear [96] have an effectiveness factor which varies between 0.16 to 0.49, 

for an ordinary slender reinforced concrete beam a value between 0.40 to 0.96 has been 

used [92,95]' and for a deep beam a value of not more than 0.60 was suggested [73]. 

Although various values have been reported in literature, an equivalent value of v not 

more than 0.60 is recommended for the design purposes [22,32,79,105]. 

3.1.4 The Yield Line and Energy Dissipation 

'Yield line' is a term used to designate assumed lines of kinematic discontinuity 

separating two rigid parts at incipient collapse. It is different from the yield line in slab 

analysis where the yield line is a long plastic hinge in bending. In plastic shear analysis 

of structures loaded in plane, it is very important to distinguish between cracks and 

assumed yield lines. Cracks develop in the normal direction of principal tensile stress at 

a fairly early stage well before the ultimate load, and they need not be accompanied by 

any significant deformation, at least not tangentially. If they are, then the deformation 

must be perpendicular to the crack direction. Thus a crack is a discontinuity in concrete 

which constitutes the microlevel damage and may be formed as a part of the collapse 
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· mechanism. In a simple shear test [81], cracks and the 'yield line' can be distinguished 

as illustrated in Fig.3.2(e). 

It is assumed that the yield line is capable of transferring the shear force and also 

able to absorb the energy dissipated in plastic flow. Shear reaction is activated within 

the yield line as a result of the relative displacement which is inclined at some angle to 

the yield line normal. Thus this idealisation explicitly takes into consideration all the 

components of shear transfer which have been discussed earlier. 

At collapse, the deformations are located within the yield lines which are the 

idealisation of narrow discontinuity zones of uniform plast.ic strains with many criss-

crossing cracks and crushing zones [85]. In plane stress, the relative displacement (rate) 

8 may be at any angle to the yield line which, in general, does not follow a principal 

stress trajectory. 

Fig.3.2( a and b) shows an idealized narrow homogeneous discontinuity zone sep

arating the two rigid parts I and n. The relative normal and tangential displacement 

components are 8n and 8t respectively. Hence, the relative displacement 8 between the 

two rigid parts is inclined at an angle, to the yield line normal as shown in Fig.3.2(b) 

or 3.2( d). A similar characteristic of shear displacements has been observed in tests 

[45;83,114,122]' and the relative displacement across the yield line is not necessarily 

constant along the length of yield line as assumed by earlier investigators [92,93,94]. 

The variation of the relative displacement rate along the yield line will be considered 

in the analysis. 

To compute the energy dissipation in a finite length of a yield line, the thin layer 

of discontinuity zone in Fig.3.2(a) and Fig.3.2(b) are considered. If the plastic flow of 

the material is assumed to occur only in a narrow deformed zone of constant width 6, 

then the corresponding plastic strain rates are: 

Ct = 0, 
8 cos, 

6 
and 

8 sin, 
,nt = 6 

Hence, from a Mohr's circle of strain, Fig.3.2( c), the principal strains are: 

8 
Cl = 26 (1 + cos,) 
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8 
E2 = - - (1 - cos ,) 

26 
(3.4b) 

and the angle 0' from the n-axis to the first principal direction is related to I by 

tan 20' = tan I (3.5) 

Thus the first principal axis bisects the angle between the relative displacement direc-

tion and the n-axis, Fig.3.2( d). 

The above expressions for strains are true for a tension state in a discontinuity zone. 

The tangential discontinuity of velocity across a thin transition layer may accompany 

not separation, equation (3.4), but rather overlapping of the material on the two sides of 

the discontinuity [41]. In the latter case (where ,out of phase by 7l'), the displacements 

cause a compression state within a narrow discontinuity zone, and the expressions for 

the principal strains are: 

(3.6a) 

(3.6b) 

where in this case the second principal aXIS bisects the angle between the relative 

displacement direction and the normal to the yield line. 

The energy dissipation rate per unit volume in a deformed zone is evaluated from 

(3.7a) 

where a1 and a2 are principal stresses corresponding to strains El and E2. It is assumed 

that the principal strain axes and the principal stress axes for concrete coincide. The 

magnitude of stresses and strains are assumed constant in the plastically deformed 

zone. Thus the energy per unit Jength of yield line, for an element of a unit thickness, 

}S 

(3.7b) 

In a plane stress problem, because E} and E2 in equation (3.4) are of opposite sign, the 

possible position of stresses (a1' a2) in Fig.3.1(a) is at the corner: either at A' when 



/7} > 0 or at A when 0"1 = O. The contribution of the first principal stress or tensile 

strength in equation (3. 7b) is only considered as a special case, otherwise we omi t the 

term without further explanation. 

Substituting 0"2 = -life, and t2 from equation (3.4b) and equation (3.6b) we have. 

for shear-tension state yield line: 

per uni t length (3.8a) 

and for a shear-compression state yield line: 

. 1 
D = 211fe8(1 + cos,), per unit length (3 ;8b) 

For block I to move relative to block 11 in the manner shown in Fig.3.2(b), the 

equation (3.8a) implies that it is valid for -7r /2 ~ , ~ 7r /2. In other segments of I 

equation (3.8a) is identical with equation (3 .8b). In the following analysis the equation 

(3.8a) is used explicitly but with extended limits of, to include both the shear-tension 

and shear-compression state yield lines, that is 0 ~ , ~ 27r. 

3.2 Development of a Failure Mechanism Model 

With the expression (3.8a) for the energy dissipation per unit length of yield line, 

we proceed to consider cases where the yield line between two rigid blocks is curved, 

or the blocks rotate, so that the dissipation varies along the yield line. 

3.2.1 Sign Convention and Coordinate System 

Positive measurements for coordinates and displacements, are as shown in Fig.3.3. 

The components of displacement for each block are two translations and one rotational 

motion in a plane. 

The angle , between the normal (n) and relative displacement (8) direction is 

always measured from the normal to the direction of displacement. A positive angular 
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measurement is in an anticlockwise direction. The rotation of axes is measured anti-

clockwise from the global X -axis. The local axis system is identified by superscript 

notation as shown in Fig.3.3, and the origin of the local coordinates need not be the 

same as the origin of the global axis. 

3.2.2 Evidence of a Hyperbolic Yield Line at Failure in Shear 

Consider a plain concrete element in X' - Y' plane in Fig.3.4. At failure the 

element is divided into two rigid blocks, I and 11 by a failure line between P and Q. 

Each block displaces independently and for this class of problem it is assumed that 

there is a definite instantaneous centre of relative motion between the two blocks at 

O'(Xo, Yo). The relative rotation of block I to block 11 is ry. The significance of the 

direction of relative rotation is discussed in the formulation of various equations later. 

The shape of curve for the yield line, which passes through two known points 

P(x~,YD and Q(x~,y~) [or P(rl,(h) and Q(r2,B2)], Fig.3.4, is yet to be defined. If 

R(r, B) is a point on the yield line then the magnitude of the rate of displacement of 

block I relative to block 11 at this point is 8 = r Iryl. The position of the X' - Y' axis 

system is determined by three shift parameters X o , Yo and 0'0 taken with respect to 

the global reference axis system X - Y, where Xo and Yo define the amount of origin 

translation and 0'0 is the axis rotational shift from the global axis system. 

An infinitesimal length of yield line, as, adjacent to point R(r, B) is examined in 

Fig.3.5. From the geometry of the figure, we have, in the limit as --+ 0, 

. (3 dr 
SIll = ds (3.9) 

where (3 is the acute angle between the displacement direction and the tangent to the 

curve. Thus for ry > 0, cos, = - sin (3 and for ry < 0, cos, = + sin (3. Therefore for all 

ranges of , and ry, 

Iryl dr 
cos, = --

ry ds 

where the sign of ry is already included and ° ~ , ~ 271". 
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Using equation (3.8a), the energy dissipation over the length ds and the element 

thickness b is rewritten as follows: 

(3.11 ) 

Substituting, from equation (3.10) we have for all range of ,; 

b hi dr 
dW = -vfcb(l + --)ds 

2 TJ ds 
(3.12) 

The dissipation is a positive quantity and the displacement b is the magnitude 

of relative displacement between the two rigid blocks. Putting r' = dr / dB, ds = 

-Jr2 + (r')2dB and b = r ITJI into equation (3.12) the total energy dissipated over the 

entire length of curve PQ is 

82 

W = ~v fc 1171 J r [)1.2 + (r')2 + I~I r'] dB (3.13) 

81 

or 
1 

W = 2 ITJI bv fc [Io(r)] (3.14) 

Equation (3.14) shows that the amount of energy dissipation is determined by an 

integral function Io(r). But, for a given set of two end points P and Q, the failure 

through these points will take place at the least energy dissipation. Therefore, the 

problem is reduced to finding a function r = f( B) for which the integral function in 
82 

equation (3.14), Io(r) = J G(B,r,r')dB, is stationary for small variations of the yield 
81 

line position. The new function f( B) must satisfy all the necessary continuity and 

boundary conditions as outlined in the procedure to the solution of such an integral 

function by using the principles of calculus of variations [44]. 

It can be shown (Appendix C) that the Euler's equation for the integral function 

G( B, r, r') when it is stationary is 

rr" - 3(r'? - 2r2 = 0 (3.15) 

The following function is the solution to the differential equation (3.15) and was 

first reported by Jensen [59], 

r = f(B) = 
sin {2(B - Go)} 

k 
(3.16) 
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where 

k/ sin {2(O - O'o)} > 0 

k = an arbitrary constant 

0'0 = the shift angle, see Fig.3.4. 

Equation (3.16) defines the failure line or yield line that passes through the two 

known end points P and Q. Rearranging equation (3.16) using cartesian coordinates, 

we have: 

or 

r2 [2 sin(O - 0'0) cos(O - 0'0)] = k 

k 
[r sin(O - 0'0)] [r cos(O - 0'0)] = 2 

Thus the equation of a yield line reduces to 

x' y' = constant (3.17) 

This is a rectangular hyperbola in the X' - Y' axes system. Hence it is proved 

that at failure with minimum energy the yield line is a hyperbolic surface. A necessary 

condition is that the two terminal points are pre-determined. The locus of a yield line 

can be varied between these fixed points provided that the geometrical limitations are 

fully satisfied. 

3.2.3 Limitations of a Hyperbolic Yield Line and Other Yield Line Types 

The yield "line in plane X' - Y' in Fig.3.6 separates the two rigid blocks I and 

11 at mechanism. The origin of X' - Y' axes is also the instantaneous centre of the 

relative rotation of the blocks and it does not necessarily coincide with the origin of the 

global axes X - Y. Thus three shift parameters are necessary to specify the position 

of instantaneous centre and the local axes in X - Y plane: X 0, Yo and 0'0 where 

o :S 0'0 :S 27r. The following descriptions are related to the geometrical properties of a 

yield line: 
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(1) Once the position of the new axes X' - Y' is determined then it is possible 

to guess a rectangular hyperbola which passes through the two known points in this 

plane, i.e. x'Y' = constant. The coordinates of the points can then be transformed 

from global to local axis or vice versa. The corresponding transformation equations are 

expressed as a function of three shift parameters: 

where 

[X'] = {T} [(x - Xo)] 
Y' (Y-Yo) 

{T} = [ co~ao 
- SIn a o 

sin a o ] 

cos a o 

(3.18) 

From equation (3.17) there is one relation between shift parameters X o, Yo and a o 

for a hyperbolic yield line between two terminals (Xl,yJ) and (X2,Y2) which may be 

written: 

or 

{CS(xi - x~) - CS(yi - yi) - (C2 - 52)(XIYl - X2Y2)} 
{2CS(Xl - X2) - (Yl - Y2)(C2 - 52)} 

Yo {(C2 - S2)(Xl - X2) + 2CS(Yl - Y2)} 
+ {2CS(Xl - X2) - (Yl - Y2)(C2 - 52)} 

where C = cosao and S = sinao. 

(3.19a) 

(3.19b) 

Some notes on the important properties of a rectangular hyperbola, the state of 

stress and simplified expression for the energy dissipation are given in Appendix A. 

The practical geometrical constraint to a hyperbolic yield line is that any part of locus 

x'Y' = constant must not lie outside the body under consideration. Thus it is very 

important to compare the proposed yield line layout with the physical dimension of 

the problem preferably at fairly early stage. From hereon the hyperbolic yield line is 

classified as TYPE I yield line. 

(2) The possibility for a yield line that passes through two fixed points to be a 

rectangular hyperbola is limited. It is geometrically not permissible to have a hyperbola 

if the instantaneous centre of relative rotation lies on or inside a limiting circle whose 
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diameter is the line between those two known fixed points. In this situation, at failure, 

the yield line consists of two straight lines, Fig.3. 7. The intermediate point (kink) is the 

instantaneous centre of the rotation and the yield line is classified as TYPE Il. There 

is no shearing along the interface between the rigid blocks and the mechanism is just 

a simple rotation about a hinge. The energy dissipation equation (3.8a) is simplified, 

depending on the direction of the relative rotation, i.e. 'Y = 0 or 'Y = 271', and the 

degrees of freedom of the problem reduces to two: two linear shift parameters Xo and 

Yo . The third shift parameter 0'0 is irrelevant since the yield line is fully defined by 

the other two parameters. An additional note on the TYPE 11 yield line is given in 

Appendix B. 

(3) Another limit to a hyperbolic yield line is when either Xo or Yo or both approach 

infinity. In that case the finite length PQ of hyperbola reduces to a straight line, and 

there is a constant relative displacement rate across the line, corresponding to pure 

translation of block I relative to block Il , similar to earlier solution by Nielsen et al. 

[92,94]. Such a yield line is classified as TYPE Ill. 

The effective projection of a yield line and the actual state of stress is discussed 

next. Each yield line type is examined further in the light of the stress state within the 

discontinuity zone. 

3.2.4 The Effective Projection of Yield Lines 

A TYPE I yield line, a rectangular hyperbola in X' - Y' plane, is a general 

kinematic discontinuity line in a plane failure mechanism. It can be shown that the 

second principal stress (72 direction is always parallel to one of the local axes and the 

effective axis is determined by the direction of the relative rotation of the two rigid 

blocks separated by the yield line (Appendix A(a)). 

Fig.3.6 shows a single yield line between rigid blocks I and 11. Block I rotates 

relative to block 11 by a magnitude 17. P and Q are two fixed terminal points which 

include the region of interest between them. There are three possible states of stress 

within this yield line which depends on the angle () and the direction of the relative 
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rotation T/. Two of them are: for T/ > 0 and () < 7r / 4, the yield line P N is in shear

compression state; and for 1} > 0 and () > 7r /4 the yield line NQ is in shear-tension 

state. The opposite state of stresses are true for T/ < 0 but with similar range of 8. The 

shear-tension state yield line is characterised by an opening and the shear-compression 

state by a closing of the boundaries between the two rigid bodies (Fig.3.2(b)). 

The third stress state is at a point N along the curve PQ in Fig.3.6 where 8 = 

7r / 4. At this point there is a transition of stress and the point undergoes a shearing 

displacement only. 

Rewriting the expression for the energy dissipation per unit length of yield line by 

including elemental thickness, we have: 

(3.21a) 

where K = bv le IT/I and b = the element thickness, then the total dissipation over the 

length PQ is 

YJ lV =; r(1 - cos,)ds 

PQ 

but the integral term can be further simplified to (see Appendix A(b)): 

or 

I 
Xl 

-'J K(,2 ,2) W = 11.. xdx = 2 Xl - X 2 

x2' 

I 
Yl 

-'J ) K(,2 ,2) = 1\. (-y dy = 2 Y2 - Yl 

Y2' 

if 1}>O 

if T/<O 

(3.21b) 

(3.22a) 

Expanding the expression to take into consideration the change in the direction of 

relative rotation which determines the effective axis, we have: 

or 

W = M* IT/I (3.22b) 

where M* is the moment of forces acting on the effective component of the yield line, 

on the X'- or Y'-axis, about the instantaneous centre of relative rotation, which means 

that the value in square bracket of equation (3.22b) is always taken as positive. 
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Equation (3.22b) can also be derived from first principles by solving the integration 

in equation (3.13) [59]. 

Equation (3.22b) shows that the effective component of a hyperbolic yield line due 

to the second principal stress (J'2 is the projection length of the curve PQ on to the 

respective local axis which is the length AB in Fig.3.6. Notice that the effective axis 

depends on the direction of the relative rotation. If the contribution by the tensile 

strength, (J'I > 0, is included then it is calculated from the projection length of the 

yield line on to the other axis, see Appendix A(b). 

The above consideration is for a yield line TYPE 1. For a mechanism with a yield 

line TYPE Il, the instantaneous centre (Xo, Yo) is also the kink of the yield line, see 

Fig.3.7, which means that one portion of the yield line is in a tension state and another 

is in a compression state without shear. The state of stress depends on the direction 

of the relative rotation T/. The relative displacement direction to the yield line normal 

is either, = 0 or , = 1r. The effective length is, therefore, the shortest distance from 

the instantaneous centre to a terminal point (in tension state or in compression state), 

thus the definition for M* in equation (3.22b) is modified to, see notation in Fig.3.7, 

M * bv le [( T)2 ( )2] = -2- Xl - ~\: 0 + YI - Yo , if T/ > 0 

or 

bv le [ T 2 )2] = -2- (X2 - ~\:o) + (Y2 - Yo , if T/ < 0 (3.22c) 

Some notes on yield line TYPE Il are in Appendix B. 

A TYPE III yield line is a special case with respect to the stress state. In all 

situations the yield line is either in shear-tension or shear-compression state ()nly. To 

evaluate the energy dissipation in a yield line TYPE Ill, a simplified formulation is 

used. Fig.3.8 shows a yield line between terminals l(XI' YI) and 2(X2, Y2) dividing rigid 

blocks, I and Il. The figure assumes that the coordinate of X ° is large and the rigid 

block I moves vertically relative to block Il by 8, i.e. T/ < 0 and Xo -+ +00. From the 
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geometry and notation in Fig.3.S, we have 

lx 
cos (3 = T = cos I 

1 = V(X2 - xt}2 + (Y2 - Yl)2 

lx = I(X2 - xt}1 

Note that the vertical or horizontal yield line TYPE III I.e. (3 = 0 or 7r /2, is not 

of interest and the following formulation is given for yield line with 0 < (3 < 7r /2 or 

37r /2 < I < 27r. Using equation (3.Sa), the total energy dissipation in this yield line is 

evaluated to be 

(3.22d) 

Similarly if Yo --+ +00 for rt < 0, we have 

(3.22e) 

The equations are valid for a shear-tension state yield line and for a shear-

compression yield line which is found when 17 > 0 for Xo --+ +00 or Yo --+ +00, 

see Fig.3.8, the equations (3.22d) and (3.22e) become VV bv fc8(l + lx)/2 and 

W = bv fc8(l + ly)/2 respectively. However, in subsequent calculation either equa

tion (3.22d) or (3.22e) will be used to represent the lowest dissipation for this type of 

yield line. 

We have examined various conditions of the idealised deformed discontinuity zones 

and consequently the stress state within the yield lines. A structural element fails in 

shear if at failure the mechanism is formed by one or a combination of these yield lines. 

Thus the definition and properties of a yield line can be summarised: 

TYPE I yield line: it is a combination of shear-compression and a shear-tension 

state yield line and the yield line is described by x'y' = constant. 

TYPE II yield line: it is a combination of two straight lines, one in pure compres-

sion, one in pure tension. 
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TYPE III yield line: it is straight, and either a shear-compression state yield line 

or a shear-tension state yield line. 

These definitions are now explicitly applied in the subsequent analysis. 

3.3 Single Yield Line Model: Approach to Solution 

3.3.1 Features of a Selected Problem and the Model 

As discussed, there is an enormous amount of information in the literature on the 

behaviour of reinforced concrete beams with medium and moderately large shear-span 

to depth ratios tested in shear [5,21,62,76,113]. Experimental evidence on deep rein

forced concrete beams and reinforced concrete walls loaded in plane is more limi ted 

[15,37,66-68,109,110]. All such structural elements, from now on described as 'rein

forced concrete wall-beams loaded in plane', have a common feature at failure in shear. 

They failed due to the formation of a major inclined failure zone that developed within 

the shear span. Such a failure mechanism is characterised by a significant combination 

of inclined' crack opening and concrete crushing. 

We will, first, model the observed mode of failure of a reinforced concrete wall

beam loaded in plane by replacing the failure zone with a yield line. Fig.3.9 shows half 

of a simply supported wall-beam element loaded symmetrically by two top point loads. 

The structure fails in shear. The dotted line joining A and B is the yield line chord, 

be it hyperbola or two-straight line or a single straight line. The final type of yield line 

depends on the various parameters which will be discussed later. 

Main features of a single yield line model are, see Fig.3.9: 

(1) The only web steel are the horizontal steel bars. However, the following dis

cussion is focused on the case of a single layer of longitudinal steel bars, unless it is 

stated otherwise. Two terminal points A and B, are at the edge of the supporting plate 

and loading plate respectively. Details of the geometry are given in Fig.3.9(a) and the 

normalised dimensions with respect to the overall depth h are as shown in Fig.3.9(b). 
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(2) The physical model is made up of two rigid blocks I and II separated by a yield 

line between A and B. Taking advantage of symmetry, the central block II translates 

only in the vertical direction and this allows the end blocks to translate as well as to 

rotate in opposite senses. 

(3) In this model it is assumed at first that a hyperbolic yield line, x'y' = constant, 

forms between A and B. The geometry of the yield line is always described with 

reference to local axes X' - Y' in which the origin is also the instantaneous centre of 

the relative rotation of the two rigid blocks, see Fig.3.10. In a special case, one of the 

two other yield line types is also possible. 

There is an unlimited number of hyperbolas x'y' = constant , which can pass 

through two fixed points. Each of them is defined by a set of shift parameters. For 

a selected yield line the work equation can be set up. Internal energy dissipation in 

concrete is similar to equation (3.22a). The dissipation in the reinforcement bars is the 

work done by the bar yield forces due to stretching or shortening across the yield line. 

The external work done is due to upward force on the moving block I: 

WE = A V (1ever arm from the instantaneous centre of rotation) 1171 (3.23) 

Collecting the internal energy dissipations and equating the external and internal 

works, we have a work equation for the geometry in Fig.3.9, 

J 
b f Bars 

AV I(Xo - x s )117J1 = v
2 

c 8(1 - cos,)ds + L Asfy I(Yo - ys)II171 (3.24) 

AB 

where Xs and Ys are the X-and Y-coordinate of the support reaction and the 

horizontal steel bar position in the global axes respectively, and A is the load factor. 

However the first term on the right hand side of equation (3.24) is dependent on 

the type of yield line and thus a function of shift parameters, that is, 

J bvfc 
-8(1 - cos,)ds = f(X o ) Y o ) 

2 
AB 

and a general work equation is thus reduced to 
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At failure, the mechanism occurs at the least load ). V or strength, hence the 

minimum ,\ is obtained by varying the shift parameters Xo and Yo , and this is a 

necessary step towards a solution. The work equation for the problem detailed in 

Fig.3.9 is given in Appendix D. It can be shown that for a sufficiently strong single layer 

of main longitudinal steel bars the instantaneous centre of rotation is along the steel 

level and thus the degree of freedom of the problem reduces to one, and the calculation 

is simplified. But in other practical problems where more web reinforcement is provided 

and the main steel is not sufficiently strong, the instantaneous centre varies in plane 

and the search for a least upper bound with respect to shift parameters is less simple. 

The position of the instantaneous centre could be anywhere and an efficient method 

to solve this class of problem is best made by a reliable minimization technique. The 

details of the calculation steps and the algorithm are discussed next. 

3.3.2 Calculation Steps: Mechanism with a Yield Line TYPE I 

The permissible hyperbolic yield lines between two fixed points are limited by a 

number of geometrical constraints. The calculation is simplified if it is assumed that a 

permissible hyperbola is the one found in the first quadrant of the local axes where x' > 

o and y' > O. However, for a wall-beam element as shown in Fig.3.9, the permissible 

hyperbola can only be obtained if the instantaneous centre of relative rotation lies 

within the horizontal shaded band as shown schematically in Fig.3.11. This restriction 

means that the range of a o reduces and it is only applicable for 37r,/2 < a o < 27r and 

7r /2 < a o < 7r, as illustrated in Fig.3.10. 

The calculation steps toward a solution, therefore, can be summarised as follows : 

(a) Guess Xo and Yo and calculate a o from equation (3.19b), hence the position 

of the local axis system (X' - V'). 

(b) Transform the coordinates of terminal points into local axIS system, usmg 

equation (3.18). 

(c) Determine the permissible hyperbola that passes through the two terminal 

points, hence a constant for the hyperbola. If a yield line TYPE I is not feasible 
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then solve for yield line TYPE II or TYPE Ill, depending on the position of the 

instantaneous centre (Xo, Yo). 

(d) Set up the work equation and minimise the work equation with respect to shift 

parameters for a minimum load (A), hence the strength. 

(e) Compare the calculated strength with a minimum value. 

(f) Repeat steps ( a) to (e) until a minimum strength is obtained. 

At minimum strength, a set of X o , Yo and a o is obtained, thus the position of 

the new axes (X' - Y') and the instantaneous centre of relative rotation. Fig.3.12 

summarises the algorithm based on the above calculation steps for the hyperbolic yield 

line. 

3.3.3 Mechanism with a Yield Line TYPE 11 or TYPE III 

As mentioned in the above calculation steps for the yield line TYPE I, special cases 

may give yield line TYPE Il or TYPE III depending on the geometrical constraints. 

Referring to Fig.3.9, the instantaneous centre of relative rotation must not be situated 

outside the beam boundary for the yield line TYPE Il. We could tryout several possi

bilities of position of the instantaneous centre in the hope of finding a low upper bound 

solution. The lowest upper bound for this family of mechanisms is obtained by varying 

the two independent variables Xo and Yo' 

The solution for the mechanism with a yield line TYPE III is not a lower upper 

bound. The energy dissipation in this yield line is calculated from either equation 

(3 .22d) or (3.22e) in which it depends on the geometry of the shear span. Two criteria 

decide between these equations: (i) the position of the instantaneous centre of relative 

rotation, and (ii) the direction of the relative rotation. However, for the purpose of this 

chapter a vertical relative displacement is assumed in calculation and the magnitude 

of displacement is irrelevant as it is immediately cancelled-off for a single yield line 

problem. 
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3.3.4 Algorithm of Calculation Steps 

In devising the algorithm shown in Fig.3.12, a comprehensive study on the sensi

tivity of the independent variables (Xo, Yo) was made. It is found that for the special 

case of the problem in Fig.3.9, the calculation is much simplified if we begin by fixing 

Yo and guess the value of Xo. A new set of Xo and a o is obtained for every Yo value, 

until the bounds on Yo are met. 

A computer program has been written based on the algorithm in Fig.3.12 . . It 

incorporates the simplified approach to the calculation procedure and it applies to 

a simple beam problem in which Yo varies within the beam depth. The calculation 

algorithm for the yield line TYPE II and III is much simpler. The requirement to 

examine the geometry of yield line is not elaborated and thus the algorithm in Fig.3.12 

reduces to fewer steps. 

3.3.5 General Remarks 

The approach to model a shear failure and consequently to find a good upper bound 

solution for a shear failure mechanism with a single yield line has been discussed. An 

important criterion which is in common for all the three yield line types is the direction 

of the relative rotation. However, the magnitude of the relative displacements across 

the yield line is in any case irrelevant to the calculation. The postulated mechanism 

needs to be checked against the beam geometry so that a geometrically satisfactory 

mechanism is always found. This can be made by comparing the final geometry of the 

proposed yield line wi th the beam geometry. 
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3.4 Numerical results - Factors Affecting the Strength 

3.4.1 Introduction 

The numerical results obtained from the model where the problems are limited 

to the details discussed in Section 3.3.1 are examined. It is intended to examine the 

contributing factors that are significant to the strength prediction. 

Unlike the special problem treated by J.F. Jensen [59], there is no specific analytical 

expression used by the model to describe the contribution of various factors to the 

strength. However, the importance of these factors are implicitly accounted for in 

all calculations. To examine the effect of these factors, later known as the strength 

parameters, we isolate one of them at a time and vary it within a certain range. Where 

possible, the numerical results are compared with the existing exact solution by J.F. 

Jensen [59] and Nielsen et al. [92]. 

3.4.2 Strength Parameters: Geometry and Material Parameters 

Two main groups of parameters that influence the strength prediction are the ge

ometrical and material properties. The mode of failure (i.e. yield line type) and the 

ultimate strength are influenced by the relative magnitude of each of the parameters. 

The parameters are interactive and cannot be considered in isolation. The geometrical 

parameters include the reinforcement position (or concrete cover), the size of bear

ing plates and the boundary conditions. Fig.3.13 shows a typical variation of shear 

strength (T / le), with the reinforcement position above the beam soffit, where all other 

parameters are kept constant. The result is applied to the case with a single layer of 

strong longitudinal steel only. For this special case, the best position of a single layer 

steel reinforcement bar is inter-dependent on the clear shear-span to depth ratio and 

the support plate ratio as illustrated in Fig.3.14. The plot is based on the analytical 

solution reported by J.F. Jensen [59]. 

The importance of using a proper bearing plate size is shown in Fig.3.15. In this 

plot, both bearing plates at support (PP RS) and under the point loads (PP RL), see 
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Fig.3.9, are assumed to be equal. An increase in bearing plates length, with other 

parameters including the clear shear span kept constant, will increase the lever arm 

in bending. As a result it changes the mode of failure to a flexural type. Too small 

a bearing plate reduces the crushing capacity to the limit , Fig.3.15. The requirement 

of a finite plate size is tacitly assumed to be satisfied in the upper bound solution by 

Nielsen et al. [18] and the plate size, if required, is determined by the geometry of the 

shear-span. Thus the exact plate size is related to the clear shear-span and the position 

of the longitudinal steel bar above the soffit. The flexural and crushing limit strength 

has already been discussed in Chapter 2. 

The boundary conditions at the support influence the overall mode of failure. If 

the rigid end block is not allowed to rotate or/and to translate, then the mechanism is 

likely to be a straight yield line, and it then predicts a higher strength than a hyperbolic 

yield line. 

The material parameters are, the horizontal steel parameter cl> , the vertical steel 

parameter 1/;, and the concrete effectiveness factor v. The steel parameters are defined 

as follows (c.f. equation (2.7)) . 

cl> = Asfy 
bhfe 

and (3.27) 

They are equally important and interdependent. The shear strength (T / fe) varies with 

cl>, for a single layer reinforcement, as shown in Fig.3.16. There is a limit to cl> beyond 

which a further increase in magnitude produces no improvement in strength. The 

situation is obtained if at mechanism the instantaneous centre of relative rotation of 

the rigid blocks is along the steel level and the yield line is of TYPE I or TYPE H. 

The limit to the magnitude of the horizontal steel parameter is not pre-defined in our 

model but it is generally dependent on the geometry as well as the effectiveness factor 

of concrete strength v. In a simple problem this limit can be shown to be equal to v/2 

[94] and independent of other parameters. A magnitude of cl> lower than the limit is 

likely to produce a rotational mode of failure with a TYPE II yield line if a single layer 

of horizontal steel bar is used. The second line plotted in Fig.3.16 is the plastic flexural 

capacity, included for comparison. 
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3.4.3 General Remarks 

In practice there is more steel in a section (more longitudinal and vertical steel), 

and the following observations are made based on the mode of failure predicted by the 

model: 

1. With top and bottom horizontal steel, but with magnitude <Pt < <Pb, it is likely 

to predict a mechanism with yield line TYPE I with the instantaneous centre at the 

level of the top steel. 

2. If more than two horizontal steel layers are provided within the section and all 

are sufficiently strong, then a yield line TYPE IH is a likely mode at failure. 

3. A problem with both vertical and horizontal steel is not as simple as the above 

two cases. The effect of vertical steel is likely to shift the best position of a yield line, 

be it TYPE I, TYPE H or TYPE HI, to a much steeper inclination within the clear 

shear-span. The preliminary study shows that the predicted mechanism at failure by 

the model for this class of problem agrees with the observed. behaviour of beams with 

shear reinforcement. The effect of vertical steel is included as part of the improvement 

to the model in the next chapter. 

3.5 Condition for Stationary Load Estimate and Equilibrium Considera

tion 

Although the question of equilibrium is not a necessary condition in a kinematic 

method, it is appropriate to include at this stage a verification that at minimum load we 

always satisfy an equilibrium equation. The procedure adopted in the present analysis 

is a process whereby the pattern parameters are varied in the neighbourhood of the true 

values. The basic hypothesis to the problem is first outlined and two worked examples 

are examined. 
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3.5.1 A General Work Equation 

Consider a collapse mechanism with val'iable parameters, of a general problem but 

a special class, such that the pattern parameters (i.e. the shift parameters in the present 

problem) can change without affecting the two fixed terminals at the boundary. The 

boundary of narrow failure zones of the material which is participating in the failure 

varies with the pattern parameters. The remaining material always remains rigid. To 

arrive at a mathematical characterisation of the pattern-parameters with respect to the 

collapse load, let the external loads in plane be denoted by >"P and the corresponding 

velocities by w. Thus a general work equation is written as follows [86]: 

J PwdA= J b(E) dCVol) C3.28) 

loaded area failing material 

The limit to the integral on the left hand side is to extend for all loads >"P acting on 

the entire area in the plane and the integral on the right hand side is to account for 

the total volume of the failing material during collapse. 

We wish to vary the pattern parameters, to minimise >.., the load factor. We expand 

the dissipation-rate D, which is a function of E, as E times the stress-resultants Q at the 

point on an assumed yield surface, which satisfies the flow and normality rule, where € 

is normal [26,41]. The work equation is thus rewritten as: 

).. j pt.:; dA = j QE d(Vol) (3.29) 

loaded area failing material 

Notice the similarity with the virtual work equation: in a sense, the load factor ). 

is chosen so that a certain overall equilibrium equation is satisfied. Now suppose we 

vary the pattern parameters slightly, in any of the many possible ways. 

Rewriting the work equation: 

(>.. + 0>..) j pew + ow)dA = JCQ + OQ)(E + oE)d(Vol) 

= j(QE + QOE)d(Vol), to first order term only (3.30) 

since oQ€ is zero from the normality rule. 
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If ), is to be stationary as the pattern parameters change, a)' - 0, and when 

equation (3.30) is substracted by (3.29), we obtain 

), J P ow dA = J Q a€ d(Vol) (3.31) 

where aw, a€ are a compatible set of displacements and strains, arising from any possible 

parameter-change. Thus we see that, at the least upper bound (where), is stationary 

as the pattern parameters change), the virtual-work equation is satisfied for all possible 

sets of displacements which can be obtained by changing the pattern parameters. We 

can say that the applied forces (),minP) are in overall equilibrium with the internal 

forces Q which follow from an assumed yield criterion. 

The integrals on the right above are taken over the same failing material, and in his 

earlier work, Morley concludes that the equilibrium theorem is a sufficient condition for 

), to be stationary in cases where the yield lines always remain at the same positions [84]. 

However the actual application of this theorem is found to be broader than originally 

anticipated. It can be shown that the present analysis also satisfies all the overall 

equilibrium equations, although the yield line can change position as the parameters 

change. This seems to be because some variations can affect the relative block motion 

but not the yield line position. 

3.5.2 Equilibrium Check: Examples 

Let us examine the equilibrium of the end rigid block in Fig.3.9. At mechanism 

the boundaries of the yield line are dependent on the geometry, and the amount and 

position of the reinforcement bar as shown in Fig.3.17. 

Example 1: 

Fig.3.17(a) gIves the geometrical details of a problem where the clear shear

span/depth ratio is 1.50 and the longitudinal steel is 1> = 0.2005 which is placed 

0.009h above the beam soffit. The bearing plates are 0.20h wide at the support and 

load point. After the minimisation process, the strength and properties of the yield 

line are determined: r / le = 0.058, x'y' = 0.027, Xo = -2.443, Yo = -0.491 and 
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a o = 300.00
• Thus the instantaneous centre is along the steel level which means that 

the steel has not yielded. The concrete compressive force inclined at f3e = 300 to the 

beam axis. The effective component of the yield line is 0.116 along the XI-axis. The 

forces Ce, Ve and Te in the figure are the normalised quantities and thus the vertical 

equilibrium equation is: 

Ve = Ce sinf3e = 0.1160sin30° = 0.058 

The horizontal equilibrium gives Te = Ce cosf3e = 0.1005 

strength. 

I.e. less than the steel 

Hence the horizontal equilibrium is also satisfied but involves an undefined steel 

force (less than the yield value) taking the value needed to satisfy the horizontal equi-

librium equation. It can be shown that the forces are concurrent and thus satisfy the 

moment equilibrium, so that the end block is in overall equilibrium at failure in the 

critical mechanism found by the minimisation process. 

This particular example shows that when the steel yields, the limit of 4> is 0.1005. 

If 4> :::; 0.1005, then the TYPE II yield line is predicted as shown in Fig.3.17(b). Again 

the overall equilibrium is satisfied. 

Example 2: 

In this example a new geometry is selected. A short shear span to depth ratio, 

a/ h = 1.00, and a much bigger bearing plate than in the first example is used. The 

position of the steel bar is 0.20h above the soffit and the amount of steel parameter 

is arbitrarily chosen to be 0.80, see Fig.3.17( c). The lowest upper bound solutionis 

T / le = 0.2069 with TYPE I yield line. The properties of the yield line are: xly' = 

54.8, Xo = 10.80, Yo = -0.30 and a o = 111.80
• 

From the geometry of the yield line, it can be shown that the effective component 

of the yield line is 0.557 along X' -axis. The overall equilibrium of the rigid element 

is fully satisfied provided that a value of less than the steel yield force is used in the 

horizontal equilibrium check i.e. Te < 4>. 
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Note that none of the two particular examples chosen predicts the yield line TYPE 

III at failure. TYPE III yield line may be possible if more steel is provided and spreads 

within the web. 

3.6 Comparison with Existing Solutions 

The upper-bound solution obtained by the model has a number of advantages 

over the analytical solutions presented by the Danish researchers [59,90] based on the 

following: 

(a) It provides the kinematic details of the yield line in the f~ilure mechanism. The 

variables X o , Yo and 0'0 determine the equation of the idealised discontinuity line and 

at the same time the direction of the rigid block plane motions at failure. 

(b) It is not limited to a special class of problem where there is no other web 

steel except a layer of longitudinal steel. A wider range of the structural geometry and 

boundary conditions is easily incorporated into the model. The influence of the basic 

strength parameters may be studied. 

Cc) The properties of a yield line at failure may be studied. The total amount of 

energy dissipated at failure in the composite material, concrete and steel, is minimised 

with respect to the independent variables Xo and Yo. The proportion of the energy 

dissipation in each of the materials involved at failure may be reported as part of the 

overall solution. 

3.6.1 Solution by J.F. Jensen 

As already discussed, J.F. Jensen [59] presented many equations and inequalities 

to solve the shear strength for a beam with a single layer of longitudinal steel bars. No 

other web steel is included. There is no attempt here to reproduce the results from 

all these equations but the new model is used to solve the typical example adopted by 

Jensen. 
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Fig.3.13 and 3.15 present the predicted shear strength for the above problem. It 

is not surprising that there is no numerical difference between the strength obtained 

by the two solutions for this special case. The present model arrives at the solution 

by minimizing the energy dissipated at failure with respect to pattern parameters but 

the solution by Jensen requires the examination of most of his equations, equations 

(2.16) and (2.18). The true geometry of a hyperbolic yield line is not part of Jensen's 

solution and thus his solution cannot be used to produce the precise geometry of the 

mechanism. 

3.6.2 Solution by Nielsen et al., and Kemp and AI-Safi 

To compare these solutions with the prediction by the present model, the exper

imental data on shear strength of prestressed reinforced concrete beams without web 

reinforcement reported by Nielsen and Braestrup [93] is analysed. 

The predicted shear stress ratio T / fe is in Table 3.1. The top and bottom rein

forcement parameters are calculated to be <I>t = 0.044 and <I>b = 0.167 respectively. A 

different value of an effectiveness factor, v, is examined and it clearly shows that an 

effectiveness factor about 0.50 is a good value for these beams. The failure zone is 

best idealised by a hyperbolic yield line where the bottom steel yields at failure. In 

this analysis the cover to the centroid of top steel is assumed to be 12.5 mm and in 

all cases the top steel does not yield at failure. The predicted strength with v = 0.46 

is compared as shown in columns 6 to 8 in the table. It is shown that the prediction 

by Nielsen et al. and Kemp and Al-Safi is always higher than the present model. Fur

thermore, the failure zone is not necessarily a straight line as assumed by them, but it 

is part of a hyperbola with a definite position of the instantaneous centre of relative 

rotation. Therefore at failure the rigid end element, Fig.3.9, translates as well as ro

tates about a fixed reference which agrees with the pictures of the beams at failure [93]. 

A straight yield line is impossible unless one of the coordinates of the instantaneous 

centre is approaching infinity. There is evidence from the present analysis that for a 

simple beam problem similar to the configuration in Fig.3.9 with one or two layers of 
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horizontal reinforcement it is unlikely that the instantaneous centre approaches infinity. 

Fig.3.18 shows the theoretical comparisons of solutions obtained from the new 

upper bound model, and by Nielsen et al. and Kemp and Al-Safi. The effectiveness 

factor is assumed to be 0.50. The plastic flexural strength, equation (2.39), is included 

for comparison. To be consistent in the comparison, a single layer of reinforcement, 

<P = 0.10, is placed close to the bottom (c = 0). Thus there is no discrepancy in the 

basic definitions of various dimensionless parameters which are commonly used by the 

models. However, in our new configuration of failure model, the bearing plate at the 

support is an important contributing factor to the strength. No bearing plate or too 

small size does give the lower prediction, see Fig.3.15, but easily violates the bearing 

crushing limit. The solution by Nielsen et al. in fact is not meant to be zero plate size 

but was assumed to satisfy the crushing limit, otherwise the solution is not exact [18]. 

In the plot Fig.3.18, therefore, the length of bearing plates are arbitrarily chosen to 

be 0.30h and zero at the support and at the load point respectively (or PP RS = 0.15 

and PP RL = 0.00). Theoretically a slightly larger bearing size (at support) will predict 

a higher strength but not more than the plastic flexural capacity, see Fig.3.16. Thus 

the solutions for T / le are of very similar trend for variations in the shear-span to depth 

ratios in which for no top steel , the new solution gives a better upper bound (Fig.3.18). 

3.7 Concluding Remarks 

An upper bound analysis of shear failure of a reinforced concrete wall-beam struc

ture with horizontal reinforcement and a single yield line mechanism shows that: 

(1) The rigid block model successfully predicts the shear capacity of problems 

which are used to develop the various analytical solutions reported by earlier inves

tigators [59,63,92]. With the new model, the geometrical limitations can be included 

without any difficulty and the unconservative stringer model is improved. The present 

model provides an alternative approach to the solution reported by J.F. Jensen [59] 

where it requires no complicated theoretical formulation beyond the work equation. 
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(2) A straight yield line mechanism does not give the lowest possible upper bound 

solution. There are two other yield line types that are possible at failure: hyperbolic 

and two-straight yield line. A hyperbolic yield line is the best upper bound solution 

for shear in most of the simple cases. 

(3) The analysis so far has made no mention of the component of the rigid block 

motion in plane at collapse. The relative magnitude of the individual rigid block motion 

rate at failure is an essential component in examining the geometrically permissible 

mechanism at collapse. The calculation of relative rigid block motion will be included 

as a further improvement to the basic model in the next chapter. An improvement to 

the model will also be made to take into account the multiple web steel, horizontal and 

vertical, and a mechanism involving more than one yield line. 
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Fig.3.1: (a) Concrete yield criterion in plane stress, (b) Typical observed biaxial 

strength of concrete, (c) Idealised stress-strain relation for steel reinforcement, and 

(d) Typical stress-strain relation for concrete under uniaxial stress (compression and 

tension) . 
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Fig.3.2: (a) Idealised discontinuity zone of thickness Do, (b) Homogeneous displacements 
in discontinuity zone, (c) Mohr's circle of strain, (d) Presentation of discontinuity lines 
or yield lines, and (e) Typical Mattock's push-off shear tests. 
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Fig.3.3 Positive measurement of coordinates and displacements. 

3-33 



y' 

y 

+--L----~X 
0(0,0) 

r./ y 

/ 

X' 

P(x; ,Y; ) 
/ 

/ 

or 
(r
1 

,9
1
) 

Fig.3.4 A two rigid blocks system - block I moves relative to 11. 

(r+a7 

/ 
/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
n /r 

/ 
f--

e 

lJ > ° 
Tt < Y < 2Tt 

Fig.3.5 Element as adjacent to point R(r, B) on a curve in Fig.3.4. 
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Fig.3.6 Properties of yield line TYPE 1. 
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Fig.3.8 Schematic presentation of yield line TYPE III (17 < 0, Xo - +00, 
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Fig.3.9 Idealised Shear Failure Mechanism. 
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Table 3.1 Comparison of test results with the theoretical predictions 

by Nielsen et al., Kemp && Al-Saft and New Model 

Test Data [source rer. 93] New Model Prediction with l/ = 0.46 

Beams Measured l/ = 0.40 l/ = 0.50 l/ = 0.60 New Model NIELSEN et al. KEMP & AL-SAFI 

reference rife Eqn. (2.30) Eqn. (2.34) 

RB-1 0.148 0.1236 0.1461 0.1595 0.1387 0.1414 0.1421 

RB-2 0.094 0.0824 0.0940 0.1003 0.0903 0.0947 0.0952 

RB-3 0.051 0.0457 0.0503 0.0528 0.0488 0.0539 0.0540 

RB-4 0.038 0.0314 0.0344 0.0361 0.0335 0.0371 0.0370 

NOTES: 

1. ~ = Asfylbhfe: Top, ~t = 0.044, and bottom, ~b = 0.167, 

2. New Model uses both ~t and ~b, 

3. NIELSEN et al. solution with ~ = ~t + ~b, 

4. KEMP & AL-SAFI solution with ~ = ~b only. 
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CHAPTER 4 

UPPER BOUND ANALYSIS OF SHEAR IN 

REINFORCED CONCRETE WALL-BEAM: 

MULTIPLE RIGID BLOCKS MODEL 

4.1 Introduction 

In the last chapter we looked at a beam problem without vertical web reinforce

ment, and the analysis dealt mainly with cases having a single layer of horizontal 

reinforcement. It is found that the failure surface is best modelled by a hyperbolic 

yield line and the shear stress ratio is always less than that in a simple straight fail

ure surface; and it was verified that at minimum load carrying capacity the overall 

equilibrium of blocks is satisfied. In the analysis a mechanism is idealised as two rigid 

blocks with a single yield line between the blocks. The solution is therefore limited to 

simple boundary conditions, such as a cantilever or one half of a symmetrical simply 

supported beam. ~ 

An extension of the above analysis is made in this chapter to include both provision 

for more vertically and horizontally arranged reinforcement within the failure zone and 

all possible boundary conditions. The concentrated loads can be anywhere in the plane 

and in developing a general mechanism, use is made of the principles of rigid-body 

plane motion. 

The previous analysis has revealed that the rigid block translates and rotates 

at shear failure but so far no magnitude of the motion rate has been included in 

the calculation. The analysis has only assumed a relative motion rate between two 

rigid blocks, that is the displacement rate across a yield line. In more complex cases, 

the description of a mechanism is not complete if the displacement components of all 

assumed rigid blocks in plane are not available. 
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A general failure model is developed in this chapter to account for the plane motion 

of each individual rigid block and the model is not limited to only two blocks, but at 

failure a mechanism with multiple yield lines would be possible. This leads to a search 

for the mechanism corresponding to the lowest load, among the geometrically possible 

mechanisms of deformation. The failure of deep beams \\r1th web openings is a typical 

example of a mechanism with more than two rigid blocks [69,73]. 

4.2 Development of a General Model 

4.2.1 Multiple Rigid Blocks Model - An Idealisation 

At failure the system is idealised as an assemblage of rigid blocks in a plane. The 

blocks are separated from each other by yield lines , and thus each block may have 

more than one yield line at its boundary. Each block has three degrees of freedom , 

two linear and one angular rotation, as shown in Fig.4.1. The conventions adopted in 

Section 3.2.1 and Fig.3.3 are also used in this chapter. 

A yield line which forms the interface between two rigid blocks can be one of 

the three types discussed in Section 3.2.3 . Fig.4.2 shows a system of two rigid blocks 

separated by different types of yield line. A yield line location is specified by two 

terminals , bottom (1) and top (2) , which are guessed (fixed) for a particular problem. 

The top terminal point in a beam problem will generally coincide with an abrupt change 

in load intensity (see Fig.3.9) and the bottom terminal point will coincide either with 

a change in shear reinforcement intensity if there is any or the point closest to the 

support. The final yield line type joining the two terminals is the one which produces 

the lowest energy dissipation at failure. 

Two blocks separated by a yield line are identified for simplicity as being either to 

the left or to the right of the yield line. Therefore, no horizontal yield line is permitted 

in the idealised shear failure mechanism in the present model. This restriction can be 

lifted if one can identify, for example, the bottom and the top block of a horizontal 

yield line. However, this is rarely necessary if the failure zone is within the shear span. 
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4.2.2 The Displacement Rate Across Yield Line and the Dimensionless 

Measurements 

The principles of rigid body plane motion are used in developing the present model. 

Throughout this chapter, the determination of the plane motion of rigid bodies is ac-

complished by utilizing the principles of relative motion. Each rigid block has dis-

placement (velocity) components Uoi, Voi and Woi where i = 1,2, ... , NB, and NB is the 

number of rigid blocks. These displacements are respectiYely referred to the origin of 

fixed axes X - Y as though each block has a rigid arm reaching to the origin (Fig.4.1). 

Elsewhere at (x, Y), within the ith block, the displacement components are: 

Rotation = Woi 

Horizontal component = Uoi - Y(';"'oi ( 4.1) 

Vertical component = Voi + X(';"·oi 

We note that the angular motion of rigid body Woi does not require the presence of a 

fixed axis, normal to the plane of motion, about which the body rotates. Therefore the 

angular motion of a line on the body depends only on its angular displacement with 

respect to any arbitrary fixed reference and on the time derivatives of the displacement. 

Let us consider a two rigid blocks system separated by an arbitrary line 1-2 in 

Fig.4.3(a). The relative displacements across the yield line and the position of the 

instantaneous centre of relative rotation are determined as follows. 

The relative displacements (veloci ties) across j th yield line between rigid blocks (i -1 )th 

and ith referred to the origin are: 

Rotation,1Jj = Woi - Wo(i-l) 

Horizontal, Uj = Uoi - Uo(i-l) (4.2) 

Vertical, Vj = Voi - Vo(i-l) 

and the true instantaneous centre of relative rotation is at a point (Xj, Yj), where 

X
. __ Vj 

J -
1Jj 
U · 

Yj = +2 
1Jj 
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The subscript j stands for the yield line number NY L in a system where j = 

1,2, ... , NY L, and NY L :::; NB. Thus the resultant of the relative displacement at a 

point along the yield line is 

in direction 

The absolute (total) magnitude of displacements is not an important measurement 

in plastic analysis, and we are here concerned only with the change in displacement or 

the displacement rate. In all calculations, the datum value can be chosen arbitrarily 

[26,41]. 

It is an advantage to measure the displacement rate as a dimensionless quantity 

and each component of the displacement is normalised with respect to a selected da-

turn. Expressing the components of both the linear and the angular displacements as 

dimensionless quantities, and redefining equation (4.1) we have; 

( Horizontal Displacement Rate)oi 
lloi = 6-

(Vertical Displacement Rate) oi 
Voi = 6. ( 4.4) 

Woi = [(Angular Rotation Rate)oi (~) 1 
where 

6. = an arbitrarily selected displacement datum, 

H = a selected physical dimension of the problem. In this case it is chosen to be 

the overall depth of wall-beam, i.e. H = h. 

Rewriting equation (4.3) in dimensionless form, we have 

(X,) v ' 
Xoj = -t - _2 

7]j 
(4.5) 

Yoj= (;) 
u' =+.2 
7]j 

which now defines (Xoj, Yoj) as the dimensionless coordinates of the instantaneous 

centre of relative rotation for jth yield line. 
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A corollary to equation (4.5) is the instantaneous centre of rotation for each ide

alised rigid block which can be written as: 

XOi=_(VOi) 
W 01 

and Yoi = (VOI) 
W 01 

Note that the instantaneous centre of rotation may be outside the rigid block itself 

and that it is not a stationary point. The point ceases to exist in a pure translational 

motion, though one could say that the instantaneous centre of rotation is at infinity. 

To be consistent with equations (4.4) and (4.5), and without any loss of generality, 

all other physical dimensions and coordinates al'e also normalised against the overall 

depth h, as illustrated in Fig.3.9(b). Thus from hereonwards all the physical dimensions 

and the displacement components are expressed as dimensionless quantities. All the 

expressions for the energy dissipation within each material are therefore converted 

accordingly. 

4.2.3 The Internal Work Terms 

Having determined the relative displacement components and the instantaneous 

centre for each yield line, we proceed to calculate the energy dissipation within the yield 

lines. The energy dissipation in concrete is due to the first and the second principal 

-
stresses within a yield line, if the former is not neglected (i.e. ft > 0). All steel 

bars that cross the yield lines are effective at failure, except for those perpendicular 

to the relative displacement direction. Thus the total internal energy dissipated in the 

mechanism can be written as 

NYL [ 
WI= bhfc L J 

Length 

~8(1 - cos,)ds + J 
Length 

NYL Bars (4.6) 

+ bhfc L L cl> I(Yoj - Ys)11 17i1 
NYL Bars 

+ bhfc L L t/J I(Xoj - Xsv)11 77i1 
where, 

cl> and t/J are the horizontal and vertical steel parameters as defined by equation 

(3.27), 
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1Jj is the relative rotation rate across j t h yield line, 

xsv and Ys are the horizontal and vertical coordinates of steel bars position respec-

tively. Both measurements are dimensionless and referred to X - Y axes . 

The first two terms on the right hand side of equation (4.6) refer to the work done 

by the compression and the tension component of forces within the yield line. The 

calculation of these two parts of dissipation depends on the type of yield line. By using 

the properties of yield lines (discussed in Chapter 3), the total energy dissipation is 

rewritten as follows: 

NYL NYL 

WI = bhvfc L M; 11}j1 + bhvtfc L lvIt l1Jjl 
NYL Bars 

+ bhfc L L cl> I(Yoj - ys)IITJjI ( 4.7) 

NY L Bars 

+ bhfc L L 1/J I(Xoj - x sv )l l1Jjl 

where 

M; and Mt are the moments of the forces acting on the effective length of yield line 

projection, in compression and tension respectively, taken about the instantaneous 

centre of rotation, 

Vtis the effective tensile strength ratio of concrete = ptft! fc, 

Pt is the effectiveness factor of concrete tensile strength « 1.0). 

For no other better value, the ratio of ft! fc is taken as 0 .10, thus Vt ~ 0.10: otherwise 

we take Vt = 0.00. 

4.2.4 The External Work Terms and the Work Equation 

All the work by the external forces on the mechanism contributes to the work 

equation. If a force >..P is displaced by d then the work done is >..( P .d). It is a scalar 

product of two vectors and thus the total work done by all forces on the system is 

NB NL 

WE = >"LL(P.d) ( 4.8) 
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where N L is the total number of loads on each block. 

The summations account for all external forces on each block in the system. These 

forces are the discrete loads acting in-plane. In this analysis it is assumed that all the 

loads acting on a structure are in fixed proportional combination to a single (scalar) 

parameter which is defined as a load factor A. The displacement components for each 

block in cartesian coordinates are determined from equation (4.1). 

The load estimate at failure is assessed by equating the work done by the loads 

to the energy dissipated plastically within the system, during a small additional de-

formation in the assumed mode. Collecting all work terms and equating the external 

work with the internal energy dissipation, we have the following general work equation 

which is expressed in a functional form: 

(4.9) 

Notice that the terms Xoj, Yoj and/or aoj do not appear any more as these are explicitly 

defined from the displacement field 'l.loi, Voi and Woi. 

The normalised shear stress (T / le) is a dimensionless measure of a collapse load. 

The lowest load factor corresponds to the lowest collapse load Pe = Ae? In this case 

it is assumed that all other loads are proportional to maximum shear V. 

4.2.5 Type of Analysis 

According to limit analysis, for an arbitrary displacement field, the proposed 

method gives an upper bound on the correct collapse load. To ensure that the lowest 

collapse load is estimated, the least load-carrying capacity at a given stage of displace

ment has to be found for a number of different possible deformation patterns. Such a 

least possible load-carrying capacity may be sufficiently accurate in engineering applica-

tion when the assumed range of deformation patterns approximates the actual collapse 

mode [84]. To achieve this objective a computation method is developed and a tech-

nique to search for the least upper bound solution and the corresponding deformation 

pattern is proposed. 
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The final mode of motion at failure of the system can be described from the 

displacement field of rigid blocks. Although the number of permissible independent 

kinematic solutions, each of which defines an upper bound in a system with multiple 

rigid blocks, is multiply infinite, a method must be devised to reduce the number of 

possible solutions to within a practical limit. A simplified approach is required so that 

a global search for the most critical mechanism quickly predicts the least load carrying 

capacity. The displacement components in equation (4.1) are the variables and these 

variables increase with the number of rigid blocks. For a system with NB rigid blocks, 

there are 3N B unknown displacement components. The total degrees offreedom (DoF) 

reduces with specified boundary conditions (N BC) , i.e. DoF = 3N B - N BC. 

In the present problems, the geometry and the material properties are specified. 

The actual unknowns in the work equation are, therefore, the displacement components 

and the collapse load that corresponds to the chosen mechanism. 

In Chapter 3 the collapse load is calculated as a function of pattern parameters, X oi 

and Yoi. It is a technique well adopted to a problem with two rigid blocks and a single 

yield line provided that the geometrical limitations outlined earlier are strictly observed. 

A different and an enhanced technique is proposed for a problem with multiple rigid 

blocks; A collapse load which is a solution to the work equation for a postulated 

mechanism is a function of displacement components for the blocks that participate in 

a mechanism, equation (4.9). 

The lowest collapse load is obtained if the critical mechanism is ensured in the 

calculation. Thus an efficient method of minimizing a function of several variables 

similar to equation (4.9) is needed. A solution procedure has been developed to handle 

this task and it will be discussed next. 
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4.2.6 Restrictions and Limitations in Formulation Procedures 

The basic concept used to model the shear failure mechanism has been established. 

In principle, we could have any number of rigid blocks in a mechanism. However, for 

the mechanism with more than two rigid blocks we need to have a systematic way 

to identify the blocks and the corresponding yield line. Thus before proceeding to 

discuss the computational procedure of the model, some restrictions and limitations 

are discussed. 

A simple technique is adopted in identifying the two blocks adjacent to a yield line: 

block number one is on the left of the yield line and the block number two on the the 

right and so forth. In calculating the relative motion across a yield line, it is assumed 

that the block on the left moves relative to the block on the right. For simplicity, we 

avoid using a yield line with terminals on a horizontal line in which there is no left or 

right block, as discussed in Section 4.2.1. This procedure is to be strictly observed. 

The importance of this simplified procedure is seen in the determination of the 

correct effective projected component of a yield line in a multiple yield lines mechanism. 

The required yield line projection component is determined by the direction of relative 

rotation and the position of the instantaneous centre. As an example, let us assume 

that the instantaneous centre lies along or on the left of the yield line, i.e. on the same 

side of the assumed moving block, and if the relative rotation is positive then a tension 

state yield line is always within the yield line portion adjacent to the top terminal 

for a yield line of TYPE I or Il, and if the instantaneous centre of relative rotation 

approaches negative infinity and the yield line has a positive slope then a shear-tension 

yield line of TYPE III is obtained. An opposite state yield line is obtained if the 

relative rotation is negative and the instantaneous centre remains at the same position. 

The latter is equivalent to a positive relative rotation and the block on the right moves 

relative to the left block. 

The particular limitation of the model is as regards the reinforcement details. At 

present, the numerical application of the model is limited to the two most common 

arrangements of reinforcement: discrete horizontal bars and evenly distributed vertical 
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web reinforcing bars within the shear span. Extension of the analysis to account for 

inclined web steel bars is recommended. 

4.3 Computational Procedures 

The description of the mechanism by plane motion of rigid body principle adopted 

m this chapter provides physical details of failure in addition to the load-carrying 

capacity. Thus the proposed model is developed with two goals: to describe the motion 

at plastic failure and to predict the load-carrying capacity of a reinforced concrete wall

beam in shear. 

In this section the computational procedures of the model are discussed. In sub

sequent sections, the predictions by the model will be compared with reported exper

imental data. Additional observations will be made on the factors which influence 

the predicted shear strength of reinforced concrete deep beams and deep panels with 

openmgs. 

4.3.1 Solution Procedures and Algorithm 

The approach described in Chapter 3 for a single yield line problem is extended 

here to problems with multiple yield lines. However, the modified approach discussed 

in Section 4.2 requires a good algorithm of trial and error procedure to select the 

blocks displacement which in turn minimize these variables within a function similar 

to equation (4.9). 

To illustrate the process, the problem of predicting the load-carrying capacity in 

shear of a reinforced concrete wall-beam subjected to a symmetrical two-point load in 

Fig.3.9 is again discussed. The theoretical strength and the mechanism of beam can be 

determined if the geometrical and material parameters are specified and a postulated 

yield line location is fixed by two terminals. Each rigid block plane motion is first 

guessed and the instantaneous centre of relative motion is calculated, hence the type of 

yield line can be determined. An appropriate expression of energy dissipation is then 
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selected. The rigid block displacements are adjusted accordingly until the best solution 

is obtained. The summary of the solution procedure is shown in Fig.4.4. A comput.er 

program was written in standard FORTRAK, automating the solution procedure. 

The process of adjusting the variables and minimizing them is made by a numerical 

optimization procedure. Two criteria are used in selecting an optimization procedure. 

Firstly, the technique should be able to cope with a case where the derivative of the 

objective function, equation (4.9), is not available. Secondly, the bounds to the magni

tude of variables, in this case the displacement components, can be fixed and the two 

extreme values are -00 and +00. 

Thus a routine library which is able to minimize a function of several variables 

is incorporated in the program. NAG library routines are used to carry out the task. 

Details of these routines will not be provided, but newly written sub-programs to carry 

out the calculation tasks in FigAA will be discussed. From experience the easy-to-use 

quasi-Newton algorithm routine, NAG-E04AJAF, can adequately and satisfactorily 

perform the minimization of several variables in equation (4.9). The routine allows the 

user to vary the range of variable parameters by specifying the appropriate bounds and 

to start the calculation from a different starting point. Thus it helps to isolate local 

minima of the function of equation (4.9) if it is not a smooth convex function, although 

it often is. These features are important to the applicability of the model and they are 

equally important in all upper-bound methods. 

4.3.2 The Computation Stages 

The stages (modules) of the solution procedure, outlined in Fig.4.4, are now de

scribed in turn. 

Stage 1: Input Data 

Two groups of data are input at the beginning of the program. The first group is 

mainly related to the strength parameters and the boundary conditions of the problem. 

Material strength, boundary conditions, the loads and supports details, the anticipated 

number of rigid blocks and the yield lines, and the yield lines connectivity (terminals) 
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are specified at this stage. The guessed di splacements are also included as the initial 

values to the variables. If it is a single yield line problem the proposed yield line 

terminals might be changed during computation stage \vit hin specified limits. 

The second group of data concerns the details of geometry for the problem. These 

geomet~ical data are used together with the computed displacement field to generate an 

output data where they provide all the information regarding the geometrical details of 

the structure before and after deformation in the collapse mechanism. The generated 

data is used by an auxiliary output sub-program to produce a graphic display of the 

collapse mechanism. 

All the input data must be dimensionless: the linear dimensions are normalised 

with respect to overall depth h and the displacement components are as defined in 

Section 4.2.2. 

Stage 2 : Boundary Conditions 

There are three possible conditions for the variables: (i) free to vary, (ii) the magnitude 

and direction of the displacement components are specified. and (iii) the displacement 

components are to be computed from specified boundary conditions and dependent 

on the above two. Apart from the physical boundary conditions, one of the linear 

displacement components of a rigid block is chosen as a datum for the variables , 6. 

At the start of calculation the m agnitude and direction of this particular displacement 

is fixed and it is convenient to specify the magnitude as unity. The chosen direction 

is to represent the actual deformation in the mechanism and it becomes an important 

control on overall motion. Thus the actual degree of freedom is further reduced by one 

to (3N B - N BC - 1). All t he boundary conditions are specified at the input stage. 

A linear displacement at a point (x B, Y B) on the boundary is specified by (13 B', D) 

where f3B is the angle 0 to 360 0 to define the direction of the displacement with mag

nitude D. Up to two linear displacement of points on each block may be specified as 

illustrated in FigA.3(b). Note that the horizontal and vertical displacement at a point 

(XB,YB) can be determined by using equation (4.1). Thus, each specified displacement 
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of block ith , is related to the rigid block motion by 

D = (Uoi - YBWoi)cos /3 B + (\toi + xBwo i)sin/3B (4.100) 

or in a matrix notation, to include the two boundary conditions on block ith: 

(4.10b) 

where 

{D n} = the magni tude of linear displacement at point (x B, Y B )n; n = 1 or 2 which 

is the number of specified linear displacement, 

Cl n = (COS /3 B) n , 

C2n = (sin/3B)n, 

C3n = (XB sin/3B - YB COS!3B)n, 

Voi 

Equation (4.10) is used to evaluate one or two of the rigid block displacements 

which are dependent on the previously determined variables for the block. The equation 

is only used in the last part of this calculation stage after all the independent variables 

for the block are available. At the end of this stage all the displacement components 

for the blocks are determined from the current guessed value of each degree of freedom. 

Stage fj : Determination of the Relative Velocity, Instantaneous Centre and 

Yield Line Type 

At this stage all the blocks displacement components are already determined. Each 

anticipated yield line separates two rigid blocks. In this stage equations (4.2) and (4.5) 

are applied to each yield line in turn. The yield line is classified as one of the three types 

according to the position of the instantaneous centre of relative rotation (Xoj, Yoj). If 

it is within the limiting circle (see Section 3.2.3) then it is a TYPE Il yield line. If any 

of Xoj or Yoj is approaching infinity then a yield line TYPE III is predicted. The yield 

line TYPE I is between the two extreme cases, see Fig.4.2. 

Stage 4 : Internal Dissipation 

No specific analytical equation is derived for the internal energy dissipation for each 
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yield line. However, a general equation similar to equat.ion (4.7) is maint.ained and 

set-up accordingly. To ensure that all steel bars that cross the yield line are included 

in the calculation of energy dissipation, the geometry of the yield line is compared with 

the position of bars as soon as the shape of a yield line is proposed. 

The technique to evaluate the internal dissipation of energy differs with the yield 

line and for yield line TYPE I the following calculation steps are made, see Subroutine 

A of Fig.4.4: 

(a) From the coordinates of the instantaneous centre of relative rotation (Xoj, Y oj ), 

calculate the axis rotation angle of O'oj using equation (3.19b), so that a valid rectangu- . 

lar hyperbola is found in a new local axis system. Hence the properties of the hyperbola 

in local and global coordinates are determined. 

(b) Determine the effective components of the yield line that are in compression 

and in tension. The state of stress depends on the relative position of the instantaneous 

centre and the relative rotation across a yield line, as discussed in Section 4.2.6. 

(c) To ensure that only the correct reinforcement steel bar is considered in failure, 

the steel bar position is examined against the geometry of the hyperbolic failure surface. 

A point on the hyperbolic yield line where the tangent to the curve is parallel to the 

X - or Y -axis is particularly important in checking the geometry against the steel bar 

position, and we denote this point by (x;, y;), or (X3, Y3) in local or global axes, see 

Fig.4 .2(a). Expressing this in terms of curve paran1eter t and hyperbola constant k, we 

have 

X~ = tv'k and 

where t relates to the axis rotation as follow, 

7r 
t = ±y! - tan O'oj for 2 < O'oj :::; 7r 

or 

t = ±y!tan O'oj for 
7r 

0<0' . <-
- 0) 2 

,v'k 
Y3 =t 

37r 
and - < 0' . < 27r 2 0) -

and 
37r 

7r<a .<-
- 0) 2 

( 4.l1a) 

(4.11b) 

Thus the projection of a yield line TYPE I on a global axis is the longest dis

tance between the turning point (X3, Y3) and the furthest terminal, either along X-
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or Y-axis, as shown in Fig.4.2( a). In calculating the internal energy dissipation by 

steel bars we assume that both extension and shortening of bars are equally effective. 

Under these circumstances it is also possible that a bar cz:osses the yield line more than 

ort, hence its contribution is counted at each crossing. However, it is believed that the .,-" r,r 

frequency of this occurrence is minimal so that the smallest energy is always obtained. 

An immediate result of the minimum energy requirement is thus to flatten the shape 

of the yield line relative to the chord joining the two terminals to cut down the number 

of bars strained twice. 

It is much simpler to evaluate the dissipation of energy in yield line TYPE II and 

TYPE Ill. In yield line TYPE Il the centre of rotation is on the yield line itself which is 

characterised by a kink in the yield line , see Fig.4.2.(b). Thus the yield line is divided 

into two parts: one is in compression and the other is in tension depending on the 

relative rotation of the blocks. All the steel bars that cut the yield line participate in 

the failure and contribute to the dissipation. A similar reasoning applies as regards 

the number of bars and the final shape of yield line to the one made for the yield line 

TYPE 1. The calculation steps are given in Subroutine B of Fig.4.4. 

The total dissipation of energy in yield line TYPE III is evaluated from the pro

jection component of yield line on a global axis . The effective axis is determined by 

the relative magnitude of Xoj or Yoj and direction of relative rotation as discussed in 

Section 3.2.4. All steel bars that are stretched or compressed within the failure zone 

contribute to the dissipation. However, this yield line is rarely possible unless both 

blocks adjacent to the yield line move only by translational mode. Typical calculation 

procedure (for Xoj ---+ ±oo) is outlined in Subroutine C of Fig.4.4. 

In a single yield line mechanism, the various positions of the yield line within the 

clear-shear span are examined. This is done by shifting the bottom terminal horizon

tally toward the top terminal by a fixed increment. A position that produces the lowest 

collapse load is the predicted failure mechanism. 

Stages 5 and 6 : The External Work and the Work Equation 

At stage 5, each rigid block displacement components (Uoi' Voi and Woi) are already de-
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termined. By using equation (4.1) the displacement at load position can be calculated. 

The total external work by applied forces is obtained from equation (4.8). 

Setting-up the work equation is made in stage 6 and subsequently solved for a 

collapse load. The calculated collapse load is compared with the current minimum 

value. The direction of search for the minimum collapse load depends on the behaviour 

of the function in equation (4.9). The task to vary the independent variables in equation 

(4.9) in searching for the minimum collapse load is carried out by NAG minimization 

routines. 

Stage 1: Calculation Results - Output 

At minimum load-carrying capacity the following are obtained: 

(a) the normalised shear stress, T / fe, 

(b) the rigid blocks plane motion, 

( c) the properties of the yield lines , and 

(d) the proportion of total energy dissipation within each material: concrete and 

steel. 

The final plane motion of rigid blocks is used by an auxiliary graphic program 

which has been written to produce graphic display of the mechanism. The geometry 

of a structure before and after failure can be checked and compared accordingly. This 

helps to ensure that the kinematically permissible mechanism is always predicted and 

to compare with the observed failure modes. 

4.3.3 Theoretical Verification of the Model 

The developed model is used here to predict the load-carrying capacity and the 

mechanism of special structures. Three types of structures are analysed. The first 

two are Drucker's simply supported beam and the corbel, which each have a uniquely 

defined mode of failure. Analysis of these structures with the proposed model gives both 

the load-carrying capacity and failure mode which are then compared to the existing 

solutions. As a third example, J.F. Jensen's shear problem (discussed in Chapter 2) is 
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again analysed and presented for both the strength and mode of motion for each rigid 

block. 

Example 1: Drucker's Flexural Failure 

For a symmetrically loaded simply supported beam, Drucker's fiexural mechanism is 

as shown in Fig.2.16( c) with two rigid blocks rotating independently about supports 

as the load moves downward [40]. Thus the instantaneous centre of relative rotation is 

uniquely defined to be at the level of the neutral axis depth along the line of symmetry. 

To predict the failure mechanism using the proposed model, we need to specify the 

two terminals at 1( Xl, yd and 2( X2, Y2), and the boundary conditions at the supports 

as illustrated in Fig.4.5(a). Three boundary conditions are immediately seen from a 

simply supported beam shown in Fig.4.5(a): at the knife edge support both vertical 

and horizontal displacements are restrained, whereas for the roller support only vertical 

displacement is prevented. Knowing these three boundary conditions, the total degrees 

of freedom of the two rigid blocks mechanism reduces to three, namely one linear trans-

lation and two rotational: Uol, Wol and W02. These are the independent variables for the 

mechanism, thus Vol, U02 and V02 are the dependent variables. Hence equation (4.10) 

consists of three equations with three unknown. Applying the boundary conditions and 

varying the independent variables, the displacement components for the blocks can be 

evaluated from equation (4.10) which can be expanded to form equation (4.12) below, 

for block I, 

[01 = [cos 90° sin 90° (XsI sin 90° - YsI cos 90°)] [~:: 1 
Wol 

and for block Il, 

[ 
0] = [cos 90° 
o cos 0° 

sin 90° 
sinO° 

Symbols are defined in Fig.4.5(a). 

(Xs2 sin 90° - Ys2 cos 900)] [U02] 
( . 00 00) V02 Xs2 SIn - Ys2 cos 

W 0 2 

(4.12a) 

(4.12b) 

Solving the equations, a set of trial rigid block displacements is obtained, Uoi, Voi 

and Woi for i = 1,2. The energy dissipation for each trial mechanism can be evaluated 
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and hence the work equation. The best load-carrying capacity is indeed found when the 

instantaneous centre of rotation lies along the line of symmetry and the yield line is a 

special case of TYPE n. The depth to the instantaneous centre depends on the amount 

of longitudinal steel. In this example, Fig.4 .5(a), we choose a beam with 1> = 0.30 at 

0.2h above the soffit. Other details are SS R = 1.00, PP RS = PP RL = 0.25, CS = 

1.0, and coordinates (Xl, yd and (X2' Y2) at (0.00,-0.50) and (0.00,0.50). The best 

mechanism obtains when Uol = -0.90,Vo l = -2.25,wol = -1.00,uo2 = -0.50,Vo2 = 

-2.25 and Wo2 = 1.00. The instantaneous centre is at (Xo, Yo) = (0.00,0.20). The 

proportion of energy dissipation is 23% and 77% in concrete and steel respectively. 

Numerically, our predicted load-carrying capacity is equal to Drucker's prediction 

by assuming a relative rotation about a hinge, equation (2.39). The predicted strength 

is r / fe = 0.1300. The difference between the two approaches is that the proposed model 

does not require to start the calculation from an assumed position of an instantaneous 

centre, but allows it to vary with the rigid block motion. The final rigid body motion 

found by the model precisely describes the unique configuration of mechanism adopted 

in the conventional analysis [40], see Fig.2.16(c). Thus the model predicts not only an 

accurate load-carrying capacity but also a correct mode of motion for each of idealised 

rigid blocks at failure. Though the comparison of the relative magnitude of motion 

(Uoi,Voi and Woi) is not possible, it is reasonable to assume that the predicted values 

of these displacement components are also correct. 

Note that the three boundary conditions specified above do not consider the ge

ometrical symmetry. The degrees of freedom can be further reduced if the symmetry 

of the structure is tal(en into account, and the calculation is further simplified but the 

load-carrying capacity and the basic mode of failure are unaffected. 

Example 2: Corbel Structures 

Another structure which can have a uniquely defined mechanism is a corbel. An exact 

limit analysis [58] ofthis corbel will be compared with our predicted solution. To model 

the failure of a corbel, the yield line terminals are assumed to be along a vertical line 

which coincides with encastered line, thus the system contains two rigid blocks I and 
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II as shown in Fig.4.5(b). The other details are: (Xl, yd = (0.00, -0.50), (X2' Y2) = 

(0.00,0.50), S SR = 1.00, <l> = 0.30 and PP RL = 0.25. The cover to reinforcement 

(CV R) = 0.20. Block I does not move: Hol = V ol = Wol = 0.00. Hence t.he relative 

mot.ion across t.he yield line is due to t.he motion in block H. For convenience, the 

calculation starts by assuming U 0 2 = 1.0 and the problem reduces to two degrees of 

freedom, V02 and W 02. The predicted strength and the position of the instantaneous 

centre of relative rotation is exactly similar to the analytical solution given by B.C. 

Jensen [58], i.e. T / fe = 0.1473. The calculated geometry after some deformation is as 

shown in dotted lines in the figure. 

The importance of rigid body motion wi th regard to the direction and the rates of 

each displacement component has been examined in this example. The calculation 

could begin by either choosing any of the displacement components and fixing its 

displacement. rate or not choosing any of them. The results are essentially the same: 

the ratio of the displacement components are in fixed proportion. In this case the ratio 

of U 02 : V 0 2 : W02 is 1.00 : -0.74 : -5.00. The proportion of energy dissipation is also 

constant in which 27.1 % and 72.9% of the total energy is dissipated within the concrete 

and the steel respectively. 

Example 3: J.F. Jensen's Shear Problem 

The above two examples deal with two rigid blocks failure mechanism with yield line 

TYPE H and one could say that the first problem with a special case of yield line TYPE 

H is not relevant to shear failure. However the purposes of these examples are twofold: 

to show that the model predicts a similar strength to existing analytical solutions for 

a special structure if the mechanism can be modelled by rigid blocks system, and to 

describe the mechanism by the rigid block plane motion. 

The next example thus deals with a shear failure problem which is first given by 

J.F. Jensen [59] for a beam with a layer of strong reinforcement, see Fig.2.15. The beam 

geometry which is symmetric about centre line is given in Fig.4.5(c). It is assumed that 

there is no vertical displacement at the support and a downward unit displacement is 

specified for block II which is also the datum to the overall deformation. The problem 
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deals with two degrees offreedom , Hol and Wol. After calcul ation the following solutions 

are obtained for details in the figure: 

Block I displacements: 

Hol = -0.096, Vol = 0.690 and Wol = 0.321 

Block II displacements: 

H 0 2 = 0.00, V 0 2 = -1.00 and W 0 2 = 0.00 

Yield line: a TYPE I with the following properties , 

x'y' = 4.47 with the coordinate of the instantaneous centre at (Xo, Yo) 

(-5.27, -0.30) and the axis rotates by 0'0 = 294 .8°. 

The predicted ultimate shear strength is identical with the solution given by equa

tion (2.15b), i.e. T / le = 0.1024. The predicted deformation of the mechanism is as 

shown in dotted lines in Fig.4.5(c) . The figure shows that the yield line varies from 

shear-tension at the top to shear-compression at the bottom. 

4.3.4 General Discussions 

Note that the preceeding calculations take the effective concrete compreSSlve 

strength to be full concrete strength, i.e. 1/ = 1.0 but take zero tensile strength. 

From these examples, three important features can be noted: 

First , the proposed model does not start the calculation from a particular mech

anism but one needs to specify the anticipated yield line terminals and the boundary 

conditions to the problem. These specifications are sufficient to determine the best 

failure mechanism. 

Second, for each solution, there is a set of rigid body displacement components 

for the idealised rigid blocks, and the most favourable displacement corresponds to the 

lowest load-carrying capacity for a structure. The rigid block displacement describes 

the mechanism at failure. 
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Third, the plane motion of the idealised rigid blocks in shear mechanism is indeed 

constituted of three components: horizontal, vertical and rotational. All the motion 

rates are in fixed proportion and the direction remains unchanged. Thus if the direction 

of motion in the postulated mechanism can be approximated to the actual collapse 

mode, the predicted results are in somewhat better agreement with the observed mode 

of failure. 

4.4 Comparison of Results from Present Analysis with Published Data 

4.4.1 Introduction 

The developed model will now be verified by comparing the predicted results to 

published experimental results. The comparisons are limited to the load-carrying ca-

pacity and the properties of predicted yield line with the features of the failure surface. 

Verification could not be carried out on the rate of motion in this and subsequent 

sections, due to the fact that none of the published experimental results provide in-

formation regarding rates of displacement at incipient collapse. Comparison of the 

idealised rigid blocks motion with some test results is made separately in Chapter 5. 

Although many experimental works have been carried out, not all the required 

details are reported. Experimental data is valuable only if the geometry and specimen 

details are available. The concrete strength considered here is the cylinder compressive 

strength, fe. If only the cube compressive strength, feu, is available then for the purpose 

of comparison, a fixed relation fe = O.8feu has been assumed. 

The comparisons of load-carrying capacity are made for different types of structural 

details: deep beams with vertical and horizontal web reinforcement and deep beams 

without web reinforcement. Each individual horizontal steel bar is converted to steel 

parameter, <1>, by using equation (3.27). However, when the two horizontal bars are 

very close to each other, they are considered as a single layer. The vertical web steel 

is assumed to smear within the web and the vertical steel parameter, 1/J, is calculated 

using the definition in equation (3.27) . 
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4.4.2 Strength of Deep Beams 

Different sources of experimental data are available. Some of the tests on deep 

beams reported by de Paiva and Siess [37], Kong et al. [66], Smith and Vantsiotis 

[109], and Besser and Cusens [15] are suitable. The lightweight concrete deep beams 

tested by Kubik [73] and Kong et al. [68] are also analysed. The deep beams tested 

to shear failure are considered, in all a total of 97 normal concrete and 50 lightweight 

concrete deep beams. The shear-span to depth ratio (SS R) of these beams varies 

between 0.07 to 1.50 and the length of bearing plate at support varies from 0.10h to 

0.57h. All beams are symmetric and the overall depth varies from 178 mm to 762 mm. 

Table 4.1 summarizes the important properties of these beams. The values provided 

in the table are the range of the relevant beam parameters but the magnitude and the 

position of the web steel bars are not included . It can be seen from the table that a 

wide range of field problems has been examined and thus a fair conclusion is expected 

to be drawn from this comparison. 

The typical observed modes of failure of deep beams are shown in Fig.4.6(a) [66] . 

The failure mode of half symmetric beams is modelled by two rigid blocks as shown 

in Fig.4.6(b). From symmetry, the rigid block along the line of symmetry moves in 

the vertical direction ohly by an amount ~ used as datum for the other displacements. 

The bottom terminal of the anticipated yield line 1-2 is initially at the inside edge of 

the support plate, and the top terminal is at the outside edge of the loading plate. The 

initial position of the bottom terminal may be shifted if a steeper chord of the yield 

line gives a lower load-carrying capacity. 

Figures 4.7 to 4.10 compare the measured and the predicted shear strength of deep 

beams. The numerical comparison of test results and predicted values is given in Table 

4.2. The shear strength is expressed as the ratio of shear stress to concrete strength. 

An effectiveness factor of 0.50 is used in the comparisons and it can be seen in Fig.4.7 

that for all tests the prediction agrees remarkably well with the experimental results. 

The average ratio of the observed to the predicted strength of all the data is 1.22. 

The comparison for normal weight concrete deep beams is made in Fig.4.8(a). The 
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ratio of t.he observed to the predicted strength tested by Smith and Vantsiotis varies 

from 0.93 up to 1.54 with an average of 1.12. However, a more conservative ratio is 

obtained for the beams tested by Kong et al., from 1.06 up to 2.80 with an average 

of 1.43. A slightly higher average is obtained from the data by de Paiva and Siess. 

The variation of these ratios could be explained by the fact that the shear-span to 

depth ratio used in the tests were different. The prediction is generally conservative 

for a smaller range of shear-span to depth ratios except for the test data by Besser and 

Cusens. Fig.4.9 illustrates this observation. Each point in the figure, except that due 

to Besser and Cusens, is the average of the ratio of obseryed to predicted strength for 

a particular shear-span to depth ratio (SSR). 

A slightly lower effectiveness factor is expected for the lightweight concrete as seen 

from a number of test results falling below the theoretical line, see Fig.4.8(b). Quite a 

number of the test results on lightweight concrete deep beams by Kubik [73], in which 

there was no web reinforcement, are found below the theoretical line in contrast to the 

results from Kong et al. [68]. The anomaly in Kubik's results is due to both the type 

of loading and the lack of repeatability in his beam tests. 

The typical scatter of test results for beams without vertical web steel in Fig.4.10 

is not fully explained by the proposed model, but more experimental results would be 

expected to fall above the theoretical line if a slightly smaller effectiveness factor is 

used. 

It appears from the analysis of test data that both horizontal and vertical web 

steel significantly increase the shear strength of deep members and this agrees with the 

prediction. 

4.4.3 Comparison of Deep Beams Mode of Failure 

In this sub-section we compare the geometry of predicted yield line with the ob

served failure surface of the actual collapse. In the analysis, the failure surface is 

idealised as a yield line. The following observations in the prediction of yield line types 

can be made: 

4-23 



l. The inclusion of stronger and more horizontal steel bars which are spread within 

the web is likely to predict a straight yield line , TYPE Ill. as found from a number 

of tests by Smith and Vantsiotis. For beams \vith just the top and bottom horizontal 

steel, the model predicts a yield line TYPE I. A combination of horizontal and relatively 

'weak vertical web steel caused the model to predict either TYPE I or TYPE Il yield 

line at failure. 

2. The influence of vertical steel for the case of single yield line is to shift the yield 

line to a new position. The new position is one \vhere the chord joining the terminals 

is much steeper relative to the initial position which spanned over the entire shear 

span. The final position of yield line corresponds to the lo\\"est strength for the chosen 

mechanism. This is revealed in the analysis of the data by Kong et al. on the series 

1 and 2, normal and lightweight concrete beams. In these series there were only the 

main longitudinal steel bars, and the amount of vertical steel was varied. 

3. In all cases, the form of the predicted yield line compares satisfactorily with 

the observed failure surface. Thus a fairly good representation of the actual failure 

mechanism is obtained from the proposed model. 

4.5 Modelling of Wall-Beams Mechanism with Multiple Rigid Blocks 

4.5.1 Mechanism of Deep Beams with Openings 

Extensive tests on deep beams with web openings were carried out in the late 1970's 

[69,73J to investigate the strength and the behaviour at failure. The tests were made 

on both small and very large size deep beams [65J. Several positions of web opening 

in the beams were investigated. These tests have shown that the failure modes 'were 

not affected by the physical size of the test specimen but the location of the opening 

had an important influence on the geometry of the mechanism. The most critical web 

opening is the one that clearly interrupts the flow of stress in the shear span. The 

failure mode of the beam with a critical web opening appears to occur mainly by the 

displacement of four rigid blocks, one central and the other three in the shear span: 
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one above the opening, another below the opening, and the third between the outside 

edge of the opening and the end of the beams [65 ,73]. The observed failure mode is 

schematically shown in Fig.4.11. 

On the basis of this experimental observation , we postulate the mechanism of 

beams · with web opening to consist of a maximum of four idealised rigid blocks as 

illustrated in Fig.4.12. The geometry of the rigid blocks and thus the yield lines in the 

mechanism, vary depending on the location of web opening. It should be mentioned 

that the idealised mechanism is intended for a structure at incipient collapse and not 

the post-failure state as indicated by the large cracks in typical beams failure, see 

Fig.4.13. 

Briefly, the steps to model the mechanism (Fig.4.12) are as follows: 

First, guess the location of a potential failure zone and replace it with a yield 

line. The position of the yield line is defined by two terminals. The best position for 

a terminal is at a point where a higher stress concentration occurs, which could be 

expected at the corner of the opening especially when the opening interupts the flow 

of stress within the shear span [48] . In such situation it is best to start or finish a yield 

line at the corner as shown in Fig.4.12. 

Second, number each idealised rigid block. Note that the block boundaries can be 

made up of more than one anticipated yield line. For each yield line, the two adjacent 

blocks are identified from the left to the right (as discussed in Section 4.2.6). Each load 

on the structure must be applied to a rigid block, but a rigid block can be without any 

load. A similar identification is made between each boundary condition and the rigid 

blocks. 

The dissipation of energy is evaluated as described from the relative displacements 

across all the yield lines, calculated from the displacements of the adjacent blocks 

referred to the value of one displacement (usually the vertical displacement of the 

central rigid block) as datum. 
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4.5.2 Comparison of Strength Prediction with Test Results on Deep Beams 

with Openings 

The experimental data on beams \vith hori zontal and -,ertical web steel which are 

reported by Kong and Kubik [65] are analysed and compared in this section. The data 

are obtained from tests of four large deep beams with ope:1ings. Fig.4.14 summarizes 

the beams details and Table 4.3 compares the observed with the predicted strength. 

The strength prediction is obtained from one of the ideaised mechanisms discussed 

in the last section, see Fig.4.12. It can be seen from the Eaength prediction in Table 

4.3 that in almost all cases the mechanism \vith four rigid blocks produces the lowest . 

predicted strength. Comparing the predicted mechanisn::s and the observed cracks 

pattern at failure in Fig.4.13, we can see that a good idealisation of actual collapse is 

obtained by the theoretical formulation. 

In all cases the predicted strengths with an effectiveness factor of l/ = 0.30 are in 

good correlation with the test results. From this limited cODparison we could conclude 

that a mechanism with multiple rigid blocks always require:o a lower effectiveness factor 

as compared with a mechanism with a single yield line. Further tests are necessary to 

support this preliminary finding. 

4.6 Observation on the Comparison of Test Results with the Predicted 

Strength 

In the above two sections we compared the observed with the predicted shear 

strength for both mechanisms with a single and multiple yield lines. Two points are of 

particular interest: 

1. For the wide range of the experimental results available, the predicted strength 

satisfactorily matches the test results. 

2. From this analysis, the effectiveness factor of 0.50 and 0.30 is a good estimated 

value for the failure with a single and multiple yield lines respectively. The difference 

in this value could be attributed to the difference in the basic failure phenomenon of 
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beams with web openings. The solid deep beams deform le::s than the beams with web 

openings. Relatively larger deformation at mechanism formation could be a reason for 

the lower 1/ obtained for the latter case. This matter is subjected to further inves tigation 

in the next chapter. 

4.'7 Effect of Tensile Strength on Shear Strength Prediction 

In Section 4.4, the effects of horizontal and vertical ,,,eb steel were discussed and 

compared with the test results. So far, we have not included the effect of the concrete 

tensile strength on the theoretical prediction. 

The tensile strength of concrete is low and in the normal application in reinforced 

concrete structures only the compressive strength is exploi ted and the tensile strength 

is not relied on. In this section a different type of reinforced concrete is assumed: 

some amount of tensile strength is obtained when the concrete is reinforced with an 

' isotropic' reinforcement [8 ,91,120] or when it is reinforced with discontinuous fibres 

[2 ,43,112]. Thus a modified concrete yield criterion in plane stress is proposed to 

include small tensile strength as shown in dotted line in fi g. 3.1(a) . Point A' in the 

figure is the new stress position at failure. This yield criterion is adopted from the 

assumption that the reinforcement and concrete are to act together as one material 

which follows the example set by Nielsen [91]. 

The increase of effective tensile strength is also apparent when a concrete is rein

forced isotropically. Evidence from the studies on ferrocement suggests that the gain 

in tensile strength increases proportionally with the reinforcement specific surface [8]. 

Thus by using smaller diameter bars and arranging them closely within the web we 

could effectively increase the tensile strength of concrete. Vecchio and Collins [120] 

studied the isotropically reinforced concrete panel subjected to in-plane shear by con

sidering the concrete tensile strength in their theoretical model. They have shown 

that a proper consideration of tensile strength produces a better strength prediction 

than the earlier theory, without the tensile strength [33]. However, the proposed yield 
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criterion outlined above is more appropriate for a fibre reinforced concrete where the 

increase in tensile strength of concrete is ensured [2,34 ,89] 

As discussed in Chapter 3, theoretically, the tensile stress component cannot be 

avoided in shear. The stresses are connected with shear as a result of the displace

ment direction inclined to the discontinuity zone. If a non-zero principal tensile stress 

is effective in the failure zone it will increase the energy dissipation (Appendix B), 

therefore the predicted load-carrying capacity in shear is also increased. The trend is 

that the amount of increase in load-carrying capacity in shear is higher the greater 

the shear-span to depth ratio. Fig.4.l5 illustrates the typical result obtained from this 

analysis . The lines in the figure are for Vt = 0.05 and the zero effective tensile strength 

ratio respectively. Other parameters are kept constant. A similar trend is obtained 

for other values of Vt, with the lowest strength occuring at approximately the same 

shear-span to depth ratio. This shows that the contribution of the tensile strength is 

significantly important for a lower range of shear-span to depth ratios. At a higher 

range of shear-span to depth ratio, the shear capacity could be easily higher than the 

flexural capacity. 

Not surprisingly there is little test evidence, for fibre reinforced concrete wall-beam 

type in shear to substantiate this argument but one test reported by Shanmugam and 

Swaddiwudhipong [107] indicated this trend. They tested fibre reinforced concrete deep 

beams where a number of beams were also reinforced conventionally. Unfortunately 

their results could not be analysed in full as the necessary details were not given. Hence, 

further tests on fibre reinforced concrete wall-beams are recommended to provide more 

conclusive evidence as regards the amount of tensile strength contribution. This can 

then be numerically related to the effective tensile strength ratio Vt. Furthermore the 

fibre reinforced concrete is considerably improved in ductility and residual load capacity 

after reaching the maximum load of the structure [34,43,88]. At the moment, although 

the application of fibre reinforced concrete is limited to minor structural elements, its 

potential use with conventional reinforced concrete is yet to be realised [8,34,112]. 

4-28 



4.7.1 General Comments 

Despite unavailablity of suitable test data to substantiate the present proposal, the 

intention to have a small tensile strength in formulation of the upper-bound analysis 

is clearly promosing for a fibre reinforced concrete element. Until further test evidence 

is available the following two experimental results are considered relevant. 

First, the result of tests on corbels of shear span to depth ratios between 0.30 

to 1.00 has shown a considerable increase in shear strength of steel fibre reinforced 

concrete above the plain concrete members [43]. The increase was more than threefold 

when 1.0 percent by volume of steel fibres ,vas added to the concrete. 

Second, a considerable improvement in shear strength is also obtained in punching 

shear test of fibre reinforced concrete slabs [8]. 

4.8 Discussion and Conclusions 

A general solution procedure by using the mechanism approach has been proposed. 

It is intended to be used in analysis of shear strength of wall-beam structures loaded 

in-plane. The method is equally applicable to corbels and slender beams with short 

shear span, and indeed to any reinforced concrete wall structure loaded and failing in 

its own plane. 

The principles of the plane motion of rigid-bodies are applied to a system which 

contains an assemblage of rigid blocks to idealise the shear failure mechanism. The 

overall motion of the system is controlled by a pre-defined displacement direction of 

a block which is chosen to approximate the actual collapse mode. In essence the 

family of postulated mechanisms give geometrically satisfactory modes of deformation. 

The calculation is to minimize the energy dissipation with respect to the displacement 

components for all the rigid blocks. Thus the results of the calculation are essentially 

the least shear capacity for the family of mechanisms, the geometry of the critical 

mechanism and the corresponding rates of motion for the rigid blocks. 
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The proposed approach in principle allmvs an unlimited number of the rigid blocks 

in a mechanism. However in the present analysis, the number of rigid blocks and yield 

lines is arbitrarily limited to nine. By using a smaller number of rigid blocks , the actual 

number of degrees of freedom reduces which in practice simplifies the numerical com

putation. Thus in applications, prior knowledge of the likely failure mode is valuable , 

helping to start the calculation from a family of mechanisms that approximate the 

actual collapse mode and helping to ensure the best strength prediction. The math

ematical minimization which has been incorporated as part of the algorithm offers a 

rapid and effective way of locating the most critical yield lines in a family of mecha

nisms. Although a change to a new family of mechanisms requires the introduction of 

new terminals for the yield lines, it is possible to try as many families of mechanisms 

for the system as desired with little effort and the computation time would still be 

relatively small. 

It is clear from the solution procedure that we cannot guarantee that the predicted 

strength is the lowest upper-bound to the true collapse strength. However the verifi

cation based on the experimental results has shown , in general, that we have obtained 

a satisfactory result. Indeed the predicted mechanisms do correspond closely to the 

observed mechanisms in almost all the Cases which are examined in this chapter. Fur

thermore, it appears from the selected examples that both the predicted strength and 

the mechanism of simple cases agree with the exact plastic solutions [40,58,59]. The 

proposed method demonstrates that a general application of rigid body plane motion 

pr inciples is useful in the investigation of the mechanism of failure of wall-beams loaded 

in-plane. The interfaces between the blocks are the yield lines that have been discussed 

in the previous chapter. 
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(2)Apply boundary conditions and calculate 
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Fig.4.4 Summary of solution procedure and algorithm. 
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Fig.4.11 Typical mode of deformation of deep beams with 

web openings [after Kubik (1978)]. 
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Fig.4.12 Idealised family of mechanisms of deep beams with web openings: 

dotted lines are the chord for the anticipated yield lines. 
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Fig.4.13 Observed crack pattern at failure of deep beams with web openings reported 

by Kong and Kubik (1979): (a) Beam NI-A, (b) Beam LI-A, (c) Beam N4-B, and (d) 

Beam L4-B. 
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Table 4.1 Experimental data: range of details 

No of Breadth Overall SSR PPRS Layers of Provision 

Sources beams b, mm depth (a/h) (pI/h) longitudinal of vertical 

h,(mm) steel web steel 

KUBIK[73j· 17 100 750 0.07 - 1.07 0.067 2 None 

SMITH & 5 100 356 0.57 - 1.50 0.143 2 None 

VANTSIOTIS[109j 47 100 356 0.57 - 1.50 0.143 3 - 5 Yes 

KONG et al.[66j 10 76 254 - 762 0.23 - 0.70 0.050 - 0.150 1 Yes 

20 76 254 - 762 0.23 - 0.70 0.050 - 0.150 1 - 10 None 

5 76 254 - 762 0.23 - 0.70 0.050 - 0.150 2 - 6 Yes 

KONG et al.(68)" 10 76 254 - 762 0.23 - 0.70 0.050 - 0.150 1 Yes 

18 76 254 - 762 0.23 - 0.70 0.050 - 0.150 2 - 10 None 

5 76 254 - 762 0.23 - 0.70 0.050 - 0.150 2 - 6 Yes 

dE PAIVA 6 10 - 100 178 - 330 0.31 - 0.57 0.154 - 0.286 2 None 

& SIESS[37j 3 10 - 100 178-330 0.31 - 0.57 0.154 - 0.286 2 Yes 

BESSER & 

CUSENS[15j 1 72 720 0.19 0.069 10 Yes 

NOTES: 

I" = 25.4mm. Type of failure: shear and flexural-shear modes. Layers of longitudinal steel: 
1 - main longitudinal steel only, 2 - top and bottom steel, 3 and more indicates the numbers of 
horizontal web steel bars. 

• - lightweight concrete 
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Table 4.2 Comparison of measured with predicted shear strength 

Specimen Shear Strength, T lie 
Sources of Data Ref. No. Measured Predicted Measured / P redi cted 

with v = 0.50 
BESSER & CUSENS [15] DB1 0.1944 0.1976 0.98 

KUBIK [73] L1-0.2 0.1651 0.1403 1.18 
L1-0.2R 0.1450 0.1408 1.03 

(Lightweight L1-0.3 0.1612 0.1379 1.17 
concrete) L1-0.4 0.1245 0.1321 0.94 

L1-0.5 0.0839 0.1226 0.68 
L2-0.5 0.1201 0.1215 0.99 
L2-0.6 0.1205 0.1177 1.02 
L2-0.8 0.1144 0.1048 1.09 

L2-0.8R 0.0861 0.1025 0.84 
L2-1.0 0.0557 0.0904 0.62 
L3-0.2 0.1501 0.1393 1.08 
L3-0.4 0.1306 0.1314 0.99 
L3-0.6 0.1041 0.1137 0.92 
L3-0.8 0.1102 0.1014 1.09 
L3-1.0 0.0999 0.0905 1.10 
L3-1.2 0.0867 0.0768 1.13 

L3-1.2R 0.0582 0.0774 0.75 

de PAIVA & SIESS [37] G23S-11 0.2182 0.1359 1.61 
G33S-11 0.2104 0.1616 1.30 
G33S-12 0.2435 0.2122 1.15 
G33S-31 0.3082 0.1624 1.90 
G33S-32 0.2902 0.2157 1.34 
G34S-11 0.1794 0.1320 1.36 
G43S-11 0.1760 0.1291 1.36 
G44S-11 0.1253 0.1011 1.24 

F3S3 0.2030 0.1509 1.34 
SMITH and OAO-44 0.1886 0.1427 1.32 

VANTSIOTIS[109] OAO-48 0.1800 0.1427 1.26 
1A1-10 0.2389 0.1825 1.31 
1A3-11 0.2277 0.1839 1.24 
1A4-12 0.2433 0.1886 1.29 
1A4-51 0.2303 0.1792 1.28 
1A6-37 0.2419 0.1783 1.36 
2Al-38 0.2227 0.2177 1.02 
2A3-39 0.2390 0.2243 1.07 
2A4-40 0.2339 0.2222 1.05 
2A6-41 0.2342 0.2264 1.03 

.. .jcontinue 
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Table 4.2 ... /continuation 

Specimen Shear Strength, r / le 
Sources of Data Ref. No. Measured Predicted Measured /Predicted 

with v = 0.50 
SMITH and 3Al-42 0.2421 0.2448 0.99 

VANTSIOTIS[109] 3A3-43 0.2485 0.2469 1.01 
3A4-45 0.2373 0.2511 0.94 
3A6-46 0.2336 0.2518 0.93 
OBO-49 0.1902 0.1233 1.54 
1B1-01 0.1850 0.1607 1.15 
1B3-29 0.1977 0.1641 1.20 
1B4-30 0.1865 0.1628 1.15 
1B6-31 0.2175 0.1653 1.32 
2B1-05 0.1863 0.1968 0.95 
2B3-06 0.1912 0.1975 0.97 
2B4-07 0.1997 0.2038 0.98 
2B4-52 0.1904 0.1882 1.01 
2B6-32 0.2035 0.1947 1.04 
3B1-08 0.2229 0.2112 1.09 
3Bl-36 0.2156 0.2069 1.04 
3B3-33 0.2307 0.2195 1.05 
3B4-34 0.2230 0.2385 0.93 
3B6-35 0.2227 0.2344 0.95 
4B1-'09 0.2484 0.2261 1.10 
OCO-50 0.1547 0.1027 1.51 
1Cl-14 0.1712 0.1444 1.18 
1C3-02 0.1561 0.1395 1.12 
1C4-15 0.1598 0.1382 1.16 
1C6-16 0.1554 0.1396 1.11 
2Cl-17 0.1730 0.1634 1.06 
2C3-03 0.1811 0.1704 1.06 
2C3-27 0.1653 0.1656 1.00 
2C4-18 0.1686 0.1653 1.02 
2C6-19 0.1655 0.1688 0.98 
3Cl-20 0.1853 0.1745 1.06 
3C3-21 0.2091 0.1915 1.09 
3C4-22 0.1934 0.1869 1.03 
3C6-23 0.1999 0.1890 1.05 
4Cl-24 0.2072 0.1908 1.09 
4C3-04 0.1918 0.1900 1.01 
4C3-28 0.2192 0.1931 1.13 
4C4-25 0.2281 0.1948 1.17 
4C6-26 0.2078 0.1912 1.09 
ODO-47 0.1041 0.0753 1.38 
4Dl-13 0.1506 0.1611 0.93 

.. .jcontinue 
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Table 4.2 ... /continuation 

Specimen Shear Strength, T / fe 
Sources of Data Ref. No. Measured Predicted Measured/Predicted 

with v = 0.50 
KONG et al.[66] 1-30 0.1912 0.1685 1.13 

1-25 0.1888 0.1668 1.13 
1-20 0.2305 0.1954 1.18 
1-15 0.2662 0.1766 1.51 
1-10 0.2134 0.1619 1.32 
2-30 0.2234 0.1517 1.47 
2-25 0.2489 0.1686 1.48 
2-20 0.2801 0.1773 1.58 
2-15 0.2114 0.1604 1.32 
2-10 0.2557 0.1666 1.53 
3-30 0.2110 0.1991 1.06 
3-25 0.2224 0.1892 1.17 
3-20 0.2790 0.1774 1.57 
3-15 0.2502 0.1587 1.58 
3-10 0.1971 0.1302 1.51 
4-30 0.1895 0.1686 1.12 
4-25 0.1982 0.1734 1.14 
4-20 0.2317 0.1687 1.37 
4-15 0.1714 0.1492 1.15 
4-10 0.2185 0.1256 1.74 
5-30 0.2222 0.1899 1.17 
5-25 0.2237 0.1917 1.17 

, 

5-20 0.2215 0.1879 1.18 
5-15 0.1999 0.1719 1.16 
5-10 0.1784 0.1512 1.18 
6-30 0.2033 0.1288 1.58 
6-25 0.2190 0.1468 1.49 
6-20 0.2424 0.1607 1.51 
6-15 0.2280 0.1587 1.44 
6-10 0.2024 0.1302 1.55 

7-30A 0.1734 0.0607 2.86 
7-30B 0.1980 0.0812 2.44 
7-30C 0.1780 0.1066 1.67 
7-30D 0.2136 0.1590 1.34 
7-30E 0.2406 0.1770 1.36 

... /continue 
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Table 4.2 ... /continuation 

Specimen Shear Strength, T / fe 
Sources of Data Ref. No. Measured Predicted Measured / Predi cted 

with v = 0.50 
KONG et al.[68] LI-30 0.1369 0.1151 1.19 

LI-25 0.1517 0.1134 1.34 
(Lightweight LI-20 0.1807 0.1193 1.51 

concrete) LI-15 0.1379 0.0936 1.47 
LI-I0 0.1566 0.1017 1.54 
L2-30 0.1248 0.0966 1.29 
L2-25 0.1520 0.1040 1.46 
L2-20 0.1707 0.1140 1.50 
L2-15 0.1486 0.0908 1.64 
L2-10 0.1313 0.0987 1.33 
L3-30 0.2071 0.1901 1.09 
L3-20 0.2381 0.1663 1.43 
L3-15 0.1731 0.1294 1.34 
L3-10 0.1612 0.1010 1.60 
L4-30 0.1703 0.1180 1.44 
L4-20 0.1998 0.1130 1.77 
L4-15 0.1600 0.0890 1.80 
L4-10 0.1713 0.0897 1.91 
L5-30 0.1729 0.1878 0.92 
L5-25 0.1735 0.1637 1.06 
L5-20 0.1461 0.1 440 1.01 
L5-15 0.1849 0.1471 1.26 
L5-10 0.1420 0.1028 1.38 
L6-30 0.1596 0.1002 1.59 
L6-25 0.1623 0.1120 1.45 
L6-20 0.1685 0.1267 1.33 
L6-15 0.1830 0.1339 1.37 
L6-10 0.1492 0.0989 1.51 

L7-30A 0.1477 0.0607 2.43 
L7-30B 0.1513 0.0703 2.1 5 
L7-30C 0.1471 0.0833 1.77 
L7-30D 0.1628 0.1127 1.44 
L7-30E 0.1667 0.1269 1.31 
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Table 4.3 Comparison of prediction with test results on large deep beams 
with web openings [source Kong & Kubik (1979), ref. 65] 

Beam Measured Prediction with v = 0.40 
reference strength Mechanism Strength Proportion of energy Best 
number* rl fe number rife dissipation (%) v 

(Fig. 4.12) concrete steel 
N1-A 0.0976 M5 0.10337 40.2 59.8 0.35 

M1 0.1112 61.3 38.7 
MIX 0.1112 61.3 38.7 
M2 0.1272 82.9 17.1 
M3 0.1184 83.4 16.6 
M4 0.1035 63.4 36.6 
M6 0.1035 63.4 36.6 
M7 0.1128 56.3 43.7 

L1-A 0.0988 M4 0.10925 65.5 34.5 0.30 
M1 0.1181 57.8 42.2 

MIX 0.1181 57.8 42.2 
M2 0.1307 80.7 19.3 
M3 0.1212 86.6 13.4 
M5 0.1149 65.2 34.8 
M6 0.1200 69.1 30.9 
M7 0.1196 59.8 30.2 

N4-B 0.0891 M5 0.08786 33.8 66.2 0.42 
MIX 0.1069 46.2 53.8 
M2 0.1123 65.9 34.1 
M3 0.1057 61.8 38 .2 
M4 0.1013 39.5 60.5 
M6 0.0979 37.6 62.4 
M7 0.1189 42.8 57.2 

L4-B 0.0911 M5 0.10279 35.6 64.4 0.30 
M1 0.1191 60.5 39.5 

MIX 0.1191 60.5 39.5 
M2 0.1218 71.4 28.6 
M3 0.1162 59.7 40.3 
M4 0.1171 39.2 60.8 
M6 0.1139 37.3 62.7 
M7 0.1331 66.4 33.6 

Note: * - see Fig. 4.14 for beams details. 
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CHAPTER 5 

EXPERIMENTAL STUDY 

5.1 Introduction 

In this chapter, the multiple-rigid-block model of rigid-plastic theory will be closely 

examined by comparison with experiment for both strength prediction and the mode 

of motion at failure for a wall type structure loaded in-plane. Previous discussions and 

comparisons were mainly focussed on strength prediction and no comparable evidence 

was available on the state of motion of the structural parts at failure. So far, although 

crack pattern and description of the failure mechanism may be reported, information 

regarding the mode of motion at incipient collapse has not been included in the reported 

test data. Selection of the type of experimental test specimen reported here was dictated 

by the provision of extensive instrumentation which is able to provide experimental 

observations on the motion of a reinforced concrete element in plane, particularly at 

incipient collapse. Thus, seven reinforced concrete deep beams specimens were tested 

and all but three were with web openings. The specimen sizes and details were designed 

to take into consideration the optimum size for a laboratory shear test [28] and it was 

hoped that to some extent it would eliminate the scaling effect. 

5.1.1 Background and Aims of Experiments 

Almost all the previous tests on deep beams with and without web openings re

vealed that the type and the amount of web reinforcement provided were not significant 

in changing the failure modes [37,66,68,109]. But it was observed that increasing the 

quantity of main steel changed the failure mode from flexure to shear. The actual 

amount of main steel used varied with test configuration: it was in the order of 1.0% of 

main steel in tests by de Paiva and Siess [37] with clear shear-span/depth ratios between 

0.31 to 0.57, 0.44% steel in tests by Kong et al. [66,68] with clear shear-span/depth 



ratios between 0.20 to 0.70 and almost 2.0% in tests by Smith and Vantsiotis [109J with 

clear shear-span/depth ratios between 0.57 to 1.50. 

The behaviour and the mechanism of deep beams with web openings at failure are 

not uniquely defined due to the complexity of crack formations. The influence of the 

location and size of openings is not only to vary the strength but also to change the 

failure mode. This important conclusion emerged from a large amount of test data on 

deep beams with web openings made available by the researchers at Nottingham and 

Cambridge during late 1970's [69,73]. In their tests on deep beams with symmetrically 

arranged web openings, Kong et al. [69] varied both the position and the size of 

openings in the web. The tests revealed that any opening that interfered with the 

natural load path joining the bearing blocks at the loading and reaction points created 

an undesirable effect and reduced the beam carrying capacity. In this situation the 

concrete contribution was effectively obtained only from the region below the openings. 

To date, almost all tests reported on shear of reinforced concrete wall elements 

[15] and deep beams with or without web openings [37,66-70.109,110] except large deep 

beams by Kong and Kubik [65] did not include measurement of displacements at sev

eral positions around the beam perimeter. The common measurements, apart from 

the ultimate load, are the central deflection, the crack sizes and the crack formation. 

The extensive instrumentation employed on the large deep beams with web openings 

reported by Kong and Kubik [65] showed for the first time that the mode of failure in 

shear was approximately a combination of rigid body motion [73]. Although the avail

able experimental evidence is limited, it essentially lends support to the mathematical 

modelling described earlier and more test data were therefore required to confirm it. 

The importance of beam projection or overhang relative to the position of web 

openings was not realised in the previous studies [73]. A close look at the failure 

mechanism on large and small scale deep beams with web openings reported by Kong 

et al. [65,69] showed that the position of web openings relative to the beam end is 

a factor likely to change the mechanism. The results also revealed that the shorter 

the available solid end part from the edge of opening, the weaker the beams in shear 
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[69] . vVe would therefore expect a short overhang beam but with similar position of 

openings to produce a different mechanism and consequently a lower load-carrying 

capacity compared to a beam wi th longer overhang. 

Aims of experiments: 

The main objective of the investigation described in this chapter (and partly in the 

next chapter) was to provide experimental evidence by which the results of analyses 

using the proposed model of rigid body motion may be checked and verified. The rigid 

body motion in plane was measured and compared with the predictions. Although in 

practice the overhang is normally substantial for a wall type construction, the study 

included the effect of limited overhang on the beam failure mechanism. The information 

gained from the investigation was intended to provide important evidence to judge the 

validity of the approximate solution by rigid-plastic analysis of a reinforced concrete 

wall-beam structure. 

5.2 Details of Tests 

5.2.1 The Test Specimens and Notation 

The experimental programme were carried out in two parts. The specimens for 

the series described in this chapter were classified as deep beams [23]. Discussion for 

the second series (of shallow beams) will be covered in the next chapter. 

For all specimens the clear shear span to overall depth ratio and the overall depth to 

thickness ratio were 0.5 and 9.1 respectively and these dimensions were kept constant. 

The beams were simply supported over a span of 1000 mm centre to centre. The 

overall depth was 500 mm with a thickness of 55 mm. The beams were made with 

two different overall lengths: the length for beams with overhang was 1300 mm and 

for short overhang was 1100 mm. To have equally effective anchorage length for two 

types of beams, the anchorage length for longitudinal steel bars were kept constant, see 

Fig.5.l. 
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The specimens were designed to carry two point loads. symmetrically applied to 

the top surface through 100x55x20 mm steel bearing plates which were bedded to the 

concrete surface with approximately 2 mm of hard model plaster. The load bearing 

plates were at 150 mm to centres on either side of midspan. A similar size of plates but 

with different build-up of thickness was used to transmit the support reactions at the 

beam's soffit. This configuration produces a test with a clear shear span of 250 mm, 

and the beam dimensions as shown in Fig.5.1. 

All beams were reinforced with four 10 mm nominal diameter deformed bars which 

were anchored at the ends to 55x60 mm by 12.5 mm thick steel plates, (see Fig.5.1) 

when they were ready to test. All these bars were screw threaded at both ends. This 

means that main reinforcement ratio of about 1.23 per cent was provided based on a 

conventional calculation [9). The web reinforcement consisted of a layer of 2.31 mm 

diameter at 51 mm centre to centre square weldmesh. This web reinforcement was 

approximately 0.44 per cent of gross concrete volume. The clear cover to reinforcement 

around the beam's perimeter was not less than 15 mm, Fig.5.2. 

There were seven deep beam specimens in the series, three without web openings 

and the rest with two rectangular web openings which were symmetrically positioned 

about the midspan. A single size of opening, 150 mm by 200 mm, was chosen but their 

positions varied relative to the beam's soffit , details given in Fig.5 .1. Therefore the 

beams either have openings at a higher or lower position or do not have any openings 

at all. They also have either a short or a long overhang. Notations of S2-HOP-LOH 

and S2-NOP-LOH are meant to stand for a deep beam with openings at a relatively 

high position with a long overhang, and a deep beam with no opening and with a long 

overhang respectively. 



5.2.2 Materials 

5.2.2.1 The Concrete 

The constituents for the concrete were Ordinary Portland Cement, irregular 

builder's gravel aggregate of noni.inal maximum size 10 mm, and builder's sand. The 

gravel was first screened through an equivalent 9.52 mm sieve before use and the sand 

grading was within zone 3 of BS882 grading curve. 

The concrete was designed according to the Department of Environment publica

tion, Design of Normal Concrete Mixes [117] to give medium workability. The mix had 

a water/cement ratio of 0.55 and an aggregate/cement ratio of 4.9, except in test 7 

where a leaner mix was used. The mix proportions by weight are given in Table 5.1. 

The actual proportions were adjusted to allow for the moisture content of the sand and 

gravel. 

Each beam and its control specimens required not more than 113 kg of concrete 

and therefore the ingredients were mixed as a single batch in a six-cubic-foot capacity 

pan mixer for 2 minutes. Five 100 mm cubes and two 100 mm cylinders were made 

from each batch of concrete for quality control. 

The concrete compressive strength was taken from the average of three 100 mm 

cubes and two 100 mm cylinder control specimens which were cured in a similar con

dition to the beams. The test procedure on the control specimens was according to 

BS1881. The cube compressive strength, feu, and the cylinder compressive strength, fe, 

at the time of testing are given in Table 5.2 which gives the following average relation 

between the two measured compressive strengths: 

fe = 0.82feu (5.1) 

The cylinder compressive strength values have been used in the analysis in accordance 

with the previous related rigid-plastic study by Nielsen [90], which will be used for 

comparison with the experimental work presented here. 



5.2.2.2 The Steel Reinforcement 

The ma1l1 reinforcement used in all speclmens was a 10 mm nominal diameter 

British Steel Corporation Torbarj cold worked, ribbed reinforcing bar conforming to 

BS 4449. The average yield stress is 495.0 N/mm2 with the average cross-sectional 

area of 79.2 mm2. The typical stress-strain curve obtained from tests for this steel bar 

is given in Fig.5.3(a). 

The 2.31 mm diameter weldmesh for web reinforcement had an average yield stress 

of 358.0 N /mm2. The average strength was calculated from six tensile tests, with a 60 

mm gauge length. The samples were chosen so that a single and a two weld points were. 

included within the gauge length. The typical stress-strain curve for the weldmesh bar 

is given in Fig.5.3(b). 

To prevent local crushing over the bearing, load points and reactions, the effective 

zones were strengthened by a special reinforcement cage of 40x75 mm or 40x50 mm 

dimension in plan. The depth of the cages were 50 mm and 75 mm, respectively, over 

the load and the reaction point, see Fig.5.2. The reinforcement cages were fabricated 

from 25 mm square weldmesh of 1.63 mm diameter and the dimensions chosen were 

mainly dictated by the need for practical simplicity. 

5.2.3 Manufacture of Specimens 

A beam was ready for casting as soon as the reinforcement, Fig.5.2 and Plate 

P5.1, had been assembled and secured in position. The main reinforcement bars were 

temporarily anchored to the mould side at their ends to hold them firmly in their 

positions during casting. The flat sheet of weldmesh was held at the middle of the 

beam thickness by using a number of appropriate hard plastic spacers and at the same 

time it was tied to the mould base by a fine wire at selected places. The positions of 

the spacers and ties were selected so as not to fall in the anticipated failure zone. The 

number of spacers and ties was kept to a minimum in order to ensure that they would 

not significantly affect the crack pattern for the specimen. 
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vVeb openings were made with rectangular polyurethene blocks which were cut 

to the required size and slightly tapered across the beam thickness. Each block was 

first oiled, then fixed at the final position by four 6 mm diameter bolts. No additional 

reinforcement was employed around the perimeter of the web openings. To permit 

unrestricted shrinkage movement around the openings, these forming blocks were taken 

out from their position two days after casting and no difficulty was experienced. 

The beams were cast horizontally in a firm, oiled wooden mould, see Fig.5.2. This 

method was chosen so as to obtain a fairly homogeneous concrete over the entire thin 

section thus eliminating the variability of shear strength with the method of casting 

[30] . The concrete was poured one thin layer at a time and vibrated externally through 

the mould. A portable Kango electric vibrator was used for compaction. 

The beams were first kept under a polythene sheet and the control specimens, five 

cubes and two cylinders, were removed from their moulds one day after casting. The 

beam and its control specimens were cured under damp hessian which was covered 

with a polythene sheet for a further six days. After that they were stored uncovered 

in the laboratory until the testing date. The tests were made when the cube strength 

was expected to reach about 50.0 NI mm 2 . This was estimated by extrapolating the 

strength obtained fr9m one cube test at 7 days and another at 14 days. 

Before the test, each bean1 was white'washed to aid crack detection and marked 

with a 50 mm grid to assist in plotting and describing the failure mechanism. The 

manufacturing method described was fully adhered to for all beams. 

5.2.4 Loading and Support System 

The test rig formed a stiff plane reaction frame as shown in Plate P5.2 and Fig.5.4, 

designed and erected to take a working central point load of not less than 250 kN·. The 

frame was built using two 305xS9 mm @41.7 kg./m (12"x3.5"@29 lb. 1ft. ) channel 

sections for the columns and the cross girder, and the details are as shown in Fig.5.4. 

All channel sections were pre-drilled with five 22 mm diameter holes at 100 mm pitch 

along the length: 3 within the web and one each within the two flanges. The columns 
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were anchored to the laboratory strong floor through base channels by a total of eight 

1.25 inches (32 mm) diameter anchor bolts. The cross girder could be varied in position 

and was fixed to the columns by twenty 20 mm diameter high strength friction grip 

bolts. 

The loading system was designed to apply two concentrated loads each 150 mm 

away from the centre of the test specimen. A 100x100 mm square hollow section of 12.5 

mm thickness was used as the load spreader beam. Two 100 kN load cells (200 kN for 

test 7 and re-test of test 4) sat on the beam to push the specimen through roller bearing 

blocks, Fig.5.5( c). A higher capacity screw jack, which sat on a specially designed jack 

stool and was tied down to the floor, pushed up the load spreader beam as loading 

progressed, Fig.5.4. Two different support details were provided: one allowed both 

horizontal translation and rotation and another allowed only rotation, see Fig.5.5( a) 

and Fig.5.5(b). 

With the specimen tested upside-down as shown in Fig.5.4, the support reactions 

transmitted to the horizontal cross girder were well away from midspan of the girder. 

Each reaction force from the specimen was first taken by a solid rectangular steel block 

which was bolted to the girder for an efficient bearing effect. The set-up, therefore, 

improved the flow of forces within the reaction frame and provided a stiff reaction 

system relative to the test specimen. 

5.2.5 Instrumentation and Test Procedure 

The overall procedure was a displacement control test based on the vertical dis

placement at midspan. The movement of the specimen was measured at various points 

around the beam perimeter using linear variable displacement transducers (reading ac

curacy of ±0.05 mm, see Plate P5.3), and dial gauges. The typical locations at which 

the displacements were measured are shown in Fig.5.6(a). The total rotational motion 

was read by using inclinometers which were fixed horizontally on the surface as illus

trated in Fig.5.6(b). The inclinometer reads accurately to 0.50 minutes. The beams 

were instrumented so that the displacement over the ends and the span of the beams 
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could be recorded. The support settlement was monitored and used to compensate 

other measurements. The specimen horizontal displacement was measured at the line 

of symmetry. All transducers and dial gauges were attached to a rigid frame of scaf

folding which was independently erected around the test rig. Each transducer probed 

against a25x25 mm by 1 mm thickness steel plate which was glued to the concrete sur

face. The readings from the transducers and load cells were scanned by a data logger. 

In all tests the readings of two independent load cells were averaged and the average 

value is the 'shear' as referred to in the following sections. Typically, the preparation 

and setting up of a beam for testing took not less than 2 days. 

The displacement was applied incrementally. At the begining it was held for 

approximately three minutes after each increment to allow sufficient time for inspection 

for cracks, until the appearance of the first cracks where a much longer time was allowed . 

. As the first cracks developed the displacement increment was controlled to about 0.2 

mm screw jack travel per increment. At this rate of displacement, the average shear 

rate was approximately 3.0 kN per increment. An electric motor was used to drive the 

screw jack spindle which could produce a travel speed between 3 to 5 mm per minute. 

A complete test ideally required twenty increments and took about 2.5 hours. Since 

it was not always pos~ible to estimate precisely the ultimate load of test speClmens, 

certain tests were completed with more increments. 

Care and attention were devoted to ensuring that the speClmen was always in 

plane with the load and the support. A set of temporary lateral supports in the form 

of roller bearings was provided to hold the specimen in position at the beginning of a 

test. It was then released to allow some small clearance so that there was no friction 

introduced during the test. During the progress of a test the alignment of the specimen 

was checked by using a spirit level and two plumb bobs. 

A similar loading and test procedure was adopted for all tests. The cracks were 

monitored with the aid of a hand magnifying glass and the extent of crack development 

at every stage was traced and marked with the shear at that stage. The widths of some 

cracks were measured using a crack microscope with 50 times magnification. The 

5-9 



numbers that indicated the order of the formation of major cracks were circled In 

Fig.5.8. Photographs of the beams were taken during the tests and after failure. 

5.3 Presentation of Test Results 

The final crack patterns of the beams are presented in Fig.5.8. Note that numerous 

hairline cracks, which formed at the higher load stages, have not been shown in this 

figure. Tables 5.2 to 5.6 present the data for specimens and the test results. For 

convenience, the individual test is referred to by the order of test number instead of 

the beam notation. The test number and the corresponding beam notation are given in 

Tables 5.2 and 5.4. Additional observations on each beam are discussed in the following 

section. The test results and their implications are discussed in subsequent sections. 

5.3.1 Specimen Behaviour 

The overall test performance showed that both local crushing and anchorage failure 

were successfully prevented. No local failure occurred in the effective zones. The 

maximum applied bearing stress was 34.2 N /mm2 in the re-test of test 4 and it was less 

than the normal limit for bearing capacity as a function of concrete strength [9,91,123]. 

The construction details at the anchorage zones which provided similar bonding length 

beyond the support for all specimens effectively eliminated an additional local variable 

in the tests. In all tests the main reinforcement bars were properly anchored at the 

beam ends, preventing the bars from pulling out of the supports. All end anchorages 

functioned properly during testing and did not affect beam's failure mode. 

Plots of shear force against midspan displacement for all test specimens are pre

sented in Fig 5. 7( a) and Fig 5. 7(b). Cracking patterns are given in Fig.5.8 and the 

observed behaviour of individual specimen was as follows: 

Test 1 and 4: Figures 5.8(80) and 5.8(b). 

Test 1 on solid deep beam was the exploratory test to develop a proper test procedure. 

Test 4 was done twice. The first loading did not produce failure, due to insufficient 
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load cell capacity. The test was repeated with a higher capacity load cell to failure and 

will be described as re-test of test 4. 

The crack formation and the crack pattern in these two tests were a.lmost identical 

and symmetric, see Figures 5.8(a) and 5.8(b). The first visible crack was the flexural 

crack which developed in the constant bending moment zone at shear 55.0 kN and 35.0 

kN in test 1 and 4 respectively. More new flexural cracks developed and spread outward 

from the mid span section in the subsequent displacement increments. The next major 

crack was the inclined crack which developed within the shear spans. This inclined 

crack was first visible at a shear of about 73.0 kN in test 1 and 71.0 kN in test 4. The 

inclined crack started within the web at approximately one-third depth above the beam 

soffit and it was almost in the middle of shear span in test 4. In test 1, Fig.5.8(a), the 

inclined crack appeared to initiate from a flexural crack that also originated at about the 

middle of the shear span. These cracks were prominent and continued to extend in both 

directions as more displacements were applied. While these inclined cracks propogated 

symmetrically there was no new formation of flexural cracks and the existing flexural 

cracks clearly ceased to extend. Test 1 was stopped prematurely at a shear of 103.0 kN 

and the inclined crack was not so severe, see Fig.5.8(a). A higher ultimate load was 

expected for this beam as the concrete was more than five weeks old. 

In test 4, Fig.5.8(b), at a shear of 87.0 kN, symmetric inclined cracks started to 

open. When the shear was close to 112.0 kN, one of these cracks was about 0.3 mm 

wide at a point close to the mid-length of the crack and it continued to extend at both 

ends, but not yet reaching t.he beam edges. Test 4 was stopped at a shear of 112.0 kN 

or a normalised shear stress, T / fe of 0.1110. However the specimen for test 4 was then 

retested (but at a much later date), to observe the failure mechanism. Prior to the 

formation of the mechanism, signs of distress were observed at the region above the 

supports and the displacement was almost symmetric. Final failure was by crushing 

in the support region and was accompanied by a loud bang, see Fig.5.8(b) and Plate 

P5.4(a). The maximum applied shear was 188.0 kN. 
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Test 7: Fig.5.8(c). 

This additional deep beam specimen without web opening was tested to failure to re

peat test 1. In this test, two 200 kN load cells were used instead of two 100 kN capacity. 

All other details were similar. 

The · performance of the specimen at early stages was similar to the other two 

solid beams in tests 1 and 4. The first visible cracks were a few flexural cracks at the 

beam's soffit which appeared at shear 41.5 kN. At shear 55.0 kN the inclined cracks 

within the shear span developed producing a distinctive cracking sound. At this stage 

no new flexural cracks were observed. The formation of inclined cracks was not quite 

symmetric at first appearance, see Fig.5.8( c). The inclined crack within the left shear 

span started approximately at the middle of the shear span and at one-third depth 

above the soffit and it was fairly long when first observed. The inclined crack within 

the right shear span was much closer to midspan. Further displacement increments 

produced a new inclined crack within the right shear span: it was almost parallel to 

the earlier crack and reasonably symmetric with the single crack in the left shear span. 

This new crack was initiated from a flexural crack close to the right hand support and 

it extended diagonally into the shear span. At shear 153.0 kN the inclined cracks in 

both shear spans were clearly visible and had opened significantly. At this stage there 

were many small criss-cross cracks appearing adjacent to the inclined cracks, and the 

inclined crack within the left shear span was apparently more prominent. 

The last displacement increment before the beam developed a failure mechanism 

was at shear 156.7 kN. The beam did not immediately collapse but it failed in a pro

gressive manner, beginning several minutes after application of the last displacement 

increment, and the snapping of weldmesh reinforcement was heard during the collapse. 

No reading could be recorded during the collapse. The next reading obtained was to

wards the end of the collapse stage when the motion was almost stationary and the 

shear had dropped to 55.8 kN, see Fig.5.7(a). 

At the last displacement increment just before the beam failed at shear 156.7 

kN, a number of new cracks developed from the edges of the beam's end, Fig.5.8( c). 
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These cracks apparently extended almost the width of the overhang. The failure was 

characterised by concrete crushing, first at the top end then at the bottom end of the 

inclined crack within the left hand shear span, see Fig.5.8( c) and Plate P5.4(b) . 

Tests 2 and 3: Figures 5.8( d) and 5.8( e). 

Tests 2 and 3 were performed on specimens with long overhang, higher and lower web 

openings respectively, see Fig.5.1. 

The first cracks developed in test 2 were corner cracks which started at two opposite 

corners at both openings. These were diagonally along the line joining the load to the 

support. The formation of these cracks was symmetric and they first developed at shear 

25.0 kN. The length of the cracks at first appearance was between 25 mm to 100 mm, 

being longer below the openings and shorter above the openings. This first major crack 

is identified as crack (1), circled number in Figures 5.8(d) and 5.8(e). Thereafter, a 

circled number beside a crack identifies the order of the formation of the major cracks. 

The next two major cracks, cracks (2) and (3), developed at shear 27.0 kN and 30.0 

kN respectively. Crack (2) started at the top fibre and extended vertically downwards. 

At this stage the formation of the end 'rigid blocks' was completed. Crack (3) was a 

group of typical flexural cracks. Cracks (1) and (2) continued to propogate and open 

but cracks (3), with more hair lines cracks developing, did not propagate so much while 

the shear increased to 32.0 kN. At this shear the flexural cracks were not more than 25 

mm in length, see Fig.5.8( d). 

At shear 35.0 kN another important major crack, crack (4), developed below the 

web openings. This was a 'web shear' crack type [4] or 'splitting crack' [65] . The crack 

was similar to an inclined crack in a solid beam and started within the solid part under 

the web openings. Initially the length was approximately 50 mm. The formation was 

symmetric, and extension continued at both ends of the cracks as the displacement 

increased. At the same time more hairline cracks appeared cri ss-cross around the web 

shear crack. Unlike crack (4), cracks (1) and (2) propagated very gently; they were 

widest close to, or at, the edge of the beam, the width gradually reducing to zero at 

the other end of the cracks, see Fig.5.8( d). The failure was characterised by shearing 
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taking place roughly along crack (4) and followed by a sudden loss in load carrying 

capacity. A clearly defined shear plane was thus produced as shown in Plate P5.5(a). 

The maximum recorded shear in test 2 was 48.0 kN. 

An almost identical behaviour of cracks was observed for test 3, as seen in 

Fig.5.8(e). The difference was in the level of shear at which each of the four major 

cracks was first visible and Table 5.3 provides this information. In test 3 where the 

specimen web openings were at a lower position, it was found that the first crack ap

peared fairly early and the specimen failed at a relatively lower strength than test 2, 

see Table 5.3. 

Tests 5 and 6: Figures 5.8(f) and 5.8(g). 

Tests 5 and test 6 were performed on deep beam specimens with short overhang but 

otherwise they were detailed in a similar way to tests 2 and 3 respectively. 

In test 5 the development of major cracks was in the following order, see Fig.5.8(f). 

The first cracks, crack (1), were the corner cracks that started at the two corners of 

web openings. The weaker corners were in the diagonal path between the load and 

the support position. Crack (1) developed at shear slightly higher than 20.0 kN and 

extended to about 25 mm length. In the next displacement increment the second 

cracks, crack (2), appeared. The latter were the flexural cracks near midspan and many 

of these continued to develop, though they only extended very slowly, in subsequent 

displacement increments. At shear 32.0 kN the web shear cracks, crack (3) developed 

simultaneously in both shear spans at the bottom of the web openings. These cracks 

extended diagonally to about 100 mm length. The next displacement increment, at 

shear ·36.0 kN, saw the development of the fourth cracks starting at the edge of the 

beam and propogating almost horizontally. Crack (4) was widest at the edge of the 

beam and the width gradually reduced to zero at the other end. Crack (1) and (4) 

propogated gently but crack (3) continued to extend in both directions until the beam 

failed at shear 58.5 kN. The overall crack formation was symmetric until failure. Failure 

occurred by shearing along a plane roughly aligned with crack (3) and the load carrying 

capacity immediately dropped to a stable level which was approximately 75% of the 
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maximum shear, see Fig.5.7(b). 

There were slightly different sequences of crack formation observed in test 6, 

Fig.5.8(g). Crack (1) was first visible at shear 20.3 kN and extended up to 75 mm 

length. The flexural cracks, crack (2), though not very many at first appearance, de

veloped at shear 23.5 kN. The next major crack was a crac.k that developed from the 

edge due to inadequate beam overhang. This third crack in the order of appearance, 

crack (3), was visible at shear 26.8 kN and extended up to 60 mm length towards the 

outside top corner of the openings. At this shear level many more new flexural cracks 

developed. Two increments later, at shear 34.2 kN, cracks (1) and (3) continued to 

open and extend. The fourth crack, cra.ck (4), appeared immediately after this incre~ 

ment. It was a web shear crack similar to crack (3) in test 5. This crack continued to 

propogate and extend at both ends although very little advancement was observed for 

the other cracks. At shear 42.5 kN, crack (4) dominated the behaviour of cracks which 

were almost extending to the edges. With further displacement increment significant 

damage in the form of spalling around crack (4), the shearing plane, was observed, see 

Plate 5.5(b). The overall failure of the specimen was similar to test 5 as described 

above. The highest recorded shear was 45.5 kN. 

5.3.2 The Test Results 

Data acquired from each test were the displacements at selected positions around 

the beam's perimeter, and the applied shear (or load). The readings of two independent 

load cells were within 2.0% of their avera.ge value which corresponded to the applied 

shear. The ultimate (maximum) shear force for all tests is given in Table 5.2. 

Each displacement measured was either horizontal or vertical only. The inclinome

ters, attached to the bottom of openings in tests 3, 5 and 6, as seen in Fig.5.6(b); were 

used to measure the total rotational motion for the region below the openings (in the 

test condition i.e. as seen during the test). The crack patterns at failure for all spec

imens are shown in Fig.5.8. Bold lines indicate cracks which are prominent at failure 

and the circled numbers in Fig.5.8 present the order of their formation as described 
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earlier. 

Comparison of ultimate shear forces for the tests is presented in Table 5.4. The 

experimental values are the highest recorded shear. In a displacement-controlled test 

on a reinforced concrete element, the load drops in each displacement increment due to 

creep and relaxation. The amount of drop is bigger at a load close to the ultimate, and 

/ or if a longer time is allowed for each increment stage. A quantitative measurement 

of short term stress relaxation of concrete is found in reference 116 and presented in 

Fig.5.9(b). The typical load-deflection relation for a displacement-controlled test is a 

saw edge curve as shown in Fig.5.9( a). But in all subsequent calculations and com

parisons the initial shear as shown by the clotted line in Fig.5.9(a), for each increment 

stage, is considered as the applied shear. An advantage of adopting this test procedure 

is that the load-deflection curve beyond failure can be treated similarly, as shown in 

Fig.5.9(a) and Fig.5.7. Furthermore a displacement-controlled test on a small concrete 

specimen normally produces a lower load at similar displacement [98] than in a load

controlled test. The same conservative load is expected to be obtained from the test 

on reinforced concrete structures. 

As might be expected, introduction of web openings substantially increases the 

central deflection of the beams at similar shear compared to a companion beam with 

no web openings. Fig.5.7 shows the load-central deflection results for all the tests. At 

low shear the deflections of all beams appear independent of web details. At higher 

shear it appears, from Fig.5. 7(b) , that the location of web openings does not greatly 

influence the deflection. The maximum deflection of the soffit at the ultimate shear 

was less than 2.5 mm for all the beams with web openings and not more than 4 mm in 

solid beams, though for ultimate load more than three times greater in the latter case. 

The measurement of displacements at and around midspan shows no significant 

rotation up to failure. Four typical vertical displacements measured in the central region 

of the beam in test 6 are plotted in Fig.5.10. Three of the measurements were at the 

beam's soffit; one at the midspan, one at a distance 200 mm away to the left and right 

of midspan, and the fourth was at the top of the beam's midspan (Fig.5.6(a)). Fig.5.10 
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shows that the differential displacement between the two mirror image transducers is 

almost constant up to the failure. 

In Fig.5.11 the displacements of the ends of the beams and the distribution of 

deflection over the soffit and the top of the beams are presented for tests 2, 3, 5 and 6 

at shear close to ultimate and at approximately half the ultimate shear. This provides 

more evidence that a region at the beam's soffit near midspan can reasonably be con

sidered as a block with pure vertical translation moving with approximately uniform 

rate near failure. The central displacement apparently occurs primarily by the deflec

tion in the shear spans which appears to be produced mainly by the relative rotation 

of three approximately 'rigid blocks ' at the ends of the beams with web openings, as 

idealised in Fig.5.12(a) , or by a single end ' rigid block' in a beam without web opening, 

Fig.5.12(b ). 

The rotation of block IV in Fig.5.12(a) ,vas monitored directly for tests 3, 5 and 

6 using the inclinometers, see Fig.5.6(b) . The measurement of rotation for block III 

was made by using displacement transducers along the beam's ends, Fig.5.6(a), and 

the results are presented in Fig.5.13. 

It was difficult in practice to obtain complete measurement of displacement for 

every idealised rigid block in Fig.5.12( a). In a single test up to 26 transducers were 

used around the beam. A complete calculation for the motion of a rigid block in 

plane, equation (4.1), is only possible if a combination of three measurements are 

available: one horizontal and two vertical or two horizontal and one vertical or one 

each for horizontal, vertical and rotation. One major obstacle was the lack of space to 

accommodate any more transducers in such a small region to measure the motion, for 

example, of block II in Fig.5.12(a). Due to this particular difficulty no measurement 

was made for block II in any of the tests for beams with openings. The measured rigid 

blocks motion are given in Table 5.5. 
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5.4 Remarks on the Test Results 

5.4.1 Rigid Block Idealisation 

The observed failure mechanisms of the beams (Fig.5.8) can be idealised as rigid 

blocks system, shown in Fig.5.12. The dotted lines in the figure represent the chords 

for the yield lines. The two terminals for each yield line are fixed for the family of 

mechanism. 

The behaviour of the beams can be explained by examin.ing the deformation around 

the idealised rigid blocks at some advanced stages of loading. Fig.5.11 shows that 

three or more displacement readings taken on the same side of a block appear to be 

approximately on a straight line. Such a check is made whenever possible for all the 

assumed rigid blocks. This could be done if there are enough measurements available 

on the block. A study on the measured deformation (Fig.5.11 and 5.13) reveals that 

the deformation of the assumed rigid block occurs by both translational and rotational 

motions. 

5.4.2 Measurements on Rigid Blocks 

The actual failure mechanism of the tests (Fig.5.8) is compared with the ide

alised mechanism (Fig.5.12) in which the displacement transducers are identified for 

the blocks. The transducers were placed at the best positions possible for each test 

(Fig.5.6( a)). This obviously presents a great difficulty in practice because the exact 

collapse mechanism is not known beforehand. Therefore, in some circumstances it is 

possible that one block ends up with more transducers than the other and it could 

be easily in excess of the minimum requirement for the theoretical calculation or .vice 

versa. 



5.4.3 Load-Central Deflection Behaviour 

The behaviour of the beam as measured by central deflection is illustrated in 

Fig.5.7. Note that the plot for test 4 in Fig.5.7(a) was superimposed from two loading 

histories: one is for the loading until applied shear reaches 112.0 kN and another is a 

re-test of test 4 to failure. 

From all the tests, some ductility was observed at failure. This ductilty is more 

significant for beams with web openings as compared with the beams without web 

opening. Although the ductility is limited, beam failure is not a truly brittle one. It is 

noted that the application of the rigid-plastic theory in present study assumes that the 

plastic deformation concentrates within the lines of discontinuity. However, the overall 

deformation behaviour of the beams as described by the load-central deflection alone 

is not sufficient to justify the assumptions made in the theory. 

5.5 Analysis of Results and Comparison with Prediction 

5.5.1 Load Carrying Capacity 

The analytical model was used to predict the load carrying capacity and the failure 

mode of the test specimens. The theoretical prediction and the experimental results 

agree reasonably well in terms of both ultimate shear strength and mode of deforma

tion. Table 5.4 presents the comparisons of the ultimate shear for all the tests. The 

predictions with two effectiveness factors, v = 0.40 and v = 0.50, are also included 

in the table. The failure mode which gives the lowest predicted shear strength is the 

governing mechanism for the assumed value of the effectiveness factor. This procedure 

has been followed in the analysis of all the test specimens. The best effectiveness factor, 

i.e. when theoretical prediction and experimental values coincide, varies between 0.37 

to 0.64 depending on the numbers of yield line at failure. 

The overall agreement between the predictions with v = 0.40 and the tests in 

multiple rigid blocks problem is reasonably good. The ratio of the observed to predicted 

5-19 



shear force at failure had a mean value of 1.03 with coefficient of variation of 10%. The 

prediction assumed that the concrete effectiveness in all yield lines, TYPE I, 11, and 

Ill, is the same, and this value is taken as the 'average' effectiveness factor. The 

observation of crack behaviour in beams with web openings, discussed earlier (Section 

5.3.1), shows that the major cracks did not develop at once but in sequence one after 

another. Some of the cracks stabilise and do not continue to open at failure; and some 

of the failure cracks are already quite wide when the last part of the failure mechanism 

(usually a localised shear) is seen to develop. One might expect the effectiveness factor 

in those parts which develop early (and may later go past their peak strength) to be 

less then the effectiveness factor for the last part of the mechanism. Thus it would be 

expected that the average concrete effectiveness factor for a failure with multiple yield 

lines which develop progressively is somewhat smaller than in the case with only one 

single yield line. If all the yield lines had developed at once, a higher load carrying 

capacity would presumably have been obtained as seen from test 7 and re-test of test 

4. The best concrete effectiveness factor for the single yield line failure is always higher 

than 0.50 and it is comparable with the results of analysis of reported test data made 

in Chapters 3 and 4. 

It is clear from the test results in Table 5.4 that the inclusion of web openings within 

the clear shear span produces a significant reduction in the ultimate shear strength 

of the beams compared to a similar beam without web opening. The typical web 

openings used in this study also change the mode of failure of a deep beam from 

a single diagonally inclined shear plane to a multiple prominent failure plane, Fig.5.8. 

Comparison made between the results of similar beams but with two different locations 

of opening shows that a lower opening effectively reduces the ultimate shear strength. 

This trend corresponds closely with prediction using plasticity theory. 



5.5.2 The Mechanism of Failure 

Several modes of failure are possible in beams with web openings. The mode of 

failure from the tests can be idealised as two different mechanisms depending on their 

overhang, see Fig.5.12(a). The influence of overhang on failure is shown from this 

limited study. Reduction in overhang primarily reduces the solid area between the 

edge of the openings and the end of the beam and it creates a weaker zone. Other weak 

zones are at the bottom and the top of the openings. With no special reinforcement 

employed in these zones, then failure within the zones is inevitable, see Figs.5.8(f) 

and (g). The present theory predicts a similar effect: the critical mechanism is the 

one involving the failure of the end zone, Fig.5.14, for the beams with short overhang. 

Fig.5.14 also shows the cri ticalmechanism predicted for the beams with relatively long 

overhang (tests 2 and 3) and it can be seen that the predicted mechanism for all tests 

agrees well with the actual behaviour shown in Fig.5.8. 

The same effect of overhang on the failure mode can be seen from the tests reported 

by Kong and Kubik on large deep beams [65]. A close examination of the failure mode 

for tests reported by Kong and Sharp [69] on small scale deep beams with openings 

shows similar evidence for their beam series 0-0.3/1 to 0-0.3/6. The failure mode 

switches from the type with two main failure surfaces, running from top to bottom, 

to three or four failure surfaces when the effective length between the openings and 

the end of beams is relatively short. In the latter, at least one of the major failure 

surfaces cuts through the overhang. The importance of sufficient overhang in shear 

test was not recognised by the previous researchers. It is common for a beam with 

relatively short or no overhang to fail locally close to the anchorage zone and support 

[66,4]. Our tests reveal that the provision of confinement under the bearings and a 

similar anchorage length effectively improves the local strength. With regard to the 

failure mode of solid deep beam specimens, it is quite sufficient to model the mechanism 

by three rigid blocks, Fig.5.12(b). The unsymmetrical failure mechanism as shown in 

Fig.5.12( c) does not predict a lower strength at the same effectiveness factor. In the 

model the yield line starts at the inside edge of the support bearing plate and terminates 
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at the outside edge of the loading bearing plate, see Fig.5.12(b). The yield line in both 

test 7 and re-test of test 4, can at best. be modelled as a curve as shown in Fig.5.14(b). 

The m easurement on idealised rigid blocks in test 7 and re-test of test 4 shows that 

at a stage near failure, the rotation of end rigid block is in a direction similar to the 

prediction, see Table 5.5(b). This typical rotational behaviour of solid deep beams was 

also observed in the tests recently reported by Subedi et al. [110], in which strains 

on reinforcement bars were measured. The measured strains in top steel bars close to 

failure zone increased continuously in compression until just before the ultimate, but 

then became tensile. 

The facilities offered by the proposed model, therefore, make it possible for us to 

examine many more permissible mechanisms, and hence determine the most critical 

mode of shear failure in a new problem wi th different geometry and non-conventional 

details. 

5.5.3 Rigid Body Motion 

The analytical model was used to predict the rate of motion of idealised rigid 

blocks for each specimen tested in this investigation. Detailed comparisons between 

the predicted and observed behaviour are given in Tables 5.5 and 5.6. 

Calculation of the idealised in-plane rigid body motion from measured displace

ments was based on the following procedure: 

1. It is noted that not all transducers produced equally reliable readings. A 

'representative' reading of displacements, horizontal or vertical, is obtained from a 

transducer which is positioned far enough from a severe local disturbance, such as 

very big cracks or many small cracks close to the probe point. The excess readings 

(mentioned in Section 5.4.2) on an idealised block are used to check the consistency in 

measurements and the reliablity of idealised rigid block assumptions. 

2. The rotational motion is always calculated from two furthest representative 

transducers which are originally on the same surface of the block. This seeks to rep re-
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sent the average measurement oyer the particular surface. This concept is well accepted 

in practice for measuring the average surface strain of concrete. 

3. Equation (4.1) is used to calculate the rigid body motion about a fixed reference 

axis. The origin of the reference axis is chosen to coincide with the centre of specimen 

at rest. 

4. In all calculations made using the model, the comput.ed values of displacements 

are the rate of motion at incipient collapse. The total displacement is not relevant to 

the present analysis. To interpret the rate of motion from what we have measured, we 

consider the increment in displacement at that particular stage. The increment just 

prior to the ultimate (maximum) load is taken to represent the rate of displacement in 

the failure mechanism, and all the components of motion which were generated from 

the measured displacements are given in Table 5.5. The values presented in Table 5.5 

are made dimensionless by dividing with the midspan deflection increment between 

the same two stages as discussed in Chapter 4. The components of motion for chosen 

blocks at the two stages before the specimen failed and a stage after failure are also 

included in the table. 

The overall displacements observed for two idealised rigid blocks for a beam with 

web openings, blocks III and IV in Fig.5.12(a), are first examined. It is seen that 

these blocks rotate as well as translate, and each rotates in the opposite direction, 

see Fig.5.13. The effect of this rotational motion could be seen from a major crack 

between these two blocks which opened at the beam edge and reduced to zero at the 

other end, Fig.5.8( d) to (g). The theoretical model predicts well the overall block 

displacement mode but some systematic discrepancies are observed with regard to the 

actual magnitude ofthe rate of motion in the individual blocks. Table 5.5(a) shows that 

the measured magnitudes of the components of the rigid body motion in the multiple 

rigid blocks mechanism are not close to the predicted values. Although the direction of 

the motion obtained from the tests agrees with the predictions, the magnitude of each 

component of motion obtained from the tests are only in the right order of magnitude. 

As regards test 7 and the re-test of test 4 for solid deep beam specimens, the 
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rotational motion of the end rigid block (failed end) changes direction at a sta.ge close 

to failure, as shown by the rate of rotation of end block just before and after failure in 

Table 5.5(b). The new direction is particularly important because it suggests how the 

actual destruction of the specimen took place as shown in Fig.5.8(b) and (c). Compared 

with the predicted direction, Table 5.5(b) , the new direction agrees as regards rotation. 

In test 4, Fig.5.8(b), the directions of the two translational motions also agree with the 

prediction. Incomplete measurement at the time of failure in test 7 was to blame for 

the apparent discrepancy in the direction of horizontal translation. In the re-test of test 

4, we made a continuous recording from the moment the failure was inevitable. This 

procedure is particularly valuable because it helps to trace all the important readings 

at the time of failure. 

The measured coordinates of the instantaneous centre of relative motion across se

lected yield lines in Fig.5.12(a), derived from measured displacements, are summarised 

in Table 5.6. A coordinate for the instantaneous centre is just a point on a locus which 

defines the varying position of the instantaneous centre. The position of the instan

taneous centre changes with deformation. Compared with the specimen behaviour in 

Fig.5.8, the measured values are the best measurements that can be expected from 

such experimental set up. The agreement between the predicted and measured in

stantaneous centres, Table 5.6, is again not good. This discrepancy is mainly due to 

the practical difficulty of obtaining a complete measurement that is able to describe 

the instant of collapse. This difficulty might be overcome if a continuous recording of 

displacement is made during the test as seen from the re-test of test 4. 
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5.6 Conclusions 

On the basis of the analytical and experimental investigations discussed in this 

chapter, the following conclusions may be drawn: 

1. The mode of deformation of a reinforced concrete deep beam failing in shear and 

subjected to in-plane load can be reasonably predicted by an analytical model which 

postulates a mechanism of failure. Because of the manner in which the analytical model 

was developed, there was some difficulty in interpreting the experimental results on the 

magnitude of the rate of motion. Furthermore a lack of unlimited ductility in test 

specimens adds to the difficulty in measuring a correct rate of motion at collapse. 

The measurement of the idealised rigid body motion for all the tests is satisfac

tory to a certain degree. In a concrete test the formation of micro cracks is scattered 

and semi-randomly distributed. This behaviour induces local and non-uniform strain

ing over the assumed rigid body and inevitably affects the individual readings which 

measure the vertical or horizontal displacement on the concrete surface. 

2. Provided a correct family of mechanisms is chosen for the assumed value of 

effectiveness factor, the lowest upper bound load carrying capacity predicted by the 

model agrees with the test result. It is found that the failure of a reinforced concrete 

element with multiple yield lines reduces the average effectiveness factor measured 

against the cylinder compressive strength from about 0.60 in a single yield line failure 

mechanism to about 0040 in a mechanism with four yield lines. 

3. The developed analytical model thus provides a new facility to examine many 

more failure mechanisms in shear that are possible in a reinforced concrete wall-beam 

member loaded in-plane. The analysis therefore adds new confidence to the prediction 

of the critical shear mechanism and the load carrying capacity for this class of structure. 
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These conclusions generally show that the rigid-plastic theory offers a reasonably 

reliable prediction of the shear strength and failure modes of a wall-beam structure 

with and without web openings and loaded in-plane. The present t es t results, although 

limited in number, agree quite well with the t.heoretical predictions, and taken together 

with the comparison with other experiments in Chapter 4 they demonstrate that the 

idealisation made in the theoretical modelling is reasonably acceptable. 
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Plate P5.1 Mould and 

reinforcement (above). 

Plate P5 .2 Overall view 

of test rig. 



Plate P5.3 Displacement transducers. 



(a) 

(b) 

Plate P5.4 Failure of solid deep beams: (a) test 4, and (b) test 7. 

5-47 



Plate P5.5(a) Typical failure of beams with web opening and long overhang: 

Test 2, overview (top) and close up of damage zone (bottom). 
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Plate P5.5(b) Typical failure of beams with web opening and short overhang: 

Test 6, overview (top) and close up of damage zone (bottom). 
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Table 5.1 Concrete mix proportions 

Quantities (kg/m3
) 

Materials 

Test Series 1 * Test Series 2 ** 

Cement 327 372 (341) 

Water 180 205 (205) 

Sand 698 730 (768) 

Coarse 1190 1090 (1017) 

NOTES: (1) * - Tests in series 1 discuss in Chapter 6, and (2) ** - Tests in 

series 2 discuss in this chapter. The quantities in brackets are for Test 7. 

Table 5.2 Beams data and ultimate shear 

Beams Test Concrete Compressive Strength Reinforcement Parameters Ultimate 

notation number on the test day (N/mm2 ) et>main et>web 1/J V (kN) 

leu le 
S2-NOP~LOH 1 54.8 47.4 0.1214 0.0012 0.0113 103.0· 

S2-HOP-LOH 2 46.0 37.3 0.1543 0.0015 0.0143 48.0 

S2-LOP-LOH 3 47.0 39.5 0.1457 0.0014 0.0135 47 .5 

S2-NOP-SOH 4 60.7 49.8 0.1157 0.0011 0.0107 188.0·· 

S2-HOP-SOH 5 49.3 38.3 0.1503 0.0014 0.0140 58.5 

S2-LOP-SOH 6 47 .8 39 .5 0.1458 0.0014 0.0135 45.5 

S2-NOP-LOH 7 43.0 36 .0 0.1600 0.0015 0.0149 156.7 

NOTES: 

1. Mean lelleu ratio is 0.82. 

2. • - specimen did not fail. •• - Result of retest. 

3. et> = A./y Ibhle : main = main longitudinal steel, web = other horizontal web steel. 
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Table 5.3 Summary of cracks and corresponding applied shear for tests 2 and 3 

Crack Shear (kN) * 

number + Test 2 Test 3 

1 25.0 19.0 

2 30.0 31.0 

3 32.0 31.0 

4 35.0 33.0 

Failed 48.0 47.5 

NOTES: 

+ - crack number is equivalent to the order of the formation of these major cracks . 

* - applied shear where the crack was first visible. 

Table 5.4 Comparison of experimental and predicted shear strength 

Beams Test Experimental Predicted 

notation number V (kN) T/fe V = 0.40 v = 0.50 Best 

V (kN) T/ fe V (kN) T/ fe v 

S2-NOP-LOH 1 103.0* 0.0790 134.0 0.1027 160.1 0.1228 -

S2-HOP-LOH 2 48.0 0.0468 50.2 0.0490 58.4 0.0570 0.37 

S2-LOP-LOH 3 47.5 0.0437 48.0 0.0442 55.0 0.0506 0.39 

S2-NOP-SOH 4 188.0** 0.1373 138.6 0.1012 165.8 0.1211 0.58 

S2-HOP-SOH 5 58.5 0.0555 49.5 0.0470 57.5 0.0546 0.50 

S2-LOP-SOH 6 45.5 0.0419 45.8 0.0414 51.5 0.0474 0.41 

S2-NOP-LOH 7 156.7 0.1583 107.5 0.1086 128.0 0.1293 0.64 

NOTES: 

* - Specimen did not fail. ** - Result of retest. 
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Test 
number 

2 

3 

5 

6 

Table 6.6(a) Comparison of measured and predicted motion (rate) 
of idealised rigid blocks, for beams with web openings 

Measured Stages to Block III Block IV Idealised Rigid 
or predicted failure· U o3 Vo3 Wo3 U o4 Vo4 W o4 Blocks 

Measured -2 .-0.39 0.97 0.97 - - - -L 
-1 -0 .76 1.61 1.46 - - - I IV I 

I I 
0 -0 .73 2.14· 2.08 - - - I I 

+1 -0.78 2.70 2.58 - - - 1II )11) I 
I", '" 

Predicted 0 -0 .25 0.58 0.58 - - - f HOP-LOH 

Measured -2 -0.58 1.03 0.96 -1.20 -1.71 -2.35 -L 
-1 -0.93 1.76 1.79 -1.31 -1.89 -2.91 I IV I 

I I 

0 -0.91 1.86 1.84 -1.83 -2.17 -2.69 I 

+1 -3.23 0 .16 -0 .03 -2 .69 -2 .31 -3.85 I1I ,P I 
I","" 

Predicted 0 -0.45 1.01 1.01 -1.01 -1.81 -2.32 t LOP - LOH 

Measured -2 -0 .60 1.42 -1.15 1.47 -2.02 2.78 ! -L I 

-1 1.16 3.43 -2 .89 1.88 -2 .36 3.50 I I IV I 

0 1.02 3.77 -3 .13 1.94 -2.42 3.50 

W b~;I-+1 0.90 3.83 -3.23 2.85 -3 .08 5 .50 

I ',II I , , \ 

i ' I , 

Predicted 0 0.40 0.90 -0 .90 1.15 -1.94 2.51 T 
HOP - SOH 

Measured -2 1.03 2.13 -1.75 1.44 -1.92 2.64 I --L 
-1 1.07 1.79 -1.95 1.54 -1.74 2.68 I I 

0 1.93 5.01 -4 .73 2.98 -2.66 4.45 I IV 
i¥ 

I 

+1 2.26 5.58 -5.43 3.28 -2.41 4.36 

(. 
1 

\ 
I 
I 

(. 

~ 
I 

'I 

tJI~; I " Il \ 'I i " \ 
',I 

Predicted 0 0 .59 1.34 -1.34 1.08 -1.87 2.44 
I t 

LOP - SOH 

NOTES: 

1. • : -2 = two stages before failure, -1 = a stage before fai lure, 0 = at failure, and +1 = a stage 
after failure . 

2. The motion in Block II was not measured in all tests. No measurement is made on Block IV in 
Test 2. 

3. The motion in Block I is used as the datum: Uo! = 0.0, Vo ! = -1 .0, Wo ! = 0.0 
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Test 
number 

4 

Table 5.5(b) Comparison of measured and predicted motion (rate) 
of idealised rigid blocks, for solid beams 

Measured Stages to Block I Block II Idealised Rigid 
or predicted failure· Uol Vol Wol U o2 Vo2 Wo2 Blocks 

Measured -2 0.00 -1.00 0.00 0.21 -0 .03 0.08 l 
-1 0.00 -1.00 0.00 0.70 -1.28 0.92 I i. 

I \ 

0 0.00 -1.00 0.00 0.15 -1.00 1.05 \ 
\ 

+1 0.00 -1.00 0.00 0.48 27.26 -36.25 iv 
\ 

\ 
\ 
\ 

II \ 
\ 
\ I \ 'I i \ 

Predicted 0 0.00 -1.00 0.00 1.18 2.69 -2.69 T 

7 Measured 1 l -1 0.00 -1.00 0.00 -0.18 -0.45 -0 .25 I 
0 0.00 -1.00 0.00 -0.52 -0.29 -0 .07 

I 
I 

+1 0.00 -1.00 0.00 0.11 2.76 2.57 
I \. II I I 

I 
/ 

I I 

/ 
Predicted 0 0.00 -1.00 0.00 -1.05 2.39 2.39 1 I 

NOTES: 

1. • : -2 = two stages before failure, -1 = a stage before failure,O = at failure, and +1 = a stage 
after failure. 

2. The motion in Block I is used as the datum. 

Table 5.6 Comparison of measured and predicted instantaneous centre of rotation at failure 

Test Yield Line Coords of instantaneuos centre (X 0, Yo) Idealised Rigid 
number Between Blocks Measured Predicted Blocks 

3 III & IV -0.89,0.20 -0.84,0.17 

5 III & IV 0.71,0 .11 0.83,0.22 
see Table 5.5(a) 

6 III&IV 0.83,0.11 0.85,0.13 

4 1& II 0.00,0.14 1.37, 0.44 
see Table 5.5(b) 

7 1& II 10.14,7.43 1.41, 0.44 
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CHAPTER 6 

OTHER APPROACHES TO SHEAR 

FAILURE: FRACTURE MECHANICS 

6.1 Introduction 

In this chapter attention is devoted to clarifying understanding of the features of 

shear failure of reinforced concrete beams which have not been emphasised in previous 

chapters. Two aspects are briefly examined: the actual mode of failure and the size 

effect. The beams are considered to be small if the overall depth is less than 400 mm, 

the reference depth used in BS8110 [9] . It is evident from test data that the smaller 

the beam the higher the scatter is in the shear strength, which is substantially higher 

than for geometrically similar but larger beams [28]. 

The application of fracture mechanics concepts to concrete to evaluate the strength 

is discussed, especially the predicted dependence of structural strength on size. Re

cently proposed applications of the concept to predict the shear strength of reinforced 

concrete beams [13] are reviewed. 

6.2 Reappraisal of Shear Failure Modes of Shallow Reinforced Concrete 

Beams 

6.2.1 Failure Modes 

So far in the previous discussions it was assumed that shear failure occurs within 

the shear span. However, it has been suggested recently that the failure of a two-point 

loaded beam is not by crushing of the compression zone within the shear span [72]. 

Instead, the diagonal crack will branch almost horizontally toward the middle span of 
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the beam bypassing the high stress region under the load. Subsequently the beam fails 

within the middle span by splitting of the compressive zone in this region, see Fig.5.l. 

The extension of the major inclined crack seems to occur in other tests for similar 

loading arrangement (e.g. Fig.29 of reference 76). Kotsovos [71] postulated that these 

modes of failure are associated with multiaxial stress conditions that exist in the region 

of paths along which the compressive forces are transmitted to the supports. 

The idealisation of the failure mode adopted in the present analysis is of course 

different, with a postulated 'yield line' or line of displacement discontinuity in the shear 

span, recognising the existence of local biaxial stresses as discussed in Section 3.2. The 

yield line does not follow the compressive force path, and there is no reason for the yield 

line to extend beyond the load point into the middle span if a symmetrical mechanism 

is postulated. 

The Kotsovos mode can only occur with two separate load points, and not for a 

single applied load. In the proposed upper bound solution (Chapters 3 and 4) there 

is no difference between the two-point load case and a single-point load case if the 

postulated mechanism is a symmetrical one. Thus the presence of a significant middle 

span is not relevant to the predicted shear capacity of the beams. However the single

point load case was not discussed by Kotsovos and it is of interest here to find out 

whether there are any distinct differences in failure mode between the single-point and 

the two-point load cases with other parameters kept constant. 

To explore these points a short preliminary series of tests on small reinforced 

concrete beams without web reinforcement were carried out. 

6.2.2 Tests on Small Reinforced Concrete Beams 

In this test programme, series 1, four beams were tested. The cross section of the 

beams were selected to be comparable in size to beams reported by Kotsovos [72]. The 

beams Wo.$ of 130 mm height and 65 mm width cross section with an effective depth 

of 105 mm, see Fig.6.2. Two parameters were varied in the tests: the shear span and 

the middle span. For each shear span there were two types of middle span used: a 
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fairly small one to simulate a single-point load system and a large middle span which 

was fixed at 500 mm. All beams were reinforced with two 10 mm diameter high tensile 

steel bars. 

Details of the test beams are given in Table 6.1. The two beams with similar shear 

span, denoted by A or B, but with different middle span (T1 and T2) were cast at the 

same time, in a specially made steel mould from the same batch of concrete (Table 

5.1). The materials properties, the test rig and the test procedure are as described in 

Chapter 5. 

6.2.3 The Test Results and Analysis 

Since this test program was only a preliminary one, the instrumentation was min

imal and the only readings taken were the loads and the central deflection. The crack 

patterns of the beams at failure are given in Plate PG.1 and the applied shear-central de

flection behaviour in Fig.6.3. The measured ultimate shear and the calculated strength 

are given in Table 6.2. 

In the analysis, the failure is idealised as symmetrical with the yield line assumed 

to start and. finish at the inside of the support plate and outside of the loading plate 

respectively. The typical predicted mechanism is as shown in Fig.6.4 (for beams B-T1 

and B-T2). Comparing the actual and the predicted strength in Table 6.2, it appears 

that the scatter of the best effectiveness factor, 1/, is significant. The values of 1/ are 

high, with an average of 0.61. In all cases, the predicted mechanism is a hyperbolic 

yield line, see Fig.6.4. The dotted line in the figure is the new position after some 

deformation in mechanism and dashed line indicates the position of longitudinal steel 

bars. 

The predicted strength using Nielsen's equation with 1/ = 0.50 is also given in the 

Table 6.2 for comparison purposes. An improvement in the prediction of strength is 

obtained using the proposed model. 
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6.2.4 General Discussions 

Based on these limited test results, the following comments are made. 

1. There is distinctly higher load carrying capacity of similar beams ioaded with 

an effectively single-point load as compared with the two-point load case, see Table 

6.2. Perhaps a high biaxial stress region exists within the compression zone around 

the load point [60,71], and thus delays the failure. Study of the local stress field might 

be possible if the statical approach of limit analysis is employed, or a finite element 

analysis. 

These results indicate that the strength obtained from a single-point load test is 

not conservative if it is to be used as a reference in the prediction of shear strength 

of reinforced concrete beams. This possibly explains the reason that the usual loading 

arrangement for investigating shear failure is a two point-load type. 

2. Although the the inclined cracks do tend to bypass the load point horizontally 

toward the middle span in a two-point load case, damage at failure is extensive within 

the shear span, see Plate P6.1. A visual study of this damage zone shows that it is 

not a clean crack opening but clearly indicates a combination of both shearing and 

crushing within the failure zone in the shear span. The crack opening toward the 

middle span is perhaps an extension of the crack that takes place after excessive beam 

deformation with geometry considerably distorted. The inclined crack grows unstable 

after major damage has been done wi thin the shear span and then the crack starts to 

extend toward the middle span. These features of the failure process as observed adds 

confidence regarding the idealisation of the failure surface by the yield line (Chapter 

3), although the crack pattern has many of the features described by Kotsovos. 

Beyond this point the chapter is concerned with an attempt to understand the 

strength dependency on the absolute size as viewed from the theory of fracture me

chanics, and it proceeds from there to relate the shear strength of beams and the size 

effect. 
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6.3 Fracture Mechanics of Concrete 

6.3.1 Fundamentals of Modelling the Fracture of Concrete 

The plastic theory of shear failure presented in Chapter 3 assumes that web rein

forcement or confinement by longitudinal steel provide adequate ductility for the theory 

to be approximately valid at failure. The shear failure zones described in Chapter 3 

are damage zones, occurring when the tensile strength of the concrete has been ex

ceeded and is no longer relevant, and the compressive stress reaches the crushing limit. 

One might not expect such a theory to be valid for unreinforced webs, where brittle 

shear failure will be mainly due to tensile stresses, the dominating cause of cracks 

[13,51,56,103J. Furthermore, most of the current formulae [3,9] for shear strength of 

moderately large shear span beams are based on the concept that the strength of the 

structure is related mainly to the tensile strength of concrete. This assumption has led 

to the development of a modified form of fracture mechanics appropriate to concrete 

which may be used to predict the effect of size on strength [12,14,51,55,56]. 

The modified theoretical models are based on the conventional fracture mechanics 

of homogeneous, brittle materials [64]. The modification was made with regard to the 

stress-deformation and crack-propogation characteristics of concrete, which differ from 

those of metals. Concrete can hardly be considered to be homogeneous and the failure 

of concrete is not a true brittle type but exhibits a small amount of apparent plasticity 

[89J. The stress-deformation behaviour of concrete in a deformation-controlled tension 

test is linear almost up to 60% of the maximum stress. Then the stress-deformation 

curve goes non-linear, reaches a maximum and starts to drop to zero as shown in 

Fig.6.5(b), so called 'strain softening'. This softening is assumed to take place within 

a narrow zone in the specimen, Fig.6.5(a), the fracture process zone or damage zone 

[14,56] which contains microcracks and is significantly bigger than for metals. The 

non-linear zone is not significant in concrete as compared to the damage zone [14J. 

To evaluate the energy releases, the tensile-stress-deformation properties of the 

concrete are assumed to derive from two curves: one stress-strain curve, including 

6-5 



unloading branches, and one stress-deformation curve for the additional deformation w 

within the damage zone [12,56] as shown in Fig.6.5(c and d) . The total energy absorbed 

to failure is represented by the area below the stress-deformation curve of the specimen. 

There are three different approaches to a.pproximate the fracture energy G F or 

tensile toughness of concrete, namely: 

Linear-ela.stic approach: considers no softening effect in load-deformation C).lrve, 

Hillerborg's approach: considers the area below the a - w-curve to represent an 

energy absorbed within the damage zone [56], and 

Bazant approaches the problem by considering the fracture energy as the summa-

tion of areas under the a - € and a - w-curves [12]. 

Different types of idealisation have been adopted to describe the softening of con

crete or stress-deformation curve [14,55]: a straight line and a bilinear, see Fig.6.6(b 

and c). The behaviour is neither fully linear-elastic nor fully plastic. 

6.3.2 Applications of Fracture Mechanics Concept 

The main use of fracture mechanics in concrete is to predict the effect of the size of 

structure on its strength [103]. If the linear elastic fracture mechanics (LEFM) theory 

is applied then the brittle fracture strength relates to the fracture or crack length 2a f 

by a relation of the form: 

A 
aN=--

J1raf 
(6.1) 

where aN is the nominal stress at failure normal to the crack length and A is a material 

constant which indicates the amount of energy required to cause fracture. Equation 

(6.1) can be derived either from consideration of the energy criterion following Griffith's 

approach or the stress field ahead of the crack based on Irfin's solution [64]. Failure is 

assumed to initiate by the largest crack, thus the problem is one of statistical probability 

of occurence of such a crack. Equation (6.1) states that the stress aN is inversely 

proportional to the square root of the absolute magnitude of the crack length. This 

means that the size and, possibly, shape of specimen are factors in strength. 
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The application of LEFlvl presumes elastic behaviour until failure. Thus it is 

assumed that there is negligible plastic deformation near the crack tip and the fracture 

process zone is assumed to be small compared to the size of the structure and the 

stresses within this zone are assumed to increase or to remain constant as the load 

increases [64]. These circumstances make conventional LEFM unsuitable for analysis 

of concrete structures. An alternative non-linear fracture mechanics has been devised 

to overcome these difficulties [14,56]. 

In the Hillerborg approach [56] the damage zone is represented by a fictitious crack 

(Fig.6.7(ii)) with the stress distribution shown in Fig.6.7(i). The highest stress that 

can occur is the tensile strength ft . Beyond that point the stress decreases with crack 

opening and vanishes when the crack opening reaches a certain limit. 

The significance of a discrete crack schematisation of concrete is that the influence 

on the overall behaviour of a structural element is large when the element is small and 

the influence diminishes when the element is large. Hillerborg uses the fracture me-

chanics concept to explain this statistical phenomenon and introduces a characteristic 

length: 

EGp 
lch = fl (6.2) 

where E is the modulus of elasticity of concrete. The characteristic length is a material 

property, of the order of 0.20 to 0.40 m . Higher and lower values may be found. This 

value is used to normalise the physical dimension of structures and the theoretical 

results of size effect are presented in a dimensionless form [55]. 

In the crack band model proposed by Bazant [14] (Fig.6.8), the fracture process 

zone of concrete is modelled as a crack band with a blunt front due to microcracking. 

The crack band represents a representative volume of heterogeneous material , ideally 

larger than the size of inhomogeneities, and preferably at least several times the maxi~ 

mum size of aggregate. At a certain distance behind the crack band front, with further 

loading, some microcracks coalesce into one major crack and finally form a visible crack. 

The material thickness is assumed to be b and the representative width of the fracture 

front is nda , where da is the maximum size of the aggregate. The factor n is described 



as a material constant that can be determined by experiment, but is usually of the 

order of 3 [14J. The fracture energy per unit area of fracture surface, G F, is equivalent 

to the area under the idealised piece-wise linear stress-strain diagram, see Fig.6.8( c), 

that is 

1 [Ill 2 G F = - - - - it nda 
2 E Et 

(6.3a) 

which means that by measuring Gp,it and Et, it is possible to determine the width of 

the fracture process zone, i.e. 

(6.3b) 

where Et is the tangential modulus of concrete softening. 

Analytical expressions for the size effect on load carrying capacity of structures 

may now be derived, on the hypothesis that the total potential energy release U caused 

by fracture in a given structure is a function of both (1) the length, af, of the fracture 

zone, and (2) the area of the cracked zone, ndaaf. U can be a general function of af 

and ndaaf' but in non dimensional form [12J. This can be done with 

and 
ndaaf 

0'2 = --"-
d2 

(6.4) 

where d is the main dimension of the structural element. These parameters represent 

the nondimensional fracture length and the nondimensional area of cracked zone. 

Bazant then expresses the energy equation in a general form. 

(6.5) 

where ei is a constant for similar structures. 

The energy criterion for the crack band to propagate is 8U / 8a f = G F b. From 

the energy equation the nominal stress at failure is expressed as a function of the scale 

factor, .As: 

(6.6) 
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where A., = d/ da is the relative structure size. Band Aso are constant when geomet

rically similar structures of different sizes are considered. This means that the tensile 

effectiveness factor of concrete is 

1 
(6.7) Pt = --,:.=== 

j1+~ A. o 

Equation (6.6) or (6.7) indicates a gradual transition from strength criterion (Pt = 1.0) 

for small structure (As < < A.,o) to linear elastic fracture mechanics for sufficiently large 

structure Ps > > Aso). Thus a non-linear fracture mechanics applies for the transition 

zone [12,56]. 

It is interesting to note that application of fracture mechanics based on Bazant 's 

hypothesis has emerged with a basically similar assumption to that made in the plastic 

analysis, though in this case the effectiveness factor is applied to the tensile (equation 

(6.7)) rather than the compressive strength. 

6.3.3 General Discussions 

It appears from the above discussion that the development of fracture mechanics 

of concrete is just beginning. Difficulties exist in obtaining the material fracture prop

erties, namely the fracture energy, the tensile strength and the cracking behaviour of 

concrete. The first two are the measurable properties and the third one is dependent 

on the constitutive relation of concrete and requires a sound modelling approach. 

RILEM Committee [54] recommended a test method to determine the fracture 

energy of concrete and this is the only standard method known to exist. The fracture 

energy of concrete measured by this method seems to depend on the specimen size and 

so does the tensile strength, so that fundamental properties have not yet been found. 

A proper modelling of fracture of concrete is yet to be established. The blunt 

smeared crack band model proposed by Bazant is a reasonably good model to idealise 

a relatively dispersed nature and progressive development of microcracks of concrete 

near the fracture front. In this model, the crack band is assumed to be equivalent 

6-9 



to a homogeneously strained region and it is a rational way to represent the average 

properties of the cracked zone. 

The crack band model is little different from the single fictitious crack of Hillerborg 

as far as the stress distribution is concerned. In both models, a gradually decreasing 

stress-displacement relationship is assumed. However, in numerical calculations Bazant 

assumed a piece-wise linear stress-strain diagram, whereas Hillerborg assumed a bilinear 

relation of softening stress-strain as an alternative. 

6.4 Scale Effect 

Strength of concrete appears to depend so much on the physical properties of the 

constituent materials, particularly the cement matrix and the coarse aggregate. The 

present of flaws, discontinuities and pores in cement matrix can be viewed as sources 

of weakness. It has been shown that microcracking occurs at the interface between 

coarse aggregate and cement matrix as a result of differential volume changes between 

the cement matrix and the aggregate, even prior to the application of load [89]. This 

means that size and, possibly, shape of the specimen are the important factors governing 

strength. Although the central focus of macro-level analysis is on the absolute size of the 

structures, fracture mechanics approach helps to understand the mechanism of failure 

of concrete. The approach is to study the failure which is initiated by the largest crack 

and there is a higher probability that a larger specimen contains a greater number of 

critical cracks. Indeed the idea has been established earlier in which the strength of 

brittle ceramics is known to decrease with size, due to a statistical effect [7]. 

6.4.1 Experimental Observations 

The influence of the absolute size on the ultimate shear strength (of shallow beams) 

is particularly significant in beams without web reinforcement [4]. The most important 

size is the absolute depth: the bigger the absolute depth the lower is the shear strength 

of beams of similar geometry and material properties. Fig.6.9 shows the typical test 
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results of various researchers, giving nominal shear stress at failure normalised by a 

standard average shear stress, T400, obtained from tests on beams with an overall depth 

of 400 mm [28]. The dotted line in Fig.6.9 is not the best fit curve but shows the trend 

of these experimental points. A common feature is the significant influence of the 

absolute depth of the specimen on the shear stress at failure. 

Different explanations have been given. Taylor [115] suggested that if the size 

of the coarse aggregate is scaled correctly then the influence of scale effect can be 

substantially reduced. The size of aggregate attributes to the roughness of the crack 

surface which directly effect the shear transfer by the aggregate interlock. However, 

the findings by Chana [28] from the tests on model beams do not fully support the 

above explanation. Instead, Chana found that the increase in shear strengths is due 

to the strain gradient which is significa.ntly higher in smaller beams. The higher strain 

gradient would increase the tensile capacity and thus retards the formation of diagonal 

cracks. 

On the other hand, it appears that the overall crack pattern and the failure mech-

anism are not significantly influenced by the scale effect if the beams are geometrically 

similar. However, it has been observed that the cracks at failure are normally wider in 

the larger beams than in the smaller ones [28,61,65,76,115]. 

6.4.2 Interpretation of Test Results 

Regan [102] represents the trend of the test results by an empirical fit curve as: 

T ex: 
1 

~ 

BS8110 [9] adopts the idea and the size effect is expressed as ( {I d/400)-1. 

(6.8) 

On the basis of linear elastic fracture mechanics (LEFM), Reinhardt [104] inter

pretes the trend to be inversely proportional to the square root of scale factor, (0- 1 / 2 . 

This arises from the considerations that the crack patterns in scaled beams are always 

similar but the crack length is scaled accordingly being directly proportional to the 

scale factor e. 
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In earlier work based on LEFM concept , Hawkin et al. [51] proposed that the 

ultimate shear strength of beams is inversely proportional to the three-fourth root of 

depth times width, (bh)-3/4. This theoretical relation to some extent agrees with the 

test results (Fig.6 .9). 

The non-linear fracture mechanics approach adopted by Bazant [12] (as discussed 

in previous section), produces the following expression for the mean ultimate nominal 

shear stress of reinforced concrete beams without web reinforcement [13]: 

r = 8f/P(12ffc + 3000vp/a5)/v{1 + d/(25da )} (6.9) 

where a = aid, the shear span to depth ratio for the case of concentrated. load, and 

a = L/4d for uniform load, L is the total span, p the longitudinal steel ratio, da is the 

maximum aggregate size of the concrete and le the cylinder strength in N/mm2 . The 

equation was obtajned from statistical analysis of about 300 shear tests in which the 

equation (6.6) is used to model the influence of the absolute size on the initiation of 

diagonal shear cracks. 

These experimental observations do not necessarily contradict the plasticity theory 

adopted in this thesis. It is realised that the size effect is important and may be 

accounted for within the effectiveness factor, 1/. An empirical study on the above 

mentioned experimental facts in relation to the effectiveness factor was made by Nielsen 

et al. [92]. It is found that 1/ varies inversely proportional to the square root of the 

absolute depth, h, which agrees ,'vith the considerations of the probability of occurence 

of an element containing a weakest link and with equation (6.9). However, so far 

we have not developed any expression to define the dependence of 1/ on the absolute 

depth. Nevertheless , the nondimensional formulation adopted in the present analysis 

is intended to account for the scale effect and to represent it by the empirical value 

1/. It is important to note that 1/ is not only dependent on size but a many other 

factors [17,92], and they are interdependent. Thus, it may well be possible to use the 

equation derived here by plasticity theory to predict the shear strength of a wide range 

of concrete beam with and without web reinforcement, provided that the effectiveness 

factor 1/ makes proper allowance for size and other effects. But it must be admitted 

6-12 



that plastic theory is not intended to describe brittle failure, and so will presumably 

be more reliable if the failure is reasonably ductile, i.e. for beams with appreciable web 

reinforcement. 

6.5 Concluding Remarks 

1. Different methods to interpret the size effect have been briefly discussed and the 

existing difficulties noted. Although BS8110 accepts the size effect as a function of the 

absolute depth, it is clear that the size effect on shear strength is not fully understood 

[101]. 

2. With the invention of a proper type of fracture mechanics, it seems possible to 

explain the size effect on the strength of concrete structures at failure if the failure is 

dominated by tensile strength [12,55]. However, the dimensional analysis of energy re

lease adopted by Bazant [13] based on fracture mechanics concept leads to just another 

form of empirical equation to fit the experimental data on shear strength of reinforced 

concrete beams. 

3. The importance of the size effect may be recognised within the theory of plas

ticity as adopted in this thesis. The higher range of the effectiveness factor obtained 

from smaller beams analysed in Section 6.2.3 is an example of the significance influence 

of the size effect. A value of v between 0.30 to 0.50 as determined in the previous 

chapters is thus a conservative estimate to include the size effect. 
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Fig.6.1 Kotsovos's postulated failure mode. 
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Fig.6.2 Test beams details: other dimensions are in Table 6.1. 
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Fig.6.6 Approximate deformation relation for concrete. 
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Fig.6.7 Stress distribution in a fictitious crack model by Hillerborg. 
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Fig.6.8 Crack band and tensile stress-strain relation for fracture process zone by Bazant. 

(a) Actual crack morphology: representative volume and width, (b) Crack band model, 

and (c) Piece-wise stress-strain relation. 
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Fig.6.9 Variation of shear strength with absolute depth. 
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Plate P6.1 Cracking patterns at failure of beams test series 1. 
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Table 6.1 Details of test beams 

Beam Overall Shear SSR Support PPRS Loading PPRL Middle CS 
Notation length span = a/h plate = Pl/h plate = P2/h span = e/h 

(mm) a,(mm) 2pl(mm) 2P2(mm) e(mm) 
A-T1 955 147 1.13 75 0.288 50 0.192 10 0.077 
A-T2 1445 147 1.13 75 0.288 50 0.192 500 3.846 -
B-T1 1090 200 1.54 75 0.288 65 0.250 10 0.077 
B-T2 1580 200 1.54 75 0.288 65 0.250 500 3.846 

Notes: Beam layout is as shown in Fig.6.2. Beam notation: A and B refer to 
shear span to depth ratio of 1.13 and 1.54 respectively, T1 is the loading to simulate a 
single-point load, and T2 is a conventional two-point loading. 

Table 6.2 Comparison of test results and predictions 

Beam Cube Measured Calculated, T / le Best N1ELSEN+ 
Nota.tion SSR Strength <I> Ult. Shear T/ le /I = 0.4 /I = 0.5 /I = 0.6 /I with 

leu(N/mm2
) Vu(kN) /I = 0.50 

A-T1 1.13 35.2 0.329 32.0 0.1343 0.0719 0.0899 0.1079 0.71 0.0947 
A-TI 1.13 35.2 0.329 25.8" 0.1083 0.0719 0.0899 0.1079 0.61 0.0947 
B-T1 1.54 39.1 0.296 22.0 0.0832 0.0549 0.0685 0.0824 0.61 0.0740 
B-T2 1.54 39.1 0.296 18.0 0.0681 0.0549 0.0685 0.0824 0.50 0.0740 

Notes: 

<I> = A,ly/bhle, le = 0.8/eu, A, = 79.2mm2, Iy = 495N/mm
2

, T = Vu/M 
• = crushing within middle span 

+ NIELSEN's equa.tion: T/ le = 0.5/1 [/1 + (SSR)2 - SSR] 
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CHAPTER 7 

CONCLUSIONS AND POTENTIAL 

AREAS FOR FUTURE RESEARCH 

7.1 Introduction 

In the preceding chapters, we have examined the following aspects of the applica

tion of the mechanism approach of rigid-plastic theory to reinforced concrete wall-beam 

structures loaded in-plane: 

1. Identifying the types of yield line in shear failure mechanisms and the factors 

that govern the formation of each type of yield line. 

2. A systematic application of rigid body plane motion principles to suit the 

fundamental assumptions of the rigid-plastic theory has been illustrated in Chapter 4, 

and 

3. Extension of the application of the theory to a number of special problems so 

as to show that the scope of the theory is not limited. For the first time, a kinematic 

approach has been applied in Chapter 4 and 5 to shear failure in deep beams with web 

openings in which the mechanism is found from a complex combination of plane rigid 

body motion. 

As a result of the research described in this thesis, a number of conclusions may be 

drawn and suggestions made with regard to the overall scope of the application of the 

kinematic approach of rigid-plastic theory to reinforced concrete wall-beam structures 

loaded in-plane. We can now discuss the general conclusions of the thesis and proceed 

to mention some aspects that warrant further research effort. 
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7.2 Conclusions 

1. A straight yield line in a mechanism is a special case of discontinuity lines of 

shear failure. It does not produce the least upper bound solution for beams reinforced 

with only one layer of main longitudinal steel or just top and bottom steel. It appears 

that the hyperbolic yield line produces the least upper bound for these details and most 

other cases. 

Introduction of the hyperbolic yield line, and treating the other two types as 

special cases in Chapter 3, enhances the capability of shear strength prediction by the 

mechanism approach. It is evident for a single yield line mechanism that the prediction 

is considerably improved and at minimum strength prediction the overall equilibrium 

of idealised blocks is satisfied. 

2. The proposed method of analysis is remarkably flexible. Contrary to the earlier 

upper bound solutions, the failure model can be extended to include more than one 

yield line , and hence the multiple rigid blocks idealisation, in a mechanism and more 

reinforcement may be allowed to cross the failure surface. For the first time deep beams 

with web openings are analysed by the kinematic approach and we have shown that 

the method leads to reasonably reliable predictions of load carrying capacity and the 

mechanism of failure. 

3. The limited shear tests on solid deep beams and deep beams with web openings 

carried out in this study, in Chapter 5, and other related data discussed in Chapter 

4, show general support for the rigid-plastic theoretical assumptions. The overall be

haviour of predicted mechanisms agree with the observed failure mechanisms. When 

we compared the details of the individual behaviour of the idealised rigid blocks motion 

of the prediction and the experimental tests, the motion agreed only in the order of 

magnitude. These types of observation are not really surprising in view of the idealised 

assumptions made in the theory which makes precise agreement between the theory 

and the tests unlikely. 

However, the strength prediction is in substantial agreement with the experimental 
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tests. A good strength prediction depends very much on a single empirical value of the 

effectiveness factor, v. Apart from the factors discussed in Chapter 3, the complexity 

of the mechanism and the size of structure influence the magnitude of this factor. A 

good value of v obtained from this study is somewhere between 0.30 and 0.60. The 

importance of v can be viewed as a safety factor to guard against the possiblity of 

overlooking the critical mechanism in an analysis. 

7.3 Potential Areas for Future Research 

1. Without any modification, the present algorithm of calculation procedure is 

limited to 

(i) horizontal and vertical steel reinforcement system, and 

(ii) solve a family of mechanisms at a time. 

It is, therefore, recommended as a priority to extend the formulation to take more 

general reinforcement layout. 

To ensure that the calculations can be made on many possible families of mech

anism for a new problem more efficiently, an interactive graphic approach is highly 

desirable. The ability to specify a new guessed mechanism on the screen using the 

display geometry will improve the hope that the critical mechanism for the problem in 

hand is not missed out. 

Overall improvement to the computer coding of the algorithm is needed in the 

geometric program before attempting to interface with graphic routine. It is also 

recommended to increase the number of variables that can be handled to make the 

program more flexible. The present coding of program arbitrarily limits the number of 

rigid blocks and yield lines to nine. 
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2. The importance of the tensile strength as a result of the addition of fibres into 

concrete has not been throughly verified with experimental results. Further research 

may lead to the determination of effective concrete tensile strength ratio, Vt, appropriate 

for this class of material. Early experimental tests indicate that the effort might be 

worthwhile. 

3. As evident from the examples on corbels and flexural beam failure, it is recom

mended that the approach developed in this thesis should be extended to other types 

of structure loaded in-plane. A particular structure in mind is reinforced concrete arch 

m embers where distinct yield zones exist at failure. 

4. Although no specific example is given, the provision to incorporate various load 

types is already included. So far we have dealt only with concentrated loads and the 

opportunity to research into the effect of different types of proportional loading on 

strength is worthy of consideration. 

7- 4 



REFERENCES 



--
____________________________________________________________ ~references 

REFERENCES 

Notes: The following references are referred without giving specific num
ber but others with number (or referred by authors' name and year in 
figures). 

BS1881, British Standards Institution, 1983, Relevant Parts. 

BS882, British Standards Institution, 1983, "Aggregates from Natural Sources for 
Concrete" . 

BS4449, British Standards Institution, 1969, "Hot Rolled Steel Bars for the Rein
forcement of Concrete" . 

NAG - Numerical Algorithms Group Sofware Library. 

[1] Ahmad, S.H. and Shah, S.P., "Stress-Strain Curves of Confined Concrete", J. 
ACI, Vo1.79, No.6, Nov./Dec. 1982, pp.484-490. 

[2] ACI Committee 544, "State-of-the-art Report on Fiber Reinforced Concrete" , 
Conc. Int., May 1982, pp.9-30. 

[3] ACI 318M-83, Building Code Rquirements for Reinforced Concrete, American 
Concrete Institute, Detroit, 1983, 38pp and 50pp. 

[4] ASCE-ACI Committee 426, "The Shear Strength of Reinforced Concrete 
Members", J. Struct. Div., ASCE, Vo1.99, No.ST6, June 1973, pp.1091-1187. 

[5] ACI-ASCE Committee 326, "Shear and Diagonal Tension", Proc. ACI, 1962: 
Pt.1,Jan., pp.1-30; Pt.2, Feb., pp.277-333. 

[6] Andreasen, B.S. and Nielsen, M.P., "The Bond Strength of Reinforcing Bars at 
Supports." Int. Symp. on Fundamental Theory of Reinforced and Prestressed 
Concrete, Nanjing, China, Sept. 1986, pp.387-397. 

[7] Ashby, M.F. and Jones, D.R.H., "Engineering Materials 2: an introduction to 
microstructures, processing and design" , Chap.18, Pergamon Press, 1986. 

[8] Austriaco, N.C., Lee, S.L. and Pama, R.P., "Inelastic Behaviour of Ferrocement 
Slabs in Bending", Mag. of Cone. Res., Vo1.27, No.93, Dec. 1975, pp.193-209. 

[9] BS8110:1985, "Structural Use of Concrete" , British Standards Institution, Pt.1: 
Code of Practice for Design and Construction, 1985. 

[10] Baker, A.L.L. , "Limit-State Design of Reinforced Concrete", Chapter 6, Cement 
and Concrete Association, 1970. 

[11] Batchelor, B. deV and I\wun , M. , "Shear in R.C. Beams Without \-Veb 
Reinforcement", J. Struct. Div. , ASCE, Vo1.107, No.ST5 , May 1981 , pp .907-921. 

[12J Bazant, Z.P., "Size Effect in Blunt Fracture: Concrete, Rock, Metal" , J. Eng. 
Mech. Div., ASCE, Vol.110, No.EM4, April 1984, pp.518-535. 

1 



___________________________________________________________ references 

[13] Bazant, Z.P. and Kim, J.K., "Size Effect in Shear Failure of Longitudinal 
Reinforced Beams", J. ACI, Sept./Oct. 1984, pp.456-468. 

[14] Bazant, Z.P. and Oh, B.H., "Crack Band Theory for Fracture of Concrete", 
Materials and Structures, RILEM, Vol.16, No.93, 1983, pp.155-177. 

[15] Besser, 1.1. and Cusens, A.R., "Reinforced Concrete Deep Beam Panels with 
High Depth/Span Ratios", Technical Note 421, Proc. ICE, Pt.2, June 1984, 
pp.265-278. 

[16] Birkeland, P.W. and Birkeland, H.W., "Connection in Precast Concrete 
Construction", J. ACI, Vo1.63, No.3, March 1966, pp.345-368. 

[17] Braestrup, M.W., "Plastic Analysis of Shear in Reinforced Concrete", Mag. of 
Cone. Res., Vo1.26, No.89, Dec. 1974, pp.221-228. 

[18] Braestrup, 1I.W., Discussion of paper by Kemp and AI-Safi, Mag. of Cone. 
Res., Vo1.34, No.1l9, June 1982, pp.100-103. 

[19] Braestrup, M.W., "Effect of Main Steel Strength on the shear Capacity of 
Reinforced Concrete Beams with Sturrups", Structural Research Laboratory, 
Technical University of Denmark, Copenhagen, Report No.RllO, 1979, 49pp. 

[20] Brock, G., Discussion of 'The Riddle of Shear Failure and Its Solution' by G.N.J. 
Kani, J. ACI, Vo1.61, No.12, Dec. 1964, pp.1587-1590. 

[21] Broms, B.B. , "Shear Strength of Reinforced Concrete Beams", J. Struct. Div., 
ASCE, No.ST66, June 1969, pp.1339-1358. 

[22] CEB-FIP: Model Code for Concrete Structures, English Edition, C and CA, 
London, 1978, 200pp. 

[23] CEB-FIP:International Recommendations for the Design and Construction of 
Concrete Structures, Appendix 3, C and CA, 1970. 

[24] CIRIA Guide 2, "The Design of Deep Beams in Reinforced Concrete" , Over Arup 
and Partners, and Construction Industry Research and Information Association, 
London, 1977(reprint 1984), 131pp. 

[25] Calladine, C.R., "A Plastic Theory for Collapse of Plate Girders Under 
Combined Shearing Force and Bending Moment", The Structural Engineer, 
Vo1.51, No.4, April 1973, pp.147-154. 

[26] Calladine, c.R., "Plasticity for Engineers", Ellis Horwood series Engineering 
Science, 1985, 318pp. 

[27] Campbell, T .I. , Chitnuyanondh, L. and Batchelor, B deV. , "Rigid Plastic 
Theory V Truss Analogy Method for Calculating the Shear Strength of R.C. 
Beams" , Mag. of Conc. Res., Vo1.32, No.llO , March 1980, pp.39-46. 

[28] Chana, P.S., "Some Aspects of Modelling the Behaviour of Concrete Under 
Shear Loading", C and CA, Technical Report 543, July 1981 , 22pp. 

2 



___________________________________________________________ references 

[29] Chen, W.F. and Drucker, D.C., "Bearing Capacity of Concrete Blocks or Rock", 
J. Eng. Mech. Div., ASCE; Vo1.95, No.EM4, Aug. 1969, pp.955-978. 

[30] Clark, L.A. and Thorogood, P., "Shear Strength of Concrete Beams in Hogging 
Regions", Proc. ICE, Pt.2, 79, June 1985, pp.315-326. 

[31] Collins, P.M. and Mitchell, D., "Shear and Torsion Design of Prestressed and 
Non-Prestressed Concrete Beams", J. PCl, Sept./Oct. 1980, pp.32-100. 

[32] Collins, P.M. and Mitchell, D., "A Rational Approach to Shear Design - The 
1984 Canadian Code Provision", J. ACI, Nov./Dec. 1986, pp.925-933. 

[33] Collins, M.P., "Towards a Rational Theory for R.C. Members in Shear", J. 
Struct. Div., ASCE, Vo1.104, No.ST4, April 1978, pp.649-666. 

[34] Craig, R.T. , "Structural Application of Reinforced Fibrous Concrete", Conc. 
Int., Dec. 1984, pp.28-32. 

[35] Crist, R.A., "Static and Dynamic Shear Behaviour of Uniformly Loaded 
Reinforced Concrete Deep Beams", PhD Thesis, Univ. of New Mexico, U.S .A. , 
1971. 

[36] Cusens, A.R. and Besser, 1.1., "Shear Strength of Reinforced Concrete 
Wall-Beams Under Combined Top and Bottom Loads", The Structural Engineer , 
V63B, No.3, Sept. 1985, pp.50-56. 

[37] de Paiva, H. A. R. and Siess, C. P., "Strength and Behaviour of Deep Beams in 
Shear", J. Struct. Div., ASCE, Vo1.91, No.ST5, Oct. 1965, pp.19-41. 

[38] Desayi, P., "A Method for Determining the Shear Strength of Reinforced 
Concrete Beams with Small av / d Ratios", Mag. of Cone. Res., Vo1.26, No.S6, 
March 1974, pp.29-38. 

[39] Dong Bi and Chen Zi Ge, "Behaviour and Strength of Deep Reinforced Concrete 
Beams Under Uniformly Distributed Loads", Int. Symp. on Fundamental 
Theory of Reinforced and Prestressed Concrete, Nanjing, China, Sept. 1986, 
ppA 70-4 76. 

[40] Drucker, D.C., "On Structural Concrete and the Theorems of Limit Analysis", 
IABSE Pub. , Vo1.21, 1961, ppA9-60. 

[41] Drucker, D.C., Prager, \V. and Greenberg, H.J., "Extended Limit Design 
Theorems for Continuous Media", Quart. Appl. Math., Vo1.9, NoA, 1952 , 
pp.381-389. 

[42] Exner, H., "On the Effectiveness Factor in Plastic Analysis of Concrete", IABSE 
Colloquium on 'Plasticity in Reinforced Concrete', Final Report, Copenhagen , 
1979, pp.35-42. 

[43J Fattuhi, N.L, "SFRC Corbel Test", ACI Struct. J., March-April 1987. 
pp.119-123. 

3 



___________________________________________________________ references 

[44] Fox, C., "Calculus of Variations", Oxford Press, 1950. 

[45] Fenwick, R.C. and Paulay, T., "Mechanism of Shear Resistance of Concrete 
Beams", J. Struct. Div., ASCE, Vo1.94, No.STI0, Oct. 1968, pp.2325-2350. 

[46] Fereig, S.M. and Smith, K.N., "Indirect Loading on Beam with Short Shear 
Spans", J. ACI, May 1977, pp.220-223. 

[47] Grob, J. and Thurlimann, B., "Ultimate Strength and Design of R.C. Beams 
Under Bending and Shear", IABSE Memories, Vo1.36-II, 1976, pp.l05-120. 

[48] Hague, M., Rasheedduzzafar and AI-Tayyib, A.H.J., "Stress Distribution in 
Deep Beams with Web Openings", J. Struct. Eng., ASCE, May 1986, 
pp.1147-1165. 

[49] Hamadi, Y.D. and Regan, P.E., "Behaviour in Shear of Beams with Flexural 
Cracks", Mag. of Conc. Res., Vo1.32, No.111, June 1980, pp.67-78. 

[50] Handbook on the Unified Code for Structural Concrete (CPllO:1972), C and 
CA, 1978, 153pp. 

[51] Hawkins, N.~1., Wyss, N.A. and Mattock, A.H., "Fracture Analysis of Cracking 
in Concrete Beams", J. Struct. Div. , ASCE, Vol.103, No.ST5, May 1977, 
pp.l015-1030. 

[52] Heyman, J. ~Plastic Design of Frames: Vo1.2 - Applications", Chap. 4, CCP, 
1971. 

[53] Hofbeck, J.A , Ibrahim, 1.0 and Mattock, A.H., "Shear Transfer in Reinforced 
Concrete", J. ACI, Feb. 1969, pp.1l9-128. 

[54] Hillerborg, A., "Results of Three Comparative Test Series for Determining the 
Fracture Energy G F of Concrete", Materials and Structures, RILEM, Vol.l8, 
No.107, 1985, ppA07-413. 

[55] Hillerborg, A., "The Theoretical Basis of a Method to Determine the Fracture 
Energy G F of Concrete", Materials and Structures, RILEM, Vol.l8, No.106 , 
1985, pp.291-296. 

[56] Hillerborg, A., "Analysis of One Single Crack". In 'Fracture Mechanics of 
Concrete', ed. F.H.Wittmann, Elsevier, Amsterdam, 1983, pp.223-249. 

[57] Jensen, B.C., "Line of Discontinuity for Displacements in the Theory of 
Plasticity of Plain and Reinforced Concrete", Mag. of Conc. Res., Vo1.27., 
No.92, Sept. 1975, pp.143-150. 

[58] Jensen, B.C., "Reinforced Concrete Corbels - Some Exact Solutions", IABSE 
Colloquium on 'Plasticity in Reinforced Concrete' , Final Report, Copenhagen. , 
1979, pp.293-300. 

[59] Jensen, J.F .. "Plastic Solutions for Reinforced Concrete Disks and Beams" 
(In Danish). Technical University of Denmark, Department of Structural 

4 



__________________________________________________________ ~references 

Engineering, Copenhagen, Report No.R141, 1981, 153pp. A summary in Mag. 
of Conc. Res., Vo1.34, No.119, June 1982, pp.100-103. 

[60] Kani, C.N.J., "The Riddle of Shear Failure and Its Solution", J. ACI, Vo1.61 , 
No.4, April 1964, pp.441-467. 

[61] Kani, C.N., "How Safe Are Our Large R.C. Beams 7", J. ACI, Vo1.64, No.3, 
March 1967, pp.128-141. 

[62] Kani, M.W. , Huggins, M.W. and Wittkopp, R.R., "Kani On Shear in Reinforced 
Concrete", Department of Civil Engineering, University of Toronto, Canada, 
1979, 225pp. 

[63] Kemp, K.O. and Al-Safi, M.T., "An Upper-Bound Rigid Plastic Solution for 
the Shear Failure of Concrete Beams Without Shear Reinforcement", Mag. of 
Conc. Res., Vo1.33, No.115, June 1981, pp.96-102. 

[64] Knott, J.F., "Fundamentals of Fracture Mechanics", Butterworths, London, 
1973. 

[65] Kong, F.K. and Kubik, L.A., "Tests on Reinforced Concrete Deep Beams with 
Web Openings", Technical Report CUED /C-Struct./TR80(1979), Department 
of Engineering, University of Cambridge, 1979. 

[66] Kong, F.K, Robin, P.J. and Cole, D.F., "Web Reinforcement Effects on Deep 
Beams", J. ACI, Dec. 1970, pp.1010-1017. 

[67] Kong, F.K., Robin, P.J., Singh , A. and Sharp, C.R., "Shear Analysis and Design 
of Reinforced Concrete Deep Beams", The Structural Engineer, Vo1.50, No.10, 
Oct. 1972, pp.405-409. 

[68] Kong, F.K. and Robins, P.J., "Web Reinforcement Effects on Lightweight 
Concrete Deep Beams", J. ACI, July 1971, pp.514-520. 

[69] Kong, F.K. and Sharp, C.R., "Structural Idealisation for Deep Beams with vVeb 
Openings", Mag. of Conc. Res., Vo1.29, No.99, June 1977, pp.81-91. 

[70] Kong, F.K. et al., "Strength and Stabilty of Slender Concrete Deep Beams" , 
The Structural Engineer, V64B, No.3, Sept. 1986, pp.49-56. 

[71] Kotsovos, M.D., "Mechanism of Shear Failure", Mag. of Conc. Res., Vo1.35, 
No.123, June 1983, pp.99-106. 

[72] Kotsovos, M.D., "Behaviour of R.C. Beams with a Shear Span to Depth Ratio 
Between 1.0 and 2.5", J. ACI, May/June 1984, pp.279-286. 

[73] Kubik, L.A. , "Strength and Serviceability of Reinforced-Concrete Deep Beams" , 
PhD Thesis , University of Cambridge, 1978. 

[74] Kupfer, H., Hilsdorf, H.K. and Rusch, H., "Behaviour of Concrete Under Biaxial 
Stresses", J. ACI, Vo1.66, No.8, Aug. 1969, pp.656-666. 

5 



__________________________________________________________ ~references 

[75] Lampert, P., Thurlimann, B., "Ultimate Strength and Design of Reinforced 
Concrete Beams in Torsion and Bending", lABSE Pub. Vo1.31-1, 1971, 107pp. 

[76] Leonhardt, F. and Walther, R., "The Stuttgart Shear Tests 1961", C and CA, 
Library Translation No.ll1, London, England. 

[77] MacGregor, J . G., "Challenge and Changes In the Design of Concrete 
Structures" , Cone. Int., Feb. 1984, pp.48-52. 

[78] Manuel, R.F., Slight, B.W. and Suter, G.T., "Deep Beam Behaviour Affect by 
Length and Shear Span Variations", J. AC1, Dec. 1971, pp.954-958. 

o 
[79] Marti, P., "Basic Tc;1s of Reinforced Concrete Beam Design", J. AC1, Jan./Feb. 

1985, pp.46-56. 

[80] Mattock, A.H., Discussion of paper by Marror and Viest, J. AC1, March 1957, 
pp.1352-1353. 

[81] Mattock, A.H., Johal, 1. and Chow, H.C., "Shear Transfer in Reinforced 
Concrete with Moment or Tension Acting Across the Shear Plane", J. PCI, 
Vo1.20, NoA, July-Aug. 1975, pp.76-93. 

[82] Millard, S.G, and Johnson, R.P., "Shear Transfer Across Cracks in Reinforced 
Concrete Due to Aggregate Interlock and Dowel Action", Mag. of Conc. Res ., 
Vo1.36, No.126, March 1984, pp.9-21. 

[83] Millard, S.G, and Johnson, R.P., "Shear Transfer in Cracked Reinforced 
Concrete", Mag. of Conc. Res., Vo1.37, No.130, March 1985, pp .3-15. 

[84] Morley, C.T., "Yield-Line Theory for Reinforced Concrete Slabs at Moderately 
Large Deflections", Mag. of Conc. Res ., Vol.19, No.51, Dec. 1967, pp.211-222. 

[85J Morley, C.T., Discussion of paper by Braestrup, Mag. of Cone. Res., Vo1.27, 
No.93, Dec. 1975, pp.247-248. 

[86] Morley, C.T., "Least Plastic Upper Bounds - The 'Equilibrium Method' 
Revisited", ~JIech. ColI., Eng. Dept., University of Cambridge, Feb. 1987. 

[87] Mphonde, A.G. and Frantz, G.C., "Shear Tests of High- and Low-Strength 
Concrete Beams Without Stirrups", J. ACI, July/Aug. 1984, pp.350-357. 

[88] Narayanan, R. and Darwish, LY.S., "Use of Steel Fibers as Shear 
Reinforcement", ACI Struct. J., May-June 1987, pp.216-227. 

[89] Neville, A.M. and Brooks, J.J., "Concrete Technology", Longman, 1987, 438pp. 

[90] Nielsen, M.P., "Limit Analysis and Concrete Plasticity", Prentice-Hall, 1984, 
420pp. 

[91] Nielsen, M.P., "On the Strength of Reinforced Concrete Discs", Acta Mechanica 
Scandinavica, Copenha.gen, 1971, 261pp. 

5 



__________________________________________________________ ~references 

[92] Nielsen, M.P., Braestrup, M.W., Jensen, B.C., and Bach, F., "Concrete 
Plastic: Beam Shear, Shear in Joints and Punching Shear", Structural Research 
Laboratory, Technical University of Denmark, Special Publ. 1978, 129pp. 

[93] Nielsen, M. P. and Braestrup, M. W., "Shear Strength of Prestressed Concrete 
Beams Without Web Reinforcement", Mag. of Conc. Res., Vol.30, No.104, Sept. 
1978, pp.119-128. 

[94] Nielsen, M.P. and Braestrup, M.vV., "Plastic Shear Strength of R.C. Beams", 
Structural Research Laboratory, Technical University of Denmark, Report 
No.R73, 1976, 99pp. 

[95] Nielsen, M.P. , Braestrup, M.W. and Bach, F. , "Rational Analysis of Shear in 
Reinforced Concrete Beams", IABSE Pub., P-15/78, 1978. 

[96] Oesterle, J.D.,et al., "Web Crushing of Reinforced Concrete Structural Walls" , 
J. ACI, May/June 1984, pp.231-241. 

[97] Palaskas, M.N., Attiobe, E .K. and Darwin, D., "Shear Strength of Lightly 
Reinforced T-Beams", J. ACI, Nov./Dec. 1981, pp.447-455. 

[98] Popovic, S. , "A Numerical Approach to the Complete Stress-Strain Curve of 
Concrete", Cement and Concrete Res., Vo1.3, 1973, pp.583-599. 

[99] Rajagopalan, K.S. and Ferguson, P.M., "Exploratory Shear Tests Emphasing 
Percentage of Longitudinal Steel", J. ACI, Vol.65, No.8, Aug. 1968, pp.633-638. 

[100] Ramakrishnan, V. and Ananthanarayana, Y., "Ultimate Strength of Deep 
Beam$ in Shear", J. ACI, Feb. 1968, pp.87-93. 

[101] Regan, P.E. , "Shear" Current Practice Sheet, No.105, Concrete, Nov. 1985, 
pp.25-26. 

[102] Regan, P.E., "Safety III Shear: CP114 and CPll0", Concrete, Oct. 1976, 
pp.31-33. 

[103] Reinhardt, H.W., "The Role of Fracture Mechanics in Rational Rules for 
Concrete Design", IABSE Periodica, 1/1986, Feb. 1986, 15pp. 

[104] Reinhardt, H.W., "Similitude of Brittle Fracture of Structural Concrete" , 
IABSE Adv. CoIl. on Advanced Mechanics of R.C. , Delft 1981, pp.175-184. 

r), 

[105] Rogowsky, D.M. and MacGregor, J.G., "Design of Re#orced Concrete Deep 
Beams", Conc. Int. , Aug. 1986, pp.49-58. 

[106] Shah, S.P., and Rangan, B.V. "Effect of Reinforcements on Ductility of 
Concrete", J. Struct. Div., ASCE, No.ST6, June 1970, pp.1167-1184. 

[107] Shanumugam, N.E. and Swaddiwudhipong, S., "The Ultimate Load Behaviour 
of Fibre Reinforced Deep Beams" , The Indian Conc. J., Vol.58, No.8, Aug. 
1984, pp.207-211 & 218. 

7 



____________________________________________________________ ~references 

[108] Smith, K.N., and Fereig, S.M., "Mechanism of Shear Transfer in Reinforced 
Concrete Beams", Canadian J. of Civil Eng., VolA, June 1977, pp.145-152. 

[109] Smith, K.N. and Vantsiotis , A.S., "Shear of Deep Beams", J. ACI, Vo1.79, NoA, 
July I Aug. 1982, pp.280-287. 

[110] Subedi, N.K., Vardy, A.E. and Kubota, K., "Reinforced Concrete Deep Beams -
Some Test Results", Mag. of Conc. Res., Vo1.38, No.137, Dec. 1986, pp.206-219. 

[111] Swamy, R.N. and Andriopoulos, A.D., "Contribution of Aggregate Interlock 
and Dowel Forces to the Shear Resistance of Reinforced Beams with Web 
Reinforcement", ACI Pub., SP-42, 1974, pp.129-166. 

[112] Swamy, R.N. and Bahia, H.M., "The effectiveness of Steel Fibres as Shear 
reinforcement", Conc. Int., Vo1.7, No.3, March 1985, pp.35-40. 

[113] Taub, J. and Neville, A.M-., "Resistance to Shear of Reinforced Concrete Beams: 
Pt.1 - Beams Without Web Reinforcement", J. ACI, Aug. 1960, pp.193-220. 
"Pt.2 - Beams with Vertical Stirrups", J. ACI, Sept. 1960, pp.315-336. 

[114] Taylor, H.P.J., "The Fundarnental Behaviour of Reinforced Concrete Beams in 
Bending and Shear", ACI Pub., SP-42, 1974, ppA3-77. 

[115] Taylor, H.P.J., "Shear Strength of Large Beams", J. Struct. Div., ASCE, 
No.ST11, Nov. 1977, pp.2473-2490. 

[116] Taylor, A.T. and Maurer, G.K., "Short-term Stress Relaxation of Concrete" , 
Mag. of Conc. Res., Vo1.25, No.84, Sept. 1973, pp.123-135. 

[117] Teychenne, D.C., Franklin, R.E. and Erntroy, H.C., "Design of Normal Concrete 
Mixes" , BRE, Dept. of Enviroment, London, 1975, 31pp. 

[118] Thurlimann, B., "Shear Strength of Reinforced and Prestressed Concrete: CEB 
Approach", ACI Pub., SP-59, 1979, pp.93-115. 

[119] Thurlimann, B., "Plastic Analysis of Reinforced Concrete Beams" , IABSE 
Colloquium, Introductory Report, Copenhagen, 1979, pp.71 -90. 

[120] Vecchio, F. and Collins , M.P. , "The Modified Compression Field Theory for 
Reinforced Concrete Elements Subjected to Shear", J . ACI, Mac./ April 1986, 
pp.219-231. 

[121] Viest, I.M. , Discussion of paper by J.A. Hanson, J. ACI, March 1959, 
pp.1062-1065. 

[122] Walraven, J.C. and Reinhardt, H.W., "Theory and Experiments on the 
Mechanical Behaviour of Cracks in Plain and Reinforced Concrete Subjected 
to Shear Loading", Heron, Vo1.26, No.1A, 1981, 33pp. 

[123] Williams, A. , "The Bearing Capacity of Concrete Loaded Over a Limited Area", 
C and CA, Technical Report 526, Aug. 1979, 70pp. 

8 



_________________________________________________________ appendices 

APPENDICES 

A: (a) Properties of a Hyperbolic Yield Line - TYPE I. 

A: (b) Dissipation in Yield Line TYPE I. 

B: Properties of Yield Line TYPE 11. 

C: Derivation of Euler Equation for an Integral Function. 

D: The Work Equations for a Single Yield Line Model - Yield Lines TYPE I and 11. 

Figures: Fig.AI, Fig.BI and Fig.DI 



______________________________________ ----------------------appendices 

APPENDIX A 

(a) Properties of a Hyperbolic Yield Line - TYPE I 

Consider a rectangular hyperbola, xy = constant, which divides two rigid regions 

I and II as shown in Fig.AL The line is an idealised plastic deformation zone. It 

is assumed that the rigid region I moves and the rigid region II remains stationary. 

Fig.Al( a) shows a negative relative rotation and Fig.Al(b) is a positive relative rotation 

case about the instantaneous centre O. 

Referring to Fig.Al(a), the property of the rectangular hyperbola gives OP = PS 

and OQ = Q R. Hence the bisector line of angles OQ R and 0 PSis perpendicular to 
p,"5 f 

the X -axis. As discussed in Section 3. 1/the direction of first principal stress in a yield 

line is always along the bisector line of angle between the normal and the displacement 

direction. Thus in the case of Fig.AI( a) the direction of the first and the second 

principal stresses are parallel to the Y and X axes respectively. 

A similar argument applies to the case with a positive relative rotation in 

Fig.Al(b), where the direction of the first and the second principal stresses are parallel 

to the X and Y axes respectively. 

APPENDIX A 

(b) Dissipation in Yield Line TYPE I 

The formulations to follow are based on the modified notations and the additional 

features: 

(i) The superscripts for local axis coordinates are omitted, see Fig.AI, and 

I 

) 
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(ii) Both contributions by the first and the second principal stresses are included. 

Expressing the concrete tensile strength as a fraction of compressive strength , 

0"1 = pdt = vdc where Pt is the effectiveness factor in tension and Vt is the 

effective tensile strength ratio. A value of Vt = O.IOv is suggested for the analysis 

if a better value is not available, following from Pt = v and It = O.IOIc but other 

Vt = O. 

Substituting the relevant terms into equation (3. 7(b) ). we have an expression for 

a total energy dissipation in the yield line PQ in Fig.Al: 

w = J ~vIc8(1 - cos,)ds + J ~vdc8(1 + cos,)ds (AI) 

PQ PQ 

where b is the thickness of concrete element participating in failure and the angle I 

varies from 0 to 21r which depends on the position of R( x, y) and the direction of relative 

rotation TJ. 

Case 1: Block I moves relative to block 11 and TJ < 0, as shown in Fig.Al(a). 

From geometry, we have these relationships: 

, = 2f3 or cos, = (1- 2sin2 f3) 

dy y 
-=--
dx x 

and 

By putting 8 = r ITJI, K1 = ~v Ic ITJI and K2 = ~vdc ITJI and substituting the terms into 

equation (AI), we have 

2 
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Inserting the limits and simplifying for the total energy cUssipation over the effective 

length of yield line: 

YI Xl 

W = Kl j(-2y )dY + Kz j(2X )dx 

Y2 X2 

= Kl(Y~ - yi) + Kz(xi - x~) (A2) 

Noting that the dissipation is a positive quantity, therefore only the magnitude of the 

terms in brackets is relevant. 

Case 2: Block I moves relative to block II and 'rJ > 0, as shown in Fig.Al(b). 

From the geometry of the figure we have 'Y = (1r + 2/3) or cOS'Y = 2 sinz /3 -1, and other 

expressions are similar to previous case. The total energy cUssipation is thus, 

and for the limits considered in Fig.A1(b), the expression reduces to: 

X l YI 

W = Kl j(2x)dx + Kz j(-2y )dy 
(A3) 

Again only the magnitude of the terms in brackets is relevant in the internal dissipation 

expressIOn. 

Notice that the dissipation is expressed in terms of the projection length of a yield 

line on to one of the local axes. The effective axis is determined by the direction of the 

relative rotation, c.f. equations (A2) and (A3). The two cases can be simply expressed 

as one equation which takes into account the direction of relative rotation: 

3 
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APPENDIX B 

Properties of Yield Line TYPE 11 

In a special case where the instantaneous centre of rotation lies inside or on the 

limiting circle (Section 3.2.3) the hyperbolic yield line is not permissible. The new 

failure zone is then idealised as a set of two straight lines where both meet at the 

instantaneous centre, as shown in Fig.Bl. The crushing and separation zones are now 

considered as a uniform straining zone of yielding material or yield lines bounded by 

rigid blocks P and Q. The instantaneous centre is at 0'. The triangular straining zones 

0' AB and 0' CD in Fig.B 1 are only permissible if the rigid blocks P and Q, relatively 

rotate about 0'. 

Assuming the boundary conditions to the rigid blocks are satisfied and if a relative 

rotation T/( < 0) of rigid block P to Q is imposed then the boundary 0' A moves to 0' A' 

and 0' C moves to 0' C'. 

Within the zone 0' AA' (Fig.Bl), crushing occurs with principal strain rate zero 

along 0' A and across 0' A varying linearly from zero at 0'. The strength v fe develops 

normal to 0' A, and the work done is the total force bv feL2 on this zone multiplied by 

the average crushing distance T/L 2/2, so that 

I.e. a total dissipation rate in a compression-state yield line of length L 2 • 

Similarly, in the tensile zone O'CC', the work done is 

(Bl) 

(B2) 

I.e. a total dissipation rate in a tensile-state yield line of length L 1 . If 0"1 = pdt = 0, 

then the dissipation in a tensile-state yield line disappears. 

The reverse stress-state in yield line is true for a T/ > O. 

4 
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APPENDIX C 

Derivation of Euler Equation for an Integral Function 

The integral function under consideration is 

82 

10(1') = J c(e, 1', r')d() 

82 

= J 1'( Jr2 + (1")2 + ]{r')d() 
81 

where ]{ = + hl 
TJ 

(Cl) 

The problem of the calculus of variations is to decide what function l' must be in 

order that 10(1') may be stationary for small variations of the curve r(e). Effectively, 

we have to determine an infinite number of values of l' in the ranges of e. However, 

the present problem is the first variation and it satisfies the first theorem which may 

be stated as follows, see Fox, C. [44], 

82 

The integral J c(e, 1', r')de, whose end points are fixed, is stationary for weak vari-
81 

ation if l' satisfies the differential equation: 

oC _ ~ (oC) _ 0 
Or de or' -

Using equation (Cl) , thus 

and 

oC 
or 

- - + l' oC {rr' ]{ } 
or' - Jr2 + (1")2 

d (OC) [1" 1"1'2 1 
de or' = )1'2 + (1")2 - {1'2 + (1")2} ~ 1" 

l' rr "]{' 
[ 

,2 1 + - 3 l' + l' 
)1'2 + (1")2 {r2 + (1")2} 2 

5 

(C2) 
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Substi tu ting into equation (C2), we find the Euler equa tion of the integral function 

as follow: 

rr" - 3(r'? - 2r2 = 0 (C3) 

where r = J(B), r' = dr/dB and r" = ~r/dB2. Notice that the equation (C3) is 

independent of the direction of the relative rotation as defined by K. 

APPENDIX D 

The Work Equations for a Single Yield Line 

Model - Yield Line TYPE I and TYPE 11 

A typical half symmetry of a simply supported wall-beam with two vertical point 

loads is considered in Fig.Dl. Only a single layer of horizontal steel is provided and 

placed at Ys with respect to the reference axis . Zero tensile strength is assumed in the 

following formulation. 

An assumed family of mechanisms with yield line TYPE I is shown in Fig.Dl(a) 

and the relative rotation of rigid block I to II is 7]. The instantaneous centre is at 

(Xo, Yo) where it coincides with the origin of the local axis X' - Y'. A rectangular 

hyperbola x ' y' = constant in a local axes system is a yield line that passes through 

points l( Xl , yd and 2( X2, Y2). The location of local axes is defined by three shift 

parameters X o, Yo and ao. 

Using the properties of yield line TYPE I and notation in Fig.Dl(a), the expression 

for the rate of energy dissipation plastically within the failure zone is: 

(Dl) 

6 
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The expression assumed that the effective component of compression stress is on 

X'-axis in which either the instantaneous centre is within the stationary block and 

Tl < 0, or the instantaneous centre is within the moving block when Tl > 0. For 

convenience the member overall depth h is taken to be unity. The external work is now 

that done by the upward reaction, since block II is taken as not moving, and is 

WE = V I(Xo - xs)IITlI (D2) 

where Xs is the position of the vertical load with respect to the reference axis. Notice 

that a vertical motion can be superposed to satisfy the boundary condition. 

Equating the internal dissipation of energy to the work done by external load, 

W 1= WE and substituting T = V/bh, cl> = Asfy/bhfe, we have 

!...-=~ (x~2_x;2) + cl> I (Yo-Ys) I 
fe 2 (Xo - xs) (Xo - xs) 

(D3) 

where (x~ 2 - x; 2) depends on the shift parameters X o , Yo and a o . Thus equation (D3) 

is equivalent to 

(D4) 

It is a function of the two independent variables, since the axis rotation a o is implicitly 

expressed in terms of Xo and Yo, equation (3.19b). 

In a general configuration, the term (x~ 2 - x; 2) can be evaluated in term of global 

coordinates as follows: 

(x~ 2 _ x; 2) = rrc 2 
- 2Xo (XC2 + eSC) - 2Yo(eS2 + XSC) 

+ 2rSC + AS2 
(D5a) 

where we introduce the notations, 

x = (Xl - X2) 

S = sinao C = cosao 

Similarly when the effective component of compression stress in yield line is on the 

yl-axis, that is 

(Y~ 2 _ Y~ 2) = rrs2 
_ 2Xo(XS2 - eSC) - 2Yo(eC2 - XSC) 

- 2rSC + AC2 

7 
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A set of X o , Yo and 0'0 where 0 ::; 0'0 ::; 2n is the solution to equation (D4) . Thus 

a wide range of these pattern parameters is possible for the mechanisms of the same 

family. Imposing the geometrical constraint for a permissible hyperbola (see Section 

3.3.2), then a search for a best solution is simplified. The least upper bound solution 

for the family of mechanisms is found by minimizing the pattern parameters. 

If a single layer of the reinforcement bar is sufficiently strong, then the coordinate 

(X 0, Yo ) must be situated along the level of reinforcement. In this case the only variable 

In another situation where the instantaneous centre (Xo, Yo) is inside (or on) the 

limiting circle Fig.Dl(b) , the yield line TYPE II is found at mechanism. The mechanism 

is a typical rotational mode where the yield line has a kink at the instantaneous centre 

of relative rotation. Assuming no contribution from tensile strength and the top portion 

of yield line is in compression for block I rotates relative to block II by 'rJ < 0, therefore 

the new rate of dissipation is: 

The notations refer to' Fig.Dl(b). 

The external work is similar to equation (D2) and hence the new work equation 

IS: 

(D7) 

Again if we express the work equation as a functional relation then equation (D7) 

is equivalent to equation (D4) and a minimum upper bound solution is found by opti

mizing the pattern parameters Xo and Yo' 

It is clear that the absolute value of relative displacement, and indeed the Jriag-

nitude of the velocity, is in any case irrelevant to calculation, as seen from equations 

(D3) and (D7). The problem in hand, therefore, is to determine the relative position of 

the instantaneous centre of relative rotation and the corresponding direction of relative 

rotation, so that an appropriate projection of yield line is chosen in the calculation. 

8 
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Fig.Al Properties of a rectangular hyperbola and yield line TYPE I 

( - Part I moves relative to II). 

9 



__________________________________________________________ appendices 

0(0,0) x 

uniform 
stra ining 
zone 

Fig.Bl Assumed uniform straining zones in yield line TYPE n. 
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Fig.Dl Idealised shear mechanism. 


