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Summary 

This thesis covers the development of a series of new methods and the application of 

adaptive filter theory which are combined to produce a generalised adaptive filter system 

which may be used to perform such tasks as pattern recognition. Firstly, the relevant 

background adaptive filter theory is discussed in Chapter 1 and methods and results which 

are important to the rest of the thesis are derived or referenced. Chapter 2 of this the­

sis covers the development of a new adaptive algorithm which is designed to give faster 

convergence than the LMS algorithm but unlike the Recursive Least Squares family of 

algorithms it does not require storage of a matrix with n 2 elements, where n is the number 

of filter taps. In Chapter 3 a new extension of the LMS adaptive notch filter is derived 

and applied which gives an adaptive notch filter the ability to lock and track signals of 

varying pitch without sacrificing notch depth. This application of the LMS filter is of 

interest as it demonstrates a time varying filter solution to a stationary problem. The 

LMS filter is next extended to the multidimensional case which allows the application 

of LMS filters to image processing. The multidimensional filter is then applied to the 

problem of image registration and this new application of the LMS filter is shown to 

have significant advantages over current image registration methods. A consideration of 

the multidimensional LMS filter as a template matcher and pattern recogniser is given. 

In Chapter 5 a brief review of statistical pattern recognition is given, and in Chapter 6 

a review of relevant connectionist models. In Chapter 7 the generalised adaptive filter 

is derived. This is an adaptive filter with the ability to model non-linear input-output 

relationships. The Volterra functional analysis of non-linear systems is given and this is 

combined with adaptive filter methods to give a generalised non-linear adaptive digital 

filter. This filter is then considered as a linear adaptive filter operating in a non-linearly 

extended vector space. This new filter is shown to have desirable properties as a pat­

tern recognition system. The performance and properties of the new filter is compared 

with current connectionist models and results demonstrated in Chapter 8. In Chapter 

9 further mathematical analysis of the networks leads to suggested methods to greatly 

reduce network complexity for a given problem by choosing suitable pattern classification 
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indices and allowing it to define its own internal structure. In Chapter 10 robustness of 

the network to imperfections in its implementation is considered. Chapter 11 finishes the 

thesis with some conclusions and suggestions for future work. 
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Symbol Definitions 

Where possible the following conventions are used: 

w Weight Vector. 

x Input Vector. 

d Desired Signal. 

€ Error signal. 

fJ Adaption Coefficient. 

v Expanded Space Vector. 

EO Expectation operator. 

R Correlation Matrix. 

p Cross-correlation vector. 

A Diagonal matrix. 

,\ Eigenvalue. 

Abbreviations 

The following are common abbreviations: 

LMS Least Mean Squares. 

RLS Recursive Least Squares. 

ADF Adaptive Digital Filter. 

FIR Finite Impulse Response. 

SVD Singular Value Decomposition. 

HR Infinite Impulse Response. 
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OCR Optical Character Recognition. 

RBF Radial Basis Function. 

MLP Multilayer Perceptron. 

HLBP Hidden Layer Back Propagation. 
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Introduction 

Although the areas of adaptive signal processing and connectionist modeling owe their 

early origins to the same work, the two subjects have tended to become independent. 

This thesis uses some approaches and methods more recently developed in the field of 

signal processing and applies them to the field of connectionist models. Consequently the 

thesis is divided into two parts, the first of these covers work in the area of adaptive signal 

processing, and the second the application of signal processing methods to connectionist 

modeling to develop a new connectionist model and methods by which to analyse it and 

refine it. 
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Chapter 1 

Current Adaptive Methods and 
Theory. 

1.1 Introduction 

Practical information processing systems must be able to function in continually changing 

environments; they must also be capable of taking into account the many complexities of 

the real world. 

Adaptive signal processing gives a method for producing such systems. Adaptive systems 

may track changes in their environments. The adaption process may also allow a system to 

design itself taking account of many complex aspects of the task it is required to perform. 

The basis of adaptive signal processing is the adaptive filter. In signal processing adaptive 

filters have until recently tended to be linear, that is, the filter output is a linear function 

of the data applied to its input. 

The statistical approach to designing a linear filter is to assume various statistical measures 

are known, normally the mean and auto correlation functions of the information and noise 

signal inputs. 

The adaptive approach does not require this 'a priori' statistical knowledge. The adaption 
t:f 

algorithm forms internal estimates of this information whilst the filter operating, and uses 

these estimates to adapt the filter to a suitable state. 

One of the first applications of adaptive signal processing was that of adaptive beam 

forming . A beam former for the reception of RADAR or radio signals was required to be 

able to null out jamming signals coming from a localised direction. Bernard Widrow [8J 



Input 
DeFining SysteM 

Output 

Model 
error 

Figure 1.1: Adaptive Filter 

developed such a system based on an error surface gradient following method, which was 

later to become known as the Least Mean Squares (LMS) algorithm. 

The similarity of the mathematics applying to the beam forming problem and digital 

filtering led to the application of this new approach to digital filters. One of the classical 

applications of these adaptive digital filters is that of noise cancellation [1][8]. 

In general an adaptive filter is required to minimise some function of an error signal; this 

error is normally the difference. of the output of the filter and some desired signal. A 

common function to minimise is the mean square of this error signal. 

Such a filter may be con figured to model another system as shown in figure 1.1. The 

importance of adaptive filters has become apparent in the field of signal processing due to 

their ability to take account of slow time varying systems such as communication channels 

in channel equalisation, or acoustic pathways in active noise cancelling. 

Another aspect of adaptive systems, the ability to adapt themselves to solve problems, is 

making them very important in the field of artificial intelligence. 

It has become apparent that it is very difficult to define the rules that will allow a machine 

to perform many 'real-world' tasks, such as visual pattern recognition under general 

conditions. The beauty of adaptive systems for such problems is that it is no longer 

necessary to derive a set of explicit rules as the system can be left to adapt itself 'on the 

job' to solve the problem without being explicitly programmed with sets of rules. 

In considering such systems it is necessary to return to the basic Wiener Filter. In this 

thesis the discussion is limited to discrete time systems. The definition of such systems 
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Figure 1.2: Wiener filter 

may be found in [34J. 

1.1.1 The FIR Wiener Filter. 

The Wiener filter is an optimal filter in the mean square sense. As shown in figure 1.2 an 

output error is defined as the difference between the desired reponse and the output of the 

filter. Classical Wiener theory uses the mean square error as the function to be minimised, 

and assumes that the information and noise processes are statistically stationary. Such a 

filter is said to be optimal in the least square sense. 

In the Wiener filtering problem it is required to design the optimal filter for producing an 

output signal as similar (in the mean square sense) to the desired signal as possible. 

Where dk is the desired signal, Xik the input signal for the i th delay point in an N tap 

FIR filter, Yk the output signal and W i the filter coefficients. An error signal Ek may be 

defined by the filter equation: 

Ek = dk - Yk = dk - L WiXik 

i=l,N 

The expectation of the error squared E( E~) is: 

E(EZ) = E((dk - L WiXik)2) 

i=l,N 

For notational convenience we may define a vector composed of the filter weights: 
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Likewise the input values in the filter: 

The filter equation becomes: 

Define a 2 = E[dZl: 

E(t
2

) = a 2 
- 2dk wtE[Xkl + wtE[XkX~lw 

E(e2
) = a 2 

- 2wtp + wtRw = J 

Where R is the correlation matrix: 

2 
X Ok ... XOkXnk 

X1k X Ok ... XlkXnk 

R = E X2k XOk ... X2k X nk 

2 
... Xnk 

and p is the cross correlation E[dkXk], and J is the mean square error. 

The minimum square error may be easily found by finding the derivative of the mean 

square error with respect to the weight vector and setting this to zero. 

Rw= P 

R - 1 
Wopt = P 

This requires that the correlation matrix is non-singular so that its inverse exists. 

18 



It is necessary to know a priori the signal statistics of the input, reference, and desired 

signals. This may not be possible in many practical cases. In a non-stationary environ­

ment the Wiener filter theory is deficient as the optimal filter is time varying, that is, the 

coefficients of the filter are time dependent. Although Kalman filter theory can provide 

an approach to obtaining results for such problems an often more convenient approach is 

that of the adaptive filter. 

The adaptive digital filter avoids the need to obtain these a priori estimates and conse­

quently may be used where the signal statistics are unknown or changeable. The statistics 

must be 'pseudo-stationary' that is vary sufficiently slowly with time for the adaption al­

gorithms to work. 

In the case of Rank-deficient systems it is necessary to use a method which will give 

reliable results with singular matrices. A good method for use in such situations is that 

of singular value decomposition. This gives the minimum norm solution [1]. 

1.2 Properties of the Correlation Matrix and its Eigen-Values 

It is important to state some basic properties of the correlation matrix which will be used 

later. Further properties and their proofs may be found in Haykin[l]. 

• The correlation matrix of a stationary discrete time stochastic 

process is Hermitian: 

Where H denoteEi conjugate transpose. 

• The correlation matrix of a stationary discrete time stochastic 

process is Toeplitz. 

• The correlation matrix of a stationary discrete time stochastic 

process is always non-negative definite. 
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Where x is an arbitrary non-zero M by 1 complex valued vector 

(The correlation matrix being M by M). 

The eigenvector equation defines a vector q (M by 1): 

Rq=Aq 

1.3 The Adaptive Approach 

Wiener theory is limited in that it assumes stationary random processes with statistics 

which are known a priori. In practical applications it is rare to encounter full stationarity 

or to have precise knowledge of statistics prior to the required operation. One approach 

might be to use the operating data to estimate the statistics and use these estimates to 

solve the Wiener filter. This would be computationally heavy and unlikely to be a real­

time solution. The adaptive filter is a system that avoids these problems. It functions as 

an automaton with the capacity to tailor its operation to suit an unknown, and possibly 

time-varying, statistical environment. This is achieved by use of a performance feedback 

recursive algorithm which alters the filter parameters to optirnise performance in some 

sense. In fact the standard linear transversal adaptive filter will converge to give the 

optimal Wiener solution for a statistically stationary problem. It should be borne in 

mind that the adaptive filter parameters being data dependent lead to the adaptive filter 

as a system being non-linear. However, this non-linear aspect is not usually referred to 

and the terms 'non-linear' or 'linear' are applied to adaptive filters in respect of their 

transfer functions at a point in time where their parameters are stationary in time. 

There is a series of different algorithms to perform the parameter adjustments for FIR 

transversal filters, but the desired properties of an adapt ion algorithm are similar for 

many applications . 

• Convergence Speed: This is the number of algorithm iterations 

required to reduce the error to within a given tolerance of the 

optimal solution. This should be as fast as possible, that IS, 
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require as few iterations as possible to get within a given tol­

erance of the optimal solution: 

• Misadjustment: This is the difference between the performance 

of the filter after it has been allowed to adapt for an infinite 

time and the optimal filter. 

• Robustness: This is the ability of the filter to operate in unsuit­

able signal and noise environments, for example ill-conditioned 

data for linear adaptive filters. 

• Computational Load, Structure and Numerical Sensitivity: The 

amount and type of requisite arithmetical operations, the sen­

sitivity of the algorithm to inaccurate calculation, and the re­

quired storage, may all be of importance in various applica­

tions. The structure of the algorithm may be of importance in 

consideration of algorithm implementation. 

The following isa discussion of the more important of these adaption algorithms. 

1.4 The LMS or stochastic gradient algorithm. 

This is the pioneering algorithm of adaptive signal processing and is notable for its light 

computational load and ease of implementation. 

From the above equations it can be seen that the error surface of the FIR filter is quadratic 

in form. Thus the error surface exhibits no local minima, as it contains only the global 

minimum. An optimisation algorithm may be applied to find the global minimum. The 

simplest of these algorithms is the stochastic gradient algorithm. This algorithm, which 

is also known as the method of steepest descent, involves use of the local gradient to 

determine the direction of the next iteration. 

The mean square error equation can be differentiated with respect to the weight vector 

to give an expression for the gradient on the mean square error surface: 
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, \lwJ = -2p + 2Rw 

The steepest descent algorithm may thus be applied by always moving in the direction of 

steepest descent (changing the the time index k to the iteration index n): 

where n is the iteration number and J1 is the adaption coefficient. 

As there is no a priori information about the correlation matrix R and the cross-correlation 

vector p it is not possible to use the above equations to give an exact value of the gradient. 

The LMS algorithm forms instantaneous estimates of Rand p from the following: 

R = E(x(n)xt(n)) 

is estimated by: 

similarly for p. These estimates ,are unbiased (correct in their mean), but they may have 

large variances . However the LMS algorithm smooths these out. The gradient estimate 

is thus: 

\lw(n)J(n) = -2x(n)d(n) + 2x(n)xt (n)w(n) 

= -2x(n)e(n) 

1.4.1 Problems of the LMS algorithm 

The LMS algorithm suffers from some disadvantages such as slow convergence times and 

sensitivity to eigenvalue spread, and misadjustment. 

Misadjustrnent 

Consider the optimal solution (in the Wiener Sense) for the weight vector. This value of 

the weight vector will be denoted as Wo. At any iteration in the algorithm a weight error 

vector may be defined: 

ew(n) = w(n) - Wo 
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Haykin [1 J gives an involved analysis of the LMS algorithm. This analysis is difficult as 

the random nature of x( n) and' d( n) propagates into the weight vector estimate to give 

non-stationary weight vector estimates. Haykin[IJ gives the result: 

It can be shown that the above equation converges to zero, provided"" is chosen in the 

range 0 < "" < .,..-L. This is known as convergence in the mean. The propagation of 
"mal:' 

the weight error vector variance is represented by K the weight error vector cOFt'!'elation 

matrix: 

Haykin [IJ gives the following recursion relationship in K: 

K(n + 1) = K(n) - ",,[RK(n) + K(n)R] + ",,2Rtr[RK(n)] + ",,2lminR 

where tr[J is the trace operator. 

It can be seen that K(n) can never reach zero as the last term represents a forcing term. 

That is the weight vector does not reach the optimal vector but fluctuates around it. 

This is due to the non-exact nature of the gradient estimate. This wandering leads to 

an excess error lex above the lmin value. The magnitude of this misadjustment may be 

found (Haykin [1]) who shows the excess error at n = 00: 

E(lex) = ""lmin Lt=t )..k 

2 - "" Lk=t)..k 

In which the )..k are the eigenvalues of the correlation matrix R 

The misadjustment is defined as: 
lex 

lmin 

Thus it can be seen that in cases when the eignevalues are widely spread, the misadjust-

ment is mainly limited by the larger eigenvalues. 

Effect of Eigenvalue Spread 

Considering the previously defined weight error vector equation: 
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This equation shows that the time evolution modes of the error weight vector are coupled. 

By using the unitary similarity transform the convergence modes may be uncoupled: 

R = QSQt 

The weight error vector may be redefined in terms of the principal axes: 

Yielding: 

E(v(n + 1) = (I - JLS)E(v(n)) 

This shows that each of the convergence modes is separated into a homogeneous first 

order difference equation with solution: 

It is clear that unless all the Ak are equal the convergence rates for each mode are different 

and an optimal JL cannot be found for all the modes. 

1.4.2 Choice of the adaption coefficient 

It can be found experimentally that the performance of the LMS algorithm can be greatly 

affected by the choice of the adaption coefficient. Yassa [3] developed a useful approach 

to the question of the choice of adaption coefficient. 

Considering the expression for the square error of an LMS filter: 

In the case of a complex filter this becomes for the m+ 1 iteration: 

Also the complex gradient vector is given by: 
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Figure 1.3: Parabolic relationship of adaption coefficient and mean square error. 

Using this it can be seen: 

where: 

(Vt:2 )m = 2[Rtwm - p~] 

= 2[R*wm - p*] 

Given a nonzero (Vt:2 )m it can be shown:qm > O. Hence the relationship between I-l and 

the mean square error is parabolic. 

The optimall-l may thus easily be found as: 

where: 

In the case of the LMS algorithm: 

R= xx* 
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These reduce the expression for a: to: 

Thus a measure of the input power to the filter when suitably low pass filtered may be 

used to set and keep J1 near its optimal value. 

1.5 Recursive Least Squares 

The performance of the LMS algorithm is not as good in terms of number of iterations 

to convergence as may be expected for an adaptive system from a theoretical analysis 

of adaptive methods [2][1]. Indeed there are methods which offer convergence in fewer 

iterations than the LMS algorithm. Perhaps the most common of these, and certainly the 

basis of a host of related algorithms, is the recursive least squares algorithm [1], which 

itself arises from the classical method of least squares. 

Defining: Input data vector u, a forgetting factor A which if close to one gives the algo­

rithm infinite memory and if smaller allows the algorithm to track time varying problems, 

and a matrix P which is of order m by m where m is the number of elements of u. 

Initialise algorithm by setting: 

Wo = 0 

For each time instant n = 1,2, ... compute: 

k(n) _ A-1P(n - 1)u(n) 
- 1 + A-1uH(n)P(n - 1)u(n) 

a:(n) = d(n) - wH(n -1)u(n) 

w(n) = w(n - 1) + k(n)a*(n) 

P(n) = A-1P(n - 1) - A-1k(n)uH(n)P(n -1) 

It is immediately clear that the algorithm requires the storage of a matrix and although 

this is not a problem for many adaptive filter problems it is a prohibitive storage require­

ment for systems with many weights such as image filters or connectionist models. 
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1.6 IIR Adaptive Filt~rs 

There has been a great deal of interest in adaptive HR filters. It has however proved very 

difficult to develop a practical algorithm. The problems are mainly due to the multimodal 

nature of the error surface and the difficulty of constraining the filter to be stable for all 

iterations of the algorithm. As adaptive HR filter theory is not used elsewhere in the thesis 

the subject is not pursued here, however it can serve to illustrate some of the problems 

encountered by adaption methods with multimodal error surfaces.[29][32] 

1. 7 Singular Value Decomposition 

This is not an adaptive method but is very important for the study and analysis of 

adaptive systems in which the correlation matrix is rank deficient. 

The singular value decomposition theorem states: 

For a matrix A of rank w there are two unitary matrices XY such that: 

where: 

and: 

Normally we could solve the least squares problem by inverting the autocorrelation matrix 

to give the optimal vector. 

w = R-1p 

This theorem (SVD) can be used to derive a solution for w even when the matrix R is 

singular. By solving: 

p=Rw 

for w. More generally this equation may be rewritten: 
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L.. 1>3 fill. 

Where Am is the'Moore-Penrose generalised inverse or pseudoinverse of matrix A. Sin-

gular Value Decomposition can give a unique solution to the equation, giving the one 

solution with the minimum-norm. The pseudoinverse of the matrix A may be defined as: 

where: 
~-1 d' (-1 -1 -1) 
L.J = zag0"1 ,0"2 "",O"w 

And w is the rank of the matrix A. This is used as follows: 

=x ( 
E-1 
o 

The unitary matrices may be partitioned: 

Assuming (L > M): 

= XI~-2X~AHb 

w 
= "" xix~AHb 
~ O"~ 1 
1=1 1 

This equation may be used by first computing the singular values of the data matrix 

A and the associated singular vectors Xl .. . Xw and substituting them into the above 

equation to give w. 

This gives a numerically well behaved method which may even be used for rank deficient 

systems. More recently, interesting work has been done on recursive implementations of 

SVD [43], although the computational load of such methods is still high. 
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Chapter 2 

Conjugate Gradient Method 

2.1 Introduction 

Over recent years a series of algorithms for the updating of adaptive filter coefficients have 

been developed. Some of these methods, notably those related to the method of Recursive 

Least Squares (RLS) [1] have provided significant increases in performance over the Least 

Mean Squares (LMS) [1] algorithm. For many applications the problems posed by the 

lack of performance of the LMS algorithm can be overcome by implementing one of these 

other algorithms. 

However, almost all of this new generation of algorithms require the storage of a matrix 

and a significant increase in the computational load. This is not a problem for most 

adaptive filters which are one-dimensional and utilise a limited number of coefficients. In 

the case of multidimensional adaptive filters, such as those used in image processing [7], 

or connectionist models or for any adaptive filter with many coefficients however, it may 

be totally impractical to consider storage of a matrix containing 0 (n 2 ) coefficients where 

n is the number of coefficients. Likewise the increase in computational load associated 

with current approaches may be too great. 

In this chapter new algorithm is presented which gives a substantial increase in perfor­

mance over the LMS algorithm but does not require the storage of a matrix and has a 

computational burden of approximately five times that of LMS. 
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Figure 2.1: LMS Convergence Path 

2.1.1 The LMS Algorithm 

In order to construct a new algorithm with increased performance over the LMS algorithm 

it is necessary first to consider the failing of the LMS algorithm. The update equation for 

the LMS or stochastic gradient method is [1]: 

or more generally: 

Where w is the filter weight vector and k is the time index, a and 11 are adaption co­

efficients, t the filter error and x the filter input data vector. Consider an error surface 

which is a long narrow valley. The steepest descent type algorithms, such as LMS, will in 

general tend to zig-zag down the valley as shown (Fig.2.1). This behaviour even occurs 

for perfectly parabolic surfaces and so leads to large inefficiencies in terms of convergence 

time. 

2.2 Derivation of the Algorithm 

Consider the minimisation of a function f over an N dimensional coordinate system. The 

function can be approximated by the first three terms of a Taylor series of the function 

about a point P. 
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Where: 

1 
=c-bw+-wAw 

2 

c = f(P) 

b=-\1f 
fJ2 f 

[AJij = 8 8 
Wi Wj 

It should be noted that the above is exact for a quadratic function. Matrix A is the second 

partial derivative matrix of the function f, the Hessian of f, at P. If a minimisation in the 

direction of vector u is performed it is necessary to find a direction in which to minimise 

so as not to destroy the previous minimisation. Consequently the next direction 8w must 

be such that the gradient is perpendicular to u, that is v! 

u.8(\1f) = u.A.v = 0 

By calculating the gradient of the above approximation with respect to the weights we 

obtain: 

\1f = A.w - b 

And hence, the effect on the gradient of a small change in w is: 

8\1f = A.8w 

u and v are referred to as mutually conjugate. It is also necessary that our search 

directions must be mutually orthogonal so that the whole space may be spanned in the 

search. 

Following the derivation of the Fletcher-Reeves [4J algorithm it is possible to invoke a 

theorem which will allow the construction of mutually orthogonal and conjugate vector 

sequences. 

2.2.1 Theorem 1 

If A is a symmetric, positive definite N by N matrix and go is an arbitrary vector. For 

values of i = 0,1,2 ...... two series of vectors may be defined: 
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Where: 

Then for all i such that i i= j: 
gf.gj = 0 

hf.A.hj = 0 

That is, the gi are mutually orthogonal and the hi are mutually conjugate. The proof 

of this theorem is beyond the scope of this chapter but may be found in Polak's book 

[2]. It is a form of Gram-Schmidt orthogonalisation. However, this theorem still requires 

storage of a matrix A. Another theorem enables this problem to be overcome. 

2.2.2 Theorem 2 

If gi = - V'f(Pd and a minimisa:tion of f in the direction hi of f is performed to find a new 

point Pi+! and gi+! = - V'f(Pi+!) Then the same sequence is generated as in theorem 1. 

This may be proved by induction [2]. 

Consequently a series of mutually orthogonal vectors and a series of mutually conjugate 

vectors may be generated without knowledge or storage of A. 

2.2.3 Application to Adaptive Filters 

In order to use the above theorems it is still necessary to perform line minimisations and 

evaluate the gradient. The gradient evaluation may be easily performed for the adaptive 

filter case. For the standard adaptive filter [1] as shown below (Omitting the time index 

for convenience): 

Taking the mean square error: 
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Figure 2.2: Standard Adaptive Filter 

Where x is the vector representing the filter inputs, d is the desired response,w the weight 

vector,R is the autocorrelation matrix of the input and v the cross-correlation vector of 

the input and the desired signal. The gradient may thus be calculated as: 

2 8€2 8€ 
\7( € ) = - = 2€- = -2€x 

8w 8w 

The other problem is the line minimisation. The mean square error is a parabola as a 

function of distance along the li~e. Consider the line generated by: 

W = W +,8h 

Where ,8 is the line generating scalar. The filter error can be written: 

€ = d - 2:Xi(Wi + ,8hi ) 
i 

The second derivative of the mean square error with respect to distance along the line h 

may be calculated as: 

Given expressions for the derivative, second derivative and the knowledge that the rela­

tionship is parabolic it is possible to find that: 

at the line minimum along h. This gives only an estimate of the line minimum as the 

instantaneous error values could be affected by noise and incorporate no time averaging 



aspect. The approximation is found in practice to be sufficient for many applications. 

However this approximation c'an lead to a set of mutually conjugate and mutually or­

thogonal vector series which use up all viable directions before arriving at the minimum. 

This problem can be cured by periodic resetting of the algorithm, but a much more el­

egant solution is to use the Polak-Ribiere[2] extension of the Fletcher-Reeves algorithm 

which by using a slightly different expression for, leads to an algorithm which in effect 

automatically resets the algorithm if necessary.[33] 

2.2.4 The Algorithm 

With initial values: 

2.3 Results 

ht 
Wi+l = Wi + ~h x. 

t = d - xt.w 

gi+l = 2tx 

(gi+l - gitgi+l ,= t 
gi ·gi 

hi+l = gi+l + ,hi 

go = 2tx 

ho = 2tx 

The algorithm was tested against the LMS algorithm. Two filters, one LMS and one 

conj ugate gradient filter (CG) were run in parallel modelling a FIR system. 

The experiment was repeated with random coefficients in the 50 th order FIR system being 

modelled. The input signal was also varied: it was composed of a series of sinusoids of 

random amplitude and frequency. The convergence curves for these runs where averaged 

and plotted in figure 2.4. 

The position of the sudden slight rise in error which can be seen on the conjugate traces 

even after averaging over runs can be shown to be related to the filter length. This may be 

explained as the algorithm resetting itself internally after having converged to a point and 
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Figure 2,3: CG v LMS Convergence test system 
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Figure 2.4: Plot of average absolute error over fifty runs , 
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Figure 2.5: Typical Run with no averaging. Note smooth convergence of LMS 
algorithm compared with the jumps of the conjugate gradient algorithm. 

yet having an error still present. In fact the alorithm continues to reset itself periodically 

as can be shown by monitoring the algorithm terms, however the error is not changed 

much by these resets as the solutions all lie very close to the optimal solution. 

2.4 PARTAN Algorithm 

There is a method closely related to that of conjugate gradients known as partial tangents 

(or PARTAN) [25]. This is of interest as it is insensitive to inaccuracies in the gradient 

determinations. 

Starting at an arbitrary point Xo the point Xl is found by a single step of steepest descent. 

After that from a point Xk the corresponding Yk is first found by steepest descent from 

Xk , and then Xk+l is taken to be the minimum point on the line connecting Xk-l and 

Yk. The process is continued for n steps and then restarted with steepest descent. It can 

be shown that for a quadratic objective function the Xk are the same points as would 

arise from conjugate gradients[25]. The disadvantage of the algorithm is the need for two 

line searches per step as opposed to the one of Fletcher-Reeves. However, PARTAN is 
et" 

insensitive to inaccuracies in the line searches, which is a desirable quality for adaptive 
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Figure 2.6: PARTAN Method 

filter algorithm as the effect of noise can seriously upset line searches. 

2.5 Conclusion 

The algorithm performs well, giving significant increases in convergence rates over the 

LMS algorithm and requires only O(4n) storage rather than O(n2) for other fast meth­

ods. It is necessary to note that the basic algorithm is operating more in a Least Squares 

rather than a Mean Least Squares mode. This can lead to unexpected results, especially 

for short filters with low frequency signals, and some form of error averaging may be 

needed to give a Mean Least Squares solution. Provided that this complication is con­

sidered, the algorithm is an improvement to LMS and may be used when methods such 

as Recursive Least Squares or Singular Value Decomposition cannot be applied due to 

storage or computational load constraints. 
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Chapter 3 

Pitch Extraction 

3.1 Introduction 

An adaptive method of pitch estimation is presented which will estimate the pitch of a 

harmonic signal in noise to a high degree of accuracy, and track any slow drifts in the 

pitch of the harmonic signal. The approach is based on an adaptive notch filter and hence 

avoids the problems encountered in the use of integer length adaptive delay lines. The 

approach is particularly efficient when using an LMS notch filter and will allow increased 

performance of the notch filter by accurately fixing the reference signal frequency. 

Adaptive pitch estimators for harmonic signals in noise can be difficult to design due to 

the nature of the error surface encountered if one attempts to adapt a fundamentally time 

stationary system. This approach solves this problem by utilising a time varying system. 

An attempt was made to remove a harmonic interference from an archive gramophone 

recording using a standard FIR LMS adaptive notch filter [lJ. This approach worked 

well in periods in which the harmonic interference was present with background noise of 

similar amplitude, but failed in periods with music or speech present. The amplitude of 

the music was many times greater than that of the interference and caused the adaptive 

notch filter to ring and destroyed its interference cancelling properties. As in the case 

encountered by Lim [35J it was decided to freeze the adaptive notch filter in these regions. 

However, as these regions persisted for tens of thousands of samples the reference sinusoids 

to the adaptive notch filter had to have their pitches accurately determined so that in 

the frozen periods the interference and anti-interference output from the FIR filter should 

stay synchronised. 
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Figure 3.1: Standard Adaptive LMS Notch Filter 

Thus an accurate and computationally efficient pitch estimator was required which could 

also track a slowly drifting pitch. Consider an LMS adaptive notch filter with one notch. 

Glover [28] analysed the LMS adaptive notch filter and showed its behaviour to include 

time varying aspects under certain conditions. 

Let C (z) be the Z- transform of the ith coefficient of the adapted notch filter, with adap­

tion coefficient a and reference sinusoid of frequency Wr and amplitude C, U(z) is the Z 

transform of the LMS weight up,date equation (an integrator) as shown in Fig 3.2. 

Cj(z) = aC U(z)[E(ze-jwrT)ejOi + E(zejwrT)e-jOi] 
2 

Glover shows that the pole zero plot of E( z) would indicate poles at z = e±jwdT and 

E( ze- jwrT) represents a counterclockwise rotation of E( z) through angle wrT. 

Therefore the pole-zero plot of : 

would show poles at ±(wr + wd)T and at ±(wr - wd)T. This rotated spectrum is filtered 

t.hrough U(z) to give Cj(z) . Each weight therefore consist.s of t.he sum and difference 

frequency of Wr and Wd. U(z) is strongly low pass, hence the difference frequency domi­

nates. For the FIR delay line ()j = () - wrT[i - 1] which shows that the coefficients Cj are 

a sinusoid of frequency Wr with each weight varying as a sinusoid at frequency Wr - Wd. 

Glover refers to this as the sinusoid in the coefficients 'moving' at a rate equal to the 

difference frequency between the desired and reference frequencies. This may be viewed 
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as a heterodyning process and is a time varying aspect to the solution for an adaptive 

notch filter; it may also be considered as a simple case of a quasistationary filter using 

a slowly varying phase reference at the desired frequency. It is this time varying aspect 

that the adaptive pitch estimator (APE) will use. 

A single notch adaptive filter is constructed and the motion of the sinusoid is detected by 

the following algorithm: 

1 aCk 

Pn+l = Pn + J.lP <Pk at 
Where cPk is the gradient of the coefficients with respect to i at coefficient k, and n is the 

time index. The coefficient of pitch adaption J.lP sets the sensitivity and convergence rate 

of the pitch estimator. 

The time derivative may be replaced by: 

And the gradient by: 
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Figure 3.3: Coefficient Motion Detector 

<Pk ~ Cn(k-l} - Cn(k+l} 

A simpler form of the algorithm which does not require the division and hence avoids any 

possible divide by zero problems is: 

aCk 
Pn+1 = Pn + J.lpsgn[<pk at 1 

In practice Glover's analysis does, not always apply. If we consider the frequency response 

of the FIR stage of the adaptive notch filter we can see that there are an infinite number 

of possible solutions for the case of a single sinusoid. The above algorithm, however, 

requires the particular solution with a sinusoid in the coefficients to be adopted. If this 

solution is not adopted or is disrupted the system will fail. Occasionally in practice it 

may be necessary to force the filter to assume the sinusoidal solution. In this case we 

must force its stopband to include all frequencies except the reference frequency. This is 

easily done by injecting some white noise with the reference sinusoid. This gives a good 

stable sinusoid in the coefficients as the filter should block as much of this white noise as 

possible to minimise the mean square error. 

The other two disruptions of the sinusoidal solution are a transient effect as the system 

is first set running and a destabilising effect caused by varying the pitch of the reference 

sinusoid too rapidly. In this case the assumption of quasistationarity breaks down and 

the reference input is no longer a good approximation to a pure single frequency. 
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Figure 3.4: Pitch Tracking System 

3.1.1 Harmonic Signal Case: 

In the case of harmonic signals the accuracy of the system may be increased by usmg 

a reference sinusoid of frequency near one of the higher harmonics present rather than 

the fundamental, as this will increase the difference frequency and increase the coefficient 

sinusoid movement by a factor equal to the harmonic number. Thus leading to a larger 

effect for the same pi tch error in the fundamental. 

3.1.2 Limitations: 

The limitations on the accuracy of the algorithm are set by the adaption noise found on 

the coefficient values. This adaption noise can be estimated from the expression for the 

minimum mean square error. It is clear that it may be reduced by reducing the adaption 

coefficient of the notch filter. The bandwidth of the notch filter is set by this coefficient 

which in turn determines the range of frequency error over which the above analysis 

applies. Thus there is a trade off between final pitch accuracy and initial lock range. 

The initial lock range being defined as the maximum difference in frequency between the 

desired and reference signals for which the system will converge. 

The notch bandwidth is given by: 

NaC2 

BW ~ 2T rads/ s. 

Where N is the filter length. 
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Limitations on the rate of convergence are set by the need to prevent instability due to 

undermining the quasistationary' assumptions. The changes in the pitch of the reference 

oscillator must therefore be suitably slow, this may be achieved by using a suitably small 

pitch adaption coefficient /-lp. 

3.1.3 Results: 

The algorithm was found to be capable of high accuracy pitch estimates in quite high 

levels of noise and was capable of pitch convergence in SNR of -l5dB. In the case of SNR 

of lOdB the system could attain pitch accuracy estimates in the order of 1 part in four 

thousand. A series of convergence curves are shown in Fig:3.5. The occasional initial 

divergences are caused by transient effects as the data enters the filter. 

Fig. 3.5 Pitch tracking curve. 
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Fig. 3.6 Input Musical Waveform (top), Oscillator waveform (bottom) and Output. (quiet 

section with no music). 

3.1.4 Conclusions: 

The system is best suited to applications requiring high accuracy pitch estimates on sta­

tionary signals for which a low accuracy pitch estimate is already known. The necessary 

computations for the system are based around a FIR filter, thus making it easily imple­

mentable in hardware. The filter may be quite short in practice and in the case of an 

adaptive notch filter to remove a single sinusoid the pitch estiri\ator may be added at very 

little extra computational cost by using the cancelling filter as the pitch estimating filter. 

This leads to deeper notches and increased performance and as such may be a simple 

improvement that may be added to FIR adaptive notch filters. It is clear that there are 

many possibilities for variations on the above theme that may be well suited to other 

applications. 
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Chapter 4 

Image Registration 

4.1 Image Registration Utilising Multidimensional LMS Adap­
tive Filters. 

The need for image registration algorithms arises in many fields such as airborne ground 

sensing, aircraft navigation, medical imaging. In the latter separate frames of an image 

must be registered in the presence of involuntary patient movement. This problem arises 

wherever there is relative movement between the image sensor and the image scene. In 

practical cases the images may be 'degraded by noise, may contain weakly spatially varying 

shifts or one of the two images to be registered may contain objects not found in the other 

or moving independently of the rest of the scene. All of these effects can significantly 

reduce the performance of current image registration methods such as phase correlation. 

4.1.1 Current Registration Methods 

Broadly speaking there are two practically used approaches to image registration. The 

first of these is a syntactic approach which normally involves the extraction of simple basic 

image elements such as line segments or boundaries. These are compared in the two images 

and some search method is employed to register the two images. This method works well 

for simple shapes in clean images under constant conditions. It is also necessary that the 

image contain the features employed, such as sharp line segments. In general, however, 

images can be noisy, have variable content, be complex and arise from environments with 

varying lighting and so on. Thus this method cannot usually be applied well to general 

Images. 
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The second method is that of phase correlation. This method is based on properties of 

the Fourier Transform. 

Consider two images 11 and 12 which are to be registered. The images are assumed to be 

related by a spatially invariant shift. 

Define F1(wx ,wy ) to be the Fourier transform of 11, FT(It) 

Define F2(Wx,Wy) to be the Fourier transform of 12. 

Then by the shift theorem: 

Where 6.x is the x direction shift and similarly 6.y. 

Thus the function: 

( 
1 (F2 P x, y) = FT- Fl ) 

returns a delta function at the shift value. 

However noise effects and the fact that many shifts are not constant over the image area 

mean that this delta function mq.,y become distorted or lost under noise in the phase 

correlation output image. 

4.1.2 The New Method 

In the case of images the new method employs a two dimensional Least Mean Squares 

adaptive filter which makes almost no a priori assumptions about the images or their 

degradations. This allows the method to be used with general images and consequently 

it is not limited to images with sharp edges or similar artifacts as may be required by 

syntactic methods. 

4.2 Derivation 

The derivation of the multidimensional LMS adaptive filter is closely related to that of 

the one dimensional case. The derivation is given for a N dimensional adaptive filter with 

each dimension of order m. 
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Consider an input tensor x of rank N order m and an N rank weight tensor w. Both 

tensors elements have N indices i .. .'z. 

The N-dimensional adaptive linear combiner is given by (k is the iteration index): 

Where the operation wx is defined as the inner product, that is: 

L L ... L Xi ... zWi ... z 
i=l,mj=l,m z=l,m 

The error may be defined as the difference between a desired output dk and the actual 

output Yk: 

Hence: 

We now assume that f.k, dk and Xk are' statistically stationary and consider the expectation 

of the error squared over k. This assumption can have some important implications for 

work with practical images as in many cases the degree of stationarity can be less than is 

normally found with many practical one dimensional signals. 

We can define E(XkXk) as the N dimensional correlation 'Tensor' of rank 2N, R. Likewise 

the cross-correlation tensor E( dkxK) denoted, p. 

This shows that the mean square error is precisely a quadratic function of the weight 

values. Thus the error surface is unimodal with no local minima. It is this quality that 

will allow some form of gradient search to converge to the optimum solution. 

Having shown the nature of the error or Performance surface the problem is now to find 

a search algorithm to find the minimum. Again the cue is taken from the ID case of 
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the derivation of the Widroff-Hoff LMS algorithm [1] and a simple gradient search IS 

employed. 

An adaptive algorithm may be formed by the following approach: 

2 8t% 8tk 
\1tk = - = 2tk- = - 2tkX ,( 8w 8w 

We can specify a steepest descent algorithm: 

Where J1 is the adaption coefficient. Explicitly in the case of 2D ADFs the update equation 

is: 

The derivation of the LMS adaptive filter is independent of the dimensionality of the data, 

thus the same derivation can be used to lead to 2D,3D or ND ADFs. This derivation also 

shows us that the error surface is unimodal even for higher dimensionality data. The 

fact that 2D and ID ADFs are based on the same theory also allows us to predict with 

reasonable confidence the behaviour of 2D ADFs by analogy with the ID case, however 

care must be exercised in this practice as some of the problems encountered in 2D have 

no analogy in ID; also the nature of practical image data may differ from practical ID 

signals. 

4.3 Image Registration System 

The basic shift registration system is shown in figure 4: 1. The reference image may in 

practice often be one of the previous frames of a series of image frames. The adaptive 

filter is run and its coefficients are updated. The filter will perform a gradient search to 

minimise the mean square error image. In the case of a shift this will occur when the 

output image has been correctly shifted by the filter to be registered with the reference 

image. The maximum shift that the system can cope with is given by the filter size and 

consequently its maximum spatial delay. The system is arranged so that there is in effect 

a spatial shift of half of the filter size between the two images so that the filter can cope 

with a positive or negative delay of magnitude less than m/2. 



Input I Mo.ge s Mul t idi Me nSiOno.l A.Dr . 

Output Registered IMQge 

Figure 4.1: Adaptive Image Registration Using 2D Filters. 

The particular path over the image that the filter runs can be important in the case of 

spatially varying shifts.If the variation is occurring more quickly in one of the two axis 

directions it would be advisable to track the filter along the other axis direction to allow 

the filter more iterations in which to update to the new shift. Consequently if images have 

a spatial variation which is mainly a function of the x coordinate it would be advisable 

to run the filter down the lines of constant y coordinate only advancing in x coordinate 

at the end of each y line. 

It is possible to improve the performance of a given order of filter by ensuring that there 

is no large relative dc offset between the images. This may occur if the two images 

were captured under very different illumination levels. Although it may be expected 

that the filter could compensate for such an offset the process of doing this degrades the 

performance of the system as it is utilising zeroes of the filter that may be more usefully 

applied elsewhere. Correspondingly it is therefore often useful to high pass filter the 

images before registration if there is a possibility of large dc offsets. 

4.4 The Adaption Coefficient 

The value of the adaption coefficient is important in determining the mode of operation 

of the system. As a generalisation the nearer the adaption coefficient approaches the 

divergence value so the output image becomes sharper and the system can track spatially 

varying parameters more rapidly. However, smaller values of the adaption coefficient 

give higher noise immunity. One of the main problems in the practical implementation 
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of adaptive image registration is the choice of a suitable adaption coefficient. In fact 

because of the nonstationary statistics of practical images it is necessary, in order to 

improve performance, to implement a self regulating adaption coefficient which varies 

with the image. A simple yet reasonably effective approach is to update the coefficient of 

adaption as a function of the input power to the filter. This approach, which is based on 

the work of Yassa [3], has been simplified to reduce computational load. A power estimate 

is obtained from the row of unseen data about to enter the filter, this is then filtered by 

a single pole filter whose feedback factor can be adjusted to control the smoothing of the 

power estimate. 

Incident power: 

Pk = L X;,l 
i=l,m 

Smoothed power:Fk = Fk-1g + Pk 

Where 9 is the feedback factor. The adaption coefficient is updated by: 

Where /-lint is the initial adaption coefficient. 

If it is desired to use the filter output image directly or to track spatially varying shifts 

a larger adaption coefficient may be needed. Even with the above adaption coefficient 

updator divergence may still occur on certain parts of some images so it is necessary to 

have a divergence detector. This may be done by checking that the output pixels do not 

exceed a certain value. If this should occur the /-lint value is immediately reduced by a 

factor (usually about 0.7) and the filter coefficients reset to either all zero, or all zero with 

a value one at the coefficient corresponding to a recent shift estimate. 

4.5 Filter Solutions 

As may be expected from the one dimensional analogy the performance of the two di­

mensional LMS algorithm depends on the eigenvalue spread of the input data, and the 

time taken to converge to the correct shift estimate is reduced as the whiteness of the 

data increases. In order to extract the shift estimate explicitly from the coefficients of 
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Figure 4.2: The Complete Registration System. 

the adapted filter we must consider the filter solution. In the case of white input signals 

and integer shifts the filter converges to a Kronecker delta function at the shift delay as 

may be expected, and for non-integer shifts it converges to an interpolator. Almost all 

practical images do converge to solutions with peaks at the delay value. The dominance 

of this peak is however determined by the whiteness of the input image, whiter images 

giving a more dominant peak. 

A simple peak detector may be used to extract the shift and interpolation of the peak 

may be used to obtain non-integer shift estimates. By using such a shift extractor at 

regular intervals a displacement vector map may be built up showing the displacement 

vector over the image. 

4.6 Output Image 

As a byproduct of the processing, a registered and shifted corrected image is produced 

at the filter output. However, apparently due to the sensitivity of the LMS algorithm to 

eigenvalue spread and the differing convergence rates for different eigenvalues, the solu­

tions reached are near optimal but lead to subjectively slightly blurred images. These 

problems may be alleviated by using adaption coefficient values near to divergence, but 
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this can lead to a risk of of divergence occurring. Another approach is to use the displace­

ment vector field to 'manually' shift back the original image. This is currently done with 

many registration methods. 

4.7 Performance 

The filters were run on clean images with a spatially stationary shift. In practice a lock 

onto the correct shift is achieved in thirty or forty pixels. The adaption coefficient value 

may be small such that the output image is very blurred but yet give good results for the 

displacement vector. All the results shown were generated using images 80 by 80 pixels 

which were quantised to 6 bits. 

The same experiment was repeated with the addition of equal levels of white uncorrelated 

noise to each of the images and the displacement vector field recorded. As may be expected 

the filters took longer to lock onto the shift, and in the case of high noise levels, the lock 

could be lost and regained throughout the picture. However, even at these high noise 

levels further increases in performance could be obtained by the utilisation of averaging 

of the displacement vector by use of the property of continuity of the displacement vector 

[12]. 

Finally the filters were run on an image pair in which the filter input image had been 

obtained by a spatially varying shift which was a function of the x coordinate. 

Photographs 

The photograph format is: 

• Top left reference image. 

• Top right input image. 

• Bottom left error squared. 

• Bottom right output image. 

• Small Plot of final coefficient values. 

The photograph and results are in the following order: 
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1. Results of constant shift case. Filter 20 by 20 with a (5,4) shift 

and the initial adaption coefficient set to .008. 

2. Results of spatially varying shift case. Filter 12 by 12 with a 

shift 8y = 5 * sin( .004 * x). Initial adaption coefficient set to 

.004. 

3. Results of constant shift case with additive Gaussian white 

noise. Filter 20 by 20 with a (3,2) shift and the initial adaption 

coefficient set to .004. 

4. Plot of final coefficient values for spatially stationary experi­

ment. 

5. Plot of final coefficient values for spatially varying experiment. 

6. Plot of vector displacement output for spatially stationary ex­

periment. 

7. Plot of vector displacement output for spatially varying exper­

iment. 
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Final coefficients result 1 
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Final Coeffcients result 2 
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Vector Displacement result 2 
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Figure 4.3: Template Matching System. 

4.8 Computational Load 

For spatially stationary shifts the filter need only be run over small portions of the image. 

The filter size is set by the largest shift to be dealt with, but this may be reduced by 

calculating displacement vector fields from a decimated image. The algorithm is inherently 

parallel and suited to the use of current adaptive digital filter integrated circuits. 

4.9 Template Matching Possibilities 

The following system may be used to implement the multidimensional adaptive filter as 

a template matcher by using the reference image of an object as the desired input and a 

scene as the filter input. The filter correlates the object in the scene and reference and 

shifts the scene. Thus the error image can be used as a measure of the match over the 

relevant region, thus providing a weak shift invariant template matching system. The use 

of higher order,for example 3D, adaptive filters may be utilised to register over a sequence 

of frames by the same principle as is outlined above. 

4.10 Conclusion 

The LMS multidimensional adaptive filter can provide a new approach to image registra­

tion which is well suited to parallel implementations. The system also has some useful 
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properties, giving the noise immunity of correlation based methods but not requiring a 

search over possible shifts.It also has the ability to deal with weakly spatially varying 

shifts, unlike transform based methods. The adaptive filter can also handle weak im­

age degradations as its frequency response is not constrained and may adapt to correct 

differences in the two images caused by sensors or uneven illumination and so on. The 

highly non-stationary nature of real images means that care must be taken to optimise the 

adaption coefficient continually if sharp output images are to be obtained. This appears 

to be related to the unequal convergence rates for the different eigenvalues of the image 

correlation matrix as may be expected from one dimensional work [1]. Setting the adap­

tion coefficient close to the optimal can lead to streaking effects as the filter momentarily 

diverges since the optimal adaption coefficient value changes with the local statistics of 

the image. In general the method provides a useful and easily implemented approach 

which will perform better than the transform based methods for many practical cases due 

to its ability to overcome weak spatially varying effects. 
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Chapter 5 

Pattern Recognition 

5.1 Introduction 

A standard application of connectionist networks is in pattern recognition. This half of 

the thesis attempts to define the abilities that a pattern recognition system requires, and 

to investigate the performance of the extended vector space connectionist model with 

respect to these abilities. 

5.2 The Problem 

In the pattern recognition problem as addressed in this thesis, a system is required to 

output a class index which reflects a particular class to which its input signal belongs. 

Consider a decision rule which partitions a space into regions Oi ,i = 1, ... ,N , where N is 

the number of classes. An object is classified as coming from class Wk if its corresponding 

vector representation x lies in region Ok. The boundaries between the regions are called 

decision surfaces. The task can be made more difficult by the effect of noise on the data 

and the variability of data for patterns belonging to the same class. The following is a 

list of desirable properties for a general pattern recognition system. 

5.2.1 Adaptivity and Learning 

A suitable pattern recognition system will need to be adaptive for most applications. 

The necessary rules to define most real-world recognition tasks are too complex to be 

analytically derived. This becomes more apparent when the effects of noise or class 
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Figure 5.1: Pattern Recognition Problem 

variation are considered. These problems may be circumvented by utilisation of a self 

learning system, which by experience of the recognition problem adapts itself to solve the 

problem. 

5.2.2 Interpolation and Generalisation 

Once a system has been trained using the members of a training set it is hoped that the 

system would correctly classify a new pattern which was not in the training set but a 

member of a class defined by it. This property is often referred to as interpolation or 

generalisation as it is the ability of the system to interpolate the classifier output between 

training patterns. There is an implicit assumption in the concept of interpolation that 

patterns belonging to the same class will cluster to a similar region of the decision space. 

This may not always apply, for example in the case of a capital and a small letter 'A'. 

However, from an analytical viewpoint this may be considered as two classes mapping to 

the same output value. It would be hoped that capital A letters will cluster and so on. 

5.2.3 Learning Speed 

It is obviously an advantage if the recognition system can adapt itself to a state of 'good' 

performance with as few pattern presentations as possible. The ability to adapt quickly 

is also of advantage as it also enables the recognition system to respond to changes in the 

noise or class statistics. 
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5.2.4 Certainty of Learning 

It is impractical to have systems which may get stuck in their learning processes and not 

reach their optimal performance; we thus require a system that will not suffer from local 

minima problems. These problems would require the system to be supervised and reset, 

incurring multiple runs and consequently large computational expenditure. 

5.2.5 Multiple Class Problems 

Although most recognition tasks concerning multiple classes may be reduced to a series 

of one class recognition problems, this is in general highly inefficient in terms of compu­

tational load. An ideal system should be able to perform multiple class recognition. 

5.2.6 Parameter Tuning 

For a system to be practically implement able a method of tuning any of the system 

network parameters must be found to prevent the need to repeat training runs in order 

to optimise these parameters. 

5.2.7 Parallelism 

The system should be highly parallel to allow high speed operation. A parallel imple­

mentation may also allow the processing resources to be distributed and so it may be 

composed of many simple processing units. 

5.2.8 Probabilistic Properties 

A pattern recognition system must take account of the fundamental probability distribu­

tions relating the observations and the true classification of the object. An understanding 

of the importance of this may be gained from [17] [26] and the following Bayes' recogniser 

section. 

5.3 Traditional Approaches 

Pattern recognition methods can be broadly classified into two distinct groups, statistical 

and syntactic. This thesis is primarily concerned with statistical pattern recognition 
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rather than syntactic recognition. There are many methods which have been developed in 

the statistical pattern recognition field "and an introduction to many of them may be found 

in [26] these include kernel methods, Nearest neighbour methods, Fisher discriminants 

and so forth. The Bayesian basis of pattern recognition and Fisher's approach are briefly 

described here. 

5.3.1 Bayesian Classification 

U.sing the notation of the introduction begin by assuming the probability that an object 

comes from class Wj is a known P(Wj). As this is an overall probability known before an 

observation vector x has been observed it is a Prior probability. Once an observation is 

made and an observation vector x is known we can compare the probabilities of belonging 

to each class for an observation x and classify according to whichever is larger. 

for all j i= k, where Ok is the set of objects in the k th class. 

This rule is known as Bayes' minimum error rule. The P(wjlx) are known as the Pos­

teriori probabilities. Sadly these are not normally known and must be estimated. This 

estimation can be done by making use of samples of known classification as is pursued 

later in this thesis. In many cases however, Bayes' theorem is applied to give: 

P( "I ) = P(xlwdP(wd 
w, x P(x) 

Yielding: 

For all j i= k. As before however P(x 1 Wj) are not often known. 

It is often the case however that an incorrect classification may be of varying importance 

as a function of class. For example, in medical diagnosis it is often a minor problem 

in classifying a healthy patient as unwell but it is very dangerous to classify an unwell 

patient as well. 
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To build in this factor a cost function may be defined Cj which gives the cost of misclas­

sifying an object from class Dj as from class Dj. If x E Dj the expected cost is: 

N 

Tj = LCjj 1. P(x I wddx 
j=l OJ 

The overall expected cost or risk is thus: 

This is minimised by defining Dk such that x E Dk whenever: 

For all j =1= k. 

This is the Bayes minimum risk decision rule. 

5.3.2 Classical Fisher Statistical Pattern Recognition 

Fisher in 1936 founded the classical approach to discriminant analysis with Fisher's crite­

rion. The problem is one of finding that direction in the discriminant space along which 

the two groups to be classified are maximally separated. Fisher defined the separation 

between the two groups in a particular direction as the distance between the means of 

the two groups standardised for the within group variance in the specified direction. The 

importance of this standardisation may be appreciated by consideration of the following 

example. 

Prior to standardisation the separation in the Xl direction appears greater than that in 

the X2 direction (Fig.5:2). 

After standardisation it is however clear that the separation in the X2 direction is greater. 

In general, standardisations may be performed in any general direction, and the problem 

is to find the direction v such that (vtxl - vtx2) is maximised relative to the standard 

deviation (V t SV)1/2 in that direction, where the Xi is the sample mean for the design set 

for class Wj (i=1,2), and S is the assumed common sample variance-covariance matrix. 
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Figure 5.2: Prior to standardisation 
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Figure 5.3: After standardisation 
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For each class if we have a set of observed sample vectors 0'0 ... 0'0 then: 

and: 

. 1 n 

xi = - LO'P 
n p=l 

1 n 

S = --1 L (O'p - xd(O'p - Xi)t 
n - p=l 

To find v maximise with respect to v: 

vtXI - vtX2 

(vtS)1/2 

Differentiating this with respect to v and equating it to zero gives: 

vt(XI - X2)SVt 

Xl - X2 = (vt Sv)I/2 

As only the direction is required: 

5.3.3 Limitations of the Classical Approaches 

It is difficult to generalise over so many different approaches to the pattern recognition 

problem. However, in general the computational load required to perform multiclass mul­

tivariate recognition is prohibitive with many of the classical methods. The computational 

form is also often not suitable for parallel implementation, and it is often very difficult to 

create an adaptive method which will optimise itself easily as more data arrives, without 

a complete recalculation. Most of the most popular classical techniques are the parame­

terised distribution techniques which assume that the problem closely resembles a priori 

probability distributions (such as Gaussian) and although some methods allow the dis­

tribution parameters to vary as a function of class the distribution form is usually fixed. 

This assumption is often invalid as the probability distributions inherent in the problem 

are often highly anisotropic, class and observation dependent. For example, the variation 

found in handwritten characters arises not from purely random processes but the different 

observed vector directions , such as displacements or speeds, may correlate in the way 

they vary. The non-parametric methods such as nearest neighbour normally become com­

putationally very heavy as they may require multidimensional search operations. These 
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problems have led to the search for computationally lighter, adaptive, parallel methods 

which require fewer a priori assumptions. Connectionist models avoid these limitations as 

they are non-parametric and make weaker assumptions about the shapes of the underlying 

distributions than traditional statistical pattern recognisers. 
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Chapter 6 

Connectionist Models and Neural 
Networks 

6.1 Introduction 

6.1.1 Limitations of the Conventional Syntactical Approaches 

The modern computer has proved itself to be well suited to solving many problems and 

provides a powerful tool for aiding the solution of many other problems. There has, how­

ever, emerged a type of problem for which standard 'syntactic' or programming methods 

do not perform well. These problems generally have many input variables and many com­

plex rules relating their outputs to their inputs. The rules that arise in many real world 

problems, such as visual object recognition under practical conditions, are in general too 

complex for a suitable set of rules to be worked out explicitly. Consequently, in general, 

syntactic methods of sufficient complexity cannot practically be constructed to solve these 

problems. 

6.1.2 The Adaptive Approach. 

The adaptive neural network can address this problem in that it does not require explicit 

statement of the rules of the problem, as it will implicitly learn them. Such networks are 

composed of many simple processing units linked together to create a system capable of 

performing complex tasks. It is also capable of learning statistical or probabilistic rules 

which may be fuzzy in nature. 
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6.2 Artificial Neural Networks 

For a long time there has been an interest in reproducing in a machine the abilities of 

the mammalian brain. Attempts to develop detailed mathematical models began in the 

1940s with work by McCulloch [44], and Rosenblatt[45]. In the 1960s Widrow's work [46] 

with linear perceptrons created much excitement which, as the limitations of the linear 

approach became apparent, was to fade again until the more recent work by Hopfield [47], 

Rumelhart and McClelland [48], and the sudden growth of interest that ensued. 

The definition of what precisely constitutes an artificial Neural Network, or perhaps more 

scientifically, a connectionist model, is vague and to attempt to review all the methods un­

der this general heading would be excessive. In this thesis the work relates to a particular 

class of connectionist model. 

Networks may be divided into two classes: 

1. Binary: These networks normally take binary input data and 

produce binary output data. However, internally continuous 

arithmetic may be used. An example of such a network is the 

Hopfield Net. 

2. Continuous: These networks take continuous (or multilevel) 

input data and may produce continuous or binary output. 

Each of these two classes may again be divided according to the following as a function 

of its learning abilities. 

1. Supervised: The network is given a series of correct output val­

ues from some other problem defining system and may use these 

in conjunction with the input data to adapt itself to improve 

its performance. 

2. Unsupervised: The network is not given correct outputs but 

is required to extract relationships in the data to allow it to 

form classification groupings which may in some manner clas­

sify 'like' patterns together. 
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Neural Net Class lf;ers for Fixed Patterns 

Binary Input 

~ 
Supervised Unsupervised 

HOPfle~ng Net I 
Grossberg Net 

Continuous value Input 

~-----Supervised 

/\-High Order 

MLP RBF 

Unsupervised 

I 
Kohonen Map 

Figure 6.1 : Classes of Neural Networks . 

This thesis is only concerned with continuous input signal networks. This is the most 

general signal form and that which is found in most practical problems. The discussion 

will be constrained to deal only with supervised networks as these most closely resemble 

adaptive signal processing systems. It is also clear that currently the most general prob­

lems being addressed by Neural Networks are usually of the supervised continuous signal 

type. 

6.3 ADALINE 

The adaptive Linear Neuron or ADALINE is a simple linear combiner with an LMS feed­

back used to adjust its weights. The output is usually passed through a threshold device 

to produce a binary output. The linear nature of the decision region (line in the signal 

space which marks the transition of the outputs from classification -1 to classification +1) 

is easily shown by considering a 3 coefficient ADALINE [24]. 

For a threshold of zero: 

This gives: 
Wo Wl 

X2 = - - - - Xl 
W2 W2 

Thus ad aline can only differentiate signals into classes which are linearly separable. 
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Figure 6.2: Hidden Layer Back propagation Neuron . 

6.4 Hidden Layer Back-propagation 

If the decision boundaries of systems composed of linear perceptrons are considered it is 

clear that the decision region is a line (in 2 Dimensions) or a hyper-plane (in N dimensions). 

This restricts the system from forming suitably flexible decision regions. 

To avoid this restriction to linear systems it is necessary to introduce some non-linearity 

into the transfer function. This may be done by adding a non-linearity to the basic 

perceptron unit. Obviously there are many non-linearities which could be chosen. One 

in particular which has gained favour due to its similarity to some transfer functions 

measured in biological neurons, is the sigmoid, or hard limiter. 

The hidden layer back propagation network is composed of neurons made up from a 

weighted linear combiner followed by a sigmoidal non-linearity. This non-linearity is 

normally based on a linear region around the origin. There is not a great deal of support 

from a signal processing point of view for this particular non-linearity, it however has 

become widely used as it bears a similarity to the transfer function observed in biological 

neurons. In fact even this justification has been questioned as the sigmoidal response is 

found in motor control neurons rather than information processing neurons. 

The network is made up from sheets of such neurons connected in layers. The name 

'hidden layer' comes from the fact that there may be a series of layers 'hidden' between 

the output and input layers. 

The weights of the network are adapted by an algorithm which is very similar to the LMS 

algorithm, known as back-propagation. 
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Figure 6.3: Decision Contour for Back propagation Multilayer Perceptron Net­
work . 

Consider the case of a sigmoidal non-linearity: 

1 
f( et) = 1 + e-(a-B) 

Consider an input vector x and a desired output vector d. 

From the output layer to the input layer adjust the weights by: 

Wjj(t) is the weight from hidden node i or from an input node j at time t. x; is either the 

output of node i or is an input, T7 is a gain term, and 8j is an error term for node j. If 

node j is an output node then: 

where dj is the desired output of node j and Yj is the actual output. 

If node j is an internal hidden node then: 

8j = xi(l - xi) I: 8kwjj 
k 

where k is over all nodes above node j . Internal nodes are adapted similarly by assuming 

that they are connection weights on links from auxiliary constant-value inputs. 

The class regions are bounded by line segments the rounding of the nodes of which is a 

function of the hardness of the sigmoidal non-linearity. The number of line segments is 

related to the number of nodes. 
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6.4.1 Advantages and disadvantages of HLBP 

Although perhaps currently the most popular form of connectionist model it is indeed 

difficult to find advantages for it over other networks. It is slow to adapt, can become 

stuck in local minima, has very limited mathematical justification, and is difficult to 

analyse. The analogy of its form with biological neurons is also of question. There tend 

to be a number of ad hoc parameters which must be optimised experimentally to allow 

the adaption algorithm to function. 

6.5 Radial Basis Functions 

These networks are based on the method of radial basis functions, a technique for inter­

polating in high dimensional spaces [16]. 

The RBF networks are of interest in that they have arisen from a careful and mathemat­

ically well founded assessment of the required tasks of a connectionist model. 

It is clear that the classification problem may be viewed as a multidimensional interpo­

lation problem. RBF networks are consequently a good method to produce a network 

capable of classifying input vectors into a series of classes. Define a set of m generally 

non-linear basis functions: 

</>(11 x - Y 11) 

Interpolating functions may be constructed from these basis functions with the form: 

m 

s(x) = L Aj</>(II x - Yj 11) 
j=l 

These basis functions may be centred on any points Yi including those not members of 

the training data set. 

6.5.1 Advantages and Disadvantages of the RBF Approach 

The RBF approach produces networks which, by the very nature of its derivation, tend 

to have good generalisation and interpolation properties. The most basic form of the 

RBF network is also unimodal and consequently avoids all of the problems encountered 
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with HLBP networks due to local minima, and can consequently show quite fast adaption 

rates. 

However, the necessity of choosing a priori the basis functions leads to a limitation of the 

performance of the method as it is assuming a priori the form of the pattern distributions. 

This assumption may not only be incorrect in general but also it is likely that the form of 

pattern clusters and the statistical properties of the patterns may be different for different 

regions of the recognition space. This can lead to highly variable results depending on 

the form of RBF and the RBF centre positions for a given problem. 

The RBFs being localised may be expected to work moderately well for well clustered 

data. 

Attempts to address the RBF preselection problems by some form of adaption of the 

RBF position and form have been attempted, but these suffer from the same problems of 

multimodality and slow convergence found with the HLBP [48]. 

From a theoretical viewpoint it is interesting to note that RBF networks are subsets of 

general higher order networks in which polynomial terms have related coefficients. This 

can be shown by expanding each RBF as a power series. 

RBFs are however a well conceived approach and may be of great use for some types of 

problems in which there is good a priori information. 

6.6 Group Method of Data Handling. 

Ivakhnenko [36] in the sixties was among the first to suggest the possibility of using a 

polynomial type non-linearity in an adaptive system to solve generalised problems. 

This approach has sadly been largely neglected by the neural network community. It is 

in fact a reasonably well conceived method with good performance. 

A multilayer polynomial system was developed and this is the method normally referred 

to as Group Method of Data handling (GMDH). This method attempts to reduce the 

number of polynomial terms by using the outputs of smaller polynomials as the inputs to 

other polynomials in a layered structure. Whilst the approach is much better grounded in 

theory than other methods the multi layer approach leads to multimodality and problems 

in adaption if a normal 'on the job adaption' is to be done. The method is more suited 
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to block processing on a predetermined training set. The ad hoc nature of some of 

the elimination rules also requires multiple runs and a priori knowledge to allow good 

performance. 

Experience in signal processing shows that it is better to avoid the considerable problems 

encountered in multimodal system adaption by using a different method to create and 

select the useful polynomial terms. 

Most of the work in this area has been done in prediction problems with surprisingly little 

work in pattern recognition and consequently very little has been done in optimisation of 

the method for this problem. 

There is now a series of closely related approaches based in general on the following. 

Firstly a set of first layer polynomials are calculated directly from the input data Xl ••• Xm 

by taking pairs of input points giving I = 1 ... m( m-I) /2 new values: 

YI = A + Ex; + CXj + Dx~ + Ex; + Fx;xj 

The coefficients of these equations are each optimised so that the error € = d - YI taken 

over the training set is minimised in the mean square error sense. Polynomials whose 

error after optimisation is highest are eliminated from the algorithm. 

These YI are now used as the inputs to another set of polynomials and so on. 

This is continued until the minimum error from a polynomial in stage n is less than that 

for stage n+l. 

The normalised RMS error over the training set is called the regularity criterion and is 

defined: 

where there are p training set values d;. 

The multimodal nature of the surface leads to the need to apply a very slow adaption 

algorithm which is usually some form of random search with a modification. Such ap­

proaches called 'guided random search' are not dissimilar to simulated annealing or genetic 

algorithms [36] and as such are very slow to converge. Another problem with GMDH is 

that although two polynomials may each independently fail to lower output errors their 
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cross products may lower the output error. Thus the independence of the terms selection 

procedure is questionable. 

6.7 Higher Order Networks. 

These are simple polynomial based networks. During the time of the work covered in this 

thesis work has been done in this area [24] mainly motivated by the ease of implementation 

of multiplication-like terms in optical methods . 

Most of the higher order approaches used in neural networks are very simple and no 

attempt is made to optimise their required computational load as in GMDH. They have 

often been based on binary networks and only applied to small problems. 

6.8 The New Approach 

The system developed in this thesis is a higher order system which is developed and refined 

using a signal processing approach and is aimed at the pattern recognition problem. The 

new approach is related to GMDH in that it is also attempting to find a polynomial 

network. However, it is designed to be adaptive in operation both for training data 

and the real data and is optimised in performance by methods which are consistent with 

unimodaloperation. It is also optimised with respect to the pattern recognition problem. 

6.9 Other Continuous Supervised Connectionist Model Forms 

There is now a series of proposed modifications of current networks, and some new types 

of network. These can be found referenced in [24]. Many of these other networks can 

be expressed as modifications of HLBP or radial basis functions. Some other methods of 

interest are Kohonen Self Organising Nets (unsupervised), and adaptive resonance theory 

(Unsupervised) [24] . 



Chapter 7 

Generalised Adaptive Filters 

7.1 The Signal Processing Approach 

In the early days of neural networks there was a tendency to over-extrapolate known 

physiological information to provide networks. There was also a tendency to produce 

networks by empirical methods. This led to systems which could not easily be analysed 

or optimised. Recently the field of signal processing has advanced sufficiently to allow 

the mathematical derivation of a network form by using a well defined signal processing 

approach. 

Firstly, it is necessary to consider a basic problem. A standard 'bench-mark' for neural 

networks is the exclusive-OR or parity problem. In this problem a series of binary inputs 

are input to the network and it is required to return the parity function value of the 

inputs. 

We can consider this problem from a signal space approach. Consider a vector space 

created by plotting each of the input variables along a set of orthogonal axes. For a 2 

input variable problem this space is a plane. For the binary exclusive-OR problem the 

input values (or 'input vectors') are (1,1) (0,0) (1,0) (0,1), the first two being in class one 

and the second in class two. 

It can be seen from Fig. 7.1 that a linear discriminator cannot be used to differentiate 

between the classes in the EX-OR problem. We can however transform the problem into 

an extended vector space in which the problem may be solved using a linear discriminator. 

We increase the dimensionality of the decision space by adding a dimension X1X2 . A linear 

plane may now be used to separate the classes. 
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Figure 7.2: Extended space EXOR Problem. 

82 



x 

xl Input 

Figure 7.3: Extended space EXOR Problem decision contour . 

Input Pn ttern Classif'ica tion 
r-------

l\ 1----,----7--1 Def'lning SysteM 
/ \ e .g .HUMnn 

Error 

Figure 7.4: Pattern Recognition as an adaptive Modelling Problem. 

If we collapse the decision plane of Fig 7.2 onto the 2D plane as in Fig 7.3 it can be seen 

that the decision contour is non-linear. 

So by using a linear discriminator in an extended vector space it is possible to perform 

classification tasks requiring non-linear discriminators. 

7.1.1 Non-linear System Modelling Approach 

The pattern recognition problem may be thought of as a system modelling problem in 

which the adaptive pattern recognition is attempting to model the classification system; 

for example, a human defining the relationship between a set of character font images and 

a set of collating sequence numbers. The block diagram showing the recognition problem 

cast as a system modelling problem is shown in Fig 7.4. 

It is clear that the relationship between the inputs and outputs of such a system is in 

general a non-linear one, thus the recognition system must be capable of generating a 
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sufficiently close approximation to the non-linear relationship defining the system. 

7.1.2 The Volterra FUnctional Analysis 

In signal processing such non-linear systems may be modelled by use of the Volterra series. 

The form of the Volterra series was first studied by Vito Volterra, but Norbert Wiener was 

the first to apply it to non-linear systems theory. He used it to model the input-output 

relationship of non-linear systems. The continuous Volterra series may be written: 

y(t) = Ho + Hl[X(t)] + H2[x(t)] + ... + Hn[x(t)] + ... 

where y(t) is the output of a system and x(t) is the input and in which: 

1:00 

••• 1:00 

hn(Tl, ... , Tn)X(t - T1)'" x(t - Tn)dT1 ' " dTn 

where hn(T1"" ,Tn) is the Volterra kernel. 

Stability of Volterra Functional 

The stability analysis of a Pth order Volterra functional has not yet been done. However 

a sufficient but not necessary condition for the Volterra functional to be bounded-input, 

bounded-output stable (BIBO) is by inspection: 

1:00 

••• 1:00 

I hp( T1,· .. ,Tp) I dT1 ... dTp{OO 

where hp is the pth order impulse response. [13] gives an example of a stable system not 

meeting the above. 

Discrete Volterra Series 

A discrete form of the series was developed. 

In general this will need to be a heterogenous Volterra expansion in order to model systems 

composed of multiple orders of non-linearity. The heterogenous discrete Volterra series 

may be written as: 

L: Hn 
i=1,N 
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where Hn are the Volterra Kernels, and ware coefficients which define the model as 

follows :-

Ho = wo Zeroth Order term or 'D.C.' term 

HI = L WjXj First Order Linear term 

H2 = L L WjjXjXj Second order Quadratic Term 
j 

H3 = L L L Wjj,kXjXjXk .... and so on. 
j k 

7.1.3 Adaptive Volterra Expansions 

Normally the coefficients are fixed by use of analytical methods: however, they may be 

fixed adaptively. Consider the following system in which the inputs are combined to 

give the individual Volterra terms. These terms are then multiplied by their respective 

coefficients and the terms summed. It can be seen that the system can be decomposed 

into a vector expansion stage followed by a linear Finite Impulse Response (FIR) filter. 

The adaption of the coefficients may ' then be achieved by any of the methods used in 

FIR adaptive filter theory. The analytical basis of this approach allows us to calculate 

explicitly the form of the error surface. The Volterra Series is found to converge for most 

practical non-linearities, although large input levels or very high order non-linearities 

should be avoided. A very closely related expansion may be obtained by using the Gabor­

Kolmogorov polynomial: 

An often convenient notational method for such systems is to write the expansion terms 

as a series of Kronecker products. 

In a system such as that shown the effect of joining an FIR filter to the Volterra expansion 

may be considered. The system has a set of input values Xo • .. Xn which are input to the 

non-linear Volterra state expander to produce a set of output values 'Po ••• Vg with n being 

less than q. These values then form the input to an FIR adaptive filter. Consider the 

85 



~ Volterra 

Expansion 

Input Pn t tern 

Figure 7.5: Adaptive Volterra System. 

output values for the vector state expander. This set of values may be represented by the 

vector v. The filter coefficients may also be represented by the vector w. 

Using the standard FIR equation we mfl-y write the error € as: 

in which d is the desired output from the filter, that is in our case the correct classification 

given the set of inputs to the whole system Xi. In vector form this may be written: 

If we wish to consider the error function for the Least Mean Squares, or LMS, criterion 

with the mean being considered over the pattern presentations, the equation becomes: 

where R is the autocorrelation matrix of the data in the non-linearly extended vector 

space and similarly p is the crosscorrelation vector between the desired d signal and the 

non-linearly expanded data. (7 is the variance of the desired response. 

The objective is to find a set of weights w which will minimise the mean square error. The 

system then will output classifications which differ from the desired classifications with 

86 



the minimum mean squared error possible for the system. The solution for the weights of 

the filter is obviously the same as that of a Wiener Filter operating in the extended space 

and so the methods used to find the Wiener solution explicitly may be applied. A more 

suitable approach for the recognition problem is to find the weight solution adaptively. 

This has the advantage of not requiring a priori knowledge of R, and does not require the 

inversion of a matrix. 

It is clear from the above that the LMS error is solely a quadratic function of the weight 

vector. This shows that the performance surface is a hyperparaboloid and consequently 

always unimodal. This is a highly desirable property as it shows that the system will 

not exhibit local minima on the error surface. Such local minima cause the adaption 

performance of networks to be greatly reduced as the adaptive algorithm may get stuck 

in local minima and consequently not reach the optimal coefficient values. The property 

of unimodality also confers the ability to adapt much more quickly as there are no valleys 

in which to dither and the gradient is proportional to the distance from the solution. 

This last property prevents the adaption being greatly slowed or halted by regions of the 

error surface with small gradients. A stochastic gradient algorithm may be easily applied 

by following the derivation of the LMS algorithm. The usual gradient algorithm may be 

written by differentiating the mean square error with respect to the weights to give an 

iterative weight update equation. 

where 11 is an adaption coefficient which sets the speed of learning. A simple expression 

for V' E( £2) may be derived. 

aE( £2) = 2E aE = -2EX 
aw aw 

The analytic basis of the method combined with the property of linearity in the coefficients 

allows the application of the standard least squares methods. In general for the pattern 

recognition the problem is degenerate or rank-deficient. A single solution may still be 

obtained by the application of Singular Value Decomposition (SVD) which yields the 

minimum norm solution. Such analytical methods may also be used to study the network 

performance and obtain the eigenvalues for real recognition problems . 
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Parameter Tuning 

There is only one parameter to be chosen In the new network: this is the adaption 

coefficient. However, this adaption coefficient is that of a standard adaptive filter. Con­

sequently the large body of knowledge pertaining to adaptive filter theory may be im­

mediately applied. Yassa[3] developed an expression for choosing the optimal adaption 

coefficient. No such method may be applied in the case of current networks as the nature 

of the error surface is complex and contains local minima. Consequently in current net­

works the parameters such as the adaption coefficient must in general be set by trial and 

error. 

7.2 Multiple Level Classifications 

The output of the network is well suited to multiple class classifications. This may be 

done by the use of different levels on the same output. For example the desired network 

outputs may be assigned to the integers. In this case an output within .5 of the desired 

classification can be considered as belonging to the classification. 

If it is important for the network to only classify patterns correctly and the cost of an 

incorrect classification is high, a 'guard' band may be defined around each classification. 
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Figure 7.6: Classification against network output: Simple case. 
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I 8.0.1 Generalisation Results 

The ability of the network to form general decision contours is tested for small two­

variable problems. In fact this is rather a harsh test as in practice if any hyperplane were 

as densely populated by patterns as in the examples, a further extension to separate the 

patterns would probably be used. The contours were obtained by forming the extended 

space correlation matrix over all the patterns and inverting it to solve the standard weight 

equation. The first class was assigned an index of one and the second an index of zero. 

The output threshold was set at 0.5. 

The peanut cluster has proved a particularly difficult test for some types of network as it 

requires a larger number of decision line segments than the simple cluster problem. 

As there was no noise in this experiment the function was not constrained in regions in 

which no patterns existed, and consequently used the freedom of these regions to allow 

itself to fit the patterned regions more accurately. 

8.1 Network Comparisons 

The new network's performance was compared with that of the current networks. The 

exclusive-OR problem was used as a test. The adaption times in terms of numbers of 

iterations were compared for the different network types. The times for the hidden layer 

back-propagation networks are taken from an American study [14]. These timings are 

for the best run, which was achieved by optimising the network parameters over a series 

of runs. If the HLBP network became stuck in a local minimum it was stopped and 
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Figure 8.1: Localised Cluster : Patterns and Decision Contour. 
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Figure 8.2: Localised Cluster: Discriminant Function Values. 
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Figure 8.3: Localised Cluster: Thresholded Discriminant Function Values . 
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Figure 8.4: Dual Cluster: Patterns and Decision Contour. 
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Figure 8.5: Dual Cluster: Discriminant Function Values. 
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Figure 8.6: Dual Cluster: Thresholded Discriminant Function Values. 
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Figure 8.7: Peanut Cluster: Patterns and Decision Contour . 
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Figure 8.8: Peanut Cluster: Discriminant Function Values. 
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Figure 8.9: Peanut Cluster: Thresholded Discriminant Function Values. 
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restarted from different initial conditions. In the case of the new network the results are 

for the first time run as the adaption coefficient could be selected beforehand, and the 

local minimum problem did not exist. Thus when comparing the figures it is necessary to 

realise that in terms of total pattern presentation numbers the factor between the number 

of presentations to each network is in fact considerably greater. 

Number of bits Volterra HLBP 
2 15 95 
3 17 265 
4 62 1200 
5 106 4100 
6 292 20000 
7 556 100000 
8 1287 over 500000 

If the figures in the above table are plotted for the two networks it is possible to see that 

the learning times for the current network rise quickly as a function of the number of 

input variables, whereas those for the new network rise at a lower rate. The results of the 

graph imply that the learning times for current networks are likely to be extremely large 

for complex problems with more than a few input variables. 

In fact to see the Volterra results on the same scale a log plot is needed. 

8 .1.1 Interpolation Performance Comparison. 

In this section the interpolative ability of two current network types Hidden-Layer and Ra­

dial Basis Function (RBFs)[42] is compared with that of the new network. The network is 

trained on the exclusive OR class points (0,0), (1,0),(0,1),(1,1) until full convergence. The 
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adaption is then stopped and the inputs are varied over the full signal space. The class 

decision is then plotted as a point for clas's one and no point for class two. Graphs a) and b) 

:x:2 

xl 

were provided by Niranjan[19]. 

x2 

xl 
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The hidden layer network displays poor interpolative abilities which is to be expected as 

the decision region has linear boundaries. The Radial Basis Function network performs 

much better, producing suitably localised classes. This increase in performance is to be 

expected due to the relationship between RBFs and multidimensional interpolation. The 

new network converges to the best solution of the three, which is extremely near to the 

optimal solution, given no information other than at the class points. In fact, if the above 

is repeated for the network before it has fully converged, it displays results which are 

similar to those of RBF networks, that is the decision regions for a partially converged 

network is of a similar form to that of the fully converged RBF network. However the 

new network is not constrained to a set of a priori 'RBFs' and so can converge further. In 

fact this behaviour can be seen by following the decision contours as the network adapts. 

8.1.2 Multiclass Performance 

In practice it has not proved possible, in general, to use current networks for classification 

with more than 26 classes. In general, multiple class problems are addressed by using a 

series of networks. The flexibility of the decision surfaces of the new network, however, 

allows a single network to perform multiclass problems. One such problem is that of 

character recognition. The network was presented with an 8 by 8 pixel image of a character 
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Figure 8.12: Multiple Mutliclass Problem. 
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and required to output the character's position in the collating sequence. The network 

was capable of learning to recognise all 80 characters in the font. A second order Volterra 

extension was used with all terms present. The coefficients were set by the LMS algorithm. 

It is also possible to increase the number of classes that a system can recognise by using 

the same vector expansion 'hardware' with multiple adaptive filter sections connected to 

it. 

8.2 Determination of Net~ork Capacities and Degeneracy 

The capabilities of the network to differentiate inputs into a number of classes can depend 

on the degree of non-linearity of the relationships between the input patterns and output 

indices. A measurement of the 'fullness' of the network can be determined by considering 

the rank of the extended-space correlation network R. A rank lower than the number of 

expanded terms shows that the solution to the problem is degenerate and consequently the 

network should be able to perform well in that it can produce a number of solutions which 

will minimise the mean square error. However, Volterra network generalisation properties 

are found to be reduced for rank deficient problems as the polynomial form of the network 

can tend to over-model parts of the extended space. This can be avoided by application of 

the network size optimisers described later in this thesis. The extended-space correlation 

matrix is given by: 

R - t ex - VV 
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where v is the extended state vector. 

The rank of the matrix may be obtained by various methods, although Singular Value 

Decomposition can give good results when working with rank deficient systems. 

Once the rank of the extended space correlation matrix is full this implies that there is 

now a unique solution. The ability of the network correctly to classify patterns now also 

depends on the regions over which the outputs are thresholded to within the correct class. 

Thus, for example, a correct output may be obtained if the network desired output is 

1.00 but the network actually outputs 1.07, if the output thresholder operates between 

.5 and 1.5. This question of output region definitions is also relevant to the cost of 

incorrect classifications and more work may be done in future to relate the thresholded 

mean square error criterion to the cost and probabilities of incorrect classifications and 

hence set optimal output ranges. 
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Figure 8.13: Example character. 

8.3 Visual Recognition Results 

8.3.1 Direct Recognition 

The network was first applied to recognising binary font images of size 8 by 8 pixels. The 

sixty four pixels were input to the network and an error signal was generated by subtract­

ing the network output from the value of the font member in its collating sequence!. The 

adaption coefficient was approximately set by using an estimate of the average power of 

the input image. 

Figure 8.112: Examples of the font. 

lThe term 'collating sequence' means the index to the character in an ordered font 
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8.4 Invariant Recognition 

A preprocessing section was used to produce patterns which were invariant to shift, scale 

or rotation. The recognition process was repeated using real camera images of simple 

handwritten capital letters. 

8.4.1 Preprocessor 

One of a series of capital letters was drawn with a marker pen onto a card. The image of 

the card was digitised by the use of a camera and framestore. The first stage performed 

by the preprocessor was an adaptive level binarisation; this was followed by a calculation 

of the centroid of the resulting image. The next stage was to use a simple edge finding 

algorithm to reduce the image to an outline image of the character. A line following 

algorithm was used to find sixty-four points in order around the outline. This algorithm 

was started from the leftmost point on the letter, and this process was repeated three 

times to take account of inner loops in the letters, for example, the letter B. 

BE 
Figure 8.113: Example characters. 

The euclidean distance from each point to the centroid was calculated. The referencing of 

the distance data to the centroid of the letter confers the property of positional invariance 

on the data. The power of the data is now normalised to be one. This confers the property 



of scale invariance on the data. A peak finding algorithm was used on the data and the 

data was shifted in a circular manner to put the peak value as the first data point. This 

operation gave the data the property of rotational invariance. Consequently the centroidal 

data patterns output by the pre processor should be shift, scale, and rotation independent. 

Figure 8.114: Preprocessor Stages. 

Although in the majority of cases the preprocessor produces similar output patterns for 

an individual letter there are some letters which under certain circumstances will produce 

significantly different patterns. An example is the letter B. The first pass of the outline 

follower follows the outside of the letter, however the second pass could follow the top loop 

or the bottom loop and correspondingly generate significantly different patterns depending 

solely on which loop has the leftmost point. Consequently a connectionist model must be 

used which is powerful enough to cope with two significantly different clusters mapping 

to the same output index. 
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Figure 8.115 : Centroidal Data form. 

8.4.2 Results 

Direct recognition The network was found to recognise correctly all the characters in 

an eighty character font in around 700'0 pattern presentations . 



80 Member Font recognition 
2nd Order Expansion,64 Pixels 

Figure 8.116: Plot of number of errors in the last fifty presentations against number of 

presentations. 
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Figure 8.117. Plot of number of errors in the last fifty presentations against number of 

presentations with added noise. 

Preprocessed Recognition The system was trained on twelve letters A. .... L, initially 
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using one card for each letter. Once the network was found to correctly recognise each 

card then gradually other cards with .the same letters were introduced into the training 

runs. A new card was only introduced when the network had converged to a state giving 

no errors on the current cards. 

Letter Number of Cards Learnt 
A 4 
B 4 
C 4 
D 4 
E 4 
F 4 
G 4 
H 4 
I 4 
K 4 
L 4 

Figure 8.119 : Recognition Results 

8.5 Conclusion 

In the direct recognition case the network performed well, learning eighty separate class 

members: this is a higher number than usually reported for current networks. The conver­

gence times were fast by comparison with current hidden-layer networks which have been 

reported to require many tens of thousands of presentations to learn fewer characters. 

In the preprocessed case the network demonstrated its ability to cope with variation in the 

patterns, and consequently be applicable in practical recognition systems which require 

not only position invariance, but tolerance to character variation. 

113 

I ' 



2000~--------.----------.---------.----------.---------~ 

1000 

o 

-1000 

-2000L---------~--------~--------~--------~--------~ 
o 50 100 

Figure 8.14: Example of Mug Data. 

8.6 Audio Recognition 

8.6.1 The Data 

150 200 250 

The following audio signals were generated by various acoustical means. For example, by 

hitting a cup with a pencil and so on. A ,series of recordings were made of signals generated 

by the same means. No care was taken to produce identical sounds: for example, the cup 

was not always hit in the same place. The process was repeated for a series of different 

sound generating processes. These included a mug being hit, a click, a clap and so on. 

The plots also show the variation within one of the class sets. 

The similarity of the frequency spectrum of different classes may also be seen. 

8.6.2 Preprocessing and AR Model 

As it is clear that the raw time series data is unlikely to produce clustering patterns 

for each class a preprocessor was used. The audio signals were preprocessed by over a 

range of forty samples finding the largest sample. The position of this sample was used 

as the starting position for ten samples to be taken. These ten samples had their power 

normalised and this pattern served at the network input. Ten point sections of data were 

taken from between the tenth and fortieth samples starting at the maximum sample in 

this range. This avoided scaling problems and reduce time origin variation effects. 
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Figure 8.15: Example of Click Data. 
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Figure 8.16: Example of Clap Data. 
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Figure 8.17: Example of Box Data. 
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Figure 8.18: Example of Mug 0 Data. 
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Figure 8.19: Example of Mug 4 Data. 

6~xl~0~4----~------~----~------~------~------~----~ 

4 

2 

120 140 

Figure 8.20: FFT of Mug 4 Data. 
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Figure 8.21: FFT of clik 0 Data. 
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Figure 8.22: Processed mug data (10 examples). 

118 

100 120 140 

6 7 8 9 10 

I [ 



1r=~--'-----'-----'-----'-----'-----'-----'------'----, 

0.5 

o 

-0.5 

_1L-----~----~----~~----~----~----~----~~----~----~ 

1 2 3 4 5 6 7 8 9 10 

Figure 8.23: Processed Box data (10 examples) . 
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Figure 8.24: Processed click Data (10 examples) . 
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Figure 8.25: Processed clap Data (10 examples). 

8.6.3 Results 

The network was trained using 8 of the ten realisations of the data for all the classes and 

after learning to classify these correctly the 2 remaining examples were presented. 
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Sound Desired Output Actual Output Error 
Mug 0 1 1.01 .01 
Mug 1 1 1.02 .02 
Mug 2 1 .99 .01 
Mug 3 1 .97 .03 
Mug 4 1 1.02 .02 
Mug 5 1 .99 .01 
Mug 6 1 1.02 .02 
Mug 7 1 1.00 .00 
Mug 8 1 1.01 .01 
Mug New 1 1 . ~6 .4 
Mug New 2 1 1.3 .3 
Click 0 3 3.01 .01 
Click 1 3 3.00 .00 
Click 2 3 3.00 .00 
Click 3 3 2.98 .02 
Click 4 3 2.99 .01 
Click 5 3 3.01 .01 
Click 6 3 2.84 .16 
Click 7 3 2.96 .04 
Click 8 3 3.02 .02 
Click New 1 3 3.30 .30 
Click New 2 3 3.12 .12 
Clap 0 4 3.98 .02 
Clap 1 4 3.99 .01 
Clap 2 4 3.97 .03 
Clap 3 4 4.02 .02 
Clap 4 4 4.01 .01 
Clap 5 4 3.99 .01 
Clap 6 4 4.03 .03 
Clap 7 4 4.17 .17 
Clap 8 4 4.01 .01 
Clap New 1 4 4.41 .41 
Clap New 2 4 3.65 .35 
Box 0 5 5.21 .21 
Box 1 5 4.99 .01 
Box 2 5 4.99 .01 
Box 3 5 5.02 .02 
Box 4 5 5.00 .00 
Box 5 5 4.98 .02 
Box 6 5 5.01 .01 
Box 7 5 4.97 .03 
Box 8 5 5.09 .09 
Box New 1 5 5.39 .39 
Box New 2 5 5.41 .41 
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8.6.4 Conclusion 

The network performed well in the audio transient recognition task and required a com­

paratively light computational load to do so. The audio preprocessor could obviously be 

extended to form higher order correlations for systems with higher order statistics. The 

generalisation of the recogniser allowed it to recognise the previously unseen non-training 

patterns, although the error for such new patterns was considerably higher than for the 

training data. 
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Chapter 9 

Output Mapping Problem and 
Principal Non-linearities 

9.1 Output Mapping. 

Consider a single input system with a series of output classes as shown below in figure 

9:1. 

This would require a high order non-linearity and consequently complex boundaries to the 

decision regions and so a larger network. If the output indices had been suitably chosen 

the whole problem could have been reduced to a linear one, figure 9:2. 

Although the above is a simple case the problem becomes difficult to solve in multiple 

dimensions with a degenerate system. This question of output values has not been fully 

appreciated with current networks and a method for determining suitable indices would 

lead to far smaller networks. The approach being currently investigated involves a princi-
c 
o 
.p 
d 
U 
4-
If) 
If) 

d 

U 

Input vor io.ble x 

Figure 9.1: One Dimensional Problem 

123 



c 
o 
+' 
d 
U 

4-
I.J1 
I.J1 
d 

U 

Input vo.rio.ble x 

Figure 9.2: Linearised Problem 

pIe component analysis of the pattern difference vectors and has provided the ability to use 

smaller networks. It was hoped to develop an adaptive approach to network contraction. 

9.2 Vector Space Approach 

The problem of deciding on an optimal set of output indices may be approached from a 

vector space method. 

The problem is to find a resolving vect?r, that is, the vector onto which the extended 

space class vector is projected, which maximises the difference in output value between 

the two classes with minimum separation. 

Therefore it is necessary to find a projection vector w which maximises the difference of 

Xi.W for the two input patterns Xl and Xk which give the closest values of Xi.W. 

Thus it is necessary to maximise (Over all i,j such that i not equal to j) the minimum of: 

Where eij is the difference vector between the i th and j th input pattern vectors. 

This may be addressed by a Lagrange multiplier approach. However, this led to a fruit­

less conclusion as the analysis gave an unusable result in terms of active and inactive 

constraints. 

9.3 The Bayesian Approach 

An attempt was made to apply Bayesian methods to the output mapping problem. 

I 
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9:3.1 Bayes' Theorem 

P(M I D) = P(D I M)P(M) 
P(D) 

where P(M I D) is the probability of the M given D, and P(D) the probability of D. 

Bayes theorem may be applied by using it to specify parameters in a model which is being 

tested against some data. 

9.3.2 Application to Connectionist Models 

Baye's Theorem may be applied in the co?nectionist model problem by using the following 

model. The operation of the network is separated into two stages. The first stage is the 

familiar vector operation. For the sake of simplicity the first stage will be limited to a 

linear operator (FIR filter). This first stage is followed by a scalar non-linearity. This non­

linearity may be formulated in many ways but the simplest is a truncated polynomial. 

Bayes theorem is applied to estimate the coefficients of the power terms in this scalar 

non-linearity by integrating out the linear vector first stage as nuisance parameters. Thus 

Bayes theorem allows the separating of the decision boundary generation and the output 

mapping translation. This should lead to much smaller networks as the network's first 

stage will only have to converge to whichever solution separates the classes. The output 

mapping being a scalar non-linearity rather than a vector one is correspondingly far more 

efficient. 

Consider a series of pattern vectors Xi with pattern classification output value Cj where i 

is the pattern index. 

The proposed system modelling the relationship between the patterns and the output 



Input dota 

Ql 

Q'bx'cx~dx~ ........ 

Sco.lor Non-linearity 

lInpo.r 'Vector' Stage 

values is assumed to be of the form shown . 

The error is defined as usual as: 

where F[ ] is: 

F[u] = L inun 
n=l,P 

in being the non-linearity coefficients to be determined. From this a likelihood function 

may be constructed for error values observed. Assuming E to be distributed as a Gaussian 

variable with zero mean: 

M referring to the model and D to the data. Bayes theorem may now be applied: 

P(M I D) = P(D I M)P(M) 
P(D) 

O 
1 - 1 ~ (2 

P(F ,w I E) 1j2;aNe '2u'I L...=I ,N I P(F[], w) 

The coefficients w of the linear combiner may now be integrated out: 

Assume P( F[], w) = A a constant. The analytical solution of this integral is difficult, so 

an attempt was made to perform numerical integration. 
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9.3.3 Conclusion 

Although the Bayesian approach is an interesting attempt to investigate the output map­

ping problem the impracticality of the calculation of the integrals by numerical means for 

systems with more than a few coefficients is at present sufficient to prevent the use of the 

method. If an analytical solution or a good approximation to the solution could be found 

this approach could yet prove fruitful. 

9.4 Optimisation of Output Map Order 

A constrained optimisation approach was developed to allow the optimisation of the 

output index labels. 

9.4.1 Derivation 

The following approach to suitable selection of these indices has been shown to give good 

results. It uses a constraint to ensure that the output indices derived are separated from 

one another and consequently takes the form of a constrained optimisation. 

Suppose that there are M classes and in the training phase there are Ni (i=l,M) presen­

tations for each class. Let di be the classification index for each class. Let xn{i) be the 

extended space pattern vector for the ith class and the nth example of it. Let w be the 

network weight vectors. 

The di must be constrained. A suitable constraint is found to be: 

M 

Ld; =c 
i=1 

where c is an arbitrary constant. 

The method of Lagrange multipliers may now be applied. Set up the objective function: 
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where k=l,M. 

From 1: 

Define: 

and: 

Then: 

From 2: 

4 becomes: 

Ni 

:L xn(i) = p(i) 
n=l 

M Ni 

:L:L xn(i)x~(i) = Rxx 
i=l n=i 

M 

:Ldip(i) - Rxxw = 0 ... 3 
i=l 

Nk 

(.\ + Nk)dk - :L wtxn(k) = 0 
n=l 

Nk 

(A + Nk)dk - w t :L xlk) = 0 ... 4 
n=l 

k = 1, M. Multiply 5 by dk and sum over k (change to i): 

M M 
:L(.\ + Ndd; - :L wtp(i)di = 0 
i=l i=l 
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For convenience, assume Ni = N for i = 1, M : 

M M 
(,\ + N) Ld~ - ~wtp(i)di = 0 

i=l i=l 

But: 

~d~ = c , 
so: 

Substitution (5,3): 
M 1 
~ ,\ + N wtp(i)p(i) - Rxxw = 0 

1 
,\ + NPxxw = Rxxw 

where: 
M 

P xx = ~ p(i)pt(i) 
i=l 

Assuming Rxx non-singular then: 

That is, w is an eigenvector of ~~Pxx. 

w =ae 

where e is an eigenvector. Multiply 3 by w t : 

M 

w t ~diP(i) - wtRxxw = 0 ... 7 
i=l 

Substitute 6 into 7: 

Substituting 8 into 5 gives: 

From 8: 
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where 11 is the eigenvalue corresponding to e, i.e. A + N = 11. Now, to decide on which 

eigenvalue to choose, consider the erro,r: 

We have: 

and: 

and from 9: 

Expanding 10 gives: 

Substitute 7: 

From 11: 

Substitute in 12: 

M N 

E = L L [d~ - 2diWtXn(i) + (wtXn(i))2] 
i=l n=l 

M 

= Ne - 2 Ldiwtp(i) + wtRxxw 
i=l 

M 

E = Ne - Ldiwtp(i) ... 12 
i=l 

t dk t 
w p(k) = -w Rxxw 

e 

M d2 
"" ' t E = Ne - LJ --!..w Rxxw 
i=l e 

= Ne - wtRxxw 

E = e(N - 11) 

where 11 is the eigenvalue corresponding to e. Hence the error is a minimum when the 

largest eigenvalue is selected. Substitution shows: 

t 
d

k 
= W Pk 

11 
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By use of this expression a set of 'optimal' output indices may be found. These indices 

are in general not integers and in fact a , convenient approach to practical implementation 

has been found. The original integer indices are simply reordered for the classes in the 

same order as the optimal ones. This is found to work well as may be expected if the 

connectionist model is viewed as a multidimensional interpolator. 

9.4.2 Results 

The output mapping scheme was first applied to a two input variable problem with class 

clusters as shown below in figure 9.3. 

These clusters and assignments gave the following outputs for each class. The output 

mapping system was now run to give the following optimal indices and the original indices 

reordered. The plots show the desired and actual outputs against pattern number. The 

solid line is the desired output and the dotted line the actual output. 

It can be seen that the output error has been greatly reduced by optimal ordering of the 

output indices. 

The output mapping approach was next ~pplied to the problem of optical character recog­

nition, using a 80 font member set with 8 by 8 pixels for each character. The desired output 

was the position of the character in the collating sequence 0 to 79. 
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Figure 9.3: Input pattern clusters. 
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dotted is actual. 
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Figure : Results for 80 member font OCR with first and second order terms without 

optimisation of indicies. 

With the arbitrary indices the linear system is not capable of solving the problem. How­

ever, if the indices are optimised a linear system can now solve the problem. 
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9.4.3 Conclusion 

The Volterra connectionist model has already been shown to have significant advantages 

over other systems in terms of analytical basis, speed of learning, scaling properties, and 

generalisation. The output mapping method demonstrates an approach which makes the 

Volterra connectionist model highly efficient computationally, by comparison with current 

neural networks. Although in the above results the system was applied to yield linear 

recognisers, exactly the same approach may be used to reduce a higher order non-linear 

recogniser to a lower order one. The network is no longer being constrained to fit arbitrary 

indices and so may utilise all of its degrees of freedom to improve recognition performance. 

9.4.4 Analogy with Generalised Karhunen-Loeve Transform 

The eigenvectors created by application of the output mapping may themselves be used 

for creation of a signal space. Consider the K.L. transform. This transform creates a 

signal space in which the signal energies are optimally concentrated in as few of the space 

defining vectors as possible. This is of course of interest in communications as it allows 

transmission of a given number of the new space vectors to transmit as much of the signal 
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energy as possible. However, it is not necessarily a good thing for pattern recognition in 

which we are more interested in th.e class differences than the classes themselves. The 

space created by the output mapping eigenvectors also has some interesting properties 

which must be investigated in future work. It appears to offer a space in which the class 

separation for a limited selection of the eignevectors is maximised. So two classes which 

cannot be separated by projection on to the first eigenvectors may be separated by using 

a multidimensional output space composed from subsequent eigenvectors. More work is 

to be done on this subject in the future. 

9.5 New Network Using Adaptive Output Mapping 

Above, an output mapping scheme was developed which, in the pattern recognition prob­

lem, minimised the order of non-linearity required, to relate the input data and output 

indices, and thus enabled much smaller networks than usual to be applied to pattern 

recognition problems. The method was based on a constrained optimisation. The error 

defined over M classes in the training phase was defined as: 

M Ni 

t = L L[di - w~n(i)12 
i=l n=l 

where Ni is the number of presentations for each class and xn(i) is the extended space 

pattern vector for the ith class and nth example of it. The dj are constrained: 
M 

Ld; = c 
j=l 

where c is an arbitrary constant. In the original derivation the method of Lagrange 

multipliers is now applied to give, by the solution of a generalised eigenvalue equation 

and the selection of the largest eigenvalue, a set of optimal output indices. 

Such a block based method is not directly applicable to an adaptive approach as it requires 

the indices to be calculated a priori. Consequently an effort was made to derive an 

adaptive approach to optimisation of the output mapping. 

An adaptive approach may be derived as follows: 

If the original error equation is considered it is clear that the mean square error is a 

quadratic or unimodal function of the index dj • This makes it suitable for a gradient 
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search approach. This gradient based optimisation must, however, take account of the 

constraint equation to restrict the lo~us of search points to the values dictated by the 

constraint equation. 

This constraint is most easily done by performing the index update in spherical polar 

coordinates: the weight update may still be performed in cartesian coordinates. 

In SP coordinates the constraint equation becomes a constant radius constraint, with the 

various angular coordinates being updated by gradient search. The actual radius is an 

irrelevant gain factor which simply scales all the indices. Rewriting the dj as cos OJ in SP, 

then: 

j=l 

becomes: 

j=l 

As expected the constraint equation is a hypersphere in SP coordinates. The error is 

defined as before: 

Or in SP coordinates for the output dj space: 

To optimise the outputs a gradient search is performed to minimise f. with respect to the 

indices, but steps are only allowed around the hypersphere because of the constraint equa­

tion, that is, the component of the steps in the radial direction is zero. The constrained 

gradient search then becomes: 

where JLom is a step size constant parameter. Now: 

oE( f.2) Of. . 
o ()j = 2f. 0 OJ = -2f.sm OJ 

therefore the algorithm is: 

I1 
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f 
€ = COS(}i - WX 

The classification attached to each class 'may be discovered by running a known training 

pattern through the system as the adaption proceeds. It is hoped to continue work on 

this approach in the future. 

9.6 Principal N on-linearities. 

As is appreciated in the GMDH [36] approaches not all of the polynomial terms may 

actually play an important role in network performance for a given problem. Some terms 

may be redundant. It is a shame to have to calculate these terms each time. Methods 

however which use a priori information to remove random terms cannot perform well 

in general for on-the-job applications as the redundancy in the terms may change. The 

remaining terms which are required for good network performance may be called the 

principal non-lineari ties. 

9.7 Adaptive Identification of Principal N on-linearities 

It is clear that in order to perform a totally general transfer function a very large number 

of terms from the Volterra series may be needed. Past experience has shown that many 

real problems may, however, be solved with limited order networks of order one, two or 

three. This is especially true in the field of pattern recognition where the above output 

optimisation has been applied to reduce the order of required transfer function. It has 

also become apparent that many problems may be completely independent of some of the 

terms in the general polynomial. This independence or irrelevance of certain terms leads to 

larger, less efficient networks, but it is very difficult to predict in advance which terms will 

be irrelevant and remove them. It has also been demonstrated that networks composed 

of random terms will in general operate well (shown later in this thesis). This frees the 

network from the constraint of having complete Volterra expansions. An alteration to the 

adaption algorithm is derived here which allows the network to organise itself to eliminate 

some of these unhelpful terms to decrease network size. Alternatively the computational 

load decrease incurred by the network when a term is lost may allow another term to be 
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added. Such a network which removes terms to optimise its structure may be referred 

to as a self collapsing network (SCN). If pattern class densities in the multidimensional 

space are considered, an interesting theory may been proposed that suggests that for 

complex pattern recognition problems limited non-linearities should be required, for well 

preprocessed problems. Consider an image, which for human purposes may be considered 

as 256 by 256 pixels. This means our signal space has 256 by 256 dimensions and it is 

likely that in such a large space a low order network could separate many classes if they 

were correctly output mapped. 

9.7.1 Degeneracy 

The problem in the SCN is to detect redundant terms and neutralise them. Consider 

a degenerate problem in which the extended space correlation matrix Rex is singular. 

For such cases there is in fact a series (quite often an infinite number!) of possible 

solutions. The standard block approach to such a problem is to employ Singular Value 

Decomposition to yield the unique minimum norm solution. SVD is however not suitable 

for an adaptive approach and incu~s a relatively heavy computational overhead. In a 

minimum norm solution the weights associated with any redundant terms will be set to 

zero. 

9.7.2 Adaptive Minimum Norm Solution. 

Attempts were made to develop such an algorithm: however it became apparent that 

many methods failed with such rank deficient problems and the only approach found was 

to use Singular Value Decomposition. 

Although there are recursive implementations of SVD these are computationally heavy 

and would be impractical for many connectionist model applications. In order to obtain 

a minimum norm solution the following adaptive approach was derived with a new error 

measure: 

2 _ (d )2 t T/ k - k - Y k + O:W W 

In which 0: is a constant setting the relative importance of term elimination to reduction 

of mean square error. Consequently if a term is truly redundant the value of its weight 
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will be arbitrary. The above addition to the error term adds a penalty for setting such 

a weight to a non-zero value. The squ~re error may be differentiated with respect to the 

weights to lead to a stochastic gradient update equation: 

Where fLscn is a step size constant. The derivative may be found as follows: 

Where f.k = dk - wtxk as before. 

The f.Z derivative can (as in the LMS case) be shown to give: 

The wt Wk term gives: 

Hence the update becomes: 

~ c.c, -: 26<:j(3< 

ft -;::- 2j11'" 

It can be seen that the norm minimiser adds only one multiplication and one subtraction 

per weight update. 

Now that the minimum norm solution is being preferred by the adaption algorithm, terms 

may periodically be eliminated. To give a constant size network terms may also be ran­

domly added each time. Through this process the network may perform self structuring. 

Consequently, the irrelevant polynomial terms are selected and eliminated. 

Similarly, the total number of terms may be set as a function of the classification error 

rate. It should, however, be noted that the optimal solution of the weights (in the mean 

square error sense) is perturbed by the extra term and consequently a is normally kept 

small to minimise this perturbation. The effect of a being small is for the network to 

initially adapt its weights irrespective of the norm constraint. Only when the M.S.E is 

minimised will the a term begin to have more effect. The setting of a is determined by 

the relative importance of network collapsing and minimising output error. 
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Figure 9.6: Type I Neuron . 

) 

Figure 9.7: Type II Neuron. 

9.7.3 Perceptron Analogy 

As will be discussed in chapter 10 the Volterra network can be composed from randomly 

connected type I and II perceptrons (Figure 9.6 and 9.7). 

The second type of neuron is the output neuron. This is the same as the linear perceptron 

with weighted input and one is needed for each multiclass output. 

In perceptron terms the performance of each perceptron is being investigated and if it is 

found to be of little use to the system its inputs connections are destroyed and new ones 

'grown' to random connection points. 

Terms may also be added to keep an optimised constant size structure. This has been 
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done by random selection, although a host of other rationales could be investigated using 

higher order correlations. 

It should be noted that the weight energy penalty term tends to slightly distort the normal 

weight solution and thus leads to a misadjustment giving a slightly higher mean square 

error. The effect can be avoided by only including the penalty term during periods of 

training or retraining rather than during the recognition phase. 

9.7.4 Adaptive Self Collapsing Network Examples. 

As a simple example, a two pattern problem is addressed. A second order extension is 

used: 

The two patterns are alternately presented and the smallest coefficient after 50 presenta­

tions is shown: 

Pattern 1 Pattern 2 Redundancy Eliminated Weight 
(2,-1) (-1,2 ) Xl X 2 W3 

(2,-1) (-2,-1) X2 W2 

(-1,-2) (-1,2 ) Xl Wl 

The results demonstrate that the SCN correctly eliminates unnecessary terms and so can 

solve the problem with a smaller network. Unlike SVD the effect of noise of the apparent 

degeneracy of a degenerate problem is not of importance as the SCN method does not 

require only exact degeneracy to work but will assume the minimum norm solution for 

near degenerate problems. 

9.8 Conclusion 

The output mapping approach leads to much smaller networks and consequently sig­

nificant decreases in computational load with no degradation in performance. A full 

understanding of the implications of the new output mapping approach will require more 

work in order to investigate its behaviour. 
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The new network has the ability due to its derivation to model general non-linearities and 

maintains high speed convergence wit~out local minima problems, due to its unimodality. 

It will also function well for multiclass problems and will work with computational loads 

far lower than other networks by minimising the non-linearity of the problem and then 

concentrating on the principal non-linearities of the problem. 

The self collapsing adaptive mapping final network is for input vector h : 

x = F(h) 

where FO is a random selection of polynomial terms. 

Weight update: 

Index update: 

t 
Yk =WX 

Onewi = Oiold + 2«:: sin Oiold 

After a preset number of presentations, terms with a weight value of modulus less than a 

threshold are eliminated from FO and a new random polynomials term added. 
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Chapter 10 

Implementation 

10.1 Introd uction 

In order to facilitate the understanding of the new network it has so far been discussed as 

two sections: firstly the vector state expansion and secondly the adaptive filter section. 

The same network may be implemented in a more distributed form composed of a series 

of identical 'neurons' by factorising the expansion polynomial. Once this has been done 

it is possible to find factorisations composed of identical units. Consequently a network 

may be created using a network of simple terms. Another approach which is currently 

under investigation is to define two types of 'neuron'. The first is composed of a simple 

multiplier and the second a standard linear perceptron. 

An interesting form of the second implementation is that in which the network elements 

are randomly connected. This generates a connectionist model containing random terms 

from the non-linear state expansion. However, provided that the network is large enough, 

the inherent degeneracy allows the network to find possible solutions without the missing 

terms. 

10.2 Exact Implementation 

The first computational reduction in implementing the network may be found by realising 

that terms such as X1X2 and X2Xl are numerically the same and thus only one of them 

is needed. Computational load may also be saved by storing the result of each term's 

calculation before it is multiplied by its coefficient so that the term is not recalculated for 
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the update equation. The network may be directly implemented with each term being 

calculated from scratch. This is ineffici~nt but easy to code. A more efficient approach is 

to use previous lower order terms to calculate higher order ones. The full application of 

this idea is in the nested approach. The vector space expansion equation may be factorised 

to give more efficient implementations of the network by utilisation of nesting. Consider 

the simple expansion: 

This may be nested in the form: 

Where: 

That is, a simple recursive application of: 

out = constl + in * const2 

Other implementation approaches are to separate the expansion and summation opera­

tions to allow multiple problem solving and to allow the random internal connections of 

self structured networks. The connections of such random or self structuring networks can 

be easily implemented by a two input quasi-multiplicative element (or 'neuron'!) whose 

inputs can be arbitrarily connected. This can easily and efficiently be implemented for 

simulation on a digital computer by storing the input positions for all the elements on a 

stack and using indirect addressing to fetch the inputs. 
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10.3 Random Interconnection 

It is of interest to consider the effects of incorrect or even random connection between the 

units of the new network. This is of interest as many possible future implementations of 

large networks may not be able to guarantee 100 percent fabrication accuracy. Such future 

implementations using light or analog VLSI may use tens of thousands of perceptrons and 

hundreds of thousands of interconnections. To produce such systems in a totally accurate 

manner may be very difficult. It is also considered unlikely that biological information 

processing systems can grow and maintain themselves exactly to a predetermined 'wiring' 

diagram. Thus it is of interest to consider the effects of faulty or missing connections. 

In the extreme case it is interesting to consider the performance of large versions of 

the network composed of perceptrons connected in a random fashion determined by some 

probability generating function. This would be of interest as it would allow self-organising 

networks. One scenario has each perceptron growing out a random connection to another 

perceptron, and there are variations on this theme. 

10.3.1 The Two Neuron Random Model 

The network may be decomposed into two types of neurons. The first is a neuron which 

performs a vector space expansion. This may be as simple as a multiplication of two 

inputs, or a neuron taking in multiple inputs to give the product of them all. 

The second type of neuron is the output neuron. This is the same as the linear perceptron 

with weighted inputs and one is needed for each multiclass output. 

The network is made up by the random connection of layers of the type I neurons. Random 

connections are made from the inputs of the type II neurons into the type I layers. 

10.3.2 Results for Random Connection 

The random network was now applied to the optical character recognition problem and the 

number of errors in the last fifty presented characters was plotted against the presentation 

number. 
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Figure 10.1: Type I Neuron . 

) 

Figure 10 .2: Type 11 Neuron . 
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Fig. Results for Random Network 

10.3.3 Conclusion 

The random network works well and will converge to give a viable operation; as may be 

expected the computational load is heavier than the non-random network. 

10.4 Limited Dynamic Range and Imperfect Multiplication 

In the previous section the effect of imperfect or random interperceptron connections was 

considered. In this section the effect of imperfections in the perceptrons is considered. 

Such imperfections are considered as those expected to arise in an analog implementation 

such as light, analog electronics and so on. 

Practical analog systems can only work over a limited dynamic range: if the signal is too 

small the signal becomes lost in noise, too large and it will exceed the range of the system 

(for example, hard limiting in an amplifier). In order to avoid this problem the network 

should be able to function with all internal calculations giving signals within some modest 

dynamic range. 

In implement - ing of the new network it is clear that the effect of multiplications imple­

mented by analog multipliers should be considered. The exact form of these imperfections 
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will be specific to the exact implementation used and as such is beyond the scope of this 

discussion. However, the effect of general degradation may be considered. This degrada­

tion may be modelled as low level white noise added to the multiplier transfer function. 

1004.1 Results 

A two dimensional problem was attempted using a network for which the expansion stage 

multiplications were limited in dynamic range by a hard limiter for product results over 

100 in magnitude. The input values were normalised over the range 0-10. 

The extension was next calculated using a noise corrupted multiplier, the noise being 

uniformly distributed over the range of 0 to 0.1 and fixed as a function of time. The 

network inputs were normalised to the range -0.5 to +0.5. 

Was replaced by: 

c = a * b + 0.1 * random((a + 0.5) * 5, (b + 0.5) * 5)) 

Where random is a matrix of uniformly distributed numbers ranging from 0 to 1. 

1. Fig.10.4:0utput against two inputs for perfect two input mul­

tiplier. 

2. Fig.10.5:0utput against two inputs for static noise corrupted 

two input multiplier. 

3. Fig.10.6:0utput against two inputs for limited dynamic range 

two input multiplier. 

4. Fig.10.7:Decision regIOns for limited dynamic range network 

case. 

5. Fig.10.8:Discriminator surface for limited dynamic range mul­

tiplier network. 

6. Fig.10.9:Decision regions for static noise corrupted multiplier 

network. 
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Figure 10.4: Ideal Multiplier 



Figure 10.5: Static Noise Corrupted Multiplier. 
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Figure 10.6: Limited Dynamic Range Multiplier. 
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Figure 10.7: Limited Dynamic Range Multiplier Results. 
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Figure 10.8: Limited Dynamic Range Multiplier Discriminator Surface Results . 
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Figure 10.10: Static Noise Corrupted Multiplier Discriminator Surface Results. 
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7. Fig.l0.l0:Discriminator surface for static noise corrupted mul­

tiplier network. 

10.5 Conclusion 

The network still has the ability to function for limited dynamic range calculation and 

for imperfect calculation. Its performance is however in general degraded for the limited 

range operation. The network will correctly operate with quite severe noise corruptions 

on its multiplication operations. It may be possible in future work to analyse the effects of 

such degr~dations by expansion of the transfer function by power series and replacing each 

network multiply by a power series expansion of the imperfect multiply. By considering 

the imperfections in this manner in the light of the network random connection results 

it is possible to explain why the network can still operate with imperfect multiplies, as 

these imperfect multiplies can be written as the addition of a series of perfect multiplies. 

The effect of time varying multiplication noise errors has been left for further work. 
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Chapter 11 

Conclusion and Future Research 

11.1 Future Research 

The quadratic error surface lends itself ideally to the use of a more efficient adaption 

algorithm, such as that of conjugate gradients [2]. A variation of this method is cur­

rently being developed, which is giving considerably faster convergence times than those 

discussed earlier without requiring the storage of very large matrices. 

A form of the network based on the Wiener G-functionals is being considered, as these 

form an orthogonal set . This may lead ' to advantages in adaptive performance for some 

applications and form another basis from which to analyse the network behaviour.[13] 

Likewise other non-linear expansions such as the method of gating functions are being 

considered. This may produce compact networks for problems which contain many satu­

rating elements.[13] 

The use of a least squares criterion for multiclass problems is not a particularly good one 

as it can weight the error likelihood on a class as a function of its output value, so other 

error functions are being investigated. 

Ideally, a pattern recognition system should construct an estimate of the underlying prob­

ability density functions which are generating the input vectors given an element from 

a particular class. Although, due to the expectation operator in the mean square er­

ror equation, the probability of a pattern vector occurring is taken into account by the 

network, it may be possible for the network to make far more complete estimations of 

underlying probability processes by using Bayesian methods. 
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Figure 11.1: Recursive Networks 

11.1.1 Time Series Network Incorporation 

Many pattern recognition problems require a large amount of contextual information. 

Such a problem is found in connected speech recognition in which the recognition of a 

phoneme may require knowledge of immediately previous phonemes. Crude attempts 

to achieve this have been done by feeding back a previous classification as an input 

to the network. The fundamental and complex problem of determining the stability 

behaviour of such non-linear recursive adaptive systems has, however, not been addressed 

and consequently such recursive networks are not robust. 

The analogy of such systems with adaptive HR filters demonstrates the likely complexity 

of such stability analyses even before non-linearities are taken into account. 

11.1.2 Non-clustering Patterns and Preprocessing 

At the moment there are two approaches to the determination of the preprocessor stage 

in pattern recognition. The first is to assume problem-specific models or problem prop­

erties which may be exploited to produce a network input data form that will lead to a 

sufficiently small number of single class sub-clusters. The second is an ad hoc trial and 

error approach. 

Both of these approaches are problem specific and the first requires knowledge of a suitable 
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Figure 11.4: Successive clustering. 

system model. 

A more general approach would be to generate a transformation from the training data 

that will transform an unpreprocessed problem into a well processed one by combining 

sub clusters belonging to the same classification. 

The output mapping work may provide a method to give such a general preprocessor by 

utilising a space created from the larger eigenvalue eigenvectors of the output mappIng 

analysis. 

11.1.3 Image Coding 

The image coding problem can be viewed as an attempt to find a low dimensionality signal 

set that represents a higher dimensionality signal set, the original image. By transmitting 

the lower dimensionality set, a compression in the amount of data needing to be transmit­

ted over a communication channel may be achieved. The Volterra connectionist model 

when combined with an optimal output mapping strategy has some interesting proper-
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ties for use in such a problem, and would allow such a system to incorporate subjective 

perceptual judgements into the compression process. 

11.1.4 Other Data sets 

It is hoped to apply the network to other problems such as speech, fingerprint, underwater 

transient, and more general image recognition tasks. It is also hoped to apply the network 

to more examples of time series data, especially time series with non-linear statistics. 

11.2 Conclusion 

The new approaches have been shown to have some advantages over current methods 

and allow greater understanding of network operation than some of the more empirical 

methods. 

Firstly, the network convergences to its optimal solution orders of magnitude faster than 

current networks, and this convergence time does not rise as quickly as a function of the 

size of the pattern vectors. 

Secondly, it is unimodal and conseq~ently does not suffer from the problems of local 

minima, such as needing to be reset, getting stuck or uncertainty about having converged. 

These problems can seriously affect the performance of current networks and prevent them 

being used in an adaptive mode while actually performing their tasks. 

Thirdly, the complete mathematical derivation of the new network allows a much fuller 

understanding of its operation and allows direct application of adaptive filter knowledge. 

This allows easy parameter tuning and application of other adaptive filter update methods. 

It also allows the effects of approximation and implementation to be considered and the 

advantages and understanding of aspects such as output index selection to be obtained. 

The adaptive network output index and network structure methods allow the application 

of the networks to problems which previously would have needed impractically large 

networks. 

The work done in this thesis has only begun to probe the possibilities which may be 

explored by a firm signal processing approach to connectionist modelling and it is hoped 

that others will continue on this path. 
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A New Approach to Image Registration Utilising 
Multidimensional LMS Adaptive Filters. 

By 
Michael R. Lynch and Peter J.W.Rayner 

Engineering Depar.tment, University of Cambridge 
Cambridge,England. 

Abstract 

[n this paper a new method is presented for the adaptive 
rt'gistration of twu images between whic-h the image ob­
jt"ct is shifted. The method is ba~ed on multidimensional 
LMS adaptive filters, whose derivation is first given and 
the pt'rformance surface is shown to be u.nimodal. The 
multidimensional filter's similarities and differences with 
thl' on~-climensional LMS adaptive filter are hriefly dis­
('Ilssed . It is shown that the filter will perform t.he neces­
sary operations of correlation, interpolation,fiitering and 
shift to produce a registered output image. An algorithm 
is also dl'veloped to work in conjunction wi th the filter to 
provide explict shift measurements. The advantages of 
this iuherently parrallel adaptive approach over current 
methods are discussed and are must apparf"nt where the 
images are corrupted by noise or are related by spatially 
varying shifts. finally the possibility of application of 
multidimensional LMS adaptive filters to pattern recog­
nition is briefly mentioned . 

Exalllples of the need for application of image registra­
tion algorithms arise in many fields such as airborne 
ground sensing and aircraft navigation, medical imag­
ing, in which separat.e frames of an image must be reg­
istered in the presence of involuntary patient movement 
alld wlwl't· ever t.llt're is relat.ive lIIovenH'nt bet.wet'n the 
illlage sl'nsnr and the image scene. III practical cases the 
images lIIay he degraded by noise, lIIay contain weakly 
spatially varying shifts or one of t.he two images tu be 
regisLt'recl may ('ont.ain ohjl'cts not found in t.he oLher or 
moving illdl'pclldent.iy of the rest. of the scent'. All of 
tht'se effeds can significantly reduce the performalH'e of 
current. image registration methods such as phase cor re­
lat.ion. 

In the case of images this method employs,a two dimen­
siollal Least Mean Squares adaptive filter whkh Illakes 
allllost no a priori assumptions abou t t.he images or their 
degredat.iolls. This allows the method to he used with 
gt'neral images and consequently it is not limited t.o im­
agt's with sharp edges or similar artifact.s as may be re­
quired hy synt.act.ic met.hods. 

Dt'rjvatjoll 

Thl'! derivation of the mutildimensioual LMS I1daptivl' 
filter is closely related to that of tht' one dilllensional ('ast' . 
The derivation is given for 1\ N dimt'nsiolll\l adaptivt' filt('r 
with each dimension of order Ill. 

Consider an input tensur of rank N order III X allcl a 
N rank weight tensor W .Both tensors element.s have N 
indices i . .. z. 

The N-dimensional adaptive linear cumiJiller is ~iv('1I by: 

Where the operatioll WX is delilled as I he illnel' prociu('t, 
that is : 

L L ... L ~· i ... ,II ' i .. . : 

.:= 1,"1 

The error may be defilled as I ht' di fTt'r t' lIct' i)t'llI't'('1I a 
desired output dk and t.he <I <'I 11 al Olltplll .Ill" 

Ek=dk-YI' 

Ek = dk - WkX k 

Hence: 

We now aSSllllle thal. (k,cl k alld X k nl'<' slatisticall~' sla ­
tionary and consider t he ex pect.at ion of I hI' ('1'1'01' S<j 11 an·d 
over k.This assllmption ('an have SOIllt' importilnl illljlli ­
cations for work wit.h practical illlages as ill IlIan.\' ('as, 's 
the degree of stat.ionarit.y ('an be less t.han is nurlllally 
found with lllany practical one dimensional signals . 

We can define E(XkXk ) as the N dimensional correlation 
'Tensor' of rank 2N, R . Likell'is(' the cross-('ondat ion 
tensor E(dkXK) denoted, P . 



This shows that the mean sCJuare error is precisely a 
qtla<irati(" fun("tion uf th!' w!'ight values . Thus th!' !'r­
ror slIrfnn" is unil1lodnl with 110 lo("al l1Iillimn. It is this 
qtlality t hat will allow sOl1le forl1l of gradient search to 
converge tu the optil1lum sulutioll. 

Having shown the lIature of the t'l'ror or Per/a,.,nullec 
stlrfact' the prohlt'1I1 is IIOW to fllld a search algorit.hlll to 
lillt! the lIIi 11 i 11111111. Agaill t.lH' ("ue is taken frolll the 10 
(ase of th!' d!'rivatioll of the Widroff- Hoff LMS all!;orithlll 
III allt! a sil1lpl!' gradielll search is employed 

An adapt.ive a1gorithl1l lIIay be formed hy the fullowillg 

approach: 

{h 2 (h k 
\7 k = a';; = 2tk aw = - 2fkX 

Wt' can spt'cify a st!'epest desccnt al~orit 11111: 

Wk+1 = Wk -I,\7k 

= W k + 2/H k X k 

Where IL is the adaption coefficient. Explicitly in t.he case 
of 20 AOFs the update equation is: 

The derivation of the LMS adaptive filter is indepen­
dent of the dilllensiollality of the data, thus the sal1le 
derivation can he used to lead to 2D,3D or ND ADFs . 
This derivat.ion also shows us that the error surface is 
IInilllodal eV!'1I for higher dilllensionalit.y dat.a. The fad 

that 2D and 1 D ADFs are based on the same theory 
also allows us to predict with reasonahle c()nlidel~ct' the 
behaviour of 2D ADFs by analogy with t.he 1 D cas!', how­
ever care must be exercised in this practice as some of 
the problems encountered in 2D have no analogy in ID, 
also the nature of prartiral image data may differ from 
pradical 1 d signnls. 

[magI" Resistration Syst!'1I1 

Th!' basic shift. r!'gistration systt'm is shown in figure one . 
Thc ref!'rence illlagt' may in practice often be one of the 
previous frames of a series of illlage frames. The adap­
tive filtl"r is run and its coefficient.s are updated. The fil­
ter will perfurm a gradient search to minimise the mean 
square error image . In the case of a shift this will occur 
when the output illlage has been correctly shift.ed hy the 
fi\t.er to be registered with the reference illlage. The max­
imum shift that the system can cope with is given hy the 
filter size and consequently its maximulll spatial delay. 
The system is arranged so that there is in effeel a spatial 
shift of half of the filter size between the two illlages so 
t.hat the filter can cope with a positive 01' negative delay 
of mal!;nitude less than m / 2. 

Fig1.Adaptive IlIIage Hegist.rilt iOIl u~ing :,iI) Filt t'I'S . 

The particular pat.h over tl\l' im<]J!,t' th,,1 tilt· filt('1' rUlls 
can be important in I I\(' Cil~t' of spalially val'yillg shifts .1f 
th!' variation is ()ccurrillg 11101'(' qllickly ill Ollt · .. f Ill(' two 
axis directions it would he advisable 10 Irack the filtt'r 
along the other axis direction to allow the fllt!'r 11\01'1" 

iterations in which to update to t.hl" nl"lY shift . Con Sf' ­
qUl'ntly if ilul\ges IlIwe 1\ fiJlat inl \'nrillt ion which is IIlllillly 
a function of the x coordinate it would ht' a(h'isable t" 
run the filtl'r down the linf's of constant y coordinate only 
advancing in x coordinat.(' al I h(' end of earh y lint' . 

It is possible to improvt' the performance of a !1;il'en ord(,r 
of filter by ensuring that there is no large rt'lat ive dc 
offset between the images. This mu)' occllr if tht' t\\'o 
images were captured unclt'!' vcry dilrt'!'ent illumination 
levels. Although it lIlay he experiecl that the filtt'r collld 
compensate for such an on·st't. I he process of doing this 

degrades the performance of tht' system as it is ulilisinjl; 
zeroes of the filter that may be 1I10l'e nsdull,l' applit'd 
elsewhere, Correspondinly it is t ht'r('fore often useful to 
high pass fil tt'r Ih!' imag('s l)I"fore r('~isl rat ion if Illf'rf' is 
a possibility of large dc ofl"st'ls . 

The Adaption Coefficient 

The value of the adapl.ion coeOicient is importanl. ill 
determining the mode of opl'r<1t ion "f t hf' system , As 
a generalisation the nearer the I\daption co!'fIicit'nt ap­
proches the divergence value so the output imagt' Uf' ­
comes sharper and t.he systt'm can t rack spatially I'ar.l'­
ing parameters more rapidly. lIo\\'el'er smallt'r I'allles of 
the adaption coefficient give higher noist' inllllunit.\'. Ont' 
of the lIlain problems in the practical implementation .. f 
adaptive image registration is tht' choic(' uf a sllilable 
adaption coefficient. In fact hecause of the nonstalion ­
ary statistics of practical images it. is lIeces~ar,l' , ill ordt'\' 
to improve performance, to implement a self regulal i IIg 

adapt ion coefficient which varies with thl' iIlHtgf' . A sim­
ple, yet reasonably effective approach is to updale Iht' 
coefficient of adaption as a functioll of tht' illput )lOWt'r 
to the filter. This approach which is hased 011 th!' work 
of Yassa [6J has been simplified to reduce romplltatiollal 
load. A power estimate is obtailled from the row of UlI­

seen data about to enter the filter, this is tht'n fi/t!'rl"d by 
a single pole filter whose feedback factor rail bt' adjusled 
to control the smoothing of Ihe pOII't'r estimal('. 



Incident power: 

1\ = 2: X~.1 
i:::;:::J.m 

SUlOothcd power:Fk = Fk- 19 + Pk 

Where 9 is the feedback factor. The adaption coefficient 

is updated by: 
I'in! 

1'= -­
Fk 

Where I'i,,! is the initial adaption coefficient. 

If it is desired to use the filter output image direclly or to 

track spatially varying shifts a larger adapt ion coefficient 

llIay be needed. Even with the above adaption coeffi­
ril'nt updator divl'rgence may still occur on ct'l'tain parts 

of some imap;es so it is necessary to have a divergence 

detector. This may be done by chc(king that the output 

pixels do not execeed a certain value. If this should occur 

the I!in! value is illlll\edilltdy reduced by a fudor (usu­

ally ahout 0.7) and the filter ('oeflirient reset to either 

all zero, or all zero with a value one at the coefficient 
('Orrespomling to a recent shift estimate. 

As lIlay he exper\.ed from the one dimensional analogy 
the performance. of t.he two dimensional LMS algorithm 

depends on the eigenvalue spread uf t.l ... input data aud 
the. t.ime taken t.o converge to the correct shift. t'stimat.e 

is reduced as tht' whiteness of the dat.a increases. In 

order to extrad the shift estimate explicitly from t~e 

coefficents of the adapted filter we must consider the filler 
solution. In the case of white input signals and integer 
shifts the filter converges to a Kronecker delta function at 
the shift delay as may be expected, and for non-integer 
shifts to an interpolator. Almost all practical images 
do cOllvt'rge to solutions with JleRks at t.h" dday vahlt' . 
The dominance of this peak is however detenllillt'd by 

the whit.eness of the input image, whiter images giving a 

11Iore dominant peak. 

A simple pt'ak detedor my be used to ('xt.ract t.he shift [21 

and interpolation of the peak may he ust'd tu oht.ain non­

intt'ger shift estimates . By using such a shift extractor 

at regular intervals a displacement vector map be built 
up showing the displacement vector over the image. 

Fig 3. Results of COIIRtnllt shift Ca8~. Filter 20 hy 
20.Shift (5,4), and I'i"! = .008 Top left nefercIIC.e,Top 
right Input, Bottom Left. Error squared, Bottom right 
Out.put. Also Plot of final coefficient values. 

( 11 r. f fir i ... t 
11 Y 4. \ 11 r 

R.t.r.~c. I~.,. Uoctur 

Fig 2:The Complete Regist.rat jon System 

Out.put Image 

As a biproduct of the processing, a rf'J!;istf'fcd and shifkd 

corrected image is produced at. the filt~r output. lIow­

ever, apparently due to the sensitivity (If the LMS al­

gorithm to eigenvalue spread and the differening conver­

gence rates for difTerent eigenvilluc~, t h ... solut.iolls rl'acll('d 

are near optimal but lead to suhjf'ctiv('ly slightly hlurred 

images. These prohlems may he allcviat('d hy usillJ!; adap­

tion coefficient values lI('ar to din·r/!;ellct·, but tLis call 

lead to a risk of of diYergt'l1ce occurring. Anot Il<'r nl'­

proach is to use the dispiacelllellt v('rlor fidel to '1IIanu­

ally' shift back the original image. This is cnrr('nt.l,I' dOlle 

with many registration methods. 

Performance 

The filters were run on dean images wit It a spatially st.a­

tionary shift. In practice a lock ont.o t h(' correct. shift is 

achieved in thirty or forty pixds. The adaption col'fIi­

rient value may be small sl1ch t.hat t hI' out Pl1t. image is 

very blurred but yet give good results fur the displace­

ment vector. All the results shown were generated using 
images 80 by 80 pixels which were quantised t.o 6 bits . 
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Th~ same t'xperilllt'IIt was r~l'~at~d with th~ addition oC 
tqu &1 I~ Yt'h oC whit~ ul\('orrdat~d noise to nch oC the 
im",~s knd th~ displac·t'IIIf'nt Yf'cior fidd T«ordffi. A. 
may ~ f'xpf'C'tf'd thf' filtf'TI took longf'r to lock onto the 
shifl, and in lbf' CASf' oC high noisf' l('Yds, thf' lock ('ould be 
lust ud r«'Sainf''' throughout thf' picturf'. lIowner even 
at lhne hi~h noise I('vds Curther incrf'ASf's in performance 
('ould be obtained by the utiliaation oC averaging of tbe 
diapl&<'ellleul vector by use of the property oC continuity 
or thf. dilplacnnent v~('tor (7). ' 

.... ~# .. , .. """, .. ",# 
,,"""",""" " "" , .. "" .. , .. """ .. ", , .. """ .. , .. "." .... " 
." .. ".,i"""" " 
""""",."."" 'cl'.' ... ' •.••• " .. ", 
." ... " .... "." ... , 
"""."""""" 
""" " """""" , .. , .-".""" .. "", 
", " """ " """" ... • , .. """, .. "'i". , .. """.";"",,, , .. """" , .""", 
"""", . """", """" " ,.""", 
"" 1 .... " .. ' """, .. .. . ... .. ...... ... " .......... .. .. .. 

VIIlt. aacor .. lat .. nol&8 
ud •• to eac' lu,. 

SltA Oft M>th h •• , •• 2. S •• 

Shitt (3.2) 

Fi~ 4. Results with addition of white noise to both IUl­
~f'S.Fiher 20 by 20,Pinl = .004 Format as Fi@3 Also Dis­
pla.cmlent vt'Ctor llIap. 

Finally tht filters Wf'rt run on an illlaj!:t' pair in whkh the 
filt~r input imag~ 111\(1 ht"t'1I nhtainecl hy A ~pl"ial vlHying 
shift which wu a function oC tht x coordinate. 

I • •• ' " , .. , ... . , 
," I '" I 

•• ' " " I 
"' . I •• • • 

'" 1 "" . 
I I , ," " I 

••• "" I I 
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I I I I I.· •• 
• , I I I" I I 

I " 1 ' " I I ' 
,. "' " I I 

" "'" I I 
'" I • • ' I I 

• I • •• •• I' 

• • I ' ' " . I 
I I I I' .· •• 
• I. I I " I I 

: : :: :: :. 

Fig~. Rt'sul15 of Spatially varying shift case.Shift 6y = 
5. sio(O.04 .. zl. Filtf'r 12 by 12 Jlint = .004 

romput~tio!!'!l1Qacl 

For spatially stationary shifts the filtt"r nf'ed ollly be rUII 
ov~r small portions of tilt" imag~. Tht filtf'r size is s~t 
Ily th~ largt"st shift to hf' df'alt with, but this may bf' 
reducffi by calculating <Iisplacf'Illt"lIt Vf'ctor fidds froIU a 
<Iecilllatf'd image. The algorithm is illht"rf'lItly parrallel 
alld $uitf'd to the USf' of currf'nt adaptivf' digital filter 
intf'grated circuits . 

Relatrd POSlibililitJ 

The above r~gist rAlion .yslt"1ll 111111 h~ "dApl~11 Cur )llll · 

tf'rn recognition by using a reff'f'('uce illlaKt" oC an llhjt-ct 
AS th~ de&ir~d input Al\d A 1Ct"1I~ liS th(' IiII('r illput. 1'1 .. · 
filler correlatel the objt'Ct ill thf' $C~n~ alld rd~rellce 11111 
shif" the Ic~ne. Tbul th~ error illl~~ rail be ul~d AS a 
m~uure of the match oy~r tht' ""'nanl r~gion, thus pro­
vidin& a shift invariant pAttnll f'('('ogllitioll lysl('lIl. Th~ 
use oC high~r order,Cor f'Xlullpl~ :m, ad"Jltin filtl'rs mlly 
be utili~ to r«'8isl~r OVt"f a 5f"qUf'Il(,t" oC Crllm" by tilt' 
same principiI' u il outlint"d aoon. The similarity of 
such rusher order adaptive filter. to n~ur&1 net works hu 

been noted.!t i. hoped tbat tht" in.ight &inn by th~ dt"· 
.eription of mlltlidilllt"lIlional adaptivt' filtt"r. lII"y It'IId tu 
a fuller undt'rstanding of the behaviour of IOIll~ c1ASS~s 
of neural networks. 

Conclusion 

The LMS Illultidilll~n.ional adaptive filtt'r can pwvi<lf' 11 

n~w approach to image registration which is w~1I 5uilt·cI 
to parraJel implelll~ntations . Tht' 5y~t~1II also hAS SUlllf' 

useful propertiel giving the 1I0iSf' illllllullinty of conf" 
lation bASed m~thods but n .. t rt'11lliring a st'arch (lvt'r 
pOlSiblt', shifts.It also thf' ahility tu dui with w('llkl,\' 
spatially varying shifts unlike transCorm bast'd methods. 
The adaptive filtf'r can al~o hl\ndl~ w~Ak imagf' d('gr(' · 
dations AS its rrequ~lIry r('spnll~t' is not cOII~lrn.ilw,1 alld 
lUay adapt to corred diff~rf'nces in the two image~ ('/lUSl·.! 

by sensors or UlleVt'1l iUumination and so 011. 
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A New Connectionist Model Based on a Non-Linear 
Adaptive F~ter 

Peter J. W. Rayn4!r and Mkhael R. Lynch 

Depa,rt_nt of Enaineerina 

Cambridae University, Cambridae, U.K. 

ABSTRACT 

A Dew type or coonectioDiat model i8 introduced 

bded OD the nOD-linear extension of adaptive filter 

theory • . It is ShOWD that the .odel conver&es iD the 

learninl process to a &IobaJ optimulII and experimenW 

results are presented which indicate that the rate of 

conver&ence ia considerably Caster thaD h.. bee. 

reported for other mode". 

1. Introduction 

Connectionist models are beina studied in many 

areas of speech and pattern recoanition 11,2). The basic 

operation that the model is required to realise is that 

of discriminatina between various classes of patterns. 

This is achieved by presentina tbe connectionist model 

with a set of trainina patterns and associated 

classification indices. In the supervised learnine phase 

the model parameters are automatically adjusted so 

that the network output approximates, as closely as 

possible, the classification index associated with the 

pattern. Many of the connectionist models currently 

beina investiaated are based on approximations eained 

from physioloeical studies of neural behaviour. 

However these networks are inberently non-linear and 

little is understood about tbe ophmality of the 

network and the rate of converaence in the learnine 

process. Indeed it is known that the networks exhibit 

many local minima and that the rate of convergence can 

be excessive (3) 

In the supervised training phase, let a trainine 

pattern be represented by the vector ~. The 

connectionist model operation may be written as a 

aeneral non-linear function h(!,) of the pattern vector 

~. Associated with the pattern vector ~ is a 

classification index c J which indicates to which of M 

sets of patterns OJ the pattern vector belongs. If the 

classification indices are ordered so that: 

then the operation of tbe supervised learnina phase ia 

to adjust the parameters of the model function h(!,) so 

that: 

c, ~ h(!,) < c". - ~ E 0 , ... (1) 

2. Discriminant Functions 

The operation described by eqn. Is known as a 

Discriminant function (4) and it is the purpose oC this 

section to examine some of the basic properties of 

these functions . 

Consider first the case of a linear discriminant 

function where the ieneral scalar function h(!,) of the 

N-dimensional pattern vector ~ is linear. This may be 

written as: 

y - h(!,) = ~T ~ 

The constraint of linearity implies that the 

dicriminator boundaries are straiiht lines in 2-D space 

or, more ienerally, hyper-planes in multi-dimensional 

space. 

In ieneral it is not possible to discriminate 

between pattern classes with a linear discrilllinant 

function as can be seen by considering the n-bit parity 

problem which is often used as a test case for 

connectionist models.The 2-bit parity problem may be 

stated as findini a discriminant function which satisfies 

the following conditions. 

y ~T ~ ~ c =- ~ E 0 1 
Y ~T ~ < c ~ E O2 

where: 

~ -[ :: ] 
x. , X2 E { -1 , + 1 } 

O. { ~T I (I , -1 ) , (+1 , +1 )} 

O2 ~ ( ~T I (-I • +1 ) • (+1 • -1 )} 



TYPIcal dIscrimInator boundaries are shown In fill. I. 
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Fi&. 1. Discriminator boundaries for 2-bit parity 

problem 

In alllebraic terlU the followinll examples would 

serve as discriminltol"1ll for the 2-bit parity problem. 

lives: 

lives: 

Y - XI X2 

Y > 0 , ! E 0 1 ~ (Even Parity) 

y < 0, ! E O2 = (Odd Parity) 

y =- (XI + X2 )2_2 

Y - -2 + x/ + 2XIX2 + X2
2 

y > 0 , ! E 0 1 - (Even Parity) 

y < 0 , ! E ~- {Odd Parity} 

The lIeneral discriminator may be considered as a 

non-linear operator on the elements of the pattern 

vector. However an alternltive viewpoint is to consider 

the lIeneral discriminator IS a Linear operator over a 

Non-linearly Extended Vector Space. This approach 

lives considerable insipt and leads to a Connectionist 

Model with desirable properties. 

For the 2-bit parity problem the discriminator: 

y - XI X2 

may be considered as the linear discriminator: 

y - [0 0 

operatin& over the non-linear space shown in fig. 2. 

Fi(' .. 2. Discriminator boundaries in extended vector 

space for 2-bit parityproblem 

3. Form of tbe Non-linear Extension 

There are I nu . ber of pOSSIble formulations for 

the non-linear extellSlOn vector but one which i5 

closely related to the Volterra expansion for a non­

linear dynamic syste.. is the discrete Kolmolorov­

Gabor polynomial [SI 

y - l!.T ~ 

.. . (2) 

This will be termed aa ( N, K ) discriminator system. ie. 

N variables and upto lU> ' order product terms. An N 

variable linear discrimiator is an ( N, I ) system. 

The form of the Extension Vector for a ( 3,2 ) 

system is: 

!.1 -
[I XI X2 X3 x~ XIX2 XIX, X2XI x~ X2X3 X3XI X3X2 xn 

4. Optimum Discriminator Weillht Vector 

The optimum discriminator weillht vector l!. may 

be determined with reference to fill.3. 

Fi&.3. Extended vector space linear discriminator 

The error in the d~riminator output for an input 

pattern !, and associlted classification index cJ{j) is 

( , - C J(j) '- C J(j} 

Expected squared error E( (,2 

Minimisin& wIth respect to the wei&ht vector l!. 

where: RI. = E(cJ(j) !.!i } 

K~. - E{ !.., !.!.} 

.. . (3) 

.. . (4) 

.. . (S) 

In practical applications the dimensions of the 

correlation matrix R .. may mean that the computation 

of the inverse is DOt practicable. Moreover some 

applications of Connectionist Models require that the 

) 
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Bodel be continuall.y re-trained as the pa ttern data 

vanes. In slllnal processinll terms this IS equivalent to 

deahnll with non-stationary slllnals. It is necessary, 

therefore, to seek an alternative approach. The form 

of the linear discriminator is identical to that of a 

Finite Impulse Response filter and eqn.5 is, in eHec:t, 

the classical Wiener filter but defined over a non­

linearly extended vector space. There has been a 

considerable amount of work over the past few year. 

d .. linK with adaptive approaches to determininK opti .. al 

filters (6) and most of this work may be applied to the 

extended vector space system. The simplest of the 

a1&orithms wil be derived; this is known as the Least 

Mean Square (LMS) algorithm or the Stochastic 

Gradient alKorithm. 

The block dia&ram of an adaptive approach to 

the discriminator problem is shown in fi&. 4. 

Fi&.4. Adaptive extended vector space linear 

discrimina tor 

The prinCiple of the LMS al&orithm is to update the 

discriminator ",el&ht vector in the direction of steepest 

descent down the error surface. 

The update equation is: 

+ 
aE( £,2 

!!.'., - !!., /.l a!!., 

where /.l is a scalar parameter which determines the 

rate of conver&ence. 

~l.l !!., + E(2 /.l £, ;;' } 
-, 

From equation 3, 

-;I -., 

2/.l E( £, !., ... (6) 

In tbe LMS al&orithm the expected value of the error 

gradient is approximated by the instantaneous value so 

that the update equation becomes: 

Thus the operation of the system in the supervised 

learninK phase is to present a sequence of pattern 

vectors !., and associated classification indices cJm. 

The discriminator weight vector is updated in 

accordance with eqn.6 as each pattern and index is 

presented. 

A crucial pOlat IS broullht out la eqn." ",hlch 

shows that the error surface IS hyper-peraboloid and 

so has a SIngle global minimum. This in sharp contrast 

to the more standard Connectionist Models in which 

the shape of the error surface is not k.own and it is 

not possible, therefore, to determine ",hether the model 

has conver&ed to a local or &Iobal minimu •• A further 

point of note is that the learnin& or adaptive phue of 

the network has ben described in te~ of the LMS 

al&orithm but there are a number 01 alternative . 
al&orithms, such as the Recursive Least Squares or 

Deterministic Kalmaa Filter, which exhibit considerably 

faster conver&ence but at the expense of additional 

computational complexity. 

5. Network Structure 

The realisa tioa of the proposed Connectionist 

Model has not been considered in any detaiJ but it is 

clear that there is considerable structure iD the non­

linear formulation liven by eqn.2. ODe particular 

decomposi tion 

rewritten as: 

will be demonstra ted. Eqn.2 

which may be further expressed as: 

y = 

I 
may be 

The above equation lIIay be computed usilll a nested 

poloynomial approach as shown below (or a (2,3) 

system. 

and in nested form: 

where: 

In 

y - Po + X,(P, + X,(P
2 
+ X,(P3' )) 

Po - woo + X2(WOI + X2(W 02 +:I:(w03))) 

P, - W,O + x/wl1 + X 2(W ,2» 

P
2 

- w20 + X/W21 ) 

6. Experimental Results 

order to compare q uantita tively the 

performance of tbe extended vector space system with 

I' 

I I 
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current connectlOnlst models, the network was trained 

to perform the n-bit parity recognition problem . This 

problem is one of the few for which there are sets of 

quantitative convergence time data for current 

connectionist models and demonstrates the ability of 

the network to perform nonlinear decision making 

processes. The network is presented with an n bit 

binary word and is required to output the binary 

parity value of the word .The nonlinear extended space 

network was implemented usina the LMS adaptive 

algorithm on the extension space aenerated by the 

Kolmoaorov-Gabor polynomial given by equation 2. This 

network is compared with a standard hidden layer back 

propoga,tion neural network adapted with the Back 

Propaaation algorithm [2]. Such networks are among the 

most powerful and widely used current networks.The 

figures for the convergence times of the back 

propogation network are taken from a recent study of 

network convergence times on the n-bit parity problem 

(3]. The back progation network used in this study was 

co.posed of n input units, 2n hidden units and one 

output unit with full connectivity. The problem of 

choosing the network parameters was addressed by 

running the networks many times for each n with 

differing network parameters and taking the best run. 

The problem of back propogation nets convergini on 

local minima was dealt with by discarding from the 

results any run that did not appear to beconvergini. In 

the case of the extended space network the problem of 

parameter choice did not arise as the only parameter, 

the optimal adaption coefficient Jj, can be chosen using 

lIIethods standard to adaptive filter theory. A Simple 

and usually adequate method is that of Yassa (7]. Thus 

only one run was needed for each value of n. The 

problem of local minima for the extended space network 

does not arise as the system is unimodal so that the 

system always converges to the optimal solution. Table 

I compares the convergence times T for the proposed 

connectionist model with the convergence times T BP for 

the Back Projection algorithm as a function of the 

number of bits n. 

No.bits Convergence Time 

n T Tap 

2 IS 95 
3 17 265 
4 62 1200 
5 106 4100 
6 292 20000 
7 558 100000 
8 1287 500000 

Table 1. Comparison of converience times 

7. Concl usions 

The extended space approach leads to networks 

which can. with sufficient extension, syntheSise any 

nonlinear discrimin .. t function whilst maintainini 

unimoda1ity. This lead.a to ieneral networkl which are 

ractora or between OM hundred and one thousand time. 

faster in convergence in the experimental investliations 

perforllled_ The property of unimodality means that 

there are 00 local .inima and the network alwaya 

converge. to the g~1 optimum. The approach haa a 

firm analytical basis' and large body of supporting 

knowledge in edaptive filter theory. The adaptive 

filter knowledge also allows analytical solutions to the 

vital question of parameter tunini thus allowing good 

first run performance on practical data.The supporting 

knowledge from adaptive filter theory may also be used 

to predict the effects of eigenva1ue IIpread and rank 

defficiency in the correlation matrix in equation 5, or 

to utilise other mo~ powerful adaption methods such 

as Recursive Leut Squares, Singular Value 

Decomposition, and their derivatives. 
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Optical Character Recognition using a New Connectioniist 
Model 

M.R.Lynch and P.J.Rayner 
Cambridge University Engineering Department, U.K. 

1 Abstract 

TbU pap~r delcrlbea the developement of. I)'a­
tem for recognJalng hand drawn capital lettera. 
whIch la dellgned to be poaltlon. Icale and ro­
tation Invariant. The object of the paper 1. to 
Invutlgate the performance of a new unlmodal 
form of connectlonllt model when coupled to 
a preprocessing stage. The new cODnectionlst 
model la brIefly derived and Ita error lurface la 
mown to be unlmodal. 

The new connecUonlat model may be conaId­
ered ... being composed of a non-Unear vector 
Ipace expander followed b), a Uneu adaptive fil­
ter operating In the extended Ipace. The vector 
Ipace expanalon may be performed b)' meana 
of the Volterra lIerlell. Thi. approach haa the 
advantage of allowing the direct appUcaUon ot 
adaptIve filter theor),. 

1.1 Non-linear System Modeling 
Approach 

The pattern recognition problem may be thought oC u 
a IYltem modeling problem, in which the adaptive pat­
tern recognUer it attempting to model the classification 
Iy.tem; for example. a human defining tbe relationship 
between a .et of character font image. and a set of coI­
lating sequence nu.mben. The block diagram showing 
lbe recognition problem cast as a system modeling prob­
lem is .hown in Fig.I. 

Fie. 1 

Cl •• «1f)ceC1°anD 

It it clear that the relationship betweaI d&t ~ input 
and output oC such a ITItem it in general a -a-linear 
one. thus the recognition .y.tem mUlt be capUable of 
leneratin& a JUfficiently do.e approrimatioa &e t.hme DCIl­

linear relationship defining the .y.tem. 

1.2 The Volterra Functional Annaly-
sis 

10 signal processing nch DOD-linear .Yllam ImD&y be 
modeled by use oC the Voltena lenet!. The burn oC the 
Voltena Jeriu was fir.t Iludied by Vito Voka%zra, bot 
Norbert Wiener was the firll to apply it ~ a.cm;.n-linear 
.ystems theory. He used it to model the ia:pumt out­
put relationship oC non-linear .ystems. The cgntjrcinuCRlS 
Voltena Jeriet may be written: 

~(t) = HO + Hl[z(t)] + H2[z(t)] + ... + Hnl:z(t)!)] + ... 

Where ~(t) is the output of a .ystem and z(t) i is the 
input and in which: 

Hn[z(t)] = 

[:00 ... i:- h .. (T'l ..... r .. )z(t-rI) ... z(t-r.}4idrl .. dr" 

Where h.( T'l ..... r.) is the Vo)tena kezDtL __ A cID­
crete fonn oC the series was developed. 



Uin ,CIlcral thl. will n~ to he a hdcrogeneow 
'oisncaa expansion in order to model IYltema compoled 
t:JPDltiple orocn oC non-linearity. The Hderogeneow 

Vol~ series may writteD u: 

:L HI 
"I,N 

~eft H. are the Volterra Kernels, and", are coel­
which ddine the model u CoDowl. 

Ho = Wo Zeroth Order 'D.C.· term 

HI = L wlxl Fint Order Linear term 

1 

:2 = L L wIJxi Xj Second order Quadratic term 

1 J 

HS = L L L wiJ.kXJXjXk .... and 10 on. 
i j k 

y the coefficients are fixed by we oC analytical 
thods hOYenr they may be fixed adaptively. Con­

the CoDo.m, Iystem in which the inputs are com­
to pn the individual Volurra terms. Thele terms 

~ then multiplied by their respectin coefficients and 
e &.e:nnI II1lIJIDled. It can be seen that the Iystem can 
~ decomposed into a 'fector expansion Itage followed 

~
( a linear Finite Imp\ilie Response (Fm) filur. The 
. tion of the coefficients may then be achieved by 
'1 oC the methods wed in FIR adaptive filter theory. 

De analyLical basu oC thi. approach allowl w to ex­
"citJy calculate the Corm oC the error lurface. The 

oDllaTa series u found to con'fer,e for mOlt practical 

t.:..nti~. allbou,h lu,_ ;'put k"" o. "1 ,",h 
der non-linearities Ihould be .... oided. A very clolely 
. e.xpan.sion may be obtained by uling the Gabor­

oroy polynomial: 

Fi&-2 The Connectionitt modd in block form. 

Vol t.erra. Exp. 

xl 

x2 

In a I yl tem such as that . hown in Fig.2 the effect 
r joininr; an Fm filter to the Voltura expa.ruion may 

be conJidered. The.,..c.an hu a set oC input values 
Zo ••. z. which are inp1& to the DOD-linear Volterra .tate 
upander to produce a ~ of output 'falues Vo ••• v, with 
n bein, Je .. than f. nae ya}ues then form the input 
to an Fm adaptin fil&s. CoDaider the output yalues 
for the 'fector mu expmder. This.et of 'falue. may be 
represented by the y~ V. The filter coefficient. may 
alto be repruented by De 'fector W. 

Ulin, the Itandard Fm equatioD we may write the error 
(u: 

( = l- L "''''' 
i 

In which d it the desiral output from the filter, that 
it in our case the corred clas.mcation liven the set oC 
inputs to the whole IJ'I'GD 1:;. In 'fector form thit may 
be written: 

If we with to conJider the error function for the Leut 
Mean Squares, or LMS. aitereoD with the mean bein, 
con.idered O'fer the ~ presentatioDJ, the equation 
becomes: 

E«(') = E{(d - W TV)'1 = tT' -lWP + Wll.W 

Where R it the autocmrdati.cm matrix oC the data in the 
DOD-linearly extended ftdor 'Pace and .imilarly P is 
the crollcorrdatioD yed,or betweeD the de.ired d .ienal 
and the DOD-linearly apanded data-tT u the va.riance oC 
the desired responae. 

The objectin is to W a &et of weipts W which will 
minimise the mean .cpan error. The .y.tem theD will 
output clanineations .mch differ from the desired clu­
.mcation. with the mjwimnm mean Iquare error pOllible 
for the .ystem. The toiUion Cor the weights of the filter 
is obviously the same _ that oC a Weiner Filter oper­
atin, in the exteDded space and .0 the methods used 
to find the Weiner soDtioD explicitly may be applied. 
A more .uitable appnKb for the recognitioD problem 
is to find the wei&ht _tiOD adaptively. ThiI hu the 
ad vantage of not requ.i:in& a priori knowledge of R, and 
doe. Dot require the izftrsion oC a matrix. 

It it clear from the .boTe that the LMS error is lolely 
a quadratic function. the wei,ht 'feetor. Thi. show. 
that the performance lIIrface is a hyperpuaboloid and 
consequently alwaYI mimodal. This is a highly de­
sirable property u it thow. that the system will not 
exhibit local minima _ the error .urface. Such local 
minima cawe the adllf"ion performance of networks to 
be greatly reduced as the adaptive algorithm may ,et 
.tuck in local minima and consequeDtly not reach the 
optimal coefficient yahes., The property of unimodality 
also confers the abilitJ to adapt much more quickly a. 

1 
I 
1 
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ther~ ar~ DO nDey. iD which to dither and the ,radient 
iI proportioaaJ to the diatance Crom the .olution. 'I'hia 
tut property prnenb the adaption bein, greatly .tow~ 
or halted by re,iolUl of the enor .urCace with unall er" 
dimu... A ftochutic padient aJ&orithm may be easily 
applied.. FoDowin, the denTation oC the LMS al,orithm. 
The ..uaI padient aJ&orithm may be written by di{­

Cerattiatinc the mean aquare enor with re.ped to the 
weichU to cin an iteratin wei&ht updaw equation. 

w = W - pVE(f') 

Where p iI an adaption coefficient which .et. the .peed 
oC lurnin,. A .imple expre .. ion Cor V E( t') may be 
derind ... . 

8E(I!') = 2(~ = -21!X 
8W 8W 

The analytic basil oC the method combiDed with the 
property oC linearity iD the coefficient. allow. the appli­
cation oC the .tandard least aquare. method.. In gen­
eral Cor pattern recognition the problem is degenerate 
or rank-deJicicnt. A tingle .olution may .till be ob­
t&in.ed by the application oC SiDgular Value Decompo­
sition (SVD) which yield. the minimum norm .olution. 
Such analytical method may also be used to atudy the 
network performance and obtain the ei&envaluca Cor real 
recopUtion probluna. 

1.3 Parameter Tuning 

Tbae is only one parameter to be chosen in the new 
nehr~k, this is the adaption coefficient. However, this 
adaption coefficient it that oC a .tandard adaptin fil.. 
tu. Co~ently the large body oC knowledge per­
tainiD& to adaptive filter theory may be immediately 
appOed. Yun{T] de't'eloped an expre .. ion Cor chooain, 
tM optimal adaption coefficient. No .uch method may 
be applied iD the cue of current networks as the natwe 
oC the error turl'ace is complex and contairu local min­
ima.. Consequently the parameter. such as the adaption 
coefticient must in general be let by trial and error iD 
curn:nt networb. 

1.4 Implementation 

The VoHena expansion may be factorised to give effi­
cient methods for it. calculation requiring fewer multi­
plicatioIU than the direct fonn. It is necessary to take 
care in the case oC large input .iplIw and high order ex­
panDolUI to prevent onrflow problems. Such problems 
are ea.sily avoided by lCaling the data IUch that it is ap­
proxilnately nonnaliJed. The extended .pace network 
is found to work well Cor multiclass problems, in which 
the network is required to classify the input to one of 
• ..uies oC output claue •. This is most efficiently done 
by using one output which is required to output a .erica 
of le ... ds corresponding to the different classca. This iI 
iD coatrut with many networu which use a .erie, oC 
binary outputs to output multiple clan classifications. 

Il a direct implelllUltation of the network is wed it 
ia wo pouible to we the tame exp&lUlion .tage with 
multiple adaptive filter.. 'I'hia kad. to an efficient .y .. 
tem which may be wed to perform alUie. of unrelated 
multic:las. problema. Each muliclau problem bein, in­
dependent of the othera and brin, ita own .et of eoef· 
ficienta. 

Fig.3 Multiple Multicl ... Recocnition. 

Ar_blo 

tOAt rDDt 

Multiple Multicla.as Problem 

2 Direct Recognition 

The nelwork 'MU lint applied to the application of 
recognising binary font images of .ue 8 by 8 pixels. The 
sixty Cour pixels were input to the network and an error 
.ienal 11''' generated by .ubuading the network out­
put &om the value oC the font member in ita collatin& 
sequence. The adaptioD coefficient wu approximately 
Ht by wing an estimaW oC the .... erage power oC the 
input image. A .econd order network was wed which 
wu adapted u.iDg the LMS algorithm. 

Aa.bB Io·· oF $5%e 
QJ<;-(]B)!uOP+ 

Fig ... Examples of the font. 

Fig,S Individual Character 

I1I 
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3 Invariant Recognition 

A preproceuin& .ection WIU UKd to produce patterIll 
"hich were inYllliant to • hilt , KAle or rotation. The 
Icco,nition procen WIU repeated lUin& real camera Un- , .,et ol.imple handwritten capitalletten. 

3.1 Preprocessor 

One ol • .aie. oC capital letters Will c:hawn with • 
IJUl.Iker pen onto a card. The imaCe oC the card w .. 
di,itised by the we oC a camera and Cramellore. The 
fint Itace pe.rlormed by the preprocessor Will an adap­
tive Inel biruLrisation; tbis was Collowed by a calculation 
oC the centroid oC the resultin, ima,e. The nut Itage 
"Ill to use • simple edge findin& al&orithm to reduce 
the ima«e to an outline image oC the character. A line 
CollowinC alcorithm wa. wed to find .idy·four point. 
in order around the outline. This algorithm Will .tarted 
Crom the lellmo.t point on the letter, and this proce .. 
Will repeated three times to tak.e account oC inner 100pI 
in the letters, Cor example, the letter B. 

E 
Fi,.6 EX&lIlple characters. 

The euclidean distance from each point 10 the cen­
troid was calculated. The reCerencinc oC the distance 
data to the centroid oC the letter conCers the property oC 
positional inl'ariAnce on the data. The power of the data 
is now nol'JIl8.fued to be one. This conCeu the property 
of Kale inn.r1a.nce on the data. A peak. finding algo­
rithm wu used on the data and the data Will .hified in 
, circular manner to put the peak. value as the first data 
point. This operation cave the data the property oC ro­
tational inn.riance. Consequently the cenlroidal data 
pattern. output by the post processor should be .hilt, 
scale, and rotation independent. 

"El' . H "" ~ lH[ • " .... : -.!....... ..,g....... ' =i 1 ~ 
• : •• .. ---,. --- -) 1 ------.,. ... ~~ 

Fi,.7 Preprocellor StaCCl. 

Althou,h in the majority ol ~ I ,i.he pnproceuor 
producea limilar output patter:.. m amn iDdiridna1 let­
ter there are tome letien whicll us.d.c:ttr ccrt.a.in c:ircum­
Itancet will produce li~canUy ~t patterns. An 
example is the letter B. The lint .... G:ol the outline fol­
lower (011011'1 the oullide o( the ~.:. ho'Wel'u the leC­

ond PUI could (011011' the top s-v arT the bottom loop 
and conelpondincly ,enaate ripiiicamnUy different pat­
terIll dependin, loley OD which IDap Iuaas the further left 
furthell left point. COJUequently. ammnectionist model 
mwt be used which is powat.l .."...."h to cope with 
two .ignificantly different chutcn IDIIpgJpmc to the lame 
output indu. 

H 
-,.,.".. / - ..... -~ 

---~ ..- ..... --... B " . I ". ...... 

Fig.8 Centroidal Data Corm. 

3.2 Results 

Direct recognition The ndwu:k w,.. .. found to cor­
rectly recognise all the cha.racten:n 8DlD. ei&hty character 
Cont in around 7000 pattern preot.a.Lations. 
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Fi&.g Plot of nwnber oC enoll in the lut fifty preaen­
tatiolu agairut nwnbu of prelentaUolll. 

Preproceued Recognition The Iyatem wu 
trained on twelve leHeH A. .••• L. initially wing one card 
for each letter. Once the ndwork wu Cound to cor­
rectJy recognise each card then gradually other card. 
with the lame leUeu were introduced into the training 
l'UlU. A new card wu only introduced when the net­
work had converged to a .tate giving no errore on the 
C1UTent card.. 

ABCDEFGHIJKL 
No.." 
c:..- 444444444444 
~Error 332355421322 

Table lhoY1n& Dumber ot letter eu4a 
and pen:ent.ace error onr nndom 
pOllUoll.ua!e. rotlUDIl. 

4 Conclusion 

In the dired recognition cue the network performed 
well learning eighty aeparate du. members. this is a 
higher number than wuaDy reported Cor current net­
worD. The convergence timel were rast by comparison 
with current hidden-layer network which have been re­
ported to require many tent of thousands oC presenta­
tion. to learn Cewer characteH. 

In the preprocelsed ca.e the network demonstrated 
its ability to cope with variation in the patternl. and 
consequently be applicable in practical recognition Iya­
teInS which require not only position invariance, but 
tole:rance to character variation. 

This paper has introduced an application of the ex-

tended .pace netW'Cld: in optical character recoplition. 
The network hu bees demoll.ltrated to have a aenea of 
de.irable properties and by the we of more advanced 
preproculOu may w u.aed u the buis of hi&her perfor­
mance rccolDitioD ~tema. 
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The Properties and Implementation of the Non-Linear Vector 
Space 'Connectionist Model. 

M.R.Lynch and P.J.Rayner 
Cambridge University Engineering Department, U.K . 

. 1 Introduction 

In ~onsidering a connectionist model and its derivation it is 
necessary to rust define the desirable properties of such a 
system and then hopefully construct such a system on a firm 
mathematical basis. 

A suitable pattern recognition system will need to be adap­
tive for most applications. The necessary rules to define most 
real-world recognition tasks are too complex to be analyti­
cally derived. Thi5 becomes more so when the effects of noise 
or class variation are considered. 

Once a system has been trained using the members of a 
training set it is hoped that the system will correctly classify a 
new pattern which was not in the training set but a member 
of a class defined by it. This property is often referred to 
as interpolation or generalisation as it is the a.bility of the 
system to interpolate the classifier output between training 
patterns. 

It is obviously an advantage if the recognition system can 
adapt itself to a state of 'good' performance with as few pre­
sentations as possible. It is impractical to have systems which 
may get stuck in their learning processes and not reach their 
optimal performance; we thus require a system that will not 
suffer from local minima problems. These problems would re­
quire the system to be supervised and reset incurring multiple 
ruru and coruequently large computational expenditure. 

Although most recognition tasks concerning multiple 
classes may be reduced to a series of one class recognition 
problems, this is in general highly inefficient in terms of com­
putational load. An ideal system should be able to perform 
multiple class recognition. 

For a system to be practically implementable a method of 
tuning any of the system network parameters must be found 
to prevent the need to repeat training runs in order to opti­
mise these parameters. 

The system should be highly parallel to allow high speed 
operation. A parallel implementation may also allow the pro­
cessing resources to be distributed and so it may be composed 
of many simple processing units. 

By considering work in the field of signal processing and 
connectionist modili it possible to produce such a network, 
with a defined mathematical derivation. 

Firstly consider a basic problem. A standard 'bench-mark' 
for neural networks is the exclusive OR or parity problem. In 

thi5 problem a ~ries of binary inputs are input to the network 
and it is required to return the parity function value of the 
inputs. 

We can consider this problem from a signal space approach. 
Coruider a Tector space created by plotting each of the input 
variables along a set of orthogonal axes. For a 2 input variable 
problem this space is a plane. For the binary exclusive-OR 
problem the input values (or 'input vectors') are (1,1) (0,0) 
( 1,0) (0,1). The first two being in class one and the second in 
class two. It is clear [11) that a linear discriminator cannot 
be used to differentiate between the classes in the EX-OR 
problem. We can, however, traruform the problem into an 
extended vector space in which the problem may be solved 
using a linear discriminator . We increase the dimeruionality 
of the dec is ion space by adding a dimension :I: 1:1:2 • A linear 
plane may noW' be used to separate the classes. 

So by using a linear discriminator in an extended vector 
space it is possible to perform classification tasks requiring 
non-linear discriminators. 

.2 Non-linear System Modeling 

The pattem recognition problem may be thought of as a sys­
tem modelling problem, in which the adaptive pattern recog­
niser is attempting to model the classification system; for 
example, a human defining the relationship between a set of 
character font images and a set of collating sequence num­
bers. The block diagram showing the recognition problem 
cast as a s~stern modelling problem is shown in Fig.I. 

It is clear thM the relationship between the inputs and 
outputs of such a system is in general a non-linear one, thus 
the recognition system must be capable of generating a suf­
ficiently cl~ approximation to the non-linear relationship 
defining the system. Recently the field of Signal Process­
ing has se= a large growth in interest in non-linear systenu 
analysis by use of such methods as higher order spectra, and 
polycepstra [12) [4) [10). These methods owe much of their 
basis to the Volterra Functional Analysis of non-linear sys­
tems . 

\ 
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.3 The Volterra Functional Analysis 

In signal processing such non-linear systems may be modeled 
by use of the Volterra series. The form of the Volterra series 
was first studied by Vi to Volterra, but Norbert Wiener was 
the first to apply it to non-linear systems theory. He used it 
to model the input output relationship of non-linear systems. 
The continous Volterra series may be written: 

lI(t) = HO + Hl[x(t)] + H 2[x(t)] + ... + Hn[x(t)] + ... 

Where y( t) is the output of a system and x{ t) is the input 
and in which: 

Hn[x(t)] = 

1+00 ... ! +00 h,,( Tl, . .. , T,,)X( t - TI) ... x( t - T" )dTI . .. dT" 
- 00 -00 

Where h .. ( Tl, .• • , T,,) is the Volt err a ke~el. A discrete 
form of the series was developed. 

In general this will need to be a heterogenous Volterra 
expansion in order to model systems composed of multiple 
orders of non-linearity. The Heterogeneeu~ dUcrete Volterra 
~es may written as: 

L Hn 
i=l.N 

Where H" are the Volterra Kernels, and w are coefficients 
which define the model as follows . 

Ho = Wo Zeroth Order term 'D.e.' term 

Hl = L wixi First Order Linear term 

H2 = L L WijXiXj Second order Quadratic Term 

j 

HS = L L L Wij,kXiXjXk .. .. and so on. 
j k 

Normally the coefficients are fixed by use of analytical meth­
ods, however they may be fixed adaptively. Consider the 
following system in which the inputs are combined to give 
the individual Volterra terms. These terms are then multi­
plied by their respective coefficients and the terms summed. 
It can be seen that the system can be decomposed into a 
vector expansion stage followed by a linear Finite Impulse 

Response (FIR) filter. The adaption of the coefficients may 
then be achieved by any of the methods used in FIR adap­
tive filter theory. The Volterra Series is found to converge 
for most practical non-linearites. Other very closely related 
expansions may also be used such as the Gabor-Kolmogorov 
polynomial [l3]: 

Fig.2 

d 
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In a system such as that shown in Fig .2 the effect of joining 
an FIR filter to the Volterra expansion may be considered. 
The system has a set of input values:l:o . .. x" which are input 
to the non-linear Volterra state expander to produce a sel of 
output values Vo •• • Vq with n being less than q. These values 
then form the input to an FIR adaptive filter. Consider the 
output values for the vector state expander. This set of values 
may be represented by the vector V. The filter coefficients 
may also be represented by the vector W. 

Using the standard FIR equation we may write the error t 

as: 

In which d is the desired output from the filter, that is in our 
case the correct classification given the set of inputs to the 
whole system Xi . In vector form this may be written: 

If we wish to consider the error function for the Least Mean 
Squares , or LMS, critereon with the mean being considered 
over the pattern presentations, the equation becomes: 

Where R is the auto correlation matrix of the data in the 
non-linearly extended vector space and similarly P is the 
crosscorrelation vector between the desired d signal and the 
non-linearly expanded data.O' is the variance of the desired 
response . 



The objective is to find a set of weights W which will 
minimise the mean square error (the Wiener solution in the 
extended space) . The most suitable approach for the recog­
nition problem is to find the weight solution adaptively. Tlus 
has the advantage of not requiring a priori knowledge of R, 
and does not require the inversion of a matrix. 

It is clear from the above that the LMS error is solely a 
quadratic function of the weight vector. This .shows that the 
performance surface is a hyperparaboloid and consequently 
always unimodal. This is a hlghly desirable property as it 
shows that the system will not exhibit local minima on the 
error surface. Such local minima cause the adaption per­
formance of networks to be greatly reduced as the adaptive 
al,orithm may get stuck in local rnirUrna and consequently 
not reach the optimal coefficient values. The property of uni­
modality also confers the ability to adapt much more quickly 
as t.here are no valleys in whlch to dither and the gradient 
i. proportional to the distance from the solution. A stochas­
tic padient algorithm may be easily applied, following the 
derivation of the LMS algorithm, to give an iterative weight 
update equation. 

Where /J. is an adaption coefficient whlch sets the speed of 
learning and noting: 

8E((l) = 2(~ = -2(X 
8W aw 

The analytic basis of the method combined with the prop­
erty of linearity in the coefficients allows the application of 
the standard and other adaptive least squares methods (RLS 
(1] and so on) . In general for pattern recognition the problem 
is degenerate or rank-deficient. A single solution may still be 
obtained by the application of Singular Value Decomposition 
(SVD) whlch yields the rninimwn norm solution. Such an­
alytical methods are also useful in the study of the network 
performance. 

.4 Network Parameter Tuning 

There is only one parameter to be chosen in the new network. 
this is the adaption coefficient. However. thls adaption co­
efficient is that of a standard adaptive filter . Consequently 
the large body of knowledge pertaining .to adaptive filter the­
ory may be inunediately applied. No such method may be 
applied in the case of current networks as the nature of the 
err1>r surface is complex and contains local minima. Conse­
quently the parameters such as the adapt ion coefficient must 
in general be set by trial and error. 

Yassa (7) demonstrated the relationshlp between the av­
erage input power P to the adaptive filter and the optimal 
adaption coefficient /i-op" (/J.;n, is the constant adaption co­
efficient) . 

/J.;n' 
/J.opla p 

In setting the adaption coefficient value it has, as may be ex­
pected, been found that the system works best with an adap­
tion coefficient which differs for each order of non-linearity as 

the order of the non-linearity affects the input power seen by 
the adaptive filter section. A neat method of achievin& this 
is to use the same adaption coefficient for all tenns but to 
arrange that the input power is roughly normalised for each 
tap by a suitable constant scaling of the input patterns. This 
a150 has the advantage of reducing the dynamic range of val­
ues for the higher order non-linearities whlch could be helpful 
for non digital implementations. 

.5 Network Comparisons 

The new network', performance was compared with that of 
the current networks. The exclusive OR problem was used 
as a test. The adaption times in terms of numbers of itera­
tions were com~ for the different networks. The times for 
the hldden layer back-propagation networks are taken from 
an American study (3). These timings are for the best run, 
whlch was achiend by optirnising the network parameters 
over a series of runs. If the network became stuck in a lo­
cal minima it was nopped and restarted from different initial 
conditions. In the case of the new network the results ale for 
the first time run &5 the adaption coefficient could be selected 
beforehand. and the local minimwn problem did not enist. 
Thus when comparing the figures it is necessary to realise 
that in tenns of total pattern presentation numbers the fac­
tor betw~ the munber of presentations to each network is 
in fact considerably greater. 

Fig.3 
No_bits Convergence Time 

• T T~ 

2 15 95 
3 17 265 .. 62 1200 
5 106 4100 
6 292 20000 
7 558 100000 
8 1287 500000 

Table 1. Comparison or converaence limea 

If the figures in the above table are ploted for the two 
networks it is possible to see that the learning times for the 
current network rue quickly as a function of the number of 
input variable!, .... hereas those for the new network rise at a 
lower rate . The results of the graph imply that the learning 
time! for current networks are likely to be extremely large for 
complex probleIru with more than a few input variables. 
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Fig.4 
EHclus1va-OR Problem 
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.6 Interpolation Performance Compar­
ison. 

In this section the interpolative ability of two current net­
work types (Hidden-Layer [8] and Radial Basis Function 
(RBFs)[S]) is compared with that of the new network. The 
network is trained on the exclusive OR class points (0,0), 
(1,0 ),(0,1 ),( 1,1) W1.til full convergence . The adaption is then 
stopped and the inputs are varied over the full signal space. 
The class decision is then ploted as a point for class one and 
no plot for class two [8] . 

Fig.S 

e)H.ldden Ul.ver 

x2 

,et 
The hidden layer network displays poor interpolative abili­

ties which is to be expected as the decision region is bOW1.ded 
by linear bOW1.dries. The Radial Basis FW1.ction network per­
forl115 much better, producing suitably localised classes. This 
increase in performance is to be expected due to the relation­
ship between RBFs and multidimensional interpolation. 

displ ay s [(sults which are similar to those of RBF networks . 
Howev(r the new network is not constrained to a .et of (I pn­
OM 'RBFs' and so can converge further. In fact RBF networks 
may be considered as a subset of expanded space networks in 
which basis fW1.ctions are used by wing the same coefficient 
multiplying a series of expansion terl115 . 

.7 Multiclass Performance 

In practice it has not proved possible, in general, to use cur­
rent networlcs for classification with large numbers of classes. 
In general, multiple class problel115 are addressed by wing a 
series of networlcs. The flexibility of the decision .urfaces of 
the new network, however, allow. a single network to perform 
multiclass problel115. One such problem is that of character 
recognition. The network was presented with an 8 by 8 pinl 
image of a character and required to output the characters 
position in the collating sequence. The network was capable 
of learning to recognise all 80 characters in the font. A sec­
ond order Volterra extension was wed with all terl115 present . 
The co(fficients were set by the LMS algorithm. More details 
of this and other recognition experiments may be found in [9]. 

It is also possible to increase the number of classes that 
a system can recognise by using the same vector expansion 
'hardware ' with multiple adaptive filter sections connected to 
it. Each problem, although connected to the same expansion 
system, has completely separate coefficients and thus they do 
not interact . 

Fig .6 Plot of number of incorrect classifications in the last 
fifty presentations against presentation number. 
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The new network converges to the best solution of the 
three, which is extremely near to the optimal solution, given 
no information other than at the class points. In fact, if the 
above is repeated for the network before it has converged, it 

.8 Implementation 

Factorisation: In order to facilitate the understanding of the 
new network it has 50 far been discussed as two sections: 
firstly the vector state expansion and secondly the adaptive 
filter section. The 5ame network may be implemented in a 
more distributed form composed of a series of identical 'neu­
rons' by factorising the expansion polynomial. Once this has 
been done it is possible to find factorisations composed of 
identical units. Consequently a network may be created us­
ing a network of simple terms [13]. Another approach which 
is currently under investigation is to define two types of 'neu­
ron'. The first is composed of a simple multiplier and the 
second a stan~ard linear perceptron. An interesting form 
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of the second implementation is that in which the network 
elements are randomly connected. This r;enerates a connec­
tionist model containing random terms Crom the non-linear 
state expansion. However, provided that the network is large 
enough, the inherent degeneracy allows the network to find 
another possible solution without the mis.sing terms. 

3ID-
Type I II 

Fig.7 Basic Perceptrons 

Th.e level of degeneracy in a given network for a given 
problem may be indicated by the rank of the extended space 
conelation matrix R. This may be calculated by Singular 
Value Decomposition (1). 

The random network was created by randomly connecting 
the inputs of type I neurons to type I neuron outputs in any 
earlier layer . The output type II neuron was connected to 
random type one outputs. 

91 RwJdgn Hrlmr1c : JS8 Jinput t_ I E1_ 
j 58 1 Z28 input '- 11 E1_ .!i JS .1 __ per 10yr0r 

5 bu ? Ph,.] F'ont 20 ]nUorw in font . 
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Fig.9 Results of Random Connection Network 

.9 Conclusion 

The non-linear vector space expansion connectionist model 
has been shown to have a number of adv-antages over cur­
rently applied networks for application to general connection­
ut problems. 

Firstly, it converg es to its optimal solution far futer, 
by several orders of magnitude, than cUnent networu, and 
this convergence time does not rise as quiclcly as a function 
of the size of the pattern vectors. 

Secondly, it is unirnodal and consequently does not suffer 
Crom the problems of local minima such as needing to be 
reset, getting stuck or uncertainty about having converged. 
It may thw be left in adaptive mode while being 'on the job' 
as well as in training. 

Thirdly, the complete mathematical derivation of the new 
network allows a much fuller understanding of its operation 
and allows direct application of adaptive filter knowledge. 
This allows easy parameter tuning and application of other 
adaptive filter update methods. It also allows the effech of 
approximation and implementation to be considered. 

The ability of the network to function well for random 
connection also allows the possibility of the implementation 
ofthe network by use ofleu exact technologies than electronic 
digital methods. 
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Complexity Reduction in Volterra Connectionist Modelling 
by Consideration of Output Mapping 

P.J.Rayner and M.R.Lynch 
Cambridge University Engineering Department, U.K. 

Introduction 
The Volterra Connectionist model has already been demon­
strated to have advantages over current networks [6](8)[9]. It 
has been shown to have much faster learning times and be­
ing unimodal it does not suffer from local minima problems. 
The mathematical derivation of the network has also allowed 
a deeper analysis of network operation, and it is this under­
standing of the system which may be used to greatly reduce 
network complexity by consideration oC the output mapping. 
Consider the pattern recognition problem as a system trans­
fer function : 

Input Po t tern CIClss;f;cCI t;on 
,..----------, 

Error 

Fig.l Pattern Recognition Problem 

In general the relationship between the input pattern data 
and the output classification data is non-linear and conse­
quently the pattern recognition system must in general be 
a non-linear one. The Volterra connectionist model may be 
shown to perform this task [2][9] . 

A heterogenous Volterra may be used to model systems 
composed of multiple orders of non-linearity. The Heteroge­
nous discrete Volterra series may written as: 

L Hn 
n=l,N 

Where H n are the Volterra Kernels, and ware coefficients 
which define the model as follows . 

Ho = Wo Zeroth Order 'D.C.' term 

HI = L wixi First Order Linear term 

i 

H2 = L L WijXiXj Second order Quadratic Term 

j 

Ha = L L L Wij,kXiXjXk .... and so on. 
j k 

Consider the following system in which the inputs are com­
bined to give the individual Volterra terms. These terms 
are then multiplied by their respective coefficients and the 
terms summed. It can be seen that the system can be de­
composed into a vector expansion stage followed by a lin­
ear Finite Impulse Response (FIR) filter. The adaption oC 
the coefficients may then be ou:hieved by any oC the meth­
ods used in FIR adaptive filter theory. The Volterra Se­
ries is found to converge for most practical non-linearites . 

d k 
> 

1 7\ 
~ V ot terro 7 

Exp o ns;on 

Input Pattern 

Fig.2 Recognition System 

Output Mapping 

The basis of complexity reduction may be easily demon­
strated by consideration of a classification problem for one 
input variable.(Fig.3} . This would require a higher order oC 
non-linearity and consequently many terms from the Volterra 
expansion leading to the need for a connectionist model with 
many terms. If, however, the particular values of the classi­
fication indices had been correctly chosen the problem could 
be reduced to a linear one (Fig.4) . The problem of choosing 
the indices suitably is considerably more difficult for prou:tical 
problems with many input variables . 
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Fig.3 One variable recognition problem . 

Input Vo.rio.ble x 

Fig.4 Linearised Problem 

Derivation 

The following approa.ch to suitable selection of these indices 
ha.s been shown to give good results.It uses a constra.int to 
ensure that the output indices derived are separated from 
one another and consequently ta.kes the form of a constra.ined 
optimisation. 

Suppose that there are M cla.sses and in the tra.ining pha.se 
there are N, (i=l,M) presentations for ea.ch cla.ss . Let d; 
be the classification index for each class. Let xn(i) be the 
extended spa.ce pattern vector for the ith cla.ss and the nth 
example of it. Let w be the network weight vectors. 

,~ t [t. [d. - w'x.U))'] 

The d; must be constra.ined. A suitable constra.int is found 
to be: 

M 

Ld~ =c 
,=1 

where c is a.n a.rbitrary consta.nt . 
The method of Lagrange multipliers may now be applied . 

Set up the objective function : 

where k=l ,M. 
From 1: 

Define: 
Ni 

LXn(i) = p(i) 

a.nd : 
M Ni 

LLXn(i)x~(i) = Rxx 
i ~ l n=l 

Then: 
M 

Ld,p(i) - Rxxw = 0 .. . 5 
.=1 

From 2: 

N. 

(A + Nk)d k - LW'xn(k) = 0 
n = 1 

N. 

(>'+Nk)dk - Lx(k) = O ... 4 
n=l 

4 becomes: 

(A + Nk)dk - wtp(k) = 0 .. . 6 

k = 1, M. Multiply 6 by dk and sum over k (change to i): 

M M 

L(>' + N;)d~ - L wtp(i)d; = 0 
;=1 ,=1 

For convenience, assume N, = N for i = 1, M : 

M M 

(>. + N) L dt - L wtp(i)d; = 0 
i=) 1=1 

But : 

so: 
M 

>. + N = ;wt L d,p(i) .. . 7 
i z: 1 

Substitution (5,6) : 

M 

L >.: N wtp(i)p(i) - Rxxw = 0 
i . 1 

1 
>. + N Pxxw = Rxxw 

I 
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where: 
AI 

Pxx = LP(i)pt(i) 
i . l 

Assuming Rxx non-singular then: 

Rx~Pxxw = (A + N)w 

That is, w is an eigenvector of RXipxx . 

w= ae 

where e is an eigenvector. Multiply 5 by w t 

AI 

w t L diP(i) - wtRxxw = 0 .. . 10 
. %1 

S~bstitute 7 into 10: 

t e(A + N) = w Rxxw ... 11 

Substituting 11 into 6 gives: 

From 11: 

die = ewtp(k) 
wtRxxw 

clJ = a1etRxxe .. . 13 

where IJ is the eigenvalue corresponding to e, i.e. A + N = IJ. 

Now, to decide on which eigenvalue to choose , consider the 
error: 

We have: 

and: 

and from 13: 

die = ewtp(k) 
wtRxxw 

Expanding 14 gives: 

M M 

( = L L [d: - 2diwtxn(i) + (wtXn(i»l] 
i = 1 n = l 

M 

= Ne - 2 Ldiwtp(i) + wtRxxw 
i= 1 

Substitute 10: 

From 15: 

M 

( = Ne - Ldiwtp(i) .. . 17 
_=1 

t die t w p(k) = - w Rxxw 
e 

Substitute in 17: 

= Nc-wtRxxw 

c = c(N - 1£) 

where IJ is the eigenvalue corresponding to e. Hence the 
error is aminimum when the largest eigenvalue is selected. 
Substitution shows: 

wtDt, 
die = ---..:..A 

1£ 
By use of this expression a set of 'optimal' output indices may 
be found. These indices are in general not integers and in fact 
a convenient approach to practical implementation has been 
found. The original integer indices are simply reordered for 
the classes in the same order as the optimal ones. This is 
found to work well as may be expected if the connectionist 
model is viewed as a multidimensional interpolator. 

Results 

The output mapping scheme was first applied to a two in­
put variable problem with class clusters as shown below: 

- - '--' i--i---- --'-

___ ~I _ '-__ • ____ ~ __ _ . 

Fig.S Input pattern clusters and indices 

These clusters and assignments gave the following outputs 
for each class . The output mapping system was now run 
to give the following optimal indices and the original indices 
reordered . The plots show the desired and actual outputs 
against pattern number, solid line is the desired output and 
the dotted line the actual output. 

Fig.6 Plot of output with original indices 

It can be seen that the output error has been greatly re­
duced by optimal ordering of the output indices. 
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Fig.7 Plot of outputs with reordered indices 

The output mapping approach was next applied to the prob­
lem of optical character recognition, using a 80 font member 
set with 8 by 8 pixels for each character. The desired output 
was the position of the character in the collating sequence 0 
to 79. 

00 

2113 Tap 2nd Order 

No.of presentations 6000 

Fig 8.Results for 80 member font OCR with first and sec­
ond order terms 

With the arbitrary indices the linear system is not capable 
of solving the problem. However, if the indices are optimised 
a linear system can now solve the problem. 

III 
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Fig. 9 Ocr results using linear first order terms. 
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Fig.l0 Results for 80 member font OCR with first order 
terms but optimised indices 

Conclusion 

The Volterra. connectionist model has already been shown to 
have significant ad vantages over other systems in terms of an­
alytical basis, speed of learning, scaling properties, and gener­
alisa.tion. The output mapping method demonstrates an ap­
proach which mues the Volterra connectionist model highly 
efficient computalionally, by comparison with current neural 
networks. Although in the above results the system was ap­
plied to yield linear recognisers exactly the same approach 
may be used to reduced a higher order non-linear recogniser 
to a lower order one. The network is no longer being con­
strained to fit arbitrary indices and some may utilise all of 
its degrees of freedom to improve recognition performance. 

References 

[1] S.Haykin, Adaptive Filter Theory Englewood Cliffs, 
NJ:Prentice-Hall,1986. 

[2] Schetzen, The Volterra and Wiener Theoriej of Non. 
linear SYjtemj New York, NY:John Wiley, 1980. 

[3] G.Tesauro &. R.Janssens, Scaling Relationjhipj in Back. 
propogation Learning Technical Report :Center for Corn· 
plex Systems Research Univ. of Iilionis.19·2·1988 . 

[4] P. Alper, A Consideration of the Dijcrete Volterra Series 
IEEE Trans. Automatic Control, vol. , Jul. 1965, pp.322· 
327. 

[5] D.F.Specht, Generation of Polynomial Dijcriminanl 
Functionj for Pattern Recognition IEEE Trans. EC, vol. 
EC-16, No.3, Jun. 1967, pp.308-319. 

[6] M.R.Lynch &. P.J.Rayner Optical Character Recognition 
Ujing a New Connectionijt Model Proc. lEE Interna· 
tional Conference on Image Processing 89, Univ of War­
wick. 

[7] S.Fakhouri, Identification of the Volterra K eme/j of 
Non·linear Systemj lEE Proc. vo1.l27 No.6, Nov. 1980. 
pp.296-304. 

[8] P.J .Rayner &. M.R.Lynch A New Connectionist Model 
Bajed on a Non· linear Adaptive Filter Proc. ICASSP 
89, pp.119!. 

[9] M.R.Lynch &. P.J .Rayner Propertiej and Implementa. 
tion of the Non.linear vector space Connectionist model 
Proc. lEE 1st International Conference on Artificial 
Neural Networks 89, London. 



r 

A Unimodal Neural Network Utilising Non-linear Vector Space 
Expansion Methods, Comparison with Current Networks and 

Research Discussion. 

M.R.Lynch 
Cambridge University Engineering Department, 

Trumpington Street, Cambridge, 
CB2 IPZ, U.K. 

1 ' Introduction 
This document is designed to be a basic introduction to the 
vector space expansion connectionist model. 

The modern computer has proved itself to be well suited to 
solving many problems and provides a powerful tool for aiding 
in the solution of many other problems. There has, however, 
emerged a type of problem for which standard 'syntactic' or 
programming methods do not perform well. These problems 
generally have many input variables and many complex rules 
relating their outputs to their inputs. The rules that arise 
in many real world problems, such as visual object recogni­
tion under practical conditions, are in general too complex 
for a suitable set of rules to be explicitly worked out. Conse­
quently, in general, syntactic methods of sufficient complexity 
cannot practically be constructed to solve these problems. 

The adaptive neural network (15) can address this problem 
in that it does not require explicit statement of the rules of 
the problem, as it will implicitly learn them. Such networks 
are composed of many simple processing units linked together 
to create a system capable of performing complex tasks. 

A standard application of such networks is in pattern 
recognition. This document attempts to define the abilities 
that a pattern recognition system requires, and, to investigate 
the performance of the extended vector space connectionist 
model with respect to these abilities. 

1.1 Adaptivity and Learning 

A suitable pattern recognition system will need to be adap­
tive for most applications. The necessary rules to define most 
real-world recognition tasks are too complex to be analyti­
cally derived. This becomes more so when the effects of noise 
or class variation are considered. These problems may be cir­
cumvented by utilisation of a self learning system, which by 
experience of the recognition problem adapts itself to solve 
the problem. 

1.2 Interpolation 

Once a system has been trained using the members of a train­
ing set it is hoped that the system would correctly classify a 

new pattern which was not in the training set, but a member 
of a class defined by it. This property is often referred to 
as interpolation or generalisation, as it is the ability of the 
system to interpolate the classifier output between training 
patterns. There is an implicit assumption in the concept of 
interpolation that patterns belonging to the lame class will 
cluster to a similar region of the decision space . This may not 
always apply, for example in the case of a capital and a small 
letter' A '. However, from an analytical viewpoint this may be 
considered as two classes mapping to the same output value. 
It would be hoped that capital A letters will cluster and so 
on. 

1.3 Learning Speed 

It is obviously an advantage if the recognition system can 
adapt itself to a state of 'good' performance with as few pre­
sentations as possible. The ability to adapt quickly is also of 
advantage as it also enables the recognition system to respond 
to changes in the noise or class statistics . 

1.4 Certainty of learning 

It is impractical to have systems which may get stuck in their 
learning processes and not reach their optimal performancei 
we thus require a system that will not suffer from local min­
ima problems. These problems would require the system to 
be supervised and reset incurring multiple runs and conse­
quently large computational expenditure. 

1.5 Multiple class Problems 

Although most recognition tasks concerning multiple classes 
may be reduced to a series of one class recogntion problems, 
this is in general highly inefficient in terms of computational 
load. An ideal system should be able to perform multiple 
class recognition. 

1.6 Parameter Tuning 

For a system to be practically implement able a method of 
tuning any of the system network parameters must be found 



to prevent the need to repeat training runs inorder to opti­
mise these parameters. 

1. 7 Parallelism 

The sy.tem should be highly parallel to allow high speed 
operation. A parallel implemetation may also allow the pro­
cessing resources to be distributed and so it may be composed 
of many simple processing units. 

2 The Signal 
proach 

Processing Ap-

In the early days of neural networks there was a tendency to 
over-extrapolate known physiological information to provide 
networks . There was also a tendency to produce networks 
by empirical methods. This led to systems which could not 
easily be analysed or optimised. Recently the field of signal 
processing has advanced sufficiently to allow the mathemati­
cal derivation of a network form by using a well defined signal 
processing approach. 

Firstly it is necessary to consider a basic problem. A stan­
dard 'bench-mark' for neural networks is the exclusive OR or 
parity problem. In this problem a series of binary inputs are 
input to the network and it is required to return the parity 
function value of the inputs. 

We can consider this problem from a signal space ap­
proach. Consider a vector space created by plotting 
each of the input variables along a set of orthogonal 
axes. For a 2 input variable problem this space is a 
plane. For the binary exclusive-OR problem the input val­
ues (or 'input vectors') are (1,1) (0,0) (1,0) (0,1). The 
first two being in class one and the second in class two. 

Fig. 1 

x2 

• 

xl 

It can be seen from Fig. 1 that a linear discriminator cannot 
be used to differentiate between the classes in the EX-OR 
problem. We can however transform the problem into an 
extended vector space in which the problem may be solved 
using a linear discriminator. We increase the dimensionalit.y 
of the desicion space by adding a dimension Xl X2 • A linear 
plane may now be used to separate the classes. 

Fig.2 

x2 

1 

If we collapse the desicion plane of Fig.2 onto the 2D plane 
as in Fig.I it can be seen that the decision contour is non­
linear. 

Fig.3 

So by using a linear discriminator in an extended vector 
space it is possible to perform classification tasks requiring 
non-linear discriminators. 

2.1 Non-linear System Modeling Ap­
proach 

The pattern recognition problem may be thought of as a sys­
tem modeling problem, in which the adaptive pattern recog­
nition is attempting to model the classification system: for 
example, a human defining the relationship between a set. of 
character font images and a set of collating sequence num­
bers. The block diagram showing the recognition problem 
cast. as a system modelling problem is shown in Fig.4. 
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It is clear that the relationship between the inputs and 
outputs of such a system is in general a non-linear one, thus 
the recognition system must be capable of generating a suf­
ficiently close approximation to the non-linear relationship 
defining the system. 

2.2 The Volterra Functional Analysis 

In signal processing such non-linear systems may be modeled 
by use of the Volterra series [2]. The form of the Volterra 
series was first studied by Vito Volterra, but Norbert Wimer 
was the first to apply it to non-linear systems theory. He 
used it to model the input output relationship of non-linear 
systems. The continous Volterra series may be written: 

v(t) = HO + HI [:z:(t)] + H2[:z:(t)] + ... + Hn[:z:(t)] + ... 

Where lI(t) is the output of a system and :z:(t) is the input 
and in which: 

Hn[:z:(t)] = 

[:00 .. . [:00 hn( TI, ... ,Tn):Z:( t _ T!) ... :I:( t - Tn)dTI ... dTn 

Where hn( TI, ... , rn) is the Volterra kernel. A discrete 
form of the series was developed [4]. 

In general this will need to be a heterogenous Volterra 
expansion in order to model systems composed of multiple 
orders of non-linearity. The Heterogenous discrete Volterra 
series may written as: 

L Hn 
i=l,N 

Where Hn are the Volterra Kernels, and ware coefficients 
which define the model as follows . 

Ho = Wo Zeroth Order term 'D.C.' term 

HI = L wi Xi First Order Linear term 

H2 = L L WijXiXj Second order Quadratic Term 

j 

HS = L L L wIJ.kxIXjXk .... and so on. 

i j k 

Normally the coefficients are fixed by use of analytical meth­
ods [12] however they may be fixed adaptively. Consider the 
following system in which the inputs are combined to give the 
individual Volterra terms. These terms are then multiplied 
by their respective coefficients and the terms lununed. It can 
be seen that the system can be decomposed into a vector ex­
pansion stage followed by a linear Finite Impulse Response 
(FIR) filter. The adaption of the coefficients may then be 
achieved by any of the methods used in FIR adaptive filter 
theory. The analytical basis of this approach allows us to ex­
plicitly calculate the form of the error surface. The Volterra 
Series is found to converge for most practical non-linearites, 
although large input levels or vey high order non-linearities 
should be avoided. A very closely related expansion may be 
obtained by using the Gabor-Kohnogorov polynomial: [16] 

Fig.5 

Volterra Exp. 

In a system such as that shown in Fig.5 the effect of joining 
an FIR filter to the Volterra expansion may be considered. 
The system has a set of input values :1:0 ••• :1:" which are input 
to the non-linear Volterra state expander to produce a set of 
output values 110 ••• 119 with n being less than q. These values 
then form the input to an FIR adaptive filter. Consider the 
output values for the vector state expander . This set of values 
may be represented by the vector V . The filter coefficients 
may also be represented by the vector W. 

Using the standard FIR equation we may write the error € 

as: 

€= d - L 1I i 'Wi 



In which d is the desired output [1] from the filter, that is in 
our case the correct classification given the set of inputs to 
the whole system lei. In vector form thU may be written: 

If we wish to consider the error function for the Least Mean 
Squares, or LMS, critereon with the mean being considered 
over the pattern presentations, the equation becomes: 

Where R is the autocorrelation matrix of the data in the 
non-linearly extended vector space and similarly P is the 
crosscorrelation vector between the desired d signal and the 
non-linearly expanded data.O' is the variance of the desired 
response. 

The objective is to find a set of weights w which will 
minimise the mean square error. The system then will out­
put classifications which differ from the desired classifications 
with the mimimum mean squared error possible for the sys­
tem. The optimal solution for the weights of the filter is the 
same as that of a Wiener Filter [1] operating in the extended 
space and so the methods used to find the Weiner solution 
explicitly may be applied. A more suitable approach for the 
recognition problem is to find the weight solution adaptively. 
This has the advantage of not requiring a priori knowledge of 
R, and does not require the inversion of a matrix. 

It is clear from the above that the LMS error is solely a 
quadratic function of the weight vector. This shows that the 
performance surface is a hyperparaboloid and consequently 
always unimodal. This is a highly desirable property as it 
shows that the system will not exhibit local minima on the 
error surface. Such local minima cause the adapt ion per­
formance of networks to be greatly reduced as the adaptive 
algorithm may get stuck in local minima and consequently 
not reach the optimal coefficient values. The property of uni­
modality also confers the ability to adapt much more quickly 
as there are no valleys in which to dither and the gradi­
ent is proportional to the distance from the solution. This 
last property prevents the adaption being greatly slowed or 
halted by regions of the error surface with small gradients. A 
stochastic gradient algorithm [11] may be easily applied. Fol­
lowing the derivation of the LMS algorithm. The usual gra­
dient algorithm may be written by differentiating the mean 
square error with respect to the weights to give an iterative 
weight update equation. 

Where J.L is an adaption coefficient which sets the speed of 
learning . A simple expression for \! E( e2

) may be derived. 

The analytic basis of the method combined with the prop­
erty of linearity in the coefficients allows the application of 
the standard least squares methods. In general for the pat­
tern recognition the problem is degenerate or rank-deficient. 

A single solution may still be obtained by the application of 
Singular Value Decomposition (SVD) which yields the min­
imum norm solution. Such analytical method may also be 
used to study the network performance and obtain the eigen­
values for real recognition problems. 

2.3 Parameter Tuning 

There is only one parameter to be chosen in the new network, 
this is the adaption coefficient. However, this adaption coef­
ficient is that of a standard adaptive filter. Consequently the 
large body of knowledge pertaining to adaptive filter theory 
may be immediately applied. Yassa[7] developed an expres­
sion for choosing the optimal adaption coefficient. No such 
method may be applied in the case of current networks as 
the nature of the error surface is complex and contains local 
minima. Consequently the parameters such as the adaption 
coefficient must in general be set by trial and error in current 
networks. 

3 Network Comparisons 

The new network's performance was compared with that of 
the current networks. The exclusive OR problem was used 
as a test. The adapt ion times in terms of numbers of iter­
ations were compared for the different network times. The 
times for the hidden layer back-propogation networks [10] 
are taken from an American study [3]. These timings are 
for the best run, which was achieved by optimising the net­
work parameters over a series of runs. If the network be­
came stuck in a local minima it was stopped and restarted 
from different initial conditions. In the case of the new net­
work the results are for the first time run as the adapt ion 
coefficient could be selected beforehand, and the local min­
imum problem did not exsist. Thus when comparing the 
figures it is necessary to realise that in terms of total pat­
tern presentation numbers the factor between the number of 
presentations to each network is in fact considerably greater. 

Fig.6 
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If the figures in the above table are ploted for the two 
networks it is possible to see that the learning times for the 
current network rise quickly as a function of the number of 
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input variables, whereas those for the new network rise at a 
lower rate. The results of the graph imply that the learning 
times for current networks are likely to be extremely large 
for complex problems with more than a few input variables. 

Fig .7 
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The hidden layer network displays poor interpolative abili­
ties which is to be expected as the decision region is bounded 
by linear boundries. The Radial Basis Function network per­
forms much better, producing suitably localised classes. This 
increase in performance is to be expected due to the rela­
tionship between RBFs and multidimensional interpolation. 
The new network converges to the best solution of the three, 
which is extremely near to the optimal solution, given no in­
formation other than at the class points. In fact, if the above 

3.1 Interpolation Performance 
parison. 

is repeated for the network before it has converged, it displays 
Com- results which are similar to those of RBF networks. However 

the new network is not constrained to a set of a priori 'RBFs' 
and so can converge further. 

In this section the interpolative ability of two current 
network types Hidden-Layer and Radial Basis Function 
(RBFs )[5)[9) is compared with that of the new net­
work. The network is trained on the exclusive OR 
class points (0,0), (1,0),(0,1),(1,1) until full convergence. 
The adaption is then stopped and the inputs are var­
ied over the full signal space. The class decision is then 
ploted as a point for class one and no plot for class 
two. Graphs a) and b) were provided by Niranjan[9J . 

3.2 Multiclass Performance 

In practice it has not proved possible, in general. t.o use cur­
rent networks for classification with more than a 26 classes. 
In general, multiple class problems are addressed by using a 
series of networks. The flexibility of the decision surfaces of 
the new network however allows a single network to perform 
multiclass problems. One such problem is that of charac­
ter recognition. The network was presented with an 8 by 8 
pixel unage of a character and required to output the char­
acters position in the collating sequence. The network was 
capable of learning to recognise all 80 characters in the font. 
A second order Volterra extension was used wit.h all terms 
present. The coefficients were set by the LMS algorithm. 
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It is also possible to increase the number of classes that 
a system can recognise by using the same vector expansion 
'hardware ' with multiple adaptive filter sections connected to 
it. 
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3.3 Implementation 

In order to facilitate the understanding of the new network 
it has so far been discussed as two sections: firstly the vec­
tor state expansion and secondly the adaptiv(' filter section. 
The same network may be implemented in a more distributed 
form composed of a series of identical 'neurons ' by factoris­
ing the expansion polynomial.Once this has been done it is 

pouible to find factorisation! composed of identical units . 
Consequently 11 network may be created using a network of 
simple terms. Another approach which is currently under 
investigation is to define two types of 'neuron'. The first is 
composed of a simple multiplier and the second a standard 
linear perceptron. An interesting form of the second imple­
mentation is that in which the network elements are randomly 
connected. This generates a connectionist model containing 
random terms from the non-linear state expansion. However, 
provided that the network is large enough, the inherent de­
generacy allows the network to find another possible solution 
without the missing terms . 

y ~ w., + W 1X 1 ;- W1 X : + w~x) + W11 X I X \ + w1?x,x : -t- w\ )X , X ; 

-t- W:1X:,X , T W1ZX:?X:, .- W?,X2 X ~ + W, tX ?X I + W):X?X: ~ W)) X';IX) 

may be factorised as : 

4 

Y .. W0 +X\ (W\ +Yt' ll X , + w1:?x ; + W\ :x 3) + x:(W :,+ w: 1x, +w:: x:+ w:,?x? ) + 

+ x ,(w ,? +W ~!X; + WnX: +w?? x :,) 

~ ----------------~ 
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Fig .12 Implementation of Network. 

Current Research 

The quadratic error surface lends itself ideally to the use of 
a more efficient adaption algorithm, such as that of conju­
gate gradients [11) . A variation of this method is currently 
being developed, which is giving considerably faster conver­
gence times than those discussed earlier without requiring the 
storage of very large matrices. 

As previously mentioned the effect of various implementa­
tions is being considered, including random connection under 
a series of network generating rules, and the effect of limited 
accuracy and limited dynamic range multiplications [8). 

A form of the network based on the Weiner G-functionals 
[2) is being considered, as these form an orthogonal set. This 
may lead to advantages in adaptive performance [13) for some 
applications and form another basis from which to analyse the 
network behaviour. 

An examination of the network from a vector space per­
spective has made it apparent that the actual values of the 
outputs for various classes if suitably chosen can lead to the 
use of very small networks . Although an analytical solution 
has not yet been found, a series of good approximate solu­
tions have been developed and yeiled SOl11e surprisingly small 
networks. The importance of the output values can be easily 
demonstrated. Consider a single input system with a series 
of output classes as shown below: 
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This would require a high order non-linearity and conse­
quently complex boundries to the desicion regions and so a 
larger network. If the output indices had been suitably cho­
sen the whole problem could have been reduced to a linear 
one: 

Fig.12 
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Although the above is a simple case the problem becomes 
difficult to solve in multiple dimensions with a degenerate 
system. This question of output values has not been fully 
appreciated with current networks and a method for deter­
mining suitable indices would lead to far smaller networks. 
The approach being currently investigated involves a princi­
ple component analysis of the pattern difference vectors and 
has provided the ability to use smaller networks. It is hoped 
to develope an adaptive approach to network contraction. 

The use of a least squares critereon for multiclass problems 
is not a particularly good one, other error functions are being 
investigated. 

Ideally a pattern recognition system should construct 
an estimate of the underlying probability demity functions 
which are generating the input vectors given an element from 
a particular class. Although, due to the expectation opera­
tor in the mean square error equation, the probability of a 
pattern vector occurring is taken into account by the net.­
work, it may be possible for the network to make far more 
complete estimations of underlying probability processes by 
using Bayesian methods. 

5 Conclusion 

The non-linear vector space expansion connectionist model 
has been shown to have a number of advantages over cur­
rently applied networks for application to general connection­
ist problems. 

Firstly it convergences to its optimal solution far faster by 
orders of magnitude than current networks, and this conver­
gence time does not rise as quickly as a function of the siEe 
of the pattern vectors. 

Secondly it is unimodal and consequently does not suffer 
from the problems of local minima such as needing to be re­
set, getting stuck or uncertainty about it having converged. 
These problems can seriously affect the performance of cur­
rent networks and prevent them being used in an adaptive 
mode while actually performing their tasks. 

Thirdly, the complete mathematical derivation of the new 
network allows a much fuller understanding of its operation 
and allows direct application of adaptive filter knowledge. 
This allows easy parameter tuning and application of other 
adaptive filter update methods. It also allows the effects of 
approximation and i.mplementation to be considered. 
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1 Introd uction 
Over recent years a series of algoritluru for the updating 
of adaptive filter coefficients have been developed. Some of 
these method., notably those related to the method of Re­
cursive Least Squares (RLS) [1) have provided significant in­
creases in performance over the Least Mean Squares (LMS) 
[1) algorithm. For many applications the problems posed by 
the lack of performance of the LMS algorithm can be over­
come by implemeting one of these other algoritluru. 

However, almost all of this new generation of algoritluru re­
quire the storage of a matrix and a significant increase in the 
computational load. This is not a problem for most adaptive 
filters which are one-dimensional and utilise a limited num­
ber of coefficients. In the case of multidimensional adaptive 
filters, such as those used in image processing [7), or con­
nectionist models, or for any adaptive filter with many co­
efficients however, it may be totally impractical to consider 
storage of a matrix containing O( nl) coefficients where n is 
the number of coefficients. Likewise the increase in compu­
tational load associated with current approaches may be too 
great. 

In this paper a new algorithm is presented which gives a 
substantial increase in performance over the LMS algorithm 
but does not require the storage of a matrix and has a com­
putational burden of approximately five times that of LMS. 

1.1 The LMS Algorithm 

In order to construct a new algorithm with increased perfor­
mance over the LMS algorithm it is necessary to first consider 
the failings of the LMS algorithm. The update equation for 
the LMS or stocastic gradient method is [1): 

wk+l = wk + 2/!~x 
or more generally: 

2 
wk+l = wk - ocV(~ ) 

Where W is the filter weight vector and k is the time 
index, ex and /! are adaption coefficients, E the filter er­
ror and x the filter input data vector. Consider an error 
surface which is a long narrow valley. The steepest de­
scent type algorithms, such as LMS, will in general I.end 
to zig-IIag down the valley as shown in Fig.I. This be­
haviour even occurs for perfectly paraboidal surfaces and 

1 

50 lead. to large inefficiencies in terml of convergence time. 

Fig.1 

~ C:;;;;;< 
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2 Derivation of the Algorithm 
Consider the minimisation of a function f over an N dimen­
sional coordinate system. The function can be approximated 
by the first three terms of a Taylor series of the function about 
a point P. 

I) f 1 1)2 I 
f(w) ~ I(P) + L Wi Wi + 2 L I)WiI)W ' 1IIi1ll; 

• .. J 

Where: 

, 'J 

1 
= c - bw + -wAw 

2 

c = f(P) 

b= -VI 
1)21 

[A)i; = 1)1IIi1)1II; 

It should be noted that the above is exact for a quadratic 
function. Matrix A is the second partial derivative matrix of 
the function f ,that is the Hessian, of I at P. IT a minimisa­
tion in the direction of vector u is performed it is necessary 
to find a direction in which to minimise so as not to destroy 
the previous minimisation. Consequently the next direction 
0:; must be such that the gradient is perpendicular to u , that 
is: 

u.o(Vf) = u.A.v = 0 

By calculating the gradient of the above approximation with 
respect to the weights we obtain: 

Vf = A.w - b 



And hence, the effect on the gradient of a .mall change in w 
is: 

6Vf = A.6w 

u and V are referred to as mutually cot\iugate. It i. also neces­
sary that our .earch direction. must be mutually orthogon&l 
so that the whole space may be spanned in the .earch. 

Followin& the derivation of the Fletcher-Reeves [4] algo­
rithm it i. pouible to invoke a theorem which will allow the 
construction of mutually orthogon&l and cot\iugate vector se­
quencel. 

2.1 Theorem 1 

HAil a symmetric, positive definite Nbt.JN matrix and go is 
an arbitary vector. For value. of i = 0,1,2 ...... two leriel of 
vecton may be defined: 

Where: 

gl+l = gl - AIAhl 

hl+l = Ki+l + 1'lhl 

t 
Ai = gl·gl 

gl·A.hl 

t 
gi+l·A .hl 

"Yi = t 
hl·A.hi 

Then for all i such that i '" i: 

t 
hl.A.hj = 0 

That is, the gl are mutually orthogon&l and the hi are mutu­
ally cot\iugate. The proof of this theorem is beyond the scope 
of this paper but may be found in Polak's book [2], it is a 
form of GrlUll-Schmitt orthogonalisation. However, this the­
orem still requires storage of a matrix A. Another theorem 
enables this porblem to be overcome. 

2.2 Theorem 2 

H KI = - Vf(PI) and a minimisation of I in the direc­
tion hi of I is performed to find a new point PI+ 1 and 
Kl+ 1 = - Vf(Pl+ 1) The slUlle sequence is generated as in 
theorem 1. This may be proved by induction [2]. 

Consequently a series of mutually orthogon&l vectors and a 
series of mutually cot\iugate vectors may be generated with­
out knowledge or storage of A. 

2.3 Application to Adaptive Filters 

In order to use the above theorems it is still necessary to 
perform line minimisation. and evaluate th!' gradi!'nt. Th!' 
gradient evaluation may be easily p!'rformed for th!' adap­
tive filter case. For the standard adaptive filt!'r [1) as shown 
below: 

Fig.2 Standard Adaptive Filter 
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f = d. - wtx 

Taking the mean square error: 

E(f') = E(d~) - 2wv + wRw 

Where x is the vector reprelenting the filter inpub, d il the 
desired response,W the weight vector,R is the autocorrela­
tion matrix of the input and V the cron-correlation vector 
of the input and the desired signal. The gradient may thus 
be calculated as: 

, (h' at 
V(f ) = - = 2f- = -2fX 

8w aw 

The other problem is the line minimisation. The mean Iquare 
error is a parabola as a function of distance &lon& the line. 
Consider the line generated by: 

w = w +l3h 

Where {3 is the line generatin& sc&lar, the tuter error can be 
written: 

t = d - L Zi(Wi + I3hi) 

The second derivative of the mean square error with relpect 
to distance &long the line h may be c&lculted as: 

8' t' a af' a af '" ' 
813' = 813 813 = a{3 (2f al3) = (L:-t Zi .hi) 

• 
Given expressions for the derivative, .econd derivative and 
the knowledge that the relationship is paraboid&l it is possible 
to find: 

13 = _f_ 

xt.h 
Is the value of 13 at the line minimum &long h. This gives only 
an estimate of the line minimum as the instantaneous error 
values could be affected by noise and incorporate no time 
av!'raging aspect. The approximation is found in practice to 
b!' suflici!'nt for many applications. This approximation can 
l!'ad to a set of mutually conjugat!' and mutually orthogonal 
v!'ctor .!'ri!'s which us!' up all viable dir!'ctions before arriving 
at the minimum. This problem can be cured by p!'riodic 

I 



ru~ting of th~ algorithm. but a much mor~ el~gant solution 
is to us~ th~ Polak-Ribi~r~[2] ut~nsion of th~ FI~tch~r-R~~ns 
algorithm. which by using a .lightly diff~r~nt upr~Slion for 
'Y I~ads to an algorithm which in effect automatically res~ts 
the algorithm if n~c~ulUy. 

2.4 The Algorithm 

git1 = 2fX 

With initial values: 

go = 2fX 

hO = 2fX 

3 Results 

The algorithm was t~sted against the LMS algorithm. Two 
filters. one LMS and on~ col\iugate gradient filter (CG) were 
run in parallel modelling a FIR system. 

Fig.3 
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Fig.S Typical Run with no averaging. Note smooth con­
vergence of LMS algorithm complUed with the jwnps of the 
col\iugate gradient algorithm. 

4 Conclusion 

The algorithm performs well. giving significant increases in 
e 1 conv~rg~nce rates over the LMS algorithm and r~quires only 

O( 4n) storag~ rather than O( n') of oth~r fast m~thods. It is 
nec~S5ary to note that the basic algorithm is operating more 
in a L~ast Squar~s rather than a Mean Least SqulUe5 mode. 

e 2 This can lead to un~xpect~d results, especially for shod filters 

The ~xp~rim~nt was rep~at~d with random coefficients 
n the 50t h order FIR syst~m being modelled, The input. 
ignal was also vari~d: it was composed of a series of si­
IUsoids of random amplitude and fr~quency, The com'er-
;ence curves for these runs where averaged and plotted: 

with low frequency signals and some form of error averaging 
may be ne~d~d to give a Mean Least SqulUes solution. Pro­
vid~d that this complication is consid~r~d, th~ algorithm is an 
improv~m~nt to LMS and may b~ used wh~n m~thods such 
as Recursive Least Squares [1][6] or Singular Valu~ Decompo­
sition [7] cannot be applied due to storag~ or computational 
load constraints . 
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An Adaptive Pitch Estiluator for LMS Notch Filters. 
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1 Abstract 

An adaptive method of pitch estimation is presented 
which will estimate the pitch of a harmonic signal in 
noise to a high degree of accuracy, and track any slow 
drifts in the pitch of the harmonic signal. The ap­
proach is based on an ndapitive notch filter and hence 
avoids the problems encountered in the use of int.eger 
length adaptive delay lines. The approach Is partic­
ularly efficient when using an LMS notch filter and 
will allow increased performance of the notch filter 
by accurately fixing the reference signal frequ~ncy. 

Adaptive pitch estimators for harmonic signals in noise can 
be difficult to design due to the nature of the error surface 
encountered if one attempts to adapt a fundamentally time 
stationary system. Tlus approach solves this problem by util­
ising a time varying system. 

An attempt was made to remove a harmonic interference 
from an archive gramophone recording using a standard FIR 
LMS adaptive notch filter [lJ. This approach worked well in 
periods in which the harmonic interference was present with 
background noise of similar amplitude. but failed in periods 
with music or speech present. The amplitude of the music was 
many times greater than that of the interference and caused 
the adaptive notch filter to ring and destroyed its interference 
cancelling properties. As in the case encountered by Lim [3J 
it was decided to freeze the adaptive notch filter in these 
regions. However as these regions persisted for t.ens of thou­
sands of samples the reference sinusoids t.o t.he adapt.i ve not.ch 
filter had to have their pitches accurately determined so that. 
in the frozen periods the interference and ant.i-int.erference 
output fro111 the FIR filter should stay synchronised. 
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Fig!: An adaptive notch filter. 

Thus an accurate and computation ally efficient pitch esti­
mator was required wluch could also track a slowly drifting 
pitch. Consider an LMS adaptive notch filter with one notch . 
Glover [:lJ analysed the LMS adaptive notch filter and showed 
its behaviour to include time varying aspects under certain 
conditions. 
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Fig :l:Notch Filter Analysis Diagram. 



Let C , (z) be the Z-tran~form of the i 1h coefficient of the 
adapted notch filter, with adaption coefficient er and refer­
ence ~inu~oid of frequency w. and runplitude C, U( z) i~ the Z 
trRn~form of the LMS weight update equRtion (Rn integrRtor) 
a~ shown in Fig2 . 

Glover ~how~ that the pole zero plot of E( z) would indicate 
pole~ at z = e ±iw. T and E( ze - JW. T) repre~ents a counter­
clockwi~e rotation of E( z) through angle w. T . 

Therefore the pole-zero plot of : 

[E(ze-iw.T)ej8; + E(zeiwrT)e-i8;] 

would show pole~ at ±(wr + wd)T and at ±(wr - wd)T. 
This rotated ~pectrurn i~ filtered through U(z) to give C;(z). 
Each weight therefore consists of the sum and difference fre­
quency of Wr and Wd. U( z) is strongly low pa~~, hence the 
difference frequency dominate~ . For the FIR delay line 
(); = (}-w . T(i-I] which show~ that the coefficient~ C; are a ~i­

nusoid of frequency Wr with each weight varying as a sinusoid 
at frequency w. - Wd. 

Glover refers to this as the sinusoid in the coefficient~ 'mov­
ing' at a rate equal to the difference frequency between the 
de~ired and reference frequencie~. This may be viewed a~ a 
heterodyning proce~~ and is a time varying aspect to the ~olu­
tion for an adaptive notch filter; it may also be cOll5idered a~ 
a ~imple ca~e of a qua~i~tationary filter u~ing a ~lowly vary­
ing phase reference at the desired frequency. It i~ thi~ time 
varying a~pect that the adaptive pitch e~timator (APE] will 
use. 

A single notch adaptive filter is constructed and the motion 
of the sinusoid is detected by the following algorithm: 

1 ()q 
Pn + 1 = Pn + J.Lp <P~ at 

Where <P ~ is the gradient of the coefficients with respect to 
i at a particular coefficient k, and n i~ the time index. The 
coefficent of pitch adaption /Lp set the sensitivity and conver­
gence rate of the pitch estimator . 

The time derivative may be replaced by: 

OC n Tt ::::: C~n - c ~(n-1) 

And the gradient by: 

<P~ ::::: cn(~_l) - cn(~+l) 

A simpler form of the algorithm which does not require 
the division and hence avoids any possible divide by zero 
problems is: 

{)c~ 
Pn+I = Pn + /Lp3gn[<p~ Tt] 

In practice Glover's analysis does not always apply. If w(, 

con~ider the frequency respoll5e of the FIR stage of the adap­
tive notch filter we can see that there are an infinite numb('r of 
possible solutions for the case of a single sinusoid . The above 

algorithm, however, requires the particular solution with a 
sinusoid in the coefficients to be adopted. If this solution 
is not Rdopted or is disrupted the system will fRil. Occ,,­
sionRlly in prRctice it nlRy be nece~sRry to force the filter to 
assume the sinusoidal solution. In this case we must force 
its stopband to illclude all frequencies except the reference 
frequency. This is easily done by injecting some white noi~e 
with the reference sinusoid . Thi~ gives a good stRble ~inU5oid 
in the coefficients as the tilter should block as much of this 
white noi~e a~ po~~ible to nunim.ise the mean ~quare error . 

The other two di~ruption~ of the ~inu~oidal ~olution are 
a trall5ient effect as the sy~tem is fint ~et running and a 
de~tabili~ing effect cau~ed by varying the pitch of the ref­
erence ~inusoid too rapidly. In this case the a5Sumption~ 
of qua~istationarity break-down and the reference input is 
no longer a good approximation to a pure single frequency. 

Coefficient 
n+l 

Fig.3 Coefficient Motion Detector. 

Input 

Fig4 : The pitch tracking system. 

1.1 Harmonic Signal Case: 

Pitch 

Contr e 

Notch 
Outpl.: 

In the case of harmonic signals the accuracy of the sy~tem 
may be increa~ed by using a reference sinusoid of frequency 
near one of the higher harmonics present rather than the 
fundemental, as this will increas(' th(' differ('nce frequency and 
increase t.he coefficient sinusoid movement. by 1\ factor equal 
to the harmonic number . Thus leading to a larger effect for 
the same pitch error in the fundemental. 



1.2 Limitations: 

Th~ lilltitnioll' Oil t.h~ I\ccurncy of th~ I\lgorithlll nr" .d hy 
th~ ndnptioll nois~ found 011 th~ co~fficicnt vnlu~s. This.ndnp­
tion 1I0is~ CI\II b~ ~stimnt~d from th~ ~xpr~ .. ioll for th~ IIUII­

illlUlll menn .qunr~ error. It is cl~IH thnt it lUny h~ rcduc~d 
by r~ducillg th~ nclnpt.ion co~mci~nt of the notch filt~r. Th~ 
bnndwidth of th~ notch filt~r is set by this codlici~nt which in 
turn ddermines the rang~ of fr~qu~ncy error ov~r which the +2o" 
abov~ analysis appli~ •. Thu. th~re is a trade olf of final pitch 
accurncy versus initial lock rnnge. Th~ initial lock range b~­
ing d~fill~d as the maximum dilf~r~nce in fr~qu~ncy betwe~n 
the desired and refer~nce signals for which the syst~m will 
converge. 

The 1I0tch bnndwidt.h is given by [2J: 

N aC 2 
I 

BW ~ ---rads / s. 
2T 

Where N is the filter length. 

Limitations on the rate of converg~nce nre set by the ne~d 
pr~v~nt instnbility due to cOlltrnv~lIing of the quasistationary 
assumptions. Th~ changes in the pitch of the ref~rence oscil­
IRt.or must ther~fore be suitably slow, this may h~ acheived 
by using a suitably small pitch adaption co~fficient !lp. 

1.3 Results: 

The algorithm was found to be capable of high accuracy pitch 
estimates in quite high levels of noise and was capable of pitch 
convergence in SNR of -15dB . In the case of SNR of lOdB the 
system could attain pitch accuracy estimat.es in t.he order of 
1 part in four thousand . A s~ries of conv~rgence curves arf' 
shown in Fig:5. The occasional initial div~rgences are caused 
by transient effects as the data ent~rs fills the filter . 
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1.4 Conclusions: 

The sy~tem is b .. st mit .. d to applicatiom requiring high ac­
curncy pitch estimnte. on .tationary signals for which a low 
accuracy pitch estimate is alrel\dy known. The n~cessl\ry 
computatiol15 for the system lire based around 1\ FIR filter, 
thus ml\king it ~asily implement able in hardwl\re. The IUter 
Illay he quite short in prnctice and in the cnse of nn adaptive 
notch filter to remove a .ingle sinusoid the pitch estimator 
may be add .. d at very little extra computationl\l cost by using 
the cnncdling filter I\S the pitch estimating filter, this lel\ds 
1.0 d~~p~r not.ches and incr~l\s~d performanc~. It i. cl~l\r thl\t 
th~re are mnny possibiliti~s for variatioll5 on the above th~me 
that lllay be well suited to other applicatioll5. 
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