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Summary

This thesis covers the development of a series of new methods and the application of
adaptive filter theory which are combined to produce a generalised adaptive filter system
which may be used to perform such tasks as pattern recognition . Firstly, the relevant
background adaptive filter theory is discussed in Chapter 1 and methods and results which
are important to the rest of the thesis are derived or referenced. Chapter 2 of this the-
sis covers the development of a new adaptive algorithm which is designed to give faster
convergence than the LMS algorithm but unlike the Recursive Least Squares family of
algorithms it does not require storage of a matrix with n? elements, where n is the number
of filter taps. In Chapter 3 a new extension of the LMS adaptive notch filter is derived
and applied which gives an adaptive notch filter the ability to lock and track signals of
varying pitch without sacrificing notch depth. This application of the LMS filter is of
interest as it demonstrates a time varying filter solution to a stationary problem. The
LMS filter is next extended to the multidimensional case which allows the application
of LMS filters to image processing. The multidimensional filter is then applied to the
problem of image registration and this new application of the LMS filter is shown to
have significant advantages over current image registration methods. A consideration of
the multidimensional LMS filter as a template matcher and pattern recogniser is given.
In Chapter 5 a brief review of statistical pattern recognition is given, and in Chapter 6
a review of relevant connectionist models. In Chapter 7 the generalised adaptive filter
is derived. This is an adaptive filter with the ability to model non-linear input-output
relationships. The Volterra functional analysis of non-linear systems is given and this is
combined with adaptive filter methods to give a generalised non-linear adaptive digital
filter. This filter is then considered as a linear adaptive filter operating in a non-linearly
extended vector space. This new filter is shown to have desirable properties as a pat-
tern recognition system. The performance and properties of the new filter is compared
with current connectionist models and results demonstrated in Chapter 8. In Chapter

9 further mathematical analysis of the networks leads to suggested methods to greatly

reduce network complexity for a given problem by choosing suitable pattern classification




indices and allowing it to define its own internal structure. In Chapter 10 robustness of

the network to imperfections in its implementation is considered. Chapter 11 finishes the

thesis with some conclusions and suggestions for future work.
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Symbol Definitions

Where possible the following conventions are used:

w Weight Vector.

x Input Vector.

d Desired Signal.

¢ Error signal.

1 Adaption Coefficient.

v Expanded Space Vector.
E() Expectation operator.
R Correlation Matrix.

p Cross-correlation vector.
A Diagonal matrix.

A Eigenvalue.

Abbreviations

The following are common abbreviations:

LMS Least Mean Squares.

RLS Recursive Least Squares.

ADF Adaptive Digital Filter.

‘ FIR Finite Impulse Response.
‘ SVD Singular Value Decomposition.

. ITR Infinite Impulse Response.
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OCR Optical Character Recognition.

RBF Radial Basis Function.

MLP Multilayer Perceptron.

HLBP Hidden Layer Back Propagation.
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Introduction

Although the areas of adaptive signal processing and connectionist modeling owe their
early origins to the same work, the two subjects have tended to become independent.
This thesis uses some approaches and methods more recently developed in the field of
signal processing and applies them to the field of connectionist models. Consequently the
thesis is divided into two parts, the first of these covers work in the area of adaptive signal
processing, and the second the application of signal processing methods to connectionist
modeling to develop a new connectionist model and methods by which to analyse it and

refine it.
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Chapter 1

Current Adaptive Methods and
Theory.

1.1 Introduction

Practical information processing systems must be able to function in continually changing
environments; they must also be capable of taking into account the many complexities of

the real world.

Adaptive signal processing gives a method for producing such systems. Adaptive systems |
may track changes in their environments. The adaption process may also allow a system to
design itself taking account of many complex aspects of the task it is required to perform.
The basis of adaptive signal processing is the adaptive filter. In signal processing adaptive
filters have until recently tended to be linear , that is, the filter output is a linear function
of the data applied to its input.

The statistical approach to designing a linear filter is to assume various statistical measures
are known, normally the mean and autocorrelation functions of the information and noise
signal inputs.

The adaptive approach does not require this ‘a priori ’ statistical knowledge. The adaption
algorithm forms internal estimates of this information whilst the ﬁlterf;opera,ting, and uses
these estimates to adapt the filter to a suitable state. ~
One of the first applications of adaptive signal processing was that of adaptive beam
forming. A beam former for the reception of RADAR or radio signals was required to be

able to null out jamming signals coming from a localised direction. Bernard Widrow [8]

15
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Figure 1.1: Adaptive Filter

developed such a system based on an error surface gradient following method, which was
later to become known as the Least Mean Squares (LMS) algorithm.

The similarity of the mathematics applying to the beam forming problem and digital
filtering led to the application of this new approach to digital filters. One of the classical
applications of these adaptive digital filters is that of noise cancellation [1][8].

In general an adaptive filter is required to minimise some function of an error signal; this
error is normally the difference of the output of the filter and some desired signal. A
common function to minimise is the mean square of this error signal.

Such a filter may be configured to model another system as shown in figure 1.1. The
importance of adaptive filters has become apparent in the field of signal processing due to
their ability to take account of slow time varying systems such as communication channels
in channel equalisation, or acoustic pathways in active noise cancelling.

Another aspect of adaptive systems, the ability to adapt themselves to solve problems, is
making them very important in the field of artificial intelligence.

It has become apparent that it is very difficult to define the rules that will allow a machine
to perform many ‘real-world’ tasks , such as visual pattern recognition under general
conditions. The beauty of adaptive systems for such problems is that it is no longer
necessary to derive a set of explicit rules as the system can be left to adapt itself ‘on the
job’ to solve the problem without being explicitly programmed with sets of rules.

In considering such systems it is necessary to return to the basic Wiener Filter. In this

thesis the discussion is limited to discrete time systems. The definition of such systems

16
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Figure 1.2: Wiener filter

may be found in [34].

1.1.1 The FIR Wiener Filter.

The Wiener filter is an optimal filter in the mean square sense. As shown in figure 1.2 an
output error is defined as the difference between the desired reponse and the output of the
filter. Classical Wiener theory uses the mean square error as the function to be minimised,
and assumes that the information and noise processes are statistically stationary. Such a
filter is said to be optimal in the least square sense.

In the Wiener filtering problem it is required to design the optimal filter for producing an
output signal as similar (in the mean square sense) to the desired signal as possible.
Where d; is the desired signal, z;; the input signal for the i th delay point in an N tap
FIR filter, y; the output signal and w; the filter coefficients. An error signal ¢, may be
defined by the filter equation:

€ =dp —yr = di — Z Wik
i=1,N

The expectation of the error squared E(e}) is:

E(e;) = E((dx — ._ENwiwikV)

For notational convenience we may define a vector composed of the filter weights:

17
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Likewise the input values in the filter:

Xk = Tok

The filter equation becomes:
E(€?) = E((dx — w'xy)?)

Define % = E[d}]:
E(é) = 0? — 2dpwb E[x] + W E[x x| w
E(é) = o? —2w'p+ w'Rw = J

Where R is the correlation matrix:

2
Ty e s Lok Tk
T1kTok - - T1kTnk
R=E]| T2kTok -..-T2kTnk
2
TnkTok oo Tk

and p is the crosscorrelation E[dyxg], and J is the mean square error.
The minimum square error may be easily found by finding the derivative of the mean

square error with respect to the weight vector and setting this to zero.

V(E(e*)) = —2p + 2Rw
Rw=.p
Wopt = R_lp

This requires that the correlation matrix is non-singular so that its inverse exists.

18
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[t is necessary to know a priori the signal statistics of the input, reference, and desired
signals. This may not be possible in many practical cases. In a non-stationary environ-
ment the Wiener filter theory is deficient as the optimal filter is time varying, that is, the
coefficients of the filter are time dependent. Although Kalman filter theory can provide
an approach to obtaining results for such problems an often more convenient approach is
that of the adaptive filter.

The adaptive digital filter avoids the need to obtain these a priori estimates and conse-
quently may be used where the signal statistics are unknown or changeable. The statistics
must be ‘pseudo-stationary’ that is vary sufficiently slowly with time for the adaption al-
gorithms to work.

In the case of Rank-deficient systems it is necessary to use a method which will give
reliable results with singular matrices. A good method for use in such situations is that

of singular value decomposition. This gives the minimum norm solution [1].

1.2 Properties of the Correlation Matrix and its Eigen-Values

It is important to state some basic properties of the correlation matrix which will be used

later. Further properties and their proofs may be found in Haykin[1].

e The correlation matrix of a stationary discrete time stochastic

process is Hermitian:

B =R
Where H denotes conjugate transpose.

e The correlation matrix of a stationary discrete time stochastic

process is Toeplitz.

e The correlation matrix of a stationary discrete time stochastic

process is always non-negative definite.

xHRx >0

19
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Where x is an arbitrary non-zero M by 1 complex valued vector

(The correlation matrix being M by M).

The eigenvector equation defines a vector q (M by 1):

Rq = )Aq
1.3 The Adaptive Approach

Wiener theory is limited in that it assumes stationary random processes with statistics
which are known a priori. In practical applications it is rare to encounter full stationarity
or to have precise knowledge of statistics prior to the required operation. One approach
might be to use the operating data to estimate the statistics and use these estimates to
solve the Wiener filter. This would be computationally heavy and unlikely to be a real-
time solution. The adaptive filter is a system that avoids these problems. It functions as
an automaton with the capacity to tailor its operation to suit an unknown, and possibly
time-varying, statistical environment. This is achieved by use of a performance feedback
recursive algorithm which alters the filter parameters to optimise performance in some
sense. In fact the standard linear transversal adaptive filter will converge to give the
optimal Wiener solution for a statistically stationary problem. It should be borne in
mind that the adaptive filter parameters being data dependent lead to the adaptive filter
as a systerﬁ being non-linear. However, this non-linear aspect is not usually referred to
and the terms ‘non-linear’ or ‘linear’ are applied to adaptive filters in respect of their
transfer functions at a point in time where their parameters are stationary in time.

There is a series of different algorithms to perform the parameter adjustments for FIR
transversal filters, but the desired properties of an adaption algorithm are similar for

many applications.

e Convergence Speed: This is the number of algorithm iterations
required to reduce the error to within a given tolerance of the

optimal solution. This should be as fast as possible, that is,

20




require as few iterations as possible to get within a given tol-

erance of the optimal solution.

e Misadjustment: This is the difference between the performance
of the filter after it has been allowed to adapt for an infinite ,

time and the optimal filter.

e Robustness: This is the ability of the filter to operate in unsuit-
able signal and noise environments, for example ill-conditioned

data for linear adaptive filters.

e Computational Load, Structure and Numerical Sensitivity: The
amount and type of requisite arithmetical operations, the sen-
sitivity of the algorithm to inaccurate calculation, and the re-
quired storage, may all be of importance in various applica-
tions. The structure of the algorithm may be of importance in

consideration of algorithm implementation.

The following is a discussion of the more important of these adaption algorithms.

1.4 The LMS or stochastic gradient algorithm.

This is the pioneering algorithm of adaptive signal processing and is notable for its light
computational load and ease of implementation.

From the above equations it can be seen that the error surface of the FIR filter is quadratic
in form. Thus the error surface exhibits no local minima, as it contains only the global
minimum. An optimisation algorithm may be applied to find the global minimum. The
simplest of these algorithms is the stochastic gradient algorithm. This algorithm, which
is also known as the method of steepest descent, involves use of the local gradient to
determine the direction of the next iteration.

The mean square error equation can be differentiated with respect to the weight vector

to give an expression for the gradient on the mean square error surface:

21
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VuJ = —2p + 2Rw |

The steepest descent algorithm may thus be applied by always moving in the direction of

steepest descent (changing the the time index k to the iteration index n):

Wnyl = Wy + %(l‘[_vwm)‘](n)])

where n is the iteration number and y is the adaption coefficient.
As there is no a priori information about the correlation matrix R and the cross-correlation

vector p it is not possible to use the above equations to give an exact value of the gradient. |

The LMS algorithm forms instantaneous estimates of R and p from the following:

R = E(x(n)x*(n)) ‘

is estimated by:
R, = x(n)x%(n)
similarly for p. These estimates are unbiased (correct in their mean), but they may have

large variances . However the LMS algorithm smooths these out. The gradient estimate

is thus:

Vum)d(n) = =2x(n)d(n) 4+ 2x(n)x'(n)w(n)

= —2x(n)e(n)
1.4.1 Problems of the LMS algorithm

The LMS algorithm suffers from some disadvantages such as slow convergence times and

sensitivity to eigenvalue spread, and misadjustment.

Misadjustment

Consider the optimal solution (in the Wiener Sense ) for the weight vector. This value of
the weight vector will be denoted as wg. At any iteration in the algorithm a weight error
vector may be defined:

ey(n) =w(n) —wp

22




Haykin [1] gives an involved analysis of the LMS algorithm. This analysis is difficult as i

the random nature of z(n) and d(n) propagates into the weight vector estimate to give

non-stationary weight vector estimates. Haykin[l] gives the result: \
Blew(n +1) = (I #R)E(ey(n))

It can be shown that the above equation converges to zero, provided p is chosen in the
range 0 < pu < /\'31 This is known as convergence in the mean. The propagation of
the weight error vector variance is represented by K the weight error vector coreelation

matrix:

E(ew(n)e,(n)) = K(n)

Haykin [1] gives the following recursion relationship in K:

K(n +1) = K(n) — u[RK(n) + K(n)R] + x?Rtr[RK(n)] + p*JinR

where tr|] is the trace operator.

It can be seen that K (n) can never reach zero as the last term represents a forcing term.
That is the weight vector does .not reach the optimal vector but fluctuates around it.
This is due to the non-exact nature of the gradient estimate. This wandering leads to
an excess error Je, above the J,,;, value. The magnitude of this misadjustment may be

found (Haykin [1]) who shows the excess error at n = co:

= a T My

In which the A are the eigenvalues of the correlation matrix R

The misadjustment is defined as:

JC.T
Jmin

Thus it can be seen that in cases when the eignevalues are widely spread, the misadjust-

ment is mainly limited by the larger eigenvalues.
Effect of Eigenvalue Spread

Considering the previously defined weight error vector equation:

23
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E(eu(n +1) = (I4R)E(ey(n)) |
This equation shows that the time evolution modes of the error weight vector are coupled.

By using the unitary similarity transform the convergence modes may be uncoupled:

R = QSQ’ h

The weight error vector may be redefined in terms of the principal axes:

V(n) = Q'ey(n)
Yielding:

E(v(n +1) = (I - uS)E(v(n))

This shows that each of the convergence modes is separated into a homogeneous first

order difference equation with solution:

E(vr(n)) = (1 — pAe)"E(vk(0))
It is clear that unless all the A\; are equal the convergence rates for each mode are different

and an optimal p cannot be found for all the modes.

1.4.2 Choice of the adaption coefficient

It can be found experimentally that the performance of the LMS algorithm can be greatly
affected by the choice of the adaption coefficient. Yassa [3] developed a useful approach
to the question of the choice of adaption coeflicient.

Considering the expression for the square error of an LMS filter:

e =0%— 2w'p + w'Rw

In the case of a complex filter this becomes for the m+1 iteration:

2 _ 2 t *t ® t *
€41 =0 — (Wm+1p + W, P ) + wm+1R‘Wm+1

Also the complex gradient vector is given by:

24
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Figure 1.3: Parabolic relationship of adaption coefficient and mean square error.

(Ve")m = 2[R W — p,]
=2[R"wn — p7]
Using this it can be seen:
emi1 = Em — Hm(VE )R (VE), + 1 (Ve ) R(VE )

=€ —p| (V)m |I* +87gm
where :

gm = (V€' ), R(VE")

Given a nonzero (Ve?),, it can be shown:q, > 0. Hence the relationship between y and
the mean square error is parabolic.

The optimal ¢ may thus easily be found as:

1
OPT _
where:
. . S
I (Ved)m |7 ;
In the case of the LMS algorithm : |
Ve = —2ex*
R =%x"
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These reduce the expression for « to:

a = (x"'x)
=[x |I*

Thus a measure of the input power to the filter when suitably low pass filtered may be

used to set and keep p near its optimal value.

1.5 Recursive Least Squares

The performance of the LMS algorithm is not as good in terms of number of iterations
to convergence as may be expected for an adaptive system from a theoretical analysis
of adaptive methods [2][1]. Indeed there are methods which offer convergence in fewer
iterations than the LMS algorithm. Perhaps the most common of these, and certainly the
basis of a host of related algorithms, is the recursive least squares algorithm [1], which
itself arises from the classical method of least squares.

Defining: Input data vector u, a forgetting factor A which if close to one gives the algo-
rithm infinite memory and if smaller allows the algorithm to track time varying problems,
and a matrix P which is of order m by m where m is the number of elements of u.

Initialise algorithm by setting:

For each time instant n = 1,2,... compute:
A 1P(n — 1)u(n)
14+ A-tuf(n)P(n — 1)u

(
a(n) = d(n) — wi(n — 1)u(n)

w(n) =w(n —1) + k(n)a*(n)
P(n) = \7'P(n — 1) = A 'k(n)uf (n)P(n — 1)

k(n) = m

It is immediately clear that the algorithm requires the storage of a matrix and although
this is not a problem for many adaptive filter problems it is a prohibitive storage require-

ment for systems with many weights such as image filters or connectionist models.

26

————




1.6 IIR Adaptive Filters

There has been a great deal of interest in adaptive IIR filters. It has however proved very
difficult to develop a practical algorithm. The problems are mainly due to the multimodal
nature of the error surface and the difficulty of constraining the filter to be stable for all
iterations of the algorithm. As adaptive IIR filter theory is not used elsewhere in the thesis
the subject is not pursued here, however it can serve to illustrate some of the problems

encountered by adaption methods with multimodal error surfaces.[29][32]

1.7 Singular Value Decomposition

This is not an adaptive method but is very important for the study and analysis of
adaptive systems in which the correlation matrix is rank deficient.

The singular value decomposition theorem states:

For a matrix A of rank w there are two unitary matrices XY such that:

Hiw [T 0)
YAX_(O 0

where:

Y= diag(al)o'% e ,a'w)

and:

0'120'22...20'w>0

Normally we could solve the least squares problem by inverting the autocorrelation matrix
to give the optimal vector.

w=R"1p

This theorem (SVD) can be used to derive a solution for w even when the matrix R is
singular. By solving:

p=Rw

for w. More generally this equation may be rewritten:

w = A™b
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L .’?3!'/\
Where A™ is the' Moore-Penrose generalised inverse or pseudoinverse of matrix A. Sin-
gular Value Decomposition can give a unique solution to the equation, giving the one
solution with the minimum-norm. The pseudoinverse of the matrix A may be defined as:

m __ 2—1 0 H
A _x( . O)Y

where :

-1 _ g = ~1
Y =diag(o] 505 sse030g )

And w is the rank of the matrix A. This is used as follows:

w = A™b
_ Bt \oxt
_x( . O)Y b

The unitary matrices may be partitioned:

n-1
=[x1,xz]( : 0>YHb

= X5 1YHb

Assuming (L > M):
=X; 2 2xHAHp
= % ZxHAHY
i=1 %
This equation may be used by first computing the singular values of the data matrix
A and the associated singular vectors X ...xXy and substituting them into the above
equation to give w.
This gives a numerically well behaved method which may even be used for rank deficient

systems. More recently, interesting work has been done on recursive implementations of

SVD [43], although the computational load of such methods is still high.
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Chapter 2

Conjugate Gradient Method

2.1 Introduction

Over recent years a series of algorithms for the updating of adaptive filter coefficients have
been developed. Some of these methods, notably those related to the method of Recursive
Least Squares (RLS) [1] have provided significant increases in performance over the Least
Mean Squares (LMS) [1] algorithm. For many applications the problems posed by the
lack of performance of the LMS algorithm can be overcome by implementing one of these
other algorithms. |

However, almost all of this new generation of algorithms require the storage of a matrix
and a significant increase in the computational load. This is not a problem for most
adaptive filters which are one-dimensional and utilise a limited number of coefficients. In
the case of multidimensional adaptive filters, such as those used in image processing [7],
or connectionist models or for any adaptive filter with many coefficients however, it may
be totally impractical to consider storage of a matrix containing O(n?) coeflicients where
n is the number of coeflicients. Likewise the increase in computational load associated
with current approaches may be too great.

In this chapter new algorithm is presented which gives a substantial increase in perfor-
mance over the LMS algorithm but does not require the storage of a matrix and has a

computational burden of approximately five times that of LMS.
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Figure 2.1: LMS Convergence Path

2.1.1 The LMS Algorithm

In order to construct a new algorithm with increased performance over the LMS algorithm
it is necessary first to consider the failing of the LMS algorithm. The update equation for
the LMS or stochastic gradient method is [1]:

Wkl = Wi + 2pex

or more generally:

Wip1 = Wi — aV(€%)
Where w is the filter weight vector and % is the time index, o and p are adaption co-
efficients, € the filter error and x the filter input data vector. Consider an error surface
which is a long narrow valley. The steepest descent type algorithms, such as LMS, will in
general tend to zig-zag down the valley as shown (Fig.2.1). This behaviour even occurs

for perfectly parabolic surfaces and so leads to large inefficiencies in terms of convergence

time.

2.2 Derivation of the Algorithm

Consider the minimisation of a function f over an N dimensional coordinate system. The
function can be approximated by the first three terms of a Taylor series of the function

about a point P.
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1
:c—bw+§wAw

Where:
c= f(P) |
b=-Vf
__9f
[A]ij N 8w,-6wj

It should be noted that the above is exact for a quadratic function. Matrix A is the second
partial derivative matrix of the function f, the Hessian of f, at P. If a minimisation in the
direction of vector u is performed it is necessary to find a direction in which to minimise
so as not to destroy the previous minimisation. Consequently the next direction dw must

be such that the gradient is perpendicular to u, that is v:
ud(Vf) =uAv=0

By calculating the gradient of the above approximation with respect to the weights we

obtain:

Vi=Aw-b
And hence, the effect on the gradient of a small change in w is:

OVE = A.bw

u and v are referred to as mutually conjugate. It is also necessary that our search
directions must be mutually orthogonal so that the whole space may be spanned in the
search.

Following the derivation of the Fletcher-Reeves [4] algorithm it is possible to invoke a
theorem which will allow the construction of mutually orthogonal and conjugate vector

sequences.
2.2.1 Theorem 1

If A is a symmetric, positive definite N by N matrix and go is an arbitrary vector. For

values of 2 = 0,1,2...... two series of vectors may be defined:

gi+1 = 8i — AiAh;
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hij;1 = givy1 + by |

Where: "
. _Bi8i
' ogi Al
o gir1-Ah;
7T ThEAR
Then for all ¢ such that 7 # 3:
g8 =0
h{.A.h; =0

That is, the g; are mutually orthogonal and the h; are mutually conjugate. The proof
of this theorem is beyond the scope of this chapter but may be found in Polak’s book
[2]. It is a form of Gram-Schmidt orthogonalisation. However, this theorem still requires

storage of a matrix A. Another theorem enables this problem to be overcome.

2.2.2 Theorem 2

If gi = —Vf(P;) and a minimisation of f in the direction h; of f is performed to find a new

point Pj,1 and gjy1 = —Vf(Pj;1) Then the same sequence is generated as in theorem 1.

This may be proved by induction [2].
Consequently a series of mutually orthogonal vectors and a series of mutually conjugate

vectors may be generated without knowledge or storage of A.

2.2.3 Application to Adaptive Filters

In order to use the above theorems it is still necessary to perform line minimisations and
evaluate the gradient. The gradient evaluation may be easily performed for the adaptive
filter case. For the standard adaptive filter [1] as shown below (Omitting the time index

for convenience):

e=d —w'x
Taking the mean square error:

E(e?) = E(d*) — 2wv + wRw
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Figure 2.2: Standard Adaptive Filter

Where x is the vector representing the filter inputs, d is the desired response,w the weight

vector,R is the autocorrelation matrix of the input and v the cross-correlation vector of

the input and the desired signal. The gradient may thus be calculated as:

The other problem is the line minimisation. The mean square error is a parabola as a

function of distance along the line. Consider the line generated by:
w =w + Sh
Where £ is the line generating scalar. The filter error can be written:
e=d-— Z (w; + Bhy)

The second derivative of the mean square error with respect to distance along the line h
may be calculated as:

d*¢¢ 0 0¢é 3

e =2 Zx,

9p* 0B op 3ﬂ ,
Given expressions for the derivative, second derivative and the knowledge that the rela-

tionship is parabolic it is possible to find that:

'B_xth

at the line minimum along h. This gives only an estimate of the line minimum as the

instantaneous error values could be affected by noise and incorporate no time averaging
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aspect. The approximation is found in practice to be sufficient for many applications.
However this approximation can lead to a set of mutually conjugate and mutually or-
thogonal vector series which use up all viable directions before arriving at the minimum.
This problem can be cured by periodic resetting of the algorithm, but a much more el-
egant solution is to use the Polak-Ribiere[2] extension of the Fletcher-Reeves algorithm
which by using a slightly different expression for v leads to an algorithm which in effect

automatically resets the algorithm if necessary.[33]

2.2.4 The Algorithm
he
xth
t

e=d—-x'.w

Wisl =W -+

gi+1 = 2€x
_ (giv1 — gi)" .gin1
gl .gi

hiy1 = giy1 +7hi

With initial values:

g0 = 2ex

ho = 2ex

2.3 Results

The algorithm was tested against the LMS algorithm. Two filters, one LMS and one
conjugate gradient filter (CG) were run in parallel modelling a FIR system.

The experiment was repeated with random coefficients in the 50 th order FIR system being
modelled. The input signal was also varied: it was composed of a series of sinusoids of
random amplitude and frequency. The convergence curves for these runs where averaged
and plotted in figure 2.4.

The position of the sudden slight rise in error which can be seen on the conjugate traces
even after averaging over runs can be shown to be related to the filter length. This may be

explained as the algorithm resetting itself internally after having converged to a point and
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Figure 2.3: CG v LMS Convergence test system

LMS (smoothed)

Absolute Error

| e | |

0 Iteration Number 80

Figure 2.4: Plot of average absolute error over fifty runs.
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Absolute Error

Iteration Number 80

Figure 2.5: Typical Run with no averaging. Note smooth convergence of LMS
algorithm compared with the jumps of the conjugate gradient algorithm.

yet having an error still present. In fact the alorithm continues to reset itself periodically
as can be shown by monitoring the algorithm terms, however the error is not changed

much by these resets as the solutions all lie very close to the optimal solution.

2.4 PARTAN Algorithm

There is a method closely related to that of conjugate gradients known as partial tangents
(or PARTAN) [25]. This is of interest as it is insensitive to inaccuracies in the gradient
determinations.

Starting at an arbitrary point o the point z; is found by a single step of steepest descent.
After that from a point z; the corresponding y; is first found by steepest descent from
zy , and then z44; is taken to be the minimum point on the line connecting z;_; and
yr. The process is continued for n steps and then restarted with steepest descent. It can
be shown that for a quadratic objective function the z; are the same points as would
arise from conjugate gradients[25]. The disadvantage of the algorithm is the need for two
line searches per step as opposed to the one of Fletcher-Reeves. However, PARTAN is

. . . . . . . . . . . a,\ .
insensitive to inaccuracies in the line searches, which is a desirable quality for adaptive
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Figure 2.6: PARTAN Method

filter algorithm as the effect of noise can seriously upset line searches.

2.5 Conclusion

The algorithm performs well, giving significant increases in convergence rates over the
LMS algorithm and requires only O(4n) storage rather than O(n?) for other fast meth-
ods. It is necessary to note that the basic algorithm is operating more in a Least Squares
rather than a Mean Least Squares mode. This can lead to unexpected results, especially
for short filters with low frequency signals, and some form of error averaging may be

needed to give a Mean Least Squares solution. Provided that this complication is con-

sidered, the algorithm is an improvement to LMS and may be used when methods such
as Recursive Least Squares or Singular Value Decomposition cannot be applied due to

storage or computational load constraints.
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Chapter 3

Pitch Extraction

3.1 Introduction

An adaptive method of pitch estimation is presented which will estimate the pitch of a
harmonic signal in noise to a high degree of accuracy, and track any slow drifts in the
pitch of the harmonic signal. The approach is based on an adaptive notch filter and hence
avoids the problems encountered in the use of integer length adaptive delay lines. The
approach is particularly efficient when using an LMS notch filter and will allow increased
performance of the notch filter b}; accurately fixing the reference signal frequency.

Adaptive pitch estimators for harmonic signals in noise can be difficult to design due to

the nature of the error surface encountered if one attempts to adapt a fundamentally time
stationary system. This approach solves this problem by utilising a time varying system.
An attempt was made to remove a harmonic interference from an archive gramophone
recording using a standard FIR LMS adaptive notch filter [1]. This approach worked
well in periods in which the harmonic interference was present with background noise of
similar amplitude, but failed in periods with music or speech present. The amplitude of
the music was many times greater than that of the interference and caused the adaptive
notch filter to ring and destroyed its interference cancelling properties. As in the case
encountered by Lim [35] it was decided to freeze the adaptive notch filter in these regions. ‘
However, as these regions persisted for tens of thousands of samples the reference sinusoids

to the adaptive notch filter had to have their pitches accurately determined so that in {
the frozen periods the interference and anti-interference output from the FIR filter should

stay synchronised.
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Figure 3.1: Standard Adaptive LMS Notch Filter

Thus an accurate and computationally efficient pitch estimator was required which could
also track a slowly drifting pitch. Consider an LMS adaptive notch filter with one notch.
Glover [28] analysed the LMS adaptive notch filter and showed its behaviour to include
time varying aspects under certain conditions. |
Let C;(z) be the Z-transform of the z,, coefficient of the adapted notch filter, with adap-
tion coefficient o and reference sinusoid of frequency w, and amplitude C, U(z) is the Z
transform of the LMS weight update equation (an integrator) as shown in Fig 3.2.
aC

O,'(Z) = —Z—U(z)[E(ze—ier)ejO.' + E(Zejw'T)e—jgf]

Glover shows that the pole zero plot of E(z) would indicate poles at z = e*/%4T and

E(ze=3“rT) represents a counterclockwise rotation of E(z) through angle w,T.

Therefore the pole-zero plot of :

[E(ze"j“’”T)ejo‘ 4 E(zej“"T)e_jg‘]

would show poles at +(w, + wy)T and at +(w, — wy)T. This rotated spectrum is filtered
through U(z) to give C;(z). Each weight therefore consists of the sum and difference
frequency of w, and wy. U(z) is strongly low pass, hence the difference frequency domi-
nates. For the FIR delay line 6; = § — w,T'[¢ — 1] which shows that the coefficients ¢; are
a sinusoid of frequency w, with each weight varying as a sinusoid at frequency w, — wy.

Glover refers to this as the sinusoid in the coeflicients ‘moving’ at a rate equal to the

difference frequency between the desired and reference frequencies. This may be viewed
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Figure 3.2: Notch Filter Analysis Diagram

as a heterodyning process and is a time varying aspect to the solution for an adaptive
notch filter; it may also be considered as a simple case of a quasistationary filter using
a slowly varying phase reference at the desired frequency. It is this time varying aspect

that the adaptive pitch estimator (APE) will use.

A single notch adaptive filter is constructed and the motion of the sinusoid is detected by

the following algorithm:

lack
Pt :Pn+,upﬁ-a—t

Where ¢ is the gradient of the coefficients with respect to i at coefficient k, and n is the
time index. The coefficient of pitch adaption p, sets the sensitivity and convergence rate
of the pitch estimator.

The time derivative may be replaced by:

dc,,

|
ot N Cpk — Ck(n-1) 1

And the gradient by:




Coefficient n

Pitch Control

Coefficient n+1 z-1

Figure 3.3: Coeflicient Motion Detector

Bk R Cn(k=1) = Cn(k+1)

A simpler form of the algorithm which does not require the division and hence avoids any

possible divide by zero problems is:

Jc
Poy1 =P, + /‘Psgn[‘isk_aTk

In practice Glover’s analysis does not always apply. If we consider the frequency response
of the FIR stage of the adaptive notch filter we can see that there are an infinite number
of possible solutions for the case of a single sinusoid. The above algorithm, however,
requires the particular solution with a sinusoid in the coefficients to be adopted. If this
solution is not adopted or is disrupted the system will fail. Occasionally in practice it
may be necessary to force the filter to assume the sinusoidal solution. In this case we
must force its stopband to include all frequencies except the reference frequency. This is
easily done by injecting some white noise with the reference sinusoid. This gives a good
stable sinusoid in the coefficients as the filter should block as much of this white noise as
possible to minimise the mean square error.

The other two disruptions of the sinusoidal solution are a transient effect as the system
is first set running and a destabilising effect caused by varying the pitch of the reference
sinusoid too rapidly. In this case the assumption of quasistationarity breaks down and

the reference input is no longer a good approximation to a pure single frequency.
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Figure 3.4: Pitch Tracking System

3.1.1 Harmonic Signal Case:

In the case of harmonic signals the accuracy of the system may be increased by using
a reference sinusoid of frequency near one of the higher harmonics present rather than
the fundamental, as this will increase the difference frequency and increase the coefficient
sinusoid movement by a factor equal to the harmonic number. Thus leading to a larger

effect for the same pitch error in the fundamental.

3.1.2 Limitations:

The limitations on the accuracy of the algorithm are set by the adaption noise found on
the coefficient values. This adaption noise can be estimated from the expression for the
minimum mean square error. It is clear that it may be reduced by reducing the adaption
coefficient of the notch filter. The bandwidth of the notch filter is set by this coefficient
which in turn determines the range of frequency error over which the above analysis
applies. Thus there is a trade off between final pitch accuracy and initial lock range.
The initial lock range being defined as the maximum difference in frequency between the

desired and reference signals for which the system will converge.

The notch bandwidth is given by:

NaC?
BW =~
2T

rads/s.

Where N is the filter length.
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Limitations on the rate of convergence are set by the need to prevent instability due to
undermining the quasistationary assumptions. The changes in the pitch of the reference
oscillator must therefore be suitably slow, this may be achieved by using a suitably small

pitch adaption coefficient f,.

3.1.3 Results:

The algorithm was found to be capable of high accuracy pitch estimates in quite high
levels of noise and was capable of pitch convergence in SNR of -15dB. In the case of SNR
of 10dB the system could attain pitch accuracy estimates in the order of 1 part in four
thousand. A series of convergence curves are shown in Fig:3.5. The occasional initial

divergences are caused by transient effects as the data enters the filter.

Fig. 3.5 Pitch tracking curve .
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Fig. 3.6 Input Musical Waveform (top), Oscillator waveform (bottom) and Output. (quiet

section with no music).

3.1.4 Conclusions:

The system is best suited to applications requiring high accuracy pitch estimates on sta-
tionary signals for which a low accuracy pitch estimate is already known. The necessary
computations for the system are based around a FIR filter, thus making it easily imple-
mentable in hardware. The filter may be quite short in practice and in the case of an
adaptive notch filter to remove a single sinusoid the pitch estimator may be added at very
little extra computational cost by using the cancelling filter as the pitch estimating filter.
This leads to deeper notches and increased performance and as such may be a simple
improvement that may be added to FIR adaptive notch filters. It is clear that there are
many possibilities for variations on the above theme that may be well suited to other

applications.
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Chapter 4

Image Registration

4.1 Image Registration Utilising Multidimensional LMS Adap-
tive Filters.

The need for image registration algorithms arises in many fields such as airborne ground
sensing, aircraft navigation, medical imaging. In the latter separate frames of an image
must be registered in the presence of involuntary patient movement. This problem arises
wherever there is relative movement between the image sensor and the image scene. In
practical cases the images may be degraded by noise, may contain weakly spatially varying
shifts or one of the two images to be registered may contain objects not found in the other
or moving independently of the rest of the scene. All of these effects can significantly

reduce the performance of current image registration methods such as phase correlation.

4.1.1 Current Registration Methods

Broadly speaking there are two practically used approaches to image registration. The
first of these is a syntactic approach which normally involves the extraction of simple basic
image elements such as line segments or boundaries. These are compared in the two images
and some search method is employed to register the two images. This method works well
for simple shapes in clean images under constant conditions . It is also necessary that the
image contain the features employed, such as sharp line segments. In general, however,
images can be noisy, have variable content, be complex and arise from environments with
varying lighting and so on. Thus this method cannot usually be applied well to general

images.
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The second method is that of phase correlation. This method is based on properties of
the Fourier Transform.

Consider two images I; and I; which are to be registered. The images are assumed to be
related by a spatially invariant shift.

Define Fi(wz,wy) to be the Fourier transform of Iy, FT(Iy) .

Define F(w;,wy) to be the Fourier transform of .

Then by the shift theorem:
Fl _ ,i(wIAz—)w,,Ay)Fz

Where Az is the x direction shift and similarly Ay.
Thus the function:
£y

P(:I:,y) = FT_l(Fl)

returns a delta function at the shift value.
However noise effects and the fact that many shifts are not constant over the image area
mean that this delta function may become distorted or lost under noise in the phase

correlation output image.

4.1.2 The New Method

In the case of images the new method employs a two dimensional Least Mean Squares
adaptive filter which makes almost no a priori assumptions about the images or their
degradations. This allows the method to be used with general images and consequently
it is not limited to images with sharp edges or similar artifacts as may be required by

syntactic methods.

4.2 Derivation

The derivation of the multidimensional LMS adaptive filter is closely related to that of
the one dimensional case. The derivation is given for a N dimensional adaptive filter with

each dimension of order m.
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Consider an input tensor x of rank N order m and an N rank weight tensor w. Both

tensors elements have N indices z... 2.

The N-dimensional adaptive linear combiner is given by (k is the iteration index):
Yk = WXk

Where the operation wx is defined as the inner product, that is:
Do D ewe D, TiaWia
i=lm j=1;;m  z=l,m
The error may be defined as the difference between a desired output di and the actual
output y:
€ = dr — Yk

€k = dk — WkXk

Hence:

& = di + (wxy)(wxy) — 2dpwxyc
We now assume that €, dj and x) are'statistically stationary and consider the expectation
of the error squared over k. This assumption can have some important implications for
work with practical images as in many cases the degree of stationarity can be less than is

normally found with many practical one dimensional signals.

E(e}) = E(d}) + wiE(xixi )W, — 2E(dkxi ) Wi

We can define F(xxg) as the N dimensional correlation "Tensor’ of rank 2N, R. Likewise

the cross-correlation tensor E(dyxx) denoted, p.
E(CZ) = E(di) + wirRwy + 2pwi

This shows that the mean square error is precisely a quadratic function of the weight
values. Thus the error surface is unimodal with no local minima. It is this quality that
will allow some form of gradient search to converge to the optimum solution.

Having shown the nature of the error or Performance surface the problem is now to find

a search algorithm to find the minimum. Again the cue is taken from the 1D case of
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the derivation of the Widroff-Hoff LMS algorithm [1] and a simple gradient search is

employed.
An adaptive algorithm may be formed by the following approach:

We can specify a steepest descent algorithm:
Wk4l = Wk — ,uVei = Wy + 2u€xXK

Where p is the adaption coefficient. Explicitly in the case of 2D ADFs the update equation
is:
Way(k+1) = Woyk + 2UERToyk

The derivation of the LMS adaptive filter is independent of the dimensionality of the data,
thus the same derivation can be used to lead to 2D,3D or ND ADFs. This derivation also
shows us that the error surface is unimodal even for higher dimensionality data. The
fact that 2D and 1D ADFs are based on the same theory also allows us to predict with
reasonable confidence the behaviour of 2D ADFs by analogy with the 1D case, however
care must be exercised in this practice as some of the problems encountered in 2D have
no analogy in 1D; also the nature of practical image data may differ from practical 1D

signals.

4.3 Image Registration System

The basic shift registration system is shown in figure 4:1. The reference image may in
practice often be one of the previous frames of a series of image frames. The adaptive
filter is run and its coefficients are updated. The filter will perform a gradient search to
minimise the mean square error image. In the case of a shift this will occur when the
output image has been correctly shifted by the filter to be registered with the reference
image. The maximum shift that the system can cope with is given by the filter size and
consequently its maximum spatial delay. The system is arranged so that there is in effect
a spatial shift of half of the filter size between the two images so that the filter can cope

with a positive or negative delay of magnitude less than m/2.
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Figure 4.1: Adaptive Image Registration Using 2D Filters.

The particular path over the image that the filter runs can be important in the case of
spatially varying shifts.If the variation is occurring more quickly in one of the two axis
directions it would be advisable to track the filter along the other axis direction to allow
the filter more iterations in which to update to the new shift. Consequently if images have
a spatial variation which is mainly a function of the x coordinate it would be advisable
to run the filter down the lines of constant y coordinate only advancing in x coordinate
at the end of each y line.

It is possible to improve the performance of a given order of filter by ensuring that there
is no large relative dc offset between the images. This may occur if the two images
were captured under very different illumination levels. Although it may be expected
that the filter could compensate for such an offset the process of doing this degrades the
performance of the system as it is utilising zeroes of the filter that may be more usefully
applied elsewhere. Correspondingly it is therefore often useful to high pass filter the

images before registration if there is a possibility of large dc offsets.

4.4 The Adaption Coefficient

The value of the adaption coefficient is important in determining the mode of operation
of the system. As a generalisation the nearer the adaption coefficient approaches the
divergence value so the output image becomes sharper and the system can track spatially
varying parameters more rapidly. However, smaller values of the adaption coefficient

give higher noise immunity. One of the main problems in the practical implementation
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of adaptive image registration is the choice of a suitable adaption coefficient. In fact
pecause of the nonstationary statistics of practical images it is necessary, in order to

improve performance, to implement a self regulating adaption coefficient which varies
| with the image. A simple yet reasonably effective approach is to update the coefficient of
| adaption as a function of the input power to the filter. This approach, which is based on
the work of Yassa [3], has been simplified to reduce computational load. A power estimate
is obtained from the row of unseen data about to enter the filter, this is then filtered by
a single pole filter whose feedback factor can be adjusted to control the smoothing of the
power estimate.

Incident power:

Pi= Z :z:?’1

i=1,m

Smoothed power:Fy = Fj_19 + Pi
Where g is the feedback factor. The adaption coefficient is updated by:
_ Bint

' Fk
Where pine is the initial adaption coefficient.
- If it is desired to use the filter output image directly or to track spatially varying shifts
~ a larger adaption coefficient may be needed. Even with the above adaption coefficient
updator divergence may still occur on certain parts of some images so it is necessary to
have a divergence detector. This may be done by checking that the output pixels do not
exceed a certain value. If this should occur the p;,; value is immediately reduced by a
factor (usually about 0.7) and the filter coefficients reset to either all zero, or all zero with

a value one at the coefficient corresponding to a recent shift estimate.

4.5 Filter Solutions

As may be expected from the one dimensional analogy the performance of the two di-
mensional LMS algorithm depends on the eigenvalue spread of the input data, and the
time taken to converge to the correct shift estimate is reduced as the whiteness of the

data increases. In order to extract the shift estimate explicitly from the coefficients of
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Figure 4.2: The Complete Registration System.

the adapted filter we must consider the filter solution. In the case of white input signals
and integer shifts the filter converges to a Kronecker delta function at the shift delay as
may be expected, and for non-integer shifts it converges to an interpolator. Almost all
practical images do converge to solutions with peaks at the delay value. The dominance
of this peak is however determined by the whiteness of the input image, whiter images
giving a more dominant peak.

A simple peak detector may be used to extract the shift and interpolation of the peak
may be used to obtain non-integer shift estimates. By using such a shift extractor at
regular intervals a displacement vector map may be built up showing the displacement

vector over the image.

4.6 Output Image

As a byproduct of the processing, a registered and shifted corrected image is produced
at the filter output. However, apparently due to the sensitivity of the LMS algorithm to
eigenvalue spread and the differing convergence rates for different eigenvalues, the solu-
tions reached are near optimal but lead to subjectively slightly blurred images. These

problems may be alleviated by using adaption coefficient values near to divergence, but
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this can lead to a risk of of divergence occurring. Another approach is to use the displace-
ment vector field to 'manually’ shift back the original image. This is currently done with

many registration methods.

4.7 Performance

The filters were run on clean images with a spatially stationary shift. In practice a lock
onto the correct shift is achieved in thirty or forty pixels. The adaption coefficient value
may be small such that the output image is very blurred but yet give good results for the
displacement vector. All the results shown were generated using images 80 by 80 pixels
which were quantised to 6 bits.

The same experiment was repeated with the addition of equal levels of white uncorrelated
noise to each of the images and the displacement vector field recorded. As may be expected
the filters took longer to lock onto the shift, and in the case of high noise levels, the lock
could be lost and regained throughout the picture. However, even at these high noise
levels further increases in performance could be obtained by the utilisation of averaging
of the displacement vector by use 6f the property of continuity of the displacement vector
[12].

Finally the filters were run on an image pair in which the filter input image had been

obtained by a spatially varying shift which was a function of the x coordinate.
Photographs

The photograph format is:

Top left reference image.

Top right input image.

Bottom left error squared.

Bottom right output image.
e Small Plot of final coefficient values.

The photograph and results are in the following order:
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. Results of constant shift case. Filter 20 by 20 with a (5,4) shift

and the initial adaption coefficient set to .008.

. Results of spatially varying shift case. Filter 12 by 12 with a
shift éy = 5 * sin(.004 * z). Initial adaption coefficient set to
.004.

. Results of constant shift case with additive Gaussian white
noise . Filter 20 by 20 with a (3,2) shift and the initial adaption
coefficient set to .004.

. Plot of final coefficient values for spatially stationary experi-

ment.
. Plot of final coefficient values for spatially varying experiment.

. Plot of vector displacement output for spatially stationary ex-

periment.

. Plot of vector displacement output for spatially varying exper-

iment.
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Figure 4.3: Template Matching System.

4.8 Computational Load

For spatially stationary shifts the filter need only be run over small portions of the image.
The filter size is set by the largest shift to be dealt with, but this may be reduced by
calculating displacement vector fields from a decimated image. The algorithm is inherently

parallel and suited to the use of current adaptive digital filter integrated circuits.

4.9 Template Matching Possibilities

The following system may be used to implement the multidimensional adaptive filter as
a template matcher by using the reference image of an object as the desired input and a
scene as the filter input. The filter correlates the object in the scene and reference and
shifts the scene. Thus the error image can be used as a measure of the match over the
relevant region, thus providing a weak shift invariant template matching system. The use
of higher order,for example 3D, adaptive filters may be utilised to register over a sequence

of frames by the same principle as is outlined above.

4.10 Conclusion

The LMS multidimensional adaptive filter can provide a new approach to image registra-

tion which is well suited to parallel implementations. The system also has some useful
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properties, giving the noise immunity of correlation based methods but not requiring a
search over possible shifts.It also has the ability to deal with weakly spatially varying
shifts, unlike transform based methods. The adaptive filter can also handle weak im-
age degradations as its frequency response is not constrained and may adapt to correct
differences in the two images caused by sensors or uneven illumination and so on. The
highly non-stationary nature of real images means that care must be taken to optimise the
adaption coefficient continually if sharp output images are to be obtained. This appears
to be related to the unequal convergence rates for the different eigenvalues of the image
correlation matrix as may be expected from one dimensional work [1]. Setting the adap-
tion coefficient close to the optimal can lead to streaking effects as the filter momentarily
diverges since the optimal adaption coefficient value changes with the local statistics of
the image. In general the method provides a useful and easily implemented approach
which will perform better than the transform based methods for many practical cases due

to its ability to overcome weak spatially varying effects.
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Part 11
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Chapter 5

Pattern Recognition

5.1 Introduction

A standard application of connectionist networks is in pattern recognition. This half of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>