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v

Summary

This thesis contains two main themes. The first is Einstein’s theory of general relativity

in higher dimensions, while the second is M-theory.

The first part of the thesis concerns the use of classification techniques based on the

Weyl curvature in an attempt to systematically study higher dimensional general relativity

and its solutions. After a review of the various classification schemes, the application of

these schemes to the study of higher dimensional solutions is explained.

The first application of the tensor approach that is discussed is the systematic clas-

sification of higher dimensional axisymmetric solutions. A complete classification of all

algebraically special axisymmetric solutions to the vacuum Einstein equation in higher

dimensions is presented.

Next, the study of perturbations of higher dimensional solutions within this frame-

work and the possibility of decoupling equations for black hole solutions of interest, as has

been successfully done in four dimensions, is considered. In the case where such a decou-

pling of the perturbations is possible, a map for constructing solutions of the perturbation

equation is presented and is applied to the Kerr/CFT correspondence.

Also, the property of gravitational radiation emitted from an isolated source in

higher dimensions is considered and the tensor classification scheme is used to derive the

peeling property of the Weyl tensor in higher dimensions. This is shown to be different to

that which occurs in four dimensions.

Finally, after an in-depth exposition of the spinor classification scheme and its re-

lation to the tensor approach, solutions belonging to the most special type in the spinor

classification are classified. In addition, the classification of the black ring in this scheme

is discussed.

The second part of the thesis explores the use of generalised geometry as a tool for

better understanding M-theory. After briefly reviewing the curious phenomenon of M-

theory dualities, it is explained how generalised geometry can be used to show that these

symmetries are not exclusive to compactifications of the theory, but can be made manifest

without recourse to compactification. Finally, results regarding the local symmetries of

M-theory in the generalised geometry framework for a particular symmetry group are

presented.
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Chapter 1

Introductory remarks

The job of a theoretical physicist is to study theories that usually rely on a certain amount

of mathematics and which have, or will hopefully have, something to say about physical

phenomena. The idea is to use an understanding of the mathematical structure of a theory

to study its physical consequences, its strengths, but most importantly its weaknesses. It’s

usually problems with a certain theory that indicate a need to think differently and this

is what leads to advances and new concepts.

One of the classic examples of such a theory is Einstein’s theory of general relativity.

This is a theory of gravity that at the time of its conception, just under one hundred years

ago, used the most state of the art of mathematics: differential geometry to explain

discrepancies between the Newtonian theory of gravity and observations, and furthermore

successfully predict new phenomena such as the bending of light due to strong gravitational

fields, which was famously verified by Arthur Eddington in his 1919 Principe expedition.

Coincidentally, the study of general relativity led to many advances in differential geometry

that were needed to properly understand the theory and inspired many mathematicians

such as Cartan, Poincaré, Weyl and many others to consider problems that they may not

have thought about otherwise. Furthermore, it has presented us with many challenges.

The singularities in the theory are symptomatic of a problem with the theory and are yet

to be properly understood. This too is a power that general relativity has in revealing its

own limitations and boundaries. General relativity is the archetype of a successful theory

in theoretical physics.

Despite what popular culture may often have us believe, Einstein’s theory of general

relativity did not emerge solely from the mind of a lone genius without any prior context

or setting. It developed as part of a long line of ideas and problems going back to the work

3



4 CHAPTER 1. INTRODUCTORY REMARKS

of Maxwell on electromagnetism, which can itself be traced back indefinitely. Thus, new

ideas in theoretical physics, which are coherent enough to be recognised and celebrated

as theories are not revolutions in our understanding of nature but merely milestones in

an ever continuing and endless process that started with the very first question regarding

our surroundings. New theories arise from an in-depth study and understanding of older

theories and ideas as eluded to earlier.

For any given theory, one needs a variety of different techniques to be able to investi-

gate its consequences and properties. Some techniques are standard. However, sometimes

in order to be able to view a theory from a different perspective, new techniques need

to be formulated. This dissertation concerns the development of new approaches for two

different theories whose study is mainly motivated by the emergence of string theory as a

viable candidate of quantum gravity.

The first theory is higher dimensional general relativity, which, as the name suggests,

is the study of Einstein’s theory of general relativity in higher than the usual four spacetime

dimensions. To date, most studies of higher dimensional general relativity and its solutions

have used four dimensional theorems and solutions as guide. If we are to learn about higher

dimensional general relativity without the prejudice carried over from our knowledge of

four dimensional general relativity, then we need to undertake a more systematic study of

higher dimensional general relativity. One possibility is to develop classification schemes

based on properties of the curvature of solutions.

The second theory is M-theory. This is a not-so-well understood theory that aims to

unify all known string theories into one framework. There is a lot of evidence to suggest

that the low energy limit of M-theory has a host of symmetries and there has been recent

progress in addressing this issue using an approach that goes by the name of generalised

geometry. Any geometry, for example a solution of the Einstein equation, has an associated

local symmetry. One can see this by zooming enough into the geometry and finding that

it looks a lot like flat space. In generalised geometry one would like to describe a geometry

that does not have the same symmetry as the geometries that we are used to. That is

to say, if we were to zoom into a generalised geometry, we would not find flat space, but

something entirely different.
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Chapter 2

Introduction

2.1 Motivation

There has been much growing interest in the study of higher dimensional gravity in re-

cent years. The motivation has been provided, in large part, by the emergence of string

theory as a viable candidate of quantum gravity, and particularly the rise of brane-world

scenarios [6], in which the extra dimensions, needed for string theory to be consistent,

can be large and need not be compactified. The gauge/gravity correspondence (the most

well-understood example being the AdS5/CFT4 correspondence [7]) is also an important

development that aims to relate gauge theories with gravitational theories in higher di-

mensions.

The study of higher dimensional gravity is also interesting in itself [8]. Understanding

how gravity changes as the dimension, which is essentially an extra parameter in Einstein’s

theory, changes can shed further light on general relativity and help us understand why

four dimensional gravity is special. In some naive sense, this is obvious since four is the

first dimension in which general relativity is non-trivial and contains propagating degrees

of freedom. But a relevant question is how the introduction of further degrees of freedom

changes the theory. Indeed there are many differences between 4d and d > 4 general

relativity, some of which will be explained in more detail later.

9
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2.2 General relativity in four dimensions

Einstein’s theory of gravitation [9], general relativity, is a geometric theory that ascribes

gravitational effects in spacetime to the existence of curvature on a manifold that is iden-

tified with spacetime. Ultimately, the reason why this should be the case is due to two

key assumptions or principles that general relativity relies on.

The first is the principle of general covariance, which is simply the statement that the

result of a physical observation or experiment should not depend on a particular observer.

That is, the existence of different frames and coordinates is an artefact of how we choose

to observe a particular event rather than an essential feature of nature. All observers are

equal and any measurement made by one observer is covariantly equivalent to that made

by another. We mean covariant equivalence in the sense that they are equivalent up to

a map that translates between the two frames. The mathematical consequence of this is

that the theory be covariant under diffeomorphisms. For any physical statement to make

sense, it must be expressible in terms of quantities that are covariant, i.e. tensors.

The second principle is that of local equivalence with special relativity. Thus, any

observer working in a freely falling laboratory that is small compared to the length scale

over which the gravitational field outside is important will not be able to distinguish this

situation from one in which there are no gravitational forces. Mathematically, this means

that locally one must satisfy Lorentz invariance.

Consider a Lorentzian manifold endowed with a metric gab, which measures the

interval between two points. The metric is the fundamental quantity that can be used to

find various geometric properties of the manifold. Suppose we would like to formulate a

theory of gravity using an action defined solely from the metric and its derivatives up to

second order, i.e.

S =

∫

L(gab, ∂cgab, ∂
2
cdgab) + Smatter, (2.1)

where L is the gravitational Lagrangian density and Smatter is the action of some other

non-gravitational matter fields. The Lagrangian density is equal to some scalar density

times a Lagrangian, which is a scalar. A scalar density with the appropriate weight that

can be formed from the metric is its determinant. Hence,

L =
√−gL. (2.2)

The only possible up to second order in derivatives scalar constructed from the metric and

its derivatives is the full contraction of its Riemann curvature tensor (i.e. its Ricci scalar
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curvature) and a constant term. Thus,

L = R+ λ (2.3)

for some constant λ. This is the gravitational Lagrangian up to an overall normalisation

that is fixed by requiring consistency with the Newtonian limit. Defining the energy-

momentum tensor to be

T ab ∝ 1√−g
δSmatter

δgab
(2.4)

and varying the action given in (2.1) with respect to the metric gives the Einstein equation

Rab − 1
2Rgab + λgab = 8πGTab (2.5)

that any metric in Einstein’s theory must satisfy.

Here we are only interested in vacuum solutions to the Einstein equation, i.e. solu-

tions for which Tab = 0. The equation can be rewritten as

Rab = Λgab, (2.6)

where Λ is proportional to λ. Let us consider solutions to the equation above. Of course,

flat Minkowski spacetime is a solution to this equation with Λ = 0. This is a maximally

symmetric solution to the Einstein equation in the sense that it has the largest number of

isometries (or Killing directions) possible. Other maximally symmetric solutions are the

de Sitter (Λ > 0) and Anti de Sitter (Λ < 0) solutions with metrics

ds2 = −
(

1 − r2

α2

)

dt2 +

(

1 − r2

α2

)−1

dr2 + r2dΩ2
(2), (2.7)

ds2 = −
(

1 +
r2

α2

)

dt2 +

(

1 +
r2

α2

)−1

dr2 + r2dΩ2
(2), (2.8)

respectively, where dΩ2
(2) is the round metric on a unit 2-sphere and α2 ∝ 1/|Λ|, explaining

the similarity between the two metrics. Note, also, that the α large (Λ small) limit recovers

flat Minkowski spacetime. Particularly interesting solutions of the Einstein equation are

black hole solutions such as the Schwarzschild and Kerr solutions.
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Black holes

The Schwarzschild solution [10, 11] described in Schwarzschild coordinates (t, r, θ, φ) by

the metric

ds2 = −
(

1 − 2GM

r

)

dt2 +

(

1 − 2GM

r

)−1

dr2 + r2dΩ2
(2) (2.9)

was initially thought of as describing the gravitational field outside a spherical, uncharged,

non-rotating object with mass M . Indeed, it can be used as the starting point for the

calculations that experimentally verify general relativity in solar system tests such as the

perihelion precession of Mercury or the deflection of light by the Sun. However, our

modern understanding of this solution is that it is also a black hole solution with an event

horizon at r = 2GM .

The term ‘black hole’ was coined in 1967 by John Wheeler in his public lecture “Our

universe: the known and unknown” [12]. Black holes are a consequence of Einstein’s theory

of general relativity, and the Schwarzschild solution is one example of such a solution.1

However, many have doubted their relevance to physical reality and it took a while for black

holes to be accepted as bona fide consequences of general relativity. Karl Schwarzschild

had realised that his metric is singular at r = 2GM , but argued that an infinite pressure

gradient is needed to compress a star to this radius, and so the singularity has no physical

significance [11].

Einstein also believed that the “Schwarzschild singularities do not exist in physical

reality” [14]. In his 1939 paper, he sets out to show that black holes cannot exist. Today,

however, there is a general consensus that not only is it possible for black holes to exist

in nature, but that they are unavoidable. We will briefly outline key events that lead to

an understanding of black holes and singularities in general relativity.

The first breakthrough came in 1930, when Subrahmanyan Chandrasekhar calcu-

lated the mass limit of white dwarfs [15]. He showed that no white dwarf can exist of

mass greater than this limit, the Chandrasekhar limit, equalling 1.4 solar masses. Chan-

drasekhar did not give an explanation as to what happens to stars with mass greater than

1.4 solar masses, but his work was already controversial enough to attract severe criticism

and opposition from Arthur Eddington [16]. Eddington did not like what was being im-

plied by Chandrasekhar’s limit and believed that some mechanism had to exist in order

to prevent the indefinite collapse of a larger star.

1In fact, the idea of considering an object so dense that its escape velocity is greater than the speed of
light was considered much earlier by John Michell in 1784 (see [13]).
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It was Robert Oppenheimer and Hartland Snyder, who in 1939, provided an expla-

nation of what happens to a star with mass greater than the Chandrasekhar limit, and in

doing so provided a mechanism by which black holes can be formed [17]. They showed that

a spherical homogeneous non-rotating star made of pressure-free fluid of mass greater than

three solar masses will collapse to form a black hole. They realised that what happens

during the collapse of the star depends on the observer: observers at rest with respect

to the star move through the Schwarzschild radius with no significant events occurring,

while for observers far away, the star tends to “close itself off from any communication”

and appears to freeze at the Schwarzschild radius. Crucially their calculations displayed

a physical singularity at r = 0.

Further research into black holes had to wait for around two decades until objects

were beginning to be found with radii comparable to their Schwarzschild radii. This

removed a major objection from critics that the Schwarzschild radius is too small for the

body to be able to collapse beyond it. The Schwarzschild radius of the sun, for example,

is only 3 km. But observations confirmed that this is no barrier in the formation of black

holes and that gravitational forces can compress stars to such densities.

The next major development came in 1958, when Finkelstein introduced the concept

of the horizon at the Schwarzschild radius by using the Eddington-Finkelstein coordinates

that he had rediscovered to show that the surface at r = 2GM “is not a singularity but

acts as a perfect unidirectional membrane” [18]. Eddington had discovered the Eddington-

Finkelstein coordinates 34 years earlier, but seems to have missed the significance of his

discovery [19].

Roger Penrose became interested in the subject of black holes and singularities

after attending a talk by Finkelstein in 1958 explaining his discovery concerning the

Schwarzschild horizon. What troubled Penrose was the r = 0 singularity and whether

this can be avoided. Oppenheimer and Snyder had only showed that a star collapses to

a singularity under strict assumptions, the main one being spherical symmetry. Could it

be that irregularities and asymmetries in physical stars prevent collapse to a singularity,

and that the collapsing star simply passes “through a complicated central configuration

to be flung outwards again” with no singularity being formed [20]. Penrose showed that

this cannot be the case. In his singularity theorem [21], he proved under very general

assumptions, including an appropriate energy condition, that any gravitational collapse to

within a region similar to a Schwarzschild horizon produces a singularity. The genericity

of singularities in general relativity remains an unsolved problem. It is hoped that a fully

understood quantum theory of gravity will be able to explain these problems in general
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relativity.

A generalisation of the Schwarzschild metric to include rotation is given by the Kerr

metric [22]. In Boyer-Lindquist coordinates (t, r, θ, φ), the Kerr metric is

ds2 = −∆ − a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 − ∆

Σ
dt dφ

+
(r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θ dφ2 +

Σ

∆
dr2 + Σ dθ2, (2.10)

where ∆ = r2 − 2GMr + a2 and Σ = r2 + a2 cos2 θ. Parameter a has the physical

interpretation of angular momentum per unit mass and the solution is a black hole only

for M ≥ |a|. The solution is called extremal if M = |a|. Many astrophysical black holes

are thought to be near-extremal [23]. Notice that this metric reduces to the Schwarzschild

metric in Schwarzschild coordinates (2.7) for a = 0.

A set of uniqueness theorems establish these two black holes as the unique final states

of the generic gravitational collapse of isolated matter. The Schwarzschild solution [11] is

the unique regular, asymptotically flat, static black hole solution of Einstein’s equations

[24], while the Kerr solution [22] is the unique stationary black hole solution [25].

Furthermore, both black hole solutions are expected to be classically stable. The

question of the classical stability of solutions to the Einstein equation is an important one.

If a solution is thought to describe some physical process such as the end-state of collapsing

matter as established above, then one would expect this to be stable under perturbations.

The non-linear analysis of the stability of most solutions remains a challenge. Although,

the non-linear stability of the Minkowski solution as the simplest solution of the Einstein

equation has been established [26]. However, one can consider the question of the linear

stability of solutions as a first step. The linear (mode) stability of the Schwarzschild solu-

tion has been established and relies on the Regge-Wheeler [27] and Zerilli [28] equations.

In the case of the Kerr solution, its linear (mode) stability has been established [29, 30],

thanks in large part, to the decoupling result of Teukolsky [31, 32].

Petrov Classification

The decoupling result of Teukolsky utilised a formalism due to Newman and Penrose [33]

that is itself influenced by the Petrov classification [34, 35] of the Weyl tensor. The reason

why we consider the Weyl tensor of the solution is because the Weyl tensor is the part of

the curvature that is not constrained by the Einstein equation. The Riemann tensor can
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be decomposed into two parts

Riem = C + S ◦KN g, (2.11)

where C is the Weyl tensor and represents the tracefree part of the Riemann curvature,

S is the Schouten tensor

S =
1

2
(Ric−R/6g) ,

and ◦KN represents the Kulkarni-Nomizu product that ensures that the symmetries of the

Riemann tensor are respected. The Schouten tensor is fixed by the Einstein equation.

Thus, it is the Weyl tensor that encodes the propagating degrees of freedom in a solution.

The Petrov classification is a method for classifying the Weyl tensor of a solution

by investigating its algebraic structure. It has been an instrumental tool in studying so-

lutions of Einstein’s equations. It not only enables a systematic study of solutions and

their properties, but has also been used to find some of the most well-known and funda-

mental solutions, including the Kerr solution. Appendix A contains a brief explanation

of the tensor derivation of the Petrov classification. The spinor approach to the Petrov

classification is reviewed in section 6.2.3.

One important result in the context of the Petrov classification is the Goldberg-

Sachs theorem [36]. It states that a non-conformally flat vacuum spacetime is algebraically

special if and only if it contains a shear-free geodesic null congruence. More specifically,

a null vector field ℓ can be chosen such that Ψ0 = Ψ1 = 0 (but not all Weyl scalars

vanishing) if and only if ℓ defines a geodesic, shear-free null congruence, which is equivalent

to κ = σ = 0 (see table A.1).

It is very simple to see why this should be the case using the Geroch-Held-Penrose

formalism.2 Assume first that there exists a ℓ such that Ψ0 = Ψ1 = 0 and Ψ2 6= 0. Then

Bianchi equations (A.17) and (A.20)′ reduce to

−3κΨ2 = 3σΨ2 = 0. (2.12)

Since Ψ2 6= 0, by assumption, κ = σ = 0. The cases where Ψ2 = 0, Ψ′
1 6= 0 and

Ψ2 = Ψ′
1 = 0 must be considered separately. However, the argument is essentially the

same, except using different Bianchi equations. Now assume that there exists a ℓ such

that κ = σ = 0. Newman-Penrose equation (A.13) reduces to Ψ0 = 0, while equations

2The GHP formalism [37], which is similar to the Newman-Penrose formalism, is reviewed in appendix
A.
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(A.11) and (A.14) reduce to

kρ = (ρ− ρ̄)τ − Ψ1, (2.13)

þτ = (τ − τ̄ ′)ρ+ Ψ1, (2.14)

respectively. Furthermore, equations (A.17) and (A.20)′ reduce to

þΨ1 = 4ρΨ1, (2.15)

kΨ1 = 4τΨ1, (2.16)

respectively. Consider the combination k (2.15) − þ (2.16)

(kþ − þk)Ψ1 = 4(ρτ̄ ′ − τ ρ̄)Ψ1 − 8Ψ2
1, (2.17)

where we have used equations (2.13)–(2.16) to simplify the expression on the right hand

side. Now using commutator equation (A.22) to simplify the left hand side gives Ψ2
1 = 0,

which establishes the Goldberg-Sachs theorem. Perhaps the most important application

of the Goldberg-Sachs theorem has been Kinnersley’s work on finding all type D vacuum

(Λ = 0) solutions [38], which lead to the discovery of the rotating C-metric. This is a

solution that describes two rotating black holes held apart by semi-infinite line masses or

strings.

The type D condition is known to be equivalent to the existence of hidden symmetries

for vacuum (Λ = 0) solutions [39, 40]. More precisely, the statement is that a vacuum

(Λ = 0) solution is type D if and only if there exists a non-degenerate conformal Killing-

Yano 2-form k on the background, satisfying

∇(akb)c = −1/3(gab∇dkcd − gc(a∇dkb)d). (2.18)

It is not too hard to see why type D solutions should admit such a structure, which is half

of the statement above. In [40], this is shown with the use of spinor calculus methods.

However, the proof is in fact easier using the GHP formalism. On a type D background

the only non-vanishing Weyl scalar is Ψ2. Therefore, take as our starting ansatz

k = f(Ψ̄2Ψ2)ℓ
♭ ∧ n♭ + ig(Ψ̄2Ψ2)m

♭ ∧ m̄♭, (2.19)

where ℓ♭, n♭, m♭, m̄♭ are the 1-form duals of the basis vectors (ℓ, n,m, m̄). Equation (2.18)
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reduces to the following set of equations in this basis

þ(f + g) + ρ(f + g) = 0, þ′(f + g) + ρ′(f + g) = 0, k(f + g) + τ(f + g) = 0, (2.20)

þ(f − g) + ρ̄(f − g) = 0, þ′(f − g) + ρ̄′(f − g) = 0, k(f − g) + τ̄ ′(f − g) = 0. (2.21)

Using the Goldberg-Sachs theorem, Bianchi equations (A.18) and (A.19) reduce to

þΨ2 = 3ρΨ2, kΨ2 = 3τΨ2, (2.22)

respectively. Thus, one particular solution to the above equations is

f + g = Ψ
−1/3
2 , f − g = Ψ̄

−1/3
2 . (2.23)

Notice that equations (2.20) and (2.21) are invariant under the interchange of f and g.

This means that there is another solution to equation (2.18) with f and g swapped in the

ansatz. This new solution is the dual of the original. The existence of hidden symmetries

is very important. For example, the separability of the Hamilton-Jacobi equation for

the geodesic problem or the Teukolsky decoupled equation on the Kerr background occur

precisely because of this result [41].

Another important result is the peeling of the Weyl tensor [42, 43, 44, 45]. Ra-

diation from an isolated source displays a special property in that however complicated

the radiative source is, as one moves away from the source towards asymptotic infinity,

various components of the Weyl tensor decay away leaving only the most special types.

This means that the radiation observed far away from the source is much simpler than the

complicated dynamics at play within the source. The peeling result is covered in greater

detail in chapter 5.

2.3 General relativity in higher dimensions

Higher dimensional general relativity is the study of possible solutions to the (vacuum)

Einstein equation (2.6) and their properties for spacetime dimensions greater than four.

There are certainly some similarities between the 4d and d > 4 cases. For example, the

Schwarzschild and Kerr solutions can be generalised to higher dimensions, albeit with

some new features.

The higher dimensional generalisation of the Schwarzschild solution, known as the
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Schwarzschild-Tangherlini solution, is given by the metric

ds2 = −
[

1 −
(a

r

)d−3
]

dt2 +

[

1 −
(a

r

)d−3
]−1

dr2 + r2dΩ2
(d−2). (2.24)

Like the 4d solution, the higher dimensional generalisation is known to be the unique

asymptotically flat static black hole solution [46]. Furthermore, the linear (mode) stability

of the Schwarzschild-Tangherlini solution has been demonstrated [47].

However, there are also some interesting differences. Consider circular orbits (in the

equatorial plane) on this background. The effective potential for a free particle with mass

m and angular momentum h on this background is

Veff (r) =
1

2

(

m+
h2

mr2

)(

1 −
(a

r

)d−3
)

. (2.25)

Analysing the potential, it is very simple to show that a local minimum is only possible for

the 4d case. An example of a local minimum for the 4d case is given on the left hand side

of figure 2.1, while the right hand side curve demonstrates a typical potential in higher

dimensions.

Fig. 2.1: An example of typical potentials in four and higher dimensions on the
Schwarzschild background.

The generalisation of the Kerr solution in higher dimensions is the Myers-Perry

solution [48], except that in higher dimensions, there are a greater number of planes of

rotation. In fact the number of planes of rotation in d−dimensions is equal to the integer

part of (d−1)/2. Another new feature in higher dimensions is the existence of ultraspinning

regimes for d ≥ 6. Recall that for the Kerr solution, the angular momentum parameter a

is constrained to be less than the mass parameter for the solution to remain a black hole

solution. For d ≥ 6 Myers-Perry solutions the angular momenta can be made arbitrarily
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large.

The Myers-Perry solution is given by the metric

ds2 = −dt2 +
U

V − 2M
dr2 +

2M

U

(

dt+

n
∑

i=1

aiµi
2dφi

)2

+
n
∑

i=1

(r2 + ai
2)(µi

2dφi
2 + dµi

2) + εr2dµ2
n+ε, (2.26)

where

V = rε−2
n
∏

i=1

(r2 + ai
2), U = V

(

1 −
n
∑

i=1

ai
2µi

2

r2 + ai
2

)

, (2.27)

with the constraint
n
∑

i=1

µi
2 + εµ2

n+ε = 1. (2.28)

n is equal to the integer part of (d−1)/2 and ε is equal to 1 for even spacetime dimensions

d and 0 for odd.

A similar result to that discussed above, regarding the existence of stable circular

orbits holds true for rotating black holes too. There exist stable circular orbits in the Kerr

spacetime, but it can be shown that none exist on the 5d Myers-Perry background [49].

The status of the uniqueness and stability of Myers-Perry solutions is much more

interesting. The existence of a rotating black ring solution with horizon topology S1 ×S2

in five dimensions [50, 51] (see section 6.3.3) provides a dramatic counterexample to the

uniqueness of the Myers-Perry solution in higher dimensions. It is expected that there are

many other solutions in higher dimensions with varying properties [52, 53, 54].

Although, the linear (mode) stability of the Schwarzschild-Tangherlini solution has

been demonstrated, the situation for other black objects is very different. For example, it is

known that black strings and membranes are Gregory-Laflamme unstable [55]. And, it has

been known for some time, by analogy with Gregory-Laflamme (GL) type instabilities,

that one would expect instabilities to occur in certain regimes of the Myers-Perry and

black ring families. For example, one would expect thin black rings to suffer from the

same type of GL instability that occurs for a black string [50]. Similarly, one would expect

ultraspinning (d ≥ 6) Myers-Perry black holes to suffer from the same kind of GL type

instability that one finds for p-branes [56]. There has been a great deal of recent progress

in using numerical methods to tackle and confirm these conjectures, at least, as far as

the Myers-Perry solution is concerned [57]. Such numerical investigations have hinted at
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a relation between certain unstable modes and the branching of new solutions providing

a relation between the stability and the uniqueness of black hole solutions, which we

discussed above.

Most higher dimensional solutions found to date, have been direct generalisations of

four dimensional solutions. One way to investigate higher dimensional gravity independent

of the 4d case is to attempt a systematic study of d > 4 general relativity. As discussed

before, in four dimensions, the Petrov classification is a very important tool in studying

solutions of Einstein’s equations.

Given the success of a systematic approach to the study of 4d GR, it is natural to

extend such ideas to higher dimensions, in which such considerations have been hitherto

lacking. Higher dimensional gravitation will be studied with this focus in mind in this

part of the dissertation.

2.4 Classification schemes in higher dimensions

The emphasis here will be on the study of solutions of the higher dimensional vacuum

Einstein equation using techniques employed and developed from classification schemes

based on the curvature properties of solutions. In four dimensions, there are several

different, but equivalent, ways in which one can formulate the Petrov classification of

the Weyl tensor. However, when extended to higher dimensions, these different methods

become inequivalent.

In this section, we briefly review the main methods used to classify the Weyl tensor

in higher dimensions. We begin by describing the tensorial approach due to Coley, Milson,

Pravda and Pravdová [58, 59] (henceforth abbreviated to CMPP) in section 2.4.1. The

CMPP classification relies on the existence of special null directions adapted to the Weyl

tensor. These are known as Weyl aligned null directions or WANDs. Any d-dimensional

solution can be classified in this scheme. The CMPP classification scheme has received the

most attention and has been successfully applied to studying many important properties

of higher dimensional gravity (see [60] and references therein), including the possibility of

finding new solutions. These include a study of higher dimensional axisymmetric solutions

[1] (see chapter 3); the study of solutions admitting a hyper-surface orthogonal WAND

[61] and the study of Kundt [62] and Robinson-Trautman [63] solutions. Unfortunately,

these investigations have not lead to the discovery of interesting solutions such as the

higher dimensional C-metric. However, the possibility of finding new solutions using these
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methods has not been exhausted. The approach taken in Ref. [1], where a class of solutions

with a certain symmetry are considered with the extra assumption of algebraic specialness

may yield interesting results for other symmetry groups.

Other applications of the CMPP classification include a partial generalisation of

the Goldberg-Sachs theorem to higher dimensions [64, 65]; the asymptotic properties of

higher dimensional spacetimes [66]; the perturbation theory of higher dimensional solutions

[67, 68, 4] (see chapter 4); a study of the instabilities of near-extremal cohomogeneity-1

Myers-Perry solutions [69] and a study of the peeling property of the Weyl tensor in higher

dimensions [5] (see chapter 5).

In section 2.4.2, we review the spinorial De Smet classification [70], which is definable

only in five dimensions. The relation between the CMPP and De Smet classification is

not straightforward and they certainly do not share any equivalent notions such as the

existence of a preferred null direction (see section 6.3.2) [2]. The possibility of finding new

solutions using this classification scheme has been investigated [70, 71, 2]. In Refs. [70, 71],

axisymmetric solutions within the context of this classification scheme were studied (see

section 3.1), while in Ref. [2], solutions belonging to the most special type in this scheme

were classified (see chapter 6).

Finally, in section 2.4.3, we briefly review the extension of the bivector approach

of classifying the Weyl tensor to higher dimensions [72]. The classification of black hole

solutions using this approach has been investigated in Ref. [73].

There are other approaches to the classification of higher dimensional solutions that

do not directly involve properties of the Weyl tensor, such as the existence of hidden

symmetries [74, 75] or the existence of a certain optical structure [76, 77].

2.4.1 CMPP classification

The CMPP classification relies on the existence of independent null vectors ℓ and n, such

that in the null frame m0 ≡ ℓ, m1 ≡ n, mi (i = 2, . . . , d − 1), where mi are a set of

orthonormal spacelike vectors orthogonal to ℓ and n, certain components of the Weyl

tensor vanish, implying the solution to be of a certain type.

Given a null frame (ℓ, n,mi), continuous Lorentz transformations are generated by:

null rotations about ℓ and n, spins (rotating the spacelike basis vectors), and boosts, given

by

ℓ′ = λℓ, n′ = λ−1n, m′
i = mi, (2.29)
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where λ 6= 0. Under a boost, a particular component of a p-rank tensor T in the null

frame transforms as

Ta1...ap −→ λbTa1...ap , (2.30)

where b is the boost weight of Ta1...ap , and is equal to the number of ai that are 0 minus

the number that are 1.

For the Weyl tensor, the possible boost weights lie in the range −2 ≤ b ≤ 2. For

example, boost weight 2 components of the Weyl tensor are C0i0j .

The solution is said to be of type G at a point p if there does not exist a ℓ such that

C0i0j = 0 at p, i.e. C0i0j 6= 0 at p for any choice of ℓ. On the other hand, the solution is

of given type

• I ⇐⇒ C0i0j = 0,

• II ⇐⇒ C0i0j = C0ijk = 0,

• D ⇐⇒ C0i0j = C0ijk = C1ijk = C1i1j = 0,

• III ⇐⇒ C0i0j = C0ijk = C01ij = Cijkl = 0,

• N ⇐⇒ C0i0j = C0ijk = C01ij = Cijkl = C1ijk = 0,

• O ⇐⇒ Cabcd = 0.

G I II III N

D O

Fig. 2.2: Penrose diagram of the CMPP classification

The algebraic type of the solution is defined to be the type of its most algebraically

general point. If the solution is type I, then ℓ for which C0i0j = 0 is said to be a Weyl

aligned null direction or WAND. A given WAND need not be unique. Indeed there may

be infinitely many WANDs in a spacetime. For example, consider dSd−2 × S2. Any null

vector in dSd−2 is a WAND.

We define a solution to be algebraically special if it is type II or more special. The

reason for this is that there are many examples where the solution is of type G in one

open subset and type I in another [1], including Gross-Perry solitons and the black ring.
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Note that the definition of type D solutions depends on n being Weyl aligned as

well, i.e. C1i1j = 0. Thus, the type D definition requires a secondary classification, in

which n is chosen such that as many trailing Weyl tensor components as is possible can be

set to zero, that is, of course, once a WAND ℓ has been found such that as many leading

Weyl tensor components as is possible have been set to zero. For example one defines type

Ii solutions to be those for which a ℓ and n can be found such that C0i0j = C1i1j = 0. We

shall not utilise the secondary classification scheme here, except in the definition of type

D solutions.

2.4.2 De Smet classification

The De Smet classification is a spinorial classification of the Weyl tensor of 5d solutions.

We start with a representation of the Clifford algebra such that

Γab
AB = (CΓ[aΓb])AB (2.31)

is symmetric and where the charge conjugation matrix C is antisymmetric. Indices A,B . . .

refer to Dirac spinor indices.

We define the Weyl spinor, associated with the Weyl tensor, to be

CABCD = CabcdΓ
ab

ABΓcd
CD. (2.32)

It can be shown that this spinor quantity is totally symmetric (see section 6.2.2). Hence,

we can treat it as a homogeneous quartic polynomial in four complex variables3 and ask

how this polynomial factorises into lower degree polynomials. We then classify the Weyl

tensor according to the degree and multiplicity of the factors. Of course, it could be that

the polynomial cannot be factorised, in which case we denote the Weyl type to be 4 (since

we have a single quartic or fourth order polynomial) and call the corresponding solution

algebraically general. If the polynomial does factorise, then the corresponding solution is

algebraically special.

The Weyl tensor has 35 real independent components in five dimensions whereas the

Weyl spinor CABCD has 35 complex components. Therefore, CABCD must satisfy some

reality condition, which constrains the possible ways in which it can factorise [2].

In all there are eight different possibilities for how the polynomial can factorise and

3Since CABCD is totally symmetric, we can form such a polynomial by fully contracting it with a set
of Dirac spinors ψA, i.e. C(ψ) = CABCDψ

AψBψCψD.
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so there are eight different types. These are depicted in figure 2.3.

4

31

22

211 1111

22

11 11 Cabcd≡0

Fig. 2.3: Figure showing the 8 different algebraic types in the spinor classification.

The notation is such made that a number represents the degree of the polynomial

factor and an underline represents its multiplicity. For example, type 22 corresponds to the

case where the Weyl polynomial factorises into two quadratic factors that are proportional

to one another and cannot be further factorised.

2.4.3 Bivector approach

The bivector scheme relies on the fact that the symmetries of the Weyl tensor are such

that it can be treated as an operator from the space of 2-forms (bivectors) to itself

Xab 7→ X ′
ab = 1

2Cab
cdXcd. (2.33)

Denoting a basis for bivectors with capital letters this implies that

X ′
A = CA

BXB , X ′ = C(X). (2.34)

The classification scheme involves a study of the eigenvalue problem of operator C. The

eigenvector structure of this operator was studied in [72] assuming certain CMPP types.

2.5 Scope of part II

In chapter 3, algebraically special, axisymmetric solutions of the higher dimensional vac-

uum Einstein equation (with cosmological constant) are investigated using the tensor ap-

proach due to Coley, Milson, Pravda and Pravdová. Necessary and sufficient conditions for

static axisymmetric solutions to belong to different algebraic classes are presented. Then
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general (possibly time-dependent) axisymmetric solutions are discussed. All axisymmetric

solutions of algebraic types II, D, III and N are obtained.

In chapter 4, we consider the possibility of deriving a decoupled equation for gravita-

tional perturbations of the Schwarzschild-Tangherlini solution using the higher dimensional

GHP formalism [67]. We find that a particular gauge invariant component of the Weyl

tensor does decouple and expect this to correspond to the vector modes of Ishibashi and

Kodama [47]. Also, we construct a Hertz potential map for solutions of the electromagnetic

and gravitational perturbation equations of a higher dimensional Kundt background using

the decoupled equation of Durkee and Reall [68]. Motivated by recent work of Guica and

Strominger [78], we use this to construct the asymptotic behaviour of metric perturbations

of the near horizon geometry of the 5d cohomogeneity-1 Myers-Perry black hole.

The peeling behaviour of the Weyl tensor near null infinity is determined for an

asymptotically flat higher dimensional spacetime in chapter 5. The result is qualitatively

different from the peeling property in 4d. To leading order, the Weyl tensor is type N.

The first subleading term is type II. The next term is algebraically general in 6 or more

dimensions but in 5 dimensions another type N term appears before the algebraically

general term. The Bondi energy flux is written in terms of “Newman-Penrose” Weyl

components.

We investigate the spinor classification of the Weyl tensor in five dimensions due to

De Smet in chapter 6. We show that a previously overlooked reality condition reduces the

number of possible types in the classification. We classify all vacuum solutions belonging

to the most special algebraic type. The connection between this spinor and the tensor

classification is investigated and the relation between most of the types in each of the

classifications is given. We show that the black ring is algebraically general in the spinor

classification.





Chapter 3

Algebraically special axisymmetric

solutions

3.1 Introduction

3.1.1 Background

A d-dimensional spacetime is “axisymmetric” if it possesses an SO(d− 2) isometry group

whose orbits are (d− 3)-spheres. There are several motivations for studying axisymmetric

solutions of the higher-dimensional vacuum Einstein equation (with cosmological constant)

Rµν = Λgµν . (3.1)

These include the problem of finding an exact solution describing a black hole bound to a

3+1 dimensional brane in the (single brane) Randall-Sundrum model [6], and determining

the phase structure of General Relativity with a compactified dimension [79].

In d = 4 dimensions, all static axisymmetric solutions of the vacuum Einstein equa-

tion (with Λ = 0) were obtained by Weyl, who showed that they are characterized by a

single axisymmetric harmonic function in R3 (see e.g. [80]). Weyl’s result has been gen-

eralized to higher dimensions: the class of solutions of the d-dimensional vacuum Einstein

equation (with Λ = 0) admitting d − 2 commuting, orthogonal, non-null Killing fields is

specified by d− 3 axisymmetric harmonic functions in R3 [81]. If one of the Killing fields

generates time translations and the others generate rotations then these solutions have

isometry group R × U(1)d−3, generalizing the R × U(1) symmetry of Weyl’s solutions.

27
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However, these solutions are not axisymmetric for d > 4.

It is desirable to know the general static axisymmetric solution in d > 4 dimensions

but, unfortunately, the Einstein equation cannot be solved analytically for d > 4 (or even

for d = 4 with Λ 6= 0). The impediment arises from the curvature of Sd−3 [82]. Note that

Sd−3 is flat if d = 4, which is why the Einstein equation can be solved for d = 4.

The goal of this chapter is to determine whether the Einstein equation can be solved

analytically if one makes the additional assumption that the spacetime admits a WAND.

In d = 4, an algebraically special static, axisymmetric spacetime must be type D (or O).

For Λ = 0, the only such solutions are, in the terminology of Ehlers and Kundt [83],

the A-metrics, the B-metrics, and the C-metric [35]. The A-metrics are labelled by the

parameters k ∈ {−1, 0, 1} and M 6= 0. The metric takes the generalized Schwarzschild

form

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2dΩ2

k, (3.2)

where U(r) = k− 2M/r, and dΩ2
k is the metric on a space of constant curvature with sign

k. The B-metrics are analytic continuations of the A-metrics in which the time coordinate

t is Wick rotated to a spatial coordinate φ and dΩ2
k to a Lorentzian metric of constant

curvature dΣ2
k:

ds2 = U(r)dφ2 +
dr2

U(r)
+ r2dΣ2

k. (3.3)

The C-metric describes a pair of black holes being accelerated apart by a conical singularity

[84].

We shall follow the algebraic classification of Coley, Milson, Pravda and Pravdova

(CMPP) [58], which applies for general d.

3.1.2 Summary of results

In this chapter, we start (in section 3.2) by considering static, axisymmetric solutions and

determine the condition for them to admit a WAND. It was shown in Ref. [85] that a

static solution must be of algebraic type G, I, D or O. We derive simple necessary and

sufficient conditions for a solution to belong to the various algebraic types. We also show

that many analytic solutions are type G in one open subset of the spacetime and type I in

another. This suggests that distinguishing between type G and type I solutions is not very

useful in practice, and that the type I condition alone will not be much help in finding

new solutions.
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In the rest of the chapter, we relax the condition of staticity and consider general

(possibly time-dependent) axisymmetric solutions admitting a WAND. The starting point

of our analysis is the observation that, for d > 4, the action of SO(d − 2) on Sd−3 must

be orthogonally transitive [35], i.e., spacetime is locally a product M3 ×Sd−3 with warped

product metric

ds2 = gab(x)dx
adxb + E(x)2dΩ2, (3.4)

for some 3-metric gab and function E(x) onM3, where dΩ2 is the metric on Sd−3 normalized

to unit radius. The analysis naturally divides into two cases depending on whether or not

the WAND is axisymmetric, i.e., invariant under SO(d− 2).

In section 3.3, we consider the case in which the WAND is axisymmetric. The ax-

isymmetry implies that the null geodesic1 congruence tangent to the WAND has vanishing

rotation, hence it is hypersurface-orthogonal. We determine all solutions with an axisym-

metric geodesic WAND without assuming a particular algebraic type. The solutions are

all type II or more special.2 There are several classes.

• Type O (conformally flat) solutions. Irrespective of axisymmetry, the only such

solutions are Minkowski, de Sitter, and anti-de Sitter spacetimes.

• The Schwarzschild solution, generalized to allow for flat or hyperbolic slices (i.e.,

higher-dimensional analogues of the A-metrics) and a cosmological constant. The

metric is given by equation (3.55). The solution is type D. The null congruence

tangent to the WAND has vanishing shear and non-vanishing expansion, so these

solutions are a subset of the higher-dimensional Robinson-Trautman family of solu-

tions (defined to be solutions admitting a null geodesic congruence with vanishing

shear and rotation and non-vanishing expansion) obtained in Ref. [86].

• “Black string” solutions obtained, for Λ = 0, by foliating Minkowski spacetime with

(d − 1)-dimensional Minkowski, or de Sitter, slices and replacing the slices with a

Schwarzschild, or Schwarzschild-de Sitter, metric respectively. In the former case,

this gives the familiar Schwarzschild black string solution. There is an analogous

construction for Λ > 0 based on a de Sitter foliation of de Sitter spacetime, and for

Λ < 0 based on Minkowski, de Sitter, or anti-de Sitter foliations of anti-de Sitter

spacetime. The latter includes the anti-de Sitter black string of Ref. [87]. The

1Any algebraically special solution admits a geodesic multiple WAND [65].
2For Λ = 0, this implies that these solutions belong to the class of spacetimes discussed in Ref. [61],

i.e., those admitting a hypersurface orthogonal multiple WAND. The dependence on the affine parameter
along the geodesics was determined in that paper.
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metric of these solutions is given by equation (3.49). They are all type D. The null

congruence associated with the WAND has non-vanishing expansion and shear.

• For Λ > 0, dS3×Sd−3 is type D. A general multiple WAND of this spacetime is non-

geodesic. However, any null geodesic congruence in dS3 defines a geodesic multiple

WAND. Such a congruence may be expanding and shearing or non-expanding and

non-shearing (in the latter case the solution is a special case of the Kundt solutions

discussed next).

• Axisymmetric Kundt solutions (section 3.3.1). A Kundt spacetime is a spacetime

admitting a null geodesic congruence with vanishing expansion, rotation and shear

[35]. Such solutions are type II, or more special, for any d ≥ 4 [88]. In general they

involve arbitrary functions of time. In our axisymmetric case, these solutions are

expressed in terms of solutions of certain ODEs that cannot be solved analytically

in general. We show that some of these solutions are type D or N (but not III). The

type N solutions can be obtained analytically. They describe gravitational waves in

Minkowski (eq. (3.90)), de Sitter (eq. (3.96)) or anti-de Sitter (eq. (3.95)) spacetime.

The general type D solution is cohomogeneity-1 with surfaces of homogeneity M2 ×
Sd−3 where M2 is 2d Minkowski or (anti-) de Sitter spacetime:

ds2 = dz2 +A(z)2dΣ2 +R(z)2dΩ2, (3.5)

where dΣ2 is the metric on M2. The functions A(z) and R(z) can be determined

analytically only in special cases e.g. the product spaces dS3×Sd−3, dS2×Sd−2 and

AdS2 ×Hd−2, or for flat M2 with Λ = 0. Various solutions of this form have been

discussed previously in the literature. For positively curved M2, if one analytically

continues to Riemannian signature (so that M2 becomes S2) then these are metrics

of the form discussed by Böhm. He proved that, for low enough d > 4, and Λ > 0,

there exist infinitely many Einstein metrics on spheres and products of spheres of

the form (3.5) [89]. For Λ ≤ 0 he constructed complete, non-compact metrics of the

form (3.5) [90]. The Lorentzian interpretation of some of the Böhm solutions has

been discussed in Ref. [91]. Some singular solutions with flat M2 and Λ = 0 were

discussed in Ref. [92], analogous solutions with non-flat M2 were discussed in Ref.

[93]. A regular solution with d = 5, flat M2 and Λ < 0 describes the metric dual to

the ground state of N = 4 super Yang-Mills theory on R× S1 × S2 (with fermions

periodic on S1) [94]. A solution with d = 5, negatively curved M2 and Λ < 0

describes the bulk near-horizon geometry of an extremal charged Randall-Sundrum

black hole, or the metric dual to the ground state of N = 4 SYM in AdS2 × S2
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[95]. More generally, solutions of the form (3.5) with Λ < 0 that are asymptotically

locally anti-de Sitter presumably describe the metrics dual to the ground state of a

CFT in M2 × Sd−3.

For d = 4, it was proposed in Ref. [96] that some type II Kundt solutions describe

gravitational waves propagating in a “background” spacetime described by a type

D Kundt solution. The same is true for d > 4: given a type D background of the

form (3.5), one can construct explicitly axisymmetric type II Kundt solutions which

describe gravitational waves propagating along the space M2 of this background.

(Some particular examples of such solutions were obtained in Refs. [97, 98].) For

Λ < 0, some of these solutions will be asymptotically locally AdS, and will describe

metrics dual to certain CFT states in M2 × Sd−3 for which there is a null energy-

momentum flux along M2.

The second case to consider is when the WAND is not axisymmetric. Acting with

SO(d − 2) generates a continuously infinite family of WANDs, which suggests that the

solution should have an enhanced symmetry. This is indeed the case: assuming that the

solution admits a multiple WAND, we are able to show that SO(d− 2) is enhanced to the

de Sitter symmetry SO(1, d−2), with dSd−2 orbits, and the only non-trivial (i.e. not type

O) solutions are:

• For any Λ, a Kaluza-Klein bubble solution [99] (i.e. a higher-dimensional analogue

of the B-metrics) obtained by analytic continuation of the Schwarzschild solution (so

that Sd−2 → dSd−2). The metric is given by equation (3.113). This is type D.

• For positive Λ there is a dSd−2 × S2 solution. This is also type D.

For both solutions, any null vector field tangential to the dSd−2 orbits of SO(1, d− 2) is a

multiple WAND. These solutions are examples of type D vacuum solutions admitting non-

geodesic multiple WANDs. In fact, it has been proved in [65] that the only five dimensional

solutions that admit non-geodesic multiple WANDs are the examples presented above, and

their Λ ≤ 0 generalisations.

Combining these results, we conclude that any axisymmetric solution admitting a

WAND that is not encompassed by our analysis must be type I and such that every

WAND is either not invariant under SO(d− 2) or is invariant under SO(d− 2) but is not

geodesic. In particular, any axisymmetric solution admitting a multiple WAND is one of

the solutions listed above. It is convenient to summarize our results according to algebraic

type:
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• Type O: the only type O Einstein solutions are Minkowski or (anti)-de Sitter space-

time.

• Type N: the only axisymmetric solutions are the type N axisymmetric Kundt solu-

tions.

• Type III: there are no axisymmetric type III solutions.

• Type D: all axisymmetric solutions are contained in the following list: Kaluza-Klein

bubble; dSd−2 ×S2; generalized Schwarzschild; generalized black string; solutions of

the form (3.5).

• Type II: the only axisymmetric solutions are the type II axisymmetric Kundt solu-

tions.

• Type I: if a WAND of an axisymmetric type I solution is axisymmetric then it is

non-geodesic.

Note that the type D solutions all have isometry groups larger than the SO(d − 2) that

was assumed initially.

We can compare these results to those of De Smet, who classified static, axisymmetric

d = 5 spacetimes belonging to classes 22 and 22 in his classification scheme for Λ = 0 [70]

and Λ 6= 0 [71]. For d = 5, our list of type D solutions is very similar to the set of the

solutions that he found.3 One significant difference is for Λ = 0, where he found a solution

that is not on our list (eq. 4.6 of Ref. [70], a “homogeneous wrapped object”). The

results of section 3.2 below show that this solution is type G in the CMPP classification.

Curiously, no analogous solution with Λ 6= 0 was obtained in Ref. [71]. Some of the

generalized “black string” solutions that we found (eq. (3.49)) do not appear in De Smet’s

results. The connection between the De Smet scheme and the CMPP scheme is studied

in section 6.3.2.

It is also interesting to compare our results with results for d = 4. For d = 4,

axisymmetry is much less restrictive than for d > 4. This is because, the action of a

1-dimensional group such as SO(2) need not be orthogonally transitive, so the orthogonal

decomposition (3.4) is not always possible, e.g. it does not apply for the Kerr solution.

The natural d = 4 analogues of d > 4 axisymmetric spacetimes are spacetimes with a

spacelike, hypersurface-orthogonal Killing vector field. Coordinates can then be chosen so

3We are taking results from the arXiv version of Ref. [70], which differs significantly from the published
version. De Smet worked in Euclidean signature and hence could not distinguish between the Schwarzschild
solution and a KK bubble.
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that the Killing field is ∂/∂φ and there is a discrete isometry φ → −φ. The metric then

can be written in the form (3.4) with dΩ2 = dφ2. So this is the class of d = 4 spacetimes

analogous to our spacetimes. Algebraically special d = 4 vacuum solutions (with Λ = 0)

with these symmetries were first classified by Kramer and Neugebauer [100], so we shall

refer to them as KN solutions.

By the Goldberg-Sachs theorem, the null congruence tangent to the repeated PND is

geodesic and shear-free. For KN solutions it can be shown that it is also rotation-free, i.e.,

hypersurface-orthogonal [100]. Hence a KN solution belongs to the Robinson-Trautman

(RT) or Kundt family of solutions depending on whether the congruence associated to

the repeated PND is expanding or not. In 4d, the general vacuum solution belonging to

either of these classes involves arbitrary functions of time, and cannot be written down

in closed form [35]. However, with the KN symmetries, the general Kundt (but not RT)

solution can be obtained in closed form [100]. Special cases of RT solutions with the KN

symmetries are the A-metrics and the C-metric. The Kundt family of solutions contains

the B-metrics.4

The main differences between these d = 4 results and our results are (i) the absence

of time-dependent axisymmetric d > 4 RT solutions; (ii) the absence of a d > 4 analogue

of the C-metric. The first difference extends beyond axisymmetry: the general class of

d > 4 RT solutions was investigated in Ref. [86] and found to be considerably simpler

than the d = 4 class. In particular, the only d > 4 RT solutions with non-vanishing “mass

function” are simple static generalizations of the Schwarzschild solution, in contrast with

the d = 4 case where such solutions are generically time-dependent. Concerning point (ii),

to explain what we mean by “analogue”, we note that the main interest in constructing

such a solution is to obtain an exact solution describing a black hole on a Randall-Sundrum

brane, as explained in Ref. [101]. Such a solution would have d = 5, Λ < 0 and would be

axisymmetric (if the black hole were spherically symmetric on the brane) and describe an

object with an event horizon accelerating along the axis of symmetry. The d = 4 C-metric

belongs to the Weyl class, the RT class and the class of type D metrics. However, no

d > 4 analogue was found in the generalized Weyl class (for Λ = 0) [81] or, as we have just

discussed, the d > 4 RT class [86]. Our results demonstrate that this negative conclusion

extends to the d > 4 type D class too. However, we note that a type D metric of the form

(3.5) does describe the near-horizon geometry of an extremal charged Randall-Sundrum

4We have ignored a special case that arises in the KN analysis, which occurs when the repeated PND
is not invariant under the discrete symmetry (and must therefore be mapped to another repeated PND
so the spacetime is type D). KN showed that the only such solution is the k = 0 B-metric. However, this
admits a second hypersurface-orthogonal spacelike Killing field, and the associated discrete symmetry does

preserve the repeated PNDs. This implies that the solution also belongs to the Kundt class.
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black hole [95].

We are interested in solutions of the vacuum Einstein equation (3.1). For such

spacetimes, the WAND conditions can be reformulated in terms of the Riemann tensor:

R0i0j = 0 ⇔ WAND, R0i0j = R0ijk = 0 ⇔ multipleWAND. (3.6)

We shall make use of several general results for warped product spacetimes. A warped

product is a spacetime of the form

ds2 = A(y)2gAB(x)dxAdxB +B(x)2gIJ(y)dyIdyJ , (3.7)

where gAB is Lorentzian and gIJ is Riemannian. Such a spacetime is type D or O if the

Lorentzian factor is (i) two-dimensional; (ii) a three-dimensional Einstein space; (iii) a

type D Einstein space [85].

We now summarize our index conventions in this chapter. As described above,

indices i, j, k, . . . refer to the spacelike basis vectors, and take values from 2 to d − 1.

Later, we shall choose d − 3 of the basis vectors to like tangent to the Sd−3 orbits of

SO(d− 2). Indices α, β, γ, . . . ranging from 3 to d− 1 will refer to these basis vectors.

3.2 Static, axisymmetric, solutions

In this section we consider higher-dimensional solutions that are static and axisymmetric,

i.e., they admit a hypersurface orthogonal timelike Killing vector field that commutes with

the generators of SO(d− 2). Introduce coordinates adapted to the isometries:

ds2 = −A(r, z)2dt2 +B(r, z)2(dr2 + dz2) + C(r, z)2dΩ2. (3.8)

The components of the Einstein equation (3.1) for this metric are given in Ref. [102].

Define a complex coordinate w ≡ (r + iz)/
√

2. Consider Rr
r −Rz

z + 2iRr
z = 0. This gives

∂2A

A
− 2

∂A∂B

AB
+ (d− 3)

(

∂2C

C
− 2

∂B∂C

BC

)

= 0, (3.9)

where ∂ ≡ ∂/∂w. This implies

∂B

B
=
Cd−3∂2A+ (d− 3)ACd−4∂2C

2∂(ACd−3)
. (3.10)
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We must consider the denominator since it could vanish identically, i.e., ACd−3 might be

constant. The equation Rt
t + (d− 3)Rθ1

θ1
= (d− 2)Λ implies5

∆(ACd−3)

ACd−3
=
B2

C2

[

(d− 3)(d − 4) − (d− 2)ΛC2
]

. (3.11)

Constancy of ∂(ACd−3) implies the RHS must vanish hence C is a constant and Λ is

positive. But then A must also be constant so the spacetime has a flat time direction.

This is incompatible with positive Λ. Hence ACd−3 cannot be constant.

If A and C are known then equation (3.10) determines B. Furthermore, Rr
r +Rz

z −
2Rt

t = 0 implies

(∇B)2

B2
− ∆B

B
=

(d− 3)∆C

2C
− ∆A

2A
− (d− 3)

∇A · ∇C
AC

. (3.12)

It can be checked that this is compatible with equation (3.10).

We assume that the spacetime is type I or more special, so it admits a WAND ℓ.

We shall assume for now that the WAND is axisymmetric. Assuming d > 4, this implies

that it is orthogonal to Sd−3. By rescaling ℓ we can arrange that

ℓ =
∂

∂t
+
A

B

(

cosα(r, z)
∂

∂r
+ sinα(r, z)

∂

∂z

)

, (3.13)

for some function α(r, z). Staticity implies that

n =
∂

∂t
− A

B

(

cosα(r, z)
∂

∂r
+ sinα(r, z)

∂

∂z

)

, (3.14)

is also a WAND6, i.e., WANDs come in pairs, which implies that the algebraic type must

be I, D or O [85]. Choose

m2 =
1

B

(

− sinα(r, z)
∂

∂r
+ cosα(r, z)

∂

∂z

)

, (3.15)

and

mα =
1

C
êα, α = 3, . . . , d− 1 (3.16)

5We have defined ∇ = (∂r, ∂z), ∆ = ∇
2, and indices are raised with the flat metric dr2 + dz2.

6These null vectors don’t obey ℓ · n = 1 but this can arranged by rescaling them, which doesn’t affect
anything below.
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where êα is a vielbein for Sd−3. We find that the WAND condition (3.6) reduces to

Re
(

e2iαW
)

= X, (3.17)

where

W =
∂2A

A
− ∂2C

C
− 2

∂A∂B

AB
+ 2

∂B∂C

BC
= (d− 2)

Cd−4
(

∂2A∂C − ∂A∂2C
)

∂(ACd−3)
, (3.18)

X =
∆A

2A
− ∆B

B
+

∆C

2C
− ∇A · ∇C

AC
+

(∇B)2

B2
=

(d− 2)A2

2C
∇ · (∇C

A2
), (3.19)

where the second equality in each case follows from equations (3.10) and (3.12). The

spacetime is type I or more special if, and only if, there exists a real solution α of the

WAND condition. Hence

|W | ≥ |X| ⇔ admits WAND (3.20)

Now consider the additional condition required for a multiple WAND (equation (3.6)).

This gives the single equation Im
(

e2iαW
)

= 0. Combining with the type I condition gives

e2iαW = X. (3.21)

We conclude that, assuming an axisymmetric WAND

|W | < |X| ⇔ Type G

|W | > |X| ⇔ Type I (3.22)

|W | = |X| ⇔ Type D or O

We shall now comment on our assumption that the WAND is axisymmetric. In general,

this need not be true. However, for odd d, Sd−3 is even dimensional so the projection

of ℓ onto the sphere must vanish somewhere. Working at such a point, we can argue as

above to arrive at equations (3.22) that depend only on r and z and must therefore hold

everywhere on the sphere, which implies the existence of an axisymmetric WAND. Hence,

for odd d, there is no loss of generality in restricting to an axisymmetric WAND. For even

d, this argument does not work. However, in section 3.4, we shall consider axisymmetric

spacetimes with a non-axisymmetric multiple WAND, and show that no such spacetime is

static and axisymmetric.7 Therefore the multiple WAND of a static axisymmetric type D

7Actually, the spacetimes we find there are “static” and “axisymmetric” but they are not “static
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spacetime must be axisymmetric. However, it is possible that some spacetimes with even

d > 4 and |W | < |X| may be type I with a non-axisymmetric WAND.

To illustrate these conditions, consider the z-independent d = 5, Λ = 0 solution of

Ref. [103], written in the form given in Ref. [104]

ds2 = −
(

1 −m/R

1 +m/R

)2/α

dt2 +

(

1 −m/R

1 +m/R

)2β/α

dz2

+
(

1 +
m

R

)4
(

1 −m/R

1 +m/R

)2(α−β−1)/α
(

dR2 +R2dΩ2
)

, (3.23)

where α =
√

β2 + β + 1. Assume m 6= 0 (so the spacetime is not flat). Then a calculation

reveals that |W | = |X| if, and only if, β = 0 or β = 1. The first possibility gives

the Schwarzschild black string. The second possibility gives a boost invariant singular

spacetime discussed in Ref. [92]. This spacetime is of the form (3.5) discussed in the

introduction.

Another interesting example is the static Kaluza-Klein bubble (the product of a flat

time direction with the Euclidean Schwarzschild solution). This can be obtained by taking

the limit β → ∞ of the above metric. This spacetime has W = 0, X 6= 0 hence it is type

G.

Since type G is distinguished from type I only by an inequality, it is possible that

there exist (connected) analytic spacetimes that are type G in some open subset of space-

time and type I in some other open subset. Indeed, if we choose m > 0 and β = 1/2 in

the above metric then it is type G for R ∼ m but type I for R≫ m.8 As discussed in the

introduction, this kind of behaviour suggests that the type I condition alone will not be

much help in solving the Einstein equation.

It would be nice to use the type D condition obtained above to solve the Einstein

equation. However, we have not made progress using the coordinates employed here.

(Even in d = 4, this approach would not work for Λ 6= 0.) However, in subsequent sections

we shall see that all static axisymmetric type D solutions can be found, indeed we shall

relax the condition of stationarity and determine all axisymmetric type D solutions.

and axisymmetric” because the generator of time translations does not commute with the generators
of axisymmetry.

8The general behaviour appears to be that, for 0 < β < 1 and m > 0, the solution is type G near R = m
and type I for R ≫ m. For (finite) β > 1 and m > 0, it is type I near R = m and type G for R ≫ m.
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3.3 Axisymmetric solutions with an axisymmetric WAND

3.3.1 Introducing coordinates

In this section we shall consider general (possibly time-dependent) axisymmetric space-

times with an axisymmetric WAND. First we shall introduce coordinates adapted to the

WAND. Consider the metric in the form (3.4), where spacetime is locally a warped product

M3 × Sd−3. Axisymmetry implies that the WAND is tangential to M3.

We shall choose the local coordinates xa on M3 as follows. Pick a 2-surface in M3

transverse to the WAND ℓ and let xâ be coordinates on this surface, where â = 1, 2. Now

carry these coordinates to the rest of spacetime along the integral curves of ℓ, and let r̂

be the parameter distance along these curves. Now use (xâ, r̂) as coordinates on M3, so

ℓ = ∂/∂r̂. The metric takes the form

ds2 = 2gr̂âdr̂dx
â + gâb̂dx

âdxb̂ + E2dΩ2, (3.24)

where gr̂â 6= 0 for some â. Without loss of generality we may assume gr̂1 6= 0. Now let

r =
∫

gr̂1(r̂, x
â)dr̂, v = x1, z = x2 and use coordinates (v, r, z). In this chart, the metric

takes the form

ds2 = 2 [dv +B(v, r, z)dz]

[

dr − 1

2
U(v, r, z) (dv +B(v, r, z)dz) + C(v, r, z)dz

]

+ D(v, r, z)2dz2 + E(v, r, z)2dΩ2, (3.25)

for some functions U,B,C,D,E. The WAND is proportional to ∂/∂r so we can rescale it

so that ℓ = ∂/∂r. It is convenient to complete this to a null basis as follows:

ℓadx
a = dv +Bdz, nadx

a = dr − 1

2
Uℓadx

a + Cdz,

m2 = Ddz, mα = Eêα, (3.26)

where êα (α = 3 . . . d− 1) is an orthonormal basis of 1-forms on Sd−3 with no dependence

on v, r, z. We shall denote the spacelike basis 1-forms collectively as mi, i = 2 . . . d− 1.

Now consider the null congruence associated with the WAND. This is geodesic if,

and only if, ∂rB ≡ 0. The “expansion matrix” of the congruence is

Sij ≡ mµ
i m

ν
j∇(µℓν) = diag

(

∂rD

D
,
∂rE

E
, . . . ,

∂rE

E

)

. (3.27)
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The expansion of the congruence is the trace of this matrix and the shear tensor is the

traceless part. The rotation matrix of the congruence vanishes: this is a consequence of

axisymmetry.

The results of Ref. [64, 65] establish that an axisymmetric multiple WAND in a

vacuum solution can be assumed to be geodesic. In this section we shall determine all

solutions with an axisymmetric geodesic WAND. We shall not assume that the WAND is

a multiple WAND (so a priori the solution might be type I but we shall see that this does

not happen).

We have ∂rB = 0 because the WAND is geodesic. We can now introduce new

coordinates v′ and r′ such that v = v′ + F (v′, z), r = r′G(v′, z) for some functions F,G

that can be chosen to bring the metric to the same form as before but with B ≡ 0.

Dropping the primes on the coordinates, we have

ds2 = −U(v, r, z)dv2 + 2dvdr + 2C(v, r, z)dvdz +D(v, r, z)2dz2 + E(v, r, z)2dΩ2. (3.28)

By rescaling, the WAND can be taken to be ℓ = ∂/∂r. We saw above that the null

congruence associated with the WAND has vanishing rotation. Since it is geodesic, this

implies that it is hypersurface orthogonal. In the above coordinates, it is orthogonal

to hypersurfaces of constant v. Furthermore, r is an affine parameter along the null

geodesics.9 There is some coordinate freedom remaining: the form of the metric is invariant

under the transformations

v → V (v), r → r/∂vV,

r → r − F (v, z), (3.29)

z → z(v, z).

All of this is well-known in the context of 4d solutions with a hypersurface orthogonal null

geodesic congruence [35].

We shall employ the same null basis as before (i.e., (3.26) with B ≡ 0). The Riemann

tensor of the above metric in this basis is given in Appendix 3.A. The WAND condition

(3.6) reduces to

∂2
rD = ∂2

rE = 0, (3.30)

9If we assumed that ℓ is a multiple WAND then the r-dependence of the metric could be read off from
Ref. [61]. However we shall not make this assumption.
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Hence

D(v, r, z) = D0(v, z) + rD1(v, z), E(v, r, z) = E0(v, z) + rE1(v, z), (3.31)

for some functions D0,D1, E0, E1. The 00 component of the Einstein equation is now

automatically satisfied. Axisymmetry implies that the 0α component is trivial. The 02

component reduces to an equation linear in C:

∂2
rC −

(

∂rD

D
− (d− 3)

∂rE

E

)

∂rC − 2(d− 3)
∂rD∂rE

DE
C = 2(d− 3)

(

∂r∂zE

E
− ∂rD∂zE

DE

)

.

(3.32)

This will determine the r-dependence of C. There are several different cases to consider.

E1 6= 0, D1 ≡ 0

We can use the residual freedom in r and z (equation (3.29)) to set E0 ≡ 0 and D0 ≡ 1,

i.e. D ≡ 1. Then (3.32) reduces to

∂2
rC +

d− 3

r
∂rC = 2

d− 3

r

∂zE1

E1
, (3.33)

which can be solved to give

C(v, r, z) = C0(v, z) +
C1(v, z)

(d− 4)rd−4
+

2∂zE1

E1
r, (3.34)

for arbitrary functions C0 and C1. The r-dependence of U(v, r, z) is determined by the 01

component of Einstein’s equation:

U(v, r, z) = − C1(v, z)
2

2(d− 4)2r2(d−4)
− U1(v, z)

(d− 4)rd−4
+ U0(v, z) −

2r

E1
(∂vE1 + C0∂zE1)

+
r2

d− 2

(

∂2
zE1

E1
− d

(∂zE1)
2

E2
1

− Λ

)

− χ(r)

(

∂zC1 +
(d2 − 9d+ 22)

d− 4
C1
∂zE1

E1

)

,

(3.35)

where U0 and U1 are arbitrary functions, and

χ(r) =











log(r) , d = 5

− 1

(d− 5)rd−5
, d > 5

. (3.36)
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The r-dependence of the metric is now fully determined. Comparing coefficients of terms

with different r dependence in the remaining components of the Einstein equation can be

used to restrict the arbitrary functions above. The αβ components of Einstein’s equation

give

C1 = 0, ∂zC0 = 0, (3.37)

U0(v, z) =
1

E1(v, z)2
− C0(v)

2, (3.38)

The residual coordinate freedom z → z − f(v) can be used to set

C0 = 0. (3.39)

The 22 component of Einstein’s equation gives

∂2
zE1

E1
− 2

(∂zE1)
2

E2
1

− Λ

d− 1
= 0. (3.40)

Now the 12 component of Einstein’s equation implies

∂zU1 + 2(d − 3)
∂zE1

E1
U1 = 0, (3.41)

which in turn implies

U1(v, z) =
m(v)

E1(v, z)2(d−3)
, (3.42)

for some arbitrary function m(v). The 11 component of Einstein’s equation then implies

∂vm(v) = (d− 4)m(v)
∂vE1(v, z)

E1(v, z)
. (3.43)

m(v) = 0 implies that the spacetime is conformally flat (type O), so assume that m(v) 6= 0.

Then (3.43) implies

E1(v, z) =
|m(v)|1/(d−4)

g(z)
, (3.44)

for some positive function g(z). Inserting this into equation (3.40) gives the linear equation

g′′(z) +
ǫ

L2
g(z) = 0, (3.45)

where L is defined by

Λ =
(d− 1)ǫ

L2
, ǫ ∈ {−1, 0, 1}. (3.46)
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Define a positive constant µ via the first integral

g′(z)2 +
ǫ

L2
g(z)2 = ηµ2, (3.47)

where η ∈ {−1, 0, 1}. Using the freedom to shift z by a constant (and z → −z) we have

g(z) = µG(z), where G(z) is given by

G(z) η = 1 η = 0 η = −1

ǫ = 1 L sin(z/L)

ǫ = 0 z α

ǫ = −1 L sinh(z/L) αe±z/L L cosh(z/L)

where α is a positive constant. Defining new coordinates (V, ρ) by

dV = µ
dv

|m(v)|1/(d−4)
, ρ =

r|m(v)|1/(d−4)

µG(z)2
, (3.48)

the metric becomes

ds2 = dz2 +G(z)2
[

−
(

1 − M

ρd−4
− ηρ2

)

dV 2 + 2dV dρ+ ρ2dΩ2

]

, (3.49)

where M = sign(m(v))µd−4. This is the warped product of a line, parametrized by z,

with the (d − 1)-dimensional Schwarzschild (anti)-de Sitter metric. The ǫ = η = 0 case

is the Schwarzschild-Tangherlini black string. The ǫ = 0, η = 1 case corresponds to

taking a de Sitter slicing of Minkowski spacetime and replacing the de Sitter slices with

the Schwarzschild-de Sitter metric. The ǫ = η = 1 case corresponds to doing the same

thing for de Sitter spacetime. The ǫ = −1 cases correspond to the same idea for slicings

of anti-de Sitter space (In d = 5, ǫ = −1, η = 0 is the AdS black string of Ref. [87]). A

warped product whose Lorentzian factor is a type D Einstein space is also type D [85].

Hence these solutions are all type D.

E1 6= 0, D1 6= 0, D0 ≡ 0: Robinson-Trautman solutions

The coordinate freedom (3.29) can be used to set E0 ≡ 0. From (3.27), these solutions have

vanishing shear and non-vanishing expansion. Therefore they belong to the class of higher-

dimensional Robinson-Trautman solutions [86]. To give a self-contained presentation, we

shall rederive these solutions here (with the additional restriction of axisymmetry). Using

a transformation z → z′(z, v), we can set D1 ≡ 1. The general solution to equation (3.32)
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is

C(v, r, z) = C1(v, z)r
2 +

C2(v, z)

rd−3
, (3.50)

where C1 and C2 are arbitrary functions. But now R22−Rαα (no sum on α) is independent

of U and, by the Einstein equation, must vanish. Equating coefficients of terms with

different r-dependence gives C2 ≡ 0 and

∂2
zE1

E1
− (∂zE1)

2

E2
1

+
1

E2
1

= 0, (3.51)

∂zC1 −
∂zE1

E1
C1 +

∂vE1

E1
= 0. (3.52)

The 22 component of the Einstein equation can then be solved to determine U :

U(v, r, z) =
U1(v, z)

rd−3
− ∂2

zE1

E1
+ 2r∂zC1 − r2

(

C2
1 +

Λ

d− 1

)

, (3.53)

where U1 is an arbitrary function. Now examining the 12 component of the Einstein

equation gives ∂zU1 = 0. The 11 component of the Einstein equation reduces to

E1∂vU1 + (d− 1) (U1∂vE1 − C1U1∂zE1) = 0. (3.54)

If U1 ≡ 0 then it can be shown that the above equations imply that the Weyl tensor

vanishes hence the solution is type O. If U1 6= 0 then we can use the gauge freedom

v → V (v) and r → r/∂vV to set U1 ≡ µ for some non-zero constant µ. Then (3.54) gives

∂vE1 = C1∂zE1. From (3.52) we then learn that ∂zC1 = 0. This implies that C1 can be

gauged away by a shift z → z − f(v). In the new gauge we have ∂vE1 = 0. The solutions

of (3.51) are E1 = R sin(z/R), z or R sinh(z/R) (using z → z − const and z → −z to

simplify) where R is a positive constant. R can be set to one by rescaling z, v and r. The

solution takes the final form

ds2 = −
(

k − M

rd−3
− Λ

d− 1
r2
)

dv2 + 2dvdr + r2dΣ2
k, (3.55)

where M is a non-zero constant, and dΣ2
k is the metric on a d − 2 dimensional space of

unit constant curvature of sign k. This generalized Schwarzschild metric is of type D [86].
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E1 6= 0, D1 6= 0, D0 6= 0

We use the transformations (3.29) to set D1 ≡ 1 and E0 ≡ 0. The general solution to

equation (3.32) is

C(v, r, z) = (D0(v, z) + r)2
(

C1(v, z) + C2(v, z)

∫

dr

rd−3(D0 + r)3

)

− D0∂zE1

E1
, (3.56)

where C1 and C2 are arbitrary functions. Now we consider the 22 and αα components

of the Einstein equation. These equations are linear in U and ∂rU and can be solved

algebraically to determine U and ∂rU . The r-dependence is completely determined hence

consistency of the solutions for U and ∂rU gives an equation whose r dependence is fully

determined. Equating coefficients of terms with the same r dependence then gives C2 ≡ 0

together with

∂vD0 = − 1

E2
1

+ ∂z(D0C1) +
(∂zE1)

2

E2
1

− ∂2
zE1

E1
,

∂vE1 =
Λ

d− 1
D0E1 − E1∂zC1 + C1∂zE1. (3.57)

The solution for U is then

U(v, r, z) =
1

E2
1

− C2
1D

2
0 + 2C1D0

∂zE1

E1
− (∂zE1)

2

E2
1

+

(

2∂zC1 −
2Λ

d− 1
D0 − 2C2

1D0

)

r −
(

Λ

d− 1
+ C2

1

)

r2. (3.58)

These results imply that the Weyl tensor vanishes. Hence these solutions are type O, i.e.,

Minkowski or (anti)-de Sitter spacetime.

E1 ≡ 0: Kundt solutions

Solving (3.32) gives

C(v, r, z) = C0(v, z)+

(

C∗(v, z)D0(v, z) + 2(d− 3)
∂zE0

E0

)

r+
1

2
C∗(v, z)D1(v, z)r

2, (3.59)

where C0(v, z) and C∗(v, z) are arbitrary functions. The αα component of the Einstein

equation does not involve U so its r dependence is completely determined. Equating

coefficients of terms with different dependence on r gives D3
1 [(d − 4) − ΛE2

0 ] = 0. Hence

either D1 ≡ 0 or E2
0 ≡ (d − 4)/Λ. The latter implies that spacetime is a direct product
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M3×Sd−3, which requires Λ > 0 and the spacetime must then be locally dS3×Sd−3 which

is of algebraic type D.

Assume instead that D1 ≡ 0. We now have ∂rD = ∂rE = 0 so the geodesic

congruence is free of expansion and shear as well as twist. Spacetimes with vanishing

expansion, shear and twist are referred to as Kundt spacetimes [35, 60]. All vacuum Kundt

solutions are type II or more special for any d ≥ 4 [88]. General d-dimensional Kundt

spacetimes have been discussed recently [62]. The general solution cannot be obtained in

closed form. We shall now analyze such solutions assuming axisymmetry, which enables

further progress to be made.

With D1 ≡ 0, we can use the transformation z → z′(v, z) to set D0 ≡ 1. Write the

solution for C as C(v, r, z) = C0(v, z) + rC1(v, z). The shift r → r−F (v, z) has the effect

C0 → C0 − ∂zF − C1F . Hence we can choose F (v, z) to set C0 ≡ 0. To summarize, we

have brought the metric to the form

ds2 = −U(v, r, z)dv2 + 2dvdr + 2rC1(v, z)dvdz + dz2 + E0(v, z)
2dΩ2. (3.60)

Some gauge freedom remains. The transformations of the form (3.29) that preserve this

form of the metric are

v = v′, z = z′ + f(v′), r = r′ + g(v′, z′), ∂z′g +C1g = −∂v′f, (3.61)

v = V (v′), r =
r′

∂v′V
, z = z′. (3.62)

The αα component of the Einstein equation reduces to

∂2
zE0

E0
+ (d− 4)

(∂zE0)
2

E2
0

− C1
∂zE0

E0
− d− 4

E2
0

+ Λ = 0, (3.63)

and the 22 component of the Einstein equation reduces to

∂zC1 −
1

2
C2

1 − (d− 3)
∂2

zE0

E0
− Λ = 0. (3.64)

The 01 component of the Einstein equation is satisfied if, and only if,

U(v, r, z) = U0(v, z) + rU1(v, z) + r2U2(v, z), (3.65)
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where U0 and U1 are arbitrary functions, and

U2(v, z) =
1

2
∂zC1 +

d− 3

2
C1
∂zE0

E0
− 1

2
C2

1 − Λ. (3.66)

The 12 Einstein equation reduces to

∂zU1 = −∂vC1 − (d− 3)C1
∂vE0

E0
− 2(d− 3)

∂v∂zE0

E0
. (3.67)

Finally, using the above equations, the 11 Einstein equation reduces to

∂2
zU0 +

(

C1 + (d− 3)
∂zE0

E0

)

∂zU0

+

(

∂zC1 + (d− 3)C1
∂zE0

E0

)

U0 = (d− 3)

(

2
∂2

vE0

E0
− U1

∂vE0

E0

)

. (3.68)

As is familiar for Kundt solutions, the equations of motion separate into the “background”

equations (3.63) and (3.64), which must be solved to determine E0 and C1. Given a solu-

tion of these equations, the other equations can be integrated to determine U0 and U1. The

second step is trivial because the equations are linear. Hence solving the background equa-

tions is the non-trivial step that remains. However, the general solution to the background

equations is not known analytically.

Since the background equations do not involve v-derivatives, solving these equa-

tions is equivalent to solving the corresponding equations assuming that E0 and C1 are

independent of v and U0 = U1 = 0. But in this case, the metric is static. In fact, we

shall see below that the general type D axisymmetric Kundt metric is of this form. The

background equations can only be solved in special cases e.g. the general solution with

d = 4 can be determined, and the general solution with d = 5, Λ = 0 and U2 = 0 can

also be obtained [92]. Some time-dependent solutions based on the latter solution of the

background equations were obtained in Refs [97, 98].

It is convenient to define a positive function W (v, z) by

W (v, z) = W0(v) exp(−
∫ z

C1(v, z
′)dz′), (3.69)

where W0(v) is an arbitrary positive function, so

C1 = −∂zW

W
. (3.70)
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The background equations become

∂2
zE0

E0
+ (d− 4)

(∂zE0)
2

E2
0

+
∂zW

W

∂zE0

E0
− d− 4

E2
0

+ Λ = 0, (3.71)

1

2

(∂zW )2

W 2
− ∂2

zW

W
− (d− 3)

∂2
zE0

E0
− Λ = 0. (3.72)

Equation (3.68) becomes

U2 = −∂
2
zW

2W
− (d− 3)∂zW∂zE0

2WE0
− Λ. (3.73)

These equations imply that

∂z (WU2) = 0, (3.74)

hence we can always choose W0(v) so that

U2(v, z) = − k

W (v, z)
, (3.75)

with k ∈ {1, 0,−1}. We can now define a new coordinate R by

r = W (v, z)R. (3.76)

The metric becomes

ds2 = W (v, z)

{

−
[

U0(v, z)

W (v, z)
+R

(

U1(v, z) − 2
∂vW

W

)

− kR2

]

dv2 + 2dvdR

}

+dz2 + E0(v, z)
2dΩ2, (3.77)

We now consider a further classification of the Kundt solutions according to their alge-

braic type. Using the above equations to simplify the Weyl tensor, we find that the only

independent nonzero components are:

C0α1β = δαβ

(

C1
∂zE0

2E0
− Λ

d− 1

)

, (3.78)

Cαβγδ = 2δα[δδγ]β

(

Λ

d− 1
+

(∂zE0)
2

E2
0

− 1

E2
0

)

, (3.79)

C1αβ2 =
δαβ

2

(

C1
∂vE0

E0
+ 2

∂v∂zE0

E0

)

= − δαβ

2(d− 3)
(∂zU1 + ∂vC1), (3.80)
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C1α1β = δαβ

{

− 1

2(d− 3)
∂z(∂zU0 + C1U0) +

[

U2
∂vE0

E0
+

(

1

2
∂zU1 + ∂vC1

)

∂zE0

E0

]

r

}

.

(3.81)

Note that while C0101, C0112, C0212, C1212 and Cα2β2 are nonzero, they are related to

the above components by the tracefree property of the Weyl tensor. The first two Weyl

components written above are of boost weight 0, while the remaining two are of boost

weight -1 and -2 respectively. Hence the solutions we are considering here are at least type

II, confirming the general result of Ref. [88].

Type III and N

Consider the case in which the solution is type III, or more special. In this case, the

Weyl components of boost weight 0 vanish. This gives, for d > 4, the following equations

C1
∂zE0

E0
=

2Λ

d− 1
, (3.82)

(∂zE0)
2

E2
0

=
1

E2
0

− Λ

(d− 1)
. (3.83)

Note that equation (3.83) is not present for d = 4. Solving this equation gives

E0(v, z) =



















L sin(z/L) if Λ > 0,

z if Λ = 0,

L sinh(z/L) if Λ < 0,

(3.84)

where L > 0 is defined by (3.46), and we have used the freedom (3.61) to eliminate

an arbitrary function of v (we’ve also fixed signs using z → ±z). Equation (3.82) now

determines C1:

C1(v, z) =



















(2/L) tan(z/L) if Λ > 0,

0 if Λ = 0,

−(2/L) tanh(z/L) if Λ < 0.

(3.85)

Since E0 is independent of v, equation (3.80) gives that C1αβ2 = 0, hence these solutions

are type N or O. There are no axisymmetric type III Kundt solutions for d > 4. However,

such solutions do exist for d = 4 [35].

Continuing the analysis, note that the coefficient of r in C1α1β (given by (3.81))

vanishes, and so C1α1β reduces to

C1α1β = − δαβ

2(d− 3)
∂z(∂zU0 + C1U0). (3.86)
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U2(v, z) can be calculated using (3.66):

U2(v, z) =



















−(1/L2) sec2(z/L) if Λ > 0,

0 if Λ = 0,

(1/L2) sech2(z/L) if Λ < 0.

(3.87)

Equation (3.67) implies that U1(v, z) is independent of z: U1(v, z) = U1(v). We can then

use the transformation v → V (v), r → r/∂vV to arrange that

U1 ≡ 0. (3.88)

Finally, equation (3.68) can be solved to determine U0. For Λ = 0, the solution is, for

d > 4

U0 =
F (v)

zd−4
+G(v), (3.89)

(for d = 4, the first term is replaced by F (v) log z). A shift r → r − f(v) can be used

to set G(v) ≡ 0. The only independent non-zero component of the Weyl tensor is (3.86).

This reveals that the solution is type O if, and only if, F (v) ≡ 0. Therefore, the general

axisymmetric type N Kundt solution with Λ = 0, is given by the following metric (for

d > 4)

ds2 = −F (v)

zd−4
dv2 + 2dvdr + dz2 + z2dΩ2. (3.90)

The null vector field ℓ is covariantly constant, and so the solution above belongs to the

family of pp-waves [83].

For Λ < 0, the solution for U0 is

U0 = cosh2(z/L) [F (v)I−(z) +G(v)] , (3.91)

where

I−(z) =

∫ ∞

z

dz

cosh2(z/L) sinh(d−3)(z/L)
, (3.92)

Define a new coordinate R by

r = R cosh2(z/L). (3.93)

The metric becomes

ds2 = cosh2(z/L)
[

−(F (v)I−(z) +G(v) +R2/L2)dv2 + 2dvdR
]

+ dz2 +L2 sinh2(z/L)dΩ2.

(3.94)
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Now the transformations R → R − f(v) followed by v → V (v), R → R/∂vV can be used

to eliminate G(v), giving the final form of the solution:

ds2 = cosh2(z/L)
[

−(F (v)I−(z) +R2/L2)dv2 + 2dvdR
]

+dz2+L2 sinh2(z/L)dΩ2. (3.95)

A similar analysis for Λ > 0 (or L→ iL) gives

ds2 = cos2(z/L)
[

−(F (v)I+(z) −R2/L2)dv2 + 2dvdR
]

+ dz2 + L2 sin2(z/L)dΩ2, (3.96)

where

I+(z) =

∫

dz

cos2(z/L) sind−3(z/L)
. (3.97)

These solutions are type O, i.e., isometric to (anti-)de Sitter space, if, and only if, F (v) ≡ 0.

If F (v) is not identically zero then these metrics are the general axisymmetric type N

Kundt solutions for Λ 6= 0, d > 4.10 It seems natural to interpret the type N solutions as

describing gravitational waves propagating in a type O background.

Type D

Now consider type D solutions, for which there exists a second multiple WAND n′.

Note that n′ need not coincide with the null basis vector n defined above. If n′ were

not axisymmetric then the solution would be encompassed by the analysis of section 3.4.

However, the results of that section reveal that, in this case, both multiple WANDs would

fail to be axisymmetric, which is not the case here. Hence we can assume that n′ is

axisymmetric. The most general form it can take is

n′ = n− 1

2
a(v, r, z)2 ℓ+ a(v, r, z)m2 (3.98)

where a(v, r, z) is arbitrary. Let us change to a new null frame (ℓ′, n′,m′
i), with

ℓ′ = ℓ, m′
2 = m2 − aℓ, m′

α = mα. (3.99)

Note that a ≡ 0 corresponds to the frame used above. The fact that ℓ is a multiple WAND

guarantees that Weyl components of boost weight 0 are the same in the two frames. The

negative boost weight components in the new frame are related to the components in the

10For d = 4, these solutions are a special case of more general type N Kundt solutions discussed in Ref.
[105]. For d > 4, they are a special case of more general (non-axisymmetric) solutions given in eqs (66)
and (68) of Ref. [106].
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old frame by

C ′
1αβ2 = C1αβ2 − aC2α2β + aC0α1β ,

C ′
1α1β = C1α1β − 2aC1αβ2 − a2C0α1β + a2C2α2β . (3.100)

Type D solutions are those for which Weyl tensor components of boost weight −2 and −1

(in the new frame) vanish, giving

C1∂vE0 + 2∂v∂zE0 + a
(

C1∂zE0 + 2∂2
zE0

)

= 0, (3.101)

C1α1β − 2aC1αβ2 − a2C0α1β + a2C2α2β = 0, (3.102)

where the second equation has not been written explicitly for brevity. Note that equation

(3.101) implies either a = a(v, z); or C2α2β = C0α1β and C1αβ2 = 0. In the latter case,

equation (3.102) implies C1α1β = 0, and then one finds that n is a multiple WAND, i.e.,

one can set a ≡ 0. Hence, in either case, we have a = a(v, z). Therefore, in equation

(3.102), the only term with r dependence is that contained in C1α1β , which must vanish,

giving (from equation (3.81))

2U2
∂vE0

E0
+ (∂zU1 + 2∂vC1)

∂zE0

E0
= 0. (3.103)

To simplify the analysis, assume that the spacetime is not dS3 × Sd−3 (which we already

know is type D). The results of Ref. [65] imply that the second multiple WAND n′ must

be geodesic. Axisymmetry implies that the geodesic equation reduces to

m′
2
a
n′b∇bn

′
a = 0. (3.104)

The LHS is linear in r so this gives two equations:

2a∂za+ 2∂va+ a2C1 − aU1 + ∂zU0 + C1U0 = 0, (3.105)

∂zU1 + 2∂vC1 − 2aU2 = 0. (3.106)

Proceed by simplifying equation (3.103) using equation (3.106):

2U2

(

a+
∂vE0

∂zE0

)

= 0. (3.107)

Note that ∂zE0 is not identically zero, since otherwise equation (3.63) implies that E0 is

constant, which gives dS3 × Sd−3. There are two cases.
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Case 1. ∂vE0 = −a∂zE0. Using this to eliminate ∂vE0 from equation (3.101) gives

∂za = 0, so a = a(v). Now we can use a transformation of the form (3.61) to reach

a gauge in which ∂vE0 ≡ 0, i.e., a ≡ 0. Substituting (3.64) into (3.106) then gives

∂vC1 = 0. Now equation (3.67) gives ∂zU1 = 0. Define a positive function W (z) by

equation (3.70). Equation (3.66) reveals that U2 is independent of v so equation (3.74)

implies (3.75) as before (using the freedom to rescale W by a constant). Equation (3.105)

gives U0 = F (v)W (z). Defining the coordinate R by (3.76), the metric can be brought to

the form (3.77):

ds2 = W (z)
{

−
[

F (v) +RU1(v) − kR2
]

dv2 + 2dvdR
}

+ dz2 + E0(z)
2dΩ2. (3.108)

The transformation R → R − G(v) can be used to set F (v) ≡ 0, then a transformation

v → V (v), R→ R/∂vV can be used to set U1 ≡ 0. The metric is then

ds2 = W (z)dΣ2 + dz2 + E0(z)
2dΩ2, (3.109)

where dΣ2 is the metric on a 2d Lorentzian space with Ricci scalar 2k, i.e., Minkowski or

(anti-) de Sitter spacetime.

Case 2. U2 ≡ 0. Equations (3.66) and (3.64) imply

∂z

(

C1

Ed−3
0

)

= 2(d− 3)
∂2

zE0

Ed−2
0

, (3.110)

while equations (3.106) and (3.67) imply

∂v

(

C1

Ed−3
0

)

= 2(d− 3)
∂v∂zE0

Ed−2
0

(3.111)

The integrability condition for these equations is

∂z

(

∂vE0

∂zE0

)

= 0, (3.112)

hence ∂vE0 = h(v)∂zE0 for some function h(v). A gauge transformation of the form (3.61)

can be used to reach a gauge in which ∂vE0 ≡ 0, i.e., h(v) ≡ 0. Equation (3.111) now

gives ∂vC1 ≡ 0 and (3.67) gives ∂zU1 ≡ 0. Now if a ≡ 0 then we are back to case 1, so

assume a 6= 0. Then the coefficient of a in equation (3.101) must vanish. But this is the

case discussed below equation (3.102), where n is a multiple WAND, so one can set a ≡ 0

after all, leading back to case 1.
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In summary, we have shown that, for a general type D axisymmetric Kundt metric,

one can find a gauge in which E0 and C1 are independent of v and U0 = U1 = 0. The

metric can be transformed to the form (3.109).11 Conversely, the warped product structure

of (3.109) implies that any such solution is type D or O [85]. Type O corresponds to the

solutions for E0(z) and C1(z) found in our discussion of type N, i.e., equations (3.84),

(3.85).

3.4 Axisymmetric solutions with non-axisymmetric WAND

Consider the Kaluza-Klein bubble spacetime [99] (generalized to include Λ) obtained by

analytic continuation of the Schwarzschild solution:

ds2 = r2ds2(dSd−2) +
dr2

U(r)
+ U(r)dz2, U(r) = 1 − m

rd−3
− Λr2

d− 1
, (3.113)

where m 6= 0 is a constant, and dSd−2 is (d− 2) dimensional de Sitter space:

ds2(dSd−2) = −dt2 + cosh2 t dΩ2. (3.114)

This spacetime is obviously axisymmetric. It is a warped product of dSd−2 and R2 and is

hence type D [85]. We did not discover this spacetime above. This is because the multiple

WANDs live in the dSd−2 directions and hence must have non-vanishing components along

Sd−3, i.e., they are not axisymmetric. Here this is possible because the axisymmetry

SO(d− 2) is part of the bigger SO(1, d − 2) de Sitter symmetry. We shall show that this

symmetry enhancement is necessary for a multiple WAND to be non-axisymmetric.

Consider first the case in which we have a non-axisymmetric (multiple) WAND ℓ

that is everywhere orthogonal to the Sd−3 orbits of SO(d − 2), i.e., the only non-zero

components of the WAND (in the coordinates of (3.4)) are ℓa = ℓa(x,Ω), where Ω refers

to the coordinates on Sd−3. Now, since the Weyl tensor is axisymmetric, it is clear that

ℓa(x,Ω0) is also a (multiple) WAND where Ω0 is an arbitrary point on Sd−3. But this new

WAND does not vary on Sd−3, i.e., it is axisymmetric. Hence we conclude that, if the

WAND is everywhere orthogonal to Sd−3 then there is no loss of generality in assuming

that it is axisymmetric.

Assume instead that we have an axisymmetric spacetime with metric (3.4) and

that a WAND ℓ is not orthogonal to Sd−3 at some point. Then the same must hold in

11Note that the special case dS3×S
d−3 can be written in the form (3.109) (with constant E0 and k = 1).
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a neighbourhood of that point. Consider the “unphysical” spacetime M3 × Sd−3 with

the product metric obtained by multiplying (3.4) by E(x)−2. We shall work with this

spacetime for most of this section. Obviously ℓ is a WAND of this spacetime. By rescaling

ℓ we can ensure that the projection of ℓ onto Sd−3 is a unit vector (in our neighbourhood).

Hence we can write ℓ = (e0 +e3)/
√

2 where e0 is a timelike unit vector in M3 and e3 a unit

vector on Sd−3. Choose n = (−e0 + e3)/
√

2. Choose e1 and e2 so that {e0, e1, e2} is an

orthonormal basis for M3, and choose e4 . . . ed−1 so that {e3 . . . , ed−1} is an orthonormal

basis for Sd−3. Now take {mi} = {e1, e2, e4, . . . , ed−1}. Let â, b̂ take values 1, 2 and let

α̂, β̂ take values 4 . . . , (d − 1) and α, β take values 3, . . . , d − 1. By axisymmetry we have

that Cabcd vanishes if there are an odd number of indices of the form α, β. We also have

C0α0β = aδαβ , Câαb̂β = Câb̂δαβ, Cαβγδ = b (δαγδβδ − δαδδβγ) , (3.115)

for some quantities a, Câb̂, b. Now the WAND condition Cµνρσℓ
µmν

i ℓ
ρmσ

j = 0 reduces to

Câb̂ = −C0â0b̂, b = −a. (3.116)

The first equation follows from choosing i, j = â, b̂ in the WAND condition and the second

by choosing i, j,= α̂, β̂.

Now, since we have a product metric, Cabcd is fully determined by the Ricci tensor

of M3. Hence these conditions give conditions on this Ricci tensor. Using the formulae in

[85] (and Rαβ = (d− 4)δαβ), we find that the Ricci tensor of M3 must obey

R00 = 2, Râb̂ =
1

2
Rĉĉ δâb̂. (3.117)

Similarly, the additional condition for ℓ to be a multiple WAND reduces to

R0â = 0. (3.118)

Note that these conditions are invariant under e0 → −e0, which implies that if ℓ is a

multiple WAND then so is n. Hence the spacetime is type D or more special. From now

on, we assume that ℓ is indeed a multiple WAND. Note that we can argue as we did in the

second paragraph of this section to deduce that there is no loss of generality in assuming

that e0 is axisymmetric, which we shall assume henceforth.

Using capital letters M,N, . . . to denote coordinate indices in M3, we can summarize
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the form of the 3d Ricci tensor as

RMN = (µ+ 1)uMuN + (µ− 1)gMN , (3.119)

where uM ≡ eM0 . This is the Ricci tensor that would arise from a solution of the 3d

Einstein equations sourced by a perfect fluid with energy density µ and pressure p ≡ 1

(with 8πG3 = 1). The contracted Bianchi identity (or stress tensor conservation) gives

(µ+ 1)u · ∇uM = 0, (3.120)

and

(µ+ 1)θ + u · ∇µ = 0, (3.121)

where the expansion θ is defined by θ = ∇ · u. The first of these equations implies that

either µ ≡ −1 or uM is tangent to affinely parametrized geodesics in M3. In the former

case, we have RMN = −2gMN , which implies that M3 is locally isometric to AdS3 with

unit radius, which implies that M3 ×Sd−3 is conformally flat, so the physical spacetime is

type O. Assume henceforth that this is not the case, so µ 6= −1 and uM is geodesic in M3.

The Einstein equation for the physical metric E2g is

Λδµ
ν = E−2Rµ

ν + (d− 2)E−1∇µ∇νE
−1 − 1

d− 2
E−d∇2Ed−2δµ

ν , (3.122)

where ∇ is the covariant derivative with respect to the unphysical metric g, and indices

are raised and lowered with this metric. The components tangent to the sphere give

1

d− 2
E−d∇2Ed−2 = (d− 4)E−2 − Λ. (3.123)

Using this, and (3.119), the components tangent to M3 give

E−1 [(µ+ 1)uMuN + (µ− (d− 3))gMN ] + (d− 2)∇M∇NE
−1 = 0. (3.124)

We now act on this with ∇P , antisymmetrize on MP , and use the fact that the Riemann

tensor in 3d is determined by the Ricci tensor, which is given by (3.119). This results in

the equation

0 = (µ+ 1)∇[PuM ]uN − (d− 3)(µ + 1)∇[PE
−1gM ]N + E−1(∇[Pµ)uM ]uN

+ E−1(µ+ 1)B[MP ]uN + E−1(µ+ 1)BN [PuM ] + E−1(∇[Pµ)gM ]N

− (d− 2)(µ + 1)gN [MuP ]u · ∇E−1 − (d− 2)(µ+ 1)∇[PE
−1uM ]uN (3.125)
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where

BMN = ∇NuM . (3.126)

Contracting with uN , this equation reduces to (µ+ 1)B[MP ] = 0. Since we are assuming

that µ+ 1 is not identically zero, we must have

B[MN ] = 0, (3.127)

i.e. du = 0, so uM is hypersurface-orthogonal. Define the projector

hMN = gMN + uMuN (3.128)

and now contract (3.125) with hN
Q to get

0 = −(d− 3)(µ+ 1)∇[PE
−1hM ]Q + E−1(∇[Pµ)hM ]Q + E−1(µ+ 1)B̂Q[PuM ]

− (d− 2)(µ+ 1)hQ[MuP ]u · ∇E−1, (3.129)

where

B̂MN = hP
Mh

Q
NBPQ. (3.130)

We can define the expansion and shear of the geodesic congruence tangent to uM in terms

of the trace and traceless parts of B̂MN :

B̂MN =
1

2
θhMN + σMN . (3.131)

Contracting (3.129) with uM gives (µ+1)B̂PQ ∝ hPQ, hence the congruence is shear-free:

σMN = 0. (3.132)

Equation (3.129) now reduces to

X[PhM ]Q = 0, (3.133)

where

XP = −(d− 3)(µ+ 1)∇PE
−1 +E−1∇Pµ− 1

2
θE−1(µ+ 1)uP − (d− 2)(µ+ 1)uPu · ∇E−1.

(3.134)

However, contracting (3.133) with hP
N reveals that XP = 0. Decomposing this into a part
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orthogonal to uM and a part parallel to uM gives

hN
M∇N

(

Ed−3(µ+ 1)
)

= 0, (3.135)

θ = −2E−1u · ∇E (3.136)

where (3.121) was used to simplify the second equation.

Let Σ0 be a surface orthogonal to uM (recall that uM is hypersurface orthogonal),

let xi be coordinates on Σ0. Assign coordinates (T, xi) to the point proper time T along

the geodesic tangent to uM starting at the point on Σ0 with coordinates xi. In this chart,

the metric is

ds2 = −dT 2 + hij(T, x)dx
idxj , (3.137)

and u = ∂/∂T . From the definition of B̂MN and using the fact that the rotation and shear

of the geodesics vanish, and equation (3.136) we deduce that

hij(T, x) = E−2Hij(x), (3.138)

for some 2-metric Hij independent of T . Eliminating θ between equations (3.121) and

(3.136) gives (µ + 1) = f(x)E2 for some (non-zero) function f . Substituting this into

equation (3.135) and integrating gives

Ed−1 =
g(T )

f(x)
, (3.139)

for some function g(T ). Now contracting (3.124) with uMuN gives

∂2
TE

−1 + E−1 = 0. (3.140)

Using (3.139) and the freedom to shift T by a constant we can solve to obtain

E−1 = r(x)−1 sinT, (3.141)

for some non-zero function r(x).

Putting everything together, the physical metric is

ds2 = r(x)2
(−dT 2 + dΩ2

sin2 T

)

+Hij(x)dx
idxj . (3.142)

The metric in brackets is the metric of (d−2)-dimensional de Sitter space. The full metric
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is invariant under the de Sitter isometry group. Hence if we Wick rotate to Euclidean

signature then obtain a spherically symmetric spacetime so we can apply Birkhoff’s the-

orem to deduce that the above metric must be either the Kaluza-Klein bubble spacetime

(3.113), or (if r(x) is constant and Λ > 0) dSd−2 × S2.
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3.A Curvature tensors

In this Appendix, we record the non-zero components of the Riemann tensor of the metric

(3.28) describing an axisymmetric spacetime with an axisymmetric geodesic WAND, using

the null basis (3.26) (with B ≡ 0)

R0101 =
1

4

(

(∂rC)2

D2
+ 2∂2

rU

)

, (3.143)

R0102 = − 1

2D

(

∂2
rC − ∂rD

D
∂rC

)

, (3.144)

R0202 = −∂
2
rD

D
, (3.145)

R0α0β = −δαβ
∂2

rE

E
, (3.146)

R1012 = − 1

4D2

[

2CD∂2
rU −DU∂2

rC − 2D∂r∂zU − 2D∂v∂rC − 2(C∂rU − ∂zU)∂rD

+4∂vC∂rD − 2∂rC∂vD + U∂rC∂rD] , (3.147)

R1212 =
1

4D3

[

2D(C2∂2
rU + ∂2

zU) − 2CDU∂2
rC −D2(4∂2

vD + U2∂2
rD) − 4CD∂r∂zU

− 4D2U∂v∂rD − 2D(2C∂v∂rC − 2∂v∂zC − U∂r∂zC) − 2C2∂rU∂rD

+ 2CU∂rC∂rD − 2∂zU∂zD − 2D2(∂vU∂rD − ∂rU∂vD)

−2D(∂rU∂zC − ∂zU∂rC) + 2C(∂rU∂zD + ∂zU∂rD)

+4∂vC(C∂rD − ∂zD) − 2U∂rC∂zD] , (3.148)

R1α1β =
δαβ

4D2E

[

−D2(4∂2
vE + U2∂2

rE + 4U∂v∂rE) + 2C2∂rU∂rE − 2CU∂rC∂rE

+ 2∂zU∂zE − 2D2(∂vU∂rE − ∂rU∂vE) + 4∂vC(∂zE − C∂rE)

+2(U∂rC − C∂rU)∂zE − 2C∂zU∂rE] , (3.149)
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R2021 =
1

4D3

[

−2D(C∂2
rC +DU∂2

rD) − 4D2∂v∂rD + 2D∂r∂zC

−D(∂rC)2 + 2∂rC(C∂rD − ∂zD) − 2D2∂rU∂rD
]

, (3.150)

R2α2β =
δαβ

D3E

[

−D(C2∂2
rE + ∂2

zE) + 2CD∂r∂zE − CD∂rC∂rE + (C2 −D2U)∂rD∂rE

+∂zD∂zE + (D∂zC − C∂zD)∂rE

−D2(∂vD∂rE + ∂rD∂vE) − C∂rD∂zE
]

, (3.151)

Rα0β1 = − δαβ

2D2E

[

D2(U∂2
rE + 2∂v∂rE + ∂rU∂rE) + C∂rC∂rE − ∂rC∂zE

]

, (3.152)

Rα0β2 =
δαβ

2D2E

[

2D(∂2
rEC − ∂r∂zE) + (D∂rC − 2C∂rD)∂rE + 2∂rD∂zE

]

, (3.153)

Rα1β2 =
δαβ

4D2E

[

2CDU∂2
rE + 4CD∂v∂rE − 4D∂v∂zE − 2DU∂r∂zE − 2D∂rC∂vE

+(2CD∂rU − 2D∂zU −DU∂rC − 4C∂vD − 2CU∂rD)∂rE

+2(2∂vD + U∂rD)∂zE] , (3.154)

Rαβγδ =
2δ[α|γ|δβ]δ

D2E2

[

D2 − (C2 +D2U)(∂rE)2 − (∂zE)2 − 2∂rE(D2∂vE −C∂zE)
]

.

(3.155)



3.A. CURVATURE TENSORS 61

The non-zero components of the Ricci tensor are

R00 = −∂
2
rD

D
− (d− 3)

∂2
rE

E
, (3.156)

R01 = − 1

2D3

[

D3∂2
rU + CD∂2

rC +D2U∂2
rD + 2D2∂v∂rD −D∂r∂zC

+D(∂rC)2 − ∂rC(C∂rD − ∂zD) +D2∂rU∂rD
]

− (d− 3)

2D2E

[

D2U∂2
rE + 2D2∂v∂rE + ∂rC(C∂rE − ∂zE) +D2∂rU∂rE

]

, (3.157)

R02 =
1

2D

[

∂2
rC −

(

∂rD

D
− (d− 3)

∂rE

E

)

∂rC + 2(d− 3)

(

∂2
rE

E
− ∂rD∂rE

DE

)

C

+2(d− 3)

(

∂rD∂zE

DE
− ∂r∂zE

E

)]

, (3.158)

R11 =
1

4D3

[

2D(C2∂2
rU + ∂2

zU) − 2CDU∂2
rC −D2(4∂2

vD + U2∂2
rD) − 4CD∂r∂zU

− 4D2U∂v∂rD − 2D(2C∂v∂rC − 2∂v∂zC − U∂r∂zC) − 2C2∂rU∂rD

+ 2CU∂rC∂rD − 2∂zU∂zD − 2D2(∂vU∂rD − ∂rU∂vD)

− 2D(∂rU∂zC − ∂zU∂rC) + 2C(∂rU∂zD + ∂zU∂rD)

+4∂vC(C∂rD − ∂zD) − 2U∂rC∂zD]

+
(d− 3)

4D2E

[

−D2(4∂2
vE + U2∂2

rE + 4U∂v∂rE) + 2C2∂rU∂rE − 2CU∂rC∂rE

+ 2∂zU∂zE − 2D2(∂vU∂rE − ∂rU∂vE) + 4∂vC(∂zE − C∂rE)

+2(U∂rC −C∂rU)∂zE − 2C∂zU∂rE] , (3.159)

R12 =
1

4D2

[

2CD∂2
rU −DU∂2

rC − 2D∂r∂zU − 2D∂v∂rC − 2(C∂rU − ∂zU)∂rD

+4∂vC∂rD − 2∂rC∂vD + U∂rC∂rD]

+
(d− 3)

4D2E

[

2CDU∂2
rE + 4CD∂v∂rE − 4D∂v∂zE − 2DU∂r∂zE − 2D∂rC∂vE

+(2CD∂rU − 2D∂zU −DU∂rC − 4C∂vD − 2CU∂rD)∂rE

+2(2∂vD + U∂rD)∂zE] , (3.160)
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R22 =
1

2D3

[

−2D(C∂2
rC +DU∂2

rD) − 4D2∂v∂rD + 2D∂r∂zC

−D(∂rC)2 + 2∂rC(C∂rD − ∂zD) − 2D2∂rU∂rD
]

+
(d− 3)

D3E

[

−D(C2∂2
rE + ∂2

zE) + 2CD∂r∂zE − CD∂rC∂rE + (C2 −D2U)∂rD∂rE

+∂zD∂zE + (D∂zC − C∂zD)∂rE −D2(∂vD∂rE + ∂rD∂vE) − C∂rD∂zE
]

,

(3.161)

Rαβ = δαβ

(

1

D3E

[

−D(C2 +D2U)∂2
rE −D∂2

zE − 2D3∂v∂rE + 2CD∂r∂zE

−D3∂rU∂rE − 2CD∂rC∂rE + (C2 −D2U)∂rD∂rE + ∂zD∂zE

−D2(∂vD∂rE + ∂rD∂vE) +D(∂rC∂zE + ∂zC∂rE)

−C(∂rD∂zE + ∂zD∂rE)]

+
(d− 4)

D2E2

[

D2 − (C2 +D2U)(∂rE)2 − (∂zE)2 − 2∂rE(D2∂vE − C∂zE)
]

)

.

(3.162)



Chapter 4

Perturbation of solutions in higher

dimensions

4.1 Introduction

Soon after the discovery, by Kerr, of a solution to the vacuum Einstein equation represent-

ing an isolated rotating black hole [22], the status of its classical stability spawned an area

of active research in general relativity. Significant progress in this direction was made by

Teukolsky, who realised that in the case of algebraically special solutions [34, 35], of which

the Kerr solution is an example, one is able to derive a decoupled equation, satisfied by

Weyl scalar Ψ0, from the original perturbation equation [31, 32]. The validity of a separa-

bility ansatz, which is related to the existence of hidden symmetries [41, 40], allowed Press

and Teukolsky to use the decoupled equation to provide strong evidence for the linear

(mode) stability of the Kerr solution under non-algebraically special perturbations [29].

The mode stability of the Kerr solution has been demonstrated by Whiting [30].

The existence of a decoupled equation was later shown to be related to the existence

of gauge invariant quantities [107]. Given that the Weyl scalar Ψ0, which solves the

decoupled equation, is gauge invariant and has the same number of degrees of freedom as

the perturbed metric, viz. 2, one may suspect that Ψ0 encodes all information regarding

the perturbation, i.e. a solution of the perturbation equation can be constructed given

the existence of a decoupled equation. This was shown to be true by Kegeles and Cohen

[108, 109] and Chrzanowski [110]. They outlined a constructive procedure (the Hertz map)

for finding solutions of perturbation equations for an algebraically special background

63
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given some technical assumptions. A very short and elegant proof of these statements was

provided by Wald some time later [111].

The study of higher dimensional gravity, particularly its black hole solutions, has

become an active area of research in recent years. One of the most natural questions

that one can ask is whether known black holes solutions, such as the Myers-Perry [48],

or the black ring [50] solutions are classically stable. The stability of the Schwarzschild-

Tangherlini solution, which can be thought of as belonging to the Myers-Perry family has

been demonstrated [47].

However, it has been known for some time, by analogy with Gregory-Laflamme

(G-L) type instabilities [55], that one would expect instabilities to occur in certain other

regimes of the Myers-Perry and black ring families. For example, one would expect thin

black rings to suffer from the same type of G-L instability that occurs for a black string

[50]. Or, for ultraspinning (d ≥ 6) Myers-Perry black holes to suffer from the same kind of

G-L type instability that one finds for p-branes [56]. There has been a great deal of recent

progress in using numerical methods to tackle and confirm these conjectures, at least, as

far as the Myers-Perry solution is concerned [57].

Nevertheless, experience from 4d GR suggests that there may be a more simple

framework (à la Teukolsky) in which the stability of higher dimensional black hole solutions

can be addressed. The motivation for such a consideration would not only be that such

a framework would facilitate a much simpler study of perturbations of regimes currently

under investigation using numerical methods but that it may allow a study of regimes that

are currently inaccessible to numerical investigations.

The higher dimensional generalisation of the Teukolsky decoupled equation was first

considered in Ref. [68]. In higher dimensions, one can construct the analogue of Ψ0

by choosing a null frame with null vectors ℓ and n such that ℓ · n = 1 and complete

this frame with d − 2 orthonormal spacelike vectors m(i) (i = 2, . . . , d − 1) that are or-

thogonal to ℓ and n. Now, we define the higher dimensional generalisation of Ψ0 to be

Ωij = ℓam(i)
bℓcm(j)

dCabcd.
1 Furthermore, for algebraically special solutions the perturbed

value of Ωij is gauge invariant (under infinitesimal diffeomorphisms and frame transforma-

tions) [68]. Thus, as the higher dimensional generalisation of Ψ0, Ωij is the most natural

candidate to consider decoupling in higher dimensions.

By studying the conditions required for Ωij to decouple, it was found that in higher

dimensions, it is not sufficient for the background solution to be algebraically special. In

1Ωij is the higher dimensional generalisation of Ψ0 in the sense that they are both the boost weight +2
components of the Weyl tensor.
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addition, there must exist a geodesic null congruence with vanishing expansion, shear and

twist. Equivalently, the solution must be Kundt.

With the above motivation in mind, the strong restrictions found in Ref. [68], which

a background must satisfy for Ωij to decouple, can be thought of as being disappointing.

However, this result can still be used to study perturbations of a particular class of higher

dimensional black holes. This is because the near-horizon geometry (NHG) of extreme

black hole solutions are known to be Kundt. This fact was used by Durkee and Reall to

find instabilities of the NHG of cohomogeneity-1 Myers-Perry solutions [69]. A conjec-

ture relating instabilities of the NHG and the full solution for perturbations preserving

certain symmetries was then used to predict an instability of extremal and near-extremal

cohomogeneity-1 Myers-Perry solutions in seven or more dimensions [69]. These predic-

tions were later confirmed in Ref. [112].

Even so, one would like a decoupled equation that allows the study of a greater class

of solutions within the family of the Myers-Perry solution. While, it is true that Ωij does

not decouple it may be possible to construct some other gauge invariant quantity from

the Weyl tensor that does. The first aim of this chapter is to consider this possibility for

the Schwarzschild-Tangherlini background as a simple class within the Myers-Perry family.

The existence of gauge invariant quantities constructed from the Weyl tensor that decouple

on the Schwarzschild-Tangherlini background would give us hope of finding analogous

quantities for more general solutions within the Myers-Perry family. Equivalently, the

absence of such quantities for the Schwarzschild-Tangherlini solution would indicate their

absence for more general solutions.

In section 4.2, we begin by considering whether other gauge invariant quantities can

be added to Ωij, so that the new quantity decouples. The strategy we take is to find

the obstruction to the decoupling of Ωij. Then, we consider the decoupling of this new

quantity and find the obstruction to its decoupling. Once this iterative process terminates

we are left with a set of gauge invariant quantities that form an obstruction to each others’

decoupling. For the case of Ωij, there are three basic gauge invariant quantities including

Ωij that must be considered. However, we find that a linear combination of these quantities

can never decouple. Hence, there is no hope of constructing a gauge invariant quantity

that decouples using Ωij.

We then consider other gauge invariant quantities constructed from components of

the Weyl tensor and find that a particular set of components ΦA
ij ≡ ℓanbm([i)

cm(j])
dCabcd

do decouple. Metric perturbations of the Schwarzschild-Tangherlini solution have been

studied by Ishibashi and Kodama [47] using a gauge invariant analysis that is analogous
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to the 4d gauge invariant approach developed by Moncrief [113]. This approach uses the

spherical symmetry of the solution to construct gauge invariant quantities from the metric

perturbations. These quantities can be classified into tensor, vector and scalar modes

depending on how they behave on the sphere. We argue that ΦA
ij is related to the vector

modes of Ishibashi and Kodama.

This is completely analogous to what is known to happen in four dimensions. On the

Schwarzschild background, the perturbed value of the imaginary part of the Weyl scalar

Ψ2, which is gauge invariant and has ΦA
ij as its higher dimensional generalisation, satisfies

a decoupled equation. Furthermore, this decoupled equation is equivalent to the Regge-

Wheeler equation [27] describing vector mode (or axial) perturbations of the Schwarzschild

background [114].

Our results decrease the likelihood of finding a gauge invariant quantity constructed

from Weyl tensor components that decouples on the more general Myers-Perry background.

This is because ΦA
ij is generally non-zero for the Myers-Perry solution, so its perturbation

is not gauge invariant. It is not inconceivable that there exists a gauge invariant quantity

constructed from ΦA
ij that decouples. However, we have not been able to come up with a

suitable candidate.

The second aim of the chapter is to construct the Hertz potential map for construct-

ing solutions of the perturbation equations of higher dimensional Kundt backgrounds in

the manner proposed by Wald [111].

In section 4.3, we begin by presenting Wald’s argument for constructing solutions

of a general perturbation equation given a decoupled equation. It was shown in [68] that

a decoupled equation for electromagnetic and gravitational perturbations exist for Kundt

backgrounds. Thus, we apply this method to construct the Hertz map for electromagnetic

(section 4.3.1) and gravitational (section 4.3.2) perturbations of Kundt backgrounds in

higher dimensions.

As stated above, the NHG of extremal black hole solutions is Kundt. In particular,

the decoupled equation for NHG of cohomogeneity-1 Myers-Perry solutions was studied in

[69]. As an application, we use the results of [69] to determine the asymptotic behaviour

of metric perturbations of the NHG of the 5d cohomogeneity-1 Myers-Perry black hole.

This is, in part, motivated by a recent paper concerning the entropy counting of such black

hole solutions [78]. We find that there exist modes that violate the boundary conditions

required in Ref. [78]. Thus, at higher orders, it will not be possible to deform the NHG.
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4.2 Results for Schwarzschild-Tangherlini solution

In this chapter, we define the gauge invariance of a perturbed quantity following Stewart

and Walker [107]. Given a spacetime scalar X, we can decompose this into its back-

ground and perturbed value, i.e. to first order X = X(0) + X(1). We are interested in

how the perturbed value of X, X(1) changes under infinitesimal coordinate and frame

transformations. We say that X(1) is gauge invariant if and only if it remains invariant

under coordinate and frame transformations. This condition places constraints on the

background value of X. For example, under a coordinate transformation parametrised by

vector field ξ, X(1) → X(1) + ξ ·∂X(0). Hence, for X(1) to remain invariant under infinites-

imal coordinate transformations X(0) must be constant. The invariance of the perturbed

quantity X(1) under infinitesimal frame transformations is verified by performing infinites-

imal frame transformations given in equations (B.2)—(B.5) of appendix B. In Ref. [68], it

was shown that the perturbed value of Ωij is gauge invariant if and only if the background

solution is algebraically special. Similar arguments to those presented in Ref. [68] can be

used to demonstrate the gauge invariance of other Weyl components given a background.

For brevity, we will suppress superscript labels on quantities indicating whether they are

background or perturbed values since this will be apparent from the context.

In Ref. [68], Durkee and Reall consider the status of Teukolsky’s decoupling result in

higher dimensions. They do this by taking an algebraically special background, in which

the perturbed value of Ωij is gauge invariant. Using the Bianchi identity equations of the

higher dimensional GHP formalism2 [67], they derive a second order coupled differential

equation, where all second order derivatives act on the gauge invariant quantity Ωij. For

Ωij to decouple, all other terms involving other components of the Weyl tensor must either

be re-expressed in terms of terms involving Ωij or vanish. Once all the Newman-Penrose

and Bianchi equations have been exhausted, they conclude that for Ωij to decouple, the

background must be Kundt. This means that the background admits a null geodesic

congruence with vanishing expansion, shear and twist.

Here, we shall take a different approach. Instead of forcing a particular gauge invari-

ant quantity (in their case Ωij) to decouple and finding restrictions on the background, we

fix the background (in this case the Schwarzschild-Tangherlini solution) and try to find

gauge invariant quantities constructed from Weyl tensor components that decouple on this

background.

Thus, we will use the higher dimensional GHP formalism developed in Ref. [67] to

2See appendix B for a review of the higher dimensional GHP formalism.
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address the possibility that there exists a gauge invariant quantity constructed from Weyl

tensor components that decouples on the Schwarzschild-Tangherlini background.3

We begin by considering the derivation of the decoupling result in Ref. [68] for the

Schwarzschild-Tangherlini background. Up to equation (5.31) in [68], the only assumption

made is that the background admits a null geodesic congruence with vanishing shear and

rotation. This is satisfied by the Schwarzschild-Tangherlini solution. Removing other

second order terms from equation (5.31) gives

(

2þ′þ + kkkk + ρ′þ + d+6
d−2ρþ

′ + 2
d−2ρρ

′ + 4(d−2)
d−3 Φ

)

Ωij + 2ρ2

d−2

(

ΦS
ij − Φ

d−2δij

)

= 0. (4.1)

Thus, the trace-free part of ΦS
ij is the obstruction for the decoupling of Ωij.

4 We know

that this vanishes on the background (see appendix 4.A). Hence, it is invariant under

coordinate transformations. By applying infinitesimal frame transformations (B.2)–(B.5)

and using the fact that the background solution is type D, we can simply verify that

ΦS
ij − Φ

d−2δij is a gauge invariant quantity.

We proceed by finding the obstruction to the decoupling of the gauge invariant

quantity

ρ2
(

ΦS
ij − Φ

d−2δij

)

.

It can be shown that this quantity satisfies5

(

2þ′þ + kkkk + d+6
d−2 (ρ′þ + ρþ′) + 4Φ

ρ þ + 2(3d+5)
(d−2)2 ρρ

′ − 4(3d−8)
(d−2)(d−3)Φ

) [

ρ2
(

ΦS
ij − Φ

d−2δij

)]

+ (d−4)
(d−2)2 ρ

2
(

ρ′2Ωij + ρ2Ω′
ij

)

= 0.

(4.2)

Hence, the obstructions to the decoupling of ρ2
(

ΦS
ij − Φ

d−2δij

)

are ρ2ρ′2Ωij and ρ4Ω′
ij ,

which can simply be shown to be gauge invariant. An equation of the form above can be

derived for these quantities using equation (4.1). However, this procedure will lead to yet

another new quantity to consider: ρ4ρ′2
(

ΦS
ij − Φ

d−2δij

)

.

Thus, we find that this iterative process generates boost weight +2 terms of the

form Ωij, ρ
2
(

ΦS
ij − Φ

d−2δij

)

and ρ4Ω′
ij multiplied by various factors of ρρ′. Therefore, we

take

Xij = Ωij + f ρ2
(

ΦS
ij − Φ

d−2δij

)

+ g ρ4Ω′
ij (4.3)

3See appendix 4.A for a review of the Schwarzschild-Tangherlini solution.
4Note that in 4d this term vanishes identically leading to the decoupling of Ψ0.
5The derivation of this equation is given in appendix 4.B.
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as our ansatz for the decoupled gauge invariant quantity, where f and g are GHP scalars

of boost and spin weight 0.

For Xij to decouple, there must exist f and g such that

(

2þ′þ + kkkk

)

Xij = OXij , (4.4)

where O is some first order differential operator.

The only boost and spin weight 0 GHP scalars that do not vanish on the background

are ς = ρρ′ and Φ. Hence,

f = f(ς,Φ), g = g(ς,Φ). (4.5)

In particular, equations (NP3), (NP3)′ and (B5) evaluated on the background imply that

on the background

kif = 0, kig = 0. (4.6)

Using equation (4.1), its primed version for ρ4Ω′
ij and eq. (4.2), we find

(

2þ′þ + kkkk

)

Xij =
{

ρ′þ + d+6
d−2þ′ + . . .

}

Ωij

+
{(

−2þ′f
f + d+6

d−2ρ
′ + 4Φ

ρ

)

þ +
(

−2þf
f + d+6

d−2ρ
)

þ′ + . . .
}[

fρ2
(

ΦS
ij − Φ

d−2δij

)]

+
{(

−2þ′g
g + d+14

d−2 ρ
′ + 8Φ

ρ

)

þ +
(

−2þg
g + d+6

d−2ρ
)

þ′ + . . .
}

(

gρ4Ω′
ij

)

, (4.7)

where the ellipses indicate other scalar terms that have been omitted for brevity. Neces-

sarily, for Xij to decouple, the coefficients of the derivative operators in the 3 terms on

the right hand side must be equal, i.e.

ρ′ = −2þ′f
f + d+6

d−2ρ
′ + 4Φ

ρ = −2þ′g
g + d+14

d−2 ρ
′ + 8Φ

ρ ,

d+6
d−2ρ = −2þf

f + d+6
d−2ρ = −2þg

g + d+6
d−2ρ. (4.8)

These imply that on the background

þf = 0, þg = 0, þ′f = 2
(

2
d−2ρ

′ + Φ
ρ

)

f, þ′g = 4
(

2
d−2ρ

′ + Φ
ρ

)

g. (4.9)

Equation (B2) evaluated on the background implies that

þ′Φ = −d−1
d−2ρΦ. (4.10)
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This, along with the equations above, can be used to show that

[þ′,þ]f =
(

4
(d−2)2

ρρ′ + 2(d−1)
d−2 Φ − 1

d−2

)

f, (4.11)

which is non-vanishing on the background. However, considering commutator equation

(C1) on f , on the background, gives that this should vanish. Thus, we encounter a

contradiction. We would arrive also at a contradiction had we considered a commutator

on g.

Therefore, there do not exist scalars f and g such that the gauge invariant quantity

Xij, given by eq. (4.3), decouples.

In summary, we took Ωij as the initial ansatz for a decoupled equation. This does

not work as there is another gauge invariant quantity that obstructs the decoupling of Ωij .

Then, we considered the decoupling of this new quantity and found other quantities that

obstruct its decoupling. Repeating this iterative process we found that all obstructions are

of a form given by one of three basic gauge invariant quantities constructed from Ωij, ΦS
ij

and Ω′
ij . Thus, we take a gauge invariant quantity constructed from a linear combination

of these three basic quantities as our new ansatz and find that such a quantity cannot

decouple. Hence, a decoupled equation for the Schwarzschild-Tangherlini solution cannot

be found by completing Ωij with other gauge invariant quantities.

It is clear from the above calculation that gauge invariant quantities formed from

Ωij or the trace-free part of ΦS
ij will not decouple. However, one can consider other gauge

invariant quantities. For example, one can consider boost weight +1 components of the

Weyl tensor: Ψijk. Although Ψijk is gauge invariant under infinitesimal coordinate trans-

formations, since it vanishes on the background, its gauge invariance under infinitesimal

tetrad transformations is not so clear. Under a null rotation about n parametrised by zi,

Ψi and Ψijk transform as [67]

Ψi 7→ Ψi − ziΦ + . . . , Ψijk 7→ Ψijk + z[kΦj]i + zlΦlijk + . . . , (4.12)

where the ellipses refer to terms that vanish on the background and need not be considered.

Thus, in order to be gauge invariant, the boost weight +1 ansatz must be of the form

Ψijk + 2
d−3δi[jΨk], (4.13)

which vanishes in 4d. Looking at the Bianchi equations (B1)–(B7), it is not clear how

they can be manipulated to give a decoupling result for the quantity above.
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Alternatively, we can use the Penrose wave equation [20]

gef∇e∇fRabcd +RabefR
ef
cd + 2(RaecfR

e
b
f
d −RaedfR

e
b
f
c ) = 0 (4.14)

to confirm that decoupling is indeed not possible. Shortly after the decoupling result of

Teukolsky, it was shown by Ryan, that the Teukolsky decoupled equation can be derived

by projecting the Penrose wave equation on the appropriate null tetrad component and

linearising [115]. Note, that since we are going to consider this equation to first order in

perturbed quantities and, furthermore, that the perturbed solution continues to satisfy

the vacuum Einstein equation, we can replace the Riemann tensors in the equation above

with Weyl tensors.

Contracting the Penrose wave equation (4.14) with

ℓam(i)
bm(j)

cm(k)
d + 2

d−3ℓ
anbℓcδi[jm(k])

d

gives

O
(

Ψijk + 2
d−3δi[jΨk]

)

= 2ρ
d−2

(

kiΦ
A
jk − 1

d−3δi[jkk]Φ
)

+ . . . , (4.15)

where we have used the Bianchi identities to simplify the expression on the right hand side.

The ellipses indicate terms that are of zero order in derivatives. The Bianchi identities

cannot be used to transform the first order in derivatives obstruction on the right hand

side into a terms involving Ψijk + 2
d−3δi[jΨk]. Thus, we conclude that this boost weight

+1 gauge invariant quantity cannot decouple.

We will not consider gauge invariant quantities constructed from Φijkl since it is

not clear whether such a quantity would be simpler to work with than the original metric

perturbation.

The only components left to consider are ΦA
ij . It is simple to verify that ΦA

ij is gauge

invariant. We proceed by using the Bianchi equations to derive an equation in which

second order derivatives act only on ΦA
ij . As before, we throw away terms that are clearly

of quadratic order or above in the perturbation expansion.

Antisymmetrising over ij in (B2) gives

−þΦA
ij + k[iΨj] = 3

d−2ρΦ
A
ij + d−1

d−2Φρ[ij], (4.16)
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while antisymmetrising over ij in (B5) gives

kkΦ
A
ij+k[iΦj]k+þ′Ψ[ij]k = − 2

d−2ρ
′Ψ[ij]k− d−1

(d−2)(d−3)Φδk[iτj]− ρ
d−2

(

Ψ′
[ij]k − δk[iΨ

′
j]

)

. (4.17)

Contracting over indices jl in (B3) and antisymmetrising over the remaining indices gives

k[iΨj] − kkΨ[ij]k = (d−1)(d−4)
(d−2)(d−3)Φρ[ij] − d−4

d−2ρΦ
A
ij. (4.18)

Now, consider kk(4.17) −2þ′(4.16)

(2þ′þ + kkkk)Φ
A
ij + þ′kkΨ[ij]k − 2þ′k[iΨj] + k[ik|k|Φj]k − [þ′, kk]Ψ[ij]k + [kk, k[i]Φj]k = . . . ,

(4.19)

where the ellipses refer to terms on the right hand side. All such terms have only single

derivatives. In addition, commutator equations (C2) and (C3) can be used to rewrite the

final two terms on the right hand side as an expression involving only single derivatives.

Furthermore, equations (4.89) and (4.18) imply that

þ′kkΨ[ij]k − 2þ′k[iΨj] + k[ik|k|Φj]k = −[þ′, k[i]Ψj] + . . . ,

which can be converted into an expression with single derivatives using (C2)′. Thus, we

have an equation in which all double derivatives act on ΦA
ij

(2þ′þ + kkkk)Φ
A
ij = . . . .

On the right hand side, terms of the form kkΨ[ij]k can be removed by using equation

(4.18). Other terms can be simplified by rearranging terms such that one of the factors

in a term vanishes on the background. Then, the other factor can be assumed to take

its background value. Bianchi and Newman-Penrose equations on the background can be

used to further simply such terms.

Having simplified terms on the right hand side of the equation above, we find that

the expression simplifies greatly and ΦA
ij decouples

(

2þ′þ + kkkk + d+2
d−2(ρþ′ + ρ′þ) + 4(d−1)

(d−2)2 ρρ
′ − 2(d−1)

d−3 Φ
)

ΦA
ij = 0. (4.20)

Metric perturbations of the Schwarzschild-Tangherlini solution have been studied

by Ishibashi and Kodama [47] using a gauge invariant analysis that is analogous to the 4d

approach developed by Moncrief [113]. ΦA
ij is a 2-form on the (d − 2)−sphere. However,
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their analysis does not find any 2-form type modes on the sphere. They classify the

perturbations into three types of tensorial, vector and scalar modes depending on their

behaviour on the (d − 2)−sphere, which is parametrised, here, by i type indices. The

tensor modes decompose into a trace-free transverse symmetric tensor, a transverse vector

and two other scalars, while the vector modes decompose into a transverse vector and a

scalar.

Performing a similar decomposition of ΦA
ij gives

ΦA
ij = ΦA

T ij + k[iVj], (4.21)

where ΦA
T ij is transverse, i.e.

kiΦ
A
T ij = 0 (4.22)

and Vi is some vector mode. Since transverse 2-form modes on the sphere are not found

in the Ishibashi and Kodama analysis, we can only conclude that ΦA
T ij parametrise trivial

metric perturbations. An intuitive reason for why this should be the case is that to

construct (symmetric) metric perturbations from ΦA
T ij, we will need to contract it with a

ki derivative, which gives zero. This leaves Vi, which correspond to the vector modes of

Ishibashi and Kodama.

As mentioned in the introduction, this is analogous to what is found in 4d. On the

Schwarzschild background, the perturbed value of the imaginary part of the Weyl scalar

Ψ2, which is gauge invariant and has ΦA
ij as its higher dimensional generalisation, satisfies a

decoupled equation [114]. Furthermore, this decoupled equation is equivalent to the Regge-

Wheeler equation [27] describing vector mode (or axial) perturbations of the Schwarzschild

background [114]. The real part of the Weyl scalar Ψ2, which has Φ ≡ ℓanbℓcndCabcd as its

higher dimensional generalisation, is not gauge invariant. From this, one can construct a

gauge invariant quantity using metric perturbations and show that this also decouples and

the decoupled equation is equivalent to the Zerilli equation [28] describing scalar mode (or

polar) perturbations of the Schwarzschild background [116]. Analogously, Φ is not gauge

invariant on a Schwarzschild-Tangherlini background. However, we do not attempt to

construct a gauge invariant quantity from this since we are only considering gauge invariant

quantities constructed from the Weyl tensor. Had we done so, we would presumably find

that this satisfies the scalar mode master equation of Ishibashi and Kodama [47].

In conclusion, we find that the only gauge invariant quantities constructed from

Weyl tensor components that decouple on the Schwarzschild background are ΦA
ij. These

components are shown to be related to the vector modes of Ishibashi and Kodama [47].
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4.3 Constructing solutions of perturbation equations

The existence of a map in 4d for constructing exact linear perturbations given the existence

of a decoupled equation was demonstrated, given some technical assumptions, by Kegeles

and Cohen [108, 109] and Chrzanowski [110]. However, Wald put this map on a firmer

basis with his elegant proof of it [111]. In this section, we review Wald’s result [111]

regarding the construction of solutions of perturbation equations, given the existence of

decoupled equations, emphasising the generality of his argument.

We consider as our background, a solution of the vacuum Einstein equation

R̄ab = Λḡab. (4.23)

We would like to find a solution of some linear (perturbation) equation

E(f) = 0 (4.24)

on this background, where f is the perturbation of some field. For example, for an elec-

tromagnetic perturbation, f is the 1-form potential A and the equation above reduces to

the Maxwell equation

∇a(∇aAb −∇bAa) = 0. (4.25)

In the case of gravitational perturbations, f is the associated metric perturbation, usually

denoted by h, while E is the linearised Einstein operator

[G(1)(h)]ab = ∇c∇(ahb)
c− 1

2
(∇2hab+∇a∇bh)−

1

2
ḡab

(

∇c∇dh
cd −∇2h

)

+
1

2
Λ (hḡab − dhab) ,

(4.26)

where all indices above have been raised using the background metric ḡ, ∇ is the Levi-

Civita connection of ḡ and h is the trace of hab.

Now, assume that we can construct another equation, which is satisfied by a quantity

T (f),

O (T (f)) = 0, (4.27)

where O and T are some linear operators. Such an equation, where T (f) is a more simple

quantity than f , is usually referred to as a decoupled equation, in the sense that the

quantity T (f) “decouples” from the perturbation equation. In 4d, a decoupled equation for

electromagnetic and gravitational perturbations can only be derived for vacuum solutions

admitting a null geodesic, shear-free congruence [31, 32]. By the Goldberg-Sachs theorem
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[36], this is equivalent to the condition that the solution be algebraically special (i.e. Petrov

type II or more special).

In higher dimensions, the existence of a decoupled equation for electromagnetic and

gravitational perturbations places more restrictive conditions on the background solution

[68]. For d > 4, the background solution must admit a null geodesic congruence with van-

ishing optics, i.e. the background solution must be Kundt. Kundt solutions are necessarily

of CMPP [58] type II [88].

The existence of a decoupled equation implies the existence of a linear operator S
such that

SE = OT . (4.28)

Simply put, operator S describes how the decoupled equation is derived from the pertur-

bation equation.

The key idea in Wald’s derivation is the use of operator adjoints. Given a linear

differential operator O acting on a tensor field t ∈ T and taking it to a tensor field u ∈ U ,

the unique adjoint operator O† is defined via

(u,Ot) = (O†u, t) (4.29)

up to a total divergence, where the inner product between any tensor fields v1 and v2 of

rank m is defined by

(v1, v2) ≡
∫

v1
a1...amv2a1...am

d(V ol). (4.30)

We proceed by taking the adjoint of the operator equivalence (4.28) and using the

fact that (O1O2)
† = O†

2O†
1 to get

E†S† = T †O†. (4.31)

The operator equivalence above implies that given a solution ψ of

O†ψ = 0, (4.32)

f = S†ψ solves the equation

E†(f) = 0. (4.33)
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For all cases of interest here, the operator E is self-adjoint, i.e. E† = E . Thus,

O†ψ = 0 =⇒ E(S†ψ) = 0. (4.34)

The solution ψ is called the Hertz potential. Furthermore,

O(T S†ψ) = (OT )S†ψ = (SE)S†ψ = SE(S†ψ) = 0, (4.35)

where we have used (4.28) in the third equality and (4.34) in the final equality. Hence,

ϕ = T S†ψ solves the decoupled equation

Oϕ = 0. (4.36)

4.3.1 Electromagnetic perturbations of Kundt solutions

In [68], it was shown that for electromagnetic perturbations, a higher dimensional ana-

logue of the decoupled equation found in 4d by Teukolsky [32] can only be derived for

Kundt solutions. The higher dimensional decoupled equation is analogous to the Teukol-

sky equation in the sense that in both cases T (A) is the highest boost weight component

of the Maxwell field F = dA. Hence,

TE(A)i ≡ ϕi = ℓami
b (∇aAb −∇bAa). (4.37)

The decoupled equation is

OE(ϕ)i = 0, (4.38)

where

OE(ϕ)i =
(

2þ′þ + kjkj + ρ′þ − 4τjkj + Φ − 2d−3
d−1 Λ

)

ϕi+2(−2τ[ikj]+ΦS
ij+2ΦA

ij)ϕj . (4.39)

As noted before,

EE(A)b = ∇a(∇aAb −∇bAa) = 0. (4.40)

Operator SE is found by considering the derivation of the decoupled equation in [68]. To

simplify the derivation of SE , we assume from the beginning that the background under

consideration is Kundt, i.e. κ(0) = ρ(0)
ij = 0.

Also, in the derivation in [68], a vector potential A is not introduced. Hence, the

Bianchi identity dF = 0 is non-trivial. Here we let F = dA. Thus, of the Maxwell
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equations (4.4)–(4.7) in [68], only (4.4), (4.6) and their associated primed equations are

non-trivial:

(4.4) ⇐⇒ −ℓa EE(A)a = 0, (4.41)

(4.4)′ ⇐⇒ −na EE(A)a = 0, (4.42)

(4.6) ⇐⇒ (4.6)′ ⇐⇒ mi
a EE(A)a = 0. (4.43)

The derivation begins by considering the combination þ(4.6) + kj [δij(4.4) − (4.5)],

which results in equation (4.9) of [68]6

0 = (2þ′þ + kjkj)ϕi + 2[þ,þ′]ϕi − [þ, kj](Fij + Fδij) + [ki, kj ]ϕj

+þ
(

− (2ρ′[ij] − ρ′δij)ϕj + 2(Fij + Fδij)τj
)

(4.44)

−ki

(

τ ′jϕj

)

+ kj

(

2τ ′[iϕj]

)

,

where, as noted before, we assume κ = ρij = 0. This is equivalent to considering

þ (mi
a EE(A)a) − ki (ℓa EE(A)a) . (4.45)

The next manipulation that involves equations (4.4) and (4.6) is eliminating the

combination þ(Fij + Fδij). This is done by adding −(2τj + τ ′j)(δij(4.4) − (4.5)) to (4.44)

or equivalently (4.45). Hence, we have

þ (mi
a EE(A)a) − ki (ℓ

a EE(A)a) + (2τi + τ ′i) (ℓa EE(A)a) . (4.46)

The rest of the derivation does not make use of the Maxwell equation, that is it

involves either the Bianchi identity or the Newman-Penrose equations. Hence, operator

SE is given by equation (4.46)

SE(J)i = þ(mi
aJa) − (ki − 2τi − τ ′i)(ℓ

aJa). (4.47)

The Hertz potential ψH is given by solving

O†
E(ψH)i = 0. (4.48)

6We use the notation of [68] to denote components of the Maxwell field strength; that is ϕi = ℓam(i)
bFab,

F = ℓanbFab, Fij = m(i)
am(j)

bFab and ϕ′
i = nam(i)

bFab.
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We derive O†
E by considering the inner product

(ψi,OE(ϕ)i) . (4.49)

For the inner product to be well-defined ψi must be boost weight -1 since OE(ϕ)i is boost

weight 1. Using equation (4.39)

(ψi,OE(ϕ)i) =
([

2þ†þ′† + kj
†kj

† + þ†ρ′ + −4kj
†τj + Φ − 2d−3

d−1 Λ
]

ψi

+ 2
[

−2k[i
†τj] + ΦS

ij − 2ΦA
ij

]

ψj , ϕi

)

(4.50)

Using equations (4.97)–(4.101) for the adjoint of the GHP covariant derivatives, commu-

tator (C1) and the NP equation (NP4) gives

O†
E(ψ)i =

(

2þ′þ + kjkj + ρ′þ + Φ + Λ
d−1

)

ψi + 2(−2τ[ikj] + ΦS
ij − 2ΦA

ij)ψj . (4.51)

To find a solution of the electromagnetic perturbation equation (4.40), we also need

to calculate the adjoint of S. We do this by considering the inner product

(ψi,S(A)i) =
([

mi
aþ† + ℓa(−ki

† + 2τi + τ ′i)
]

ψi, Aa

)

(4.52)

where we have used (4.47). Using equations (4.97) and (4.101) gives

S†(ψ)a = [−mia þ + ℓa(ki + τi)]ψi. (4.53)

Thus, using the results of section 4.3, we have that if ψHi is a solution to (4.48), where

O†
E is given in equation (4.51), then

S†
E(ψH)a = [−mia þ + ℓa(ki + τi)]ψHi (4.54)

is a solution of the electromagnetic perturbation equation (4.40).

Also,

TES†
E(ψH)i = þ2(ψH)i (4.55)

is a solution of the decoupled equation OE(ϕ)i = 0.

Consider a doubly Kundt solution. This is a solution with two null geodesic con-

gruences with vanishing optics, i.e. we also have κ
′(0)
i = ρ

′(0)
ij = 0. In this case, the boost

weight -1 component of the Maxwell field ϕ′ also satisfies a decoupled equation—the prime
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of the decoupled equation (4.39)

O′
E(ϕ′)i = 0, (4.56)

where (using equation (4.39) and commutator (C1))

O′
E(ϕ′)i =

(

2þ′þ + kjkj − 2(τj + τ ′j)kj + 2τjτ
′
j − Φ − 2d−3

d−1 Λ
)

ϕ′
i

+2
(

−2τ ′[ikj] + ΦS
ij + 4ΦA

ij + 2τ ′[iτj]
)

ϕ′
j . (4.57)

In this case, if ψ′
Hi is a solution to the prime of equation (4.48), then S ′

E
†(ψ′

H)a is

also a solution of the perturbation equation.

4.3.2 Gravitational perturbations of Kundt solutions

For gravitational perturbations we assume that the perturbed solution also satisfies the

vacuum Einstein equation. The metric perturbation h satisfies

EG(h)ab = 0, (4.58)

where EG is given in equation (4.26).

In [68], it was shown that as with electromagnetic perturbations an analogue of the

Teukolsky decoupled equation for gravitational perturbations [32] only exists for Kundt

solutions. The decoupled equation is solved by the boost weight +2 components of the

perturbed Weyl tensor Ωij, which generalises the complex Weyl scalar Ψ0 of the 4d NP

formalism to higher dimensions.

TG(h)ij ≡ Ωij = −1

2

{(

k(ikj) −
δij
d− 2

kkkk

)

− 2

(

τ ′(ikj) −
δij
d− 2

τ ′kkk

)

−
(

ρ′ij −
δij
d− 2

ρ′
)

þ − 2

(

þρ′ij −
δij
d− 2

þρ′
)}

(ℓaℓbhab)

− 1

2
þ2

{(

mi
amj

b − δij
d− 2

mk
amk

b

)

hab

}

+
{

þk(i − τ ′(iþ − (þτ ′(i)
}

(ℓamj)
bhab) −

δij
d− 2

{

þkk − τ ′kþ − (þτ ′k)
}

(ℓamk
bhab).

(4.59)

The decoupled equation is

OG(Ω)ij = 0, (4.60)
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where

OG(Ω)ij =
(

2þ′þ + kkkk + ρ′þ − 6τkkk + 4Φ − 2d
d−1Λ

)

Ωij

+4
(

τkk(i| − τ(i|kk + ΦS
(i|k + 4ΦA

(i|k

)

Ωk|j) + 2Φikjl Ωkl. (4.61)

To derive operator SG, we assume that the gravitational perturbation also generates

a first order energy-momentum tensor. Then, SG is the operator acting on the first order

energy-momentum tensor in the inhomogeneous decoupled equation

OG(Ω)ij = 8π SG

(

T
(1)
ab

)

ij
. (4.62)

Therefore, we need to rederive the decoupling result of Ref. [68] assuming a non-zero

first order energy-momentum tensor. Thus, we must use the more general (viz. including

matter) NP equations, Bianchi identities and commutator relations found in Ref. [67]. In

order, to simplify the calculation, we may assume from the onset that the background is

Kundt.

Going through the derivation of the decoupled equation for gravitational perturba-

tions given in Ref. [68], except using the more general equations that include matter terms

gives

SG (T )ij = 1
d−2 δij

(

2þ′þ + kkkk + ρ′þ − 6τkkk + 4Φ
)

(ℓaℓbTab) −
(

ΦS
ij − þρ′(ij)

)

(ℓaℓbTab)

+2
(

þk(i − (2τ(i + τ ′(i)þ − (þτ ′(i)
)

(ℓamj)
bTab) − þþ(mi

amj
bTab) + 1

d−2 δij þþ(gabTab).

(4.63)

The adjoints of OG and SG can be derived in a fashion analogous to the electromag-

netic case

O†
G(Π)ij =

(

2þ′þ + kkkk + ρ′þ + 2τkkk + 4Φ + 2(d−4)
d−1 Λ

)

Πij

+4
(

τkk(i| − τ(i|kk + ΦS
(i|k − 4ΦA

(i|k

)

Πk|j) + 2Φikjl Πkl, (4.64)

S†
G (Π)ab = −ℓaℓb

(

ΦS
ij + ρ′(ij)þ

)

Πij + 2ℓ(am|j|b)
(

þki + (τi + τ ′i)þ
)

Πij −miamjb þ2 Πij .

(4.65)
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Thus, given a Hertz potential ΩH that is a solution of

O†
G(ΩH)ij = 0, (4.66)

where operator O†
G is given in eq. (4.64), then

S†
G (ΩH)ab (4.67)

where S†
G is given in eq. (4.65), is a solution of the gravitational perturbation equation

(4.58).

Furthermore,

TGS†
G (ΩH)ij =

1

2
þ4ΩHij (4.68)

is a solution of the decoupled equation (4.60).

In the case of a background that is doubly Kundt, the prime of all the above equa-

tions hold also.

For the case of doubly Kundt solutions, the operators O, O′, O† and O′† encode the

same physical information. Therefore, there should be some connection between them.

Indeed, in 4d, for type D solutions, it is known that the solution of the equations corre-

sponding to the above operators are related by various factors of the background value of

the Weyl scalar Ψ2 (see Refs. [117, 118, 111] and references therein). It is very simple

to prove such relations using the Bianchi identities. However, in higher dimensions the

situation is more complicated. We have not been able to derive similar expressions relating

the solutions to the various equations defined by the four operators above.

4.3.3 Asymptotic behaviour of metric perturbations of near horizon ge-

ometry of 5d cohomogeneity-1 extreme Myers-Perry solutions

In this section, we consider as an application of the Hertz potential map developed above,

the asymptotic behaviour of the metric perturbation of the near horizon geometry of 5d

cohomogeneity-1 extreme Myers-Perry black hole. This consideration is motivated by a

recent proposal that quantum gravity on the near horizon of a class of 5d solutions of which

the above solution is an example, with appropriate asymptotic fall-off conditions on the

metric perturbation is equivalent to a CFT, which can be used to calculate the Bekenstein-

Hawking entropy of the original solution [78]. Thus, giving a statistical counting of the

black hole’s degrees of freedom.
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Turning off the graviphoton charge in the solution discussed in [78] gives the 5d

cohomogeneity-1 extreme Myers-Perry black hole solution with near-horizon geometry

ds2 =
r2+
4

{

−R2dT 2 +
dR2

R2
+ 2(dψ + cos θdφ+RdT )2 + dΩ2

(2)

}

, (4.69)

where r+ is the event horizon radius and dΩ2
(2) is the round metric on S2. This (doubly

Kundt) solution is studied in Ref. [69], where the decoupling result of [68] is used to predict

an instability of the corresponding extreme Myers-Perry solution. Choose the following

null frame

ℓ =
r+

2
√

2

(

−RdT +
dR

R

)

, n =
r+

2
√

2

(

RdT +
dR

R

)

,

m2 =
r+√

2
(dψ + cos θdφ+RdT ), mα =

r+
2
êα, (4.70)

where α = 3, 4 and êα form an orthonormal basis on S2.

In Ref. [69], it was shown that for the geometry with metric (4.69) with basis chosen

as above

κi = κ′i = 0, ρij = ρ′ij = 0, τi + τ ′i = 0,

Ωij = Ω′
ij = 0, Ψijk = Ψ′

ijk = 0, Φijkl = R̂ijkl, ΦA
ij = − 4

r2+
(m3 ∧m4)ij , (4.71)

where R̂ijkl is the Riemann tensor of the three dimensional space H with metric

ds2H =
r2+
4

{

2(dψ + cos θdφ)2 + dΩ2
(2)

}

. (4.72)

In order to determine the asymptotic behaviour of the metric perturbation of the

near horizon geometry with metric (4.69), we must first solve the Hertz potential equation

O†
G(Π)ij = 0, (4.73)

where operator O†
G is given in (4.64). Then,

hab =
1

2
ℓaℓb(R̂ijΠij) + 2ℓ(am|j|b)þkiΠij −miamjb þ2 Πij (4.74)

is a solution of the gravitational perturbation equation in the ingoing radiation gauge,

where we have used eq. (4.65) and eqs. (4.71) above. Space H is not an Einstein solution.
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Thus, the ℓaℓb component of hab is non-zero.

Assume the following separability ansatz for Πij

Πij = χ(T,R)Yij(θ, φ, ψ). (4.75)

Substituting this ansatz into the equation for Πij , i.e. eq. (4.66) gives7

(D2 − q2 − λ)χ = 0, O(2)Yij = λYij, (4.76)

where D is some charge covariant derivative for some AdS2 scalar with charge q defined

in Ref. [69] and O(2) is some operator given in Ref. [69], which we do not need to know

about in detail here. Hence, χ solves the equation for a massive, charged scalar in an

AdS2 background with homogeneous electric field. Such an equation has been studied by

a number of authors [119, 120, 121, 69]. At large R,

χ ∼ R−∆± , ∆± =
1

2
±
√

λ+
1

4
. (4.77)

Hence, from the form of hab given in (4.74) we can conclude that for large R

hab ∼ R
1
2 ± 1

2η

















O(1) O( 1
R2 ) O( 1

R ) O( 1
R)

O( 1
R3 ) O( 1

R3 ) O( 1
R3 )

O( 1
R2 ) O( 1

R)

O( 1
R)

















, η =
√

1 + 4λ. (4.78)

where the columns and rows indicate the T , R, ψ and θ and φ (collectively labelled α)

components, respectively. The same result would be found if we considered n as the

WAND of choice, that is if hab were in outgoing gauge.

Comparing this with the fall-off conditions in Ref. [78], we find that the TR, Tψ, RR,

ψα and αβ components are the most restrictive. These components have been underlined

in the matrix above. Thus, in order to satisfy the fall-off conditions, η must be real. We

must also choose the lower sign (corresponding to normalisable modes) and require that

η ≥ 1 or λ ≥ 0. Recall that λ is the eigenvalue of operator O(2). The spectrum of operator

O(2) was studied in appendix B of Ref. [69]. It is clear from the study of gravitational

7The steps involved in this computation are almost identical to that given in appendix A of Ref. [69].
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scalar modes that there exists modes for which

λ = 2 + κ(κ+ 1) + |m|(κ+ 1
2) −m2/8, (4.79)

where m is an integer and κ is a positive integer. For κ = 1, m ≥ 15, λ < 0. Hence,

there exist modes that violate the fall-off conditions. It was shown in Ref. [69] that for all

axisymmetric modes (m = 0) λ ≥ 0. Hence, all axisymmetric modes satisfy the boundary

conditions.

There is a similar proposal for the entropy counting of the 4d extremal Kerr solution

[122]. In Ref. [122], as in the 5d case, the metric perturbation of the NHG is assumed to

satisfy a certain asymptotic form. The asymptotic behaviour of the NHG of the extremal

Kerr solution has been studied in [120] and [121]. The results we find for the 5d case are

the same as they found in the 4d case.
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4.A Schwarzschild-Tangherlini solution

The Schwarzschild-Tangherlini black hole is an example of a higher dimensional type D

solution. The Schwarzschild-Tangherlini metric in Schwarzschild coordinates is

ds2 = −f(r)dt2 + dr2/f(r) + r2dΩ2
(d−2), f(r) = 1 − µ

rd−3
, (4.80)

where dΩ2
(d−2) is the round metric on a unit radius (d− 2)−sphere. In ingoing Eddington-

Finkelstein coordinates, the WANDs of the solution are [123]

ℓ =
∂

∂r
, n =

∂

∂v
+ 1

2f
∂

∂r
. (4.81)

Defining (d− 2) orthonormal spacelike vectors

mi = rêi (i = 2, · · · , d), (4.82)

completes a null frame (ℓ, n,mi) for the solution.

Cartan’s first equation of structure deµ + ωµ
νe

ν = 0 can be used to find the optical

scalars associated with WANDs ℓ and n

L11 = −N01 = −1
2∂rf,

κi = τi = 0, ρij =
ρ

d− 2
δij , ρ = (d− 2)/r,

κ′i = τ ′i = 0, ρ′ij =
ρ′

d− 2
δij , ρ′ = (d− 2)f/(2r). (4.83)

Thus, the solution is an example of a Robinson-Trautman solution, that is there exists a

null geodesic congruence with vanishing shear and rotation, but non-vanishing expansion.

The curvature tensors can be derived from Cartan’s second equation of structure

Rµν = dωµν + ωµ
ρ ∧ ωρν . Or, alternatively, one can read off the curvature tensors from

appendix A of [1]

Ωij = Ψijk = 0, Ω′
ij = Ψ′

ijk = 0,

Φijkl =
−4Φδi[kδl]j

(d− 2)(d− 3)
, ΦS

ij = −1
2Φikjk, ΦA

ij = 0, Φ = −(d− 2)(d− 3)µ

2rd−1
. (4.84)

In particular,

ΦS
ij −

Φ

d− 2
δij = 0. (4.85)
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4.B Derivation of equation (4.2)

This appendix is dedicated to the derivation of equation (4.2). We proceed by deriving

an equation in which second order derivatives act only on ΦS
ij − Φ

d−2δij . To simplify the

derivation we shall neglect from the beginning any terms that are clearly of quadratic

order or above when quantities are decomposed into background plus perturbation parts.

Contracting (B3), taking its symmetric part and removing its trace gives

2þ
(

ΦS
ij − Φ

d−2δij

)

+ kk

(

δk(iΨj) − Ψ(ij)k − 2Ψk
d−2δij

)

= ρ(kl)

(

Φikjl +
2ΦS

kl
d−2 δij

)

− ρ
(

Φij − Φ
d−2δij

)

− Φ
(

ρij − ρ
d−2δij

)

− d−4
d−2ρ

′Ωij. (4.86)

Symmetrising over the ij indices in (B5) and removing its trace gives

kk

(

ΦS
ij − Φ

d−2δij

)

−kl

(

δl(iΦj)k − Φlk
d−2δij

)

+ þ′
(

Ψ(ij)k + Ψk
d−2δij

)

= ρ
d−2

(

Ψ′
(iδj)k − Ψ′

(ij)k − 2Ψ′
k

d−2δij

)

− 2ρ′

d−2

(

Ψ(ij)k +
Ψ′

k
d−2δij

)

− (d−1)Φ
(d−2)(d−3)

(

τ(iδj)k − τk
d−2δij

)

. (4.87)

Now consider þ′(4.86) + kk(4.87), the left hand side of which is equal to

(2þ′þ + kkkk)
(

ΦS
ij − Φ

d−2δij

)

− [þ′, kk]
(

Ψ(ij)k +
Ψ′

k
d−2δij

)

− kk

(

k(iΦj)k − klΦlk
d−2 δij

)

+ þ′
(

k(iΨj) − kkΨk
d−2 δij

)

. (4.88)

The top line is precisely what we want since commutator equation (C2)′ can be used to

convert the second term to an expression with only first order derivatives. The second line

can be simplified using the trace of (B5) and full contraction of (B7), which when added

together give

kkΦik − þ′Ψi = ρ′Ψi + d−1
d−2Φτi. (4.89)

Applying kj to this, symmetrising over ij and removing the trace gives

kk

(

k(iΦj)k − klΦlk
d−2 δij

)

− þ′
(

k(iΨj) − kkΨk
d−2 δij

)

+ [kk, kl]
(

δk(iΦj)l − Φkl
d−2δij

)

+ [þ′, kk]
(

δk(iΨj) − Ψk
d−2δij

)

= kk

[

ρ′
(

δk(iΨj) − Ψk
d−2δij

)]

+ d−1
d−2kk

[

Φ
(

δk(iτj) − τk
d−2δij

)]

.

(4.90)
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Commutator equations (C3) and (C2)′ can be used to rewrite the second line in terms of

first order derivative terms. Thus, the equation above can be used to rewrite the second

line of (4.88) in terms of first order derivative terms. To summarise, we have

(2þ′þ + kkkk)
(

ΦS
ij − Φ

d−2δij

)

= ... , (4.91)

where the right hand side of the equation above involves only first order derivatives.

Terms of the form kkΨ(ij)k and kkΨ
′
(ij)k can be removed by using equation (4.86),

while a term of the form þ′Ωij can be removed by using the symmetrisation of (B2).

The remaining terms can be simplified by rewriting them such that one has a factor

that vanishes on the background. Since, we are neglecting terms of order quadratic or

above, this means the other factor takes its background value. For example, a term of the

form

ρ(kl)þ
′
(

Φikjl +
2ΦS

kl
d−2 δij

)

=
(

ρ(kl) − ρδkl
d−2

)

þ′
(

Φikjl +
2ΦS

kl
d−2 δij

)

+ ρδkl
d−2þ′

(

Φikjl +
2ΦS

kl
d−2 δij

)

= 2
(d−2)(d−3)

(

ρ(ij) − ρ
d−2δij

)

þ′Φ − 2ρ
d−2þ′

(

ΦS
ij − Φ

d−2δij

)

= − 2(d−1)
(d−2)2(d−3)

ρ′Φ
(

ρ(ij) − ρ
d−2δij

)

− 2ρ
d−2þ′

(

ΦS
ij − Φ

d−2δij

)

,

(4.92)

where in the second equality, we have used the fact that ρ(kl) − ρ
d−2δkl vanishes on the

background and since we are only considering terms that are of linear order in the pertur-

bation expansion, we can take the background value of the factor multiplying this term.

In the final line we use Bianchi equation (B2)′ evaluated on the background to simplify

þ′Φ. Using this trick to simplify all such terms and, also, using (NP4) to eliminate terms

of the form kiτj, we find that the equation simplifies significantly

(

2þ′þ + kkkk + d+2
d−2(ρ′þ + ρþ′) + 2(d−1)

(d−2)2
ρρ′ − 2(d−1)(d−4)

(d−2)(d−3) Φ
)(

ΦS
ij − Φ

d−2δij

)

+ (d−4)
(d−2)2

(

ρ′2Ωij + ρ2Ω′
ij

)

= 0.

(4.93)

Of course, we would like to derive an equation satisfied by ρ2
(

ΦS
ij − Φ

d−2δij

)

. Letting
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ΦSt
ij =

(

ΦS
ij − Φ

d−2δij

)

,

ρ2þ′þΦSt
ij = þ′

(

ρ2þΦSt
ij

)

− (þ′ρ2)þΦSt
ij

= þ′þ
(

ρ2ΦSt
ij

)

− (þ′ρ2)þΦSt
ij − (þρ2)þ′ΦSt

ij − (þ′þρ2)ΦSt
ij ,

ρ2þΦSt
ij = þ

(

ρ2ΦSt
ij

)

− (þρ2)ΦSt
ij ,

ρ2þ′ΦSt
ij = þ′

(

ρ2ΦSt
ij

)

− (þ′ρ2)ΦSt
ij.

Equations (NP1) and (NP2) evaluated on the background give

þρ = − ρ2

d−2 , þ′ρ = − ρρ′

d−2 − Φ. (4.94)

Thus, equation (4.93) is equivalent to equation (4.2)

(

2þ′þ + kkkk + d+6
d−2 (ρ′þ + ρþ′) + 4Φ

ρ þ + 2(3d+5)
(d−2)2 ρρ

′ − 4(3d−8)
(d−2)(d−3)Φ

) [

ρ2
(

ΦS
ij − Φ

d−2δij

)]

+ (d−4)
(d−2)2 ρ

2
(

ρ′2Ωij + ρ2Ω′
ij

)

= 0.

4.C Adjoints of GHP covariant derivatives

In this appendix, we derive the adjoints of the GHP covariant derivatives. First, consider

the adjoint of operator þ. Let ηi1...is and ζi1...is be GHP scalars of spin s and boost weights

b and −(b+ 1), respectively and consider the inner product

(ζi1...is ,þ ηi1...is) =

(

ζi1...is , ℓ · ∂ ηi1i2...is − bL10ηi1i2...is +
∑s

r=1

k
M ir0 ηi1...ir−1kir+1...is

)

=

(

−bL10ζi1i2...is −
∑s

r=1

k
M ir0 ζi1...ir−1kir+1...is, ℓ · ∂ ηi1i2...is

)

=

(

−[(ℓ · ∂ + ∇ · ℓ) ζi1i2...is + bL10ζi1i2...is +
∑s

r=1

k
M ir0 ζi1...ir−1kir+1...is ], ηi1i2...is

)

=

(

−[(ℓ · ∂ + ρ) ζi1i2...is + (b+ 1)L10ζi1i2...is +
∑s

r=1

k
M ir0 ζi1...ir−1kir+1...is ], ηi1i2...is

)

= (−[þ + ρ]ζi1i2...is, ηi1i2...is) ,

where the first equality uses the definition of operator þ given in eq. (B.10), the second

equality uses the property that
i
M jµ +

j

M iµ = 0 (4.95)



4.C. ADJOINTS OF GHP COVARIANT DERIVATIVES 89

and the third inequality is obtained using integration by parts and ignoring divergence

terms, since operator adjoints are defined up to such terms. The penultimate equality uses

the geodesity of ℓ to deduce that

∇ · ℓ = L10 + ρ (4.96)

and the final equality uses the definition of operator þ given in eq. (B.10). Hence,

þ† = −(þ + ρ). (4.97)

Taking the prime of this equation gives the adjoint of þ′

þ′† = −(þ′ + ρ′). (4.98)

Now, consider the inner product of ki1ηi2...is+1 with ξi1...is+1, a GHP scalar with boost

weight −b and spin s+ 1

(ξi1...is+1, ki1ηi2...is+1)

=

(

ξi1...is+1, [m(i1) · ∂ − bL1i1 ]ηi2...is+1 +
∑s+1

r=2

k
M iri1ηi2...ir−1kir+1...is+1

)

=

(

−[bL1i1 −
i1
Mkk]ξi1...is+1 −

∑s+1
r=1

k
M iri1ξi1..ir−1kir+1...is+1,m(i1) · ∂ηi2...is+1

)

=

(

−[m(i1) · ∂ + ∇ ·m(i1) + bL1i1 −
i1
Mkk] ξi1...is+1

−∑s+1
r=1

k
M iri1ξi1..ir−1kir+1...is+1, ηi2...is+1

)

=

(

−[ki1 + ∇ ·m(i1) −
i1
Mkk]ξi1...is+1, ηi2...is+1

)

=
(

−[ki1 − τi1 − τ ′i1 ]ξi1...is+1, ηi2...is+1

)

,

where the first equality uses the definition of operator k given in eq. (B.12), the second

equality uses the property that
i
M jµ +

j

M iµ = 0 (4.99)

and the third inequality is obtained using integration by parts. The penultimate equality

uses the definition of operator k and the final equality uses the fact that

∇ ·m(i) =
i
Mkk − τi − τ ′i . (4.100)
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Thus,

ki
† = −ki + τi + τ ′i . (4.101)



Chapter 5

Peeling of the Weyl tensor in

higher dimensions

5.1 Introduction

In 4 spacetime dimensions, the Weyl tensor of an asymptotically flat spacetime exhibits

the “peeling” property:

Cµνρσ = λ−1C(N)
µνρσ + λ−2C(III)

µνρσ + λ−3C(II)
µνρσ + λ−4C(I)

µνρσ + O(λ−5) (5.1)

where indices µ, ν, . . . refer to a basis parallely transported along an outgoing null geodesic

with affine parameter λ. In the first term, C
(N)
µνρσ is a Weyl tensor of algebraic type N and

the subsequent terms involve Weyl tensors of algebraic types III, II and I. The tangent to

the geodesics is the repeated principal null direction for the type N, III and II terms, and

a principal null direction for the type I term.

This result was originally derived using Bondi coordinates [42, 43]. In this approach,

one assumes that the metric components can be expanded in inverse powers of a coordinate

r. A more geometrical proof can be given using the definition of asymptotic flatness in

terms of a conformal compactification [44, 45]. In this case, the result follows from the

assumed smoothness of the unphysical spacetime. This smoothness assumption (or the

assumption of an expansion in inverse powers of r) excludes some spacetimes in which

radiation is present near spatial infinity. In this case, the peeling property is modified by

an O(λ−4 log λ) term [124, 26] (see also [125]).1

1We thank M. Dafermos for pointing out these references.
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In d > 4 dimensions, a definition of asymptotic flatness at null infinity using con-

formal compactification is possible only for even d [126, 127]. It has been shown that

this definition is preserved by linearized metric perturbations arising from compactly sup-

ported initial data [126]. It has also been argued that a vacuum spacetime satisfying this

definition arises from initial data describing a small (but finite) perturbation of Minkowski

spacetime that coincides with Schwarzschild initial data outside some compact set [128].

Just as in 4d, there are more general initial data that do not give a smooth null infinity

[129].

For odd d, conformal compactification is unsatisfactory because the unphysical

spacetime cannot be smooth in any radiating spacetime [130]. Instead, one can follow

the older approach of defining asymptotic flatness at null infinity using Bondi coordinates

[131, 132]. In section 5.2 we will weaken this definition slightly and demonstrate equiva-

lence of the conformal and Bondi definitions for even d. For odd d, it remains to be shown

that there exists an interesting class of initial data that gives rise to a spacetime which

satisfies this definition.

The goal of this chapter is to determine how the Weyl tensor peels near null infinity

in a spacetime satisfying one of the above definitions of asymptotic flatness. As just men-

tioned, at least for even d, this includes a large class of physically interesting spacetimes,

but probably also excludes some physically interesting spacetimes. However, we can hope

that in the latter case, just as in 4d, the peeling behaviour is modified only at a sufficiently

high order that our result is still useful.

Two previous papers have investigated peeling using the conformal approach to

asymptotic flatness [133, 134]. Both papers concluded that peeling is similar to the d = 4

case. They started from the assumption that all components of the unphysical Weyl tensor

decay at the same (unspecified) rate near null infinity. However, Ref. [130] showed that

this assumption is not true even for linearized perturbations of Minkowski spacetime, and

argued that peeling should be qualitatively different for d > 4. This is what we find.

In section 5.3, we determine the behaviour of the Weyl tensor near null infinity in

a spacetime satisfying the “Bondi definition” of asymptotic flatness (since this is valid for

odd or even d and equivalent to the conformal definition for even d). For d ≥ 6, we find

the following result:

Cµνρσ = λ−(d/2−1)C(N)
µνρσ + λ−d/2C(II)

µνρσ + λ−(d/2+1)C(G)
µνρσ + . . . . (5.2)

Again λ is an affine parameter along a null geodesic and µ, ν, . . . refer to a parallely
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transported basis. The superscripts N,II,G refer to the higher-dimensional classification

of the Weyl tensor developed in Ref. [58], based on the concept of Weyl Aligned Null

Directions (WANDs). A type N or type II Weyl tensor admits a “multiple WAND”, in

this case it is the tangent to the geodesic. The type II term in (5.2) is not the most general

type II Weyl tensor: it obeys additional restrictions explained below. Type G denotes an

algebraically general Weyl tensor. The ellipsis in (5.2) denotes terms of order λ−(d/2+2)

(even d) or λ−(d/2+3/2) (odd d).

For even d, the derivation of this result requires no more than the definition of

asymptotic flatness. We do not use the Einstein equation, so this result is valid for any

energy-momentum tensor consistent with asymptotic flatness. For odd d, we need to use

some additional information from the Einstein equation: a mild condition on the decay of

the Ricci tensor near null infinity is required to eliminate a term of order λ−(d/2+1/2) from

(5.2).

The case d = 5 is exceptional. In this case, the Einstein equation no longer eliminates

the term of order λ−(d/2+1/2) = λ−3. Instead, it fixes this term to be quadratic in the

leading order metric perturbation and hence non-zero in any radiating spacetime. The

result is that an additional type N term appears between the type II and type G terms:

Cµνρσ = λ−3/2C(N)
µνρσ + λ−5/2C(II)

µνρσ + λ−3C(N)′
µνρσ + λ−7/2C(G)

µνρσ + O(λ−4). (5.3)

The subleading type N term is distinct from the leading order type N term. The presence

of this term can be attributed to the nonlinearity of the Einstein equation. For d > 5,

nonlinear effects decay faster and this term does not arise.

Refs. [126, 127, 131, 132] gave expressions for the rate of change of the Bondi

energy at null infinity. For applications (e.g. higher-dimensional numerical relativity) it

is convenient to have results that can be calculated easily and do not refer to a particular

coordinate chart. This can be achieved by writing the result in terms of the asymptotic

Weyl tensor components. We do this in section 5.4.
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5.2 Definitions of asymptotic flatness

5.2.1 Conformal definition for even d

For even d > 4, Ref. [126] defined a spacetime (M,g) to be asymptotically flat at null

infinity as follows. Given the (physical) metric g and the Minkowski metric η, we would

like to specify the precise rate at which g approaches η asymptotically. We do this by

conformally compactifying both M and Minkowski spacetime so that “infinity” is now

at a finite metric distance. Thus, we obtain the “unphysical” spacetime (M̃ , g̃) and the

“background” spacetime (M̄ , ḡ), where the metrics g̃ and ḡ are related to the respective

physical and flat metrics via

g̃ab = Ω2gab, ḡab = Ω2ηab (5.4)

with the conformal factor Ω2 satisfying the usual suitable properties.

Now, the spacetime is defined to be asymptotically flat at null infinity if

g̃ab − ḡab = O(Ωd/2−1), ǫ̃a1...ad
− ǭa1...ad

= O(Ωd/2),

(g̃ab − ḡab)(dΩ)a = O(Ωd/2), (g̃ab − ḡab)(dΩ)a(dΩ)b = O(Ωd/2+1), (5.5)

where g̃ab and ḡab are the inverse metrics of g̃ and ḡ, respectively and ǫ̃ and ǭ are the

volume forms on (M̃ , g̃) and (M̄ , ḡ), respectively. Following Ref. [45], if Lab...c is a tensor

field on M̃ then the notation Lab...c = O(Ωs) means that Ω−sLab...c is smooth at future

null infinity.

5.2.2 Definition using Bondi coordinates

For general d > 4, Ref. [132] defined a spacetime to be asymptotically flat at future null

infinity if, outside some cylindrical world tube, coordinates (u, r, xI ) can be introduced

following [43] such that the metric takes the form

ds2 = −AeBdu2 − 2eBdudr + r2hIJ (dxI + CIdu)(dxJ + CJdu) (5.6)

with

dethIJ = detωIJ (5.7)

where ωIJ(x) is the unit round metric on Sd−2. Surfaces of constant u are null with

topology R × Sd−2 where xI are coordinates on Sd−2 and R corresponds to the null
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geodesic generators of the surface. These generators are given by u, xI = constant and r

is a (non-affine) parameter along the generators. A, B, CI and hIJ are functions of all of

the coordinates. It is assumed that, at large r, they be expanded in inverse powers of r

(even d) or
√
r (odd d) with2

A = 1 + O(r−(d/2−1)), B = O(r−d/2),

CI = O(r−d/2), hIJ = ωIJ + O(r−(d/2−1)). (5.8)

For odd d it appears that an extra condition is required (discussed for d = 5 in Ref.

[131]). One way of seeing this is to note that the results of Refs. [126, 130] suggest that, for

linearized perturbations of Minkowski spacetime (arising from compactly supported initial

data), the components of the metric perturbation each will be some half-integer power of

1/r times a smooth function of 1/r. Hence each component will involve either integer

powers of 1/r or half-odd-integer powers, but not both. Therefore, the presence of both

integer and half-odd-integer powers in the expansions of individual metric components can

be attributed to nonlinear effects. One would expect these only to affect terms beyond a

certain order in the above expansions. If so, at low enough order, these expansions should

contain only integer powers, or only half-odd-integer powers. This is indeed the case if one

imposes the additional boundary condition that the expansion of hIJ in inverse powers of
√
r contains no term of order r−(d/2−1/2) (see below).

5.2.3 Equivalence of definitions for even d

Starting from the Bondi definition, define Ω = 1/r. It is straightforward to show that this

satisfies the conformal definition with (conformally flat) background metric

ḡ = −Ω2du2 + 2dudΩ + ωIJdx
IdxJ . (5.9)

Now consider a spacetime that is asymptotically flat according to the conformal definition.

Write the flat metric in the form

η = −dU2 − 2dUdR +R2ωIJ(X)dXIdXJ . (5.10)

2Ref. [132] took B = O(r−d), which was obtained by solving the vacuum Einstein equation. We have
weakened this condition since we don’t want to assume vacuum.
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Now define Ω = 1/R. The background spacetime is

ḡ = Ω2η = −Ω2dU2 + 2dUdΩ + ωIJ(X)dXIdXJ . (5.11)

I+ is at Ω = 0 and Ω > 0 corresponds to the spacetime interior.

In these coordinates, the definition of asymptotic flatness reduces to the following

conditions on the unphysical spacetime

g̃UU = −Ω2 + O(Ωd/2+1), g̃UΩ = 1 + O(Ωd/2), g̃UI = O(Ωd/2)

g̃ΩΩ = O(Ωd/2−1), g̃ΩI = O(Ωd/2−1), g̃IJ = ωIJ + O(Ωd/2−1) (5.12)

and

det g̃IJ = detωIJ + O(Ωd/2). (5.13)

Now convert to Gaussian null coordinates based on the null surface I+ in the unphysical

spacetime as follows. Consider the (past-directed) null geodesic (of g̃) that passes through

the point on I+ with coordinates (u, 0, xI) and has tangent vector ∂/∂Ω there. Let λ

denote the affine parameter along the geodesic. Since g̃ is required to be smooth near

I+ it follows that the coordinates along the geodesic are smooth functions of λ in a

neighbourhood of λ = 0. Expanding them in a Taylor series in λ and substituting into

the geodesic equations gives

U = u+ O(λd/2), Ω = λ+ O(λd/2+1), XI = xI + O(λd/2). (5.14)

We take (u, λ, xI) as new coordinates. In these coordinates, the unphysical metric is

g̃ =
[

−λ2 + O(λd/2+1)
]

du2 + 2dudλ + O(λd/2)dudxI

+
[

ωIJ(x) + O(λd/2−1)
]

dxIdxJ (5.15)

where all components are smooth at λ = 0 and

det g̃IJ = detωIJ + O(λd/2). (5.16)

We now replace λ with a non-affine parameter r defined by

r = Ω−1

(

det g̃IJ

detωIJ

)1/(2(d−2))

= λ−1
(

1 + O(λd/2)
)

(5.17)
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so

λ = r−1
(

1 + O(r−d/2)
)

(5.18)

and

Ω−1 = r
(

1 + O(r−d/2)
)

. (5.19)

In coordinates (u, r, xI ) the physical metric takes the Bondi form (5.6,5.7) with metric

coefficients that are smooth functions of 1/r respecting the fall-off conditions (5.8).

5.3 The Weyl tensor

In this section, we determine the asymptotic fall off of Weyl tensor components for asymp-

totically flat spacetimes, as defined above. We will use Bondi coordinates since this allows

us to treat even and odd d simultaneously. We perform our calculations using the higher

dimensional Geroch-Held-Penrose (GHP) formalism of Ref. [67] (see appendix B).

5.3.1 Expansion of metric

We begin with the metric written in Bondi coordinates (5.6,5.7). From the definition of

asymptotic flatness we have [132]3

hIJ = ωIJ(x) +
∑

k≥0

h
(k+1)
IJ (u, x)

rd/2+k−1
, A = 1 +

∑

k≥0

A(k+1)(u, x)

rd/2+k−1
,

B =
∑

k≥0

B(k+1)(u, x)

rd/2+k
, CI =

∑

k≥0

C(k+1)I(u, x)

rd/2+k
, (5.20)

where in all of the summations k ∈ Z for even d and 2k ∈ Z for odd d. Equation (5.7)

implies that

ωIJh
(k+1)
IJ = 0 for k < d/2 − 1 (5.21)

where ωIJ is the inverse of ωIJ . In particular we have, for d ≥ 5

ωIJh
(1)
IJ = ωIJh

(3/2)
IJ = ωIJh

(2)
IJ = 0 (5.22)

and

ωIJh
(5/2)
IJ = 0 (d > 5), ωIJh

(5/2)
IJ =

1

2
h(1)IJh

(1)
IJ (d = 5), (5.23)

3Our notation differs slightly from that of Ref. [132], notably in the expansion coefficients of B.
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where all indices on h
(k+1)
IJ are raised using ωIJ . Some of the coefficients here have special

significance. The Bondi mass is defined as [132]

M(u) = −d− 2

16π

∫

Sd−2

A(d/2−1)dω (5.24)

where the integral is taken over a sphere at null infinity. In vacuum it obeys the mass

decrease law [132]

Ṁ(u) = − 1

32π

∫

Sd−2

ḣ
(1)
IJ ḣ

(1)IJdω. (5.25)

This demonstrates that the quantity h
(1)
IJ will be non-zero when gravitational radiation is

present. Ref. [132] showed that h
(1)
IJ is not constrained by the asymptotic vacuum Einstein

equation: it is a free function in the Bondi approach, just as in 4d [42, 43]. ḣ
(1)
IJ corresponds

to Bondi’s “news function”.

5.3.2 Null frame and connection components

We choose a null frame (ℓ, n,m(i)) for the metric given by

ℓ = m(0) = − ∂

∂r
, n = m(1) = e−B

(

∂

∂u
− 1

2A
∂
∂r −CI ∂

∂xI

)

, m(i) = eIi
∂

∂xI
,

ℓ♭ = eBdu, n♭ = −(dr + 1
2Adu), m(i)

♭ = eiI(dx
I + CIdu), (5.26)

where ei form a vielbein for the metric hIJ on Sd−2: hIJ = eiIejJδij . We choose this viel-

bein by using the Gram-Schmidt algorithm starting from the basis r−1êIi where the vectors

êIi (x) form an orthonormal basis for the metric ωIJ on Sd−2. This gives an expansion in

inverse powers of r (even d) or
√
r (odd d):

eiI = r

(

êiI +
e
(1)
iI

rd/2−1

)

+O(r−(d−5)/2), eIi = r−1

(

êIi −
e
(1)I
i

rd/2−1

)

+O(r−(d−1)/2), (5.27)

where 2êi(Ie
(1)
|j|J)δij = h

(1)
IJ and e

(1)I
i = ωIJe

(1)
iJ .

Using the definition of the connection components given in appendix B and the null
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frame given in (5.26), we find that the GHP covariant connection components are

κi = 0, ρij = −1
2e

I
i e

J
j ∂r

(

r2hIJ

)

, ρ = −(d− 2)/r, τi = −1
2

(

ei · ∂B + e−BeiI∂rC
I
)

κ′i = 1
2e

−Bei · ∂A, ρ′ij = −e−Be(i|K|ej) · ∂CK + 1
2e

I
i e

J
j n · ∂

(

r2hIJ

)

,

τ ′i = −1
2

(

ei · ∂B − e−BeiI∂rC
I
)

. (5.28)

The non-covariant coefficients are

L10 = −∂rB, L11 = 1
2e

−B∂rA, L1i = −τ ′i
i
M j0 = eI[i∂rej]I ,

i
M j1 = e−Be[i · ∂CKej]K − eI[in · ∂ej]I

i
M jk = r2eIi e

J
j e

K
k ∂[IhJ ]K − eI[ie|k| · ∂ej]I . (5.29)

Using the asymptotic behaviour of the metric components given in (5.20) gives

ρij = −δij
r

+
êIi ê

J
j

4

(

(d− 2)
h

(1)
IJ

rd/2
+ (d− 1)

h
(3/2)
IJ

r(d+1)/2

)

+ O(r−(d+2)/2), ρ = −(d− 2)/r,

ρ′ij = −1

2

δij
r

+
êIi ê

J
j

2

(

ḣ
(1)
IJ

rd/2−1
+

ḣ
(3/2)
IJ

r(d−1)/2

)

− êI(ie
(1)J
j)

ḣ
(1)
IJ

rd−2
+ O(r−d/2),

ρ′ = −(d− 2)

2r

(

1

r
+

A(1)

rd/2−1
+

A(3/2)

r(d−1)/2

)

+ O(r−d/2), κ′i = O(r−d/2),

τi =
d

4

ê · C(1)

rd/2
+
d+ 1

4

ê · C(3/2)

r(d+1)/2
+ O(r−(d/2+1)),

τ ′i = −d
4

ê · C(1)

rd/2
− d+ 1

4

ê · C(3/2)

r(d+1)/2
+ O(r−(d/2+1)). (5.30)

where a dot denotes a partial derivative with respect to u. Also,

L10 =
d

2

B(1)

rd/2+1
+

(d+ 1)

2

B(3/2)

r(d+3)/2
+ O(r−(d/2+2)),

L11 = −d− 2

4

A(1)

rd/2
− d− 1

4

A(3/2)

r(d+1)/2
+ O(r−(d/2+1)), L1i = O(r−d/2),

i
M j0 = O(r−d/2),

i
M j1 = −

êIi ė
(1)
jI

rd/2−1
+ O(r−(d−1)/2),

ki = r−1êi · ∇ + O(r−d/2), (5.31)

where ∇I denotes the covariant derivative induced by ωIJ . Of course, terms with half-

odd-integer powers appear only for odd d.
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5.3.3 Parallely transported frame

The null basis introduced above is convenient for calculations but it is not parallely trans-

ported along the geodesics. A parallely transported basis is one for which, in addition

to the geodesic equation κi = 0, we have τ ′i = L10 =
i
M j0 = 0. Any such basis will be

related to ours by a boost, spin and null rotation (see Appendix). Let (ℓ̂, n̂, m̂i) be such

a basis. ℓ̂ must be parallel to ℓ, with the coefficient fixed by requiring that ℓ̂ correspond

to affine parameterization of the geodesics, ensuring κ̂i = L̂10 = 0. This gives ℓ̂ = e−Bℓ,

corresponding to a boost with parameter e−B . τ ′i is invariant under a boost and trans-

forms covariantly under a spin. But under a null rotation with parameters zi it transforms

inhomogeneously [67] so zi is determined by τ̂ ′i = 0. This gives

zi = ci + O(r−(d/2−1)) (5.32)

where the parameters ci are independent of r. Finally,
i
M j0 transforms homogeneously

under a boost and trivially under a null rotation but inhomogeneously under a spin.

Requiring
i

M̂ j0= 0 determines the spin matrix to be

Xij = Oij + O(r−(d/2−1)) (5.33)

where Oij is a r-independent orthogonal matrix.

Our strategy will be to determine curvature components in the basis defined previ-

ously and then transform our results to a parallely transported frame by first performing

a boost with parameter e−B = 1 + O(r−d/2), then a null rotation with parameters zi and

finally a spin with parameters Xij as given above.

5.3.4 Calculation of curvature components

In the GHP formalism the Weyl tensor components are denoted

Ωij = C0i0j , Ψijk = C0ijk, Ψi = C010i = Ψjij,

Φijkl = Cijkl, Φij = C0i1j , Φ = Φii = C0101,

(2ΦS
ij = 2Φ(ij) = −Φikjk, 2ΦA

ij = 2Φ[ij] = C01ij),

Ω′
ij = C1i1j , Ψ′

ijk = C1ijk, Ψ′
i = C101i = Ψ′

jij (5.34)

and the Ricci tensor components are

ω = R00, ψi = R0i, φij = Rij, φ = R01, ψ′
i = R1i, ω′ = R11. (5.35)
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The Newman-Penrose equations (see Appendix) are used to determine all of these quan-

tities except for those of boost weight zero (i.e. those written with the letters Φ or φ). To

determine the latter we used the Bianchi equation (B3) from the Appendix.4

5.3.5 Results: even d

In our basis (5.26), we find that the Ricci tensor components are smooth functions of 1/r

with

ω = O(r−(d/2+2)), ψi = O(r−(d/2+1)), φij = O(r−(d/2+1)),

φ = O(r−(d/2+1)), ψ′
i = O(r−d/2), ω′ = O(r−d/2). (5.36)

The Weyl tensor components are smooth functions of 1/r with

Ωij = −(d− 2)(d− 4)

8

êIi ê
J
j h

(1)
IJ

rd/2+1
+ O(r−(d/2+2)),

Ψijk = O(r−(d/2+1)), Ψi = O(r−(d/2+1)),

ΦA
ij = O(r−(d/2+1)), Φ = O(r−(d/2+1)),

ΦS
ij = −(d− 4)

4

êIi ê
J
j ḣ

(1)
IJ

rd/2
+ O(r−(d/2+1)),

Φijkl = (êIi ê
J
[kδl]j − êIj ê

J
[kδl]i)

ḣ
(1)
IJ

rd/2
+ O(r−(d/2+1)),

Ψ′
ijk = O(r−d/2), Ψ′

i = O(r−d/2),

Ω′
ij = −1

2

êIi ê
J
j ḧ

(1)
IJ

rd/2−1
+ O(r−d/2). (5.37)

Recall that h
(1)
IJ is non-zero in any spacetime containing outgoing gravitational radiation,

and it is not determined by the asymptotic Einstein equation.

Now we transform to a parallely transported frame as determined above. The boost

and spin are easy to deal with since the curvature components transform covariantly with

respect to these. Formulae for the transformation under a null rotation are given in the

Appendix. Using these results, we see that the transformation to a parallely transported

frame does not change any of these results (aside from acting with the rotation matrix Oij

on the indices i, j, k etc).

4This involves an integration with respect to r, introducing a homogeneous term decaying as 1/r into
the boost weight zero quantities. This is not compatible with asymptotic flatness so the coefficient of this
term must vanish. This could be shown e.g. by using the commutator (C3) of Ref. [67].
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Finally we have to convert from our parameter r to an affine parameter along the

geodesics. Denote the latter by λ. Then (up to the freedom to multiply by a quantity

independent of r)

λ =

∫

eBdr = r + c+ O(r−(d/2−1)) (5.38)

where c is independent of r. Inverting gives

r = λ− c+ O(λ−(d/2−1)). (5.39)

If we substitute this into the above expressions for the Weyl components then they become

smooth functions of 1/λ with leading order behaviour given by replacing r with λ in these

expressions. Hence the leading order term in the Weyl tensor is of order λ−(d/2−1) and the

only non-vanishing components at this order are Ω′
ij, which (from (5.37)) is generically

non-zero. But this is precisely the definition of a type N Weyl tensor with ℓ (the tangent

to the geodesics) a multiple Weyl Aligned Null Direction (WAND) [58].

The next non-vanishing terms in the Weyl arise at order λ−d/2. Such terms can arise

from Ω′
ij, Ψ′

ijk, Ψ′
i, Φijkl and ΦS

ij. So, at this order, we have Ωij = Ψijk = Ψi = 0 and

hence the Weyl tensor is type II with multiple WAND ℓ. It cannot be type III because

(5.37) shows that ΦS
ij is generically non-vanishing. However, it is not the most general

possible type II Weyl tensor because (5.37) shows that it has vanishing Φ and ΦA
ij.

After this, we have terms of order λ−(d/2+1). At this order, any of the Weyl com-

ponents can be non-zero. In particular, the above expression shows that Ωij is generically

non-zero, which implies that the Weyl tensor at this order is type G (i.e. ℓ is not a WAND).

In summary, for even d > 4, we have demonstrated that, in a spacetime satisfying

the definition of asymptotic flatness at null infinity of Refs. [126, 132], the Weyl tensor

exhibits the peeling behaviour described around equation (5.2), with the type II obeying

the additional conditions Φ = ΦA
ij = 0.

When d = 4, our results for Ω′
ij, Ψ′

ijk and Ψ′
i are consistent with the 4d peeling

property. The boost-weight zero terms also are consistent: in 4d, all such terms are

determined by Φ and ΦA
ij, which vanish at order λ−d/2 = λ−2. Hence at order λ−2 we have

a Weyl tensor of type III instead of type II. More explicitly, in 4d, Φijkl is determined by

its trace ΦS
ij . But the first term in the expansion of ΦS

ij in (5.37) comes with a coefficient

of d − 4. Similar results hold for the other Weyl components (e.g. the above expression

for Ωij has a factor d− 4). This is why peeling is qualitatively different when d = 4.
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5.3.6 Results: odd d

As discussed above, for odd d there is an additional condition in the definition of asymp-

totic flatness at future null infinity, that the term of order r−(d/2−1/2) in the expansion of

hIJ should be absent, i.e.,

h
(3/2)
IJ = 0. (5.40)

With this condition, we find that the results (5.36,5.37) for the Ricci and Weyl components

are valid also for odd d, with the understanding that these formulae now refer to expansions

in inverse powers of
√
r. (Without (5.40), there would be e.g. a term of order r−(d/2−1/2)

in the expansion of Ω′
ij .) Following the same steps as for even d, converting to a parallely

transported frame and affine parameterization, we find, just as before, that the leading

components of the Weyl tensor arise at order λ−(d/2−1) and this term is type N as before.

There are no terms at order λ−(d/2−1/2) so the next term is at order λ−d/2 which is type

II with ΦA
ij = Φ = 0, again as for even d.

A difference between even and odd d arises at next order: for odd d there is the

possibility of terms of order r−(d/2+1/2). For example, we find that

Ω′
ij +

ω′

d− 2
δij = − 1

2
r−(d/2−1)êIi ê

J
j ḧ

(1)
IJ + r−d/2Yij

− 1

2
r−(d/2+1/2)

(

êIi ê
J
j ḧ

(5/2)
IJ − Ȧ(3/2)δij − 2ê(i|K|êj) · ∇Ċ(3/2)K

)

+
1

4
r−(d−2)

(

4êI(ie
(1)J
j) ḧ

(1)
IJ + êIi ê

J
j ω

KLḣ
(1)
IK ḣ

(1)
JL

)

+ O(r−(d/2+1)), (5.41)

where Yij is a quantity whose explicit form we will not need. The Weyl components Ω′
ij

are obtained by taking the traceless part of this equation and the Ricci component ω′ by

taking the trace. We have retained a term of order r−(d−2) because r−(d−2) = r−(d/2+1/2)

if d = 5.

The only other Weyl components containing terms of order r−(d/2+1/2) are Ψ′
ijk and

Ψ′
i, which can be obtained from

Ψ′
ijk +

2

d− 2
ψ′

[jδk]i =r−d/2êIi ê
J
[j êk] · ∇ḣ(1)

IJ + O(r−(d/2+1)),

Ψ′
i −

1

d− 2
ψ′

i =
d

4
r−d/2êi · Ċ(1) +

(d+ 1)

4
r−(d/2+1/2)êi · Ċ(3/2) + O(r−(d/2+1))

(5.42)

where the Weyl and Ricci components can be disentangled by taking a trace of the first

equation and combining with the second equation.



104 CHAPTER 5. PEELING OF THE WEYL TENSOR IN HIGHER DIMENSIONS

We will now argue that terms of order r−(d/2+1/2) can be eliminated for d > 5 by

exploiting the Einstein equation (which we did not use for even d). We will assume that

the Ricci tensor (and hence the energy-momentum tensor) decays faster near infinity than

the rate which is given by asymptotic flatness alone (equation (5.36)). The rate that we

require is faster by a factor 1/r:5

ω = O(r−(d/2+3)), ψi = O(r−(d/2+2)), φij = O(r−(d/2+2)),

φ = O(r−(d/2+2)), ψ′
i = O(r−(d/2+1)), ω′ = O(r−(d/2+1)). (5.43)

Imposing these conditions implies that the first few coefficients in the expansions of the

metric components must satisfy the same equations as in a vacuum spacetime, as deter-

mined in Ref. [132]:

B(1) = 0, A(1) = − 2

d− 2
∇ · C(1) = − 4

d(d− 2)
∇I∇Jh

(1)
IJ , C(1)I =

2

d
∇Jh

(1)IJ ,







Ȧ(3/2) = 1
6 ḣ

(1)IJ ḣ
(1)
IJ d = 5

A(3/2) = 0 d > 5
, B(3/2) =







− 1
16h

(1)IJh
(1)
IJ d = 5

0 d > 5
,

C(3/2)I = 0, ḣ
(5/2)
IJ =







ωKLh
(1)
K(I ḣ

(1)
J)L d = 5

0 d > 5
(5.44)

and an equation relating ḣ
(2)
IJ to A(1), C(1)I and h

(1)
IJ . Note that the asymptotic Einstein

equation implies no restriction on h
(1)
IJ . Recall that for d = 5, A(3/2) determines the Bondi

mass via (5.24).6

Using these results, we see that the term of order r−(d/2+1/2) in (5.42) is absent

and hence such terms do not appear in Ψ′
ijk and Ψ′

i. However, terms of this order are

absent from (5.41) if, and only if, d > 5. Hence, for d > 5, such terms are absent from

Ω′
ij. Transforming to a parallely transported frame and affine parameterization, similar

arguments to those used for the even d case establish the peeling result given in equation

(5.2) for odd d > 5. As for even d, the type II term obeys the additional restrictions

ΦA
ij = Φ = 0.

5For d > 5, the constraints on ω, ψi and φ, necessarily imply the constraints on ψ′
i and ω′. For d = 5,

the constraint on ψi implies the constraint on ψ′
i.

6 Note also that ḣ
(5/2)
IJ = 0 for d > 5 implies that one can impose the additional boundary condition

h
(5/2)
IJ = 0 for d > 5. Ref. [132] examined the vacuum Einstein equations to higher order and the

results suggest that the definition of asymptotic flatness for odd d should be augmented with the condition
h

(k+1)
IJ = 0 for k = 1/2, 3/2, . . . , d/2 − 2 although we will not assume any more than (5.40).
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Finally we must discuss the d = 5 case. For d = 5, terms of order r−(d/2+1/2) = r−3

do not drop out of Ω′
ij:

Ω′
ij = − 1

2

êIi ê
J
j ḧ

(1)
IJ

r3/2
+

Yij

r5/2

− 1

2r3

{

êIi ê
J
j

(

ωKLh
(1)
IK ḧ

(1)
JL + 1

2ω
KLḣ

(1)
IK ḣ

(1)
JL − 1

6ωIJ ḣ
(1)KLḣ

(1)
KL

)

− 2êI(ie
(1)J
j) ḧ

(1)
IJ

}

+ O(r−7/2). (5.45)

Note that the coefficient of r−3 is quadratic in h
(1)
IJ and its time derivatives and hence

generically it is non-zero if gravitational radiation is present.

Now we must transform to a parallely transported frame. As for d > 5, the boost

and null rotation do not change our results. But note that the spin matrix (5.33) involves

a term of order r−3/2. Hence when the spin acts on Ω′
ij this term will combine with the

leading term in Ω′
ij to produce a new term of order r−3 in Ω̂′

ij. Could this new term cancel

the terms already present? Generically no: the new term will involve ḧ
(1)
IJ whereas some of

the terms already present involve only first derivatives of h
(1)
IJ . Since ḣ

(1)
IJ is a free function

in the Bondi approach, these terms will not cancel in general. For example, one could

choose ḧ
(1)
IJ to be zero somewhere, with ḣ

(1)
IJ non-zero.

The last step is to convert to affine parameterization using (5.39), which does not

change anything. We conclude that for d = 5, the Weyl tensor satisfies the peeling

property (5.3) described in the introduction. Again the type II term obeys the additional

restrictions ΦA
ij = Φ = 0.

5.4 Bondi flux

In 4d, the rate of decrease of the Bondi energy at future null infinity is given in terms of

the Newman-Penrose Weyl scalar Ψ4 as

Ṁ(u) = − lim
r→∞

r2

4π

∫

S2

∣

∣

∣

∣

∫ u

−∞
Ψ4(û, r, x)dû

∣

∣

∣

∣

2

dω (5.46)

where dω is the volume element on a unit S2. In d > 4 dimensions, the rate of decrease

of the Bondi energy at future null infinity is given by (5.25) [132]. We can rewrite this in

terms of Ω′
ij (the analogue of Ψ4) as follows. Assume that the Bondi flux vanishes in the

far past, i.e. ḣ
(1)
IJ → 0 as u → −∞. Then from (5.37) (which holds for even or odd d) we
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have

êIi ê
J
j ḣ

(1)
IJ (u, x) = −2 lim

r→∞
rd/2−1

∫ u

−∞
Ω′

ij(û, r, x) dû (5.47)

and hence

Ṁ(u) = − lim
r→∞

rd−2

8π

∫

Sd−2

(∫ u

−∞
Ω′

ij(û, r, x) dû

)2

dω (5.48)

where dω is the volume element on a unit Sd−2 and (Yij)
2 ≡ YijYij. In practice, the RHS

is computed by choosing coordinates so that the asymptotic metric takes the form

ds2 ∼ −du2 − 2dudr + r2dω2. (5.49)

One then chooses a null vector field n that approaches ±(∂/∂u − 1
2∂/∂r) asymptotically

(the sign does not matter here) and a set of orthonormal spacelike vectors m(i) (i =

2, . . . d− 1) such that n ·m(i) = 0. Then Ω′
ij = Cabcdn

amb
(i)n

cmd
(j).

5.5 Discussion

We derived our result using Bondi coordinates since this allows us to treat even and odd d

together for much of the analysis. However, for even d it would be more elegant to derive

the peeling property using the conformal approach. It would be nice to see this worked

out.

For odd d > 5, our result (5.2) involves only inverse half-odd-integer powers of λ.

Inverse integer powers will appear if one continues to higher orders in the expansion. It

would be interesting to know at what order inverse integer powers first appear. If one

strengthens the definition of asymptotic flatness as suggested in footnote 6 then it seems

likely that the first such terms will appear at order λ−(d−2), in agreement with our result

for d = 5.

Ref. [66] studied asymptotically flat solutions in d > 4 dimensions that are alge-

braically special. It was found that the latter condition is incompatible with gravitational

radiation (in contrast with the d = 4 case). We can see a similar result here: if ℓ is a

WAND then Ωij must vanish. For d > 4, (5.37) then requires h
(1)
IJ = 0, which implies

vanishing Bondi energy flux, i.e., no gravitational radiation.



Chapter 6

Spinor classification of the Weyl

tensor

6.1 Introduction

The De Smet classification [70] generalises the concept of a Petrov Weyl spinor to five

dimensions. The classification uses the 5d Clifford algebra to define a totally symmetric

4-spinor, called the Weyl spinor, that is equivalent to the Weyl tensor. A given solution

is classified by studying how its Weyl spinor factorises. Or more precisely, how the fourth

order quartic homogeneous polynomial formed from its Weyl spinor factorises. The fact

that the Weyl spinor is generally complex means that it must satisfy a reality condition

and this reduces the number of possible types.

In five dimensions, it is known that the De Smet and CMPP classification schemes

are not equivalent; that is they do not agree on the definition of an “algebraically special”

solution. An example is known that is algebraically special in the CMPP classification, but

algebraically general in the De Smet classification [135] and vice versa [1]. The presence of

two inequivalent classification schemes in five dimensions presents us with the opportunity

of studying solutions that are algebraically general in one scheme and special in the other.

Apart from a classification of static axisymmetric solutions belonging to two partic-

ular algebraic types [70, 71], the De Smet classification has not been studied much. The

aim of this chapter is to better understand the De Smet classification and its relation to

the 4d Petrov and 5d CMPP classifications. We shall find that the previously overlooked

reality condition will play an important part in this study.
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As a way of highlighting the most important characteristics of the spinor classifica-

tion of the Weyl tensor, we shall also consider the spinor classification of two-form fields,

where it is much easier to appreciate subtle issues such as reality conditions. This is be-

cause, we shall be dealing only with a bispinor, rather than a 4-spinor as is the case in the

Weyl classification.

Therefore, we begin, in section 6.2.1, with a derivation of a spinor classification of

2-form fields. We construct a bispinor equivalent of the 2-form and use properties of the

Clifford algebra to show that it is symmetric and satisfies a reality condition. This leads

to a classification of 2-forms based on whether the equivalent bispinor factorises or not.

Then, in section 6.2.2, we move on to derive the spinor classification of the Weyl

tensor due to De Smet [70] in similar vein to the derivation of the spinor classification of

2-forms in section 6.2.1. We define the Weyl spinor, and show that it is totally symmetric

and satisfies a reality condition. The reality condition reduces the number of algebraically

special types.

The De Smet classification is intended to be a generalisation of the spinor formulation

of the Petrov classification to five dimensions. It is not clear, though, how the two schemes

are related and in what sense the De Smet classification is a generalisation of Petrov’s

beyond the superficial link that they both deal with the factorisability properties of a

totally symmetric spinor quantity. This issue is addressed in section 6.2.3, where it is

shown that one can define an analogue of the De Smet Weyl spinor in 4d and that the

classification of the Weyl tensor based on this can be thought of as a classification using

Majorana spinors. Recall that in the Petrov classification, one uses chiral spinors.

In section 6.2.4, we use the results obtained in section 6.2.3 to study direct product

solutions. We find that the De Smet type of solutions with a 4d factor is equal to the De

Smet type of the 4d submanifold. Thus, the analysis reduces to that done in section 6.2.3.

For the case with 2d and 3d Lorentzian factors with non-zero cosmological constant, the

Weyl spinor factorises into two proportional bispinors that cannot be further factorised.

These results are similar to those found in the study of warped product manifolds in the

context of the CMPP classification in [85].

In section 6.3.1, we consider the connection between the tensor and spinor classifi-

cations of a 2-form, where the tensor classification is based on the CMPP classification.

We find that a solution of any spinor algebraic type may be algebraically general in the

tensorial sense. For solutions that are algebraically special in the spinorial sense, what de-

termines whether they are algebraically special or general in the tensorial sense is whether
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the vector that can be formed from the spinor that we have from the factorisation of the

bispinor is null or timelike.

We find that similar statements can be made regarding the relation between the

De Smet and 5d CMPP classifications of the Weyl tensor in section 6.3.2. However, in

this case we cannot study all types fully. Thus, we begin by assuming that the solution

is of type N, III or D and derive the general De Smet polynomials for the respective

cases. Considering the factorisability properties of these general polynomials gives the

possible spinor types that they can have. We show that type III and D solutions may

be algebraically general in the spinor classification, while for type N solutions, the De

Smet polynomial is guaranteed to factorise into linear factors, so type N solutions are

also algebraically special in the spinor classification. We do not consider more general

types due to the complexities of factorising a general polynomial. Then, we go on to

consider the reverse case, i.e. assuming a particular De Smet type and examining what

this implies about the CMPP type. Since the general form of Weyl tensor is important

for this analysis, we can only do this for the case where the Weyl spinor factorises into

two bispinors, or a more special case of this, using the general form of the Weyl tensor

of such solutions derived in section 6.2.2. Thus, we do not consider the case where the

solution is algebraically general, i.e. the Weyl spinor does not factorise nor the case where

it factorises into a rank-3 spinor and a univalent spinor. We find that any spinor type may

be algebraically general in the CMPP sense.

An important motivation, given above, for understanding the De Smet classification

and its relation to the 5d CMPP classification was that this may allow us to study 5d

solutions that are algebraically general in one classification scheme and special in the other.

Furthermore, the result found in section 6.3.2 that any spinor type may be algebraically

general in the CMPP sense strengthens this motivation. The black ring [50] is a well-known

example of a CMPP algebraically general five dimensional solution [136]1. Therefore, it

would be desirable to know the De Smet type of the black ring solution. It is shown in

section 6.3.3 that the black ring is also, unfortunately, algebraically general in the De Smet

classification.

In section 6.4.1, we consider the constraints imposed on a spacetime by the existence

of an algebraically special 2-form solving Maxwell-type equations. An algebraically special

1In [136], it is shown that WANDs can only be found in certain regions for the black ring and it is
claimed that the black ring is type I. However, if we take the strict definition of the classification, which
states that the algebraic type of the spacetime corresponds to the type of its most algebraically general
point, then the black ring is type G. The black ring is an example of a solution that is type G in one open
region and type I in another. This kind of behaviour is discussed in [1].
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2-form is defined by a single spinor. In 4d, the existence of an algebraically special Maxwell

field is equivalent to the spacetime being algebraically special. This follows from the

Mariot-Robinson [137, 35] and Goldberg-Sachs [36] thereoms. Thus, studying the existence

of algebraically special fields can shed light on the status of the Goldberg-Sachs theorem

in higher dimensions. The 2-form field is assumed to satisfy the Bianchi identity and a

general equation of motion that includes Maxwell theory as well as minimal supergravity

[138]. The analysis splits into two cases of whether the vector derived from the spinor that

defines the 2-form field is null or timelike. From section 6.3.1, we know that if it is null

then this is equivalent to the field being algebraically special in the CMPP sense. This

analysis has already been done in [67]. The null vector defines a geodesic congruence with

constraints on its optical properties, which are explained in section 6.4.1. If the vector is

timelike, then the solution admits a timelike geodesic congruence and an almost-Kähler

structure.

Finally, in section 6.4.2, we undertake a classification of solutions belonging to the

most special type, that is type 11 11 solutions. These are defined as those for which the

Weyl spinor factorises into two proportional bispinors, which factorise further into spinors.

The reality condition gives that the Weyl tensor is fully determined from a single spinor.

We use the Bianchi identity to find constraints on this spinor for a vacuum Einstein

solution. As in section 6.4.1, the analysis divides into two cases of whether the vector

defined from the spinor is null or timelike. If the vector is null, then we have a type

N Kundt solution satisfying further conditions that are explained in section 6.4.2. The

timelike case reveals more structure. The spacetime is found to be a cosmological solution

with spatial geometry a type (D,O) Einstein solution. The solutions in section 6.4.2 are

more constrained that those found in section 6.4.1.

The index conventions in this chapter are as follows: indices a, b, c . . . refer to or-

thonormal or null frame basis vectors and generally take values from 0 to 4, although this

is not always the case. Indices i, j, k . . . refer to spacelike basis vectors and generally take

values from 2 to 4. In section 6.3.2, where we move between orthonormal and null frame

bases, indices a, b, c . . . refer to null frame basis vectors, while µ, ν, ρ . . . refer to orthonor-

mal basis vectors. α, β, γ . . . and α̇, β̇, γ̇ . . . label left and right-handed chiral spinor indices

in four dimensions and run from 1 to 2, while A,B,C . . . and Ȧ, Ḃ, Ċ . . . label Dirac and

Dirac complex conjugate indices in four and five dimensions and run from 1 to 4. There

are additional index conventions in section 6.2.4, which are explained separately in that

section.



6.2. SPINOR CLASSIFICATION OF TWO-FORM AND WEYL TENSOR 111

6.2 Spinor classification of two-form and Weyl tensor

6.2.1 Spinor classification of two-form

Let Fab be a real two-form. We can construct a bispinor ǫAB that is equivalent to the

2-form 2

ǫAB =
i

8
FabΓ

ab
AB , (6.1)

where Γab = Γ[aΓb]. As explained in appendix 6.A, for brevity, we omit factors of C and

C−1 where it is clear from the index structure that charge conjugation matrices have been

used. Thus, Γab
AB = (CΓab)AB = CACΓab C

B .

It can be shown, using the antisymmetry of the charge conjugation matrix C that

Γab
AB is symmetric in its spinor indices: using the definition of C, we find that

Γt
ab = −CΓabC

−1, (6.2)

which implies

(CtΓab)
t = −(CΓab),

i.e.

(CΓab)
t = (CΓab). (6.3)

Thus, the bispinor ǫAB is symmetric.

Using properties of gamma-matrices, we can invert equation (6.1)

Fab = i tr(Γabǫ), (6.4)

where tr(Γabǫ) = tr(ΓabC
−1ǫ) = Γab

A
BC

BCǫCA.

Note that while the 2-form is real, the bispinor is generally complex since there is no

Majorana representation of the Clifford algebra in five dimensions. A complex bispinor has

20 real independent components, whereas a real 2-form has 10 real components. Therefore,

the bispinor must satisfy a reality condition, which halves its number of independent

components.

Using the definitions of the Dirac and charge conjugation matrices (see appendix

2See appendix 6.A for conventions used for the 5d Clifford algebra.
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6.A) one can derive the following relation between Γ∗
ab and Γab

Γ∗
ab = AΓabA

−1, (6.5)

where A = (CB−1)t. Now, taking the complex conjugate of equation (6.1) and using the

equation above gives

ǫȦḂ = − i

8
Fab AȦ

AΓab
AB(A−1)BḂ ,

where AȦ
A = (CAC−1)Ȧ

A
= −(A−1)AȦ [139]. Then re-arranging the above equation

gives

ǫAB = ǭAB , (6.6)

where ǭAB ≡ ǫȦḂA
Ȧ

AA
Ḃ

B.

A 2-form field is said to be algebraically special if the bispinor factorises. If this is

the case, then the reality condition, equation (6.6), implies that 3

ǫAB = ǫ(AǭB). (6.7)

Then, the 2-form F is of the form

Fab = iǭΓabǫ (6.8)

We can also form a real scalar and vector

f = ǭǫ, V a = iǭΓaǫ. (6.9)

The Fierz identity can be used to relate the above three quantities [138]

V 2 = −f2 (6.10)

F 2 = F abFab = 4f2 (6.11)

ιV F = 0 (6.12)

Fa
cFc

b = −f2δa
b − VaV

b (6.13)

F ∧ F = 2f ⋆ V (6.14)

fF = ⋆(V ∧ F ). (6.15)

Note that the above equations are not independent. In fact, equations (6.10) and (6.15)

3A sketch of the proof of this result is given in appendix 6.B.
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can be used to derive equations (6.11)–(6.14).

6.2.2 De Smet classification

In four dimensions, the Petrov classification is most simply derived by defining a totally

symmetric Weyl spinor Ψαβγδ and considering the Weyl polynomial

Ψ(χ) = Ψαβγδχ
αχβχγχδ

formed from the Weyl spinor, where χα is a general chiral spinor. The fundamental the-

orem of algebra ensures the factorisability of the polynomial and the Petrov classification

reduces to an analysis of the multiplicity of the factors.

In similar vein, the spinor classification of the Weyl tensor in five dimensions [70]

uses a spinorial approach to the classification of the Weyl tensor. Define the Weyl spinor,

associated with the Weyl tensor, to be

CABCD = CabcdΓ
ab

ABΓcd
CD. (6.16)

The Weyl spinor is symmetric in its first and last pair of indices since CΓab is sym-

metric (see section 6.2.1). Also, using the symmetries of the Weyl tensor, it is symmetric

under interchange of AB and CD. In five dimensions, the Fierz identity can be used to

show that it is totally symmetric. The five dimensional Fierz identity is

MABNCD =
1

4
CAD(NM)CB +

1

4
ΓeAD(NΓeM)CB − 1

8
Γef AD(NΓefM)CB . (6.17)

Letting M = Γab and N = Γcd, and multiplying by Cabcd gives

CabcdΓ
ab

ABΓcd
CD =

1

4
CabcdCAD(ΓcdΓab)CB+

1

4
CabcdΓeAD(ΓcdΓeΓab)CB

−1

8
CabcdΓef AD(ΓcdΓefΓab)CB . (6.18)

The trace free property of the Weyl tensor implies that CabcdΓ
aΓbΓc = CabcdΓ

abc =

Ca[bcd]Γ
abc. Thus, the Bianchi identity gives

CabcdΓ
aΓbΓc = CabcdΓ

bΓcΓd = 0.
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Therefore, equation (6.18) reduces to

CABCD =
1

4
CabcdΓeAD([Γcd,Γe]Γab)CB − 1

8
CabcdΓef AD([Γcd,Γef ]Γab)CB . (6.19)

Using the following identities

[Γab,Γc] = 2(gbcΓa − gacΓb), (6.20)

[Γab,Γcd] = 2(gbcΓad + gadΓbc − gacΓbd − gbdΓac), (6.21)

equation (6.19) reduces to

CABCD = CADCB .

Therefore, the Weyl spinor is totally symmetric 4

CABCD = C(ABCD). (6.22)

As with the case of the 2-form in section 6.2.1, the Weyl tensor is real, while the

Weyl spinor will in general be complex. The complex Weyl spinor has 70 real independent

components, while the 5d Weyl tensor has 35 independent components. Thus, the Weyl

spinor satisfies a reality condition, which halves its number of independent components.

Taking the complex conjugate of equation (6.16) and using equation (6.5) gives

CABCD = CȦḂĊḊA
Ȧ

AA
Ḃ

BA
Ċ

CA
Ḋ

D. (6.23)

The De Smet classification involves the factorisability properties of the invariant

Weyl polynomial

C(ψ) = CABCDψ
AψBψCψD, (6.24)

where ψ is a general Dirac spinor. In contrast to the Petrov classification, in general,

the polynomial above will not factorise. If it does factorise, the solution is said to be

algebraically special. Each polynomial factor in the product is distinguished by its degree

and multiplicity. There are 12 possibilities, as depicted in figure 6.1 [70].

The notation is such made that a number represents the degree of the polynomial

4The fact that CABCD as defined by equation (6.16) is totally symmetric depends very much on prop-
erties of the 5d Clifford algebra and the 5d Fierz identity. At least, with regard to the antisymmetry
property of C, which is crucial in ensuring that CΓab is symmetric, this does not hold in d = 7, 8, 9 mod 8
[139]. That is, in these dimensions, a representation of the Clifford algebra for which C is antisymmetric
does not exist.
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4

31

22

211

211

1111

22

1111

1111

11 11

1111 Cabcd≡0

Fig. 6.1: The 12 different algebraic types in the spinor classification.

factor and an underline represents its multiplicity. For example, type 22 corresponds

to the case where the Weyl polynomial factorises into two quadratic factors that are

proportional to one another and cannot be further factorised. Type 4 solutions (for which

the polynomial does not factorise) are said to be algebraically general.

For type 22 or more special solutions, we can learn more. For all such solutions, the

Weyl spinor is of the form

CABCD = ǫ(ABηCD). (6.25)

The reality condition, equation (6.23), reduces to

ǫ(ABηCD) = ǭ(AB η̄CD), (6.26)

where

ǭAB ≡ ǫȦḂA
Ȧ

AA
Ḃ

B .

It can be shown that this implies that either 5

ǫAB = ǭAB , ηAB = η̄AB , (6.27)

or

ǫAB = η̄AB. (6.28)

We can invert equation (6.16), so that the Weyl tensor is given in terms of the Weyl

spinor, i.e.

Cabcd =
1

64
(Γab)

AB(Γcd)
CDCABCD. (6.29)

Using equation (6.25) and the 5d Fierz identity, one can derive the general form of the

5A sketch of the proof of this result is given in appendix 6.C.
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Weyl tensor of type 22 or more special solutions 6

Cabcd =Aa[cBd]b +Ba[cAd]b −AabBcd −BabAcd −
1

2
AefBefga[cgd]b

−AaeB
e
[cgd]b −BaeA

e
[cgd]b +AbeB

e
[cgd]a +BbeA

e
[cgd]a, (6.30)

where

Aab = i tr(Γabǫ) and Bab = i tr(Γabη).

From the derivation of the reality condition in section 6.2.1, we find that reality

conditions (6.27) and (6.28) translate to

A∗
ab = Aab, B∗

ab = Bab (6.31)

and

A∗
ab = Bab, (6.32)

respectively.

The reality condition constrains the Weyl spinor and we can use the results above

to show that some types are not possible.

Type 1111

The Weyl spinor of type 1111 solutions is of the form

CABCD = ǫAǫBǫCǫD. (6.33)

Letting

ǫAB = ǫAǫB , ηAB = ǫAǫB,

reality conditions (6.27) and (6.28) both reduce to

ǫAǫB = ǭAǭB .

In appendix 6.B, we show that this implies a Majorana condition on ǫ

ǫA ∝ ǭA,

which gives that ǫ = 0 since the Majorana condition has no non-trivial solutions in 5d.

6See appendix 6.D for the derivation of the form of the Weyl tensor of type 22 or more special solutions.
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ǫ = 0 contradicts the assumption that the solution is not conformally flat.

Type 1111

The Weyl spinor of type 1111 solutions is of the form

CABCD = η(AǫBǫCǫD), (6.34)

where η 6∝ ǫ. We can choose

ǫAB = ǫAǫB , ηAB = η(AǫB).

Reality condition (6.27) gives two constraints, one of which is

ǫAǫB = ǭAǭB,

which contradicts the original assumption, as we showed for type 1111 solutions.

Reality condition (6.28) reduces to

ǫAǫB = ǭ(Aη̄B). (6.35)

Since ǫ 6= 0, this gives

ǫA = α ǭA + β η̄A.

Substituting this into equation (6.35) gives

α2ǭAǭB + (2αβ − 1)ǭ(Aη̄B) + β2η̄Aη̄B = 0.

Using similar techniques to those used in appendix 6.B, it is not too difficult to show that

this implies

α = 0 or β = 0.

β = 0 gives a Majorana condition on ǫ, so α = 0. Then equation (6.35) becomes

β2 η̄Aη̄B = ǭ(Aη̄B).

Since η̄ 6= 0, this implies that ǫ ∝ η. However, this contradicts the assumption that the

solution is type 1111.
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Type 1111

The Weyl spinor of type 1111 solutions is of the form

CABCD = η(AκBǫCǫD), (6.36)

where none of the spinors are proportional to one another. Choose

ǫAB = ǫAǫB , ηAB = η(AκB).

As before, reality condition (6.27) gives two constraints, one of which is

ǫAǫB = ǭAǭB ,

which gives a contradiction.

Reality condition (6.28) reduces to

ǫAǫB = η̄(Aκ̄B). (6.37)

Since ǫ 6= 0, this gives

ǫA = α η̄A + β κ̄A.

The arguments used for the analysis of type 1111 solutions apply to give

ǫ ∝ η̄, or ǫ ∝ κ̄.

As before, both these conditions give that η ∝ κ, which contradicts the assumption that

the solution is type 1111.

Type 211

The Weyl spinor of type 211 solutions is of the form

CABCD = ǫ(ABηCηD), (6.38)

where ǫAB does not factorise. Reality condition (6.28) gives that ǫAB factorises, contra-

dicting the assumption that the solution is type 211. Reality condition (6.27) gives a

Majorana condition on η, since it implies that

ηAηB = η̄Aη̄B .
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Thus, type 211 solutions are also not possible.

In summary, we have shown that the reality condition on the Weyl spinor means

that a solution cannot be of types 1111, 1111, 1111 and 211. Therefore, the number of

possible types reduces to eight. A revised version of figure 6.1 is drawn in figure 6.2.

4

31

22

211 1111

22

11 11 Cabcd≡0

Fig. 6.2: Revised figure showing the 8 different algebraic types in the spinor classification.

Although, we considered the spinor classification of Lorentzian solutions in the anal-

ysis above, the spinor classification of Euclidean solutions is identical except that one uses

the Euclidean Clifford algebra. The reason for this is that as with the 5d Lorentzian Clif-

ford algebra, the 5d Euclidean Clifford algebra does not admit a Majorana representation.

This means that the Weyl spinor of the Euclidean solution must satisfy the same reality

condition as the Lorentzian case, i.e. equation (6.23), where A now defines a Majorana

condition for the Euclidean Clifford algebra. However, since our arguments do not depend

on specific properties of A, the same conclusions as those found above will follow.

6.2.3 Relation to Petrov classification

The five dimensional De Smet classification is a generalisation of the four dimensional

Petrov classification insofar as it is concerned with the factorisability of a totally symmetric

4-spinor that is equivalent to the Weyl tensor. Here, we discuss the relation between the

two classification schemes.

The 4d analogue of the De Smet Weyl spinor is

CABCD = Cabcdγ
ab

ABγ
cd

CD, (6.39)

where γa form a representation of the 4d Clifford algebra. We need to show that the 4d

De Smet Weyl spinor defined above is totally symmetric. We can do this by using the

results found in 5d.
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In the definition of the 5d Weyl spinor (equation (6.16)) restrict the indices to take

values 0, . . . , 3 so that

CABCD = Cabcd(γ0γ5γ
ab)AB(γ0γ5γ

cd)CD, (6.40)

where we have used the Clifford algebra representation defined in (6.169), for which C =

γ0γ5. Lower case Latin indices range now from 0 to 3. Using the definition of γ5 we find

that

γ5γ
ab =

1

2
εab

efγ
ef ,

where εabcd is the Levi-Civita or permutation tensor. Given the relation [140]

Cefgh =
1

4
εab

efε
cd

ghCabcd,

equation (6.40) reduces to

CABCD = Cabcd(γ0γ
ab)AB(γ0γ

cd)CD.

Choosing the four-dimensional charge conjugation matrix, C = γ0 gives the 4d De Smet

Weyl spinor

CABCD = Cabcdγ
ab

ABγ
cd

CD, (6.41)

which must be totally symmetric since the spinor we began with is totally symmetric.

In 4d, the Weyl tensor has 10 independent components, while a general totally

symmetric 4-spinor has 35 complex independent components. However, the definition of

the 4d De Smet Weyl spinor using the 4d Weyl tensor in equation (6.39) ensures that it

has 10 complex independent components. Put another way, the symmetries of the Weyl

tensor in 5d give that the Weyl spinor is totally symmetric, whereas in 4d, the symmetries

give more constraints on the spinor, including the condition that it be totally symmetric.

The fact that the Weyl tensor is real further constrains the De Smet Weyl spinor via a

reality condition that halves its number of real independent components to 10.

In the Petrov classification, the homomorphism between SL(2,C) and the Lorentz

group is used to relate chiral spinor and Lorentz indices

Xαα̇ = iXaσa αα̇, Xa =
i

2
Xαα̇σ̄

a α̇α, (6.42)

where α and α̇ are left-handed and right-handed chiral spinor indices, respectively, σa =

(1, σi) and σ̄ = (1,−~σ).
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Using the symmetries of the Weyl tensor and spinor calculus, it can be shown that

the spinor equivalent of the Weyl tensor

Cαβγδα̇β̇γ̇δ̇ = σa
αα̇σ

b
ββ̇σ

c
γγ̇σ

d
δδ̇Cabcd, (6.43)

is equivalent to a totally symmetric spinor Ψαβγδ, known as the Weyl spinor in the Petrov

classification [20, 141]

Cαβγδα̇β̇γ̇δ̇ = Ψαβγδεα̇β̇εγ̇δ̇ + εαβεγδΨ̄α̇β̇γ̇δ̇, (6.44)

where εαβ = εα̇β̇ are the alternating tensors, which can be used to lower undotted and

dotted indices, i.e. they act as charge conjugation matrices for chiral spinors. Now,

multiplying equation (6.43) with εα̇β̇ = −εα̇β̇ , and contracting over dotted indices gives

Ψαβγδ = Cabcdζ
ab

αβζ
cd

γδ, (6.45)

where equation (6.44) has been used and

ζab
αβ =

1

2
εα̇β̇σa

αα̇σ
b
ββ̇ (6.46)

are the Lorentz algebra generators. The fundamental theorem of algebra guarantees that

Ψαβγδ factorises

Ψαβγδ = α(αββγγδδ). (6.47)

The Petrov classification concerns the multiplicity of the factors in (6.47), with the Petrov

types defined in table 6.1 [35] (see figure 6.3).

Table 6.1: The Petrov classification of the Weyl tensor

Petrov type Multiplicities Diagram

I (1,1,1,1)

II (2,1,1)

D (2,2)

III (3,1)

N (4)

O (Cabcd ≡ 0)
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Going back to the De Smet Weyl spinor in four dimensions,

CABCD = Cabcdγ
ab

ABγ
cd

CD,

we work in a chiral representation given by

γa =

(

0 σa

−σ̄a 0

)

(6.48)

in the hope of relating the De Smet Weyl spinor to the Petrov Weyl spinor Ψαβγδ as

defined in (6.45). The reality condition is

CABCD = CȦḂĊḊA
Ȧ

AA
Ḃ

BA
Ċ

CA
Ḋ

D, (6.49)

where

A =

(

0 −iσ2

iσ2 0

)

. (6.50)

In the chiral representation, γab
AB are block diagonal. Thus, using the fact that CABCD

is totally symmetric, we deduce that

CABCD = (Cαβγδ, Cα̇β̇γ̇δ̇), (6.51)

where

Cαβγδ = Cabcdγ
ab

αβγ
cd

γδ ,

i.e. mixed components vanish. Cαβγδ and Cα̇β̇γ̇δ̇ are related via reality condition (6.49).

But, γab
αβ=ζab

αβ, and so

Cαβγδ = Ψαβγδ , (6.52)

i.e. the undotted part of the De Smet Weyl spinor in four dimensions is the Petrov Weyl

spinor. Equivalently, the Petrov polynomial

Ψαβγδχ
αχβχγχδ = CABCDψ

AψBψCψD, (6.53)

where ψ =

(

χ

0

)

.

We can move to a Majorana representation by performing a similarity transformation
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III N O

II D

I

Fig. 6.3: Penrose diagram of the Petrov classification

such that a Majorana spinor in the chiral representation

(

χα

χ̄α̇

)

−→
√

2

(

Reχ

Imχ

)

(6.54)

in the Majorana representation. In a Majorana representation, the De Smet Weyl spinor

is real. Thus, the De Smet polynomial

C(ψ) = CABCDψ
AψBψCψD, (6.55)

where ψ is an arbitrary real (Majorana) spinor given by equation (6.54), is real. Thus,

the De Smet classification in 4d can be viewed as a classification of the Weyl tensor

using Majorana spinors, in contrast to the Petrov classification, which uses chiral spinors.

Rewriting the polynomial as

C(ψ) = Cabcdγ
ab(χ)γcd(χ),

where γab(χ) = γab
ABψ

AψB , it can be shown by direct calculation that

γab(χ) = ζab(χ) + ζab(χ)∗,

where ζab(χ) = ζab
αβχ

αχβ, so that

C(ψ) = Ψ(χ) + Ψ(χ)∗ + 2Cabcdζ
ab(χ)∗ζcd(χ),

where Ψ(χ) = Cabcdζ
ab(χ)ζcd(χ) is the Petrov polynomial. The tracefree property of the

Weyl tensor implies

Cabcdζ
ab(χ)∗ζcd(χ) = 0,
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which implies

C(ψ) = Ψ(χ) + Ψ(χ)∗. (6.56)

This can be used to relate De Smet types in four dimensions to Petrov types. For

example, assume that the solution is type N. Then,

Ψ(χ) = ω4. (6.57)

Equation (6.56) gives

C(ψ) = ω4 + ω∗ 4 = (ω +
√
−i ω∗)(ω −

√
−i ω∗)(ω +

√
i ω∗)(ω −

√
i ω∗). (6.58)

Hence, type N solutions are type 1111 in the 4d De Smet classification.

We can consider the other Petrov types in a similar manner. The results are sum-

marised in table 6.2. What we find is that type I, II and III solutions are all algebraically

general in the 4d De Smet classification, while type D and N solutions are type 22 and

1111, respectively. Thus, the De Smet or Majorana spinor classification of the Weyl tensor

in 4d is a coarse version of the Petrov or chiral spinor classification.

Table 6.2: Relation of De Smet classification in 4d to Petrov classification

De Smet type Petrov types

4 I, II, III
22 D

1111 N

The reason why other De Smet types are not possible goes back to the definition

of the 4d De Smet Weyl spinor via the 4d Weyl tensor, in equation (6.39). As discussed

before, the symmetries of the 4d Weyl tensor imply not only that the spinor is totally

symmetric, but give further conditions. It is these further conditions in addition to the

reality condition that constrains the spinor in such a way that it can only admit three

types.

For a Euclidean solution, we need to consider the Petrov classification of Euclidean

solutions. Starting from the chiral representation of the Lorentzian Clifford algebra (6.48),

we can define a chiral representation for the Euclidean Clifford algebra by setting γ4 = iγ0,

i.e. γa is given by

γi =

(

0 σi

σi 0

)

, γ4 = i

(

0 1

−1 0

)

(6.59)
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where i = 1, 2 or 3. As with the Lorentzian case, since γab
AB are block-diagonal and

CABCD is totally symmetric, we conclude that

CABCD = (Ψαβγδ,Ψα̇β̇γ̇δ̇), (6.60)

where Ψαβγδ and Ψα̇β̇γ̇δ̇ are the spinor equivalents of the self-dual and anti-self-dual parts

of the Weyl tensor. Unlike the Lorentzian case, these two parts are independent of each

other and this is manifested in the reality condition. The reality condition on the Weyl

spinor is

CABCD = CȦḂĊḊA
Ȧ

AA
Ḃ

BA
Ċ

CA
Ḋ

D, (6.61)

where

A =

(

−iσ2 0

0 iσ2

)

, (6.62)

i.e. for the Euclidean case, A, which defines the reality condition, is block-diagonal (com-

pare this to (6.50)). Thus, rather than relating the two different parts of the Weyl spinor

to one another, the reality condition places conditions on each part separately. Analysing

these conditions leads to the Petrov classification of Euclidean geometries [142].

Table 6.3: De Smet classification and Petrov classification of 4d Euclidean metrics

De Smet type Petrov types

4 (I,I), (I,D), (D,I)
22 (D,D)

1111 (I,O), (O,I)
11 11 (D,O), (O,D)

In the Petrov classification of Euclidean metrics, the two independent parts are

classified separately and the Petrov type of the geometry is given as a pair consisting of

the Petrov type of each part. The reality condition implies that the Petrov types of the

self-dual and anti-self-dual parts can only be I, D or O, leading to nine different cases.

The relation of these types to the De Smet types of the 4d geometry is given in table 6.3.

6.2.4 Direct product solutions

In [85], direct and warped product solutions to vacuum Einstein equations are studied

in the context of the CMPP classification and it is found that solutions with a one-

dimensional Lorentzian factor are necessarily of types G, I, D or O. It is also found that

solutions with a two-dimensional Lorentzian factor can only be of types D or O.
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Here, we study direct product solutions in the context of De Smet classification.

The results below directly generalise to warped product manifolds for which the confor-

mally related product manifold is again an Einstein manifold, since the Weyl tensors are

conformally related. Let

gab(x
a) = gΓ∆(xΓ) ⊕ gµν(xµ), (6.63)

where gΓ∆ is the metric of a n-dimensional Lorentzian manifold, and gµν is the metric

of a (5 − n)-dimensional Euclidean manifold. In such a setting, a tensor that splits like

the metric—it has no mixed components and components belonging to one submanifold

depend only on the coordinates covering that manifold—is known as a product-object or as

being decomposable. The Riemann tensor and its contractions are product-objects [143].

However, the Weyl tensor is in general not decomposable.

Assuming that the spacetime solves the vacuum Einstein equations

Rab = Λgab ⇐⇒ RΓ∆ = ΛgΓ∆, Rµν = Λgµν , (6.64)

the mixed Weyl tensor components are

CΓ∆Θµ =CΓ∆µν = CΓµνρ = 0,

CΓµ∆ν = −Λ

4
gΓ∆gµν . (6.65)

The non-mixed Weyl tensor components are

CΓ∆ΘΛ =











0, n = 1,

(1)CΓ∆ΘΛ +
(5 − n)Λ

2(n− 1)
gΓ[ΘgΛ]∆, n ≥ 2,

Cµνρσ =











(2)Cµνρσ +
nΛ

2(4 − n)
gµ[ρgσ]ν , n ≤ 4,

0, n = 4,

(6.66)

where (1)CΓ∆ΘΛ and (2)Cµνρσ are the Weyl tensors derived from metrics gΓ∆ and gµν ,

respectively [85].

For n = 1 and n = 4, the vacuum Einstein equations (6.64) give that Λ = 0. For

n = 4, the Weyl spinor is

CABCD = (1)CABCD, (6.67)

i.e. the De Smet type of the solution is equal to the De Smet type of the four dimensional
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submanifold. Thus, from section 6.2.3, we know that the De Smet type can only be one

of 4, 22 or 1111. The relation between the De Smet type of the 5d solution and the

Petrov type of the 4d factor is given in table 6.2. The black string is an example of a

direct product solution (with n = 4). It is formed from the direct product of 4d type D

Schwarzschild solution with a line, which means it is type 22 in De Smet classification [71].

For n = 1, the story is similar:

CABCD = (2)CABCD, (6.68)

and the De Smet type can only be one of 4, 22, 1111 or 11 11, as is shown in section 6.2.3.

The relation between the De Smet type of the 5d solution and the Petrov type of the 4d

factor is given in table 6.3.

For n = 2, (1)CΓ∆ΘΛ = (2)Cµνρσ = 0. Using a vielbein, the Weyl spinor is

CABCD =
Λ

4

[

3ΓΓ∆
ABΓΓ∆CD − 4ΓΓµ

ABΓΓµCD + 2Γµν
ABΓµνCD

]

. (6.69)

If Λ = 0, the solution is conformally flat. If Λ 6= 0, the Weyl polynomial is

C(ψ) = −24Λ(vw − uz)2, (6.70)

where ψ = (u, v,w, z). Hence, such solutions are type 22. This result mirrors that found

in [85], where it is shown that n = 2 product solutions can only be types D and O.

For n = 3, as with the n = 2 case, we have (1)CΓ∆ΘΛ = (2)Cµνρσ = 0 and the Weyl

spinor is

CABCD =
Λ

4

[

2ΓΓ∆
ABΓΓ∆CD − 4ΓΓµ

ABΓΓµCD + 3Γµν
ABΓµνCD

]

. (6.71)

If the solution is not conformally flat, then Λ 6= 0 and

C(ψ) = −24Λ(uw − vz)2. (6.72)

Hence, such solutions are also type 22.
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6.3 Connection between tensor and spinor classifications

6.3.1 Connection between tensor and spinor classifications of two-form

A non-vanishing real two-form F can be classified in two different ways. There is the

tensorial approach analogous to the CMPP classification of the Weyl tensor whereby one

looks for a null vector ℓ such that in the null frame (ℓ, n,mi) with ℓ · n = −1, F0i = 0. If

this is the case, the 2-form is said to be aligned with respect to ℓ and of type I. If no such

ℓ exists, then the 2-form is of type G. The 2-form is algebraically special (or type II) if

F0i = F01 = Fij = 0.

We also have the spinorial approach outlined in section 6.2.1, whereby the 2-form is

algebraically special if and only if its bispinor equivalent ǫAB factorises, i.e. ǫAB = ǫ(AǭB).

The fact that the factors are conjugates of one another is implied by the reality condition,

as shown in section 6.2.1. We call algebraically special 2-form fields type 11 fields in

analogy with the De Smet classification of the Weyl tensor. Type 11 fields can be further

classified by considering whether the scalar f = ǭǫ vanishes or not. If the bispinor does

not factorise, we say that the field is type 2.

The question we address in this section is how are the different types in the two

classification schemes related to one another?

From Fierz identities (6.10)–(6.12), we know that given a 2-form F with bispinor

equivalent ǫAB

ǫAB = ǫ(AǭB) =⇒ V aFab = 0 and F abFab = −4V 2

for V a = iǭΓaǫ. For the case where V is null, the converse can also be shown by direct

computation, i.e. given a null vector V and 2-form F with bispinor equivalent ǫAB

V aFab = 0 and F abFab = 0 =⇒ ǫAB = ǫ(AǭB).

We prove this by taking a general bispinor, finding its equivalent 2-form F and showing

that constraining it as on the left hand side above gives that the bispinor factorises. The

reality condition gives that the factorisation must be of the form given on the right hand

side and it turns out that V a ∝ iǭΓaǫ.

From the above two results, we conclude that the 2-form field F is

Type 11 (f = 0) ⇐⇒ Type II, (6.73)

Type 11 (f 6= 0) =⇒ Type G. (6.74)
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Assume the field F is type 2. From (6.73), we know that the field cannot be type

II. However, there could still exist a null vector ℓ such that in the null frame (ℓ, n,mi)

F0i = 0, i.e. the field can be type I. If no such ℓ exists, then the 2-form is type G. These

results are summarised in table 6.4.

Table 6.4: Relation between spinor and tensor types for 2-form

Spinor type Possible tensor types

2 G, I
11 G, II

6.3.2 Connection between CMPP and De Smet classifications

It is known that the definition of algebraic specialness in the CMPP and De Smet classi-

fication schemes do not agree [135, 1]. Indeed, we showed in section 6.2.4 that the direct

product of any type II or III 4d Ricci-flat solution with a line is algebraically general in

the De Smet sense, but special in the CMPP sense. Moreover, it is not even the case

that the CMPP classification is a refinement, because there are examples that are alge-

braically special in the De Smet classification and general in the CMPP classification. In

this section, we investigate the connection between the two classification schemes.

Relation of CMPP types to De Smet types

We shall proceed by assuming a five dimensional solution to be of particular CMPP type

and consider what this means in the De Smet classification. The vielbeins are chosen to

be

e0̂ =
1√
2
(ℓ+ n), e1̂ =

1√
2
(ℓ− n), êi = mi,

where (ℓ, n,mi) form a null frame, such that ℓ and n are null, ℓ · n = −1 and mi are a set

of d − 2 orthonormal spacelike vectors orthogonal to ℓ and n. The implicit Latin letters

in the equation above label null frame indices.

Now, using equations (6.16) and (6.24), where ψ = (u, v,w, z) we derive the Weyl

polynomials associated with type D, III and N solutions and consider how they may

factorise.

Type N

For type N solutions the only non-zero components of the Weyl tensor are C1i1j .
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Using the trace-free property of the Weyl tensor (C i
1i1 = 0), we have five independent

Weyl tensor components: C1313, C1414, C1213, C1214, and C1314. Rotating mi → m′
i such

that C1i1j is diagonal in the new frame and computing the Weyl polynomial gives

C(ψ) = 8
[

(2C1313 + C1414)(u
4 + v4) − 6C1414u

2v2
]

, (6.75)

which factorises to give

C(ψ) = A(u+ av)(u − av)(u + v/a)(u− v/a), (6.76)

where A = 8(2C1313 +C1414) and a is given by

a2 + 1/a2 =
6C1414

2C1313 + C1414
,

assuming that 2C1313 +C1414 6= 0. If 2C1313 +C1414 = 0, then C(ψ) ∝ u2v2, which means

the solution is type 11 11. Equation (6.76) implies that type N solutions are type 1111 or

more special. If a = ±1, then the solution is of type 11 11. Hence, any type N solution

must be of De Smet type 1111 or 11 11.

Type III

For type III solutions, the non-zero components of the Weyl tensor are C1i1j , C1ijk

and C011i. The thirteen independent components are chosen to be: C1212, C1313, C1213,

C1214, C1314, C1234, C1342, C1232, C1242, C1323, C1343, C1424 and C1434. Again, rotating

the frame as before so that C1i1j is diagonal and computing the Weyl polynomial gives

C(ψ) =8
{

(C1313 −C1212)(u
4 + v4) + 6(C1212 +C1313)u

2v2

− 2
√

2w[(C1342 − C1234 + iC1343 − iC1242)u
3 + 3(C1434 − iC1424)u

2v

+ 3(C1234 + C1342 + iC1242 + iC1343)uv
2 + (2C1232 + C1434 + 2iC1323 + iC1424)v

3]

+ 2
√

2z[(2C1232 + C1434 − 2iC1323 − iC1424)u
3 + 3(C1434 + iC1424)uv

2

− 3(C1234 + C1342 − iC1242 − iC1343)u
2v − (C1342 − C1234 + iC1242 − iC1343)v

3]
}

.

(6.77)

Note that if all the coefficients of factors with w or z vanish, then this implies that the

solution is type N giving a contradiction. It can be shown that the polynomial may

factorise into cubic and linear factors. However, the conditions needed for the polynomial

to factorise into two quadratic factors directly imply that one of the quadratic factors

must factorise further into linear factors. The polynomial cannot be factorised any further
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without contradicting the assumption that the solution is type III. Hence, any type III

solution must be of De Smet type 4, 31 or 211.

Type D

Finally, we consider type D solutions, for which the non-zero Weyl tensor components

are Cijkl, C0i1j , C01ij and C0101. The nine independent components are chosen to be:

C2323, C2424, C3434, C0123, C0124, C0134, C2324, C3234 and C2434. We can rotate the

spacelike basis vectors mi such that the symmetric part of Φij ≡ C0i1j is diagonal. Then,

computing the Weyl polynomial gives

C(ψ) = 16
{

u2[3(Φ22 − Φ33)w
2 + 2(Φ24 + (2 + i)Φ34)wz

− (3(Φ22 + Φ33) + 6iΦ23 + 4iΦ24)z
2]

+ 2uv[−(Φ24 + (2 + i)Φ34)w
2 + 6Φ44wz + (Φ24 + (2 − i)Φ34)z

2]

− v2[(3(Φ22 + Φ33) − 6iΦ23 − 4iΦ24)w
2 + 2(Φ24 + (2 − i)Φ34)wz

− 3(Φ22 − Φ33)z
2]
}

. (6.78)

If the polynomial factorises, then, to avoid a contradiction, it does so into two non-

factorisable quadratic factors that may or may not be proportional to one another, or

into four independent linear factors. Hence, any type D solution must of De Smet type 4,

22, 22 or 1111.

The results found above are summarized in table 6.5.

Relation of De Smet types to CMPP types

Now, we shall consider the different De Smet types and study what possible CMPP types

they imply. As with the previous section, we shall not be able to examine all De Smet

types. However, we shall study all algebraically special types, except type 31. All such

solutions can be regarded as special cases of type 22 solutions, for which the form of the

Weyl tensor is given in equation (6.30)

Cabcd =Aa[cBd]b +Ba[cAd]b −AabBcd −BabAcd −
1

2
AefBefga[cgd]b

−AaeB
e
[cgd]b −BaeA

e
[cgd]b +AbeB

e
[cgd]a +BbeA

e
[cgd]a, (6.79)
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where 2-forms Aab = i tr(Γabǫ) and Bab = i tr(Γcdη) satisfy one of the following reality

conditions

A∗
ab = Aab, B∗

ab = Bab (6.80)

or

A∗
ab = Bab. (6.81)

Also, we shall require results (6.73) and (6.74) and the generalisation of result (6.73)

for 2-forms that do not satisfy any reality condition. If a 2-form F is type I, then it can

be shown by direct computation that

ǫAB = ǫ(AκB) ⇐⇒ F is type II, (6.82)

where ǫAB is the spinor equivalent of F .

Type 22

Working in null frame (ℓ, n,mi) such that ℓ·n = −1, the +2 boost weight components

of the Weyl tensor Ωij ≡ C0i0j are of the form

Ωij = A0kB0kδij − 3A0(iB|0|j).

A0i = 0 or B0i = 0 is sufficient for Ωij = 0. However, one can show that it is also necessary.

Ωij = 0 gives

A0kB0kδij = 3A0(iB|0|j). (6.83)

Assume that neither A0i nor B0i vanish. Contracting the above equation with A0iA0j

gives

A0kB0k = 0. (6.84)

Hence, from equation (6.83)

A0(iB|0|j) = 0.

Contracting this with B0i and using equation (6.84) gives

A0i = 0.

But, this contradicts the original assumption that A0i 6= 0. Therefore, either A0i = 0 or

B0i = 0.

This means that the solution is type I or more special if and only if A0i = 0 or
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B0i = 0. If there does not exist a ℓ such that A0i or B0i vanish then the solution is type

G. Now, assume there exists a ℓ such that without loss of generality A0i = 0.

Given that A0i = 0, the solution is type II if and only if Ψijk ≡ C0ijk = 0.

Ψijk = B0[jAk]i −AjkB0i +A01B0[jδk]i −B0lAl[jδk]i.

It can be shown that

Ψijk = 0 ⇐⇒ A01 = Aij = 0, or B0i = 0. (6.85)

From the result in equation (6.82), A01 = Aij = 0 would imply that bispinor ǫ factorises,

contradicting the assumption that the solution is type 22. Thus, B0i must also vanish for

the solution to be type II. This would be a further condition if reality conditions (6.80)

are satisfied. However, A0i = 0 =⇒ B0i = 0 if reality condition (6.81) is satisfied.

Given that the solution is type II, then it can be shown that boost weight 0 compo-

nents vanish if and only if

A01 = Aij = 0, or B01 = Bij = 0, (6.86)

which would imply (using (6.82)) that one of the bispinors associated with A or B fac-

torises, contradicting the original assumption.

However, if there exists an n such that A1i = B1i = 0, then the results above apply

directly to give that the solution is type D. As before, A1i = 0 ⇐⇒ B1i = 0 for reality

condition (6.81).

To summarise, type 22 solutions are of CMPP types G, I, II or D, depending on

whether the 2-forms A and B are aligned. An example of a type 22 solution that is

algebraically general in the CMPP sense is the ‘homogeneous wrapped object’ of [70] [1].

Type 22

A special case of type 22 is when A ∝ B. In this case the solution is type 22 and

the Weyl tensor is completely determined by 2-form F ; using equation (6.79)

Cabcd = 2(Fa[cFd]b − FabFcd − FaeF
e
[cgd]b + FbeF

e
[cgd]a) −

1

2
F 2ga[cgd]b, (6.87)

where F 2 = F efFef . The reality condition is simply that F is real. Using the results

derived when analysing type 22 solutions, the solution is type II if and only if there exists
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a ℓ such that F0i = 0. If no such ℓ exists then the solution is type G. If, in addition,

there exists a n such that F1i = 0, then and only then is the solution type D. Any further

constraint on F contradicts the original assumptions.

Thus, in summary, type 22 solutions can only be of CMPP type G, II and D. An

example of a type 22 solution is the 5d Myers-Perry solution [144] (CMPP type D [123]).

For this solution, the 2-form F that squares to give the Riemann tensor is conformal to a

test Maxwell field on it.

Type 211

The solution is type 211 if one of the bispinors, for example η, factorises. Reality

condition (6.81) contradicts the assumption that only one of the spinors factorises. One

of the reality conditions in (6.80) implies that ηAB = η(Aη̄B) (using the results of section

6.2.1), so that Bab = iη̄Γabη. We can also form a vector from η, V a = iη̄Γaη. The result

in (6.73) gives that B0i = B01 = Bij = 0 if and only if V is null. Thus, the analysis splits

to two cases of V timelike or null.

If V is timelike, then the solution is type I if and only there exists a ℓ such that

A0i = 0. Otherwise, result (6.74) implies that the solution is type G. Any other constraints

on A or B contradict the original assumptions.

If V is null, then choosing ℓ = V gives that the solution is type II. If, in addition,

A0i = 0 then solution is type III. Any further constraints on the 2-forms give contradic-

tions.

To summarise, type 211 solutions can only be of CMPP types G, I, II and III.

Type 1111

For type 1111 solutions, both bispinors ǫ and η factorise, i.e. ǫAB = ζ(AκB) and

ηAB = λ(AµB). Using arguments very similar to those used in section 6.2.2 to show that

type 1111 solutions are not possible, one can show that reality condition (6.81) implies that

at least two of the spinors coincide, contradicting the assumption that they are distinct.

Reality conditions (6.80) give that ǫAB = ǫ(AǭB) and ηAB = η(Aη̄B). As above, we

can form two vectors, V a = iǭΓaǫ and W a = iη̄Γaη.

The solution is type G if and only if V and W are timelike. If only one of the vectors

is null, then and only then is the solution type II. The solution is type D if and only if

both vectors are null but not proportional to one another. Finally, the solution is type N

if and only if both vectors are null and proportional to one another.
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Thus, type 1111 solutions are of CMPP types G, II, D or N.

Type 11 11

Type 11 11 solutions are special cases of type 1111 solutions for which two pairs of

spinors coincide. However, it is more useful to think of them as special cases of type 22

solutions for which the bispinor ǫ factorises. The reality condition gives that ǫAB = ǫ(AǭB).

Thus, the Weyl tensor is determined only from one spinor ǫ. Forming a vector from this,

V a = iǭΓaǫ, we find that the solution is type G if and only if V is timelike and type N if

and only if it is null.

The results found above are summarised in table 6.6. These results are consistent

with those found in section 6.3.2 (see table 6.5).

Table 6.5: Possible De Smet types given CMPP type

CMPP type Possible De Smet types

D 4, 22, 22, 1111
III 4, 31, 211
N 1111, 11 11

Table 6.6: Possible CMPP types given De Smet type

De Smet type Possible CMPP types

22 G, I, II, D
22 G, II, D
211 G, I, II, III
1111 G, II, D, N
11 11 G, N

6.3.3 De Smet classification of black ring

The results above show that a type G solution could be of any type in the De Smet

classification. This can be used to study algebraically general solutions as defined by the

CMPP classification. The singly rotating black ring solution [50] is a well-known example

of a CMPP algebraically general five dimensional solution [136]. Therefore, it would be

desirable to know the De Smet type of the black ring solution. The metric of the black
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ring can be written as [145, 8]

ds2 = − F (y)

F (x)

(

dt − C R
1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

(

dx2

G(x)
− dy2

G(y)
+
G(x)

F (x)
dφ2 − G(y)

F (y)
dψ2

)

, (6.88)

where

F (ζ) = 1 + λζ, G(ζ) = (1 − ζ2)(1 + νζ), C =

√

λ(λ− ν)
1 + λ

1 − λ
,

The parameters λ and ν are not independent and are related via an equation that will

not be given here. Furthermore, they satisfy 0 < ν ≤ λ < 1. The coordinates x and y lie

in the ranges −1 ≤ x ≤ 1 and −∞ ≤ y ≤ −1. Asymptotic infinity is at x = y = −1, the

ergosurface is at y = −1/λ and inside this is the horizon at y = −1/ν.

Choosing the following vielbein

e0̂ =

√

F (y)

F (x)

(

dt− C R
1 + y

F (y)
dψ

)

, e1̂ =
R

x− y

√

F (x)

G(x)
dx, e2̂ =

R

x− y

√

−F (x)

G(y)
dy,

e3̂ =
R

x− y

√

G(x)dφ, e4̂ =
R

x− y

√

−F (x)G(y)

F (y)
dψ, (6.89)

which is well-defined everywhere, except at the horizon and ergosurface, the Weyl poly-

nomial is

C(ψ) =
6(x− y)

R2F (x)3F (y)

{

A1(vw + uz)(uw − vz) + i(u2 − v2 + w2 − z2)[A2(vw + uz)

+A3(uw − vz)] +A4(u
4 + v4 + w4 + z4) +A5uvwz

+A6 (u2z2 + v2w2) +A7(u
2w2 + v2z2) +A8(u

2v2 + w2z2)
}

,

(6.90)

where ψ = (u, v,w, z) and Ai are expressions involving x, y, λ and ν given in appendix

6.E.

The polynomial above does not factorise, in general. Thus, the solution is alge-

braically general in the De Smet sense. If we take the static limit ν → λ, for which C = 0,

the polynomial is again not factorisable, so the static black ring is also algebraically gen-

eral.
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6.4 2-forms and Weyl tensors defined by a spinor

6.4.1 Algebraically special 2-form fields

In four dimensions, the algebraic specialness of the Weyl tensor of a solution is related

to the admittance by the solution of algebraically special electromagnetic fields. The

Mariot-Robinson theorem [137, 35] states that in a null frame defined by null vector field

V , a test null electromagnetic field F has only negative boost weight components (F is

algebraically special), if and only if V defines a shear-free geodesic null congruence. But the

Goldberg-Sachs theorem [36] states that a vacuum solution admits a shear-free geodesic

null congruence if and only if the solution is algebraically special. Thus in 4d the algebraic

specialness of a 2-form test field satisfying Maxwell equations and the algebraic specialness

of the Weyl tensor coincide. Considering the property of algebraically special p-form fields

in higher dimensions could help clarify the status of a higher dimensional generalisation of

the Goldberg-Sachs theorem. Some progress has been made in this regard [146, 67] using

the CMPP classification.

Here, we consider the algebraic specialness of a 2-form field in the context of the De

Smet classification. We define a real 2-form field F to be algebraically special if and only

if its bispinor equivalent

ǫAB =
i

8
FabΓ

ab
AB , (6.91)

factorises, i.e.

ǫAB = η(AǫB). (6.92)

From section 6.2.1, we find that requiring F to be real implies that ηA ∝ ǭA and hence

Fab = iǭΓabǫ. (6.93)

Furthermore, we can construct a scalar f and vector V (defined in (6.9)) that are related

to eachother and F via the Fierz identities (equations (6.10)–(6.15)).

The equations of motion for F are given by

dF = 0, (6.94)

d ⋆ F = λF ∧ F, (6.95)

where λ = 0 corresponds to Maxwell theory and λ = −2/
√

3 corresponds to minimal

supergravity [138]. The analysis divides naturally into two cases of f zero and non-zero,



138 CHAPTER 6. SPINOR CLASSIFICATION OF THE WEYL TENSOR

corresponding to V null and timelike, respectively.

V null

For the null case, we showed in section 6.3.1 that this is equivalent to the algebraic spe-

cialness of F in the CMPP sense. Also, equation (6.14) reduces to

F ∧ F = 0,

so that

d ⋆ F = 0, (6.96)

i.e. F solves Maxwell equations. From equation (6.15), we have

F = V ∧W, (6.97)

for some 1-form W . Equations (6.10) and (6.13) imply that

V ·W = 0 and W 2 = 1,

respectively.

Such Maxwell fields have been studied in [67], where it is shown that V is geodesic;

W is an eigenvector of the shear matrix and the wedge product of the rotation matrix

with W vanishes, i.e.

V · ∇V ∝ V, (6.98)

and in null frame (V, n,mi), ρij = ∇jVi satisfies

ρ(ij)Wj =
ρ

2
Wi, (6.99)

ρ[ij] =
1

2
(Y ∧W )ij, (6.100)

for some 1-form Y .

V timelike

Taking Hodge dual and then exterior derivative of equation (6.15) gives

[

λF + d

(

V

f

)]

∧ F = 0. (6.101)
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The interior product of the above equation with F implies

(

4λf3 + ιF dV
)

F = 2f

[

ιV d

(

V

f

)]

∧ V, (6.102)

and the interior product of this equation with V gives

V · ∇V =
V · ∇f
f

V, (6.103)

i.e. V defines a timelike geodesic congruence.

Taking exterior derivative and then Hodge dual of equation (6.15) and using equa-

tions of motion gives

dfaV[aFbc] = f∇a(V[aFbc]),

which is equivalent to

f
(

Fc[a∇cVb] + Fc[a∇b]V
c
)

− df cFc[aVb] − (V · ∇f)Fab = 0.

Interior product of this with F gives

f∇ · V + V · ∇f = 0. (6.104)

Introduce coordinates (t, xm) such that V = ∂/∂t. The metric can then be written

as

ds2 = −f2 (dt + ω(xp))2 + f−1hmn(t, xp)dxmdxn, (6.105)

where the manifold with metric hmn will be referred to as the base space. ω is a 1-form

with components only on the base space.

Equation (6.12) implies that one can regard F as a 2-form on the base space. Then,

equation (6.13) gives

Fm
pFp

n = −δmn, (6.106)

where indices have been raised with respect to hmn. Thus, Fm
n defines an almost complex

structure with respect to hmn. Moreover, the Bianchi identity on F implies that Fmn is

closed, i.e.
(h)∇[pFmn] = 0. (6.107)

Thus, hmn is an almost-Kähler metric.
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Defining

ξ = f−1V,

so that ξ2 = −1 and ξ·∇ξ = 0, the expansion, shear and rotation of the timelike congruence

are

θ = ∇aξb(g
ab + ξaξb) = −2f−2V · ∇f, (6.108)

σab = ∇(aξb) −
1

4
θ(gab + ξaξb) = f−1∇(aVb) − f−2V(adfb) −

1

4
f−1θhab

=
1

2
f−2(LV hab), (6.109)

ωab = −∇[aξb] = f−2df[aVb] − f−1∇[aVb], (6.110)

respectively, where we have used equation (6.104) in the first line above..

The Bianchi identity and equation (6.12) give that

LV F = 0. (6.111)

Rewriting equation (6.106) as

FmnFpqh
np = hmq (6.112)

and taking Lie derivative with respect to V gives

Fm
nFq

p(LV hnp) = −(LV hmq)

or

Fm
nFq

pσnp + σmq = 0, (6.113)

i.e. the (1, 1)−part of the shear vanishes.

Therefore, for a timelike 2-form field, we have that the solution admits a time-

like geodesic congruence and that the base space is almost-Kähler. Furthermore, the

(1, 1)−part of the shear vanishes.

6.4.2 Classification of type 11 11 solutions

Type 11 11 solutions are significant in that their Weyl tensors are fully determined from a

single Dirac spinor. In this section, we consider type 11 11 solutions and use the Bianchi

identity to classify them. The spinor ǫ that defines the type 11 11 solution can be used to
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form a real scalar, vector and 2-form as follows

f = ǭǫ, V a = iǭΓaǫ, Fab = iǭΓabǫ. (6.114)

As noted in section 6.2.1, these quantities are related via Fierz identities (6.10)–(6.15).

Simplifying the general form of the Weyl tensor of type 22 or more special solutions

(equation (6.30)) using the Fierz identities, we find that the Weyl tensor of type 11 11

solutions is of the form

Cabcd = 2
(

Fa[cFd]b − FabFcd + VaV[cgd]b − VbV[cgd]a + f2ga[cgd]b

)

. (6.115)

Assuming a vacuum Einstein solution

Rab = Λgab, (6.116)

the Bianchi identity reduces to

Cab[cd;e] = 0. (6.117)

We shall use the above equation to find restrictions on the spinor. As in section 6.4.1, the

analysis divides into two cases of V null and timelike.

V null

As shown in section 6.3.2, this class of type 11 11 solutions are type N in the CMPP

classification (V is a multiple WAND). Type N solutions to vacuum Einstein equations

have been studied before [64, 67]. In [67], it is shown that in the null frame (V, n,mi), the

optical matrix ρij = ∇jVi is of the form

ρij =
1

2







ρ a 0

−a ρ 0

0 0 0






,

and that if the expansion ρ = 0 then a = 0, giving a Kundt solution.

The Fierz identities give

F = V ∧W, (6.118)

for some W satisfying V ·W = 0 and W 2 = 1. The Weyl tensor is of the form

Cabcd = −3FabFcd + 2(VaV[cgd]b − VbV[cgd]a). (6.119)
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Then, V bCa
bcd;a = 0 and W bCa

bcd;a = 0 give

V · ∇V = (∇ · V )V, (6.120)

i.e. V is geodesic. This has been shown before [64, 1]. Now, F cdCab[cd;e] = 0 gives

∇ · V = 0, (6.121)

i.e. ρ = 0, which means that we have a Kundt solution.

Choosing null frame (V, n,W,mî) where î = 3, 4 and V · n = −1, Ca
bcd;a = 0 gives

2L1ĵ − τĵ = 0, (6.122)

where

∇aVb = L11VaVb + L1im
(i)
a Vb + τi Vam

(i)
b . (6.123)

Then, W aCab[cd;e] = 0 gives

V ∧ dW = 0, (6.124)

which implies

V · ∇W ∝ V, and W · ∇W ∝ V,

where we have used ρij = 0.

The above equations give that

[V,W ] ∝ V, (6.125)

which, by Frobenius’ theorem, gives that the distribution spanned by {V,W} is inte-

grable. Moreover, using hyper-surface orthogonality of V and equation (6.124), the dual

formulation of Frobenius’ theorem implies that the distribution spanned by {V,mî} is also

integrable. We also have such a structure for the null case in section 6.4.1.

The Bianchi identity then reduces to

∇aWb =
1

3
(τ2 − 2L12)m

(̂i)
am(̂i) b −Va n ·∇Wb −Va Vb (ncnd∇cWd)−nc∇aWc Vb. (6.126)

Furthermore, the only non-zero components of the Weyl tensor, Ω′
ij ≡ C1i1j are of

the form

Ω′
ij = −3WiWj + δij ,
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i.e. Ω′
ij has two equal eigenvalues.

The information above does not seem to be strong enough to allow a complete

classification of all such solutions. In summary, type 11 11 solutions to vacuum Einstein

equations with f = 0 are type N Kundt solutions. In addition, the WAND is in two

orthogonal integrable null distributions of dimensions two and three and Ω′
ij has two

equal eigenvalues.

V timelike

Contracting the Bianchi identity with the inverse metric and using the trace-free property

of the Weyl tensor gives

Ca
bcd;a = 0.

Then F bcCa
bcd;a = 0 gives

3f2F a
d;a + (fdfa − V · ∇V a)Fad = 0, (6.127)

and V cCa
bcd;a = 0 gives

f2∇aVb+(F c
aF

d
b + 2F c

bF
d
a)∇cVd

−∇ · V (f2gab + VaVb) + f V · ∇f gab + VaV · ∇Vb − fdfaVb = 0. (6.128)

Using the Fierz identities and equation (6.127) to simplify F abFea;b, F
abF cdCab[cd;e] = 0

reduces to

3V · ∇f + f ∇ · V = 0, (6.129)

and a geodesity condition on V

f V · ∇V = (V · ∇f)V . (6.130)

Using equation (6.128) to simplify V aF cdCab[cd;e] = 0 gives

∇(a(f
−1V )b) =

1

4
∇ · (f−1V )(gab + f−2VaVb) (6.131)

and F abCab[cd;e] = 0 reduces to

d(f1/3F ) =
2

3
f−3(V · ∇f)V ∧ (f1/3F ). (6.132)
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To simplify the above equations, define new vector and 2-form

W = f−1V and J = f1/3F. (6.133)

Then, the equations above give that W forms a shear-free affinely parametrised geodesic

congruence

W 2 = −1, W · ∇W = 0, ∇(aWb) =
1

4
∇ ·W (gab +WaWb), (6.134)

while J satisfies

d ⋆ J = 0, dJ =
2

3
f−1(W · ∇f)W ∧ J. (6.135)

Also, we have

dWab − f−8/3Jc
aJ

d
bdWcd = 0. (6.136)

Introduce coordinates (t, xm) such that W = ∂/∂t. The metric can then be written as

ds2 = − (dt+ ω(xp))2 + f−4/3kmn(t, xp)dxmdxn, (6.137)

where the manifold with metric kmn is called the base space, and ω is a 1-form with

components only on the base space. J lives on the base space and equation (6.13) gives

that Jm
n is an almost complex structure on it, i.e.

Jm
pJ

p
n = −δm

n, (6.138)

where base space indices have been raised using kmn, and will be done so hereafter. Equa-

tion (6.136) implies that dW is a (1, 1)−form. Written in terms of base space components,

V eCab[cd;e] = 0 reduces to

km[pdWq]n − kn[pdWq]m − dWmrJ
r
[pJq]n + dWnrJ

r
[pJq]m = 0. (6.139)

Contracting the above equation with kmp gives

dWnq + Jm
nJ

p
qdWmp + (dWmpJ

mp)Jnq = 0. (6.140)

Now, contracting this with Jnq gives

dWmpJ
mp = 0.
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Hence, from equation (6.140), we have

dWmn + Jp
mJ

q
ndWpq = 0, (6.141)

i.e. the (1, 1)−part of dW vanishes. But, we have from before that dW is a (1, 1)−form.

This means that

dW = 0. (6.142)

Remaining coordinate freedom can then be used to set

ω(xp) ≡ 0. (6.143)

Finally, F bcCab[cd;e] = 0 gives

(h)∇pJmn = 0, (6.144)

i.e. 2-form J is a Kähler form on the base space.

Now, taking the exterior derivative of the second equation in (6.135) and using

equations (6.135) and (6.15) gives

d(f−1W · ∇f)aJab = 0

or

d(f−1W · ∇f) ∝W.

Note that equation (6.129) gives that the expansion of the congruence defined by W

θ = −4f−1W · ∇f. (6.145)

Thus,

dθ = −(W · ∇θ)W,

i.e. the expansion depends only on t:

θ = θ(t). (6.146)

Since W aCabcd = 0, we can think of the Weyl tensor as living on the base space

Cmnpq = −2f−2/3
(

JmnJpq − Jm[pJq]n − km[pkq]n

)

. (6.147)
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Equation (6.14) gives that

εmnpq =
1

2
(J ∧ J)mnpq, (6.148)

where εmnpq = f8/3W aεamnpq is the Levi-Civita tensor on the base space. Equation (6.15)

gives that J is self-dual

⋆4J = J. (6.149)

Using the above two equations gives

⋆4Cmnpq =
1

2
εmn

rsCrspq = Cmnpq, (6.150)

i.e. the 5d Weyl tensor with components restricted to the base space with metric k is

self-dual.

Rewriting the metric as

ds2 = −dt2 + h̃mn(t, xp)dxmdxn,

the final equation that gives the shear-free property of the congruence defined by W in

(6.134) reduces to

∂th̃mn =
1

2
θ(t) h̃mn,

where we have used the fact that W is hyper-surface orthogonal and the result in (6.146)

that the expansion is only time-dependent. The equation above can be integrated for each

component to give

h̃mn(t, xp) = A(t)2hmn(xp), (6.151)

for some function A(t).

Thus, the metric can be written as

ds2 = −dt2 +A(t)2hmn(xp)dxmdxn, (6.152)

where the expansion

θ(t) = 4A′(t)/A(t), (6.153)

and h is a conformally Kähler metric.

Defining L by

Λ =
4ǫ

L2
, ǫ ∈ {−1, 0, 1}, (6.154)
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Raychaudhuri’s equation

W · ∇θ = −1

4
θ2 + Λ,

reduces to

A′′(t) − ǫ

L2
A(t) = 0.

The first integral of this equation gives

A′(t)2 − ǫ

L2
A(t)2 = −η, (6.155)

where we can use the freedom in soaking up constants into metric h to normalise η ∈
{−1, 0, 1}.

Using equation (6.155), Einstein equations reduce to a constraint on the Ricci tensor

of metric h
(h)Rmn = 3η hmn, (6.156)

i.e. h is an Einstein metric.

Solving equation (6.155) gives

A(t) η = −1 η = 0 η = 1

ǫ = −1 L sin(t/L)

ǫ = 0 t 1

ǫ = 1 L sinh(t/L) e±t/L L cosh(t/L)

Furthermore, because of the warped product nature of the metric and the duality

property of the 5d Weyl tensor derived above, we can learn something about the duality

property of the Weyl tensor of metric h. The Weyl tensor of the 5d metric (6.152) is

proportional to the Weyl tensor of the conformally related direct product metric

ds2 = −dt̃2 + hmn(xp)dxmdxn,

where dt̃ = dt/A(t). Using equations derived in [85] and equation (6.156) one can show

that

Cmnpq = (h)Cmnpq − η hm[phq]n. (6.157)

Above, we showed that the 5d Weyl tensor with indices restricted to the 4d base space

with metric k is self-dual. The Weyl tensor in the equation above is the 5d Weyl tensor

with indices restricted to 4d base space with metric h. By finding the relation between
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these two Weyl tensors, one can show that the self-duality result above translates to

⋆(Cmnpq + η hm[phq]n) = Cmnpq + η hm[phq]n,

or

⋆(h)Cmnpq = (h)Cmnpq, (6.158)

i.e. the manifold with metric h has self-dual Weyl tensor. Since h is conformal to a Kähler

metric k with Kähler form J self-dual (equation (6.149)), this means that the self-dual

part of (h)Cmnpq is type D [147].

A simpler way of deriving this result is to absorb the Euclidean indices in equation

(6.157) by multiplying with gamma-matrices so that

CABCD = (h)CABCD − η Γmn(ABΓmn
CD), (6.159)

where we have used the definition of the Weyl spinor given in equation (6.16). By direct

computation, or using the Fierz identity, one can show that

Γmn(ABΓmn
CD) = 0,

so that

CABCD = (h)CABCD. (6.160)

Since the solution is type 11 11, we find from the correspondence between the 4d De Smet

classification and the Euclidean Petrov classification (table 6.3) that the solution with

metric h is self-dual and of Petrov type (D,O).

In summary, all type 11 11 (f 6= 0) solutions to vacuum Einstein equations are

warped product solutions of the form

ds2 = −dt2 +A(t)2hmn(xp)dxmdxn, (6.161)

where A(t) is one of the functions in the table above depending on the curvature of the

5d metric and the curvature of the 4d Euclidean metric h. The 4d manifold with metric

h is a self-dual Einstein solution 7. In addition, h is conformal to a Kähler metric k, thus

the solution is of Petrov type (D,O). If η = 0, h is a self-dual Ricci-flat metric. Thus, it is

hyper-Kähler (see e.g. [150]).

7In 4d, self-dual Einstein solutions are quaternion-Kähler [148]. The holonomy group of a quaternion-
Kähler solution is a subgroup of Sp(1)2 ∼= SU(2)2 [149].
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Note that the ǫ = η = 0 case for which A(t) = 1 corresponds to a direct product

solution and agrees with the result found in section 6.2.4, where it was shown that for

type 11 11 direct product solutions, the Euclidean base space has Petrov type (D,O) or

(O,D) depending on the choice of orientation.

It is simple to show the converse, i.e. that the uplift of all type (D,O) Einstein

solutions with metric (6.161) are type 11 11. Equation (6.160) gives that the De Smet

type of the 5d solution coincides with the De Smet type of the 4d base space. Table 6.3

gives that the De Smet type of the 5d solution is 11 11. Therefore, we have that a solution

is

type 11 11 (f 6= 0) ⇐⇒ a cosmological solution with spatial geometry a

type (D,O) Einstein solution (metric (6.161)).

The Fubini-Study metric on CP
2 is an example of a η > 0 type (D,O) Einstein

solution. A η < 0 example is the Bergman metric on complex hyperbolic space CH
2. An

important example of a type D hyper-Kähler metric is the Euclidean Taub-NUT solution.

The Λ = 0 5d solution with metric (6.161), where h is the metric of Euclidean Taub-NUT

is a magnetic monopole solution of Kaluza-Klein theory [104].
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6.A 5d Clifford algebra

In five dimensions, the Clifford algebra is

{Γa,Γb} = 2gab. (6.162)

The gamma-matrices have spinor index structure (Γa)
A
B . Given a Dirac spinor ψ, we can

define its Majorana and Dirac conjugates as

ψC = ψtC (ψB = ψACAB) (6.163)

and

ψ̄ = ψ†B (ψ̄A = ψȦBȦA) (6.164)

respectively, where C is the charge conjugation matrix, defined by

Γt
a = CΓaC

−1, (6.165)

and B is the Dirac conjugation matrix, defined by

Γ†
a = −BΓaB

−1. (6.166)

Note that ψȦ ≡ ψ∗A.

It follows from Schur’s lemma that B and C are unique up to a phase factor. More-

over, B is Hermitian or anti-Hermitian, where we are free to choose which and C is

antisymmetric [139]. Also, from the definition of Clifford algebra, we find that Γ0 is anti-

Hermitian, while Γi are Hermitian. Thus, from equation (6.166), we find that B is Γ0

up to a phase. We choose B Hermitian so that assignment of indices is consistent, i.e.

BȦA = (Bt)ȦA = BAȦ.

The Majorana condition is

ψ̄C−1 = ψ or ψ∗ = Aψ (ψȦ = AȦ
Bψ

B), (6.167)

up to a phase, where A = (CB−1)t. In 5d, the Majorana condition has no non-trivial

solutions, i.e. it implies that ψ = 0. This is because A∗A = −1.
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A convenient representation to use for the five dimensional Clifford algebra is to

start with the Majorana representation for the four dimensional Clifford algebra

γ0 =

(

−iσ2 0

0 iσ2

)

, γ1 =

(

σ1 0

0 σ1

)

, γ2 =

(

σ3 0

0 σ3

)

, γ3 =

(

0 iσ2

−iσ2 0

)

, (6.168)

where σî for î = 1, 2, 3 are the usual Pauli matrices and add γ5 = γ0γ1γ2γ3. Thus,

Γa = (γ0, γî, iγ5). (6.169)

Then

B = iγ0, C = γ0γ5 and A = −iγ5. (6.170)

The five dimensional Fierz identity is

MABNCD =
1

4
CAD(NM)CB +

1

4
ΓeAD(NΓeM)CB − 1

8
Γef AD(NΓefM)CB . (6.171)

For brevity, we omit factors of C and C−1 where it is clear that indices have been

lowered or raised.

6.B Solving reality condition for 2-form

In this appendix, we outline how one can prove that the reality condition

ǫ(AηB) = ǭ(Aη̄B) (6.172)

implies

η = ǭ, (6.173)

where ǫ and η are non-zero spinors. Letting B = 1, 2, 3, 4 in (6.172) gives four equations

of the form

ǫ1ηA + η1ǫA = ǭ1η̄A + η̄1ǭA.

If all four of the equations are dependent, that is they are proportional to one

another, then by considering all possible cases one can show that 8

ǫ ∝ η.

8In fact it is enough for only a pair of the equations above to be proportional to one another for this
result to hold. We shall not use this, since we would like the sketch of the proof in this section to mirror
that given in appendix 6.C.
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Then, (6.172) becomes

ǫ(AǫB) ∝ ǭ(AǭB).

Since ǫ is non-zero, assume without loss of generality that ǫ1 6= 0. Then letting B = 1 in

the equation above gives

ǭ ∝ ǫ,

which is a Majorana condition on ǫ. The Majorana condition has no non-zero solutions in

five dimensions. Therefore, ǫ ∝ η implies a contradiction.

Now, assuming that two of the equation are independent gives

η̄ = α ǫ+ β η, (6.174)

where α and β are constants and α 6= 0, otherwise we have a Majorana condition on η.

Taking complex conjugate of the above equation and multiplying appropriately by A gives

ǭ = − 1

α∗
(

αβ∗ ǫ+ (1 + |β|2) η
)

. (6.175)

Substituting equations (6.174) and (6.175) into equation (6.172) gives

α2β∗ ǫ(AǫB) + (α+ α∗ + 2α|β|2) ǫ(AηB) + β(1 + |β|2)η(AηB) = 0.

Letting B = 1, 2, 3, 4 gives four equations relating ǫ and η. Now, the analysis splits into

three cases. The first case is that some coefficients in the equations are non-zero. This

implies ǫ ∝ η, which gives a contradiction as shown above. The second case is that all

coefficients in each of the equations vanish. But, it can be shown that this too implies

that ǫ ∝ η. Thus, we are left with the final case that the coefficients in the equation above

vanish. Since α 6= 0, we have β = 0.

Then, equation (6.174) gives η̄ ∝ ǫ or

η ∝ ǭ. (6.176)

6.C Solving reality condition for type 22

In this appendix, we outline how one can prove that the reality condition for type 22

solutions

ǫ(ABηCD) = ǭ(AB η̄CD), (6.177)
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implies either

ǫAB = ǭAB , ηAB = η̄AB , (6.178)

or

ǫAB = η̄AB, (6.179)

where ǫ and η are non-zero bispinors, and

ǭAB ≡ ǫȦḂA
Ȧ

AA
Ḃ

B .

The strategy used for the proof here is similar in nature to that used to prove the

result in appendix 6.B, except that there are more cases to consider.

First consider the case η ∝ ǫ. Then, equation (6.177) becomes

ǫ(ABǫCD) = ǭ(AB ǭCD). (6.180)

Assume ǫ11 6= 0. This is true unless ǫAA = 0 for all A (no sum on A), in which case, it can

be shown that ǫAB ∝ ǭAB, as required. Letting A = B = C = D = 1 in equation (6.180)

gives

ǫ11
2 = ǭ 2

11 .

Now, letting B = C = D = 1 in equation (6.180) and using the equation above gives

ǫA1 = ±ǭA1.

Finally, letting C = D = 1 in equation (6.180) and using the two equations above gives

ǫAB = ǭAB. (6.181)

Thus, we have proved the result above for η ∝ ǫ. Note that this is equivalent to solving

the reality condition for type 22 solutions.

Now, assume η 6∝ ǫ. Letting B, C, D = 1, 2, 3, 4 in equation (6.177) with at least

two of them coinciding gives 16 equations of the form

ǫA1η11 + ǫ11ηA1 = ǭA1η̄11 + ǭ11η̄A1,

or

ǫA2η11 + ǫA1η21 + ǫ21ηA1 + ǫ11ηA2 = ǭA2η̄11 + ǭA1η̄21 + ǭ21η̄A1 + ǭ11η̄A2.
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If three of the 16 equations are not independent, then by considering all possible cases

it can be shown that η ∝ ǫ, which contradicts the original assumption that η 6∝ ǫ.

Therefore, at least 15 of the equations are independent. They can be used to express

ǫA2, . . . , ηA1, . . . , ǭA1, . . . , η̄A1, . . . , η̄A4 in terms of ǫA1.

Now, let C = D = 1, 2, 3, 4 in equation (6.177) to give 4 equations of the form

ǫABη11 + ǫA1ηB1 + ǫB1ηA1 + ǫ11ηAB = ǭAB η̄11 + ǭA1η̄B1 + ǭB1η̄A1 + ǭ11η̄AB .

Similar to before, if two of these four equations are not independent then it can be shown

by considering all the different possibilities that η ∝ ǫ, which contradicts the original

assumption. Thus, three of the equations are independent, which means we can eliminate

ǫA1, η̄AB and use the last equation to show that

ǭ = α ǫ+ β η, (6.182)

where α and β are constants and if β = 0, it can be shown that

η̄ ∝ η. (6.183)

Thus β = 0 gives one of the possibilities allowed above: ǭ ∝ ǫ and η̄ ∝ η. Furthermore,

α = 0 gives the second possibility: ǭ ∝ η. Using equations (6.182) and (6.177), one can

show that

α = 0 ⇐⇒ |β|2 = 1 ⇐⇒ β = ±1, (6.184)

and

β = 0 ⇐⇒ |α|2 = 1 ⇐⇒ α = ±1. (6.185)

Assume α 6= 0 and β 6= 0. Taking complex conjugate of equation (6.182) and

multiplying appropriately by a pair of A’s gives

η̄ =
1

β∗
(

(1 − |α|2) ǫ− α∗β η
)

. (6.186)

Substituting equations (6.182) and (6.186) into equation (6.177) gives

λ ǫ(ABǫCD) + µ ǫ(ABηCD) + ν η(ABηCD) = 0, (6.187)

where

λ = α(1 − |α|2), µ = β − β∗ − 2β|α|2, ν = −α∗β2.
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Using the first equivalence in (6.185) gives that λ = 0 implies that α = 0 or β = 0, which

contradicts the original assumption. This is also trivially true for ν = 0. µ = 0 implies

β(1 − 2|α|2) = β∗.

Multiplying the equation above with its complex conjugate gives

|α|2|β|2 = 0.

Thus, µ = 0 also contradicts the original assumption that αβ 6= 0.

Letting B = C = D = 1, 2, 3, 4 in equation (6.187) gives four equations of the form

(2λǫ11 + µη11) ǫA1 + (2nuη11 + µǫ11) ηA1 = 0.

The equations are independent unless the coefficients vanish. If this is the case, then we

have

µ2 − 4λν = 0.

It can be shown that this implies that α = 0, which contradicts the original assumption.

Thus, by considering different components of the four equations, one can show that, in

general, they imply that η ∝ ǫ, which contradicts the original assumption. Although, one

must also consider special cases, where, for example, ǫA1 6= 0 only for A = 1. However, in

these cases too, one can show that η ∝ ǫ.

Therefore, αβ 6= 0 contradicts the original assumption, which implies that αβ = 0.

6.D Weyl tensor of type 22 or more special solutions

In this appendix, we use the 5d Fierz identity to derive the form of the Weyl tensor of

type 22 or more special solutions. For all such solutions, the Weyl spinor is of the form

CABCD = ǫ(ABηCD). (6.188)

We can invert the definition of the Weyl spinor (equation (6.16)), so that given a Weyl

spinor, the associated Weyl tensor is given by

Cabcd =
1

64
(Γab)

AB(Γcd)
CDCABCD. (6.189)
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Using the form of the Weyl spinor (6.188) and equation (6.189), the Weyl tensor is

Cabcd = −1

2
(AabBcd +BabAcd) + 2tr(ΓabǫΓcdη), (6.190)

where

Aab = i tr(Γabǫ) and Bab = i tr(Γabη),

and ǫ and η have been rescaled.

Using the 5d Fierz identity (equation (6.171)) with M = Γab, N = Γcd and using

the fact that C and CΓa are antisymmetric in their spinor indices, while CΓab and η are

symmetric gives

tr(ΓabǫΓcdη) =
i

8
Bef tr(ΓcdΓ

efΓabǫ). (6.191)

Using the Fierz identity with M = Γcd, N = Γef , contracting two spinor indices between

Γcd and Γef , and multiplying by Γab gives an expression for (ΓcdΓ
efΓab)CB , which when

inserted into the equation above gives

tr(ΓabǫΓcdη) =
i

32
Bef

(

−iAabtr(Γ
efΓcd) + tr(ΓgΓabǫ) tr(Γ

efΓgΓcd)

−1

2
tr(ΓghΓabǫ)tr(Γ

efΓghΓcd)

)

.

Again, using the Fierz identities in a similar way to that used to derive equation (6.191)

and properties of gamma-matrices in 5d, in particular that

tr(ΓaΓbΓcΓdΓe) = −4iεabcde, (6.192)

gives

tr(ΓabǫΓcdη) = − 1

4

(

AabBcd +BabAcd +AefBefga[cgd]b

)

+
1

2
(Aa[cBd]b +Ba[cAd]b)

− 1

2

(

AaeB
e
[cgd]b +BaeA

e
[cgd]b −AbeB

e
[cgd]a −BbeA

e
[cgd]a

)

.

Equation (6.190) then gives

Cabcd =Aa[cBd]b +Ba[cAd]b −AabBcd −BabAcd −
1

2
AefBefga[cgd]b

−AaeB
e
[cgd]b −BaeA

e
[cgd]b +AbeB

e
[cgd]a +BbeA

e
[cgd]a, (6.193)

i.e. the Weyl tensor of type 22 solutions is determined by two 2-forms A and B.
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6.E Weyl polynomial of black ring

The Weyl polynomial of the singly rotating black ring (6.88), using the tetrad given in

(6.89), is

C(ψ) =
6(x− y)

R2F (x)3F (y)

{

A1(vw + uz)(uw − vz) + i(u2 − v2 + w2 − z2)[A2(vw + uz)

+A3(uw − vz)] +A4(u
4 + v4 + w4 + z4) +A5uvwz

+A6 (u2z2 + v2w2) +A7(u
2w2 + v2z2) +A8(u

2v2 + w2z2)
}

,

(6.194)

where ψ = (u, v,w, z) and

A1 = 8(x− y)(1 − λ)CF (y)
√

G(x),

A2 = −4(x− y)(1 − λ)CF (x)
√

−G(y),

A3 = 4F (x)F (y)
√

−G(x)G(y),

A4 = (1 + xλ)2[(x− y)2ν + (y2 − 1)λ− (1 − x2)yλν − 2(x− y)y2λν],

A5 = 8
{

(1 − λ2)[2xy(λ− ν) + (x2 + y2)ν] − λ(y2 − 1)(1 + x2λ2)

+ 2λ(1 + yλ)(yλ− x2) + λνx(1 − x2)(1 + yλ)2
}

,

A6 = 2
{

3(x− y)2ν + 2xλ2(1 − y2) + x3λν(1 + xν) + 2xyλ2ν − 2(x− y)2λ2ν

+ λ(1 + yν) − 3x2yλν(1 + yλ) − 2(x− y)2λ(1 − λ2) + x3λν − y2λ

+ +x3yλ3ν(x− y) + x2λ3(1 − y2)x2yλ3ν(1 − xy) + v2(1 + xλ)2[(x− y)2ν

+ λ(1 − y2) + yλν(1 − xy) + xyλν(x− y)]
}

,

A7 = 2
{

(x− y)2ν + −4yλ2(1 − x2) + 2xλ2(y2 − 1) − 4xyλ2ν(1 − x2)

+ x2λ2ν(x2 − y2) − 2xyλ2ν(1 + xy) + 2xy3λ2ν − 3λ+ y2λ− 2xλν

+ 4x3λν − yλν + 2y3λν(1 + xλ) + 2x2λ− 3x2yλν − 2y2λ3 + x2λ3(y2 − 1)

+ 2x2λ3 − x2yλ3ν(1 − x2) − 2xy2λ3ν(1 − xy)
}

,

A8 = 2(1 + xλ)2
{

(x− y)2ν − λ(y2 − 1) + yλν(1 − xy) + xyλν(x− y)
}

].





Appendix A

Geroch-Held-Penrose formalism

In this appendix, we review the GHP formalism [37]. Given a background solution, we

choose a Newman-Penrose (NP) frame (ℓ, n,m, m̄) such that in this frame, the metric

takes the form

gab = 2ℓ(anb) − 2m(am̄b), (A.1)

i.e. the only non-zero inner products between the basis vectors are ℓ·n = 1 and m·m̄ = −1.

In the GHP formalism, one breaks complete covariance by singling out two null

directions (ℓ and n) at each point, but preserves covariance in the remaining directions.

This is in contrast to the NP formalism where none of the covariance is preserved.

At any point, the Lorentz group divides into

• boosts (r a real function):

ℓ→ r ℓ, n→ r−1n, m→ m, (A.2)

• spatial rotations (θ a real function):

ℓ→ ℓ, n→ n, m→ eiθm, (A.3)

• null rotations about ℓ (z a complex function):

ℓ→ ℓ, n→ n+ z̄m+ zm̄+ |z|2ℓ, m→ m+ zℓ, (A.4)

159
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• null rotations about n (z a complex function):

ℓ→ ℓ+ z̄m+ zm̄+ |z|2n, n→ n, m→ m+ zn, (A.5)

We would like to keep the subgroup that preserves the null directions, i.e. the 2-

parameter subgroup given by boosts and spatial rotations. Thus, we would like to work

with objects that transform covariantly under this 2-parameter subgroup.

Define any scalar η that transforms covariantly as

η → λpλ̄qη, (λ =
√
r eiθ/2) (A.6)

under boosts and spatial rotations, a GHP scalar of type {p, q}. Evidently, the product

of two GHP scalars of types {p, q} and {r, s} is a GHP scalar of type {p+ r, q + s}.

Given this definition, clearly, we may regard the basis vectors ℓ, n, m and m̄ as GHP

vectors of types {1, 1}, {−1,−1}, {1,−1} and {−1, 1}, respectively.

Also, we define a prime operation

′ : ℓ→ n, n→ ℓ, m→ m̄, m̄→ m. (A.7)

As summarised in table A.1, it can be shown that eight of the twelve spin coefficients

defined in the NP formalism are GHP scalars. Note that complex conjugation of a type

{p, q} GHP scalar gives a type {q, p} GHP scalar. Thus, for example, κ̄ is a GHP scalar

of type {1, 3}.

The non-GHP covariant spin coefficients β, ǫ and their primes can be used to con-

struct GHP covariant derivatives . For a GHP scalar η of type {p, q}, we define its GHP

covariant derivatives to be1

þη = (ℓ · ∇ − pǫ− qǭ) η, þ′η = (n · ∇ + pǫ′ + qǭ′) η,

kη = (m · ∇ − pβ + qβ̄′) η, k′η = (m̄ · ∇ + pβ′ − qβ̄) η. (A.8)

Note that the spin weight of the derivatives is as follows

þ : {1, 1}, þ′ : {−1,−1}, k : {1,−1}, k′ : {−1, 1}. (A.9)

1Symbols þ and k, pronounced “thorn” and “eth”, respectively are old Germanic letters that have been
retained in the Icelandic alphabet.
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Table A.1: GHP type of the NP spin coefficients

Spin coefficient NP notation GHP type

κ κ =maℓ · ∇ℓa {3, 1}
κ′ −ν =m̄an · ∇na {−3,−1}
σ σ =mam · ∇ℓa {3,−1}
σ′ −λ =m̄am̄ · ∇na {−3, 1}
ρ ρ =mam̄ · ∇ℓa {1, 1}
ρ′ −µ =m̄am · ∇na {−1,−1}
τ τ =man · ∇ℓa {1,−1}
τ ′ −π =m̄aℓ · ∇na {−1, 1}
β β = 1

2
(nam · ∇ℓa − m̄am · ∇ma) —

β′ −α = 1
2
(ℓam̄ · ∇na −mam̄ · ∇m̄a) —

ǫ ǫ = 1
2
(naℓ · ∇ℓa − m̄aℓ · ∇ma) —

ǫ′ −γ = 1
2
(ℓan · ∇na −man · ∇m̄a) —

Now define 5 complex scalar that are equivalent to the Weyl tensor:

Ψ0 = Cabcdℓ
ambℓcmd, Ψ1 = Cabcdℓ

anbℓcmd, Ψ2 = Cabcdℓ
ambm̄cnd,

Ψ′
1 = Cabcdℓ

anbm̄cnd, Ψ′
0 = Cabcdn

am̄bncm̄d. (A.10)

These Weyl scalars, as they are called, are GHP scalars of type {4, 0}, {2, 0}, {0, 0}, {−2, 0}
and {−4, 0}, respectively. The Petrov classification reduces to the problem of choosing a

frame (or more precisely null vectors ℓ and n) such that certain Weyl scalars vanish. It

turns out that a ℓ can always be chosen such that Ψ0 = 0. This is best understand from

the spinor approach, where it is as a consequence of the fundamental theorem of algebra.

The different Petrov types are summarised in table A.2.

Table A.2: Possible Petrov types

Petrov type Vanishing scalar

I Ψ0

II Ψ0,Ψ1

D Ψ0,Ψ1,Ψ3,Ψ4

III Ψ0,Ψ1,Ψ2

N Ψ0,Ψ1,Ψ2,Ψ3

O Cabcd ≡ 0

The Newmann-Penrose equations, Bianchi identities and commutator equations can

now be written compactly in GHP notation [37]. We write these for a vacuum Einstein

solution.
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A.1 Newmann-Penrose equations

kρ− k′σ = (ρ− ρ̄)τ + (ρ̄′ − ρ′)κ− Ψ1, (A.11)

þρ− k′κ = ρ2 + σσ̄ − κ̄τ − κτ ′, (A.12)

þσ − kκ = (ρ̄+ ρ)σ − (τ + τ̄ ′)κ+ Ψ0, (A.13)

þτ − þ′κ = (τ − τ̄ ′)ρ+ (τ̄ − τ ′)σ + Ψ1, (A.14)

kτ − þ′σ = −ρ′σ − ρσ̄′ + τ2 + κκ̄′, (A.15)

þ′ρ− k′τ = ρρ̄′ + σσ′ − τ τ̄ − κκ′ − Ψ2 − Λ/3. (A.16)

A further six equations are obtained by applying the prime operation to the equations

above.

A.2 Bianchi equation

þΨ1 − k′Ψ0 = −τ ′Ψ0 + 4ρΨ1 − 3κΨ2, (A.17)

þΨ2 − k′Ψ1 = σ′Ψ0 − 2τ ′Ψ1 + 3ρΨ2 − 2κΨ′
1, (A.18)

þΨ′
1 − k′Ψ2 = 2σ′Ψ1 − 3τ ′Ψ2 + 2ρΨ′

1 − κΨ′
0, (A.19)

þΨ′
0 − k′Ψ′

1 = 3σ′Ψ2 − 4τ ′Ψ′
1 + ρΨ′

0. (A.20)

As before, a further four equations are obtained by applying the prime operation to the

equations above.

A.3 Commutators of derivatives

For some arbitrary GHP scalar of type {p, q},

(þþ′ − þ′þ)η =
[

(τ̄ − τ ′)k + (τ − τ̄ ′)k′

−p(κκ′ − ττ ′ + Ψ2 − Λ) − q(κ̄κ̄′ − τ̄ τ̄ ′ + Ψ̄2 − Λ)
]

η, (A.21)

(þk − kþ)η =
[

ρ̄k + σk′ − τ̄ ′þ − κþ′

−p(ρ′κ− τ ′σ + Ψ1) − q(σ̄′κ̄− ρ̄τ̄ ′)
]

η, (A.22)

(kk′ − k′k)η =
[

(ρ̄′ − ρ′)þ + (ρ− ρ̄)þ′

−p(ρρ′ − σσ′ + Ψ2 − Λ) − q(ρ̄ρ̄′ − σ̄σ̄′ + Ψ̄2 − Λ)
]

η. (A.23)



Appendix B

Higher dimensional GHP

formalism

In this appendix, we review the higher dimensional GHP formalism of [67]. Given a

background solution, we choose a null frame (ℓ, n,m(i)) such that in this frame, the metric

takes the form

gab = 2ℓ(anb) +m(i)a
m(i)b

. (B.1)

As in the 4d case, we would like to break complete covariance by singling out two

null directions (ℓ and n) at each point, but preserve covariance in the remaining directions.

At any point, the Lorentz group divides into

• boosts (λ a real function):

ℓ→ λ ℓ, n→ λ−1n, m(i) → m(i), (B.2)

• spins (Xij ∈ SO(d− 2)):

ℓ→ ℓ, n→ n, m(i) → Xijm(j), (B.3)

• null rotations about ℓ (zi d− 2 real functions):

ℓ→ ℓ, n→ n+ zim(i) − 1
2z

2ℓ, m(i) → m(i) − ziℓ, (B.4)
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• null rotations about n (zi d− 2 real functions):

ℓ→ ℓ+ zim(i) − 1
2z

2n, n→ n, m(i) → m(i) − zin, (B.5)

where λ 6= 0 and Xij is some position-dependent orthogonal matrix.

We would like to keep the subgroup that preserves the null directions, i.e. the

subgroup given by boosts and spins (spatial rotations). Thus, we would like to work with

objects that transform covariantly under this subgroup.

Define any scalar ηi1...is that transforms covariantly as

ηi1...is → λbηi1...is (B.6)

under boosts and

ηi1...is → Xi1j1 · · ·Xisjsηj1...js (B.7)

under spins, a GHP scalar of boost weight b and spin s. Evidently, the product of two

GHP scalars of boost weights b1 and b2 and spins s1 and s2, respectively, gives a GHP

scalar of boost weight b1 + b2 and spin s1 + s2.

Defining the covariant derivatives of the basis vectors as

Lab = ∇bℓa, Nab = ∇bna,
i
Mab = ∇bm(i)a

, (B.8)

one finds that not all the scalars formed from the projection of these objects into the basis

are GHP scalars. Those that are GHP scalars are listed in table B.1 [67].

Table B.1: GHP scalars constructed from covariant derivatives of the basis vectors.

Spin coefficient GHP notation Boost weight b Spin s Interpretation

Lij ρij 1 2 expansion, shear and twist of ℓ

Lii ρ = ρii 1 0 expansion of ℓ

Li0 κi 2 1 non-geodesity of ℓ

Li1 τi 0 1 transport of ℓ along n

Nij ρ′ij -1 2 expansion, shear and twist of n

Nii ρ′ = ρ′ii -1 0 expansion of n

Ni1 κ′i -2 1 non-geodesity of n

Ni0 τ ′i 0 1 transport of n along l
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Notice that we have used a prime operation, which interchanges the null basis vectors

′ : ℓ↔ n. (B.9)

The prime operation is especially useful when considering type D backgrounds, since in

this case ℓ and n are essentially equivalent.

The non-GHP covariant scalars formed from the covariant derivative of the basis

vectors can be used to construct GHP covariant derivatives . For a GHP scalar ηi1...is of

boost weight b and spin s, we define its GHP covariant derivatives to be

þTi1i2...is ≡ ℓ · ∂Ti1i2...is − bL10Ti1i2...is +

s
∑

r=1

k
M ir0Ti1...ir−1kir+1...is, (B.10)

þ′Ti1i2...is ≡ n · ∂Ti1i2...is − bL11Ti1i2...is +
s
∑

r=1

k
M ir1Ti1...ir−1kir+1...is, (B.11)

kiTj1j2...js ≡ m(i) · ∂Tj1j2...js − bL1iTj1j2...js +

s
∑

r=1

k
M jriTj1...jr−1kjr+1...js. (B.12)

In GHP notation, the Newman-Penrose, Bianchi and the commutator equations

are much more compact that in the NP formalism [64]. For convenience, we write these

equations, here, for an Einstein spacetime [68].

B.1 Newman-Penrose equations

þρij − kjκi = −ρikρkj − κiτ
′
j − τiκj − Ωij, (NP1)

þτi − þ′κi = ρij(−τj + τ ′j) − Ψi, (NP2)

2k[j|ρi|k] = 2τiρ[jk] + 2κiρ
′
[jk] − Ψijk, (NP3)

þ′ρij − kjτi = −τiτj − κiκ
′
j − ρikρ

′
kj − Φij − Λ

d−1δij . (NP4)

Another four equations can be obtained by taking the prime ′ of these four (i.e. by ex-

changing the vectors ℓ and n).
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B.2 Bianchi equations

Boost weight +2:

þΨijk − 2k[jΩk]i = (2Φi[j|δk]l − 2δilΦ
A
jk − Φiljk)κl

−2(Ψ[j|δil + Ψiδ[j|l + Ψi[j|l + Ψ[j|il)ρl|k] + 2Ωi[jτ
′
k], (B1)

Boost weight +1:

−þΦij − kjΨi + þ′Ωij = −(Ψ′
jδik − Ψ′

jik)κk + (Φik + 2ΦA
ik + Φδik)ρkj

+(Ψijk − Ψiδjk)τ
′
k − 2(Ψ(iδj)k + Ψ(ij)k)τk − Ωikρ

′
kj, (B2)

−þΦijkl + 2k[kΨl]ij = −2Ψ′
[i|klκ|j] − 2Ψ′

[k|ijκ|l]

+4ΦA
ijρ[kl] − 2Φ[k|iρj|l] + 2Φ[k|jρi|l] + 2Φij[k|mρm|l]

−2Ψ[i|klτ
′
|j] − 2Ψ[k|ijτ

′
|l] − 2Ωi[k|ρ

′
j|l] + 2Ωj[kρ

′
i|l], (B3)

−k[j|Ψi|kl] = 2ΦA
[jk|ρi|l] − 2Φi[jρkl] + Φim[jk|ρm|l] − 2Ωi[jρ

′
kl], (B4)

Boost weight 0:

þ′Ψijk − 2k[j|Φi|k] = 2(Ψ′
[j|δil − Ψ′

[j|il)ρl|k] + (2Φi[jδk]l − 2δilΦ
A
jk − Φiljk)τl

+2(Ψiδ[j|l − Ψi[j|l)ρ
′
l|k] + 2Ωi[jκ

′
k], (B5)

−2k[iΦ
A
jk] = 2Ψ′

[iρjk] + Ψ′
l[ij|ρl|k] − 2Ψ[iρ

′
jk] − Ψl[ij|ρ

′
l|k], (B6)

−k[k|Φij|lm] = −Ψ′
i[kl|ρj|m] + Ψ′

j[kl|ρi|m] − 2Ψ′
[k|ijρ|lm]

−Ψi[kl|ρ
′
j|m] + Ψj[kl|ρ

′
i|m] − 2Ψ[k|ijρ

′
|lm]. (B7)

Another five equations are obtained by applying the prime operator to equations (B1)-(B5)

above.
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B.3 Commutators of derivatives

Acting on a GHP scalar of boost weight b and spin s, commutators of GHP derivatives

can be simplified by:

[þ,þ′]Ti1...is = (−τj + τ ′j)kjTi1...is + b
(

−τjτ ′j + κjκ
′
j + Φ − Λ

d−1

)

Ti1...is

+

s
∑

r=1

(

κirκ
′
j − κ′irκj + τ ′irτj − τirτ

′
j + 2ΦA

irj

)

Ti1...j...is, (C1)

[þ, ki]Tk1...ks = −(κiþ
′ + τ ′iþ + ρjikj)Tk1...ks + b

(

−τ ′jρji + κjρ
′
ji + Ψi

)

Tk1...ks

+

s
∑

r=1

(

κkrρ
′
li − ρkriτ

′
l + τ ′kr

ρli − ρ′kriκl − Ψilkr

)

Tk1...l...ks, (C2)

[ki, kj]Tk1...ks =
(

2ρ[ij]þ
′ + 2ρ′[ij]þ

)

Tk1...ks + b
(

2ρl[i|ρ
′
l|j] + 2ΦA

ij

)

Tk1...ks

+
s
∑

r=1

(

2ρkr [i|ρ
′
l|j] + 2ρ′kr [i|ρl|j] + Φijkrl + 2Λ

d−1δ[i|kr
δ|j]l
)

Tk1...l...ks.(C3)

The result for [þ′, ki] can be obtained from (C2)′.

Null rotations

Under a null rotation about ℓ of the form given by equation (B.4) the Weyl tensor com-

ponents transform as:

Ωij 7→ Ωij, (A.13)

Ψi 7→ Ψi + Ωijzj , (A.14)

Ψijk 7→ Ψijk + 2Ωi[jzk], (A.15)

Φ 7→ Φ + 2ziΨi + ziΩijzj , (A.16)

Φij 7→ Φij + zjΨi + zkΨikj + ZjkΩik, (A.17)

Φijkl 7→ Φijkl − 2z[kΨl]ij − 2z[iΨj]kl − 2zjz[kΩl]i + 2ziz[kΩl]j, (A.18)

Ψ′
i 7→ Ψ′

i − ziΦ + 3ΦA
ijzj − ΦS

ijzj − 2ZijΨj − ZjkΨjki − zjZikΩjk, (A.19)

Ψ′
ijk 7→ Ψ′

ijk + 2z[kΦj]i + 2ziΦ
A
jk + zlΦlijk + 2ziz[kΨj] + 2zlz[kΨj]li + ZilΨljk

+2Zilz[kΩj]l, (A.20)

Ω′
ij 7→ Ω′

ij − 2z(jΨ
′
i) + 2zkΨ′

(i|k|j) + 2Z(i|kΦk|j) + zizjΦ − 4zkz(iΦ
A
j)k + zkzlΦkilj

+2z(iZj)kΨk + 2zlZ(i|kΨkl|j) + ZikZjlΩkl. (A.21)
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Chapter 7

Introduction

The bosonic part of the action of 11d supergravity is [151]

S11dSUGRA =

∫

d11x

{√
g

(

R− 1

48
FabcdF

abcd

)

+ ληa1...a11Ca1a2a3Fa4...a7Fa8...a11

}

,

(7.1)

where the 4-form field F is the exterior derivative of the 3-form potential C, i.e.

Fabcd = 4∂[aCbcd], (7.2)

η is the 11d alternating tensor density and λ = 2−73−4.

Initial interest in 11d supergravity lay in the idea that it is the unique supergravity

theory that can be used to construct a four dimensional theory with gravity and standard

model forces via a dimensional reduction. This is because the requirement that one has

particles with spin less than or equal to two places an upper bound of 11 on the dimension

of the theory [152], while the phenomenological requirement that the theory be big enough

to contain the standard model gauge groups SU(3) × SU(2) × U(1) means that the theory

must be at least 11 dimensional [153]. These two results suggested the uniqueness of 11d

supergravity. Furthermore, the compactification down to four dimensions seemed very

natural given the result that any compactification from eleven dimensions that preserves

all the supersymmetry generators must leave only four or seven macroscopic dimensions

[154]. However, the appeal of this idea waned as problems soon became apparent and it

was realised that the constraints described above can be avoided if one is willing to work

in a more general setting.

Today, the main motivation for the study of eleven dimensional supergravity is that
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it is the low energy effective theory associated with M-theory [155, 156, 157], which is

conjectured to embody all the different types of string theories. It has been known for

some time that reducing 11-dimensional supergravity on tori of various dimensions leads

to a host of symmetries, referred to as M-theory dualities [158, 159, 160].

For concreteness, consider the case where one compactifies 11d supergravity on a

7-torus [159]. The resulting theory in four dimensions is maximal (N = 8) supergravity.

The bosonic field content of this theory consists of a graviton, 21+7=28 vectors and

35+28+7=70 scalars, where the 35 of the scalars are pseudo-scalars.

The 11d theory has local SO(1,10) and global GL(11,R) symmetries. The local

symmetry can always be used to work in a gauge where the 11-bein that is now split

into a 4d part and a 7d part is upper triangular, i.e. eαm = 0, where m denotes curved

space indices on the 7-torus, while α denotes tangent spacetime indices on the 4d part.

This gauge is preserved by O(7) transformations1. Also, one is left with a global GL(7,R)

symmetry. Thus, reducing the 11d action given in equation (7.1) leads to a theory in

four dimensions involving the fields described above with explicit O(7) local and GL(7,R)

global invariances.

However, if we consider the full theory including the fermionic part, we find that

the reduced theory has N = 8 extended local supersymmetry, as eluded to above. This

means that the action should be invariant under the local action of the R-symmetry group

SO(8), which leads us to conclude that the theory has further hidden symmetries. Indeed,

ignoring the 35 pseudo-scalars for now, the scalar part of the reduced Lagrangian can

be re-written as a non-linear sigma model where the sigma function is an element of the

coset space SL(8,R)/SO(8) and is parameterised by the 35 non-pseudo-scalars. This is, of

course, consistent with the dimension of the coset space. The vector part of the Lagrangian

in the absence of pseudo-scalars can also be shown to be invariant under local SO(8) and

global SL(8,R) transformations.

Now, the problem is how to incorporate the pseudo-scalars into this framework and

this is where Cremmer and Julia [159] provide a series of remarkable insights that leads to

the full symmetry group of the theory. The only possible solution for the incorporation of

the pseudo-scalars is that the theory is invariant under a yet larger local symmetry group

of which SO(8) is a subgroup. Given that all the fields in the 4d theory are massless and

that massless theories usually have SU(n) or U(n) symmetries [161] leads to the conjecture

1The reason why the local symmetry group that one gets is O(7) rather than SO(7) is that one is always
free to perform conformal or Weyl transformations.
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that the enlarged local symmetry group is SU(8)2. If all the scalars are to parameterise a

sigma function that is an element of some coset space G/SU(8), the dimension of group

G must be 63+70=133. Furthermore, G must contain as subgroups SL(8,R) and SU(8).

This lead Cremmer and Julia to conclude that G must be the exceptional group E7.

In conclusion, we find that 11d supergravity reduced on a 7-torus leads to a theory

with local SU(8) and global E7 symmetries3.

One finds similar hidden symmetries for other toroidal compactification of the 11d

theory down to the various dimensions [160]. These symmetry groups are summarised in

table 7.1. Soon after these symmetries were found, de Wit and Nicolai speculated that

these symmetries are fundamental to the 11-dimensional theory as a whole rather than a

particularity of the toroidal compactification [162, 163], which has lead to much research

in this direction (see e.g. [164, 165, 166, 167]). Recently, generalised geometry has been

used to reformulate 11d supergravity in such a way as to make manifest most of these

duality symmetries [168, 169, 170].

Table 7.1: Table of M-theory dualities

torus dimension (d) global symmetry local symmetry

1 SO(1, 1) 1
2 SL(2) × R

+ SO(2)
3 SL(3)× SL(2) SO(3)× SO(2)
4 SL(5) SO(5)
5 SO(5, 5) SO(5)× SO(5)
6 E6 USp(8)
7 E7 SU(8)
8 E8 Spin(16)/Z2

7.1 Generalised geometry

The basic idea in generalised geometry [171, 172, 173, 174] is to enlarge the tangent

space of a manifold by adding p−forms as well vectors. Mathematically, this corresponds

to replacing the tangent bundle T (M) with a direct sum of the tangent bundle and the

bundle of p−forms and their direct products. Thus, instead of considering extra structures

2The group must be SU(8) rather than U(8) due to the existence of a certain self-duality relation.
3While, the derivation above is rather sketchy, the main aim is to convey the general arguments and

ideas that lead to the discovery of the hidden symmetries rather than to dwell on the many technical
details of the actual computation.
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on the tangent bundle of the manifold, what one is doing is to unify the relevant structures

and treat fields as sections of this new more general bundle. Let’s consider a few examples,

which will hopefully clarify the abstract notions described above.

First consider enlarging the tangent bundle of a d−dimensional manifold by adding

the cotangent bundle

T (M) −→ T (M) ⊕ T ∗(M). (7.3)

A generalised vector in this geometry V = (v, η), where v is a vector and η is a 1-form.

This new generalised geometry was first studied by Siegel [171] who realised its importance

in string theory. The full mathematics of the geometry has been developed by Hitchen

and Gaultieri [172, 173]. Endowing the fibers with an inner product such that for two

generalised vectors V = (v, η) and W = (w, ξ)

〈V,W 〉 = 〈v + η,w + ξ〉 = η(w) + ξ(v) (7.4)

induces a natural action of the group O(d, d) with invariant metric

η =

(

0 1d×d1d×d 0

)

. (7.5)

In addition, one can define a bracket on the space of generalised vectors that replaces

the usual Lie bracket on the space of tangent vectors. The Courant bracket [175] of two

generalised vectors V = (v, η) and W = (w, ξ) is

[V,W ]C = [v + η,w + ξ]C = [v,w] + Lvξ − Lwη +
1

2
d (iwη − ivξ) , (7.6)

where [v,w] denotes the Lie bracket between two vector fields v and w, d is the exterior

derivative and i is the interior product. The properties of the Courant bracket will be

discussed in more detail in the next chapter. However, for now it suffices to note that

it includes both the ordinary diffeomorphisms and the gauge transformations of a 2-form

field. Thus, this particular generalised geometry is well suited to describe theories with a

metric and a 2-form field in which the group O(d, d) plays an important role. Of course,

such geometries arise in string theory, where the 2-form field can be recognised as the

NS-NS B field and the group O(d, d) is the global T-duality group.

The application of these ideas has lead to the doubled geometry approach [176,

177, 178, 179], which makes the T-duality group a manifest symmetry of closed bosonic

string theory and also naturally combines the metric and NS-NS 2-form field into a single
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geometric object known as the generalised metric. The extra d coordinates that are the

duals of the original coordinates are naturally interpreted as the winding coordinates of

the string.

Of course one cannot just double the dimension of the space and remain with the

same theory. One needs a constraint, which we refer to as the physical section condition,

that imposes that physics lives in a section of the doubled space. A solution of the

section condition gives a submanifold of the original dimension. Different solutions of

this section condition correspond to different duality frames. One obvious solution of the

section condition is that all fields are independent of the winding coordinates. In this

sense, duality is a spontaneously broken symmetry with solutions to the section condition

breaking the duality invariance of the theory.

One might suspect that this construction of string theory is somewhat artificial and

alien to the usual formulation of string theory but in fact the structure of doubled geometry

is present in a truncation of closed string field theory [180]. In particular, apart from the

inclusion of winding modes to provide the coordinates of the doubled space, closed string

field theory gives the local symmetries, the subsequent Courant algebra and the section

condition of doubled geometry first found by Siegel [171]. From the string field theory

perspective, the section condition is nothing more than an immediate consequence of level

matching for the closed string.

Now consider replacing the tangent bundle by

T (M) −→ T (M) ⊕ Λ2(T ∗(M)). (7.7)

A generalised vector V in this geometry is composed of a vector field and a 2-form. In four

dimensions, the dimension of the tangent space increases from 4 to 4 + 6 = 10. The extra

six coordinates can be thought of as representing the winding modes of an M2-brane—one

of the fundamental constituents of M-theory. By considering duality transformations on

the world-volume theory of an M2-brane that rotate field equations and Bianchi identities

into one another, one can derive a so-called generalised metric that unifies the metric and

3-form potential C associated with the M2-brane into a single geometric structure [181]

MMN =

(

gij + 1
2Ci

klCjkl
1√
2
Ci

kl

1√
2
Cmn

j gmn,kl

)

, (7.8)

where gij is the metric, Cijk is the 3-form potential and gmn,kl = 1
2(gmkgnl − gmlgnk). In

four dimensions the generalised metric acts on a 10 of SL(5) and parameterises the coset
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space SL(5)/SO(5), which as one can see from table 7.1 is the duality symmetry found

when reducing 11d supergravity on a 4-torus.

Using the generalised metric described above, Berman and Perry have been able to

reformulate 11d supergravity in such a way as to make the SL(5)/SO(5) duality of 11d

supergravity manifest, without requiring Killing directions [168]. The approach they take

is the complement of the dimensional reduction approach that first lead to the appearance

of these dualities in that they split the theory into 4+7 dimensions and consider the 4d

part that is purely spatial.

One starts by constructing the Hamiltonian form of the theory. The reason for

this is that duality transformations on timelike directions leads to complications, such as

the complexification of fields [182]. To avoid such complications a canonical approach is

preferred. The spacetime metric gab is decomposed into a purely spatial metric γij, a lapse

function α and a shift vector βi [183] so that

gab =

(

−α2 + βkβ
k βj

βi γij

)

, (7.9)

where here indices a, b, c . . . run from 0, . . . , 11 and indices i, j, k . . . run from 1, . . . , 11

and are lowered and raised using the spatial metric γij and its inverse γij , respectively.

Similarly the 3-form potential Cabc is split up into its purely spatial components and the

remainder. Hence,

Cabc →







Cijk

C0ij ≡ Bij

. (7.10)

The Hamiltonian of the theory is then constructed in an approach similar to that done

for gravity [184, 183, 185]. The Hamiltonian consists of two parts: a kinetic part4 and a

potential part V

V = γ1/2

(

−R(γ) +
1

48
F ijklFijkl

)

, (7.11)

where γ is the determinant of the metric γij, R(γ) is the associated Ricci scalar and

Fijkl = 4∂[iCjkl]. Indices i, j, k . . . now run from 1, . . . , 4, because of the 4+7 split described

above.

Now consider a potential constructed purely from the generalised metric MMN given

4For brevity, we shall only cover the calculation for the potential part in this review. For details of the
construction of the Hamiltonian and the kinetic part see [168].
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in equation (7.8)

V = γ1/2

(

1

12
MMN (∂MMKL)(∂NMKL) − 1

2
MMN (∂MMKL)(∂KMLN )

+
1

12
MMN (MKL∂MMKL)(MRS∂NM

RS) +
1

4
MMNMPQ(MKL∂PM

KL)(∂MMNQ)

)

,

(7.12)

where ∂M = ( ∂
∂xi ,

∂
∂yij

). Assuming that the fields do not depend on the winding modes

of the M2-brane, i.e. that ∂y = 0, the potential above reduces to the original potential,

given in (7.11), derived from the canonical approach. This condition is similar to the

physical section condition discussed in the case of the O(d, d) symmetry. It allows one to

reduce to original theory from the enlarged one and it is always needed for the enlarged

theory to make any sense. Also, a similar argument can be made for the kinetic part

of the Hamiltonian. Thus, the Hamiltonian formulation of 11d supergravity has been

reformulated using generalised geometry in such a way as to make manifest its SL(5)

symmetry.

However, a few important questions regarding the precise nature of the generalised

geometry at work remain unanswered in the construction above. For example, what is the

generalised algebra of diffeomorphisms that gives rise to the expected local symmetries of

the theory and how does it compare with the Courant algebra that one finds in the case

of the O(d, d) generalised geometry? Or, how does the section condition arise? One would

expect the condition used above to be a particular solution among many possibilities.

What are those possibilities and how are they related to this particular condition? These

questions will be addressed in chapter 8.

The generalised metric for the other duality groups up to E7 has been constructed in

[169, 170] and the manifest invariance of 11d supergravity under transformations belonging

to these groups has been established. For example, the generalised geometry relevant for

the E7 symmetry group is where the tangent bundle is replaced by

T (M) −→ T (M) ⊕ Λ2(T ∗(M)) ⊕ Λ5(T ∗(M)) ⊕
(

T ∗(M) ⊗ Λ7(T ∗(M))
)

. (7.13)

The generalised coordinates

xi, yij, w
ij , zi, (7.14)

where indices i, j, . . . run now from 1, . . . , 7, correspond to the usual space coordinates

(xi), the windings of the M2-brane (yij) as we had before, the winding of the M5-brane
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(wij) and the windings of the dual graviton. The reason we did not have the windings

of the M5-brane and the dual graviton in the SL(5) case above is that there, the spatial

dimension is four and so these objects are irrelevant.

The generalised metric for the other groups is found from a non-linear realisation

of the duality groups using a procedure pioneered by Isham, Salam and Strathdee [186].

The application of the non-linear realisation technique [187, 188, 189, 190] to external

symmetries has a long and rich history, which, unfortunately we shall not be able to

expound on here (see e.g. [186, 191, 192, 193, 194, 195, 196, 197]).



Chapter 8

SL(5) generalised geometry

8.1 Introduction

In this chapter, the local symmetry associated with the SL(5) generalised geometry is

constructed. The group of local diffeomorphisms contains both ordinary diffeomorphisms

and gauge transformations of the 3-form potential. The generalised Lie derivative is writ-

ten in an SL(5) covariant manner and the generalised (Courant) bracket is determined

by considering the antisymmetrisation of the generalised Lie derivative. The algebra is

shown to close if a certain quadratic condition is satisfied. This condition is taken to be

the physical section condition. It has as one of its solutions, the condition used in [168] to

show the equivalence of the generalised geometry formulation and the canonical formula-

tion of 11d supergravity, i.e. that no field has dependence on winding coordinates of the

M2-brane. Consistency is checked by comparing these results with those already obtained

for the generalised geometry of string theory through dimensional reduction (section 8.3).

Finally, in section 8.4, general solutions of the section condition are discussed.

8.2 Generalised Lie derivative and Courant Bracket

The SL(5) duality group is found in the reduction of eleven-dimensional supergravity to

seven dimensions. In [168], this duality group is made manifest in the directions of the 4-

torus without assuming the existence of isometries. Since the duality group is made to act

along four directions, the only supergravity fields that are non-vanishing are the metric and

the 3-form potential C. The corresponding generalised geometry involves the extension of

179
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vectors, making up the tangent space, by 2-forms. The two-forms are the windings of the

membrane, which source C. Furthermore, it was shown in [168] that the diffeomorphism

and gauge symmetry of the 3-form potential are a result of reparametrisations of the

ordinary space coordinates and winding coordinates, respectively. These form a Courant

bracket algebra, which is exactly the same algebra found in generalised geometry [175,

172, 173].

The analogue of a Lie derivative in generalised geometry is a generalised Lie deriva-

tive [198], which encodes reparametrisations of the generalised coordinates as well as ordi-

nary coordinate transformations. For generalised vector fields V = (v, µ) and X = (x, λ),

where v and x are vector fields and µ and λ are 2-forms, the generalised Lie derivative is

defined to be

L̂XV = Lxv + Lxµ− ivdλ. (8.1)

The first term is the Lie derivative of the vector field v along x. This reproduces the

transformation of a vector field under coordinate transformations. The second and third

terms in the generalised Lie derivative give the transformation of a two-form field, µ, under

coordinate transformations generated by x and gauge transformations generated by λ.

The antisymmetrisation of the generalised Lie derivative gives rise to a Courant

bracket, as opposed to a Lie bracket,

[X,Y ]C =
1

2

(

L̂XY − L̂YX
)

(8.2)

= [x, y] + Lxη − Lyλ+
1

2
d (iyλ− ixη) , (8.3)

where X = (x, λ), Y = (y, η) and [x, y] denotes the Lie bracket of vector fields x and y.

One may view the Courant bracket as describing the algebra of combined diffeomorphisms

and gauge transformations. Thus the algebra of diffeomorphisms is exactly as one would

expect as can be seen from the first term on the right-hand side of (8.3) and is given by

the Lie bracket. The second and third terms on the right-hand side of (8.3) are what one

would expect from a gauge transformation followed by a diffeomorphism. The last term

is perhaps a little surprising in that it is exact. A gauge transformation that is exact will

have no effect on the three-form potential C.

Given this, one might wonder if the Jacobi transformations hold. The Jacobiator of

the Courant bracket is defined by

J(X,Y,Z) = [[X,Y ]C , Z]C + [[Y,Z]C ,X]C + [[Z,X]C , Y ]C (8.4)
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and measures by how much the Jacobi identities fail. Using X = (x, λ), Y = (y, µ) and

Z = (z, κ) we find

J(X,Y,Z) =
1

4
d[(ιxLy − ιyLx)κ+ (ιyLz − ιzLy)λ+ (ιzLx − ιxLz)µ]. (8.5)

Since J is exact, the Jacobi identity holds when restricted to being evaluated on the field

C which is the only field that changes under a gauge transformation. It trivially holds on

all the other fields that do not transform under this gauge transformation.

The generalised vector fields can be twisted by a 3-form C in the following way:

ρC(X,λ) = (x, λ+
1√
2
iXC).

The Courant bracket in terms of the twisted vector fields now reproduces the algebra of

diffeomorphisms and gauge symmetries [168]. The generalised Lie derivative and Courant

bracket above, equations (8.1) and (8.3) respectively, treat each “component” of the gener-

alised vector field separately. The distinction made between the coordinates and windings

is unnatural from the perspective of making duality a manifest symmetry. We would like

a more democratic, or covariant, formulation of these objects. This allows us to find the

section condition for the generalised geometry of the SL(5) duality group.

In components, the generalised vector field X is (xi, µij), where i, j = 1, . . . , 4. The

2-form can be Hodge dualised with the alternating symbol η (η1234 = 1) so that the indices

on X become SL(5) indices, viz.

Xab =



















Xi5 = xi

X5i = −xi

Xij = 1
2η

ijklµkl

, (8.6)

where a = (i, 5). The generalised Lie derivative, defined in equation (8.1), can be written

as two pieces with different tensor structures

(

L̂XV
)i

= xk∂kv
i − vk∂kx

i, (8.7)
(

L̂XV
)

ij
= xk∂kµij + µik∂jx

k + µkj∂ix
k − 3vk∂[kλij]. (8.8)
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Now, the Hodge dual of the second equation above is

(

L̂XV
)ij

=
1

2
ηijkl

(

xm∂mµkl + µkm∂lx
m + µml∂kx

m − 3vm∂[mλkl]

)

= xm∂mV
ij + 2V k[i∂kx

j] + V ij∂kx
k + 2v[i∂kX

j]k, (8.9)

where V ij = 1
2η

ijklµkl and similarly Xij = 1
2η

ijklλkl. We would like to write the generalised

Lie derivative in terms of indices a, b that run from 1 to 5, (L̂XV )ab, so that if b is 5 we

get the expression on the right-hand side of equation (8.7) and if a, b take values from 1

to 4 then we get the expression on the right-hand side of equation (8.9). The expression

that reduces to equations (8.7) and (8.9) is

(L̂XV )ab =
1

2
Xcd∂cdV

ab +
1

2
V ab∂cdX

cd + V ac∂cdX
db − V cb∂cdX

ad, (8.10)

assuming that ∂ij = 0. Although to write the generalised Lie derivative in terms of the

generalised fields we assumed that ∂ij = 0, in what follows we drop this condition. The

requirement that ∂ij = 0 is one particular choice to make the restriction from the 10-

dimensional extended space to the four-dimensional physical space. This is one solution

of the section condition, but there are other choices that can be made.

The generalised Lie bracket that reduces to the Courant bracket, equation (8.3),

when particular components are considered is, as in the case of the Lie or Courant bracket,

the antisymmetrisation of the corresponding Lie derivative, (8.2). Therefore, antisym-

metrising the generalised Lie derivative, defined in equation (8.10), gives the generalised

Lie bracket

[X,Y ]ab
G =

1

4
Xcd∂cdY

ab − 1

4
Y cd∂cdX

ab +X [a|c∂cdY
|b]d

−Y [a|c∂cdX
|b]d − 1

4
Xab∂cdY

cd +
1

4
Y ab∂cdX

cd. (8.11)

For particular choices of indices a, b, the above reduces to the Courant bracket, equation

(8.3). For example, letting a = i and b = 5 in the above we get [x, y]i, which agrees with

the Courant bracket. A similar check can easily be done for the choice ab = ij. If we

think of a, b as ordinary coordinate indices, then we should only get ordinary differential

geometry. In the case of Riemannian geometry one should only find the first two terms,

which are the Lie bracket of X and Y.

The Jacobi identity for the generalised Lie bracket is not satisfied. However, the

Jacobi identity holds on fields up to terms that vanish by the section condition (see ap-
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pendix 8.A). Physically, the Jacobiator can be shown to be a pure gauge transformation

on fields.

The algebra of generalised diffeomorphisms, which includes diffeomorphisms and

gauge symmetries, must be closed. However, we find that

(

[L̂X , L̂Y ]V
)ab

=
(

L̂[X,Y ]GV
)ab

+
3

4

[(

Xef∂[efY
cd · ∂cd]V

ab

+ V abXef∂[ef∂cd]Y
cd + V ab∂[efX

ef · ∂cd]Y
cd

− 4V c[a∂[efY
b]d · ∂cd]X

ef + 2XefV c[a∂[ef∂cd]Y
b]d

+ 2V c[aXb]d∂[ef∂cd]Y
ef

)

− (X ↔ Y )

]

. (8.12)

Since closure of the algebra requires that

[L̂X , L̂Y ]V = L̂[X,Y ]GV,

the rest of the terms on the right-hand side of equation (8.12) must vanish which leads us

to the section condition for the SL(5) generalised geometry. All of the extra terms vanish

if

∂[ab∂cd]X = 0 and ∂[abX · ∂cd]Y = 0, (8.13)

where X and Y are arbitrary fields. This is the section condition that has to be satisfied

by the generalised fields in the SL(5) generalised geometry. Letting the fields depend only

on the xi coordinates and imposing
∂

∂yij
= 0

on all fields is one solution to the section condition, which was the one considered in [168],

but there are also other possibilities. Solutions to the section condition will be considered

in section 8.4.

The generalised Lie derivative has been defined with respect to the antisymmetric

representation of SL(5). We can in principle write the generalised Lie derivative of a

field in any representation of SL(5), including the fundamental representation. This is

analogous to the spinorial Lie derivative in differential geometry. For the generalised field

in the fundamental representation the generalised Lie derivative takes the form

(L̂XV )a =
1

2
Xcd∂cdV

a +
1

4
V a∂cdX

cd − V c∂cdX
ad. (8.14)
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Evaluating the generalised Lie derivative of U [aV b] using the above equation one can easily

see that this definition is consistent with the generalised Lie derivative of a field in the

antisymmetric representation.

The generalised Lie derivative of other SL(5) objects can be computed by a simple

application of the Leibniz rule and by assuming that the generalised Lie derivative on a

scalar is equal to its partial derivative, i.e.

L̂XS =
1

2
Xcd∂cdS. (8.15)

For example, the generalised Lie derivative on an SL(5) covector Va is

(L̂XV )a =
1

2
Xcd∂cdVa −

1

4
Va∂cdX

cd + Vc∂adX
cd. (8.16)

Or, the generalised Lie derivative on an antisymmetric object Vab is

(L̂XV )ab =
1

2
Xcd∂cdVab −

1

2
Vab∂cdX

cd + Vad∂cbX
cd − Vbd∂caX

cd. (8.17)

The generalised Lie derivative is supposed to encode all gauge freedoms associated

with the theory. In particular, one would expect the generalised Lie derivative on the

generalised metric to induce diffeomorphism and gauge transformations of the metric and

3-form potential.

The generalised metric for the SL(5) generalised geometry given in [168] is

(

gij + 1
2Ci

klCjkl
1√
2
Ci

kl

1√
2
Cmn

j gmn,kl

)

, (8.18)

where gij is the metric, Cijk is the 3-form potential and gmn,kl = 1
2 (gmkgnl − gmlgnk).

However, in order to make connection with the SL(5) group, we dualised the winding

coordinates and combined them with the ordinary coordinates to construct a object, Xab,

with SL(5) indices, equation (8.6). The metric that acts on Xab, or equivalently the 10 of

SL(5), is the generalised metric1

Mab, cd =

(

Mi5, j5 Mi5, mn

Mkl, j5 Mkl, mn

)

=

(

gij + 1
2Ci

pqCjpq − 1
2
√

2
Ci

pqηpqmn

− 1
2
√

2
C pq

j ηpqkl g−1gkl,mn

)

, (8.19)

1In terms of the M2-brane picture from which the original generalised metric was derived in [168], this
generalised metric can be derived by considering the Hodge dual of the Lagrange multiplier used in the
membrane action.
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where g = det(gij) and gkl,mn = 1
2 (gmkgnl − gmlgnk) so that gkl,mngmn,pq = 1

2(δk
pδ

l
q − δk

q δ
l
p).

The generalised metric above is determined by gij and Cijk. Hence, it has 10 + 4 =

14 number of independent components. A general symmetric 10 × 10 matrix has 55

independent components. However, the metric M is constrained to parametrise the coset

SL(5)/SO(5), which is a 24 − 10 = 14 dimensional space.

Using equation (8.17), we find that under a generalised Lie derivative, the variation

of the generalised metric is

(L̂XM)ab, cd =
1

2
Xef∂efMab, cd −Mab, cd∂efX

ef

+Maf, cd∂ebX
ef −Mbf, cd∂eaX

ef

+Mab, cf∂edX
ef −Mab, df∂ecX

ef . (8.20)

In particular, taking the ab = i5, cd = j5 components gives

(L̂XM)i5, j5 =xk∂k(gij + 1
2Ci

pqCjpq) + (gkj + 1
2Ck

pqCjpq)∂ix
k

+ (gik +
1

2
Ci

pqCkpq)∂jx
k

− 1

2
√

2
∂kX

kl(Ci
pqηpqjl + Cj

pqηpqil) + . . . , (8.21)

where we have used equation (8.6), notably that Xi5 = xi, and the form of the generalised

metric given in (8.19). The ellipses denote terms involving derivatives with respect to

winding coordinates, i.e. ∂ij, which we are not interested in.

Letting Xij = − 1√
2
ηijklΛkl, the expression above reduces to

(L̂XM)i5, j5 = Lx(gij + 1
2Ci

pqCjpq) + 1
2 (Ci

pq∂[jΛpq] +Cj
pq∂[iΛpq]) + . . . , (8.22)

allowing us to conclude that the generalised Lie derivative does indeed induce diffeomor-

phism and gauge transformations in a manner in which we would expect it to. Similar

computations on the other components of the generalised metric result in the expected

transformations.

The form of the generalised metric in equation (8.19) allows us to write it as a pair

of objects acting on the 5 of SL(5). That is,

Mab, cd = macmbd −madmbc, (8.23)
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where the symmetric metric m is

mab =

(

1√
2
g−1/2gij Vi

Vj g1/2
√

2(1 + gijV
iV j)

)

. (8.24)

The SL(4) vector

V i =
1

6
ǫijklCjkl, (8.25)

where ǫijkl = g−1/2ηijkl and is the alternating tensor. The fact that M can be written

as in equation (8.23) is related to the generalised metric parametrising the coset space

SL(5)/SO(5) and can be thought of as the constraint that reduces the number of degrees

of freedom of M from 55 to 14.

A natural question to consider is whether the structure in equation (8.23) is preserved

under generalised diffeomorphisms. In other words, does the metric m transform as one

would expect its components to transform. The generalised Lie derivative of m is

(L̂Xm)ab =
1

2
Xcd∂cdmab −

1

2
mab∂cdX

cd +mcb∂adX
cd +mac∂bdX

cd. (8.26)

Taking the a = i, b = j component of the equation above gives

(L̂Xm)ij = 1√
2
[xk∂k(g

−1/2gij) + g−1/2gkj∂ix
k + g−1/2gik∂jx

k − g−1/2gij∂kx
k] + . . .

=Lx( 1√
2
g−1/2gij) + . . . . (8.27)

Hence, the generalised Lie derivative on m reproduces diffeomorphisms. Now, taking a = i,

b = 5,

(L̂Xm)i5 =xk∂k(Vi) + Vk∂ix
k − 1√

2
g−1/2gik∂lX

kl + . . .

=(LxV )i + δΛVi + . . . , (8.28)

where

δΛVi =
1

6
gikǫ

klmnδΛClmn =
1

2
gikǫ

klmn∂lΛmn = − 1√
2
g−1/2gik∂lX

kl, (8.29)

for Xkl = − 1√
2
ηklmnΛmn. A similar result is obtained if we choose the 5 5 component of

equation (8.26). We conclude that equation (8.23) is preserved under generalised diffeo-

morphisms. In other words, generalised diffeomorphisms preserve the coset structure in

which M lies.

The crucial test is whether the SL(5) invariant action is actually invariant under
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these generalised diffeomorphisms. For the metric MIJ = Mab,cd given by equation (8.19),

the potential is given by:

V =

∫

M− 1
4

(

1

12
MMN (∂MMKL)(∂NMKL) − 1

2
MMN (∂NM

KL)(∂LMMK)

−1

4
(∂MMMN )(MKL∂NMKL) +

1

12
MMN (MKL∂MMKL)(MPQ∂NMPQ)

)

. (8.30)

This is same as in [168], which was written with respect to the generalised metric in

equation (8.18). Here we have also included the measure factor, (detM)−
1
4 . One might

be worried that it is a strange power but substituting the metric MIJ , reveals that this is

equivalent to the usual measure (detg)
1
2 . A long and involved calculation then confirms

that this action is invariant under the local transformations of the generalised metric,

equation (8.20).

8.3 Relation to O(d, d) generalised geometry

In this section, the generalised Lie derivative and bracket of the SL(5) generalised geom-

etry, (8.10) and (8.11), are related to the corresponding objects of the O(d, d) generalised

geometry [171, 179, 199]. The dimensional reduction of the SL(5) duality manifest descrip-

tion of M-theory should be related to the O(3,3) structure in string theory. Therefore, by

dimensional reduction of the objects describing the SL(5) generalised geometry we should

recover the O(3,3) generalised geometry.

First, let us consider the generalised Lie derivative. We reduce along the a = 4

direction, so we let any derivative with 4 as an index vanish, and consider the fields along

the first three directions which we label by α, β, · · · = 1, 2, 3. Let a = α and b = 5 in

equation (8.10),

(L̂XV )α5 =
1

2
Xcd∂cdV

α5 +
1

2
V α5∂cdX

cd − V αc∂cdX
5d − V c5∂cdX

αd.

Note that because of the reduction ansatz the indices on the derivatives ∂cd can only take

values along the first three directions or the fifth direction, viz. c, d = γ or 5, but because

of the antisymmetry both c and d cannot be 5. Hence, denoting

V α5 = V α, Xα5 = Xα and ∂α5 = ∂α,
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write

(L̂XV )α =Xγ∂γV
α +

1

2
Xγδ∂γδV

α + V α∂γX
γ +

1

2
V α∂γδX

γδ

− V α5∂5γX
5γ − V αγ∂γδX

5δ − V γ5∂γ5X
α5 − V γ5∂γδX

αδ

=Xγ∂γV
α +

1

2
Xγδ∂γδV

α +
1

2
V α∂γδX

γδ

+ V αγ∂γδX
δ − V γ∂γX

α − V γ∂γδX
αδ .

Identifying

Ṽα =
1

2
ηαβγV

βγ , X̃α =
1

2
ηαβγX

βγ and ∂̃α =
1

2
ηαβγ∂βγ ,

where ηαβγ is the alternating symbol, the expression for the O(3,3) generalised Lie deriva-

tive acting on a vector V α is

(L̂XV )α =Xγ∂γV
α + X̃γ ∂̃

γV α − Ṽγ ∂̃
γXα + Ṽγ ∂̃

αXγ − V γ∂γX
α + V γ ∂̃γX̃γ

=XΠ∂ΠV
α − V Π∂ΠX

α + V Π∂̃αXΠ, (8.31)

where

XΠ = (Xα, X̃α), XΠ = (X̃α,X
α)

and

∂Π = (∂α, ∂̃
α), ∂Π = (∂̃α, ∂α).

Similarly, we find the O(3,3) generalised Lie derivative acting on a field with lowered

indices by considering the Hodge dual of equation (8.10) with a = β and b = γ,

(L̂X Ṽ )α =
1

2
ηαβγ(L̂XV )βγ

=XΠ∂ΠṼα − V Π∂ΠX̃α + V Π∂αXΠ. (8.32)

Therefore, putting together equations (8.31) and (8.32) we find the O(3,3) covariant gen-

eralised Lie derivative given in equation (3.22) of [179],

(L̂XV )Σ = XΠ∂ΠV
Σ − V Π∂ΠX

Σ + V Π∂ΣXΠ.

The dimensional reduction of the generalised Lie derivative on a generalised vec-

tor field in the antisymmetric representation of SL(5) corresponds to the generalised Lie

derivative on a generalised vector field in the fundamental of O(3,3). Therefore, one would
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expect that dimensionally reducing the expression for the generalised Lie derivative on a

generalised field in the fundamental representation of SL(5) is related to the generalised

Lie derivative of a generalised field in some other representation of O(3,3). This is indeed

the case as we will now show. A field in the antisymmetric representation, W ab, can be

constructed from fields in the fundamental representation, Ua and V a, by simply taking

the antisymmetrisation of the two fields,

W ab = U [aV b].

We showed that under dimensional reduction W ab becomes a field in the vector of O(3,3),

which we denote WΠ. When a = α and b = 5, we have the following picture

W ab = U [aV b]

↓ ↓
Wα U [αV 5]

.

The above diagram shows that the O(3,3) vector field Wα must also be decompos-

able in terms of fields U and V that are in a lower dimensional representation of O(3,3).

The only non-trivial representation of O(3,3) that is possible is the Majorana-Weyl rep-

resentation of O(3,3)2. Therefore, the O(3,3) vector field Wα is given by a product of

Majorana-Weyl spinors U and V

Wα = U [αV 5] ∝ UAγα
ABV

B ,

where uppercase Latin letters label spinor indices and take values in {1, 2, 3, 5}. Hence, we

deduce that

γα
AB ∝ δ

[α
[Aδ

5]
B]. (8.33)

Similarly, if we consider W ab = U [aV b] for a = α and b = β, we deduce that

γ̃αAB ∝







ηαAB for A,B = 1, 2, 3

0 otherwise
, (8.34)

where η is the alternating symbol.

We have defined gamma matrices, but we have not shown that they satisfy the

2More technically, it is the Majorana-Weyl representation of the double cover of O(3,3), Pin(3,3), that
is being considered. However, following common parlance we neglect this distinction.
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Clifford algebra. The 4 × 4 O(3,3) γ-matrices act on Majorana-Weyl spinors, so the

corresponding 8 × 8 Γ-matrices, which act on Dirac spinors, are

ΓΠ =

(

0 (γΠ)AB

(γΠ)AB 0

)

, (8.35)

which satisfy the Clifford algebra

{ΓΠ,ΓΣ} = 2ηΠΣ
I8,

where

η =

(

0 I3

I3 0

)

is the O(3,3) invariant. In terms of γ-matrices the Clifford algebra reads

(γΠ)AC(γΣ)CB + (γΣ)AC(γΠ)CB = 2ηΠΣδA
B . (8.36)

Using the matrices ΓΠ = (Γα, Γ̃α), define matrices

Γ(−)α =
1√
2
(Γα − Γ̃α)

Γ(+)α =
1√
2
(Γα + Γ̃α), (8.37)

which satisfy the Clifford algebra with the diagonal metric, diag(-1,-1,-1,1,1,1),

{Γ(−)α,Γ(−)β} = −2δαβ
I8, {Γ(+)α, Γ(+)β} = 2δαβ

I8, {Γ(−)α,Γ(+)β} = 0.

Since the Γ(−) matrices square to -1 and Γ(+) matrices square to 1, we can assume that

the former are antisymmetric while the latter are symmetric. Indeed, choosing the charge

conjugation matrix

C = Γ(−)1Γ(−)2Γ(−)3,

then

(Γ(±)α)T = −CΓ(±)αC−1.

Now, from equation (8.37) we can deduce that

(Γα)T = Γ̃α, (Γ̃α)T = Γα.
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Hence, looking at equation (8.35),

(

0 (γα)BA

(γα)BA 0

)

=

(

0 (γ̃α)AB

(γ̃α)AB 0

)

. (8.38)

The Clifford algebra for the γ-matrices, equation (8.36), can now, using the above relation

be written as

(γα)CA(γβ)CB + (γ̃β)CA(γ̃α)CB = 2δβ
αδAB,

(γ̃α)CA(γβ)CB + (γ̃β)CA(γα)CB = 0. (8.39)

The following gamma-matrices satisfy the Clifford algebra relations above:

γα
AB = 2

√
2δ

[α
[Aδ

5]
B] and γ̃αAB =







√
2ηαAB for A,B = 1, 2, 3

0 otherwise
, (8.40)

which are consistent with equations (8.33) and (8.34).

We have shown that under dimensional reduction an SL(5) generalised field in the

fundamental representation becomes an O(3,3) spinor field. Therefore, the generalised Lie

derivative of a field in the fundamental representation of SL(5), equation (8.14), should

reduce to the spinorial Lie derivative in O(3,3) [200, 199, 201]

L̂XV = XΠ∂ΠV +
1

4
(∂ΠXΣ − ∂ΣXΠ)ΓΠΣV. (8.41)

To show this we require the expression for ΓΠΣ in the representation in which the dimen-

sionally reduced SL(5) field is related to the O(3,3) spinor, i.e. the representation given

in equation (8.40). Using equation (8.35),

(

ΓΠΣ
)A

C =
1

2

(

γΠABγΣ
BC − γΣABγΠ

BC

)

.

The relations in equation (8.38) can now be used to find ΓΠΣ in the representation of the

Clifford algebra given in equation (8.40)

(Γαβ)AB = 2ηαβAδ5B , (Γαβ)AB = −2ηαβBδ
A
5 ,

(Γα
β)AB = δα

β (δA
γ δ

γ
B − δA

5 δ
5
B) − 2δα

Bδ
A
β , (8.42)
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where

Γαβ =
1

2
(ΓαΓβ − ΓβΓα), Γα

β =
1

2
(ΓαΓ̃β − Γ̃βΓα), Γαβ =

1

2
(Γ̃αΓ̃β − Γ̃βΓ̃α).

Now, we are ready to check the consistency of the two generalised Lie derivatives (8.14)

and (8.41). Inserting equations (8.42) into the O(3,3) spinorial Lie derivative, (8.41), we

obtain

(L̂XV )A =XΠ∂ΠV
A +

1

2
δA
γ (∂βX

β − ∂̃βX̃β)V γ − δA
β (∂γX

β − ∂̃βX̃γ)V γ

+ ηAβγ(∂βX̃γ)V 5 − δA
5 ηβγσ(∂̃βXγ)V σ − 1

2
δA
5 (∂βX

β − ∂̃βX̃β)V 5. (8.43)

This should be compared to the dimensional reduction of the generalised Lie derivative

on a field in the fundamental of SL(5). We use the same reduction ansatz as before,

namely that derivatives along the fourth direction vanish, and evaluate the Lie derivative,

equation (8.14), for the index a = α and a = 5, respectively,

(L̂XV )α =XΠ∂ΠV
α +

1

2
(∂βX

β − ∂̃βX̃β)V α

− (∂βX
α − ∂̃αX̃β)V β + ηαβγ(∂βX̃γ)V 5,

(L̂XV )5 =XΠ∂ΠV
5 − ηβγσ(∂̃βXγ)V σ − 1

2
(∂βX

β − ∂̃βX̃β)V 5.

Comparing the above equations with (8.43), we conclude that the dimensionally reduced

SL(5) generalised Lie derivative acting on a field in the fundamental representation is equal

to the O(3,3) generalised spinorial Lie derivative.

In this section, we have shown that under dimensional reduction the SL(5) gener-

alised field in the antisymmetric representation becomes an O(3,3) vector, while an SL(5)

vector field becomes an O(3,3) spinor. Furthermore, by dimensionally reducing the SL(5)

generalised Lie derivatives, (8.10) and (8.14), we find the O(3,3) generalised Lie deriva-

tives on vector fields and spinors. The equality between these objects was established

without the use of any section condition. However, the section condition seems to play an

integral role in generalised geometry. In particular, applications of generalised geometry

to physics rely on specific solutions of the section condition. For example, the rewriting of

supergravity actions in terms of a generalised metric uses a particular solution in which

the fields only depend on the spacetime coordinates and not on the brane windings. In

the next section, we will consider the section condition, giving examples of other solutions

where the fields depend on brane windings.
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8.4 Section condition

The section condition for the SL(5) generalised geometry,

∂[ab∂cd]X = 0 on all fields X, (8.44)

was found in section 8.2 by requiring closure of the algebra of generalised diffeomorphisms.

The second equation in (8.13) is necessarily satisfied given the first. The section condition

can be dimensionally reduced to obtain the O(3, 3) section condition

∂̃α∂α = 0.

Consider the operator constraint

ηabcde∂bc∂de = 0.

Reducing this along the fourth direction with the ansatz that derivatives along this direc-

tion vanishes, the section condition becomes

η4αβγ5∂αβ∂γ = 0,

which implies the O(3,3) section condition

∂̃α∂α = 0.

The O(d, d) section condition is a Laplace equation in a Kleinian space. The general

solution to this type of differential equation was found in [202] in the context of N = 2

strings.

One can use the Weyl group to investigate solutions to equation (8.44). The Weyl

group permutes the coordinates into each other. For the SL(5) group the Weyl group is

the permutation group of 5 elements S5. Consider the Fourier transform of the section

condition (8.44), which implies that

p[abpcd] = 0. (8.45)
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Since the Weyl group takes into account the redundancy in our labelling of coor-

dinates, pick the indices in the above equation to be 1, . . . , 4. Therefore, equation (8.45)

becomes

pT























0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0























p = 0, (8.46)

where p = (p12, p13, p14, p23, p24, p34). The matrix above can be diagonalised so that the

above equation reads

a2 + b2 + c2 − j2 − k2 − l2 = 0, (8.47)

where

a = p12 + p34, b = p13 + p24, c = p14 + p23

j = p12 − p34, k = p13 − p24, l = p14 − p23. (8.48)

Hence the SL(5) section condition is also the Laplace equation on a Kleinian space. Con-

sider now the other 4 equations in (8.45). These equations can be written as a matrix

equation

Np(5) = 0,

where p(5) = (p15, p25, p35, p45), and

N =













0 p34 −p24 p23

−p34 0 p14 −p13

p24 −p14 0 p12

−p23 p13 −p12 0













.

If we think of p as solving equation (8.46), then the determinant of the matrix N vanishes,

so it is necessarily degenerate. We can use the Gauss elimination method to find the rank

of the matrix. Assuming that it has non-zero rank, we can without loss of generality take

p34 6= 0, in which case the matrix N reduces to its row echelon form













1 0 −p14/p34 p13/p34

0 1 −p24/p34 p23/p34

0 0 p34p12 − p24p13 + p23p24 0

0 0 0 p34p12 − p24p13 + p23p24













. (8.49)
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The expression p34p12−p24p13 +p23p24 vanishes by equation (8.46), hence the rank of N is

less than or equal to two. But because the matrix N is antisymmetric it cannot be of rank

one. Therefore, N has rank zero or two. The former case corresponds to letting the fields

be independent of the winding coordinates. This is the section condition that was used

in [168] to recover the supergravity action from the duality invariant formulation in terms

of the generalised metric. The latter case, when the rank of N is two, gives alternative

section conditions where the fields can depend on winding coordinates. For example, the

choice

p12, p23, p13, p15, p25, p35 = 0

solves the SL(5) condition, and so the fields depend on the coordinates

x4, y14, y24, y34.

It is possible to consider alternative solutions of the section condition and find the

theory to which the duality-invariant formulation reduces. This leads to different duality

frames of eleven-dimensional supergravity.

8.5 Discussion

In this chapter, we constructed the generalised geometry associated to the SL(5) duality

group. This is the duality group that appears on the reduction of eleven-dimensional

supergravity to seven dimensions. An SL(5) covariant generalised Lie derivative was con-

structed by dualising the winding coordinates. The generalised Lie derivative on a field

in the antisymmetric and vector representations was shown to give the generalised Lie

derivative on an O(3,3) vector and spinor. Therefore, an SL(5) vector field becomes an

O(3,3) spinor under dimensional reduction. This is perhaps related to the fact that 3-form

potential in eleven-dimensional supergravity gives rise to both NS-NS and R-R fields under

dimensional reduction.

The generalised Lie derivative generates generalised diffeomorphisms which encode

the diffeomorphisms and U(1) gauge transformations. The closure of the algebra of gen-

eralised diffeomorphisms is only satisfied up to a constraint, which we identify with the

section condition. The section condition has solutions whereby the fields can also de-

pend on the winding coordinates. However, unlike the O(d, d) section condition the SL(5)

section condition does not admit solutions whereby the fields only depend on winding co-

ordinates. An interesting prospect to explore is to reduce the duality-invariant dynamics
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with respect to these alternative section choices. These different section choices will lead

to different duality frames for the theory and allow for the definition of non-geometries

based on transition functions that are given by SL(5) transformations.

Furthermore, it will be interesting to extend this work to the other dualities of M-

theory. It is likely that the section conditions for the larger duality groups, SO(5, 5), E6, E7

and E8, can also be found by imposing closure of the algebra of generalised diffeomor-

phisms.

The section condition is a quantum off-shell condition rather than an on-shell con-

dition. Equation (8.45) must be read as a quantum mechanical condition as p = i~ ∂
∂x .

The type of constraint given by the section condition has been observed before in

the context of half-BPS states and U-duality [203],[204]. It would be of great interest to

see if this connection remains true for the larger duality groups.
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8.A Jacobiator of the generalised Lie bracket

In this appendix, we consider the status of the Jacobi identity for the generalised Lie

bracket, equation (8.11).

Define the Jacobiator of the generalised Lie bracket to be

J(X,Y,Z)ab = ([[X,Y ]G, Z]G + [[Y,Z]G,X]G + [[Z,X]G, Y ]G)ab , (8.50)

where the bracket [ , ]G is defined in equation (8.11) and X, Y , Z are SL(5) bivectors,

i.e. they have index structure Xab = X [ab]. The Jacobi identity for the generalised Lie

bracket would be

J(X,Y,Z)ab = 0. (8.51)

Using the fact that the generalised Lie bracket is given by antisymmetrising a gen-

eralised Lie derivative, equation (8.2), i.e.

[X,Y ]G =
1

2
(L̂XY − L̂YX), (8.52)

we rewrite the Jacobiator

J(X,Y,Z)ab =
1

4
([L̂X , L̂Y ]Z + [L̂Y , L̂Z ]X + [L̂Z , L̂X ]Y )ab

− 1

2
(L̂[X,Y ]GZ + L̂[Y,Z]GX + L̂[Z,X]GY )ab. (8.53)

Using, equation (8.12), the above expression reduces to

J(X,Y,Z)ab = −1

4
(L̂[X,Y ]GZ + L̂[Y,Z]GX + L̂[Z,X]GY )ab + . . . , (8.54)

where the ellipses here and below denote terms that vanish if the section condition is

assumed to hold.

Expanding out the terms above using the definition of the generalised Lie derivative

given in equation (8.10), we find that

J(X,Y,Z)ab = − 1

8

{(

Zab∂cd[X,Y ]cdG + 4Zc[a∂cd[X,Y ]
b]d
G

)

+
(

Xab∂cd[Y,Z]cdG + 4Xc[a∂cd[Y,Z]
b]d
G

)

+
(

Y ab∂cd[Z,X]cdG + 4Y c[a∂cd[Z,X]
b]d
G

)

+[X,Y ]cdG ∂cdZ
ab + [Y,Z]cdG ∂cdX

ab + [Z,X]cdG ∂cdY
ab
}

+ . . . . (8.55)
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J(X,Y,Z)ab does not vanish even if the section condition is assumed. However, one can

show that the Jacobi identity is satisfied when acting on fields modulo terms that vanish

by the section condition. Using the following identity

6Zab∂[cd[X,Y ]cdG ∂ab]F =
{(

Zab∂cd[X,Y ]cdG + 4Zca∂cd[X,Y ]bdG

)

+ Zcd∂cd[X,Y ]ab
G

}

∂abF

repeatedly in the expression for J(X,Y,Z)ab above, (8.55), gives

J(X,Y,Z)ab∂abF =
1

8

{

Zcd∂cd[X,Y ]ab
G +Xcd∂cd[Y,Z]ab

G + Y cd∂cd[Z,X]ab
G

−[X,Y ]cdG ∂cdZ
ab − [Y,Z]cdG ∂cdX

ab − [Z,X]cdG ∂cdY
ab
}

∂abF + . . . ,

(8.56)

where F is any SL(5) covariant object, where indices have been suppressed. Finally, using

the operator identity

[X,Y ]cdG ∂cd =
1

2
(Xef∂efY

cd − Y ef∂efX
cd)∂cd + . . . ,

to simplify all six terms in the expression for J(X,Y,Z)ab∂abF above allows us to conclude

that

J(X,Y,Z)ab∂abF = 0, (8.57)

modulo terms that vanish by the section condition.
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