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Designing Output-Feedback Predictive Controllers by
Reverse-Engineering Existing LTI Controllers

Edward N. Hartley and Jan M. Maciejowski Fellow, IEEE

Abstract—An approach to designing a constrained output-feedback
predictive controller that has the same small-signal properties as a pre-
existing output-feedback linear time invariant controller is proposed.
Systematic guidelines are proposed to select an appropriate (non-unique)
realisation of the resulting state observer. A method is proposed to
transform a class of offset-free reference tracking controllers into the
combination of an observer, steady-state target calculator and predictive
controller. The procedure is demonstrated with a numerical example.

I. INTRODUCTION

Handling input and output constraints in a systematic manner is one
of the main motivations for the use of model predictive control (MPC)
[1]–[3] and is the keystone of its industrial success [4]. The definition
of the constraints is usually obvious, corresponding to physical
limitations and performance requirements. However, encoding the
remaining objectives in the cost function can be difficult.

A linear time-invariant (LTI) baseline controller may already exist
for a given application. If full state measurements or estimates are
available, and the pre-existing controller is a static state feedback
gain, then an inverse optimal cost function may be found. For the
unconstrained linear quadratic regulator problem, [5] characterises the
set of state feedback gains that are optimal for some quadratic cost
function. When a state feedback gain satisfies these conditions, one
way of computing corresponding quadratic cost weightings is to pose
a linear matrix inequality (LMI) problem [6]. In [7] a quadratic cost
function with time-varying weights over a finite prediction horizon
is proposed allowing reproduction of a wider range of gains. In [8]
a cost function with cross terms between state and input values is
shown to reproduce any multivariable state feedback gain. In [7] a
method is shown that can reproduce closed-loop behaviour of an
output-feedback controller by including the original controller within
the plant model, and (non-minimally) parameterising the state of the
enlarged system in terms of a finite sequence of previous outputs and
inputs. In [9] it is shown that an MPC controller can be constructed to
match the unconstrained behaviour of a given H∞ controller, which
was designed using the loop-shaping procedure of [10].

In the present work, a method is proposed using the observer-
compensator realisation of a more general class of stabilising LTI
output-feedback controllers (originally proposed by [11], [12], and
further developed in [13], [14]), as the basis for a state observer and
cost function in an output feedback MPC controller. The methodology
in this technical note is motivated by the cross standard form [14]–
[16], an H2 and H∞ inverse-optimal generalised plant model whose
optimal solutions are the observer-based realisations of a pre-specified
output feedback controller K0, and builds upon [17]–[20].

The present technical note proposes methods for selecting the (non-
unique) observer-based realisation, including the design of additional
modes in the observer introduced in the kernel of the initial com-
pensator gain when the plant is of higher order than the baseline
controller. The method is extended to transform an LTI offset-free
tracking controller into the form of an observer, MPC controller and
target calculator [21]–[23].
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The remainder of this technical note is organised as follows:
Section II presents pre-requisites and assumptions; Section III reca-
pitulates the principles for obtaining a discrete-time observer-based
realisation of an LTI regulator in sufficient detail to motivate the
subsequent design, and proposes a systematic method to help select a
non-unique realisation; Section IV transforms the resulting observer-
based realisations into an output-feedback MPC regulator; Section V
extends the methodology to the case where the baseline controller
exhibits integral action for offset-free tracking, by transforming the
baseline controller into a target calculator and constrained MPC
controller; Section VI presents a numerical example; and Section VII
concludes.

II. PRE-REQUISITES AND ASSUMPTIONS

Assumption 1: The LTI plant to be controlled has a minimal
realisation x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), where
x(k) ∈ Rnx is the plant state, u(k) ∈ Rnu is the plant input
(manipulated variable), y(k) ∈ Rny is the plant output (measured
variable) at time k and det(A) 6= 0.

Assumption 2: The pair (C,A) is observable, and the tuple
(C,A,B) is output stabilisable.
The plant model can consider integrating disturbances, so stabilis-
ability of (A,B) is not assumed.

Assumption 3: The pre-existing output-stabilising LTI regulator
for the plant in Assumption 1 has minimal realisation xK(k + 1) =
AKxK(k) + BKy(k), u(k) = CKxK(k) + DKy(k), where the
controller state xK ∈ RnK , nK ≤ nx and det(AK) 6= 0.
This excludes controllers including a pure time delay.

Definition 1: For a matrix T with full row rank, let T+ denote the
Moore-Penrose pseudo-inverse of T , and Ker(T ) denote the kernel
of T . Let T⊥ be a matrix whose columns form an orthonormal basis
for Ker(T ) and spec(A) denote the set of eigenvalues of A.

III. OBSERVER-BASED CONTROLLER REALISATIONS

This section summarises the method to obtain an observer-based
controller realisation, based on an adaptation of the method for low
order controllers from [14] to discrete time. Systematic guidelines
for selecting a particular realisation are proposed.

A. Obtaining observer-based controller realisations

When DK 6= 0, a controller based on a filter-form observer is
sought, enabling reproduction of the feed-through term from the
measured variable to the manipulated variable. Denoting x̂(k+ 1|k)
as the estimate of the state at time instant k+1 given measurements at
time k, x̂(k|k) as the estimate at time k given current measurements,
DQ as a static Youla parameter [24], and Af = (A − AKfC) for
Kf ∈ Rnx×ny , this is

x̂(k + 1|k) = Af x̂(k|k − 1) +Bu(k) +AKfy(k) (1a)

x̂(k|k) = (I −KfC)x̂(k|k − 1) +Kfy(k) (1b)

yQ = DQ(y(k)− Cx̂(k|k − 1)) (1c)

u(k) = Kcx̂(k|k) + yQ(k). (1d)

Theorem 1 (Proof in appendix): Given a stabilising regulator sat-
ifying Assumption 3, assume that there exists T ∈ RnK×nx of full
row rank satisfying the non-symmetric Riccati equation

−T (A+BDKC)− TBCKT +BKC +AKT = 0. (2)

The regulator can be realised in the form (1), where AKf =
T+BK − BDK + T⊥KN , Kc = DKC + CKT , DQ = (DK −
KcKf ), and KN ∈ R(nx−nK)×ny is a design parameter.
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Corollary 1 (Proof in appendix): When AK is invertible, and
DK = CKA

−1
K BK , then KcKf = DK , [11] and therefore yQ = 0.

If DK = 0, a predictor form observer based controller is sought
where (defining Afp = A−KfC):

x̂(k + 1|k) = Afpx̂(k|k − 1) +Bu(k) +Kfy(k) (3a)

u(k) = Kcx̂(k|k − 1). (3b)

Analogous to Theorem 1, (3) is equivalent to a (possibly non-
minimal) realisation of the given controller, with Kf = T+BK +
T⊥KN and Kc = CKT , where −TA−TBCKT+BKC+AKT =
0. If a predictor form is preferred, DK 6= 0, and inserting a delay to
force DK = 0 is not acceptable, the transformation A← A+BDKC
and DK ← 0 can be used, but if u(k) = Kcx̂(k|k − 1) is replaced
by a constrained controller, then a disturbance can cause an input
constraint violation, since correction occurs at the next time step.

B. Selection of non-unique realisation

A realisation obtained from application of Theorem 1 (or equiv-
alent for the predictor) is not in general unique. The specific T
satisfying (2) determines the partition of the original closed loop
eigenvalues between spec(A + BKc) and spec(A − AKfC) (or
spec(A−KfC) for a predictor). See [11]–[14], [17], [18] for details.

Even if process and measurement noise are additive, Gaussian
and white, with respective covariances Qy and Ry , Kf designed
as described in Section III-A is not (in general) the optimal Kalman
gain for the plant for the given covariances. However, estimation error
covariance can still be minimised within the degrees of freedom in
T . For the case when nx = nK , this is summarised in Algorithm 1.

Algorithm 1: minT,Kf ,Py Tr((I − KfC)Py(I − KfC)T +

KfRyK
T
f ) subject to AfPyA

T
f − Py = −AKfRyK

T
f A

T − Qy ,
T (A + BDKC) + TBCKT = BKC + AKT , and AKf =
T+BK −BDK .
This can be computed by enumeration of each valid T (see e.g. [13]
for restrictions). When nK < nx, nx − nK extra eigenvalues are
introduced into spec(A−AKfC), corresponding to eigenvectors in
Ker(T ) as revealed by similarity transformation on (A − AKfC).
Defining Ã = A+BDKC,[

T

T⊥
T

] [
Ã− T+BKC − T⊥KNC

] [
T+ T⊥

]
=

[
TÃT+ −BKCT

+ 0

T⊥
T

ÃT+ −KNCT
+ T⊥

T

ÃT⊥ −KNCT
⊥

]
. (4)

Determined by KN , these do not change the unconstrained, closed-
loop behaviour with u(k) = Kcx̂(k) (one can verify that (Kc(I −
KfC)−DQC)T⊥ = 0 and therefore that T⊥

T

x̂(k|k− 1) does not
contribute to control action (1) (see Appendix)), but do affect the
complete state estimate and therefore the closed-loop behaviour with
constrained predictive control.

Noting that the estimate of Tx(k) is in general not optimal for
the given Qy and Ry , the corresponding estimation error cannot be
assumed to be Gaussian white noise, precluding de-coupled design
of the estimate of T⊥x(k). For a given T satisfying (2), and
defining AKf0 = T+BK − BDK , AKf = AKf0 + T⊥KN and
Af = A− AKfC, minimising the trace of P0 over stabilising KN

subject to P0 = AfP0A
T
f +(AKf0 +T⊥KN )R(AKf0 +T⊥KN )T

corresponds to a dual of the static output feedback discrete-time linear
quadratic control problem, which is known to be challenging [25].
Whilst algorithms exist that are often capable of identifying adequate
suboptimal solutions (e.g. [26]–[28]), convergence is not guaranteed.
Their use in finding a solution AKf = T⊥BK +DKC+T⊥KN in

the context of Algorithm 1 is limited if there is more than a handful
of candidate matrices T to evaluate, due to computational demands.

When the set of matrices T to evaluate is larger, an optimistic
approximation of the achievable estimation error may be used. Define
x̂T (k|k − 1) ∈ RnK as an estimate of Tx, x̂1(k|k − 1) ∈ Rnx as
a second estimate of the full state, and L as the Kalman gain for
the given uncertainty covariances Qy and Ry , and defining AL =
(A−ALC):

x̂T (k|k − 1) = T (AfT
+x̂T (k) +Bu(k) +AKfy(k)) (5a)

x̂1(k|k − 1) = ALx̂1(k|k − 1) +Bu(k) +ALy(k) (5b)

x̂(k|k) = K+
c Kc(I −KfC)T+x̂T (k|k − 1)

+K⊥c K
⊥T

c (I − LC)x̂1(k|k − 1) +Dobsy(k) (5c)

Dobs = K+
c KcKf +K⊥c K

⊥T

c L (5d)

u(k) = Kcx̂(k|k) +DQT
+x̂T (y(k)− CT+x̂T (k|k − 1)). (5e)

This structure combines the reverse-engineered observer of the com-
ponent of x(k) in Span(Kc) with a separate estimate of x(k)
in Ker(Kc). The covariance of the error of estimate (5c) is an
approximation from below of that which could be obtained using
structure (1) with Kc and AKf from Theorem 1, and enables
a computationally tractable estimate that can be used within the
framework of a modified Algorithm 1 when nK < nx. For T yielding
the lowest bound, KN which approximately minimises Tr(P0) within
the structure (1) with gains from Theorem 1, can be found using
(e.g.) one of the algorithms of [26]–[28] (noting the cross covariance
between measurement and process uncertainty, induced by AKf0).

Remark 1: An alternative goal is to use KN to force DQ → 0.
Each of the nx − nK modes of (1) in Ker(T ) is cancelled by a
corresponding invariant zero. If the plant model is augmented with
a disturbance on each channel (subject to observability), placing the
resulting eigenvalues in the observer error dynamics at the origin
introduces corresponding invariant zeros. However, in Section V, the
Youla parameter and disturbance states are treated in the same way.

IV. INVERSE OPTIMAL PREDICTIVE REGULATOR

This section assumes a perfect plant-model match, that the observer
error has converged to zero, that the Youla parameter DQ = 0
(relaxed subsequently) and that exact matching of Kc is required in
some neighbourhood of the origin. Define ui ∈ Rnu as a predicted
input i time steps in the future, and xi ∈ Rnx as a predicted
future state, let u = [u0, . . . , uN−1]

T for a finite prediction horizon
N ∈ N+ and let x̂(k) be the current relevant state estimate x̂(k|k)
or x̂(k|k−1), in this case from (1b), (3a) or (5c) with gains obtained
by application of Algorithm 1 and Theorem 1 (or the predictor-form
equivalent).

Algorithm 2 (Linear model predictive control): At each time step,
k, let u∗ = arg minu FN (xN ) +

∑N−1

i=0
`(xi, ui) subject to x0 =

x̂(k), xi+1 = Axi +Bui, ui ∈ U, xi ∈ X, for i ∈ {0, . . . , N − 1}
and xN ∈ T. Apply u(k) = u∗0. Increment k.
Sets U ⊆ Rnu , X ⊆ Rnx and T ⊆ Rnx are assumed to be
convex, compact, polytopic, and to contain the origin within their
interiors. T is assumed to be a positively invariant admissible
set under the action of the controller u(k) = Kcx(k): T ,
{xN : xN ∈ T =⇒ xN ∈ X,KcxN ∈ U, (A+BKc)xN ∈ T}.
Letting the function c( · ) be a continuous, strictly increasing
function with c(0) = 0, [29] shows that for appropriate
`(xi, ui) > c(‖(xi, ui)‖)2, the value function can be used
as a control Lyapunov function to prove stability of the
closed loop system with the predictive controller by ensuring
FN (AxN +BKcxN )− FN (xN ) ≤ −`(xN ,KcxN ).
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The reverse engineering procedure hinges upon replacing Kc as
defined in Theorem 1 with a constrained predictive regulator that is
identically equivalent when constraints are not active. For R > 0 ∈
Rnu×nu , the stage cost

`0(xi, ui) = (ui −Kcxi)
TR(ui −Kcxi)

=

[
xi

ui

]T [
KT

c RKc −KT
c R

−RKc R

][
xi

ui

]
(6)

where Kc is the gain matrix obtained from Theorem 1 gives an
unconstrained optimum ui = Kcxi [8] with infinite horizon cost-
to-go, FN (x) = 0, (verifiable by direct substitution into discrete-
time algebraic Riccati equation with cross-terms). `0(xi, ui) = 0
if ui = Kcxi; however, `0(xi, ui) is not bounded below by
c(‖xi, ui‖)2. To circumvent this, a dual-mode approach with cost

`(xi, ui) = `0(xi, ui) + (xi − zi)
TQ1(xi − zi) (7)

subject to slack variable zi ∈ αT ⊂ Rnx , for design parameters
Q1 > 0 ∈ Rnx×nx and 0 ≤ α < 1 can be shown to guarantee
finite-time entry to T, wherein the unconstrained (known stabilising)
control gain is recursively feasible [30].

An alternative cost, without recourse to slack variables, of the form

`S(xi, ui) = xT
i Qxi + xT

i Sui + uiS
Txi + uT

i Rui (8)

can be used, accompanied by terminal cost FN (xN ) = xT
NPxN . If

(A,B) is stabilisable, and there exist appropriately dimensioned Q >
0, R > εI , S, P > δI (for scalar bounds ε > 0 and δ > 0), satisfying
Q− SR−1ST > 0, ATPA− P −KT

c (BTPB + R)Kc +Q = 0,
(BTPB+R)Kc+(BTPA+ST ) = 0 and, letting Ac = (A+BKc),

AT
c PAc − P +Q+KT

c RKc +KT
c S

T + SKc ≤ 0 (9)

then the matrices Q, R, S and P in cost function (8) will be inverse
optimal with respect to the static gain Kc, and the terminal cost
FN (xN ) will be a control Lyapunov function within T, enabling
constrained closed-loop stability to be established using the method
of [29]. This can be solved using convex methods [31], with any
additional degrees of freedom used to minimise ‖S‖22.

In principle, the effect of the Youla parameter, when DQ 6= 0
can be considered by substituting `(xi, ui), with `(xi, ui − yQ(k))
in Algorithm 2. However, whilst yQ(k) → 0 as k → ∞, a given
pair (0, yQ(k)) is not necessarily an equilibrium pair, and it might
therefore be preferable to operate within the same framework as for
offset-free tracking, as elaborated subsequently.

V. REVERSE-ENGINEERED REFERENCE TRACKING CONTROLLERS

This section extends the proposed approach with the treatment of
a class of offset-free reference tracking controllers. The subsequent
analysis assumes a filter form observer, but analogous results hold
for the predictor form.

Direct application of Theorem 1 and cost function (6) would
reproduce the unconstrained controller, but the observer can be biased
by disturbances, and thus prediction quality, and consequently closed
loop performance in presence of constraints, can be compromised.
The following development transforms a baseline controller into a
widely used form for offset-free predictive control [21]–[23].

A. Further standing assumptions and pre-requisites

Assumption 4: The baseline, stabilising, linear, time-invariant,
offset-free, reference tracking controller has a minimal realisation

xK(k + 1) = AKxK(k) +BK (y(k)− r(k)) (10a)

u(k) = CKxK(k) +DK (y(k)− r(k)) , (10b)

where the controller state xK ∈ RnK and r(k) ∈ Rny is a reference
which tends to a constant r∞ as k → ∞. AK has at least ny

eigenvalues at 1, with a corresponding invariant subspace orthogonal
to neither the rows of CK , nor the columns of BK . In closed loop
with this controller, the plant output y(k) tends to r(k) as k →∞.

Assumption 5: The pair (A,B) is stabilisable, and a matrix Bd

has been chosen so that the plant model can be augmented as[
x(k + 1)
d(k + 1)

]
=

[
A Bd

0 I

]
︸ ︷︷ ︸

Aa

[
x(k)
d(k)

]
︸ ︷︷ ︸

xa(k)

+

[
B
0

]
︸︷︷︸

Ba

u(k) (11a)

y(k) =
[
C 0

]︸ ︷︷ ︸
Ca

[
x(k)
d(k)

]
(11b)

where d(k) ∈ Rny is an uncontrollable disturbance state, the pair
(Ca, Aa) is detectable. The input dimension nu ≥ ny .
By applying Theorem 1 to plant (11) and controller (10), and
separating the contributions of r(k) and y(k) to u(k), a controller
realisation with the structure of an observer estimating xa(k) and a
reference pre-filter with internal state x̂P,a(k) = [x̂T

P (k), d̂T
P (k)]T is

obtained (letting Aaf = (Aa −AaKfCa)):

x̂a(k + 1|k) = Aaf x̂a(k|k − 1) +Bau(k) +AaKfy(k) (12a)

x̂a(k|k) = (I −KfC)x̂a(k|k − 1) +Kfy(k) (12b)

yQ(k) = DQ(y(k)− Cx̂a(k|k − 1)) (12c)

x̂P,a(k + 1|k) = Aaf x̂P,a(k|k − 1) +AaKfr(k) (12d)

x̂P,a(k|k) = (I −KfC)x̂P,a(k|k − 1) +Kfr(k) (12e)

qP (k) = DQ(r(k)− Cx̂P,a(k|k − 1)) (12f)

u(k) = Kc (x̂a(k|k)− x̂P,a(k|k)) + yQ(k)− qP (k).
(12g)

B. Target equilibrium pairs

Partition Kf and Kc as Kf =
[
KT

f1 KT
fd

]T
and Kc =[

Kc1 Kcd

]
where Kf1 ∈ Rnx×ny , Kfd ∈ Rny×ny , Kc1 ∈

Rnu×nx and Kcd ∈ Rnu×ny .
The pair (xs(k), us(k)) is an equilibrium pair, satisfying Cxs =

Cx̂P and u(k) = Kc1 (x̂(k|k)− xs(k)) + us(k) is equal to that of
the baseline controller, if[

(A− I) B
C 0
−Kc1 I

][
xs(k)
us(k)

]
= G

[
d̂T yT

Q d̂T
P x̂T

P qT
P

]T
(k|k)

(13a)

where G =

[−Bd 0 0 0 0
0 0 C 0 0
Kcd I −Kcd −Kc1 −I

]
. (13b)

The final row is deduced by comparing expressions for the corre-
sponding control actions and cancelling common terms.

Proposition 1: If there exists a vector xref(k) ∈ Rnx such that

Kc1xref(k) = Kc1x̂P (k) +Kcdd̂P (k) + qP (k) (14a)

and there exist δ1 ∈ Rnx and δ2 ∈ Rnu , such that[
(A− I) B
C 0

][
δ1
δ2

]
=

[
0
C

]
xref (14b)

and that [
−Kc1 I

] [δ1
δ2

]
= −Kc1xref + yQ(k), (14c)
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then the pair (xs(k), us(k)) is an equilibrium pair, satisfying Cxs =
Cx̂ref and the control action u(k) = Kc1 (x̂(k|k)− xs(k)) + us(k)
is identical to that of the baseline controller, if[

(A− I) B
C 0
−Kc1 I

][
xs(k)
us(k)

]
=

[−Bd 0
0 C
Kcd −Kc1

][
d̂(k|k)
xref(k)

]
. (15)

Lemma 1: A sufficient condition for the existence of xref satis-
fying the conditions in Proposition 1 is that rank(M) ≤ nx − nu,
where

M =

([
−Kc1 I

] [(A− I) B
C 0

]+ [
0
C

]
+Kc1

)
. (16)

Proof: Noting that ny ≤ nu, a sufficient condition for satisfac-
tion of the conditions (14b) and (14c) can be obtained by solving
(14b) for (δ1, δ2) and substituting into (14c) to obtain the condition
Mxref = yQ. However, (14a) must also be required to hold. A
sufficient condition for existence is obtained by consideration of the
dimensions of the left side of:[

M
Kc1

]
xref(k) =

[
0 0
Kc1 Kcd

][
x̂P (k|k)
d̂P (k|k)

]
+

[
yQ(k)
qP (k)

]
. (17)

Lemma 2: When Kc1 and Kcd are chosen as prescribed, a solution
to (15) exists.

Proof: When Cxref = 0, Assumption 4 implies that for any
d∞ ∈ Rny , an equilibrium pair (x∞, u∞) must exist, such that
(A − I)x∞ + Bu∞ = −Bdd∞ and Cx∞ = 0. The observer-
based realisation of the same controller, with zero reference, gives
u∞ = Kc1x∞ + Kcdd∞. For Cxref 6= 0, choosing xref to satisfy
(17) implies that there exists (δ1, δ2) satisfying (14b) and (14c). By
linear superposition, the pair (xs, us) = (xs0 +δ1, us0 +δ2) satisfies
the required conditions.

Remark 2: When

[
(A− I) B
C 0

]
has a unique inverse, (15) is

equivalent to the standard conditions for equilibrium target calculation
[21], [22] with reference setpoint Cxref . Otherwise, the additional
constraints use the degrees of freedom to match the input from the
original controller. When DQ = 0, xref is a function only of the
pre-filter reference state.

Remark 3: Assumption (4) states that Cx(k)→ r(k) as k →∞
for the system in closed loop with (10). Controller (12) is equivalent
to (10). Controller u(k) = Kc1(x(k) − xs(k)) + us(k), where
(xs(k), us(k)) satisfy (15) with xref satisfying (17), is equivalent to
(12). Condition (15) implies that with the aforementioned controller
Cx(k) → Cxref(k) [21]–[23]. Therefore Cxref(k) → r(k) as
k →∞.

Remark 4: The objective is only to match the original controller
when constraints are not active, so to avoid infeasibility in the
presence of plant input and state constraints, similarly to the con-
straint that Cxs = Cxref , it is preferable that these additional
conditions −Kc1xs + us = Kcdd̂ − Kc1xref be implemented as
“soft” constraints, that hold when state and input constraints are not
active but may be violated in favour of state and input constraints.

C. Realisation as a predictive controller

The target equilibrium pair (xs(k), us(k)), satisfying (15), where
xref(k) satisfies (17), and x̂P (k|k), d̂P (k|k), yQ(k) and qP (k) are
obtained by implementing pre-filter and observer (12a-f) is used as a
reference setpoint in the predictive controller with the cost function
of the form (6), (7) or (8) designed to be inverse-optimal for gain
Kc1 and plant matrices (A,B).

TABLE I
ALLOCATION OF CLOSED-LOOP DYNAMICS

Pole 1 0.976 0.992 + j0.119 0.992− j0.119 0.558
Opt. 1 S S O O S
Opt. 2 S O S S O

(O indicates observer, S indicates state feedback)

Algorithm 3 (Linear model predictive control with reference tracking):
At each time step, k, let u∗ = arg minu FN (xN −
xs) +

∑N−1

i=0
`(xi − xs, ui − us) subject to x0 = x̂(k),

xi+1 = Axi + Bui + Bdd̂(k|k), ui ∈ U, for i ∈ {0, . . . , N − 1}
and xi ∈ X, for i ∈ {0, . . . , N}. Apply u(k) = u∗0. Increment k.

VI. NUMERICAL EXAMPLE

The baseline plant and controller for this numerical example are
taken from [32, ex 9.4.1] for a single axis attitude control system
with angle measurement (in radians) only, and the applied torque (in
Nm) as the plant input. For a sample time Ts = 0.25 s, the plant

matrices are A =

[
1 0.25
0 1

]
, B = 1

500

[
0.03125

0.25

]
, C =

[
1 0

]
,

D = 0. The controller matrices are AK =

[
1.4118 −0.8235

0.5 0

]
,

BK =
[
32 0

]T
, CK =

[
−13.0133 −26.1415

]
, and DK =

−871.0478. The poles of the baseline controller are at 1 and 0.4118,
and the poles of the resulting closed-loop system are at 0.5579,
0.9115±j0.1192 and 0.9764. The augmented system (11) is formed
with Bd = B (i.e. a torque disturbance). The resulting closed loop
system has an additional observable, but uncontrollable pole at z = 1.
Since DK 6= 0, |DK | � 0, and DK 6= CKA

−1
K BK , the filter-form

observer (1) with static Youla parameter is chosen.
The integrating disturbance is uncontrollable, so must remain in

spec(Aa +BaKc), and the complex conjugate pair cannot be split,
resulting in two feasible possible allocations of the closed-loop
dynamics between spec(Aa + BaKc) and spec(Aa − AaKfCa).
For this example, nx = 3 (due to the disturbance augmentation) but
nK = 2. Therefore, the process will introduce a single additional
mode in the observer in the nullspace of T . For this example we will
assume that Qy = diag(10−6, 10−7, 10−3) and Ry = 1.2 × 10−7.
The latter corresponds to an RMS sensor error of ≈ 0.02◦.

For each of the options in Table I the observer performance is
evaluated in response to process and measurement noise Qy and
Ry in closed loop with the unconstrained inverse-optimal MPC
using cost function (IV) regulating to the origin. The results are
shown in Table II. Reproduction of the baseline control input is
also verified. The maximum absolute error between the control input
from the baseline realisation and the observer-based realisation is
denoted uerr, and the RMS control inputs applied are presented
to verify that the error is negligible in comparison, and denoted
urms. Errors e1, e2 and e3 denote the RMS error in simulation on
states 1, 2 and 3 respectively. We denote case (a) where structure
(1) with gains chosen using Theorem 1 with KN used to place
spec(T⊥

T

(A − AKfC)T⊥) = 0 is used as the basis for the
design (for this model, this also causes DQ = 0); case (b) where
structure (5e) with an augmented observer is used; and case (c) where
the degree of freedom KN is used to approximately minimise the
estimation error by application of [26]. The LMI solver SeDuMi [33]
is used through the YALMIP interface [34] to solve for KN and to
find (Q,R, S, P ) by solving (IV).

To demonstrate the inheritance of the offset-free tracking
and constraint handling, realisation 1(c) is chosen (by virtue
of Algorithm 1) with gains [Kc1,Kcd] = [−83.4,−921,−1],
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Fig. 1. Closed loop responses to step reference change and input disturbance for baseline and MPC realisation with constraints (note differences in axes)

TABLE II
EVALUATION OF OBSERVER PERFORMANCE

Option 1(a) 1(b) 1(c)

Tr(P̂y)
1/2

0.3865 0.17526 0.1830
DQ 0 -777.0 -742.7
e1 0.0004 0.0005 0.0016
e2 0.0017 0.0040 0.0016
e3 0.3659 0.1827 0.1859

urms 4.4613 4.4613 4.4613
uerr 4× 10−7 5× 10−7 2× 10−6

Option 2(a) 2(b) 2(c)

Tr(P̂y)
1/2

0.1970 0.17539 0.1857
DQ 0 -777.0 -656.9
e1 0.0004 0.0097 0.0006
e2 0.0024 0.0179 0.0016
e3 0.2127 0.1827 0.2108

umax 4.4613 4.4613 4.4613
uerr 9× 10−4 2× 10−3 1× 10−3

TABLE III
STEP RESPONSE CONFIGURATIONS (x(2) DENOTES SECOND STATE)

Observer Reference Disturbance Controller Constraints
Realisation Value Magnitude

1(c) 0.01 0.003 Baseline —
1(c) 0.01 0.003 MPC |u| ≤ 20, |x(2)| ≤ 0.04
1(c) 0.1 0.03 Baseline —
1(c) 0.1 0.03 MPC |u| ≤ 20, |x(2)| ≤ 0.04

[AKT
f1, AK

T
f2] = [0.2210, 0.1174, 7.7703]. and cost matrices Q =[

0.0212 0.0019
0.0019 2.3454

]
× 103, R = 0.0017 S =

[
0.4617
−0.2227

]
× 10−4,

P =

[
0.9346 0.3946
0.3946 5.4712

]
. Figure 1 shows the responses to a step

reference change at time t = 0 and a step input disturbance at time
t = 100, for the magnitudes and controllers shown in Table III.
Process and measurement noise are omitted for clarity. The MPC
controller performs identically to the baseline controller for the
smaller reference and disturbance steps. For the larger reference and
disturbance steps, the input and state constraints (which would be
violated by the baseline controller), are respected and the first state
converges to the reference.

VII. CONCLUSIONS

An approach to designing a constrained output-feedback predictive
controller with the objective of reproducing the same small-signal
properties as a pre-existing output-feedback linear time invariant
controller has been proposed, with systematic guidelines to select the
appropriate (non-unique) realisation of the resulting state observer. A
class of offset-free reference tracking controllers is transformed into
the combination of an observer, reference pre-filter, steady-state target
calculator and predictive controller. The process is demonstrated in
simulation for a simple offset-free tracking controller.

APPENDIX: PROOF OF SELECTED THEOREMS

Proof of Theorem 1: Consider a (non-minimal) realisation of
the baseline controller

K0(z) =

 AK 0 BK

AEK AE BE

CK 0 DK

 (18)

where AEK ∈ R(nx−nK)×nK , AE ∈ R(nx−nK)×(nx−nK), BE ∈
R(nx−nK)×ny have arbitrary values, and AE is Schur stable. T is of
full row rank,

[
TT T⊥

]T
is invertible, with inverse

[
T+ T⊥

]
.

Defining Ac = A+BKc, consider the observer-based controller

Kobs(z) =

[
Ac(I −KfC)−BDQC AcKf +BDQ

Kc(I −KfC)−DQC KcKf +DQ

]
(19)

and a change of co-ordinates Kobs(z) =

[
Aobs Bobs

Cobs Dobs

]
, where

Aobs =

[
TM1T

+ TM1T
⊥

T⊥
T

M1T
+ T⊥

T

M1T
⊥

]
, M1 = A−AKfC+BKc−

BKcKfC −BDQC, Bobs =

[
TAKf + TBDobs

T⊥
T

AKf + T⊥
T

BDobs

]
, Cobs =[

(Kc −DobsC)T+, (Kc −DobsC)T⊥
]
, Dobs = KcKf +DQ. Let

Kc = DKC+CKT , AKf = T+BK−BDK +T⊥KN , and DQ =
DK −KcKf , then TM1 = TA + TBDKC − BKC + TBCKT ,
Bobs =

[
BT

K KT
N

]T
, and Cobs =

[
CK 0

]
. If (2) holds then

TM1 = AKT and TM1T
+ = AK , and TM1T

⊥ = 0. Kobs is
related to (19) by similarity transformation, and Kobs is equal to
(18) with AEK = T⊥

T

(A+BDKC − T⊥KNC)T+ + T⊥
T

BCK ,
AE = T⊥

T

(A+BDKC−T⊥KNC)T⊥, and BE = KN , which in
turn is a (non-minimal) realisation of the original regulator. Therefore
(19) is a (non-minimal) realisation of that too.
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Proof of Corollary 1: KcKf = (DKC+CKT )A−1(T+BK +
T⊥KN − BDK) = CKA

−1
K (BKC + AKT )A−1((T+ −

BCKA
−1
K )BK + T⊥KN ). By rearrangement and factorisation,

TA = (I − TBCKA
−1
K )(BKC + AKT ). Therefore, BKC +

AKT = (I − TBCKA
−1
K )−1TA, and KcKf = CKA

−1
K (I −

TBCKA
−1
K )−1(I − TBCKA

−1
K )BK = DK .

Proof that (Kc(I−KfC)−DQC)T⊥ = 0: (Kc(I−KfC)−
DQC)T⊥ = (CKT +DKC −KcKfC − (DK −KcKf )C)T⊥ =
CKTT

⊥ = 0.
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