
Parallelisation of Sequential Monte Carlo for Real-Time Control in Air
Traffic Management

Alison Eele, Jan Maciejowski, Thomas Chau and Wayne Luk

Abstract— This paper presents the parallelisation of a Se-
quential Monte Carlo algorithm, and the associated changes
required when applied to the problem of conflict resolution and
aircraft trajectory control in air traffic management. The target
problem is non-linear, constrained, non-convex and multi-agent.
The new method is shown to have a 98.5% computational
time saving over that of a previous sequential implementation,
with no degradation in path quality. The computation saving
is enough to allow real-time implementation.

I. INTRODUCTION

Air Traffic Management (ATM) is concerned with the
routing, safety and scheduling of aircraft in regions of
airspace. Currently this role is performed by Air Traffic
Control (ATC) and is a very human-oriented process though
steps towards autonomy have been made in recent years [1].
ATC is responsible for management of all stages of flight,
from pre-flight plans, updates and additional instructions
based on traffic flow to landing scheduling. The majority of
ATC concern lies with the avoidance of dangerous encounters
through maintenance of safe separation between aircraft. The
role of ATC is further complicated by the introduction of
uncertainty. This is introduced by the effect of the wind,
incomplete knowledge of the physical coefficients of the
aircraft and imprecision in the execution of ATC commands.
Probabilistic models can be used to estimate the distribution
of the future state of the aircraft given the current state.

There are many existing multi-aircraft trajectory optimi-
sation methods, most focus purely on cruise-like conditions
where trajectories can be approximated in two dimensions
or movement in the third dimension is highly penalised for
passenger comfort [2]–[4]. Methods such as mixed integer
linear programming (MILP) require a linearisation of the
problem and are too slow on centralised problems with
large numbers of vehicles due to the number of binary
variables [5]. Others use techniques like genetic algorithms
to parameterise and optimise aircraft behaviour [6].

In model predictive control (MPC) an open loop optimal
control problem is solved at each time step e.g. [7], [8]. This
optimisation problem can be non-convex, mostly due to non-
linear dynamics, non-convex constraints. Such optimisation
problems are challenging to solve and can require sophisti-
cated optimisation techniques. This paper is concerned with
augmenting Sequential Monte Carlo optimisation [9] to solve

This work was supported by EPSRC (Engineering and Physical Sciences
Research Council - UK) Grant No. EP/G066477/1

Faculty of Engineering University of Cambridge, Cambridge, UK (e-mail:
{aje46,jmm1}@cam.ac.uk)

Department of Computing, Imperial College, London, UK (email:
{c.chau10,w.luk}@imperial.ac.uk)

the control problem at each time step. Stochastic optimisation
allows for modelling the uncertainty present in ATC whilst
also being able to cope with non-linear dynamics, constraints
and an objective function.

Sequential Monte Carlo (SMC) optimisation is better
known for its use in ‘particle filtering’ for model estimation
[9]. It was observed that MPC optimisation shares similar
features to that of model estimation and through this connec-
tion SMC was applied to MPC optimisation by [10]. Previous
work by the authors [11] compared two stochastic methods
along with a standard linearised method to give an indication
of the quality of the stochastic solutions when given a limited
computational timespan. The work of [10]–[12] includes
examples of SMC applied to MPC of multiple vehicles
considering two and three dimensional trajectories under
the predicted effects of wind and additional uncertainty.
These works also observed that the time required to solve
such problems was currently prohibitive despite the positive
features of the solutions and indicated that potential time
savings could be achieved through parallelisation.

Parallelisation has become a popular topic of research
due to improvements in the accessibility and availability
of software and hardware tools. Graphics Processing Units
(GPUs) are one of the key technologies to emerge into
the mainstream. Originally developed as devices for real-
time graphics rendering, they have entered into scientific
computing circles through exploitation of their many multi-
core processors. Monte Carlo methods when implemented
on GPUs have a proven record of significant speed up for
statistical, chemical and economic applications [13]–[15].

The paper is organised as follows: Section II and Sec-
tion III reviews MPC and the SMC optimisation method
whilst discussing the customisation for the considered appli-
cation; Section IV explains the adaptations to the algorithm
for parallelisation; Section V presents the results of the com-
parison simulations between the new GPU implementation
of SMC and the older sequential implementation; Finally,
Section VI presents conclusions.

II. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC), also known as Receding
Horizon Control, is an optimisation-based control strategy.
A constrained, finite-horizon, optimal control problem is
solved online at each iteration by means of the available
state/measurements. This solution yields the controls for the
duration of the finite horizon. The first control move of the
sequence is then applied to the aircraft. The new states are
measured and the optimisation loop begins again. For the

air traffic control problem this forms a closed loop control
system, as depicted in Figure 1. Many alternative forms

Sequential Monte
Carlo Optimisation

Aircraft
Simulation

Aircraft
States

New
Aircraft
Controls

Disturbance
(Wind, Control Error)

Updated Aircraft States

Fig. 1. Graphical Representation of MPC Update Step

of optimisation have been used in the first block of the
diagram and often, in simpler systems, linear or quadratic
programming can be applied. In this paper Sequential Monte
Carlo optimisation is used as the method for solving for
the applied control sequence. The remainder of this paper
will deal with operations occurring in the SMC optimisation
section of the update cycle.

III. SEQUENTIAL MONTE CARLO

The underlying concept of SMC is to approximate a
sequence of distributions of interest as a collection of L
discrete masses of the variables (more commonly referred
to as particles). These particles are weighted by a collection
of weights to reflect the shape of the distribution. As the
distribution to be approximated can vary with time the
weights and particles are propagated iteratively using a
sequential importance sampling and resampling mechanism.
This sampling and resampling mechanism uses the particles
of iteration J−1 to obtain new particles at iteration J . In this
way a population of particles is iterated upon until a final
sample is drawn from the population to act as an estimator of
the maximisers. Algorithm 1 summarises the implementation
of SMC in the context of the current application. Each step
of the algorithm will now be dealt with in further depth with
specific reference to the application of ATM.

A. Particles

A particle represents a single instance of the problem
with the data of all associated aircraft. The number of
particles for optimisation is a design variable dependent on
the complexity of the problem to be optimised. The more
complex the problem, the larger the number of particles may
be needed to adequately characterise the search space. Inside
each particle there is: (i) An initial state for each of the N
individual aircraft. These initial states for aircraft are the
same across all particles; (ii) The control inputs for every
step of the MPC horizon H for every aircraft. In this paper’s
formulation there are 3 controls for each aircraft (thrust, bank
angle and pitch angle) totalling 3NH control inputs. These
control inputs are different for every particle; and (iii) A
separate weighting for each of the N individual aircraft in
the scenario, used for resampling.

The controls inside particles are initialised as random
samples from a bounded uniform distribution. After this

Algorithm 1 Sequential Monte Carlo
1: J ← 0
2: Define a SampleSchedule of length Jmax

3: Clone all aircrafts’ current states for each particle.
4: Set the weights of all aircraft to 1/L where L is the

number of particles.
5: For each particle and aircraft in the particle randomly

generate controls over the entire horizon H
6: while J ≤ Jmax do
7: for each particle l do
8: j ← 0
9: while j ≤ SampleSchedule(J) do

10: Sample disturbance realisations for each aircraft
and all time steps to H steps.

11: For each aircraft simulate its trajectory till H .
12: For each aircraft check the constraints and set the

aircraft’s weight to 0 if it fails a constraint.
13: Calculate each aircraft’s cost.
14: Scale each aircraft’s weightings by their cost.
15: j ← j + 1
16: end while
17: end for
18: J ← J + 1
19: if J < Jmax then
20: Resample all particles’ controls
21: Peturb all aircraft controls with Gaussian noise.
22: Set the weights of all aircraft to 1/L where L is

the number of particles.
23: end if
24: end while
25: Draw final sample from particle population.

initialisation, at line 5 the controls are updated following
resampling and perturbation in lines 20–21. The perturbation
moves particles locally in the search space, whilst resampling
causes particles to cluster around areas of the search space
with positive attributes as determined by the objective func-
tion. The weights of all aircraft are initialised as 1/L where
L is the number of particles, and these are updated in line 14.

B. Trajectory Planning and Disturbance Realisations

In lines 10-11 each aircraft in each particle simulates its
future trajectory given the initial state and controls (from the
particle’s data) and the disturbance samples. The discretised
aircraft dynamics model is a standard model with 6 states
and 3 inputs

xi(k + 1) =xi(k) + δtvs,i(k) cos(χi(k)) cos(γi(k)) (1a)
yi(k + 1) =yi(k) + δtvs,i(k) sin(χi(k)) cos(γi(k)) (1b)
zi(k + 1) =zi(k) + δtvs,i(k) sin(γi(k)) (1c)

vs,i(k + 1) =vs,i(k) + δt

(
Ti(k)−Di(k)

mi(k)
− g sin(γi(k))

)
(1d)

χi(k + 1) =χi(k) + δt

(
Li(k) sin(φi(k))

mi(k)vs,i(k)

)
(1e)

mi(k + 1) =mi(k)− δtηiTi(k) (1f)

where: δt is the step length; x, y and z are the Cartesian
coordinates of the aircraft (z acting as the altitude of the
aircraft); m is the total mass of the aircraft; vs is the true
airspeed; χ is the heading angle; γ the climb angle and φ
the bank angle. The subscript i denotes the ith aircraft. The
control variables are φ (bank), T (thrust) and γ (climb). Lift
L and drag D are calculated using the standard aerodynamic
relations with the assumption of steady flight mode. The fuel
usage is controlled by the constant ηi. Each aircraft is given
both an initial state X0,i = (x0,i, y0,i, z0,i, χ0,i, vs,0,i,m0,i)
and goal Xtf ,i = (xtf ,i, ytf ,i, ztf ,i) to reach by time tf .
The ith aircraft is deemed to have finished its path once it
has reached a terminal set defined by the following being
satisfied for some k:

(xtf ,i − xi(k))2 + (ytf ,i − yi(k))2 ≤ K2
r

∧|ztf ,i − zi(k)| ≤ Kh

The disturbance realisations added to the system are the
primary method of simulating uncertainty within the system.
This uncertainty can come from wind, sensor noise, con-
troller noise and human factors. Within this paper we have
limited the disturbances to Gaussian white noise on each
of the control inputs and cartesian coordinates. The SMC
method is by no means limited to Gaussian white noise
disturbance rejection and has been demonstrated with full
spatio-temporal wind models in [10]. Within the inner loop
of optimisation (lines 9–16) each particle will have drawn
SampleSchedule(J) disturbance realisations applied them
to the aircraft inside the particle and simulated that number
of trajectories. This inner loop serves to simulate different
disturbance scenarios on an aircraft to determine if the
controls are valid with respect to constraints, and their fitness
with respect to the objective function. This information is
summarised in the aircraft’s weight within the particle as
described in the next two subsections. In applications with
no uncertainty there would be no need for repeated planning
and simulation of the aircraft and the inner loop would
only be executed once. SampleSchedule(J) is typically set
as a monotonically increasing function such that the initial
controls are tested sparingly to determine quickly which are
clearly infeasible whilst controls after many resampling steps
are tested more rigorously with many different disturbances
to try and ensure a level of robustness.

C. Constraint Handling

There are two types of constraint handled by line 12. The
first is unary constraints which concern only one aircraft at a
time. Examples of this include flight envelope constraints and
the minimum aircraft mass constraint. The flight envelope
constraints provide upper and lower bounds for both the state
and control variables. The minimum aircraft mass constraint
enforces that the total aircraft mass must always remain
above the mass of the aircraft alone without fuel m(t) ≥
mAircraft. This makes it infeasible for the optimisation to
ask an aircraft to use more fuel than it is carrying.

The second type of constraint is the binary constraint.
These are constraints between pairs of aircraft in the same

particle, such as in conflict avoidance. In this paper the
protection zone around each aircraft is modelled as a cylinder
with horizontal radius Pr and altitude separation of Ph. Two
aircraft i and j avoid each other if they satisfy the following
constraint for every time step in the MPC horizon:

(xi(k)− xj(k))2 + (yi(k)− yj(k))2 ≥ 2P 2
r

∨|zi(k)− zj(k)| ≥ 2Ph

∀k ∈ {1, ...,H},∀i, j : i 6= j.

If an aircraft fails any of its unary constraints then its weight
stored in the particle is set to 0. If a pair of aircraft fail a
binary constraint then both aircraft have their weights set to
0. Any aircraft with a weighting of 0 will not be resampled
in the resampling phase of the algorithm.

The constraint-handling method described in this section
is a departure from the usual formulation for a SMC optimi-
sation. In a usual formulation a weight is linked to a single
particle which would contain the entire simulation of all N
aircraft.Then if a single aircraft fails any constraint the entire
simulation would be weighted as 0 and all controls from
that particle discarded when the particles are resampled in
the next iteration. Conversely, by using our implementation,
aircraft are weighted individually inside a particle. If a single
aircraft fails a constraint the non-failing aircraft weights
would be non-zero. This allows their controls to continue to
the next iteration however impacts on how the final control
sample can be drawn whilst remaining valid for collision
avoidance. The application under consideration is highly
constrained and this heuristic modification gives greater
flexibility in keeping valid control solutions for aircraft which
would otherwise have been discarded. This in turn allows
a smaller number of particles, as the distribution they are
required to model is less complex than in the case of a multi-
aircraft weighted particle.

D. Particle Costing

The SMC method maximises a non-negative objective
function GT . In our case this is the sum of the weighted
objectives for minimising horizontal distance to goal, altitude
difference to goal and minimum fuel usage. The altitude
difference is specifically separated out to both discourage
the aircraft losing height to reduce fuel usage and to allow
for target altitudes to be maintained. Objective functions are
obtained by negating the original minimisation function then
normalising.

G1,i(k : k +H) = −Ai(k:k+H)+supAi(k:k+H)
supAi(k:k+H)−infAi(k:k+H) (2a)

G2,i(k : k +H) = (mi(k)−mi(k+H))+δtNTmaxηi
δtHTmaxη

(2b)

G3,i(k : k +H) = −Bi(k:k+H)+supBi(k:k+H)
supBi(k:k+H)−infBi(k:k+H) (2c)

GT,i(k : k +H) =
∑3
j=1

αjGj,i(k:k+H)
H (2d)

where Tmax is the maximum thrust, the notation k : k +H
refers to the summation of costs of each time step to horizon
and:

Ai(k : k+H) =
∑k+H
j=k

√
(xtf ,i − xi(j))2 + (ytf ,i − yi(j))2

Bi(k : k +H) =
∑k+H
j=k

√
(ztf ,i − zi(j))2 (3)

A is the distance travelled horizontally and B is the distance
travelled vertically. Each aircraft in a particle has its own
objective function. The cost function is designed such that
the total cost JT and all its constituent costs are normalised
between 0 and 1, where 1 represents the best possible path
an aircraft could take. The weightings on the terms of the
objective function α are subject to priorities of the desired
trajectory and determined by the designer empirically:

0 ≤ GT,i(k : k +H) ≤ 1,
∑3
j=1 αj = 1 (4)

Cost normalisation is used to bound the numerical behaviour
when multiplying the cost by the weighting.

E. Weight Scaling

As previously mentioned in subsection III-A each aircraft
in a particle has a weight associated with it. This weight
records the degree of success an aircraft has in the simula-
tions with various noise realisations. To do this in line 14
the cost of aircraft i in particle l is multiplied by the weight
of aircraft i in particle l each time the inner loop 9–16 is
executed. An aircraft only needs to violate 1 constraint in any
execution of the inner loop to have its weighting set to 0. This
weighting would remain as 0 until resampling (described in
the next section) removes that aircraft’s proposed controls
from the population.

Ideally at each iteration of the inner loop the sum across
all particles L of weights associated with aircraft i would be
normalised to 1. This would reduce numerical issues as the
inner loop progresses. Without such a normalisation step the
weight would always be non-increasing

W j+1
i,l =W j

i,lJ
j
T,i,l, W 0

i,l = 1/L, 0 ≤ GjT,i,l ≤ 1 (5)

where W j
i represents the weight and GjT,i,l the objective

function value of aircraft i in particle l at inner loop iteration
j and L is the number of particles. The cost is always
between 0 and 1 and the weight starts at less than 1.
Normalisation of the weight turns out to be a key topic in
parallelisation of the method and is discussed in further depth
in section IV

F. Particle Resampling and Perturbation

In lines 20 - 21 the aircraft are individually resampled to
generate a new population of particles. These new particles
have their aircraft controls perturbed by Gaussian white
noise to separate particles with similar controls across the
local search space. This perturbation also allows particles
to explore away from points which were in the original
randomly sampled population of controls.

Resampling is done on the basis of sequential importance
sampling using a method such as Kitagawa resampling [16].
The higher a weight aircraft i has in particle l compared to
the weight of aircraft i in all other particles, the more likely
it is to have its controls resampled into the new population.

As the aircraft are resampled separately to form the new
particles no conflict avoidance guarantees can hold once

resampling has taken place. This arises from the fact that
the controls from aircraft i from particle l could now be in a
new particle with the controls from aircraft j from particle m.
This again arises from the departure from the usual method of
one weight per particle mentioned in section III-C, justified
by the significant simplification of dimensionality of the
search space and the effect on both computation time and
particle populations needed. In the previous incarnation [11]
when a particle is resampled, then prior to any Gaussian
perturbation being added, the guarantee of conflict avoidance
holds from the previous iteration. However by separating
aircraft and sampling from each aircraft to generate particles
individually these same avoidance constraints cannot be
assumed to be held until the newly generated particle is
tested with disturbance realisations. This resampling alter-
ation therefore must have an effect on drawing the final
sample from each of the aircraft distributions with regards
to the binary avoidance constraints.

G. Final Sample Selection

This is the final step of the SMC optimisation (line 25)
before it hands back to the MPC update process. This step
determines the controls to be used by all aircraft for the next
update step. In many generic SMC applications this final
sample is taken as the mean of the values of the particles.
In multi modal distributions this would give an inaccurate
estimation of the global optimisers (consider the mean of a
control where half of the population steers left around an
obstacle and the other half right). An alternative procedure
would be to select the mode of the final distribution. However
the presence of binary constraints across aircraft control
distributions could lead to constraint violation. Therefore
throughout this paper we select the best performing particle
in the final iteration as our estimate of the maximiser. All
particles in the final iteration will have been assessed through
the maximum number of noise realisations prior to the final
sample being drawn, thus conflict avoidance guarantees will
hold at this point.

To find the best performing particle the weights of all
aircraft in the particle are multiplied together and the particle
with the greatest overall weight is chosen maxl

∏N
i=1Wi,l.

Any particle where an aircraft has failed any constraint in
simulation has a weight of 0 associated with the failing
aircraft and thus can not be the best performing particle.

IV. PARALLELISATION IMPLEMENTATION

As previously observed by other work and implemented
in alternative applications there is a large degree of speed
up that can be exploited by parallelising the SMC algo-
rithm [13]–[15]. This work focuses on implementation on
a graphics processing unit (GPU) using the CUDA program-
ming language provided by NVIDIA. CUDA is a scalable
parallel programming language similar to C and C++ with
the libraries and utility to design kernels to implement on a
GPU. These kernels are repeatable functions representing the
code that the user wishes to be executed in parallel, using
different data. Whereas GPUs can use thousands of threads

at the same time, a CPU will only use a few. The execution
and near instantaneous switching between threads is how a
GPU achieves efficiency on parallel applications. A kernel
is executed by an array of threads. Threads are bundled
together into blocks for cooperation purposes. If threads
need to share information they can use a small but very fast
shared memory resource accessible by all threads in the same
block. Therefore the primary decisions when implementing
an existing algorithm in parallel are: firstly identifying the
code to parallelise inside a kernel; and deciding on any use
of shared memory.

Noise
Realisations

Particles

Plan Trajectories

Apply Constraints

Cost Particles

Scale Weightings

j=0
weights=1/L

j=j+1

Perturb Particles

Draw Final
Sample

Resample Particles

J<Jmax

j<schedule(J)

Yes

No

Yes

NoKernel

J=J+1

Start
J=0

Fig. 2. Graphical Representation of SMC Algorithm with Kernel High-
lighted

Figure 2 shows a simplified graphical representation of
the SMC algorithm focusing on the operations taking place
in a single computation step of the MPC. There is also
a boxed region of the flowchart delineating the proposed
GPU kernel. This kernel incorporates the inner loop of
simulation, specifically lines 9-16 of the algorithm. This code
is a bottleneck in a sequential implementation as it must be
executed multiple times for each particle, the only difference
between each execution being the particle’s individual data.
This makes it a perfect candidate for parallelisation with one
particle per thread, as there is minimal thread interaction.

The normalisation step within the inner loop is non-
essential for the smooth running of the algorithm. The resam-
pling step can also operate without the weights being pre-
normalised before receiving them. Presuming we remove the
normalisation step from the inner loop and therefore any need
for any use of shared memory or thread interaction we must
instead consider the effects. Weights are initialised as 1/L
and all costs are normalised between 0 and 1 (with 1 being
the best possible cost). Therefore without normalisation the
weights will get smaller with each individual step of the inner
loop. This now imposes a precision limit on our design as the
smallest positive value that a double precision floating point
number can represent is 2.2250738585072014× 10−308. To
reduce the chance of reaching this precision limit in practice
and to effectively double the amount of space available to
store these values the weights are premultiplied by the largest
number representable in double precision. This scaling is the
same for all particles and all weights and thus has no effect

on the resampling. Henceforth our implementation of the
algorithm no longer includes the normalisation step.

With normalisation removed from the GPU kernel there
is no need for the threads to synchronise or communicate
and thus the problem can be considered as ‘embarrassingly
parallelisable’. The remaining implementation challenge is
to select an appropriate random number generator for the
Gaussian disturbances. In this paper’s implementation we
have focused on using the NVIDIA provided library CU-
RAND, specifically the XORWOW (Xor Shift added with
Weyl sequence generator [17]) which seeds each thread
and maintains the state of each random generator between
kernel calls. This generator was used for its superior speed
compared to that of the others included in CURAND.

V. RESULTS

The parallelised SMC method was compared to the non
parallelised implementation on test cases across a range of
aircraft numbers. Both implementations are deterministic in
computation time for each MPC time step and thus all com-
parisons in this section will be by time step. The computation
time is linked to: the number of aircraft; sample schedule
length; sample schedule function; the MPC horizon length;
the number of particles used (even if all were implemented
in parallel some overheads for memory writes remained);
and thread layout. The noise experienced by both imple-
mentations was drawn from the same distribution however
the samples differed between the implementations. Each test
case had 2–20 aircraft. These aircraft were randomly given
a starting point and target on the perimeter of a cylinder
of height 6 km and radius 20 km. Aircraft were given a
starting heading directly towards the centre of the cylinder.
No aircraft started off in conflict and no terminal points were
in conflict. Both methods were given a horizon length of 6
steps to work with and the aircraft were constrained with
the same maxima and minima for the bounding constraints.
The objective function was weighted by a mix of importance
and relative size using the empirically determined α1 =
0.5, α2 = 0.1, α3 = 0.4. MPC time steps were 10 seconds in
length (δt = 10). The sequential implementation was written
in C and compiled with the gcc compiler on Linux. The com-
parison tests were done on a range of computers with 96 GB
memory and 2.67 GHz speed processors with no multi-core
threading. The parallelised implementation was performed on
an NVIDIA GeForce 580, which has 512 cores on the Fermi
architecture (32 cores per streaming multiprocessor (SM) and
16 SMs). Both implementations used a Jmax = 100, with a
schedule function of SampleSchedule(J) = b(3+5e0.05J)c
and L = 1024 particles (which have been naively arranged as
32 blocks of 32 threads for the GPU implementation). The
two implementations used the same underlying code with
only adaptations to allow running on a GPU for the parallel
version. Code optimisation through compilers has been used
but this paper has not considered the effects of varying the
numerical precision.

Figure 3 shows the average computational time required to
solve for 1 MPC time step for each of the implementations

2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

Number of Vehicles

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
fo

r
1

M
P

C
 P

la
nn

in
g

S
te

p
(s

)

Real Time Bound (10 seconds)
SMC Parallel
SMC Sequential
Real Time Bound (2 minutes)

Fig. 3. Comparison of average computation time taken to solve a single
MPC planning step for both implementations with differing aircraft numbers

and how this varies with the number of aircraft in the
problem. There is approximately a fixed 98.5% computation
time saving when implemented in a parallel, compared with
a sequential implementation. Also of interest is the number
of points which lie below the dashed 10 seconds per step line
(Figure 3). This line represents the point at which the method
can be considered ‘realtime’ with one step lookahead. The
largest number of aircraft tested on both implementations
was 20. This took 33.3 seconds to complete an MPC planning
step in the parallel formulation and would require another
70% speed up to be practical in real time. Conversely the
value of δt used in this paper can be considered very
conservative with regards to safety and the need for regular
updates. Were this system to be extended and applied as
an advisory system for ATM there would be no need for
a 10 second update sequence as this would arguably cause
information overload for both the air traffic controllers and
pilots. A more reasonable update time would be in the region
of thirty seconds to two minutes. Thus the method would be
fast enough for 20 vehicle problems given the current results.

−40 −30 −20 −10 0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40

Fig. 4. Twenty Aircraft problem solved by SMC viewed from above

Since the only difference between the two implementations
is the parallelisation, the paths generated are the same with
allowance for the stochastic nature of the SMC algorithm.
Figure 4 displays an overhead view of a set of paths
generated by the method for a 20-aircraft case.

VI. CONCLUSIONS

In this paper we customised the stochastic optimisation
method Sequential Monte Carlo (SMC) for non-linear, non-
convex air traffic management (ATM) problems with multiple
aircraft within a model predictive control (MPC) setup. This

method was then parallelised using a Graphics Processing
Unit (GPU) and the CUDA programming environment. The
sequential and parallelised implementations were then com-
pared on a series of test cases with between 2-20 aircraft.

The new parallelised method has a 98.5% computational
time saving over that of a previous sequential implementation
with no degradation in path quality between sequential and
parallel implementations. This computation time saving is
enough to treat the method as real time for update cycles
shorter than two minutes. The underlying optimisation al-
gorithm is not dependant on the specific aircraft dynamics
model, cost functions, probability distributions or spectra of
disturbances. Therefore all of these could be varied if desired,
without invalidating our approach to the ATM problem.

REFERENCES

[1] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, “On-
line decision support for take-off runway scheduling with uncertain
taxi times at london heathrow airport,” Journal of Scheduling, vol. 11,
no. 5, pp. 323–346, 2008.

[2] J. Hu, M. Pradini, and S. Sastry, “Optimal coordinated maneuvers
for three dimensional aircraft conflict resolution,” AIAA Journal of
Guidance, Control and Dynamics, vol. 25, pp. 888–900, 2002.

[3] R. Ghosh and C. Tomlin, “Maneuver design for multiple aircraft con-
flict resolution,” in Proceedings of the American Control Conference,
(Chicago, Illinois), pp. 672–676, June 2000.

[4] A. Bicchi and L. Pallottino, “On optimal cooperative conflict res-
olution for air traffic management systems,” IEEE Transactions on
Intelligent Transporation Systems, vol. 1, no. 4, pp. 221–232, 2000.

[5] A. Richards and J. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proceedings
of the American Control Conference, vol. 3, (Anchorage, Alaska),
pp. 1936 – 1941, May 2002.

[6] D. Delahaye, N. Durand, J.-M. Alliot, and M. Schoenauer, “Genetic
algorithms for air traffic control system,” in 14th IFORS Triennal
Conference, 1996.

[7] J. Maciejowski, Predictive Control with Constraints. Pearson, Prentice
Hall, 2002.

[8] J. Rawlings and D. Mayne, Model Predictive Control: Theory and
Design. Nob Hill Publishing, 2009.

[9] A. Doucet, N. de Freitas, and N. Gordon, eds., Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[10] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini, “Sequential
Monte Carlo for model predictive control,” in International Workshop
on Assessment and Future Directions of NMPC, (Pavia, Italy), Septem-
ber 2008.

[11] A. Eele and J. Maciejowski, “Comparison of stochastic methods for
control in air traffic management,” in International Federation of
Automatic Control (IFAC) World Congress, (Milan), September 2011.

[12] J. P. Villiers, S. Godsill, and S. Singh, “Particle predictive control,”
Journal of Statistical Planning and Inference, vol. 141, pp. 1753–1763,
2011.

[13] A. Lee, C. Yau, M. Giles, A. Doucet, and C. Holmes, “On the
utility of graphics cards to perform massively parallel simulation
of advanced Monte Carlo methods,” Journal of Computational &
Graphical Statistics, vol. 19:4, 2010.

[14] J. Rosenthal, “Parallel computing and Monte Carlo algorithms,” Far
East Journal of Theoretical Statistics, vol. 4, pp. 207–236, 2000.

[15] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications with
graphics processors.,” Journal of Computational Chemistry, vol. 28,
no. 16, 2007.

[16] G. Kitagawa, “Monte Carlo filter and smoother for non-gaussian non-
linear state space models,” Journal of Computational and Graphical
Statistics, vol. 5, pp. 1–25, 1996.

[17] G. Marsaglia, “Xorshift random number generators,” Journal of Sta-
tistical Software, vol. 8, no. 14, 2003.

