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these, MECT was the cheapest and fastest, but the minimum size of the 
texture features was the largest. Inkjet printing followed by etching is as 
an alternative that may potentially provide a good combination of cost and 
resolution, but the texturing time depends on the surface area. Then, an 

attempt was made to delimit tribological applications where the use of such 
processes could be beneficial, based on analysis of experimental results of 
their tribological evaluation. These showed that the methods proposed 
could be particularly suited for components with contact areas larger than 
the width of the texture features under either hydrodynamic lubrication or 
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Abstract. This paper reviews methods for texturing surfaces for tribological 

applications, and presents some innovative methods that could make surface texturing 

more cost-effective. Possible texturing methods were identified and classified according 

to their physical principles. This involved identifying existing texturing methods and 

also led to proposals for new possible methods.  Three innovative texturing methods 

with low cost and high texturing speed are then presented: i. a simpler and cheaper 

version of photochemical texturing; ii. maskless electrochemical texturing (MECT), and 

iii. masking surfaces by inkjet printing followed by etching. From these, MECT was the 

cheapest and fastest, but the minimum size of the texture features was the largest. Inkjet 

printing followed by etching is as an alternative that may potentially provide a good 
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combination of cost and resolution, but the texturing time depends on the surface area. 

Then, an attempt was made to delimit tribological applications where the use of such 

processes could be beneficial, based on analysis of experimental results of their 

tribological evaluation. These showed that the methods proposed could be particularly 

suited for components with contact areas larger than the width of the texture features 

under either hydrodynamic lubrication or starved lubrication. 

Keywords: Surface texturing, inkjet printing, electrochemical texturing, 

photochemical texturing hydrodynamic lubrication, starvation.  

 

 

Nomenclature 

 

 

a -  distance from the inlet to the first pocket 

B - pocket width 

CW - contact width 

d - pocket diameter 

f - fraction of area coverage 

h – depth of the features 

l – length of the arms of the chevrons 

px – distance between features in the x direction 

py – distance between features in the y direction 

to – duration of intervals between working pulses 

tp – duration of working pulses 
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w – width of the lines 

wc - width of the arms of the chevrons 

TS - non-dimensional parameter associated to the width of the pockets 

 

Greek symbols 

β – included angle of the chevrons 

 

Abbreviations 

3D – three-dimension 

CFD - computational fluid dynamics 

CNC – computer numerical control 

CVD – chemical vapour deposition  

EBT – electron beam texturing 

ECP - electrochemical printing 

EDM - electro discharge machining 

EDT - electro discharge texturing 

EHL - elastohydrodynamic lubrication 

FEM – finite element modelling 

FIB – focused ion beam 

HAB -  hot air blower  
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IBT – ion beam texturing 

IMS = industrial methylated spirit 

LT – laser texturing 

MECT - maskless electrochemical texturing 

PCT - Photochemical texturing 

SEM – scanning electron microscopy 

USC – ultrasonic cleaning 

UV – ultra violet 

 
 

1. Introduction 

Surface texturing consists of modifying surface topography in order to create a 

uniform microrelief composed of regularly distributed asperities or depressions with 

controlled geometry. Surface texturing has been used for many different purposes [1], 

including improvement of tribological performance.  The mechanisms responsible for 

improving the tribological performance of textured surfaces can vary significantly 

between applications and positive results have been shown for situations varying from 

dry sliding [2], to solid lubrication [3], hydrodynamic lubrication [4-10], 

elastohydrodynamic lubrication (EHL) [11, 12] and mixed lubrication [13, 14]. In 

addition, surface texturing can help to entrap wear debris [15]. However, the successful 

use of surface texturing in tribological applications still faces two main challenges: i. 
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careful design of the texture patterns is necessary for surface texturing to be beneficial, 

and ii.: cost-effective surface texturing methods need to be  designed for situations 

involving large volume production of cheap components. 

One of the most successful tribological applications of surface texturing is the 

increase of load bearing capacity of moving surfaces under hydrodynamic lubrication. 

Considerable effort in the last two decades has tried to optimize the increase of load 

bearing capacity and the reduction of friction in hydrodynamic lubrication as a function 

of either texture parameters, such as shape, size and distribution of the features that 

compose the pattern, or operational parameters, such as load and speed [5-7]. Particular 

emphasis should be given to the extensive work carried out by Etsion and collaborators. 

They  have developed analytical models to solve the Reynolds equation for textured 

surfaces  for different engineering applications and a good review of their work can be 

found in [8]. More recently, other researchers have suggested that the use of mass-

conserving algorithms to solve the Reynolds equation numerically  might be more 

adequate for cavitated films [16, 17], since the occurrence of cavitation is responsible 

for the asymmetrical pressure distribution over individual pockets and therefore a net 

load support for textured surfaces. Fowell et al. [16] argue that mass-conserving 

algorithms can provide more realistic accounts of the benefits achievable when 

texturing hydrodynamic bearings. Another, different approach has used CFD 

simulations, based on the numerical solution of the Navier–Stokes and energy equations 
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for incompressible flows [9]. Experimental work has also showed the benefits of surface 

texturing under hydrodynamic lubrication [4, 8, 10, 18]. Some common points emerge 

from the works cited above, independently of whether they use theoretical or 

experimental approaches.  In particular: i,  preferably, the contact should be only 

partially textured, which limits the width of the individual features, so that in general 

positive results have been shown mostly for feature widths within the range of 10-100 

µm; ii, the ratio between the depth and the width of the features should be small, 

generally in the range from 0.05 to 0.15. This limits the depth of the features, so that 

normally, good results have been reported for feature depths in the range from around 1 

to 15 µm.  

The case of EHL is more challenging, but some researchers have also shown good 

results if the width of the micro features is substantially smaller than the contact width. 

Observation of the contact area by optical interferometry has shown that the lubricant 

expelled from the micro features can help to separate rubbing surfaces, especially under 

thin film lubrication conditions [11].  Experimental and numerical investigation of one 

individual micro feature (a circular dimple) inside an EHL contact under rolling-sliding 

conditions showed that deep dimples induced failure of the oil film, but shallow dimples 

generated a large increase in film thickness [12]. These authors believe that shallow 

features maintain the viscosity of the lubricant inside them high enough so that shearing 

can expel it to locally enhance film thickness. Due to the small size of EHL contacts, the 

Page 6 of 85

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 
 

width of the micro features that compose the texture generally becomes limited to 

values below 100 µm, and, according to the results of Mourier et al. [12], the depth 

should be preferably below 1 µm.     

All the results described above for the effects of surface texturing on lubrication were 

obtained for contacts fully immersed in lubricant, i.e. there is always enough lubricant 

to fill the contact inlet. However, if lubricant starvation occurs in the contact, the film 

thickness will also depend on the amount of lubricant available in the contact  [19]. 

Although lubricant side flow reduces film thickness in a starved contact when compared 

with an immersed contact, this lubricant may flow back to the contact inlet in the 

process known as lubricant replenishment [20, 21]. In such situations, the texture 

features can be expected to act as lubricant micro-reservoirs that help to replenish the 

contact inlet, but it seems that no theoretical modeling yet exists to investigate this 

effect. The effect of surface texturing on friction under starved lubrication was 

investigated for polyoxymethylene [22], and it was observed that for very large aspect 

ratio between the depth and width of the micro features the lubricant “disappeared” 

from the contact and no friction reduction was detected. A similar lack of benefit from 

textured surfaces was found in [18] when very deep features were used under starved 

lubrication conditions. 

The most successful method used today to texture surfaces in engineering 

applications is laser texturing [8]. It has been used to texture a wide range of materials, 
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from polymers [23] to metals [8, 24] and ceramics [15, 25]. Also, it allows the 

production of patterns with small features. For examples, feature depths of 200 nm and 

diameters of 20 µm could be obtained in steel samples by using a femtosecond pulse 

laser [12]. The use of more sophisticated optics can lead to beam sizes below 5 µm. 

Another approach, based on laser-induced periodic surface structuring, used a 

femtosecond laser to produce an array of dimples with diameters of 1 µm, although the 

array of the dimples was not deterministic [26]. However, the use of laser texturing 

presents limitations. First, the ablation mechanism often leads to the formation of raised 

features around the pockets, which originate from the ejected molten material. These 

lateral rims are normally hard due to the microstructural changes caused by the process 

and can cause severe abrasive wear of the countersurface.  After texturing, they 

therefore need to be removed, either by mechanical polishing, or by laser polishing [27, 

28]. This phenomenon is practically eliminated when very short pulses (e.g. from 

femtosecond lasers) are used.  

The second issue for laser texturing is the texturing speed. The process involves 

ablation, which changes the material state directly from solid to vapour in very short 

period of time, with little metallurgical surface damage. The ablation fluence threshold 

for materials varying from soft metals to glasses and hard composites stays in the range 

from 0.2 to 20 J cm
-2

 [29]. If the laser system has a sufficiently high maximum pulse 

energy, a micro dimple can be produced through laser ablation using a stationary laser 
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spot with a size comparable to the dimple, and without the need for laser spot scanning, 

as long as the laser fluence (pulse energy/laser spot area) can at least exceed the ablation 

threshold fluence for the target material [28], and then the depth of the dimple will 

depend on the number of pulses. The use of high pulse energies, small spot diameters 

and (ultra)short pulse durations has allowed material removal by ablation to be achieved 

for a wide range of materials at increasing texturing speeds. However, since the features 

are normally produced in a serial sequence, the texturing time for larger components can 

still be long, in particular for cheaper laser texturing facilities, that use long pulse 

durations and large spot sizes. Many components that could have their performance 

increased by surface texturing are normally cheap, so they might require cheaper 

texturing methods in order for the increase in tribological performance achieved through 

texturing to be cost-effective. An alternative laser texturing technique that is 

substantially faster is laser interference texturing [30]. In this technique, interference 

fields produced by several coherent high power laser beams can produce periodic 

patterns composed of line-nets or dot-like features. The interference pattern covers a 

size corresponding to the beam diameter, which increases texturing speed substantially, 

but the maximum sizes of the individual features can be too small for some lubricated 

tribological applications (up to around 3 µm in width and 1 µm in depth). Therefore, 

such features might be desirable for applications involving EHL, but too small for 

hydrodynamic lubrication or starved lubrication. Another possible problem is that the 
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process changes the topography of the whole surface, instead of only creating localized 

ablated features.  

Other texturing methods have also been reported in the literature. Major advances in 

microfabrication have driven the area of surface texturing. In principle, many of the 

methods used in the microelectronics industry might be adapted to surface texturing. 

This paper reviews innovative texturing methods proposed and investigated by the 

present authors in recent years.  

The aim was to explore some innovative surface texturing methods, to allow the 

benefits of surface texturing to be better explored in a wider range of practical 

applications, and to discuss their applicability to improve tribological performance. The 

next section presents a survey of possible texturing methods, classified according to the 

physical processes by which a surface texture could be produced. Conventional 

manufacturing methods that employ these physical principles have been studied. In 

addition, some new possible texturing methods that fall within the same groups have 

been proposed. After listing all possible texturing methods, an attempt is made to 

classify and compare them.  Three methods that emerged from this comparison have 

been explored experimentally and their advantages and limitations are summarized. The 

criteria involved in selecting these methods were one or more of the following: 

simplicity of the technique, low cost, high texturing speed, and flexibility in terms of 

pattern geometry. Finally, the paper attempts to delimit tribological applications where 
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their use could be beneficial, by examining experimental results from their tribological 

evaluation.  

2. Survey of possible surface texturing methods 

 Alternative manufacturing technologies for surface texturing are needed to 

overcome the challenges of volume production. The technologies should be cheap and 

flexible, both in terms of the shapes of the features to be produced and the shapes of the 

surfaces to be textured. This section identifies most of the existing texturing methods 

and also proposes some new possible methods. However, the review is non-exhaustive 

because surface texturing has been extensively studied in recent years and new 

techniques appear very quickly. The methods have been categorized into four main 

groups according to their physical principles:  

Adding material: the pattern features are created by addition of material to the 

desired surface, creating small areas of relief [31-47]. 

Removing material: the features are created by removal of material of the surface, 

creating small depressions [4, 8, 12, 15, 23-25, 48-75]. 

Moving material: the change in the surface structure is attributable to plastic 

deformation and redistribution of material from some parts of the surface to others [14, 

30, 48, 76-81]. 
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Self-forming: wear-resistant regions are formed on a surface, so that a texture 

develops through wear of the surface, with the wear-resistant regions being left standing 

above the surrounding material [82-85]. 

Tree structures for each family with their taxonomy are presented in Figure 1 and 

references are presented for individual processes if possible. All the processes marked 

by ‘*’ are processes that require a masking step before the texturing step. In Figure 2, 

methods that could be used to mask the surfaces are organized in a tree structure [86-

95].  

In view of the wide variety of possible methods available for texturing surfaces, the 

choice for a specific method becomes difficult. Normally, the selection procedure is 

task-based and starts with the definition of requirements of a certain application.  Most 

of the texturing methods screened are new and not yet well studied, which complicates 

the selection further. In order to assist this task, a database of texturing methods was 

created using CES Constructor (Granta Materials) of which  details can be found in 

[96].   

This comparison suggested that the choice of a texturing method is mainly based in 

the following criteria:  simplicity of the texturing technique, commercial availability, 

equipment cost, texturing cost, texturing speed, minimum size of the individual features 

that compose the texture pattern, minimum and maximum depth of the features, and 

limitations in terms of the substrates to be textured: material, shape and size.  
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Three alternative surface texturing techniques emerged as potential techniques to be 

used in some tribological applications, and were experimentally implemented. The first 

technique, called photochemical texturing, has been widely used and described in the 

literature, but this work presents some alternatives that reduce equipment and texturing 

cost. It is a very versatile technique in terms of shapes and patterns of the textures. The 

second method, called maskless electrochemical texturing (MECT), is potentially rapid 

and cheap, but the size and shape of the individual features produced is more limited. 

The third process involves masking the surface by inkjet printing, followed by chemical 

etching.  

 

 

3. Investigation of innovative surface texturing methods 

The main characteristics of the three alternative texturing techniques that were 

experimentally investigated will be described, trying to identify their current limitations, 

particularly in terms of the dimensions of the features that compose the texture. Then, in 

section 4, the tribological performance of surfaces textured using such methods will be 

discussed, correlating this performance with the minimum dimensions achievable by 

each technique. 

Photochemical texturing (PCT) 

This texturing method consists of masking a steel surface by photolithography, 

followed by chemical etching. It has been used to texture steel surfaces to improve their 
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performance in lubricated contacts [56, 57, 97], but the approach used here is 

significantly simplified when compared with conventional photolithography.  A normal 

laboratory bench is used, which greatly reduces the complexity and costs of the process 

in comparison to use of a clean room. In order to extend this technique to an industrial 

environment, a clean workspace environment with controlled yellow illumination would 

be needed, since the photo-resist resin is not sensitive to light of this wavelength.  

A sample spinner with maximum rotational speed of 7000 rpm was used to ensure 

the formation of a thin and even resist layer on the steel plate surface. A conventional 

hot plate was used to bake the samples. A tungsten filament microscope light was used 

as a source of UV light to expose the resist. Various experimental conditions were tried, 

based on recommendations found in the literature [98]. 

Before texturing, the samples were cleaned in acetone in an ultrasonic bath. The 

photoresist (AZ 5214, manufactured by AZ Electronic Materials) was spun on to the 

surface.  The coated sample was then pre-baked. The patterns were designed using 

Adobe Photoshop software and printed on to A4 paper using a laser printer. They were 

then photographed to make the masks to be used during the exposure of the resist. This 

reduced the cost and time that would be involved in the production of conventional 

metallic masks. However, the maximum area that could be textured was 35 x 35 mm, 

which corresponds to the size of the photographic films. Another route which could 

probably give adequate resolution would be to print the pattern at the right size directly 
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on to transparent film, by laser or inkjet methods.  This would avoid the photographic 

step and would also increase the size of the area to be textured. However, it would also 

require a more powerful UV source covering a larger area. There would be challenges 

in treating components with large areas, above around 250 x 250 mm, with a single 

exposure using this technique. 

The exposure to UV light was made by contact printing.  After exposure, the samples 

were developed in AZ 351B developing solution and then post-baked to guarantee 

complete development of the resist. A 10% aqueous nitric acid solution was used to etch 

the steel samples at room temperature. The depth of the features was varied by changing 

the etching time. After etching, the resist was stripped in acetone at room temperature. 

Photolithographic resists may be negative or positive. In positive resists, 

photochemical reactions caused by UV exposure weaken the polymer by scission of the 

main and side polymer chains. Thus, the exposed areas will be more soluble in 

developing solutions. Negative resists are strengthened by UV exposure, which 

promotes random cross-linking of the main or side of the resist. The exposed areas of 

the resist will be then less soluble in developing solutions. In this work, the use of 

different UV light sources allowed the same resin to be used as both a negative 

photoresist (using a lower power light source) and a positive photoresist (using a higher  

power light source). The conditions used for both conditions varied slightly, as 

summarized in Table I. 

Page 15 of 85

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 
 

This technique is very versatile in terms of the shapes of the features, which depends 

on the pattern printed on the masks. The resolution of this simplified procedure is worse 

than that obtained with conventional photolithography, but obviously depends on the 

resolution of the mask. For the conditions used in this work, the smallest features that 

could be produced with good repeatability were circular pockets with an average 

diameter of 20 ± 1 µm. 

In Figure 3, examples of the textures generated with the positive resist (pockets) and 

the negative resist (pillars) are shown. This technique was also used to produce linear 

and chevron-like grooves, as described in [4].  

Maskless electrochemical texturing (MECT) 

This is a simple method for texturing metallic surfaces by electrochemical 

machining, termed ‘maskless electrochemical texturing’ (MECT). It allows a single 

cathode tool, in which the texture is incorporated through a pattern of perforations, to be 

used for many texturing operations and avoids the need for masks to be applied to 

individual workpieces. It therefore has significant advantages over conventional 

methods of texturing by electrochemical machining that involve prior masking [58, 99]. 

Locating the electrical insulation that localizes the machining action at the surface of the 

cathodic tool, instead of applying a mask to each individual workpiece, has been used 

previously by other authors. Schönenberger and Roy [59] transferred features in the size 

range from 50 to 200 µm from a patterned cathode tool onto a copper workpiece. 
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However, the approach in the present work is different, because the electrolyte flows 

through small perforations on the textured tool which define the pattern to be 

transferred, ensuring effective cleaning of the tool during machining. The quantity of 

electrolyte used to machine each workpiece is quite small and the whole apparatus is 

relatively simple. Finally, it is well suited for the treatment of quite large areas 

(typically cm
2
 to dm

2
). Nelson and Schwartz [33] have developed a process called 

electrochemical printing (ECP), which has some similarities but electrolytically deposits 

material rather than removing it. Furthermore, the process occurs at a single location 

rather than over a large number of areas in parallel. Another different configuration has 

also been used to texture steel surfaces using electrochemical machining without 

previous masking, but each pocket is produced individually, which substantially 

increases the texturing time [60]. 

During texturing, the potential difference between anode and cathode is switched, 

and consists of brief working pulses (tp),  where anodic dissolution of the workpiece 

occurs, separated by intervals of duration to, where the electrolytic cell is at rest, and the 

products of anodic dissolution are flushed away from the inter-electrode gap.  

Textured carbon steel samples could be produced using this technique with high 

current efficiencies as described elsewhere [71], and the process was characterized in 

terms of the effects of current pulse history and electrolyte flushing conditions on 

current efficiency, material removal rate and feature definition. The variables were the 
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machining time, the pulse length, the pressure of the electrolyte and the separation 

between the polymer mask plate and the workpiece, obtained by the use of spacers with 

different thicknesses. Due to its simplicity and low cost, the technique has been 

investigated by other authors, who used FEM to model the technique [72]. 

Subsequently, micro EDM was used to texture the covers of the tools used for 

MECT, which enabled more complex features to be produced  [100]. Also, the 

technique was optimized in terms of voltage applied between tool and specimen. AISI 

420 stainless steel tool covers 0.5 mm in thickness were machined by die sinking EDM.  

Patterns containing regularly spaced circular dots, arrays of chevrons and parallel 

arrays of dashed lines with dots could be obtained. To produce the array of dots, a 

tungsten wire with a diameter of 110 µm was used. For the array of chevrons, copper 

sheets with thickness of 100 µm were cut to create individual chevron-like features. The 

dashed lines with dots were produced using the copper sheets and the tungsten wires. 

After machining the tool covers, they were covered with an insulating lacquer.  

Polished carbon steel workpieces were textured using various machining conditions.  

A combination of optimum texturing speed and accuracy was obtained for a gap 

between tool and specimen of 100 µm, voltages between 30 and 40V, tp = 2.5 ms and to 

= 20 ms. Figure 4 shows an example of textured carbon steel workpieces with different 

patterns produced by MECT. Information about the effects of different machining 

parameters on texturing performance can be found in [71] and [72]. 
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The removal rate in PCT obviously depends on the current density. The use of higher 

current densities increases the material removal rate, but it can reduce efficiency of 

metal dissolution. Moreover, since the tests used pulsed current, the removal rate also 

depends on the duty cycle, defined as the ratio ton/toff. Typical values of machined depth 

/ time obtained for a duty cycle of 0.15 and a current density of 0.85 A.mm
-2

 were 

around 0.5 µm.s
-1

. 

Masking by inkjet printing 

In principle, ink-jet printing can provide a method to deposit masks to be used in 

conjunction with etching for the texturing of engineering surfaces [101]. In early work, 

Muhl and Alder [102] used a continuous ink-jet printhead with a solvent-based ink to 

deposit mask patterns on to steel rolls; the deposited drop diameter was ~150 µm. This 

process, which could readily be extended to other engineering components, was 

patented [103]. More recently, James [101] discussed the advantages and disadvantages 

of several ink types for such masking applications, and reported the printing of 120 to 

150 µm features on metallic substrates with a UV-cured ink. The present work used two 

different drop-on-demand printers for masking steel surfaces, followed by chemical 

etching. The first was an industrial flatbed printer (Inca Eagle) with 16 Spectra SE 

printheads each 128 nozzles, and UV-curable inks. The physical distance between the 

nozzles gives a printing resolution of 50 dpi (dots per inch) in the direction 

perpendicular to the printing direction. The use of more than one printhead can enhance 
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the resolution. For conventional graphics printing each colour (cyan, magenta, yellow 

and black) can be printed using up to 4 printheads if all colours are used at once, or up 

to 16 printheads if monochromatic printing is used. All jets can be fired simultaneously 

or individually. The nozzle diameter is 38 µm and the calibrated drop size is 30 pl. The 

second was a Dimatix Materials Printer (DMP-2800) with a nominal 10 pl drop size. 

The ink was a commercial lactate solvent-based black ink (dye-based, JetStream PCS 

7561, Sun Chemical) with a viscosity of 12.1 mPa s at 25
o
C and a surface tension of 

31.5 mN m
-1

. 

For any printing method, to obtain reproducible printing results, it is crucial to 

control surface cleanliness, since a different wettability of the ink on the surface can 

result in printing distortions. Various cleaning routines were tried, as described in Table 

II. Contact angle measurements were performed for each cleaning condition using the 

sessile drop technique to quantify the efficiency of the cleaning methods. Additionally, 

a plasma chamber was also tried as a cleaning method, both for a sample that was 

polished 4 hours before (sample 3_F) and for a sample polished one month before 

(sample 3_G). 

The best cleaning routine was 3_C (Figure 5), which gave the lowest contact angle 

and the smallest scatter between different measurements both for inks and for deionized 

water. Therefore, this cleaning routine was used whenever printing was not carried out 

immediately after polishing.  
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The influence of substrate surface finish on printing and wettability was studied by 

comparing highly polished steel surfaces and surfaces ground with silicon carbide paper 

with three different grit sizes (800, 320 and 120 mesh). After grinding, the surfaces 

were rinsed with acetone and dried in air. Wettability for each surface condition was 

assessed in terms of contact angles for the solvent-based ink. The surface finishing step 

was performed immediately before the contact angle measurements. 

Figure 6 shows that the increase of surface roughness reduced the apparent contact 

angle, probably due to the spreading of the ink within the surface grooves, which was 

observed for all the printings on roughened surfaces. According to the Wenzel´s model, 

static contact angle measurements using a drop that is substantially larger than the 

roughness scale should indeed give larger values for rough surfaces when compared 

with a smooth surface if the solid is hydrophilic [104]. The apparent contact angle, 

which contains contributions both from the surface roughness and from any changes in 

the true, local contact angle resulting from chemical modification of the surface, 

controls the spreading of the ink drop. Therefore, it was concluded that roughening the 

surface could not be used to reduce the minimum size of the ink droplets on these metal 

samples. 

One set of experiments using the DMP printer and solvent-based inks explored the 

whole texturing process, including the etching behavior and methods for stripping the 

resist. After printing of individual dots, the masked samples were etched with aqueous 
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nitric acid at various concentrations for different periods of time. After etching, the ink 

deposits were stripped by immersion in acetone with ultrasonic agitation at 25 °C. The 

samples were examined by optical microscopy before etching, after etching and after 

stripping. The surface topography of the textured samples was assessed by laser 

interferometry. 

Figure 7(a)  shows that the smallest features that could be printed with the DMP 

printer on polished steel were a pattern of circular dots (diameter ~ 60µm),  where each 

dot was formed by a single droplet with an ejected ink drop diameter of 27 µm. Optimal 

etching behavior was found for a nitric acid concentration of 5%. The ink protected the 

steel surface during etching and was easily stripped by ultrasonic cleaning in acetone. 

Figure 7(b) shows a 3D map of the final textured surface. The diameters of the unetched 

islands for an etching time of 5 minutes in 5% nitric acid were ~50 µm, suggesting that 

the extent of the undercutting was ~5 µm per edge, and the depth was ~ 3 µm (Figure 

7(c)). 

However, the textures shown above are composed of a regular array of pillar-like 

shapes. For tribological applications in lubricated sliding, the best results have been 

shown for patterns composed of pocket-like or groove-like shapes. Therefore, other sets 

of experiments were carried out to investigate how patterns composed of regular arrays 

of gaps could be printed on a steel surface, with both a flatbed Eagle printer using UV-

curable inks and a DMP-2800 printer using solvent-based inks.  
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The tests with the flatbed printer were carried out using different numbers of 

printheads, printing speeds and resolutions, to identify printing routines able to produce 

patterns that could potentially be used in tribological applications. Some successful 

examples are shown in Figure 8. Parallel linear gaps of 22 ± 5 µm could be printed with 

1000 dpi resolution (a). When square gaps were printed, their shape varied between 

adjacent rows of squares and repeated at every four rows, which is the number of 

printheads used to give the resolution of 1000 dpi. Interrupted lines (c) and chevron-like 

features (d and e) could also be produced. When printing was carried out in a single 

step, using four printheads simultaneously, the shape of the chevrons was more irregular 

(d), but the size of the chevrons was smaller than when printing was carried out in 

multiple steps, using one individual printhead (e).  

For printing complex-shape patterns with the DMP-2800 printer using solvent-based 

ink, AISI 1010 steel samples were used as substrates. The minimum width that could be 

achieved when linear parallel gaps were printed was 20 µm (Figure 9(a)). More 

complex shapes, such as square gaps (b) and chevrons (c) showed some distortion and 

the minimum size of the features was larger. Another interesting feature of printing with 

the solvent-based ink was that, although it was black, the thin printed films on a highly 

reflective steel substrate showed a clear pattern of coloured interference fringes. Surface 

topography measurements of the ink deposits showed that the colours could be 

associated with the thickness of the ink. After calibration, this provided a simple and 
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reliable method to evaluate dry film thickness. This effect was not observed with the 

UV-curable ink (Figure 8), probably because of the reduced spreading after printing. 

Summary of the texturing methods 

This paper presents three alternative surface texturing methods that successfully 

produced texturing patterns on steel surfaces composed of: parallel grooves, regular 

arrays of dots (circular or square pockets), and regular arrays of chevrons, as shown 

schematically in Figure 10.  

The methods present different characteristics, which should affect their suitability as 

a texturing technique for a certain tribological application. Some comparison between 

them is necessary to help users. The comparison criteria in this work were chosen from 

the database described in section 2.  Since laser texturing is undoubtedly the most 

successful commercial texturing technique, consideration of alternative texturing 

techniques should include a comparison with laser texturing. However, this poses 

problems, since the performance of commercial laser texturing facilities can vary 

significantly.  

If the maximum pulse energy of a laser system is higher than the ablation threshold 

fluence for the target material, a stationary laser beam with a spot comparable to the 

pocket diameter can be used to create an array of pockets without the need for laser spot 

scanning [28]. Small beam spot sizes result in a higher maximum energy, but require 

more sophisticated optics.  
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Studies can be found in the literature regarding the correlation between the number 

of pulses and the depth of the pockets. For example, for a nanosecond (ns) laser without 

laser spot scanning, when the number of consecutive pulses on the same spot varied 

from 3 to 20, a pocket was progressively machined. This work showed that with around 

10 pulses, pocket depths of around 20 µm were obtained when pulse energies between 

3.7 and 8.3 mJ during texturing of 100Cr6 steel samples, with small lateral damage 

[105]. The use of shorter pulses, besides producing small heat-affected zones, also 

reduces even further the time necessary to machine each pocket.   

Among typical lasers, ns pulsed lasers present a good compromise between relatively 

short pulse duration and a reasonable cost, and hence are widely used in industrial 

applications [28]. However, the use of ultrashort pulses (femtosecond lasers) combined 

with small beam spots and high laser energy may allow higher texturing speeds.  

In Table III, these methods are summarized in terms of cost and complexity, 

restrictions and texturing speed.  For comparison, estimates are also presented for laser 

texturing (LT). Due to the large variability between lasers, two rough estimates are 

presented, one for a more standard nanosecond laser and another for a femtosecond 

laser with more sophisticated optics. The texturing speed was estimated as the 

approximate time necessary to texture a clean smooth area of 100 x 100 mm. Only the 

time necessary for masking of the surfaces (if necessary) and to machine the pockets 

was computed, excluding time needed for setting up the equipment or for any pre/post 
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treatment. The texture pattern was composed of an array of pockets with diameter of 

100 µm and an area coverage of 25%, which gives a total of 27889 pockets. Since the 

pockets are produced in a serial manner, either an x-y stage moves the sample or the 

laser beam is steered for each pocket to be produced. Considering  recent advances in 

commercial positioning stages and the very high speed for laser steering in modern laser 

facilities, it is estimated that the time to produce each pocket may vary between 1 to 10 

ms for femtosecond laser with sophisticated optics and between 50 to 100ms for 

standard nanosecond lasers. Therefore, the time necessary to machine 27889 pockets 

must be in the range from 30 s to 5 min for more sophisticated lasers and in the range 

from 20 to 45 minutes. It is important to emphasize that the values presented here for all 

the texturing techniques are only rough approximations, based on the current state of 

development of each technique. 

The main advantage of PCT is its flexibility in terms of the shapes of the individual 

features. The resolution is comparable to that obtained by most commercial laser 

texturing facilities, although worse than the resolution of more sophisticated laser 

facilities. Despite the time required to mask the individual surfaces to be textured, it can 

be faster than laser texturing for large texturing areas, because the texturing time is 

independent of the area coverage. 

MECT is very cheap and fast, but it can only texture surfaces with good electrical 

conductivity and reactivity, where a suitable anodic dissolution reaction can be 
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achieved. The resolution is worse than that of laser texturing, although it is believed that 

the use of other techniques to produce the tool (in particular, laser machining) could 

help to reduce the minimum size of the features.  

Masking by inkjet printing showed better resolution than MECT, but was inferior to 

laser texturing. Texturing results have been demonstrated for flat surfaces, but in 

principle the technique could also be extended to curved surfaces [47]. Despite the time 

necessary to mask each individual workpiece, the speed of the technique is still possibly 

faster than laser texturing, depending on the characteristics of the laser texturing 

facilities.   

4. Tribological performance 

Hydrodynamic lubrication 

The summary presented in Table III shows that despite the simplifications introduced 

during the photolithographic masking of metal surfaces, fairly small and well-controlled 

features could be produced by PCT. This suggested that it could be well suited to 

texture sliding surfaces under hydrodynamic lubrication. To investigate this hypothesis, 

results from reciprocating sliding tests (stroke length = 22 mm and  frequency = 0.55 

Hz) carried out between smooth stationary cylindrical counterbodies and plane samples 

textured by PCT [4] are analyzed. The tests used two different counter-bodies: a mirror-

polished, 8 mm radius brass cylinder and a mirror-polished sector of a 100 mm radius 

aluminum alloy cylinder, both aligned perpendicularly to the sliding direction. Flooded 
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lubrication conditions with a highly viscous additive-free mineral oil (dynamic viscosity 

of 1.5 Pa s at 20 
o
C), associated with a large cylinder radius, were used to ensure 

hydrodynamic lubrication conditions despite the non-conformal contact geometry. The 

geometrical characteristics of selected textured samples, measured by laser 

interferometry, are shown in Table IV. Table V shows the loads and the corresponding 

elastic contact pressures (p) and contact widths (2a) calculated from the Hertz equation 

for a line contact (length of the cylinder = 16 mm). The texture geometries and normal 

loads were chosen to allow the ratio between the contact width and the size of the 

individual features that compose the texture pattern to be varied. No wear was 

detectable by optical examination of the cylinder or plane specimens after the tests, 

except at the ends of the strokes, suggesting that they did indeed operate with the 

hydrodynamic lubrication regime.  

Capacitance measurements were used to evaluate film thickness, as described in [4]. 

After running-in, points from consecutive cycles corresponding to the same translational 

velocity were then averaged, to compute mean values of film thickness for an average 

stroke.  

For the cylinder with smaller diameter and therefore narrower contact widths, the 

ratio between the pocket diameter and the contact width (d/CW) varied between 2 and 

8.5, i.e., the pockets were substantially wider than the contact. For those cases, film 

thickness was reduced when compared with a smooth surface, as exemplified in Figure 
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11 (a). On the other hand, for a cylinder diameter of 200 mm, d/CW reduced to between 

0.5 and 1, so that the pockets were normally narrower than the contact. For those cases, 

surface texturing could lead to increased film thickness for some texturing geometries, 

as exemplified in Figure 11(b), which compares film thickness as a function of the 

fraction of area coverage (f), for samples containing circular features.  

Further details of the effect of the texture geometries on film thickness and friction 

coefficient can be found in [4]. The results presented in this reference show that 

chevron-like pockets and parallel lines oriented perpendicular to the sliding direction 

can be particularly beneficial under certain sliding conditions, emphasizing the 

importance of texturing methods that are flexible in terms of the geometry of the texture 

patterns. However, it is important to emphasize that although the potential for texture to 

increase load support and reduce friction  can often justify the effort and cost, in 

particular for hydrodynamic bearings [16], poorly chosen texture geometries or 

operating conditions can result in decreased load capacity.  

From the alternative texturing methods presented here, PCT would be in principle the 

best suited for hydrodynamic applications, since it can produce the smallest features. 

However, it is not the absolute size of the features that is decisive in the choice of the 

adequate texturing method, but their relative size in relation to the operating conditions. 

For example, Fowell et al. [16] suggest the non-dimensional parameter TS = a/B, where 

a is the distance from the inlet to the first pocket and B is the pocket width, to take 
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account of the width of the pocket, and the two parameters TH = h/B, where h is the 

height of the pockets and MH = ho/B, where ho = minimum oil film thickness, to take 

account of the depth of the pockets.   Also, they suggest that the effect of number of 

pockets on the performance of a textured hydrodynamic bearing is minimal. This means 

that if the total area of the pockets ensures that the desired area coverage is obtained, a 

texturing method that generates fewer wider pockets could be adequate. 

Therefore, for hydrodynamic applications where contact widths and minimum film 

thickness are large, such as in the case of large hydrodynamic bearings, larger pockets 

could be used successfully, and therefore MECT and masking by inkjet printing could 

also be alternatives. They would be particularly advantageous considering the size of 

the areas to be textured, where the texturing time could become excessively large for 

laser texturing. 

Starved lubrication 

 
The tribological performance of the textured surfaces was also evaluated under 

conditions of starved lubrication. This condition was chosen because the pockets that 

compose the texture are also expected to act as reservoirs for lubricant when the supply 

of lubricant is limited. In previous work, we have shown that this was the case for 

texturing dies used in strip drawing. Patterned dies showed reduced friction and resulted 

in better surface finish on the drawn strip when compared with smooth dies [13]. 
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In the present work, the effect of surface texturing was analyzed for reciprocating 

sliding tests under starved liquid lubrication conditions. MECT was chosen as the 

texturing method because it resulted in the largest features from the three methods 

proposed. Flat carbon steel samples were textured with arrays of circular pockets (d = 

190 µm, px = 320 µm, h = 10 µm). For comparison, the smooth areas between pockets 

for a textured sample (Sq = 0.590 µm) were tested under similar conditions (termed 

‘smooth surface’). In order to guarantee enough area between the pockets to be tested 

for the smooth surface, px was increased to 1.4 mm in the comparison sample. Despite 

the narrow contact widths, special care was taken to position the wear track precisely 

over a line of pockets for the textured samples and between lines of pockets for the 

smooth sample. 

Very small quantities of a naphthenic oil without anti-wear additives (viscosity at 

40
o
C = 0.026 Pa s) were applied to the surface samples with a micropipette before 

reciprocating sliding tests. Different normal loads were used and therefore the ratio 

between the pocket diameters and the contact width (d/CW) varied (Table VI).  

AISI 52100 steel balls (φ = 10 mm) were used as counterbodies. Three repetitions 

were carried out for each condition. Friction force was continuously monitored with a 

high frequency acquisition system to allow the acquisition of many points within each 

stroke.  To facilitate the visualization and interpretation of the data, a program 

developed in Matlab was used to generate a triboscopic map of the variables during the 
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tests, where z is friction coefficient, x is the position of the counterbody within each 

cycle of test and y is the number of the test cycle. 

Figure 12 shows triboscopic maps for friction coefficients obtained for textured (left) 

and smooth (right) surfaces. In all maps, some peaks can be observed for the friction 

coefficients. This suggests that for the starved lubrication regime used in this work, the 

lubrication failed at some points of the surface, probably due to inability of the lubricant 

to refill the inlet after each pass, and that at the regions where the lubricant was present, 

friction coefficient was lower. For the smaller normal load of 2.5N, friction coefficients 

were high for a lubricated contact. It is believed that for such low load, the load cell 

used to measure friction force (range = 1000 N) was not sensitive enough. However, all 

three tests for each sample at this load repeated the behaviours exemplified in (a) and 

(b). The difference between the smooth and the textured samples is not large, but for the 

textured samples, the friction peaks were much less frequent than for the smooth 

samples.  

For the loads of 12.74 and 51.94 N, the friction coefficient was larger at the ends of 

each stroke for all samples. Examples are shown in (c) for the textured sample and (d) 

for smooth samples at 51.94 N. This might suggest that at those locations, where the 

speed is virtually zero, combined with the higher contact pressures and the starved 

lubrication conditions, lubrication failure was more significant. Also, wear debris 

tended to accumulate at the ends of the strokes. On the other hand, at the regions distant 
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from the ends of the stroke, friction coefficient was lower for the textured sample, 

suggesting better lubrication. Under high normal loads, starvation is expected to be 

more severe. Also, the contact is wider, so that the pockets are fully contained within 

the contact. It is believed that under these conditions, the lubricant within the pockets is 

helping to replenish the contact inlet for the next cycle, reducing friction coefficient. 

However, despite the high acquisition rate used to sample friction force, localized 

friction reduction that repeated with a frequency proportional to the distance between 

the pockets could not be detected. 

SEM of the wear tracks showed that they were wider than the diameter of the pockets 

for the lowest load (Figure 13), despite the pockets being wider than the elastic contact 

width (d/CW = 2.1).  This might justify the occurrence of some positive effect of the 

texturing to replenish the contact inlet with lubricant, although it was more significant 

for smaller values of d/CW.  Figure 13 (b) shows wider wear tracks at the ends of the 

strokes, where friction coefficients had been larger than in the middle of the strokes for 

the loads of 12.7 and 51.94 N. 

Those results suggest that for a texturing method to be suitable for applications 

involving sliding under conditions of limited supply of lubricant, it must be capable of 

producing features that are narrower than the sliding contact and that the effect is more 

significant when the ratio between the pocket diameter and the contact width is small. 
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Therefore, many components that operate under limited lubricant supply could have 

their performance improved by any of the alternative texturing methods presented here.  

Although the effect of the pocket depth was not investigated in this work, the 

literature [18, 22] suggests that when the pocket depth is very large, surface tension can 

drive lubricant from the contact to the bottom of the pockets, reducing the lubricant 

supply in the contact inlet. Such an effect was not observed in our tests, but it was 

reported during reciprocating sliding tests under mild starvation conditions for d = 100 

µm and h = 20 µm in [18] and much more severely for d = 125 µm and h = 125 µm in 

[22].  

 

5. Conclusions 

This work investigated the use of alternative surface texturing methods for 

tribological applications. 

Texturing methods were identified and classified into groups and subgroups, 

according to their physical principles. This included not only methods already existent 

either in industrial practice or research, but also new possible methods.  

Three alternative texturing methods were detailed and investigated, in order to 

explore their viability, main characteristics, potential and limitations. All three 

techniques were successfully demonstrated to texture steel surfaces with patterns 

containing arrays of dots, lines and chevrons. 
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Although photochemical texturing (PCT) is widely used in the electronics industry, 

the approach used in this work was much simpler and cheaper.  

Maskless electrochemical texturing (MECT) is simple, cheap and fast, but the 

minimum size of the features is still a limitation. It involves the application of a pulsed 

voltage to an electrochemical cell composed of a textured tool and the workpiece.  

Inkjet printing was used to mask steel surfaces, which were then etched to produce 

textured surfaces. The resolution was higher than for MECT, but lower than for PCT. 

The texturing speed depends on surface area, but it is always much slower than MECT. 

A comparison of textured and smooth surfaces under hydrodynamic lubrication in 

reciprocating sliding showed that for the texturing method to be successful it must be 

able to produce pockets or grooves that are narrower than the contact width. Therefore, 

for components with large contacts under hydrodynamic lubrication, such as 

hydrodynamic bearings, any of the alternative texturing methods could be beneficial if 

adequate texture geometries are chosen according to the operating parameters.  

A comparison of textured and smooth surfaces under starved lubrication in 

reciprocating sliding suggested that the pockets helped to replenish the contact with 

lubricant, reducing friction, in particular when the ratio between the diameter of the 

pockets and the contact width was low. Again, this suggests that for certain components 

under starved lubrication, the alternative texturing methods presented here could be 
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beneficial, but this requires the choice of the texture geometry to take into account 

operating conditions.  
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Figure 1. Schematic representation of the tree structures for methods involving: (a) 

removing material; (b) adding material; (c) moving material; (d) self-forming by wear. 

Figure 2. Schematics of the tree structure for methods for mask generation. 

Figure 3. Examples of the surface topography texture patterns generated by 

photochemical texturing using: (a and b) positive photoresist, circular pockets; and (c 

and d) negative photoresist, circular pillars; images on left show 3D maps and on right 

show line profiles. 

Figure 4. Examples of a steel sample textured by MECT, adapted from [100], with 

permission: (a) 3D map of a regular array of pockets; (b) profile across a line of circular 

pockets; (c) 3D map of a regular array of chevrons; (d) profile across the vertices of the 

chevrons.  

Figure 5. Contact angle measurements for different cleaning routines, average of five 

measurements, for magenta and black inks and water. 

Figure 6. Contact angle measurements on steel samples with different surface 

roughness; larger grit sizes give smoother surfaces. 

Figure 7. Printing of individual dots, DMP-2800 printer (adapted from [106]): (a) 

optical microscopy after printing; (b) 3D map  after etching and stripping; (c) line 

profile. 
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Figure 8. Examples of complex shapes printed with a flatbed eagle printer and UV-

curable ink: (a) parallel linear gaps; (b) rectangular gaps; (c) interrupted linear gaps; (d) 

chevrons, single-step printing using four printheads; (e) chevrons, multiple-step printing 

using one individual printhead.  

Figure 9. Examples of complex printings using DMP-2800 printer, solvent-base ink; 

adapted from [106], with permission: (a) 20 µm gap between parallel printed lines; (b) 

40 µm square gap; (c) chevrons. 

Figure 10. Geometrical definitions of the textured patterns. 

Figure 11. Comparison (average strokes) between film thickness for smooth and 

textured samples: (a) 16 mm brass cylinder, normal load = 2.5 N, samples T16 (circles) 

and T17 (lines); (b) 200 mm aluminium cylinder, load = 51.5N, circles, effect of area 

coverage (f), adapted from [4], with permission.  

Figure 12. Triboscopic maps for textured (left) and smooth (right) surfaces: (a) 2.94 

N, textured; (b) 2.94 N, smooth; (c) 51.94 N, smooth; (d) 51.94 N, smooth, adapted 

from [100], with permission. 

Figure 13. SEM Of the wear tracks, BSE: (a) textured sample, 2.94N; (b) smooth 

sample, 12.7N. 
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Table I. Experimental conditions for the photolithographic procedure. 

Table II. Cleaning routines before inkjet printing; USC = ultrasonic cleaning; HAB = 

hot air blower; IMS = industrial methylated spirit. 

Table III. Summary of the alternative texturing methods; the geometrical dimensions 

of the features are defined in Figure 10. 

Table IV. Dimensions (in µm) of the features in the texture patterns; NA = not 

applicable; the nomenclature for the dimensions is described in Figure 10. 

Table V. Normal loads and corresponding contact pressures and elastic contact 

widths, calculated from Hertz equation. 

Table VI. Normal loads with respective Hertz calculations. 
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Figure 7 
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Figure 7 
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Figure 8 
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Figure 8 

 

800 µµµµm 

Page 64 of 85

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 (c)  

Figure 8 
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Figure 8 
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Figure 8 
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 (a)  

Figure 9 
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Figure 9 
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 (c)  

Figure 9 
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 (c) 

Figure 12 
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 (d) 

Figure 12 
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Figure 13 
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Figure 13 
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Table I 

Conditions Negative resist Positive resist 

Sppining rotation (rpm) 3000 4000 

Spinning time (s) 60 30 

Pre-baking temperature (
o
C) 95 95 

Pre-baking time (s) 60 60 

Exposure time (s) 300 300 

Developing time (s) 180 30-60 

Post-baking temperature (
o
C) 150 150 

Post-baking time (s) 180 180 
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Table II 

 

Sample SURFACE CONDITIONS 

3_A Polished (1 µm diamond) one month before and cleaned with acetone 

3_B Polished (1 µm diamond) up to 4 h before and cleaned with acetone 

3_C Condition 3_B, cleaned for 5 min. in 36%wt NaCO3 using USC, rinsed, sprayed with 

IMS and dried with HAB 

3_D Condition 3_B, cleaned for 5 min. in 36%wt NaCO3 using USC, rinsed, cleaned for 5 

min. in detergent + warm water, rinsed, sprayed with IMS and dried with HAB 

3_E Condition 3_A, cleaned cleaned for 5 min. in 36%wt NaCO3 using USC, rinsed, 

sprayed with IMS and dried with HAB 
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Table III 

               Characteristic          LT                MECT  PCT* Inkjet 

printing ns   fs 

 

Geometric 

resolution 

d (µm) 10 < 5 150 20 40 

h (µm) 3 <1 5 2 3 

w (µm) 10 <5 200 20 20 

wc (µm) 10 <5 400 40 150 

Possible 

substrate 

curvatures 

Flat  Yes Yes Yes Yes Yes 

Low curvature  Yes Yes With adaptation Yes No 

Cylindrical   Yes Yes With adaptation Yes No 

 

Cost 

Commercially 

available 

Yes Yes No No Yes 

Capital cost*** ++++ +++++ + ++ +++ 

Texturing cost*** +++ +++ + ++ +++ 

Texturing time** 20-45 

min 

30 s-

5min 

30s 15 min 8-10 min 

Possible 

substrate 

materials 

Metals Yes Yes Yes Yes 

Ceramics Yes Some Yes Yes 

Polymers Yes No No No 

*the characteristics presented are based on the simplified version presented in this paper 

and not using conventional photolithography. 

 **approximate time for texturing a smooth clean area of 100 x 100 mm, d = 150 µm, h = 

20µm,  f = 0.15, no pre or post-treatment included. 

*** “+” means very low and “+++++” means high. 
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Table IV 

 

Pattern Sample h d Px or Py w ββββ    l 

 T1 4.5 41  NA NA NA 

 T2 4.5 40  NA NA NA 

Circles T3 4.5 47  NA NA NA 

 T4 6 70  NA NA NA 

 T16 2 80 56 NA NA NA 

Lines T17 4.5 NA 52 42 NA NA 

Chevrons T10 4.5 NA NA 132 70 190 

 

 

Page 83 of 85

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

Table V 

 

Load 

(N) 

16 mm brass cylinder 200 mm aluminum cylinder 

Contact width 

(µm) 

Contact pressure 

(MPa) 

Contact width 

(µm) 

Contact 

pressure (MPa) 

2.5 9.2 472 Not used 

12.3 21 2320 82 146 

22.1  

 

 

Not used 

111 262 

31.9 133 379 

41.7 152 496 

51.5 169 612 

61.3 184 729 

71.1 198 845 

80.9 212 962 
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Table VI 

 

Normal load (N) Maximum contact pressure (MPa) Contact width CW (µm) d/CW 

2.94 631 94.4 2.1 

12.74 1029 153.8 1.2 

51.94 1643 245.7 0.8 
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