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Abstract
The ability of large-grain (RE)Ba2Cu3O7− δ ((RE)BCO; RE= rare earth) bulk superconductors to
trap magnetic fields is determined by their critical current. With high trapped fields, however,
bulk samples are subject to a relatively large Lorentz force, and their performance is limited
primarily by their tensile strength. Consequently, sample reinforcement is the key to performance
improvement in these technologically important materials. In this work, we report a trapped field
of 17.6 T, the largest reported to date, in a stack of two silver-doped GdBCO superconducting
bulk samples, each 25 mm in diameter, fabricated by top-seeded melt growth and reinforced with
shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively
straightforward and inexpensive to implement, and offers the prospect of easy access to portable,
high magnetic fields without any requirement for a sustaining current source.
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Introduction

It has long been known that, in addition to fabricating solenoids
from wire or tape, type-II superconducting materials can be used
to trap magnetic fields when fabricated in the form of well-
connected bulks [1, 2]. Top-seeded melt growth (TSMG) has
emerged over the past 25 years as a practical route for fabri-
cating large, single grains of the rare earth (RE) cuprate family
of high-temperature superconductors (HTS) of composition
(RE)Ba2Cu3O7− δ ((RE)BCO). As a result, these materials have
significant potential for application, effectively, as high-field
permanent magnets [3]. The performance of these magnets at
77 K is limited by the critical current carrying capacity of the
bulk superconductor. Nevertheless, fields of up to 2 T have been

achieved in 20mm diameter superconducting bulk samples [4]
and up to 3 T in samples of 65mm diameter [5] at 77 K.

The critical current density (Jc) of HTS is enhanced at
temperatures lower than 77 K, and significantly larger mag-
netic fields can be trapped. Notably, Tomita and Murakami
reported a trapped field of 17.24 T at 29 K in an arrangement
of two YBa2Cu3O7− δ (YBCO) samples of 26 mm diameter
impregnated with Wood’s metal and resin and reinforced with
carbon fibre [6]. Fuchs et al also reported a trapped field of
16 T at 24 K in a Zr-doped and Ag-impregnated YBCO
sample of 25 mm diameter placed inside a reinforcing stain-
less-steel tube [7]. The prospect of generating portable high
fields that are available outside the bore of a superconducting
solenoid is now a distinct possibility, given that considerable
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progress is being made in developing practical systems for
magnetizing and refrigerating such samples to operating
temperatures well below 77 K [8]. Additionally, these
superconducting bulk permanent magnets operate in what is
effectively ‘persistent mode’, which cannot yet be achieved in
solenoids fabricated from YBCO-coated conductors due to
the difficulty in making superconducting joints.

There are significant challenges, beyond merely produ-
cing a material that exhibits a sufficiently large critical current
density, in trapping very high fields in (RE)BCO bulk
superconductors. First, the motion of flux during the ramp-
down of any applied, external magnetic field generates a
significant amount of heat, which can lead to the formation of
thermal instabilities and the consequent catastrophic
quenching of the bulk superconductor [6]. Second, the forces
exerted on the sample during magnetization due to the Lor-
entz force are large and can lead to mechanical failure, with
unreinforced samples typically failing at ∼7–8 T [9, 10]. The
forces in a bulk sample during the ramp-down of the mag-
netizing field are tensile in nature [11], and the resulting
tensile stresses are not resisted well by the brittle ceramic-like
nature of the material. Moreover, as it is the resistance to
fracture that determines the tensile performance and, given
that the TSMG process generates many voids and cracks in
the sample microstructure, a wide variation in field-trapping
performance is to be expected from sample to sample [12].

The aim of the work presented here was to develop a
superconducting bulk system that could exhibit peak trapped
fields as large, or larger, than those currently reported in the
literature using conventional sample processing and reinfor-
cement techniques that are relatively simple to implement.

Methods

Reinforcement analysis

We have previously developed Ag-containing GdBCO sam-
ples that exhibit good field-trapping performance at 77 K [13]
and contain a more homogenous Jc distribution than YBCO
[14]. Unlike the Ag-GdBCO samples fabricated by other
groups, we do not observe a significant deleterious effect on
Jc for an Ag content of up to 15 wt% AgO2. This is a con-
sequence of the large number of voids and cracks generated
during the TSMG process, which can accommodate the
excess Ag without affecting the properties of the continuous
superconducting matrix. As a result, it was not necessary to
enhance the pinning performance of the materials studied here
by introducing an extra pinning phase to the Gd-123
microstructure.

Previous investigators have used stainless-steel rings to
reinforce bulk superconductors, relying on the pressure that
occurs at the superconductor/stainless steel interface due to
differential thermal contraction on cooling from room tem-
perature to the desired measurement temperature. Here, we first
determined the magnitude of the interface pressure that would
result on the samples using a standard method [15] for ana-
lysing the shrink-fitting process and the published values for the

mechanical properties of (RE)BCO [16]. It was found that this
would equate to a relatively modest 55MPa for a reinforcing
ring of 24 mm in diameter and 3mm thickness cooled to 28 K,
which is the same order of magnitude as the tensile strength
anticipated in a GdBCO superconducting bulk containing Ag
[10]. The required tensile strength of a material for a particular
maximum field can be estimated [6] as 0.282 B2 MPa. The
required tensile strength at a field of 18 T is therefore ∼91MPa,
which would result in the mechanical failure of most samples,
since the internal compressive stress will be less than the
interface pressure. The samples were machined precisely to a
diameter of 24.15mm and were reinforced by a stainless-steel
ring of internal diameter 24mm to increase the pre-stress. The
rings were heated to >300 °C to enable them to fit onto the
superconductor. This configuration was calculated to provide a
pre-stress of ∼250MPa, which is a significant improvement on
the stress achieved from simple steel banding. It should be
noted that, while this compressive stress is added uniformly, the
sample interior may not experience a homogeneous stress dis-
tribution due to the presence of voids in the sample, which may
lead to specific regions of much lower compressive stress.

Sample preparation and measurements

Cylindrical bulk samples ∼25 mm in diameter and ∼13 mm in
height were grown using the top-seeded melt growth process
described elsewhere [13], and then machined to a diameter of
24.15 mm. The samples exhibited trapped fields of ∼0.9 T at
77 K. A 304 Stainless Steel ring was then heated to a tem-
perature >300 °C and shrink-fitted to each sample.

The samples were combined into stacks of two, and
joined by a thermally conductive epoxy resin, as shown in
figure 1, for measurement purposes. A linear array of five

Figure 1. The assembled stack of two GdBCO bulk samples, each
24.15 mm in diameter and 15 mm high. The samples were reinforced
with a 3 mm thick ring fabricated from 304 Stainless Steel. The
recess visible in the ring served to accommodate the measurement
wiring. The two bulk samples were then assembled into a stack with
an array of five Hall probes at their interface using STYCAST
thermally conductive epoxy resin. The Hall probes were arranged
evenly in a line across the sample at −8, −4, 0, 4 and 8 mm from the
centre of the sample.
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Lakeshore HGT-2101 Hall sensors was placed at the centre of
each stack at positions −8, −4, 0, 4 and 8 mm from the centre
of the sample (i.e. between the two halves). These sensors
were supplied un-calibrated and exhibited some non-linearity,
which was characterized at 100 K. The output voltage of the
Hall sensor was measured at the temperature at which the
magnetizing field was applied. The temperature of the two-
sample stack was measured using a Cernox sensor, and the
sample temperature was stabilized using a wire-wound heater
wrapped around the stack.

The Hall sensors were driven with a 100 Hz, 10 μA peak
sine wave using a Keithley 6221 current source, and the Hall
voltage was measured using a lock-in amplifier for each Hall
probe. The samples were magnetized in the bore of the SCM-2
18 T superconducting magnet at the National High Magnetic
Field Laboratory, Florida State University. The desired mag-
netizing field was applied with the temperature of the stacks
maintained at 100 K, after which the samples were cooled to
the measurement temperature. Finally, the external field was
ramped down at a rate of 0.015 T min−1.

Results and discussion

Two similar stacks were magnetized initially by field cooling
from 16 T at 28 K. One stack suffered some cracking and
trapped a maximum field of 10 T, whereas the second two-
sample stack trapped a field of 15.4 T.

A third sample was then magnetized with an applied field
of 17.8 T at 26 K. The fields recorded during the magnetizing
process of this stack are shown in figure 2. A trapped peak
field of 17.6 T was achieved at the end of the magnetizing
process, which represents the largest field trapped in a bulk
superconductor at any temperature reported in the literature
to date.

To monitor any reduction in trapped field due to flux
creep, the sample was maintained at 26 K for a period of

160 min, as shown in figure 3. Flux creep, the rate of which
decreases with time, was observed as expected [17]. The flux
creep behaviour over the relatively short time period mea-
sured was initially logarithmic but then dropped more
quickly.

The sample was then warmed slowly at a rate of
0.5 K min−1 and the variation of the trapped field with tem-
perature recorded. Figure 4(a) shows the field at the centre of
the sample and figure 4(b) the evolution of the trapped field
profile with increasing temperature. This data set suggests that
the critical current performance of the samples employed
would potentially support the maximum trapped field of
17.6 T at temperatures of up to 32 K. It is immediately
apparent from the variation of Jc with distance that the field
trapped in this sample is not limited by the current carrying
capability of the superconductor, as the profile is flatter than
would be expected for full penetration. Furthermore, the
sample was still capable of trapping almost 10 T at 50 K, a
temperature which, significantly, is achievable using a single-
stage cryocooler. Figure 4(b) shows that the trapped field
profile changes to one corresponding to a sample limited by
critical current as the temperature of the two-sample stack
increases. It is apparent in figure 4(b) that the centre Hall
probe was not aligned fully with the centre of the field dis-
tribution. This may have been due to slight asymmetry of the
superconducting properties of the sample, or slight mis-
alignment of the two components of the stack.

The sample was then re-magnetized in a separate, but
otherwise identical process, using an 18 T field, but failed due
to cracking as the external field was reduced. Similarly, a
further, fourth sample stack failed under a magnetizing field
of 18 T, suggesting that the maximum trapped field observed
in this study corresponds approximately to the limit of
mechanical performance for the shrink-fit reinforcement
method employed to reinforce the samples.

A spread in performance of four sample stacks was
observed in this study for similar magnetizing processes. This

Figure 2. The field measured at the interface between the two
samples in the stack by an array of Hall probes (the distances
indicated are from the centre of the sample) as the magnetizing field
was ramped down.

Figure 3. The reduction in trapped field due to flux creep at the end
of the magnetizing sweep with the sample temperature maintained
at 26 K.
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is not surprising, and indeed is characteristic of a brittle
material that fails typically by fast fracture. Although the
Weibull modulus for GdBCO fabricated by TSMG is not
available in the literature, the TSMG process is one that is
known to generate a large number of cracks of different
lengths in large, single grain samples. It is expected, there-
fore, that wide variation in sample performance will be
observed between apparently similar samples from the same
growth batch. Statistically, this also means that samples with
a larger volume will exhibit poorer performance [18].

The question remains why, given the large predicted
interface pressure, samples still failed at stresses lower than
the applied pre-stress. The answer to this is likely to be two-
fold: the difficulty in providing a well-defined and smooth
(RE)BCO surface to mate with the reinforcing ring, and the
fact that the internal pre-stress provided is somewhat smaller
than the interface pressure. This could be addressed by using
a larger shrink-fit temperature, although this would risk
damaging the samples. The choice of an alternative reinfor-
cement material to 304 Stainless Steel is limited, given that
this material exhibits an unrivalled combination of stiffness
and yield strength while still possessing a significant coeffi-
cient of thermal expansion. Another route would be to

fabricate GdBCO with enhanced fracture toughness, perhaps
via the use of techniques such as fibre reinforcement to bridge
cracks as they form during melt processing.

Conclusion

The best-performing two-sample stack of bulk GdBCO con-
taining Ag trapped a peak magnetic field in excess of 17.6 T
from a 17.8 T magnetizing field at 26 K. This is the highest
field trapped in a bulk superconductor reported to date at any
temperature.

The applicability of the relatively simple technique of
applying a shrink-fit steel reinforcement to the samples has
been demonstrated clearly. This is a well understood and easy
to implement technique that is applied regularly to ceramic
materials [19]. Apart from the addition of Ag and the con-
sequent minor adjustment of the thermal process during
growth, the GdBCO samples were prepared in air by a con-
ventional cold-seeding top-seeded melt process. The techni-
que described here, therefore, provides a practical route to
generating very high fields to be trapped in single grain, (RE)
BCO superconducting bulk samples. The ceramic nature of
these samples leads to a wide variation in fracture toughness,
and the use of compressive pre-stress is an effective route to
enhanced field trapping performance.
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