
DOI:10.1093/jnci/dju267
First published online September 16, 2014

JNCI | Brief Communication 1 of 5

© The Author 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited.

jnci.oxfordjournals.org

The Effect on Melanoma Risk of Genes 
Previously Associated With Telomere 
Length
Mark M. Iles, D. Timothy Bishop, John C. Taylor, Nicholas K. Hayward, 
Myriam Brossard, Anne E. Cust, Alison M. Dunning, Jeffrey E. Lee, 
Eric K. Moses, Lars A. Akslen, AMFS Investigators*, Per A. Andresen, 
Marie-Françoise Avril, Esther Azizi, Giovanna Bianchi Scarrà, 
Kevin M. Brown, Tadeusz Dębniak, David E. Elder, Eitan Friedman, 
Paola Ghiorzo, Elizabeth M. Gillanders, Alisa M. Goldstein, Nelleke 
A. Gruis, Johan Hansson, Mark Harland, Per Helsing, Marko Hočevar, 
Veronica Höiom, IBD investigators*, Christian Ingvar, Peter A. Kanetsky, 
Maria Teresa Landi, Julie Lang, G. Mark Lathrop, Jan Lubiński, Rona 
M. Mackie, Nicholas G. Martin, Anders Molven, Grant W. Montgomery, 
Srdjan Novaković, Håkan Olsson, Susana Puig, Joan Anton Puig-
Butille,  QMEGA and QTWIN Investigators*,  Graham L. Radford-Smith, 
Juliette Randerson-Moor, SDH Study Group*, Nienke van der Stoep, 
Remco van Doorn, David C. Whiteman, Stuart MacGregor, Karen 
A. Pooley, Sarah V. Ward, Graham J. Mann, Christopher I. Amos, Paul 
D. P. Pharoah, Florence Demenais, Matthew H. Law, Julia A. Newton 
Bishop, Jennifer H. Barrett; on behalf of the GenoMEL Consortium*

* A full list of the Australian Melanoma Family Study (AMFS), Inflammatory Bowel Disease (IBD), 
QMEGA, and QTWIN investigators and of the members of the Study of Digestive Health (SDH) Study 
Group and GenoMEL Consortium is in the Supplementary Materials (available online).

Manuscript received December 4, 2013; revised March 7, 2014; accepted July 
22, 2014.

Correspondence to: Mark M. Iles, BSc, MSc, PhD, Cancer Genetics Building, St James’s University 
Hospital, Beckett Street, Leeds LS9 7TF, UK (e-mail: m.m.iles@leeds.ac.uk).

 Telomere length has been associated with risk of many cancers, but results are incon-
sistent. Seven single nucleotide polymorphisms (SNPs) previously associated with 
mean leukocyte telomere length were either genotyped or well-imputed in 11 108 
case patients and 13 933 control patients from Europe, Israel, the United States and 
Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic 
score that predicts telomere length, derived from these seven SNPs, is strongly asso-
ciated (P = 8.92x10-9, two-sided) with melanoma risk. This demonstrates that the 
previously observed association between longer telomere length and increased mel-
anoma risk is not attributable to confounding via shared environmental effects (such 
as ultraviolet exposure) or reverse causality. We provide the first proof that multiple 
germline genetic determinants of telomere length influence cancer risk.
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The ends of chromosomes are protected 
from instability by tandem nucleotide 
repeats, known as telomeres. Telomeres 
shorten both with age and following expo-
sures associated with cancer risk, such as 
smoking and ultraviolet (UV) irradiation 
(1,2). Thus, telomere maintenance pro-
cesses are natural candidates for explaining 

carcinogenesis. Telomere length has been 
associated with risk of various age-related 
diseases, including cancers (3,4). However, 
with inconsistent results between retro-
spective and prospective studies (4–7) and 
methodological concerns (8), conclusions 
have been at best cautious. The recogni-
tion that any reported association might 

be because of either reverse causation (the 
cancer itself or therapeutics affecting tel-
omere length) (9) or shared environmental 
factors affecting both telomere length and 
cancer risk has meant that the question of a 
causal relationship remains unresolved.

There has, however, been consistency 
in studies of melanoma. Longer telomeres 
have been associated both with increased 
melanoma risk in a study involving 557 cases 
(10), and increased nevus number (2,11), a 
major risk factor for melanoma (12). A pro-
spective study of 47 102 subjects (13) found 
no association between telomere length and 
overall cancer risk after adjusting for shared 
risk factors, although it did not account for 
potential differences in direction of effect 
by cancer site (14). However, alleles in the 
telomerase-coding gene TERT that predis-
pose to shorter telomere length, increase 
the risk of most cancers but are protective 
for melanoma (Supplementary Materials, 
available online) (15). Additionally, high 
penetrance melanoma mutations have been 
reported in genes encoding components 
of the Shelterin complex (POT1), which is 
crucial for the maintenance and signaling 
function of telomeres (16): POT1 muta-
tions resulted in longer telomeres (17).

The existence of genetic variants influ-
encing both telomere length and cancer 
susceptibility would argue against either 
reverse causality or shared environmental 
effect (the latter affecting even prospec-
tive studies), explaining the association 
between telomere length and cancer risk. 
A recent meta-analysis (18) identified seven 
genome-wide statistically significant loci 
for mean leukocyte telomere length, five 
(TERC, TERT, NAF1, OBFC1, and RTEL1) 
containing known telomere-related genes, 
and two others (ZNF208 and ACYP2). Of 
these loci, other than TERT, only TERC 
and RTEL1 have been associated with risk 
of any disease (18–22). The study investi-
gated the effect of the top SNP at each of 
the seven loci on risk of coronary artery dis-
ease (CAD) but, despite a huge sample size 
(>22 000 case patients and 64 000 control 
patients), no SNP was statistically signifi-
cantly associated. A  score based on geno-
types at these loci and effect estimates from 
the telomere meta-analysis showed modest 
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association with CAD risk (P = .01, asso-
ciating shorter telomeres with increased 
risk). Another study of similar design (albeit 
smaller and more limited coverage) (23), 
found genome-wide statistical significance 
for association between mean telomere 
length and TERC, TERT, OBFC1, a novel 
locus at 3p14.4, and support for ACYP2, 
NAF1, and RTEL1. Of these, only TERT 
was associated with risk of breast, ovarian, 
and prostate cancer, while OBFC1 was asso-
ciated with a subtype of ovarian cancer.

Given the potential role of telomere 
length in melanoma development, we inves-
tigated the variants identified by the tel-
omere meta-analysis (18) in a genome-wide 
association study (GWAS) of melanoma. 
Our study consisted of 11 108 case patients 
and 13 933 control patients (Supplementary 
Table 1, available online) from Europe, Israel, 
the United States, and Australia. Written 
informed consent was obtained from each 
subject, and the investigations were per-
formed after approval by the institutional 
review board for each recruiting center. As 
by far the biggest study of germline deter-
minants of telomere length to date, we used 
the effect estimates for the seven SNPs from 
the telomere meta-analysis (18).

All 7 SNPs were either genotyped or 
well-imputed (Supplementary Materials, 
available online) in all melanoma GWAS 
samples; we tested for association between 
each SNP genotype and melanoma risk 
using SNPTEST2 (Supplementary 
Methods, available online) (24). Four of 
the seven SNPs reached nominal statisti-
cal significance, P values lower than .05 
(rs10936599 in TERC, P = .0003; rs2736100 
in TERT, P  =  .02; rs7675998 in NAF1, 
P  =  .03; rs9420907 in OBFC1, P  =  .001) 
(Table 1). The telomere-associated SNPs in 
TERC, TERT, OBFC1, and RTEL1 are near 
(8-150kb from) SNPs strongly associated 
with melanoma risk (rs12696304 in TERC, 
P = .0001; rs455433 in TERT, P = 2.26x10-

16; rs2995264 in OBFC1, P  =  7.10x10-6; 
rs75691080 in RTEL1, P  =  1.02x10-6) 
(Supplementary Figure 1, available online). 
Further analysis suggests the two stud-
ies may be identifying the same underly-
ing signal in each region (Supplementary 
Materials, available online).

The estimated effect of these seven SNPs 
on telomere length (18) and their estimated 
effect on melanoma risk are surprisingly 
well correlated (Pearson’s correlation = 0.92, 

P = .002, two-sided) (Table 1; Supplementary 
Figure  2, available online). For all but the 
least statistically significant telomere SNP 
(ACYP2), the allele associated with decreased 
telomere length is more frequent in control 
patients than melanoma case patients, con-
sistent with a protective role for shorter tel-
omeres in melanoma.

For each sample in our study, we con-
structed a genetic score predicting telomere 
length by calculating a weighted mean of 
genotype dosage across the seven telomere 
length–associated SNPs. The weights for 
each SNP were the age- and sex-adjusted 
effect estimates (log odds ratios) from the tel-
omere meta-analysis (18). We then used this 
score in a logistic regression of melanoma risk 
(Supplementary Materials, available online).

We found a strong association between 
increased telomere score and increased risk 
of melanoma (P = 8.92 × 10−9) that was con-
sistent across geographic regions (Figure 1). 
Categorizing telomere score into quar-
tiles, we observed a linear effect on mela-
noma risk; those in the highest quartile are 
estimated to be at 1.29 times the risk of 
melanoma of those in the lowest quartile 
(Supplementary Figure 3, available online).

Thus, several previously-identified tel-
omere-associated SNPs, as well as a score 
based on their combined effect, are associ-
ated with melanoma risk. The fact that the 
telomere-associated SNP is often far less 
statistically significant than the strong-
est melanoma-associated SNP at several 
loci is likely in part because the telomere 
GWAS data are imputed from a reference 
panel with far fewer SNPs (Supplementary 
Materials, available online), so the effect of 
these telomere loci on melanoma risk will 
be underestimated here. Indeed, given the 
large number of genetic variants that are 
not able to be imputed and the possibil-
ity that several genetic variants could be 
responsible for the signal at a single locus, 
it is unlikely that the top SNP identified is 
a functional variant, and so the effect of the 
locus on both melanoma risk and telomere 
length is likely underestimated.

Previous studies have found at best a 
weak association between telomere-associ-
ated loci and disease risk. This highly sta-
tistically significant association confirms 
the hypothesis that the genetic factors 
underlying telomere length have an espe-
cially strong influence on melanoma risk 
and that, unusually, longer telomere length Ta
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predisposes an individual to melanoma. 
These seven loci explained in total only 
1.2% of the variation in telomere length 
(18), and the combined score presented 
here explains only 0.14% of the variation 
in melanoma risk (McFadden’s pseudo-r2). 
This order of magnitude is unsurprising for 
such a score. To put these values in context, 
the most statistically significant single SNP 
for melanoma risk in the Leeds data set is 
rs258322, near MC1R (the red hair gene); it 
explains 5.7% of the variation in pigmen-
tation but only 1.29% of the variation in 
melanoma risk.

The biggest limitation of the present 
study is that it only considers the effect 
on melanoma risk of the seven most sta-
tistically significant loci from the telomere 
length GWAS, as these are the only ones for 
which results are publicly available. Ideally 
we would have included a larger number 
of potentially telomere-associated SNPs, 
rather than just those reaching genome-
wide statistical significance.

Our findings do not imply that tel-
omere length acts directly on cancer risk 
and could reflect pleiotropic effects of 
telomere-length loci (such as the ease with 
which telomerase is reactivated in a mel-
anocytic nevus). However, a mechanism for 
melanoma has been proposed, namely that 
longer telomeres increase the duration of 
proliferation of cells in a melanocytic nevus 
(11). If senescence is delayed in melano-
cytes, this could allow further mutations to 

occur, increasing the chance of malignancy 
(10). This is the first time that a strong 
association between multiple telomere-
associated loci and any disease risk has been 
established.
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