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Abstract  

Computer simulation of ferroelastic materials reveals dynamic polar vortex structures related to 

flexo-electricity between cation and anion lattices. At finite temperatures the vortices are found 

to flicker in time and space. Widely spaced ferroelastic twin boundaries nucleate vortices while 

dense twin boundaries suppress them. The time averaged number of vortices at any site decays 

exponentially indicating the highly mobile dynamics of the vortex lattice. Applied electric fields 

break the rotational symmetry of vortices and finally destroy them. The total number density of 

vortices follows a field and temperature dependence as 0 VF( ) / [1 Aexp( / k( ))]N E N E T T    

with TVF<0. The observed vortex structures are akin to those observed in magnetic and 

superconducting disordered vortex lattices.  
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Evans at al.
1
 investigated the magnetic switching of ferroelectric domains in multiferroic PZTFT 

at room temperature and questioned the coupling mechanism between electric and magnetic 

degrees of freedom. They enumerated several aspects of their experimental observations, which 

are suggestive of a strain-mediated coupling: first, the magnetic fields cause changes in the 

ferroelastic, and not simply the ferroelectric, domain components of the microstructure; second, 

some amount of reversibility in domain reorientation has been observed while the magnetic 

fields often cause sporadic and unpredicted changes in domain states which are commensurate 

with sudden releases of elastic energy; third, the order of magnitude of the coupling coefficient is 

comparable to those found in heterostructures where strain-mediated coupling is deliberately 

targeted, possibly through selection of piezoelectric-magnetostrictive materials combinations.
2
 

Similar sudden changes of polar and non-polar parameters are well known in disordered 

materials, where they follow power law distributions with all the characteristics of avalanche 

dynamics.
3
 Avalanches form when ferroelastic nanostructures change under fields and jam.

4
 

Vortex structures have also been experimentally observed in wall-conducting BiFeO3.
5
  

 

No general mechanism has been proposed which could explain why some materials show 

simultaneously avalanche dynamics (jerks), polarity, and vortices. In this paper we follow the 

previous observation from computer simulations which shows that ferroelastic twin walls may 

become locally polar 
6-9

 via an effective flexo-electric coupling between charged sublattices. The 

symmetry compatibility of polarity in twin walls was already described first in the pioneering 

papers by Janovec and collaborators.
10

 We then argue that polar vectors arrange themselves on a 

mesoscopic scale as vortex structures. In recent work, similar static vortex structures in 

ferroelectric materials have been seen in phase field simulations when flexo-electric coupling is 

explicitly included in the interactions.
11

 In this paper we will show that the implicit flexo-effect 

of charged sublattices leads to a different phenomenon which may also explain the avalanche 
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dynamics of polar materials. We show that polar vortices are stable in number but unstable in 

their position: they flicker.  

 

The generic model consists of two sublattices with positive and negative charges (Fig. 1). The 

atoms of the ferroelastic sublattice have negative elementary charges (-1.602×10
-19 

Clb) while 

the second sublattice has positive elementary charges. Both sublattices have identical numbers of 

atoms to ensure electric neutrality. Long range Coulomb interactions and short range interatomic 

potentials govern the interaction between the two sublattices. We calculate the Coulomb 

interactions in the Ewald construction with a dielectric constant of 1000 which is typical for the 

incipient ferroelectric materials. Short range interatomic potentials are designed for the two 

sublattices separately, they mimic the chemical bonds. The interactions of ferroelastic sublattice 

consist of three components: (1) harmonic nearest neighbor interactions, 2U( ) 20( 1) r r , (black 

springs in Fig. 1), (2) double well potentials for next nearest neighbors, 

2 4U( ) 10( 2) 2000( 2)    r r r  ( gray sticks along diagonals in Fig. 1); and fourth order 

interactions between the third nearest neighbors, 4U( ) ( 2) r r  where r is the distance vector in 

units of angstrom. Double well potentials between next nearest neighbors were designed with the 

inspiration from Landau potentials to form a 4° shear angle for the ferroelastic sublattice. These 

non-convex interactions reduce the symmetry of the square or cubic unit cell to monoclinic and 

hence generate spontaneous twinning. The second sublattice is placed inside the large cavities of 

the ferroelastic sublattice. The interactions among the second sublattice contain two convex 

components: harmonic nearest-neighbor springs (the same as in the ferroelastic sublattice, green 

springs in Fig. 1) and 6th order springs between the second nearest-neighbors, 

6U( ) 3000( 2) r r . These convex potentials stabilise the rectangular sublattice. Both sublattices 

are coupled by harmonic springs, 22
U( ) 0.1( )

2
 r r , and by Coulomb forces between the 
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cations and anions.  

 

The initial configuration is a two-dimensional sandwich with two pre-existing horizontal domain 

boundaries. The phase transition and microstructure of the ferroelastic structure is essentially the 

same if simulated in two or three dimensions, we profit here from the better statistical averaging 

in the two-dimensional structure.
12

 The typical geometry was 10nm×10nm and time steps of 

0.005 ps. Periodic boundary conditions are adopted to avoid surface effects. The system was first 

relaxed using a conjugate gradient method to find the optimal position for each lattice point. 

Each configuration was then annealed at a given temperature between 1K and 150K for 2500 ps. 

An electric field was applied perpendicular to the initial twin boundaries after annealing at 

temperatures. The simulations were performed using the computer code LAMMPS.
13

 NPT 

ensemble was used in the isothermal and isobaric simulations. The temperature of the sample 

was held constant by the Nosé-Hoover thermostat.  

 

The macroscopic spontaneous strain is determined by the macroscopic shear angle of the bulk 

after annealing. It decreases with increasing temperature and shows a ferroelastic phase 

transition at TC=100K (Fig. 2). The ferroelastic twin walls remain at their initial positions after 

annealing at low temperatures. Spontaneous nucleation of additional twin boundaries occurs near 

the transition point. During heating, these additional twin boundaries appear at 0.9TC (Fig. 3) the 

microstructure then evolves into cross-hatch tweed structures 
14

 at temperatures above TC.  

 

Dipoles form spontaneously and organise themselves on a mesoscopic scale. The most common 

pattern involves vortices which are recognised by the collective rotation of dipoles on a scale of 

some 1nm. In the middle of a vortex is a core with a diameter of 5 lattice constants. The vortex 

strength is calculated as the integral of the absolute dipole displacement inside the core. Vortices 
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do not form static lattices in our simulations but are highly mobile (Fig. 3(a)) and ‘flicker’ in the 

same way as tweed nanostructures flicker in ferroelastic structures.
14

 The total number of 

vortices also fluctuates with time, its number density is Gaussian distributed. The system 

contains very few vortices at very low temperatures where thermal excitation is weak (Fig. 3(b)). 

With increasing temperature, the number of vortices increases dramatically and reaches 

saturation. A singularity was found in the phase transition temperature interval (Fig. 3(b)). 

Widely spaced twin boundaries nucleate vortices while high dense twin boundaries suppress 

vortices. The averaged vortex strength is dominated by thermal excitation but is enhanced in the 

transition temperature interval when the dipoles inside the twin boundaries contribute to vortices 

(Fig. 3(b)).  

 

The number of vortices decays exponentially with time at any site (Fig. 4(a)) when the dipoles 

are time-averaged because vortices nucleate, move, and decay. The decay exponent is constant at 

low temperatures and reaches a minimum near the transition temperature because the polarity in 

the additional twin boundaries increase thermal disorder and hence increase the flicker of the 

vortices (Fig. 4(b)). The number of vortices is almost unchanged at high temperatures above TC 

where dynamical tweed structures are formed. 

 

The field dependence of the vortex structure was measured using electric fields perpendicular to 

the twin walls (Y direction in Fig. 3(a)). The fields break the rotational symmetry of vortices and 

finally destroy them. The number of vortices decays with increasing electric field strength E 

(shown in Fig. 5). This decay follows 0 0/ [1 Aexp( / )]N N E E   where N0 is the number of 

vortices without electric field and E0 is proportional to T-TVF with TVF= -0.45TC. This leads to an 

effective incipient Vogel-Fulcher behaviour where the energy E0 reaches zero at negative 

temperatures. Such behavior is not unusual for the transition of incipient ferroelectrics such as 
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SrTiO3 where the extrapolated ferroelectric transition occurs at negative temperatures and where 

the glass freezing temperature is also negative.
15

 

 

The simulated vortex structures explain avalanche behaviour (jerks) by jamming 
12

 and show that 

strain induced coupling with polar properties is rather straightforward for twinned 

microstructures. The jerks are the same as simulated already for the ferroelastic lattice under 

strain deformation. In addition, the rapid movement and the field induced destruction of vortices 

also couple to the strain variable and can be observed by acoustic emission and dielectric 

measurements. Skyrmion lattices with magnetic vortex structures
16

 are similar to our polar 

vortex structures so that coupling between dipolar vortices and magnetic vortices becomes 

possible and may explain the origin of electric-magnetic coupling via a common strain. 

Superconducting vortex lattices follow a similar pattern with no long range order
17

 and also show 

jerky large scale oscillations under external fields.
18

 Direct observations of vortices in 

multiferroic materials are not uncommon (e.g. YMnO3 in Ref. 19) so that we believe that the 

gradient (flexo-) effects discussed in this paper are universal and a rather common phenomenon 

in multiferroic materials while their direct observation still remains elusive. 
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Figures:  

 

 

FIG. 1.  Model with two charged sublattices. Coulomb interactions and interatomic interactions are combined 

in the model. The interatomic interactions between the nearest-neighbors are harmonic (shown by springs). 

Non-convex interactions (gray sticks) along diagonals in the ferroelastic sublattice lead to the formation of 

twin structures. 

 

 

FIG. 2.  Square of the macroscopic shear angle (proportional to the spontaneous strain) as function of 

temperature. The temperature scale is normalised by the ferroelastic phase transition temperature TC=100K. 
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FIG. 3.  Analysis of the observed vortex structures. (a) Vortices flicker at 0.9TC. Vortex structures are shown 

at t0+∆t (black), t0+2∆t (blue), t0+3∆t (green), t0+4∆t (purple) and t0+5∆t (red) where reference time t0 = 2500 

ps and time increment ∆t = 0.05 ps. (b) Time averaged number of vortices <N> and vortex strength <strength> 

variation with temperature. Singularity happens in the phase transition interval when additional twin 

boundaries nucleate. 

 

 

 



 

9 

 

FIG. 4.  (a) The number of vortices decays exponentially when the dipole movements are averaged over time. 

The decay follows N ~ exp(-t/t0). Data at 0.3TC (black triangles), 0.9TC (dark blue circles), 0.96TC (green 

triangles), 0.99TC (purple squares), 1.1TC (orange diamonds), 1.2TC (light blue circles) and 1.5TC (red squares) 

are shown in the graph. (b) The decay parameter 1/t0 is constant at low temperatures and reaches a minimum in 

the transition temperature interval. The number of vortices is almost unchanged at temperatures above TC. with 

1/t0 ≈ 0. 

 



 

10 

 

FIG. 5.  The number of vortices decays with increasing electric field E. The decay follows Vogel-Fulcher  

type statistics N0/[1+Aexp(E/E0)] where E0 ~ T-TVF shown in the inset graph. N0 is the number of vortices 

without electric field and the extrapolated temperature TVF = -0.45TC. 
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