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Abstract

In this paper we solve the hedge fund manager’s optimization problem in a
model that allows for investors to enter and leave the fund over time depending
on its performance. The manager’s payoff at the end of the year will then
depend not just on the terminal value of the fund level, but also on the lowest
and the highest value reached over that time. We establish equivalence to an
optimal stopping problem for Brownian motion; by approximating this problem
with the corresponding optimal stopping problem for random walk we are led
to a simple and efficient numerical scheme to find the solution, which we then
illustrate with some examples.

1 Introduction.

The fee structure of a hedge fund typically consists of two components, a fixed man-
agement fee1, charged on all assets under management, and a performance fee2,
charged on any gain achieved on the funds invested. The exact contractual agreement
has to specify between what dates the gain must have been recorded, what happens
to the management fee for funds deposited for part only of a period of reckoning, and
many other details, such as any restrictions on investors’ freedom to withdraw funds
with or without notice periods. We shall simplify the problem here, by assuming
that the performance fees are charged at the end of each year on all funds held at
the end of the year3, and the gain is calculated as the increase in value of the funds
from the time they were deposited in the the fund, or from the beginning of the year,
whichever is later. Thus the baseline for calculating the performance fee resets at the

1This will usually be a relatively low percentage, 2% being common.
2This is usually charged at quite a high rate, 20% being common.
3It may be that some funds are withdrawn before the end of the year, and could in principle

be liable to pay performance fees, but we shall ignore this, on the grounds that investors would be
unlikely to withdraw funds while they were ahead.

1



beginning of each year. We shall suppose that the management fee is charged only
on the funds still under management at the end of the year; this is a simplification,
but as the management fee is typically of smaller magnitude, it is relatively innocent.

In principle, the total fees charged at the end of the year by the hedge fund to its
clients would depend on the entire history of investments and withdrawals through
the year, as well as on the actual performance path of the hedge fund. We shall
propose a simplified mechanism for this, which involves some story about how the
quantity of assets under management varies as the level of the hedge fund fluctuates,
and is explained in detail in Section 2. This story captures the key features that the
AUM rise as the level of the fund rises, and fall as the level falls; that newly-invested
funds enter at the current level; and that funds withdrawn will have entered the fund
at a level above the current level. The story we tell is not perfect, but has the crucial
simplifying property that the fees paid will depend on the level of the fund at the start

of the year, at the end of the year, and on the highest and lowest levels attained. This
saves us from the need to carry along as a state variable the entire profile of the levels
at which the current AUM entered the fund, which then would be impossibly clumsy
to work with (compare with the study of Dybvig & Koo [3] on wash sales).

In a seminal contribution to this subject, Goetzmann, Ingersoll and Ross [4] pro-
vided closed-form solutions to a model which differs from ours fundamentally in that
the performance fee is considered to be paid out continuously over time (with a high-
water mark provision). This has the undesirable side-effect that at the end of the
year, the manager’s reward is a function only of the high-water mark. Guasoni and
Ob loj [5] followed a similar approach with a continuously paid performance fee, but
modelled the manager as a utility optimiser himself, also resulting in (asymptotic)
closed-form solutions.

Accepting this simplified model, we find ourselves with an optimal control problem
for the hedge fund manager, in which the objective is a function of the initial, final,
highest and lowest values taken by the controlled process in the year. We shall
suppose that the riskless rate is zero, and that the hedge fund manager is in fact just
investing in assets which fluctuate but have no drift. This ignores a fund manager’s
presumed ability to pick winners, time the market, anticipate roll dates, or any other
marketing boast; this may be unjust at the level of a single talented manager, but
not too far from the situation for the industry as a whole. An alternative justification
is that while the assets invested in might have a positive drift, the manager will take
expectations under an equivalent measure which removes the drift, as a risk control
measure.

The level of the fund will therefore evolve in our model as a martingale, which
for simplicity we suppose is continuous; the manager can adjust the volatility of
the level process by choosing a smaller or larger position in the risky assets, but he
cannot affect the drift. Nevertheless, he has an incentive to embrace some risk, as
he has a call option interest in the level of the fund, as well as the performance fee
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incentive. Since any continuous martingale is a time change of Brownian motion,
we begin our analysis by converting the manager’s problem into an optimal stopping
problem for a Brownian motion. This is not quite as obvious a step as might at
first sight appear, as we explain in Section 2.1. The next step is to convert the
optimal stopping problem for Brownian motion into an optimal stopping problem for
a symmetric simple random walk (SSRW), whose value will be close to the value of
the original problem; the difference is analyzed and estimated in Section 2.2. While
it would be possible to write down some formulation of the solution to the original
continuous problem, it would not be particularly digestible, and there would then be
the issue of existence and uniqueness of solutions. Since we do not expect ever to
be able to exhibit any closed-form solution, we are forced to numerical methods to
gain understanding; and these are naturally discrete in nature. Our estimates allow
us to be quite precise about the error committed by the approximation. Finally, this
problem can be solved quite efficiently numerically, as we demonstrate in Section 2.3.

We then return in Section 3 to the hedge fund manager’s problem, where we state
our modelling assumptions on how cash flows into and out of the fund as the level
of the fund varies, converting the manager’s objective into one of the type studied in
Section 2. We then present numerical solutions of this problem. Section 4 concludes.

2 From investing to stopping.

In this Section, we firstly show that the investment problem can be recast as a
stopping problem for Brownian motion; then we show that this stopping problem can
be approximated by the corresponding stopping problem for SSRW; and finally we
explain the algorithm for solving this SSRW stopping problem.

2.1 The investing/stopping equivalence.

We suppose that the level of the fund is w0 at time 0, and evolves as

dwt = θtdWt (1)

for some previsible process θ for which the stochastic integral is defined, where W is
a standard Brownian motion. We define

wt ≡ inf{ws : s 6 t}, w̄t ≡ sup{ws : s 6 t}, (2)

and we suppose that the objective of the manager of the fund is

sup
θ

EF (w1, w1, w̄1) (3)
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for an F : (−∞, w0] × R × [w0,∞) → R for which the above expectation is always
well-defined (continuous and bounded from above or below, say). The well-known
Dubins-Schwarz result says (informally) that any continuous local martingale is a
time-change of a Brownian motion4. More precisely, if we extend the definition (1)
of w beyond time 1 by setting θt = 1 for all t ≥ 1, and set

At ≡
∫ t

0

θ2s ds, τt ≡ inf{s : As > t}, (4)

then Bt ≡ w(τt) defines a Brownian motion relative to the filtration Gt ≡ Fτt , and
each At is a G-stopping time. It follows directly that

wt = B(At), wt = inf
06s6At

Bs ≡ B(At), w̄t = sup
06sAt

Bs ≡ B̄(At), (5)

As a consequence, were it not for the fact that A1 is not in general a stopping time

for B, the following result would be trivial.

Lemma 1 For a continuous F , bounded from above or below, the equality

sup
θ

EF (w1, w1, w̄1) = sup
T∈T

EF (BT , BT , B̄T ) (6)

is valid, where T denotes the set of stopping times of the Brownian motion B.

Remarks. Suppose that M is a continuous martingale which runs like a Brownian
motion until some independent exponential random time T , then stands still for one
unit of time, and then resumes Brownian motion. The quadratic variation process
[M ] grows at rate 1 except in the interval [T, T + 1], where it remains constant. It
is quite easy to show that [M ]T is a G-stopping time, but it is impossible to discover
what [M ]T = T was just by looking at the time-changed Brownian path Bt = M(τt).
Thus we expect the left-hand side of (6) to be at least as big as the right-hand side,
but it is not initially obvious that the two sides are the same.

Proof of Lemma 1. See Appendix A.

2.2 Approximation by random walk.

Thanks to Lemma 1, we are now left to solve an optimal stopping problem for a
Brownian motion whose stopping reward is a function of its current value, minimum
and maximum,

V = sup
T∈T

EF (BT , BT , B̄T ). (7)

4See [7] Theorem IV.34.11 for a very general version of the Dubins-Schwarz result.
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Although suppressed in the notation, we think of V as a function of the starting
values X0 ≡ (B0, B0, B̄0). It should come as no surprise that we can approximate V
uniformly by a stopping problem for a SSRW wh on the grid B0 + hZ,

V h = sup
T∈T̂

EF (wh
T , w

h
T , w̄

h
T ), (8)

where T̂ represents all (discrete) wh-stopping times.

Lemma 2 Let F be uniformly continuous: there is some continuous function ψ tend-

ing to zero at zero such that for all x, x′

|F (x) − F (x′)| 6 ψ(‖x− x′‖).

If the optimization problem is well posed, then

|V h(X0) − V (X0)| 6 ψ(h
√

3). (9)

Proof of Lemma 2. See Appendix B.

2.3 Solving the random walk stopping problem.

Given that we have now replaced the original investment problem with an optimal
stopping problem for a SSRW, we are in a position to solve it by numerical means5.
This confines us to examples which are finite, and for this reason we assume that
the random walk will be stopped once it leaves some interval (w∗, w

∗) containing w0.
Now suppose that w∗ = w0 −mh, w∗ = w0 + nh for some positive integers m,n, and
introduce the notation

Fjk(i) = F (w0 − jh, w0 + ih, w0 + kh), Vjk(i) = V h(w0 − jh, w0 + ih, w0 + kh)

for −m 6 −j 6 i 6 k 6 n. We have that Vjk > Fjk always, and that if j = m
or k = n equality holds, since the random walk must have stopped by the time it
reaches those points. We can now solve recursively for the value function V rather as
we would solve a dynamic programming problem. We shall have that for −j < i < k

Vjk(i) = max{Fjk(i), 1

2
(Vjk(i+ 1) + Vjk(i− 1)) } (10)

and at the ends of the interval we have

Vjk(−j) = max{Fjk(−j), 1

2
(Vjk(−j + 1) + Vj+1,k(−j − 1)) } (11)

Vjk(k) = max{Fjk(k), 1

2
(Vj,k+1(k + 1) + Vjk(k − 1)) }. (12)

5It is inconceivable that we may be able to find closed-form solutions, except in some very
contrived examples.
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Figure A: Filling in the value function

The situation is illustrated in Figure A, where we plot the grid of (w, w̄) pairs, and
imagine that we are looking down on a cube, each point of the form (w0−jh, w0+kh)
being the projection down into the plane of points of the form (w0− jh, w0 + ih, w0 +
kh), −j 6 i 6 k. At every point of the upper right boundary of the rectangle, where
either j = m or k = n, the value function is equal to F and is therefore known. Now
we work out the values Vm−1,n−1(i), by solving the optimal stopping problem (10)
with the boundary conditions (11) and (12). The two boundary conditions require
knowledge of V at (m−1, n) and at (m,n−1); but these values are the known, since
we know V = F on the solid upper right boundary of the rectangle. Now we calculate
the value of Vm−2,n−1. This time, we need to know V at (m − 2, n), where it agrees
with F ; and at (m−1, n−1), which we calculated at the first step. Continuing in this
fashion, we are able to calculate the values of V at all points of the form (ℓ, n − 1),
represented by big dots in Figure A. In like fashion, we can then work out the values
of V at all points (m − 1, ℓ) marked with diamonds, which gives us the values of V
not only at the upper right boundary, but at the the next layer in, depicted by the
dots and diamonds in the diagram. But now we have reduced the size of the rectangle
by one in each direction, so we can repeat the method just explained to find all the
values of V on the dot-dash lines. Proceeding similarly gives us the solution V .

Remarks. At each node (j, k) of the rectangle in Figure A we have to solve an

6



optimal stopping problem for random walk in {i : −j − 1 6 i 6 k + 1}, where the
random walk is absorbed at the endpoints −j−1 and k+1, with values Vj+1,k(−j−1)
and Vj,k+1(k+ 1) respectively, and with stopping values Fjk(i) at interior points. The
value has a geometric interpretation as the least concave majorant of the function
defined by the stopping values, and can be calculated rapidly and accurately by policy
improvement.

It may happen that for a given (j, k) the optimal stopping solution is not to stop
in the interior6, but otherwise there will be a smallest value w0 + qh = ηl(j, k) and
a largest value w0 + ℓh = ηu(j, k) at which Vjk(i) = Fjk(i). At times τ when the
random walk reaches a new maximum wτ = w̄τ = w0 + kh, it will thereafter continue
until either it hits wτ + h, or it hits ηu(j, k), where wτ = w0 − jh. If it hits the lower
barrier ηu(j, k) before it hits w0 + (k + 1)h, then it will stop there for good, unless
ηu(j, k) = w0 − (j + 1)h, in which case a new minimum has been achieved, and the
random walk can continue to move.

3 The Hedge Fund Manager’s Investing Problem.

We return to the problem introduced in Section 2 of the hedge fund manager, who
can control the level wt of the fund through the position θt in the risky asset. As the
level of the fund goes up and down, the assets under management vary. We propose
a very simple story for this which allows us to represent the manager’s problem in
the form (3), which can then be solved by the techniques just presented.

The basic idea is that there is some C1 non-negative function ϕ such that at any
time τ when the level process w is at its running maximum, wτ = w̄τ , the profile of
the basis levels of the assets in the fund should be given by

ϕ(x)dx, 0 6 x 6 w̄. (13)

So in particular, the total assets under management at τ would be Φ(w̄) ≡
∫ w̄

0
ϕ(x) dx.

If we demanded that ϕ was increasing, this would represent a situation where the
more successful the fund, the more people would bring their money to it.

What happens as the level of the fund falls back from its running maximum?
Investors will take their money out of the fund; as the level rises again, investors will
put money in. Now as the level rises again and new money comes into the fund, the
basis at which that new money was invested has to be the current level. In order to
retain tractability, we shall insist that when money is withdrawn from the fund as
the level falls, it is removed only at the current level. This is a restrictive assumption,
but we make it nevertheless. So as the level falls, a fraction (1 − p) of the assets

6In this case, we define ηl(j, k) = w0 + (k + 1)h and ηu(j, k) = w0 − (j + 1)h
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invested at the current level are removed from the fund, so that in general the profile
of basis values in the fund is

ϕ(x)I{x6wt} + pϕ(x)I{wt6x6w̄t}, (14)

which is consistent with (13) when wt = w̄t. The assumption we make means that
if the level of the fund falls a long way, there will be still quite a lot of assets which
came in at a higher level, and have not been taken out yet. This could be understood
in terms of the reluctance of investors to realize a loss; investors would be willing to
come out at zero gain, and they do in our story, but they would never come out if
they would thereby realize a loss.

This is not the whole story, because the performance-related part of the manager’s
fees will be measured relative to the level w0 of the fund at the start of the year. We
shall therefore suppose that initially the profile of basis levels is a point mass at w0 of
magnitude Φ(w0), and that if the level falls to w then the funds (1−p)(Φ(w0)−Φ(w))
which would be removed if the profile ϕ extended through (0, w0) will be removed
from the atom at w0. Thus when the minimum value of the level is w, the size of the
atom at w0 will be

Φ(w0) − (1 − p)(Φ(w0) − Φ(w)) = pΦ(w0) + (1 − p)Φ(w). (15)

Thus overall the profile of the basis levels will be
[

ϕ(x)I{wt6x6wt} + pϕ(x)I{wt6x6w̄t}

]

dx+
{

pΦ(w0) + (1 − p)Φ(w)
}

δw0
. (16)

Integrating this gives the total assets under management as

AUM = Φ(w) − Φ(w) + p(Φ(w̄) − Φ(w)) + pΦ(w0) + (1 − p)Φ(w)

= (1 − p)Φ(w) + p(Φ(w̄) − Φ(w)) + pΦ(w0). (17)

We shall suppose that there is some constant β ∈ (0, 1) such that the manager receives

MF = β × AUM (18)

as the management fee. The profile (16) allows us to calculate the performance
component of the manager’s reward, which will be

PF = α
[

∫ w

w

(w − x)ϕ(x) dx+ (w − w0)
+
{

pΦ(w0) + (1 − p)Φ(w)
} ]

. (19)

3.1 Numerical examples.

We suppose that the manager is risk averse, so he tries to maximize

EU(MF + PF). (20)
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Figure B

In this first example, we take U = log(x), ϕ =
√
x ∧K, α = 20%, β = 2%, p = 0.3,

w0 = 1, Φ(w0) = 1 and K = 3. Figures 1 and 2 illustrate the resulting payout
function F = U(MF + PF) as a function of the three variables (w,w, w̄). Since it is
decreasing in w, increasing in w̄, as well as S-shaped in w (first convex, then concave),
we expect non-trivial results from the stopping problem.

It is worth understanding why this should be. For fixed (w, w̄), the optimal
stopping problem is on the grid {w−h, w, ..., w̄, w̄+h}, where if we stop at x ∈ [w, w̄],
we get reward F (w, x, w̄), but if we stop at one of the endpoints, we get (at the
upper endpoint for example) F (w, w̄ + h, w̄ + h). This value can be (and in places
is) significantly bigger than F (w, w̄, w̄), so we see a picture like Figure B. But if the
values at the endpoints are somewhat lower, there can be stopping in the interior.

Figure B illustrates the typical situation for values (w, w̄) close enough to (w0, w0)
that it is beneficial to keep going; the set of such values we call the continuation region.
Figure C illustrates the situation once (w, w̄) has moved sufficiently far from (w0, w0).
Figures 3 and 4 plot out the continuation region and the barriers ηl, ηu for our first
example. Various comments are in order

(i) If for some (w, w̄) there is optimal stopping at some interior value, then both
ηl < w̄+h and ηu > w−h. It is not possible to have ηl < w̄+h and ηu = w−h,
or ηu > w−h but ηl = w̄+h. Note that if ηl < w̄+h (and therefore ηu > w−h),
we always have ηl ≤ ηu.

(ii) In the plots computed, the continuation region is a connected set. In general
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Figure C

for an optimal stopping problem with stopping reward g(w,w, w̄) this does not
need to happen.

(iii) In the plots computed, we have the property that if (w, w̄) is not in the continu-
ation region, then neither is (x, y) for any x ≤ w, y ≥ w̄. This means that once
(w, w̄) leaves the continuation region, no further crossing of [w, w̄] will happen.
So if we first leave the continuation region by an increase of w̄, then w will
not go any lower; we would always choose to stop before that happened. This
would be the case of a successful fund which has risen in value; the manager
will stop only if the falls for enough from the maximum to endanger the gains
and we find that actually only a small fall will trigger stopping. If (w, w̄) leaves
the continuation region by w falling, we are seeing an unsuccessful fund which
has made significant losses. There we see that the stopping barrier is actually
quite high; the manager will keep on gambling in the hope of recovering some
of the losses and will either gamble to extinction or until enough of the losses
have been recovered that he will choose to stop.

Further plots are displayed for ϕ(x) = x ∧ K and ϕ(x) = 5
√
x ∧K instead of the

square root. In the first case, this means that the fund size increases faster when the
fund is successful and decreases slower when the fund is unsuccessful. The results are
qualitatively similar (Figures 7 and 8), but the continuation region is larger. Since
the manager enjoys the upside more and is less afraid of a downturn, he is willing to
wait longer. The opposite happens in the second case, where the fund size will only
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increase slowly when the fund is successful and decrease rapidly when the fund is
unsuccessful. This causes the fund manager to stop sooner; the continuation region
is smaller (Figures 9 and 10).

4 Conclusions.

We have taken the problem of a fund manager whose objective is to maximize the
expected utility of his wealth, which is made up of a performance fee and a man-
agement fee. Under certain simplifying assumptions, we argue that his objective is a
function only of the terminal level of the fund, and the maximum and minimum levels
achieved by the fund. A general argument equates the investment problem to a cor-
responding optimal stopping problem for Brownian motion, which we approximate
by discretizing the Brownian motion to a random walk; in this form, the problem
can be solved efficiently numerically, and we illustrate the optimal stopping rule with
some numerical examples.

While stopping problems for Brownian motion based on the value and the running
maximum are much studied (see Azéma & Yor [1] for a seminal contribution), there
has been less attention to stopping problems involving the value, the running maxi-
mum and the running minimum (though see the recent paper of Cox and Ob loj [2] for
an important contribution.) The existing literature deals with such questions in the
context of finding joint laws for the two (or three) variables B̄τ , Bτ (and Bτ ) which
are extremal in some sense7, and the analysis is typically quite detailed. The flavour
of the present study is somewhat different however, and we readily turn to numerical
methods because the problem is too complicated to be amenable to analysis.

5 Appendix A

Proof of Lemma 1.

First we prove that

sup
θ

EF (w1, w1, w̄1) ≥ sup
T∈T

EF (BT , BT , B̄T ).

If T ∈ T , the process

wt ≡ B

(

t

1 − t
∧ T

)

(21)

may be represented as

wt =

∫ t

0

I{s6T ′}
dWs

1 − s
, (22)

7See Rogers [6] where the stochastically largest maximum of a martingale whose terminal distri-
bution is specified is shown to be achieved by the Azéma-Yor construction.
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where T ′ = T/(1 + T ) and W is the standard Brownian motion defined by

∫ t

0

dWs

1 − s
= B

(

t

1 − t

)

. (23)

Accordingly, (w1, w1, w̄1) = (BT , BT , B̄T ), proving the first inequality.
For the converse inequality, we first notice that

sup
θ

EF (w1, w1, w̄1) = sup
θ∈S

EF (w1, w1, w̄1) = sup
ε

sup
θ∈Sε

EF (w1, w1, w̄1), (24)

where S is the vector space of simple processes

θ =
n

∑

j=0

ZjI{tj<t6tj+1} (25)

for some 0 = t0 < t1 < . . . < tn+1 = 1, and Zj ∈ L∞(Ftj) for all j, and Sε = {θ ∈
S : |θ| ≥ ε}. So it will be sufficient to show that whenever we have some θ ∈ Sε then
there is some Brownian motion B with canonical filtration (Bt) and a (Bt)-stopping
time T such that

EF (w1, w1, w̄1) = EF (BT , BT , B̄T ). (26)

Given θ ∈ Sε of the form (25), we form the quadratic variation process

At =

∫ t

0

θ2s ds, (27)

and define Bt = w(τt), where τ is the continuous strictly-increasing inverse to A.
Next define

Tk = Atk =

k−1
∑

j=0

Z2

j (tj+1 − tj). (28)

We claim that for each k, Bs = Fτs for all 0 6 s 6 Tk. It is clear that BTk
⊆ Ftk , but

we shall prove by induction that equality holds for all k. Evidently equality holds
for k = 0, since both σ-fields are trivial. Suppose true up to some value of k. Then
B(Tk) = F(tk), and so Zk is B(Tk)-measurable. Now for 0 6 s 6 Tk+1 − Tk we have

BTk+s −BTk
= Zk{w(tk + sZ−2

k ) − w(tk) } (29)

and therefore we can deduce the path (w(tk+u))06u6tk+1−tk from the path of (Bu)06uTk+1
),

since Zk is B(Tk)-measurable. This extends the conclusion out to k + 1, and hence
for all k, and the equality (26) follows from taking the case k = n, where T = Tn and
tn = 1.
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6 Appendix B

Proof of Lemma 2. For h > 0 we are going to embed a scaled random walk in our
Brownian motion. Let therefore σh

0 = 0 and

σh
n+1 = inf{t > σh

n; |Bt − Bσh
n
| = h}, n ≥ 0.

Then wh
n = Bσh

n
, n ≥ 0 clearly defines a random walk on B0 + hZ satisfying

‖(Bt, Bt, B̄t) − (wh
n, w

h
n, w̄

h
n)‖ ≤ h

√
3, (30)

for σh
n−1 ≤ t ≤ σh

n+1, n ≥ 1. Any wh-stopping time τ naturally induces an B-stopping
time τ̂ = σh

τ with wh
τ = Bτ̂ , giving us

V ≥ V h. (31)

Moreover, for any B-stopping time τ ,

τh = inf{n ≥ 0; σh
n ≥ τ}

defines a wh-stopping time with

|wh
τh − Bτ | ≤ h, |w̄h

τh − B̄τ | ≤ h, |wh
τh −Bτ | ≤ h.

Hence

V h ≥ V − ψ(h
√

3). (32)

Combining (31) and (32) proves the desired result.
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Figure 1: F (w,w, w̄) for fixed w̄=2: S-shaped in w and decreasing in w.

Figure 2: F (w,w, w̄) for fixed w=0.2: S-shaped in w and slightly increasing in w̄.
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Figure 3: Surface plot of the upper stopping barrier ηl that becomes relevant when
we leave the continuation region by decreasing w. Here, ϕ(x) =

√
x ∧K.

Figure 4: Surface plot of the lower stopping barrier ηu that becomes relevant when
we leave the continuation region by increasing w̄. Here, ϕ(x) =

√
x ∧K.
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Figure 5: Trajectory of w, its minimum w and the upper stopping barrier ηl after
leaving the continuation region at (w, w̄) = (0.7, 1.95) by decreasing w.

Figure 6: Trajectory of the excursion process of w and the stopping barrier after
leaving the continuation region at (w, w̄) = (0.7, 1.95) by decreasing w.
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Figure 7: Surface plot of the upper stopping barrier ηl when ϕ(x) = x ∧ K. The
continuation region is considerably larger than in Figure 3

Figure 8: Surface plot of the lower stopping barrier ηu when ϕ(x) = x ∧K.
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Figure 9: Surface plot of the upper stopping barrier ηl when ϕ(x) = 5
√
x ∧K. The

continuation region is considerably smaller than in Figure 3

Figure 10: Surface plot of the lower stopping barrier ηu when ϕ(x) = 5
√
x ∧K.
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