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ABSTRACT  

Consumer and environmental safety decisions are based on exposure and hazard data, interpreted 

using risk assessment approaches. The adverse outcome pathway (AOP) conceptual framework 

has been presented as a logical sequence of events or processes within biological systems which 

can be used to understand adverse effects and refine current risk assessment practices in 

ecotoxicology. This framework can also be applied to human toxicology and is explored, based 

around investigating the molecular initiating events (MIEs) of compounds. The precise definition 

of the MIE has yet to reach general acceptance. In this work we present a unified MIE definition: 
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an MIE is the initial interaction between a molecule and a biomolecule or biosystem that can be 

causally linked to an outcome via a pathway. Case studies are presented and issues with current 

definitions are addressed. With the development of a unified MIE definition the field can look 

towards defining, classifying and characterizing more MIEs, and using knowledge of the 

chemistry of these processes to aid AOP research and toxicity risk assessment. We also present 

the role of MIE research in the development of in vitro and in silico toxicology and suggest how, 

by using a combination of biological and chemical approaches, MIEs can be identified and 

characterized despite a lack of detailed reports, even for some of the most studied molecules in 

toxicology. 

 

INTRODUCTION 

Toxicology risk assessment is vital to the safety of consumers, workers and the environment. 

Demands to produce assessments for an increasing number of compounds with fewer resources 

while cutting down on the use of animal testing has lead the field to look to non-animal 

alternatives including in vitro and in silico approaches. A large amount of the chemical and 

biological cause for toxicity remains unexplored as in vivo studies that focus more on apical 

endpoints at the highest levels of biological organization have historically been the preferred 

method for safety evaluation. A combination of new approaches and methods in biology and 

chemistry will lead to greater understanding of the processes connecting chemical exposure and 

adverse outcome. The adverse outcome pathway (AOP) framework for risk assessment brings 

this knowledge together in an attempt to develop predictive methods for human and 

environmental toxicology.1 
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AOPs were first outlined for environmental risk assessment by Ankley in 20102 (Figure 1). 

The AOP can be defined as a sequence of events from the exposure of an individual to a 

chemical through to an understanding of the adverse effect at the individual level (for human 

health) or population level (for ecotoxicology).1 AOPs span multiple levels of biological 

organization, but always contain an initial molecular interaction between a compound and the 

organism that triggers subsequent effects at higher levels of biological organization. This 

interaction is the molecular initiating event (MIE).  

Figure 1. 

The chemistry of the MIE is important to understand when developing predictive methods for 

human and environmental toxicology. The chemistry of the molecule allows it to have specific 

MIEs. Because of this, links between chemical structure or chemical property and molecular 

initiating event will undoubtedly be stronger than links to toxicological endpoints, due to a 

smaller “jump” between chemical exposure and MIE. It is accepted that a single MIE could be 

the cause of multiple toxicological endpoints, or that a single endpoint may be the result of 

several MIEs. Several compounds with vastly different chemical properties could result in the 

same endpoint. Attempting to build structure activity relationships (SARs) and quantitative 

structure activity relationships (QSARs) around these molecules will be vastly simplified by 

examining groups of compounds based on understanding of their MIEs. 

A large amount of work has been done to group chemicals in toxicology based on receptor 

binding,3–6 one particular type of MIE. If a receptor has a single mechanism of binding, and 

hence is associated with a single MIE, we can confidently predict that a (Q)SAR based on this 

training set will be highly successful. However if the receptor is associated with several MIEs the 
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(Q)SAR will not be effective. By gaining knowledge of these MIEs we can work towards 

generating more useful sets of data.  

By combining knowledge about the MIE a compound is likely to activate with receptor 

binding and dose response data, and an understanding of adverse outcomes downstream in the 

AOP, quantitative predictions for new compounds could be made. 

The recent search for alternatives to animal based toxicity testing has been well documented.7,8 

The limitations of animal experiments have been discussed9–12 and new methods are being 

investigated to replace, reduce and refine approaches.13 The MIE/AOP framework looks for 

mechanistic understanding, rather than to directly replace existing assays. This understanding is 

based, as much as possible, on human relevant data rather than in vitro data generated on non-

human cells or read across from animal data. In this way mechanistic insights will aid a 

combination of approaches that will be required to reduce reliance on animal methods.14 

New technologies in the field of biology, giving greater knowledge of the exposure of 

chemicals in physiologically based pharmacokinetics (PBPK) modelling methods,15,16 more 

understanding of the biological processes in the -omics technologies,17–19 and a better sense of the 

holistic nature of biology through systems biology20,21 give great promise to the advancement of 

risk assessment. As these methods reach their full potential their discoveries can be implemented 

into an AOP/MIE approach. 

An MIE-based approach can assist the development of both in silico and in vitro methods 

through the mechanistic understanding of how assays work and what they tell us.22,23 The value 

and emergence of (Q)SARs cannot be ignored when using in silico toxicology.24 (Q)SARs have 

been developed as valuable tools for predicting acute aquatic toxicology and to classify aquatic 

toxicants, where little or no empirical data were available.25,26 They were also used in the 
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development of the fathead minnow database to assign modes of action to chemicals.27 In 

addition, QSAR based tools are already available to allow the prediction of metabolites formed 

from a parent chemical structure,28 such as Meteor,29 and MetaPrint 2D,30 (Q)SAR tools have 

already found use in human toxicology, in the fields of mutagenicity and carcinogenicity.31,32 

Read across methods in hazard classification and the development of modelling potential beyond 

structural similarity represent recent approaches to developing (Q)SARs. The acceptance and use 

of even simple SAR techniques such as read-across and expert systems should lead to a 

reduction in the number of compounds needing to be tested using animals.33 In toxicology 

(Q)SARs are currently used for screening rather than to provide leads for mechanisms.34 Our 

vision for such (Q)SARs to be anchored to an MIE (or a series of MIEs) will relate chemical 

properties to activity more directly than ever before (Figure 2). 

Figure 2. 

Classification of compounds by mode of action (MOA) using in vitro methods is already 

possible.35 Application of this technology to search by MIE would yield useful results to be fed 

into predictive methods and to identify AOPs. In vitro toxicology can gain from enhanced 

knowledge of MIEs as well, by aiding in the interpretation of results and enabling the targeting 

of testing.  

Interest in the application of MOAs and AOPs in predictive toxicology have already begun to 

appear, including the use of mode of action for aquatic toxicity prediction36 and the application 

of the skin sensitization AOP to a risk assessment.37 MIEs add a new level of understanding to 

MOAs and AOPs that is gaining attention as basis for work into QSAR development,38 category 

formation and read-across,39 and molecular modelling leading to mechanistic understanding.40 
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THE MIE 

As the key anchor for the AOP, and a commonly used term, an understanding of what an MIE 

is and how it should be defined is required. As AOPs become more prevalent, so will MIEs, 

particularly with the development of AOP maps and open source systems.41  

Several definitions for the MIE have been suggested: 

1) The initial point of chemical-biological interaction within the organism that starts the 

pathway42 or AOP.34 

2) Direct interaction of a chemical with specific biomolecules.43 

3) The molecular level, chemical-induced perturbation of a biological system.1 

4) Chemical interaction at a molecular target leading to a particular adverse outcome.1 

5) The seminal interaction (e.g. DNA-binding, protein oxidation, or receptor/ligand 

interaction) of a chemical with a biological target.1 

Having several competing definitions generates problems attempting to identify, classify and 

characterize MIEs. This raises the question: what exactly is an MIE? 

Current MIE definitions vary greatly depending on the field from which they originate and, 

hence, the types of interactions they are intended to describe. Some definitions omit a link to a 

pathway or endpoint. Some push the approach towards adverse outcomes, cutting off the term 

from being used to describe therapeutic applications. Some do not distinguish between the first 

molecular interaction in a pathway and any subsequent interactions. By taking the best features 

of the current definitions and using our database of MIEs44 drawn from existing literature we 
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suggest a unified definition to encompass all fields that should be useful to everybody using the 

concept of an MIE, and should promote discussion on the future of the area. 

Our unified definition is: 

A Molecular Initiating Event (MIE) is the initial interaction between a molecule 

and a biomolecule or biosystem that can be causally linked to an outcome via a 

pathway.  

As such, MIEs can encompass human and environmental toxicology, and are related directly to 

an outcome – adverse or otherwise. In the field of human toxicology, focus is on adverse 

outcomes, but we do not wish to exclude the use of MIEs in a therapeutic sense, as these may 

become toxicologically relevant for other chemicals or applications. For example a beneficial 

MIE fits well into pharmacological understanding as does an adverse MIE in overstimulation 

pharmacology. The distinction between adverse and therapeutic outcomes is less important than 

the applicability of the term MIE, as we expect the outcomes to be dependent on the dose.45 Even 

though a number of MIEs are discussed, and can be associated with one compound, they will not 

necessarily operate at the same dose or site, and as such quantitative dose-response kinetics are 

relevant. The question of the dose required to cause adverse outcomes can be better answered 

once a greater number of MIEs are characterized, (Q)SARs have been developed, and chemical 

processes are better understood.42 This definition includes covalent interactions, such as DNA 

binding, that are generally associated with the term, but also includes more subtle types of 

interactions with biosystems, such as proton tanslocation leading to mitochondrial uncoupling, 

and narcosis effects in basal cytotoxicity. Such interactions must be addressed from a 

toxicological standpoint, and their exclusion from an MIE database could lead to toxicities being 

missed in MIE based (Q)SAR approaches. 
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MIE EXAMPLES 

Several compounds have been investigated, using toxicological databases and existing 

literature to elucidate their MIEs, and characterize them to gain mechanistic understanding of the 

pathway. These cases are presented to illustrate the value of MIEs in the realm of human 

toxicology. The examples highlight the value of the unified definition and show how previous 

definitions of an MIE may have been less appropriate. 

To understand an MIE completely a lot of information is required. Information about 

chemicals that are associated with the MIE, structural features or properties of the chemical that 

causes its association, the types of interaction that occur between the chemical and biomolecule 

or biosystem, and the nature or structure of what the molecule interacts with. Obtaining all this 

information is very difficult, and partial information from different sources must be brought 

together when evaluating MIEs. Incompleteness in parts is to be expected as even the most well 

studied chemicals lack detailed reports of molecular interactions. However, insights can be 

gained without the entire picture. Here we report detailed investigations of acetaminophen, 

amiodarone, chlorpromazine, kojic acid, methotrexate and valproic acid (Figure 3). These 

structures have been chosen because they have diverse structures and activities, and because 

substantial amounts of data are available for all of them.  

 

Figure 3 

 

Acetaminophen 
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Acetaminophen (or paracetamol) is a widely used, mild analgesic. While safe at recommended 

doses, acute overdose of acetaminophen is well documented to cause potentially fatal liver 

failure. This risk is increased when combined with alcohol abuse.  

Acetaminophen is metabolized in several ways, but the most potentially hazardous is the P450 

oxidation by the enzyme CYP2E1 to form the toxic metabolite N-acetyl-p-benzoquinone imine 

(NAPQI).46–48 

While NAPQI only accounts for a small amount of acetaminophen ingested it is the main 

source of toxicity. This metabolism occurs in the liver, and hence most toxicity is located here.  

Glutathione, a scavenger of oxidizing species in the cell, binds to NAPQI covalently46,48 - 

forming a non-hazardous metabolite that is excreted in urine.  

When safe doses are exceeded the body’s natural glutathione defense is depleted and excess 

NAPQI causes oxidative damage to cellular proteins,46,48–50 lipids48 and nucleic acids49 as well as 

activating calpains.51,52 NAPQI is also involved in generating reactive oxygen species (ROS),49,50 

chemically reactive molecules containing oxygen such as superoxides, peroxides and oxygen 

radicals, causing oxidative stress. These outcomes can lead to a mitochondrial permeability 

transition (MPT)50,53–56 and can result in fatal hepatic damage.50–52,57–61 This toxicity is a good 

example of why dose must be accounted for – as only when the glutathione defense is overcome 

does the dose becomes toxic. 

The metabolism of acetaminophen to NAPQI is the initial mechanism behind acetaminophen 

hepatic toxicity, making it an appropriate MIE. The ability of acetaminophen to be oxidised in 

this way is responsible for its toxicity, making this an appropriate MIE from which (Q)SARs are 

developed. Our definition fits this as the initial interaction with the biomolecule CYP2E1 can be 

linked to liver failure via several AOPs. The interaction of NAPQI with glutathione, proteins, 
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nucleic acids or other biomolecules can be thought of as the MIE for NAPQI. However, with it 

not being the initial interaction this would be classed as another molecular interaction further 

along the AOP for acetaminophen. If the activations of a compound lack detailed study or the 

AOP is drawn differently, the MIE may change. For the purposes of this research, and to 

discover what it is about the administered drug that causes the adverse outcome, the initial 

oxidation is considered the MIE for acetaminophen. 

Liver toxicity and acetaminophen are also being explored in other AOP pilot activities.62 

Figure 4. 

 

Amiodarone 

Amiodarone is a class III antiarrhythmic agent used to treat atrial and ventricular arrhythmias 

by suppressing abnormal rhythms of the heart. Despite having several common side effects, 

amiodarone is used in cases where the arrhythmias are difficult to treat with other medication.  

Amiodarone is well reported to cause a condition known as amiodarone-induced pulmonary 

toxicity (APT), a combination of factors affecting the lung leading to pulmonary fibrosis.63–72  

This condition can be thought of as a combination of several factors discussed below, including 

phospholipidosis, steatosis, oxidative stress and mitochondrial uncoupling. This shows how an 

adverse outcome may be due to a combination of MIEs 

Amiodarone induces phospholipidosis via two distinct MIEs. The drug is a very potent (IC50 = 

7.0 µmol73) inhibitor of phospholipases,63,73–77 but the mechanism behind this is very poorly 

understood. Amiodarone also binds to the hydrophobic tail of phospholipids, making them 

resistant to breakdown.74,75,78–80  
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Amiodarone inhibits the cardiac enzyme carnitine palmitoyltransferase I (CPT-1)(IC50 = 228 

µmol,81 which is known to control fatty acid access to β-oxidation.55,56,81–87 Inhibition is thought 

to be hydrophobic in nature, but is poorly understood.55,56,81–87 Amiodarone also inhibits the 

microsomal triglyceride transfer protein (MTP), which secretes fatty acids from cells.86,87 Again 

the mechanism is poorly understood. Both of these MIEs lead to fatty acid and triglyceride build 

up in the cells, and microvesicular steatosis.55,56,81–83,85–88  

Amiodarone inhibits complexes I and II of the electron transport chain (ETC) via the 

coenzyme ubiquinone.55,56,82–85,89,90  This is thought to be due to the formation of a charge-transfer 

complex between amiodarone and the coenzyme, supported by hydrophobic interactions.85,89,90 

Inhibition of the ETC leads to ATP deficiency,84,90,91 and the generation of ROS, that cause 

damage to cellular proteins, lipids, nucleic acids55,56,63,89,92–95 and the mitochondrial permeability 

transition (MPT).55,56,92,96 

Amiodarone uncouples mitochondria due to its properties as a mild base (pKa = 6.691), and its 

ability to cross the inner mitochondrial membrane. Amiodarone is protonated at the tertiary 

amine and translocates the proton from the mitochondrial intermembrane space to the matrix, 

dissipating the proton gradient required for efficient ATP production.55,56,82,89–91 This MIE can be 

highlighted as the interaction between Amiodarone and the biosystem contained within 

mitochondria, as it does not interact with a biomolecule to have this effect. 

Amiodarone acts as an antiarrhythmic by inhibition of the human ether-a-go-go-related gene 

(hERG) channels.55,97–102 The key structure for binding is a basic nitrogen flexibly attached to an 

aromatic ring.97 The inclusion of hERG inhibition as an MIE highlights the importance of 

retaining therapeutic interactions as MIEs. Understanding the interactions between drugs and 
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their targets is valuable knowledge when searching for new drug compounds, and as such this 

should not be excluded. 

Figure 5. 

 

Chlorpromazine 

Chlorpromazine is a dopamine antagonist and antipsychotic, used to treat schizophrenia. 

Chlorpromazine is known to exhibit a number of toxicities including inducing hepatotoxicity and 

cardiac toxicity.  

Two metabolic pathways lead to toxic derivatives of chlorpromazine:  

• Peroxidase catalysed formation of the sulfur cation radical form of chlorpromazine.103  

• Ring hydroxylations by P450 processes at the 7104–106 and 8105 positions. This leads to 

further oxidations forming 7,8-dioxochlorpromazine.105 

These toxic metabolites are neutralised by sulfoxidation - sulfoxidised chlorpromazine 

derivatives are non-toxic.106  

Oxidative stress is brought on via the production of Reactive Oxygen Species (ROS) by the 

action of chlorpromazine metabolites.  

7-hydroxychlorpromazine is able to covalently bind to glutathione, depleting stocks of the 

scavenger, causing oxidative stress,104 much like NAPQI.  

7-hydroxychlorpromazine is also able to bind to other proteins in the cell, causing oxidative 

damage.104  

The chlorpromazine sulfur cation radical is a reactive species in itself. Co-oxidation of 

ascorbate, NADH and glutathione by the chlorpromazine sulfur cation radical, leads to oxidative 

stress.103  
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7,8-dihydroxychlorpromazine is able to generate ROS directly by reaction with molecular 

oxygen.105  

While all of these metabolites cause oxidative stress, the MIEs for these processes are the 

metabolic interactions leading to the formation of the metabolites. 

Chlorpromazine acts as an anti-psychotic via two MIEs. Chlorpromazine inhibits L-type 

calcium channels, preventing membrane depolarization and catecholamine secretion.107,108 It also 

inhibits nicotinic receptors, another pathway for preventing catecholamine secretion108. 

Dopamine, norepinephrine and adrenaline are notable catecholamines. Increased levels of 

dopamine and norepinephrine are among the factors responsible for causing schizophrenia. 

Chlorpromazine is known to cause phospholipidosis by inhibiting phospholipases.74 

Amiodarone causes the same AOP via phospholipase inhibition, and the MIE in this case is also 

poorly understood. The identification of several drugs activating the same MIE gives potential 

for structural comparison to identify features that may be responsible for poorly understood 

biological processes. 

Chlorpromazine is known to inhibit hERG channels, leading to drug induced QT syndrome; 

lengthening of the QT interval.107,109–111 This gives chlorpromazine proarrhythmic potential in the 

same vein as amiodarone, which also inhibits hERG channels. Unlike amiodarone, 

chlorpromazine is known to cause torsade du pointes, a potentially fatal arrhythmic 

condition.107,109–111  

Structural similarities between chlorpromazine and amiodarone known to be involved (flexible 

basic nitrogen attached to an aromatic ring) give mechanistic promise for this inhibition to be a 

single MIE activated by both compounds.  

Figure 6. 
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Kojic acid  

Kojic acid is produced by several species of fungi, including Aspergillus oryzae, known as 

Koji in Japan. It is found in several Japanese consumables including sake and soy sauce, leading 

to high exposures in Japan.112 It is best known as a mild skin-lightening agent, used in cosmetics, 

and as to preserve the color of foods.  

Kojic acid is effective as a skin lightening agent via the inhibition of melanosis, the process by 

which the dark pigment melanin is formed.112–117 The inhibition of tyrosinase is the primary 

action of the drug, via three MIEs:  

• Chelation of kojic acid to the copper active site in tyrosinase.115,118 

• Reduction of quinones to diphenols by kojic acid.114,118 

• Kojic acid limiting the uptake of oxygen required for melanin formation.112,114 

The type of inhibition that dominates changes across species,113 although competitive 

inhibition dominates in humans.115–117  

NF-kB is a protein complex in the skin which up-regulates the production of keratinocytes and 

melanocytes, cells responsible for the production of melanin. It is normally activated by UV 

radiation. NF-kB activity is suppressed by Kojic acid, down-regulating the production of melanin 

producing cells, causing lightening of the skin.119,120 It is accepted that UV induced ROS activate 

NF-kB, and kojic acid neutralizes these species in the extracellular environment as the MIE.121,122 

It also chelates to iron, preventing the ROS being catalyzed to more hazardous free radicals, such 

as the hydroxyl radical.122,123 This mirrors the action of chelation to copper in tyrosinase 

inhibition.  
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The ability to limit oxygen uptake, reduce quinones and diphenols, and neutralization of ROS 

as MIEs are more appropriately described as interactions with biosystems rather than 

biomolecules. 

Figure 7. 

 

Methotrexate  

Methotrexate is an antimetabolite and anti-folate drug, used in the treatment of leukaemia. It is 

well known for its action on the folic acid cycle. It is structurally similar to folic acid, giving it 

anti-folate characteristics.  

In the treatment of leukaemia with methotrexate, one of the most common and damaging side-

effects is oral mucositis, a painful inflammation and ulceration of the mouth.  

Methotrexate is a folate analogue. Structural similarities between methotrexate and folic acid 

dominate enzyme inhibitions. Inhibition of enzymes, such as dihydrofolate reductase (DHFR), 

leads to reduction of de novo biosynthesis of the nucleoside thymidine.124–139 Thymidine is 

required for DNA synthesis. This gives methotrexate its anticancer activity. Inhibition of these 

enzymes also leads to a reduction in purine synthesis which in turn impacts on T cell activation, 

as a treatment for rheumatoid arthritis.132 The majority of these inhibitions are competitive, due 

to folate similarities.139 

Oral mucositis is thought to be caused by two MIEs. The generation of ROS associated with 

methotrexate treatment, and the activation of NF-kB by methotrexate.  

Methotrexate is known to decrease the number of oxidative species scavengers in the 

body.140,141 Methotrexate is reported to inhibit nicotinamide diphosphate (NADP) dependent 

dehydrogenase, leading to a deficiency of glutathione as NADP is a substrate for glutathione 



 16 

production.140 Methotrexate also inhibits polyamine producing enzymes, resulting in the 

depletion of polyamine ROS scavengers.129 Oxidative stress leads to the damage of DNA, among 

other biomolecules, and cell apoptosis, which is credited to contribute to mucositis.142  

The activation of NF-kB leads to the release of several cytokines inducing the formation of 

ulcers and tissue damage in the mouth leading to mucositis.142  

Oral mucositis can lead to infection and bleeding and, from either of these, death.142,143 

Infection is especially high risk in patients receiving leukemia treatment, due to a low white 

blood cell count.143  

Methotrexate is also reported to precipitate in the renal tubules of the kidneys, blocking them, 

especially in acidic urine. This leads to nephrotoxicity and overexpression of methotrexate.124,144–

146 This is another case of the compound interacting with a biosystem, rather than a biomolecule 

as the MIE. 

Figure 8. 

 

Valproic acid  

Valproic acid is used as an anticonvulsant and mood-stabilizing drug. Valproic acid is also 

under investigation as a histone deacetylase inhibitor, a potential activity against HIV and 

cancers. Valproic acid exhibits reproductive and hepatic toxicity. 

Valproic acid is teratogenic - it induces malformations to an embryo or fetus in the womb. This 

is primarily through the inhibition of class I histone deacetylases (HDACs).147–157  

The inhibition of HDACs is suspected to occur via two MIEs: 

• Binding of valproic acid to the catalytic center of the HDAC.151,158 

• Down regulation of HDACs by proteosomal degradation.147,151 
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Valproic acid activates Wnt-dependent gene expression through HDAC inhibition leading to 

increased expression of β-catenin and Tcf/Lef, much like another HDAC inhibitor, trichostatin 

A.149,156,157 The teratogenetic effects associated with valproic acid and trichostatin A are very 

similar.  

Using derivative analysis, very specific structural requirements were discovered for valproic 

acid to exert its teratogenicity. An sp3 hybridized carbon, attached to a free carboxylic acid, two 

alkyl chains and one hydrogen.149,156,159–161  

Valproic acid acts as an anticonvulsant by increasing the concentration of γ-aminobutyric acid 

(GABA), an inhibitory neurotransmitter.  

This occurs through four MIEs:  

• Increasing GABA production, through stimulation of glutamic acid 

decarboxylase.149,156,162 

• And decreasing GABA catabolism, through:  

o inhibition of GABA transaminase.149,150,156,162 

o inhibition of succinate semialdehyde dehydrogenase.149,150,156,162 

o and inhibition of α-ketoglutarate dehydrogenase.149 

Little mechanistic detail is available, but it is made clear that HDAC inhibition is not involved 

in anticonvulsant activity.149  

Studies into structural derivatives have shown that valproic acid represents a compromise of 

chain length and branching, between strongly inducing GABA concentration increase and 

decreasing toxicity and drowsiness. Longer alkyl chain lengths, branching at the 3 carbon, and 

replacing the acid with amide all resulted in increased anticonvulsant activity but also greater 
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hepatotoxicity. Shorter alkyl chain lengths and making the drug linear or on a carbon ring 

decreased the anticonvulsant activity.160  

Valproic acid causes hepatotoxicity through microvesicular steatosis,163–165 and is also 

connected to Reye's syndrome.165 All are related to fibrosis of liver cells. All are caused by the 

inhibition of the β-oxidation of fatty acids in the liver, which in turn is caused by three distinct 

MIEs:  

• Depletion of coenzyme A (CoA), a coenzyme required for the oxidation of fatty acids.165 

• Depletion of the biomolecule carnitine, which is required for the transportation of fatty 

acids to mitochondria for breakdown.165 

• Direct enzyme inhibition of β-oxidation.163–165 

Depletion of CoA is thought to occur via the formation of a CoA - valproate thioester.165 The 

depletion of carnitine is poorly understood mechanistically, however we can speculate it may 

also have the ability to form an ester with valproic acid. These ester formations would represent 

the MIEs. 

Direct inhibition of β-oxidation includes the enzyme CPT-1,165 which is also inhibited by 

amiodarone via hydrophobic contacts. The prominence of hydrophobicity in the valproic acid 

structure would fit into the same MIE.  

Structural derivative studies show valproic acid analogues to be more hepatotoxic with longer 

alkyl chains, and more branched alkyl chains - linking it to a hydrophobic mechanism.160 

Structural derivative studies help to classify the MIEs for teratogenicity and hepatotoxicity for 

valproic acid, as the structural features required for each can be elucidated. The hydrophobic side 

chains are responsible for the inhibition of CPT-1 leading to hepatotoxicity, while the sp3 
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hybridized carbon attached to two alkyl groups, a hydrogen atom and a carboxylic acid is 

responsible for the inhibition of HDACs leading to teratogenicity. 

Figure 9. 

 

DISCUSSION 

The aim of the unified MIE definition is to try and remove any bias towards particular areas of 

interest, making it applicable over fields of science including but not limited to toxicology. To 

provide a unified definition the current definitions must be harmonised. Firstly, any definition 

that strays from the initial molecular interaction is incorrect, as the first molecular interaction is 

the beginning of an AOP (definitions 2, 3 and 4). While the MIE has to be the initial interaction, 

it must also include the entirety of that interaction to allow chemical reactivity to be developed in 

a (Q)SAR (definition 1). The lack of an endpoint or pathway is also problematic, because 

without a measureable outcome an MIE has no verifiable purpose – it cannot predict or be 

related to a response (definitions 2, 3 and 5). Preferably, both a pathway and outcome should be 

mentioned (definitions 1 and 4). Research in toxicology usually focuses on adverse outcomes, 

but the term MIE is also useful for research into molecules with desirable effects. MIEs relating 

to therapeutic but potentially toxicologically-relevant effects such as hERG inhibition 

(amiodarone), melanosis inhibition (kojic acid), DHFR inhibition (methotrexate), and increase in 

GABA concentration (valproic acid) would be excluded from the definition if positive outcomes 

were disallowed. This would reduce the scope for identifying MIEs and negate their potential use 

in drug design (definitions 1 and 4). Finally a definition must not exclude interactions with 

molecules or systems that do not fit the description of biomolecules, molecular targets or 

biological targets (2, 4 and 5). This would exclude proton translocation (amiodarone), limiting 
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oxygen uptake, ROS neutralization, the reduction of quinones and diphenols (kojic acid), and the 

precipitation of a compound in the renal tubules (methotrexate). All of these outcomes have the 

potential to provide a measurable response, and so should be included in the definition. Our new 

definition addresses all of these issues, fits well into the AOP framework for risk assessment and 

is in agreement with other toxicity pathways research.166 

 

CONCLUSION 

We define an MIE as the initial interaction between a molecule and a biomolecule or 

biosystem that can be causally linked to an outcome via a pathway. This definition harmonises 

existing MIE definitions, and its use has been validated using MIEs extracted from chemical and 

biological databases and literature. This MIE definition works effectively across the many 

disciplines of human and environmental toxicology. The basis of a diverse set of initiating events 

reveals more about their nature than has been previously possible. As such no existing definition 

was as all-encompassing. Our unified MIE definition should help the field look towards defining, 

classifying and characterizing more MIEs, and using knowledge of the chemistry of these 

processes to aid AOP research and toxicity risk assessment. 

Knowledge of MIEs has the potential to be very useful in the development of (Q)SARs, 

allowing a direct link between molecular properties and toxicological outcome. The elucidation 

of this knowledge can come in several forms. Detailed reports of MIEs are currently rather few, 

even for the most studied molecules, but a number of tools represent novel ways to draw them 

out. Databases of molecules with similar toxicological apical endpoints provide a start, as 

analysis of the chemical structures and properties of these molecules can provide insight into the 

number and possible activation of an associated MIE. Understanding of the biology of an active 
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site can provide similar assistance. Knowledge of the number and reactivity or binding 

associated with a protein can suggest the types of molecules that may interact with it. In these 

ways the MIE may be approached from either the biological or chemical perspective, as this 

interaction can be said to be the boundary between the chemistry of a molecule and its biological 

effect. A combined approach resulting in a database of MIEs would help to target existing risk 

assessment approaches to the endpoints of greatest concern (highest chance of activation). 

Commonly encountered MIEs can be identified to focus and prioritize further research to gain a 

greater understanding of how toxicity pathways are networked between compounds. With 

enough data an MIE database could provide predictive quantitative assessment of toxicity itself 

for new compounds.  

As the AOP framework approach to toxicology gains momentum, the importance of a unified 

definition of MIEs grows. Our definition of a MIE includes all current AOP data and provides a 

platform for these exciting developments.AUTHOR INFORMATION 
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AOP, adverse outcome pathway; APT, amiodarone-induced pulmonary toxicity; CoA, coenzyme 

A; CPT-1, carnitine palmitoyltransferase I; DHFR, dihydrofolate reductase; ETC, electron 

transport chain; GABA, gamma-aminobutyric acid; HDAC, histone deacetylase; hERG, human 

ether-à-go-go-related gene; IC50, half maximal inhibitory concentration; MIE, molecular 

initiating event; MOA, mode of action; MTP, mitochondrial transport protein; NADP, 

nicotinamide diphosphate; NAPQI, N-acetyl-p-benzoquinone imine; NF-kB, nuclear factor 

kappa-light-chain-enhancer of activated B cells; PBPK, physiologically based pharmacokinetics; 

(Q)SAR, (quantitative) structure activity relationship; ROS, Reactive oxygen species; 
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FIGURES 

 

Figure 1. Ankley’s conceptual diagram of an adverse outcome pathway (AOP), including the 

molecular initiating event (MIE). Image adapted from Ankley 2010.2 
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Figure 2. Framework for a (quantitative) structure activity relationship ((Q)SAR) approach 

based around MIEs. The (Q)SAR relates molecular properties to molecular initiating event 

(MIE), and the adverse outcome pathway (AOP) infers an adverse outcome from the MIE.  
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Figure 3. The six molecules for which detailed studies of the MIEs are described here. 
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Figure 4. Representation of an adverse outcome pathway (AOP) for acetaminophen-induced 

hepatotoxicity. The molecular initiating event (MIE) is labelled in red. NAPQI = N-acetyl-p-

benzoquinone imine. 
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Figure 5. Representation of a molecular initiating event (MIE) map for amiodarone, including 

pulmonary toxicity and antiarrhythmic action. MIEs are labelled in red. CPT-1 = carnitine 

palmitoyltransferase I; MTP = mitochondrial transport protein; hERG = human ether-à-go-go-

related gene; ETC = electron transport chain; APT = amiodarone-induced pulmonary toxicity. 
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Figure 6. Representation of a molecular initiating event (MIE) map for chlorpromazine, 

including oxidative stress, phospholipidosis, anti-psychotic action and antiarrhythmic action. 

MIEs are labelled in red. hERG = human ether-à-go-go-related gene. 
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Figure 7. Representation of a molecular initiating event (MIE) map for kojic acid-induced skin-

lightening. MIEs are labelled in red. NF-kB = nuclear factor kappa-light-chain-enhancer of 

activated B cells. 

 

 

 

 

 

  



 44 

 

Figure 8. Representation of a molecular initiating event (MIE) map for methotrexate, including 

DNA synthesis inhibition, oral mucositis and nephrotoxicity. MIEs are labelled in red. NADP = 

nicotinamide adenine dinucleotide phosphate; NF-kB = nuclear factor kappa-light-chain-

enhancer of activated B cells. 
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Figure 9. Representation of a molecular initiating event (MIE) map for valproic acid, including 

teratogenicity, anti-convulsant activity, and microvesicular steatosis. MIEs are labelled in red. 

HDAC = histone deacetylase; GABA = gamma-aminobutyric acid; CPT-1 = carnitine 

palmitoyltransferase I. 
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