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The New World Arctic, the last region of the Americas to be populated by humans, has a relatively 

well-researched archaeology but is lacking an understanding of its genetic history. We present 

genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, 

Alaska, Aleutian Islands and Siberia. We show that Paleo-Eskimos (ca. 3000 BC-1300 AD) represent a 

migration pulse into the Americas independent of both Native American and Inuit expansions. 

Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the 

arrival of the ancestors of present-day Inuit, with evidence of gene flow between these populations. 

Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo meta-population likely 

survived in near-isolation for more than 4,000 years, only to vanish around 700 years ago.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Humans first peopled the North American Arctic (northern Alaska, Canada and Greenland) from the Bering 

Strait region beginning around 6,000 years before present (1), leaving behind a complex archaeological 

record [supplementary text S1 (2), Fig. 1A]. Over successive millennia, the pioneering Arctic cultures 

developed into distinct lifestyles and cultural stages grouped within two broad cultural traditions known as 

Paleo-Eskimo and Neo-Eskimo. Early Paleo-Eskimo people representing the Denbigh, Pre-Dorset, 

Independence I and Saqqaq cultures (ca. 3,000-800 BC) lived in tent camps and hunted caribou, musk ox 

and seals with exquisitely-flaked stone tools similar to those used by northeast Siberian Neolithic cultures (2-

5). In northern Alaska, the Denbigh cultural groups were succeeded by the Paleo-Eskimo Choris and Norton 

cultures starting around 900 BC, with the Norton material culture further developing into the Ipiutak culture 

around 200 AD (79,83). Simultaneously, during the cold period beginning around 800 BC, innovations in 

housing and hunting technologies accompanied the formation of the Late Paleo-Eskimo or Dorset culture in 

eastern Arctic (eastern Canadian Arctic and Greenland), with population growth and more intensive use of 

marine mammals including walrus (5,6,7). The Dorset culture is divided into three phases: (i) Early Dorset 

ca. 800 BC – 0 BC/AD, (ii) Middle Dorset ca. 0 BC/AD – 600-800 AD, and, (iii) Late Dorset ca. 600-800 

AD – 1300 AD (7). The Paleo-Eskimo tradition in the eastern Arctic ended sometime between 1150-1350 

AD; shortly after the sudden appearance of the Neo-Eskimo Thule whale-hunters from the Bering Strait 

region (7-15).  

The Siberian Old Bering Sea culture is the earliest expression of the Neo-Eskimo tradition ca. 2,200 years 

before present, developing into the Punuk culture around the sixth century AD. Almost concurrently, the Old 

Bering Sea culture developed into the Birnirk culture in the northern parts of the Bering Strait region. 

Interactions between people of the Birnirk and Punuk cultures gave rise to the western Thule culture on both 

sides of the Bering Strait. On the Alaskan side of the Strait, the Ipiutak culture also contributed to the 

formation of the western Thule culture, (80). By the early second millennium AD, western Thule cultural 

groups began their movement into the eastern North American Arctic (12,81). With the Thule culture came 

more effective means of transportation like dog sleds and large skin boats, complex tool kits like sinew-

backed bows and harpoon float gear for hunting large whales and sinew-backed bows (8,16). Thule culture 

spread quickly throughout the eastern Arctic, rapidly replacing Dorset in most, if not all, regions. The decline 

of whaling during the latter part of the Little Ice Age (sixteenth to nineteenth century AD) resulted in a re-

adjustment to ice-edge and breathing hole hunting of walrus and seal, laying the foundation for modern Inuit 

cultures (17). Additionally, the Norse (Vikings) formed settlements in Greenland around 985 AD and 

occupied regions in southern Greenland for about 500 years, contemporaneous with both the Late Dorset and 

Thule, reaching Newfoundland and Labrador in eastern Canada around 1000 AD (18). 

Continuities in chipped stone bifaces and blade and burin technology point to Paleo-Eskimo origins among 

Siberian Neolithic cultures (5,8,19,20). Genetic evidence suggests that the earliest eastern Arctic Paleo-

Eskimo people represented an independent Siberian migration into the New World (21,22) (Fig. 1C). 

However, to date we have been unable to identify the likely Siberian ancestral population. Some have argued 

for origins from an ill-defined 8,000-year-old South Alaska Eskimo-Aleut or Na Dene blade and burin 

complex (23), but these remain controversial. A recent genetic study is in support of the Early Paleo-

Eskimos, specifically Saqqaq, sharing ancestry with Na Dene Native Americans (Fig. 1C), as part of a three-

wave peopling model of the Americas consisting of (a) Amerindians, (b) Eskimo-Aleuts and, (c) Saqqaq and 

Na Dene (24). Alternate hypotheses on Dorset origins include the Aleutian Islanders (27) and earlier theories 

of Amerindian cultures in eastern Canada and even further south (17,28-30) (Fig. 1C). Current views favor 

an in situ origin of Dorset from Canadian Pre-Dorset in northern Hudson Bay (8,11,31,32) (Fig. 1B).  

Additionally, whether the individual Early, Middle and Late Dorset phases represent genetic continuity of 

the same peoples or not remains unresolved (Fig. 1B). The Dorset chronological sequence from the T1 site 

on Southampton Island, Igloolik, South Baffin, and Labrador in Canada provide evidence of cultural 

continuity through Early to Late Dorset (16, 17, 18, 32), although regional differences and settlement 

discontinuities are also common (34, 35, 36). Significant regional discontinuities and occupation gaps also 

occur in Greenland (7). It is also debated whether abandoned areas were re-occupied by people from a 

different genetic background and whether this occurred from a Central Arctic ecological ‘core area’ or 



regional core areas into which human populations retreated and restructured before expanding again into 

periodically refurbished marginal zones (16,31). The resolution of these controversies has been hindered by 

the limited amount of Paleo-Eskimo human material, difficulties in assigning cultural affiliation of some 

finds (36), and dating uncertainties resulting from the strong marine component in the Arctic diet (7).  

 

Samples and sequence data  

 

We collected bone, teeth, and hair samples from the field and museums representing 169 ancient human 

remains from Arctic Siberia, Alaska, Canada and Greenland (Fig. S2, Table S1). These remains have been 

assigned to one of several ancient Arctic cultures on the basis of typological and/or stratigraphic evidence 

and, in some cases, radiocarbon dating [supplementary text S1 (2)]. To circumvent drawing conclusions from 

single genomes (40), we generated mitochondrial DNA (mtDNA) data from 158 and low-coverage whole 

genome datasets from 26 of the ancient samples (up to 0.3X depth) [supplementary text S3 (2), Tables S7, 

S9A]. Despite colder temperatures in the Arctic, DNA survival in the ancient samples was surprisingly low, 

ranging from ~0 to 3.2% endogenous content based on the genome sequencing data (Table S7). This low 

endogenous content may be explained by the remains being largely surface burials that suffered from 

fluctuating temperatures and humidity, and to subsequent storage conditions at museums.  

We also sequenced two high-coverage genomes from present-day North American Native Americans 

belonging to the Na Dene family (the Dakelh of British Columbia, hereafter referred to as Athabascans), and 

five unrelated, present-day Greenlandic Inuit (n = 2), Aleutian Islander (n = 1) and Siberian Nivkhs (n = 2) to 

average depths of 20-40X [supplementary text S3 (2), Table S8]. Only the Aleutian Islander showed 

evidence of recent European admixture, and was masked for non-Native American ancestry tracts prior to 

analyses [supplementary text S5 (2)]. Additionally, we radiocarbon dated 27 ancient samples and corrected 

25 of the dates for marine reservoir effect to account for the dominant marine component in these 

individuals’ diets (15 of these samples are represented in the aforementioned genomic dataset) 

[supplementary text S2 (2)]. This is critical in the accurate cultural assignment of these individuals, 

especially in cases where stratigraphic information is inconclusive or contentious [supplementary text S1 

(2)].  

 

Origins of Paleo-Eskimos 

 

Diagnostic mtDNA coding region markers were targeted in the ancient samples to determine their mtDNA 

haplogroup (hg) affinities. While hgs A, B, C, D and X are among the five founding haplogroups in the 

Americas, previous studies have shown the near-absence of hgs B, C and X in Paleo-Eskimos and Thule as 

well as among present-day Inuit ( Saillard et al., 2000; Hayes et al., 2005; Helgason et al. 2006; Gilbert et al. 

2007; Gilbert et al. 2008, Raff et al. 2011). We observe mtDNA hg D, specifically the lineage hg D2a, in 

both Early and Late Paleo-Eskimos, with the majority of the Pre-Dorset/Saqqaq and Middle Dorset samples 

further classified as hg D2a1 [supplementary text  S4 (2), Table S9A]. The absence of biological remains 

affiliated to the Early Dorset phase precludes genetic testing for this period. Hgs D2a and D2a1 are found in 

present-day Aleutian Islanders and Siberian Eskimos (42), who are genetically among the closest living 

populations to the previously sequenced Greenlandic Paleo-Eskimo (Saqqaq) individual that also belonged to 

hg D2a1 (hereafter, high-coverage Saqqaq) (22). The single Canadian Pre-Dorset sample (XIV-H:168, 

Rocky Point) was typed to hg D4e (referred to as hg D2 in (42)), which is ancestral to hg D2a, but lacks 

further phylogenetic resolution due to the low coverage nature of the shotgun data [supplementary text S4 

(2)].  

Maximum likelihood trees based on nuclear DNA variation place the Middle Dorset, Late Dorset and the 

Canadian Pre-Dorset individuals as sister groups to the high-coverage Saqqaq individual (Figs. 2A, S9B-D), 

separately from contemporary Greenlandic Inuit or Native Americans [represented by the South American 



Karitiana (44) and the ancient Clovis Anzick-1 individual (45)]. Similar results were obtained when allowing 

for admixture between populations with TreeMix (43) (Figs. S9C-D). When the analysis was repeated 

including the Aleutian Islander, which was masked for European ancestry over ca. 80% of its genome 

[supplementary text S5 (2)], the Canadian Pre-Dorset, Middle Dorset and the Late Dorset individuals 

grouped with the high-coverage Saqqaq; as before (Fig. S10).  

Pairwise outgroup f3-statistics (46,47) and D-statistics (46,48) confirm Early and Late Paleo-Eskimos as 

being significantly (no overlap at three standard errors for the SNP chip data and at one standard error for the 

sequencing data) closer to one another than to any of the sampled present-day populations, including those 

from the Americas and Siberia (Figs. 2B, S11A-D). Furthermore, admixture clustering profiles
 
(49) of the 

high-coverage Saqqaq and a Dorset individual are near-identical (Fig. S8), with both sharing components 

with present-day Siberian Chukchi and Greenlandic Inuit and, to a lesser extent, with other Siberians and 

East Asians (Han). Variations in TreeMix graph topologies occurred with the inclusion of the different 

ancient samples [supplementary text S5 (2)]; however, the resulting conclusions from these trees are 

consistent with other analyses. Hence, evidence from mitochondrial as well as nuclear markers suggests that 

all Paleo-Eskimos, from both Canada and Greenland, represent a continuum of the same single ancestral 

population (Figs. 1B, C). Present-day populations that are genetically closely related to the Paleo-Eskimos 

include the Greenlandic Inuit, Aleutian Islanders and far-east Siberians (Figs. 2C, S11E). 

We additionally tested the claim that Saqqaq and Na Dene were part of the same expansion into the 

Americas
 
(26) by including present-day Athabascans, who represent distinct early branches of Native 

Americans (45), in the TreeMix (43) analysis. The maximum likelihood tree places the Athabascans as a 

sister clade to Karitiana and Anzick-1 (Fig. S12A). Similarly, using single nucleotide polymorphism (SNP) 

chip data from select Old and New World populations, masked for European admixture, we observe that the 

high-coverage Saqqaq individual forms a clade with the far-east Siberian Koryaks instead of with the 

Chipewyan, another Na Dene population (26) which groups with the South American Karitiana (Fig. S12B). 

Outgroup f3-statistics (46,47) and D-statistics (46,48) show that the high-coverage Saqqaq individual is 

closer to Greenlandic Inuit than to the Na Dene (Figs. S13A-C). Furthermore, the lack of support placing the 

Saqqaq closer to the Athabascans than to Karitiana (Fig. S13B) is incompatible with a scenario where 

Saqqaq and Na Dene share a fraction of their ancestries through a secondary Asian stream (26). Overall, our 

results support the Paleo-Eskimo migration into the Americas as being separate from that of the Na Dene 

Native Americans (Fig. 1C).  

 

Genetic affiliations of Neo-Eskimos 

 

Greenlandic and Canadian Neo-Eskimo Thule, and present-day Greenlandic Inuit form a clade in the 

maximum likelihood trees (Fig. 3A), even under admixture scenarios generated with TreeMix (43) (Fig. 

S14A-B). This supports genetic continuity over the last ca. 1,000 years between these populations, which is 

also evident by the shared mtDNA haplogroups (hgs A2a, A2b and D3a2a) between them [supplementary 

text S4 (2), Table S9A]. Furthermore, outgroup f3-statistics (46,47) and D-statistics (46,48) demonstrate that 

both Greenlandic and Canadian Thule are closer to present-day Inuit than to other sampled present-day 

populations or the high-coverage Saqqaq individual (Figs. 3B-C, S15A-C). These results are in agreement 

with the archaeological literature which suggests that present-day Greenlandic Inuit are direct descendents of 

the Thule
 
(2,7,50-52) (Fig. 1C).  

We additionally analyzed five ancient individuals dated to the 6
th
-7

th
 century AD and associated with the 

Siberian Birnirk culture, which is part of the Neo-Eskimo tradition and may be one of the cultural ancestors 

of the Thule
 
(53-55). Evidence from both mitochondrial typing (hg A2a) (Table S9A) and nuclear markers 

(Figs. S16A-D) reveal that these individuals are genetically closely related to present-day Greenlandic Inuit, 

providing the first genetic evidence of an Old World population that was not only a cultural precursor of the 

Thule, but also either closely related to or a component of the ancestral Inuit gene pool (Fig. 1C). We also 

reassessed claims of the Sadlermuit population from Southhampton Island in the Hudson Bay region being 



remnants of the Dorset culture on the basis of cultural similarities and mtDNA markers
 
(56,57). We typed ten 

Sadlermiut individuals, dating to the 15
th
-19

th
 century, to mtDNA hgs A2b and D3a2a [supplementary text 

S4 (2), Tables S9A, S10], which are characteristic of the Thule/Inuit. Also, from their nuclear genome 

sequences, two of these individuals form a clade with present-day Greenlandic Inuit and not the high-

coverage Saqqaq individual (Figs. 3A, S14A). This implies that the Sadlermiut were either genetically 

derived from or closely related to the Thule, rather than the Paleo-Eskimos (Fig. 1C).  

Additionally, whether the Norse admixed with neighbouring Dorset or Thule groups remains debated, even 

though no anthropological evidence supporting such admixture has been found (58). In order to address this 

hypothesis, we tested 34 Norse individuals from southern Greenland, across the time span of their occupation 

in the region, for matrilineal admixture with neighboring Paleo- and Neo-Eskimo populations 

[supplementary text S1 (2)]. We found no New World-specific mitochondrial markers in these Norse 

samples, especially the Arctic-specific hgs A and D, suggesting that no detectable matrilineal gene flow 

occurred from the Dorset or Thule into the sampled Greenlandic Norse [supplementary text S4 (2), Tables 

S9B-C].  

 

Admixture signals in Paleo- and Neo-Eskimos 

 

We further investigated the observed genetic affinity between present-day Greenlandic Inuit and Paleo-

Eskimos. D-statistics tests (46,48) and outgroup f3-statistics (46) support the Paleo-Eskimos as closer to 

Greenlandic Inuit than to other present-day New World populations (Figs. S13A, S17A-B), with the 

exception of the Aleutian Islanders whose genetic proximity to the Inuit is evident in analyses from both 

sequencing data (Fig. S10) and SNP chip data (26) and, Naukan who have been shown to possess Eskimo-

Aleut ancestry as a result of back-migration of a related population (26). Maximum likelihood trees with 

migration edges inferred with TreeMix show evidence for admixture between Paleo-Eskimos and 

Greenlandic Inuit (Fig. 4A), mediated by the ancient Neo-Eskimos which include the Canadian Thule, the 

Greenlandic Thule and the Siberian Birnirk (Figs. S9A, S9C-D, S14A-B, S16A). In all the cases, this gene 

flow event is among the first few migration edges to be inferred by TreeMix (number of migration edges, m 

= 1-4). Bootstrap support suggested that gene flow likely occurred in both directions between the various 

Paleo- and Neo- Eskimo groups (Table S13).  

While evidence for gene flow events was also observed in the high-coverage Saqqaq individual, we wanted 

to test whether this was due to TreeMix being unable to distinguish between Saqqaq and Dorset due to their 

genetic similarity and, if admixture might have actually occurred between Dorset and Neo-Eskimos. 

Therefore, we generated simulated datasets with varying levels of admixture (10% and 25%) between Dorset 

and Inuit in both directions, and determined whether a migration edge was observed in the TreeMix 

admixture graphs between the high-coverage Saqqaq individual and the Inuit in the absence of the Dorset 

[supplementary text S5 (2)]. Simulated admixture from Dorset to Inuit was detected by the analysis in the 

form of gene flow between Saqqaq and Inuit, but the reverse, that is, from Inuit to Dorset through gene flow 

involving Saqqaq and Inuit, was less likely (Figs. S18A-B, Table S13). Since our data show support for gene 

flow from the various Neo-Eskimo groups, including present-day Inuit, into the high-coverage Saqqaq 

individual, it is likely that the admixture involving Saqqaq is not an artifact and occurred from the Neo-

Eskimo lineage into Saqqaq. We cannot, however, exclude the possibility of gene flow also from Paleo-

Eskimos into Neo-Eskimos, or that subsequent gene flow did not occur between the later Dorset phases and 

the Neo-Eskimo lineage (Table S13).  

Since the observed admixture involves the 4,000-year-old Saqqaq individual, it implies that the meeting and 

intermixing of Paleo-Eskimo and Neo-Eskimo ancestors predates the first archaeological observations of 

their co-existence in the eastern Arctic by ca. 3,000 years or earlier, since Thule groups entered eastern 

Canada and Greenland, previously occupied by the Late Dorset, only in the 12
th
 or 13

th
 century AD. This also 

suggests that the admixture is more likely to have occurred either in the Old World prior to the entry of the 

Neo-Eskimos into the Americas, or in Beringia, but not further east in the New World since no 



archaeological evidence of a parallel existence of Paleo- and Neo-Eskimos around 4,000 years ago or earlier 

has been documented in this region (Fig. 1C).  

We also investigated the level of genetic contribution from the ~24,000-year-old Siberian boy from Mal'ta 

(MA-1) (47) into Paleo-Eskimos and Greenlandic Inuit. Pairwise outgroup f3-statistics tests indicate that 

sampled western Eurasians and MA-1 are slightly closer to the high-coverage Saqqaq than to the Han 

Chinese (47) (Figs. 4B, S19). To confirm that this genetic affinity between Saqqaq and MA-1 was not due to 

ancient DNA bias, we also included the ~7,000-year-old La Brana 1 sample from Spain (59) in our analysis 

and found that it clustered close to present-day Europeans, hence confirming that our results were not 

skewed by ancient DNA attraction (Fig. 4B). TreeMix predicts a gene flow event from the high-coverage 

Saqqaq into MA-1 and vice-versa, consistent with (60), but with low support to substantiate both this signal 

and the inferred direction [Fig. 4C, Table S13, supplementary text S5 (2)].  

In contrast, gene flow from MA-1 into the root of the clade comprising Native American populations 

(Karitiana and Anzick-1) and including the Greenlandic Inuit is detected with high bootstrap support, in 

agreement with (47) (Figs. 1B, 4C, Table S13). Additionally, D-statistics (46) and outgroup f3-statistics 

(46,47) from SNP chip data show that MA-1 is significantly (no overlap at three standard errors) closer to the 

Chipewyan than to the high-coverage Saqqaq (Fig. S20), which is compatible with other results presented in 

this study that also reject a single wave model for Saqqaq and Na Dene. Overall, while there is evidence of 

genetic affinity between MA-1 and Saqqaq, we are unable to ascertain whether this is due to gene flow or 

shared ancestry between the two lineages. It is also possible that this affinity is a consequence of the 

aforementioned gene flow from Neo-Eskimos, who received MA-1 gene flow, into the Saqqaq lineage.  

 

Discussion 

 

We overcome the difficulties of studying the peopling of the Arctic by including an extensive collection of 

Paleo-Eskimo remains for both ancient DNA and radiocarbon analyses. We have shown that Paleo-Eskimos 

likely represent a single migration pulse into North America from Siberia; separate from the migration events 

giving rise to Native Americans and Inuit. However, while being genetically distinct from other New World 

populations, Paleo-Eskimos are still more closely related to these populations than to non-New World 

populations, which supports the Beringian Standstill model (Tamm et al.) stating that a single ancestral 

population gave rise to many sub-populations, and possibly many migration pulses. Moreover, while our data 

are in agreement with Reich et al. (26), we find no support for Saqqaq or the rest of the Paleo-Eskimo 

tradition being a part of one of the two waves of Native American ancestors entering the more southern 

regions of the Americas. Therefore, an additional Paleo-Eskimo migration wave should be added to the 

three-wave hypothesis in explaining the peopling of the Americas
 
(26).  

Furthermore, Paleo-Eskimo and Inuit peoples appear to have occupied the New World Arctic for more than 

4,000 years, with only a single population replacement (Thule) less than 700 years ago. In contrast with the 

dynamic responses of the Thule people to climate change (19,61,62), Siberian iron trade (64) and Norse 

contact (14), the 4,000-year Paleo-Eskimo period presents a single tradition of continuous technological and 

social development, including geographical dislocations and periods of relative stability punctuated by 

episodes of rapid change (16). The long-term continuity of the Paleo-Eskimo population and its culture is 

especially striking given the climatic and ecological cycles over 4,000 years - from warm late hypsithermal 

to cold sub-boreal through the early medieval warm event, as well as changes in sea ice distribution, changes 

in animal population cycles and distribution (11). In light of this, Paleo-Eskimo survival must be due to a 

remarkable resilience among small, dispersed local groups with the ability to shift their small population 

units to new areas when their homes became untenable; like the complete de-population of Greenland and 

the abandonment of the Canadian High Arctic between ca. 1 – 700 AD
 
(7). Such events argue for the re-

formulation of the original ‘core area’ hypothesis to a network of regional ‘core areas’ that served as 

demographic reservoirs for repopulating areas abandoned due to climate change, animal population crashes, 

or human over-hunting.  



This paper also contributes to the long-standing debate about the Dorset-Thule transition. Dorset harpoons, 

snow knives, snow houses, soapstone vessels and Dorset art in Thule sites are considered evidence of 

sustained contact and acculturation (McGhee 2000, 2009; Fitzhugh 2004; Friesen 2004; Friesen and Arnold 

2008, Sutherland 2009; Appelt and Gulløv 2009). The re-dating of the Thule migration to ca. 1300 AD, 

coincident with the latest Dorset radiocarbon dates, reduces the possibility for contact and exchange and 

strengthens the case for isolation (Park 1993, 2000). However, despite our results showing evidence of early 

contact and admixture between the Paleo-Eskimo and Neo-Eskimo lineages, dating to at least ca. 4,000 years 

ago, we cannot preclude a scenario where subsequent gene flow might also have occurred between Late 

Dorset and Thule groups. A related result of this study is the Thule affiliation of the Sadlermiut individuals. 

This culture that went extinct in 1903 from European disease has long been considered Thule-acculturated 

Dorset people (Collins 1958; deLaguna 1947; Thomson 1988); genetic evidence now suggests they were 

Thule people who had somehow acquired Dorset stone technology (Park 1993; Rowley 1994). If Dorset and 

Thule overlapped chronologically and geographically, as it appears they did at least in some areas, what 

social mechanisms resulted in genetic isolation? So far, there is no evidence of massacres, although the 

spread of Norse diseases have been suggested (Agger and Maschner 2009). Similar questions can be raised 

with regard to lack of matrilineal gene flow between the Thule or Dorset and the Greenland Norse (Appelt 

and Gulløv 2009).  

Our study contrasts with previous population-level genetic studies, such as those focusing on the introduction 

of agriculture in Europe (Neolithization), which found that population movements were the instigators of 

changes in culture and subsistence strategies
 
(60,65-67). Paleo-Eskimo technological innovations seem to 

have occurred solely by movement of ideas within a single resident population. Hence, our findings suggest 

that caution is required when using cultural similarities and differences as proxies for population movements 

and migrations into new and dramatically different environments (36).  

 

Methods 

 

DNA from 169 ancient human bone, teeth and hair samples from Arctic Siberia, Alaska, Canada and 

Greenland was extracted and targeted for haplogroup diagnostic mitochondrial DNA markers, while a sub-

set of 26 samples was converted into Illumina libraries and sequenced, using standard laboratory procedures 

[supplementary text S3 (2)]. Two present-day Greenlandic Inuit, two Nivkhs, one Aleutian Islander and two 

Athabascans were genome sequenced with no objections from The National Committee on Health Research 

Ethics, Denmark (H-3-2012-FSP21) [supplementary text S2 (2)]. 27 samples were radiocarbon dated and 

corrected for marine reservoir offset [supplementary text S2 (2)]. Mitochondrial DNA contamination 

estimates were computed as noted in supplementary text S4 (2). Error rate analysis, ancient DNA damage 

analysis, multidimensional scaling analysis on SNP chip and sequencing data, NGSadmix analysis, ABBA-

BABA tests on sequencing data, D-statistics and f3-statistics tests on SNP chip and sequencing data, TreeMix 

analysis on SNP chip and sequencing data, neighbor-joining analysis, and, ancestry painting of the Aleutian 

genome were performed as described in supplementary text S5 (2). 
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Figure legends 

 

Figure 1. Chronology, origins and continuity of Paleo-Eskimos and Neo-Eskimos. Support from genetic 

results presented in this study is indicated by ‘(S)’ and rejection by ‘(R)’. A) A chronological framework for 

the prehistoric cultures in the New World Arctic and northeast Siberia, based on a combination of screened 

radiocarbon dates of associated terrestrial materials, typological studies, and contexts (eg. 

7,31,32,35,79,84,85). Fading colors symbolize uncertainties concerning the beginnings or ends of the 

archaeological cultures, due to plateaus or wiggles in the radiocarbon calibration curve or lack of data. 

Defined archaeological phases within a culture are separated by a white line. Dark reddish-brown towards 

the top of the figure indicates historical times. Cultural contexts from which samples included in this study 

arise are highlighted in yellow. B) A two-wave migration model into the New World Arctic, with continuity 

throughout the Paleo-Eskimo tradition, followed by the Neo-Eskimo migration, is supported. Black 

thunderbolt symbols represent genetic discontinuity. C) This schematic summarizes the proposed origins of 

Paleo- and Neo-Eskimos in the archaeological and genetic literature and their relationships with other 

ancient populations in the North American Arctic. Our data shows support for Paleo-Eskimos constituting a 

migration pulse into the Americas independent to those of other New World populations (scenario 1) (2,21-

23). For reference, we show the maximal geographical distribution of the Paleo-Eskimos and Neo-Eskimos 

in the New World Arctic and far-east Siberia (7). Additionally, plotted are Paleo-Eskimo (Pre-Dorset, 

Saqqaq, Dorset), Thule, Birnirk and Norse sites from which samples in this study derive; for further 

information see Fig. S2 and Table S1. 

 

Figure 2. Origins of Paleo-Eskimos and genetic continuity. A) Sequencing data-based maximum likelihood 

trees constructed with TreeMix (43) with the high-coverage Saqqaq (23), Middle Dorset and Late Dorset 

datasets, and 17 present-day and two ancient populations; for Greenlandic Inuit see supplementary text S5 

(2). The scale bar represents ten times the average standard error (s.e.) of the values in the covariance matrix. 



Residual matrices are shown in Figs. S9C-D. B) SNP chip data-based D-statistic tests of the form D(Yoruba, 

Dorset; X, Saqqaq), where X represents present-day American and Siberian populations from (26) (coloured 

centers represent populations divided by linguistic affiliation, see legend at bottom). Thick and thin lines 

represent one and three standard errors of the D-statistics, respectively. Middle and Late Dorset (left and 

right panels, respectively) are significantly (no overlap at three standard errors) closer to Saqqaq than to the 

sampled present-day populations. C) Heat map of the SNP chip data-based statistic f3(Yoruba; Saqqaq, X), 

where X represents present-day worldwide non-African populations. The graded heat key (to the right of the 

image) represents the magnitude of the computed f3-statistics.  

 

Figure 3. Genetic affinities of the Neo-Eskimo Thule. A) Sequencing data-based maximum likelihood trees 

constructed with TreeMix (43) with the high-coverage Saqqaq (23), Canadian Thule and Greenlandic Thule 

datasets, and 17 present-day and two ancient populations. The scale bar represents ten times the average 

standard error (s.e.) of the values in the covariance matrix. Residual matrices are shown in Figure S14A-B. 

B) SNP chip data-based D-statistic tests of the form D(Yoruba, Thule; X, West Greenlanders), as in Fig. 2. 

Canadian and Greenlandic Thule (left and right panels, respectively) are significantly (no overlap at three 

standard errors) closer to present-day West Greenlandic Inuit than to other worldwide present-day 

populations. Similar results are observed with East Greenlandic Inuit in place of West Greenlandic Inuit (Fig. 

S15C). C) Heat maps of the SNP chip data-based statistic f3(Yoruba; Thule, X), as in Fig. 2.  

 

Figure 4. Admixture signals in Paleo-Eskimos and Greenlandic Inuit. A) Admixture graph (number of 

migration edges, m = 3) constructed with TreeMix (43), with the high-coverage Saqqaq (23), 17 present-day 

and two other ancient individuals. The scale bar represents ten times the average standard error (s.e.) of the 

values in the covariance matrix, and the migration weight represents the fraction of ancestry derived from the 

migration edge. Migration edges are observed between the Paleo-Eskimos and Greenlandic Inuit, shown here 

as gene flow from the high-coverage Saqqaq to the root of East and West Greenlandic Inuit, although gene 

flow in the other direction is also observed (Table S13). Admixture graphs with other Paleo-Eskimo and 

Neo-Eskimo populations, different numbers of migration edges and, residual matrices are shown in Figs. 

S9A-D, S14A-B and S16A. B) Biplot of SNP chip data-based statistic f3(Yoruba; Saqqaq, X) versus 

f3(Yoruba; Han, X) , where X represents present-day worldwide non-African populations. Thick and thin 

errors bars represent one and three standard errors of the f3-statistics, respectively. Western Eurasian 

populations (Europeans and, South and Central Asians) are shifted towards the high-coverage Saqqaq 

compared to the Han Chinese. La Brana was included in the analysis to evaluate potential ancient DNA bias 

between the Saqqaq and MA-1 datasets. C) Sequencing data-based admixture graph with 17 present-day and 

four ancient individuals. A known migration edge is inferred from MA-1 to the root of Native Americans 

and Inuit, but this gene flow event excludes the high-coverage Saqqaq individual. Admixture graphs with 

different number of migration edges and residual matrices are shown in Fig. S21, and bootstrapping results 

are shown in Table S12. See supplementary text S5 (2) regarding the migration edge from Saqqaq into MA-

1. 
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