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Abstract. The use of trading stops is a common practice in financial markets for a variety of reasons: it
reduces the frequency of trading and thereby transaction costs; it provides a simple way to control
losses on a given trade, while also ensuring that profit-taking is not deferred indefinitely; and it
allows opportunities to consider reallocating resources to other investments. In this paper, we try
to explain why the use of stops may be desirable, by proposing a simple objective to be optimized.
We investigate a number of commonly used rules for the placing and use of stops, either fixed or
moving, with fixed costs, showing how to identify optimal levels at which to set stops, and compare
the performance of different rules and strategies.
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1. Introduction. When an investor acquires fund shares, it is common to set stops at
which he will come out of the position; for example, he may decide to come out of the position
when the value has either risen by 0.1 or fallen by 0.03. Such a fixed-stop trading rule is
the simplest to describe, but there are other possibilities, where perhaps the lower stop rises
as the value of the position rises, thereby locking in any gain, while allowing the position to
continue to rise in value. The latter kind of trading rule is called a trailing stop, and it is
commonly used in practice.

In this paper, we shall study some simple explicit instances of trading to stops and try
to answer four questions: Is it a good idea to trade to stops in some way? Is it sufficient
to consider simple stopping rules? Given that we intend to trade to stops in some way, how
would we go about placing them? And when we have reached one stop, how should we act
then? To answer the third of these questions, we shall propose a simple objective which must
be maximized over the parameters defining the stopping rule. The answer to the first question
is more subtle. If we (just for now) restrict the discussion to rules which trade to fixed stops,
what we find is that in most instances the best thing to do is to put the lower stop at −∞,
which is counterintuitive. It is counterintuitive because one of the reasons to use stops is to
prevent the trade running up huge losses, and yet it seems from the theory that this is exactly
what we should be doing. However, the theoretical predictions are based on very precise
assumptions about the dynamics of the fund; if we relax these strong assumptions, we find a
different picture emerging. Specifically, we shall assume that the value of the position evolves
as a Brownian motion with constant drift and constant volatility; the volatility will always be

∗Received by the editors March 1, 2013; accepted for publication (in revised form) October 23, 2014; published
electronically December 16, 2014.

http://www.siam.org/journals/sifin/5/91170.html
†Fraunhofer ITWM, D-67663 Kaiserslautern, Germany (nora imkeller@yahoo.de).
‡Statistical Laboratory, University of Cambridge, Cambridge CB3 0WB, UK (l.c.g.rogers@statslab.cam.ac.uk).

753

D
ow

nl
oa

de
d 

01
/0

8/
15

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sifin/5/91170.html
mailto:nora_imkeller@yahoo.de
mailto:l.c.g.rogers@statslab.cam.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

754 NORA IMKELLER AND L. C. G. ROGERS

assumed to be known, but we will relax the assumption that the drift is known with certainty
to the more realistic assumption that we have some prior over the possible values of the drift.
Given this, we find that there is good reason to place stops, either fixed or moving, as a means
to protect against model uncertainty, and we compare various different ways of placing the
stops. As a stop gives the opportunity of reallocating the investment capital to a different
fund or to stick with the original one, the outcome of the trade may help to decide which
action should be performed that gives an answer to the fourth question. To find out whether
simple rules are sufficient, the results will be compared to an optimal stopping problem. There
we see that we can get quite close to the optimal value by using a very simple stopping rule
with fixed stops and a time-dependent slope.

2. Model setup. We choose to study a specific situation where we will work with the
assumptions given below. With these assumptions, we are able to derive explicit expressions
for the solution to the problem, which we are then able to analyze and compare, leading to
quite concrete conclusions.

• The return process is an arithmetic Brownian motion. We shall suppose that, at time
0, a wealthy individual has a sum Y0 of money to invest in a fund. The value of his
investment at time t will be supposed to be

Yt = Y0 + μt+ σWt,

where W is a standard Brownian motion, and μ and σ are known constants until
further notice.1 We will mainly work with the gain process

Xt = Yt − Y0

= μt+ σWt.

It might be more conventional to use geometric Brownian motion2 to model the gain
process, taking a CRRA utility to express the investor’s preferences. However, this
model leads to trivial solutions; the optimal strategy is either never to exit the posi-
tion or to exit immediately. This is a sign that the geometric Brownian motion is an
inappropriate model for our particular study. In practice, a fund might be a basket
of stocks, with each stock symbolizing a company’s value. Although it is common
practice to model stock dynamics with the geometric Brownian motion, the weighted
sum cannot be described by a geometric Brownian motion, although it might be a rea-
sonable approximation. A reason for the inappropriateness of the geometric Brownian
motion for a company’s value is given in [13]. Using a geometric Brownian motion
to model the company’s value embodies an assumption of constant returns to scale
which can only be realized if the retained earnings will be reinvested. But, in an in-
finite time horizon, the returns to scale have to decrease until the company reaches
the optimal scale of operation. In contrast to that, the arithmetic Brownian motion
describes a company which has already reached its optimal scale of operation. For

1The assumption that μ is known will be relaxed later on.
2The variation of using a geometric Brownian motion instead of an arithmetic Brownian motion is considered

in [8].
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TRADING TO STOPS 755

sure, neither model perfectly describes reality, but either may be used as an adequate
approximation. As we will deal with an infinite time horizon, the arithmetic Brownian
motion is the right model to choose. The issue of the choice of a sensible model arises
in the interesting paper [21], where the authors show for a similar objective that there
is no nontrivial solution except in some situations where 0 is an entrance boundary
point. The fact that the existence of an interesting stops trading rule (which in some
sense should be a local phenomenon) is determined by asymptotic properties of the
assumed diffusion model suggests that the choice of objective and model assumptions
is a delicate issue.

• The objective is the value of a repeated strategy with an infinite time horizon. The
investor’s money is locked in the investment and cannot be spent until the position is
closed out. Thus, the investor has some incentive to take profits from the investment,
withdrawing the gain XT = YT − Y0 (which might be negative), at some stopping
time T = T1, for immediate consumption. Having closed out the position, we will
suppose that the investor repeats the process, once again investing the remaining
value Y0 in the position and using the same stopping rule applied to the rebased
process (Y (T1 + t) − Y (T1))t≥0. Thus the stopping times Tn (which are the times at
which the position gets closed and immediately reopened) form a renewal process. We
suppose that withdrawal and reinvestment incur a cost c. The time-0 value of this
repeated trading activity will be

(2.1) ϕ ≡ E

⎡
⎣∑
n≥0

e−ρTn+1 U(Y (Tn+1)− Y (Tn)− c )

⎤
⎦ ,

where T0 ≡ 0 and ρ is the (constant) rate of discounting, and the utility U is some
concave strictly increasing function. We do not consider a finite time horizon because
finite horizon problems have time-dependent solutions which can only be solved numer-
ically. With an infinite horizon objective, we obtain explicit solutions. Bankruptcy is
not taken into account, as for the more sophisticated reallocating strategies we develop
later on it is quite unlikely that the wealthy investor will go bankrupt.

• The investor’s preferences are constant absolute risk aversion. If we cared only about
the net present value of all the gains from trade over time, we would take ρ = r,
the riskless rate of interest, and U(x) = x, and take expectations with respect to the
pricing measure. However, this excludes any investor risk aversion. Indeed, we shall
see that we must allow strict concavity of U to explain why an investor would wish to
place stops; when it comes to studying this, we will always take the exponential utility
function

(2.2) U(x) = 1− exp(−γx)

for some γ > 0, the coefficient of absolute risk aversion. Although we will concentrate
on the exponential utility function only, the calculations can be used to get results for
other utility functions. The (risk-neutral) case of linear U is regarded as a limiting case,
using the limit as γ ↓ 0 of γ−1(1− e−γx). Furthermore, all calculations can be carried
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756 NORA IMKELLER AND L. C. G. ROGERS

out for a general utility function by replacing the boundary conditions by a general
functional.3 However, explicit solutions are not then guaranteed; some calculations
may end in an integral which might only be solved numerically.

• Only a small class of stopping rules is considered. We focus on simple parametric
stopping rules consisting of fixed and trailing stopping barriers as defined below. We
should not expect this simple class of strategies to include the optimum, but the
stopping rules considered are commonly used ones, and we are able to apply excursion
theory to deduce the explicit solutions. Furthermore, when we compare our results to
more general optimal stopping problems, which we have to solve numerically, it will
be shown that these simple stopping rules do very well.

Related literature. In the literature, there exist several articles where the same quantities
we are investigating are solved for many kinds of classes of dynamics. One can consult [2] for
some of these computations. In [10] a double exponential jump diffusion model is considered,
which is generalized to a hyperexponential jump diffusion model in [3]. The solutions derived
there are, however, not that concrete. There are various other articles which deal with optimal
investment decisions. For example, in [21] an investor solves an infinite horizon problem and
the goal is to repeatedly sell the asset high and buy it back at a low price. Although it allows
general diffusion dynamics, it assumes that the asset dynamics are known with certainty.
The paper [5] covers drift uncertainty; it considers a regime switching model where the idea
is to catch a bull market at its early stage, ride the trend, and liquidate the position at
the first evidence of the subsequent bear market. However, the main focus of our study is
not to fix some assumed stochastic control model and derive an optimal solution to it, but
rather to compare various commonly used real-life stopping rules and to determine under what
assumptions these might be appropriate or even good.

Coming back to our model, the following result reduces the calculation of ϕ to two simpler
calculations.

Proposition 1. The value ϕ of the trading strategy is

(2.3) ϕ =
E[e−ρT U(XT − c)]

1− E[e−ρT ]
,

where T ≡ T1.

Proof. By the strong Markov property and the stationary increments of Y , by decomposing
the objective (2.1) at the first time T = T1 that the position gets closed out we see that

ϕ = E[e−ρTU(XT − c)] + E
[∑
n≥1

e−ρTn+1U(Y (Tn+1)− Y (Tn)− c)
]

= E[e−ρTU(XT − c)] + E
[
e−ρTE

[∑
n≥1

e−ρ(Tn+1−T )U(Y (Tn+1)− Y (Tn)− c)|FT

]]

= E[e−ρTU(XT − c)] + E[e−ρT ]ϕ.

Rearrangement gives the result (2.3).

3The variation of using alternative utility functions is considered in [8].
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TRADING TO STOPS 757

For comparison, we also solve the optimal stopping problem for multiple stopping times 0 ≡
τ0 ≤ τ ≡ τ1 ≤ τ2 ≤ · · · :

ϕ̄ ≡ sup
0≤τ1≤τ2≤···

E
[∑
n≥0

e−ρτn+1 U(Y (τn+1)− Y (τn)− c )
]

= sup
0≤τ1≤τ2≤···

E
[
e−ρτ

{
U(Xτ − c) + E

[∑
n≥1

e−ρ(τn+1−τ)U(Y (τn+1)− Y (τn)− c)
}
|Fτ

]]

= sup
τ≥0

E
[
e−ρτ

{
U(Xτ − c) + sup

τ2≤τ3≤···
E
[∑
n≥1

e−ρ(τn+1−τ)U(Y (τn+1)− Y (τn)− c)
}
|Fτ

]]

= sup
τ≥0

E[e−ρτ{U(Xτ − c) + ϕ̄}].(2.4)

It is clear that ϕ̄ ≥ supT≥0 ϕ. On the other hand, μ is constant, and therefore X follows a
time-homogeneous diffusion. See [18] or [12] to verify that in this case, the continuation region
is time invariant and, thus, depends only on the state of the process and not explicitly on
time. Hence, the optimal value is attained by the fixed-stops rule, which is defined below.4

To set the stage, we now offer a few natural examples which we will study in more detail
later.

Example 1 (fixed stops). This is the easiest example of all. The investor trades if he made
a gain of b or a loss of a. The upper stop can be seen as a take-profit stop, and the lower stop
is used to limit the losses. So, we take a > 0, b > 0 and set

(2.5) T ≡ inf{t : Xt = −a or Xt = b}.
Example 2 (trailing stop and fixed stop). The trailing stop is not fixed, but it moves with

the investment price. More precisely, the trailing stop occurs if the investment price drops
by a fixed value from its maximum-to-date price. These kinds of stops are widely used by
practitioners because once the investor has made a certain gain, the trailing stop preserves a
part of this gain. Fix a > 0 and b > 0, and let X̄t ≡ sup0≤s≤tXs. Then the stopping time is
defined by a trailing stop at −a+ X̄t and a take-profit stop at b > 0:

(2.6) T ≡ inf{t : X̄t −Xt = a or Xt = b}.
Example 3 (trailing stop). As a special case of Example 2, we fix a > 0 and set

(2.7) T ≡ inf{t : X̄t −Xt = a},
which gives the trailing stop only. This has the stop-loss character of Example 2 but does not
stop out at some high level, thereby stopping losses but running with profits.

Example 4 (converging stops). Fix a > 0 and ε > 0. Then we use the stopping time

(2.8) T ≡ inf{t : (1 + ε)X̄t −Xt = a}.
In this situation, it is easy to see that the trade stops out before X first hits a/ε; it has
similarities to Example 2, and in the special case ε = 0 we recover Example 3.

4This idea is due to a referee’s hint.
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758 NORA IMKELLER AND L. C. G. ROGERS

Since our main interest is in the case of CARA utility U (2.2), we see that the value of
the problem can be expressed as

ϕ =
E[e−ρT ]− eγcE[e−ρT−γXT ]

1−E[e−ρT ]

=
L(ρ, 0) − eγcL(ρ, γ)

1− L(ρ, 0)
,(2.9)

where for arbitrary ρ, γ ≥ 0

(2.10) L(ρ, γ) ≡ E[e−ρT−γXT ]

is the joint Laplace transform of the time and place of stopping. Thus the first objective is to
identify the joint Laplace transform L as explicitly as possible in each of the examples under
investigation. As we shall see, this is not the end of the story, merely the start.

3. Analysis of the examples. In this section, we shall analyze the examples presented in
section 2 and derive explicit solutions for the joint Laplace transform L in each case. The
first example is solved using differential equations techniques, which we can think of as an
application of Itô calculus. Similar techniques may also be used to solve the other examples,
but as the state variable is no longer one dimensional, the construction of the correct functions
is not as simple or transparent. For this reason, we prefer to derive the answers using Itô
excursion theory, introduced by Itô in [9]; see [14] or [16] for accessible accounts.

3.1. Example 1: Fixed stops. We write

(3.1) L ≡ 1

2
σ2 d2

dx2
+ μ

d

dx
− ρ

for the generator of the diffusion X with killing rate ρ. If f : R �→ R is C2 and satisfies
Lf = 0, then by an application of Itô’s formula we have that

Mt ≡ e−ρtf(Xt) is a local martingale

which is bounded on the interval [0, T ], and therefore5 (M(t ∧ T ))t≥0 is a martingale. By the
optional sampling theorem, it follows6 that

(3.2) f(0) = E0[e−ρT f(XT )],

so in order to compute the numerator and denominator in (2.3) it is enough to solve the ODE
Lf = 0 in [−a, b] with the appropriate boundary conditions.

If we let −α < 0 < β be the roots of the quadratic

(3.3)
1

2
σ2z2 + μz − ρ = 0,

5Here, of course, T is given by (2.5).
6The notation Ex denotes expectation under the initial condition X0 = x.
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TRADING TO STOPS 759

then the solution to the ODE

Lf = 0, f(−a) = A, f(b) = B

is

f(x) =
(Aeβb −Be−βa)e−αx + (Beαa −Ae−αb)eβx

eαa+βb − e−αb−βa
.

Evaluating at x = 0 simplifies to

(3.4) f(0) =
A(eβb − e−αb) +B(eαa − e−βa)

eαa+βb − e−αb−βa
.

If we now take A = exp(γa) and B = exp(−γb), we read off the joint Laplace transform L1

for this first example:

(3.5) L1(ρ, γ) =
eγa(eβb − e−αb) + e−γb(eαa − e−βa)

eαa+βb − e−αb−βa
.

Formula (3.5) can also be obtained by a variation of the calculations of section 2 in [7].
Substituting the form of L1 into the expression (2.9) gives the value ϕ for this stopping rule.
The dependence of the right-hand side on ρ is of course through the dependence of α, β on ρ
as solutions to (3.3). The mean of the hitting time can be derived from the Laplace transform
as

E[T ] = −∂L1

∂ρ
(0, 0)

=
b(eka − 1)− a(1− e−kb)

μ(eka − e−kb)
(3.6)

after some calculations, where k ≡ 2μ/σ2.

3.2. Example 2: Trailing stop and fixed stop. We deal with this example first and read
off the solution to Example 3 as the special case b = ∞. Recall that we take the stopping
time

(3.7) T ≡ inf{t : X̄t −Xt = a or Xt = b},

where X̄t ≡ sup0≤s≤tXs. The process7 Y ≡ X − X̄ is a continuous strong Markov process
with values in X ≡ (−∞, 0], and 0 is a recurrent point for this process. The Itô theory of
excursions [9] applies to this process, and we will make use of it. Let V denote the space of all
excursions of Y away from 0, that is, continuous functions f : R+ → X with the property that
for some ζ = ζ(f) ∈ (0,∞], the lifetime of the excursion, the set f−1((−∞, 0)) is of the form
(0, ζ). Regarding V as a subset of C(R+,R) induces the subset topology on V , and in fact V
is a Polish space; see, for example, [16] for definitions and basic properties. The process X̄ is
a continuous homogeneous additive functional of Y , growing only when Y = 0, and acts as
the local time at zero for Y . The open set Y −1((−∞, 0)) is the disjoint union of countably

7In what follows, Y is defined to be a new process.
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760 NORA IMKELLER AND L. C. G. ROGERS

many excursion intervals Ij , and the point process Π ≡ {(Lj , ξ
j) : j ∈ Z} is a Poisson point

process in (0,∞)× V , where

Lj = X̄(Ij),

ξj = Y |Ij .
The mean measure of Π is Leb × n, where n is the σ-finite excursion measure: see Itô [9].
The key to effective use of Itô excursion theory is an explicit characterization of the excursion
measure n. Once the excursion has escaped from 0, it evolves like the diffusion X − X̄ until
it first hits zero, and it leaves 0 according to an entrance law.

We shall use excursion theory to calculate for any γ ≥ 0 the expectation

(3.8) L(ρ, γ) ≡ E[ exp(−ρT − γXT ) ];

evidently, once we have this, we can obtain the numerator and denominator in (2.3) by suitable
substitutions and combinations. As explained in [14], we deal with expectations such as (3.8)
by introducing an independent exp(ρ) time τ and writing

(3.9) E[ exp(−ρT − γXT ) ] = E[ e−γXT : T < τ ].

The way this is handled by excursion theory is to think of τ as being the first event time
τ1 in a Poisson process on R

+ of intensity ρ, with event times τ1 < τ2 < · · · . This Poisson
process of times can be dealt with by marking the excursions of Y , each independently of
all others, according to a Poisson process of intensity ρ. The excursion point process Π gets
modified to the marked excursion point process Π̃, where each excursion ξj gets augmented to
ξ̃j ≡ (ξj , N j), where N j is an increasing Z

+-valued path, representing the path of the marking
process restricted to the excursion ξj . We observe the marked excursion process Π̃ until either
local time X̄ reaches b; or we see an excursion which gets to −a before any mark; or we see
an excursion which gets marked before it reaches {0,−a}. To set some notation, let

A ≡ {excursions which are marked before reaching 0 or −a};(3.10)

B ≡ {excursions which get to −a with no mark before reaching −a}.(3.11)

We shall calculate n(A) and n(B) quite simply, but for this we need to characterize the
excursion measure effectively. Let −α < 0 < β be the roots of the quadratic 1

2σ
2t2 + μt− ρ;

then routine calculations lead to the conclusion that for any −a < x < 0

Ex[1− e−ρH0∧H−a ] =
1− e−βa

eαa − e−βa
(1− e−αx) +

eαa − 1

eαa − e−βa
(1− eβx),(3.12)

Ex[e−ρH−a : H−a < H0] =
e−αx − eβx

eαa − e−βa
,(3.13)

where Hz ≡ inf{t : Xt = z} is the hitting time of z. Since the measure of excursions which
reach −ε is asymptotic to ε−1 as ε ↓ 0 (see Williams’ decomposition of the Brownian excursion
law [19, II.67], we conclude that

n(A) = lim
ε↓0

1

ε
E−ε[1− e−ρH0∧H−a ] =

βeαa + αe−βa − (α+ β)

eαa − e−βa
,(3.14)

n(B) = lim
ε↓0

1

ε
E−ε[e−ρH−a : H−a < H0] =

α+ β

eαa − e−βa
.(3.15)
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TRADING TO STOPS 761

The first excursion in A ∪B comes at local time rate

(3.16) ν ≡ n(A ∪B) =
βeαa + αe−βa

eαa − e−βa
.

We shall stop the point process either at the first time we see an excursion in A∪B, or when
local time reaches b, whichever comes sooner.

Now we come back to the expectation (3.9) and consider how the event T < τ could
happen: this could either be because X̄ reaches b before the first excursion in A ∪ B, or
because the first excursion in A ∪ B happens before X̄ reaches b, and is in fact an excursion
in B. By simple properties of Poisson processes, we discover after a little thought that

L2(ρ, γ) ≡ E[ exp(−ρT − γXT ) ]

= E[e−γXT : T < τ ]

= e−νb−γb +

∫ b

0
νe−νy n(B)

ν
e−γ(y−a) dy

= e−(ν+γ)b +
n(B)eγa

ν + γ
(1− e−(ν+γ)b).(3.17)

To our knowledge, this explicit result is new. As before, the mean of T can be computed by
differentiating the Laplace transform with respect to ρ at zero. We find8 that

(3.18) E[T ] =
σ2

2μ2
(eka − 1− ka)(1 − e−mb),

where k = 2μ/σ2 as before, and m = k/(eka − 1).

3.3. Example 3: Trailing stop. When b = ∞, the results of subsection 3.2 reduce to
simpler expressions

(3.19) L3(ρ, γ) =
n(B)eγa

ν + γ
, E[T ] =

σ2

2μ2
(eka − 1− ka).

The first of these agrees with the result of Taylor [17, equation (1.1)] and can easily be obtained
from a result of Glynn and Iglehart [6]. Lehoczky determined this quantity in [11, equation
4] for the larger class of time homogeneous processes.

3.4. Example 4: Converging stops. In this example, the stopping time is given by (2.8):

T ≡ inf{t : (1 + ε)X̄t −Xt = a}.

The analysis of this example is quite similar to Example 2, except that the excursion measure
of the excursions which stop the process now depends on how much local time has elapsed.
When local time X̄ has reached �, then any excursion which either contains a mark or reaches

8The calculations were carried out by a symbolic mathematics package and by traditional methods.
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762 NORA IMKELLER AND L. C. G. ROGERS

−a + ε� will stop the Poisson point process. Exactly as in (3.14), (3.15), the intensity of
excursions which are marked before reaching −a+ ε� or zero is

(3.20) nA(�) ≡ βeα(a−ε	) + αe−β(a−ε	) − (α+ β)

eα(a−ε	) − e−β(a−ε	)
,

and the intensity of excursions which get to −a+ ε� before getting marked is

(3.21) nB(�) ≡ α+ β

eα(a−ε	) − e−β(a−ε	)
.

So in total, the intensity of excursions which stop the Poisson point process is

(3.22) nA∪B(�) =
βeα(a−ε	) + αe−β(a−ε	)

eα(a−ε	) − e−β(a−ε	)
.

We can now calculate

F̄ (t) ≡ P (X̄ reaches t before the stopping excursion)

= exp

[
−
∫ t

0
nA∪B(s) ds

]

= exp

{
−βt− ε−1 log

(
1− e−(α+β)a

1− e−(α+β)(a−εt)

) }

= e−βt

(
1− e−(α+β)(a−εt)

1− e−(α+β)a

)1/ε

,

which we notice is decreasing with t, and vanishes when t = a/ε, as it must. Using this, we
deduce after some calculations that

L4(ρ, γ) =

∫ a/ε

0
e−γ((1+ε)x−a) nB(x)F̄ (x) dx

=

∫ a/ε

0
e−γ((1+ε)x−a) α+ β

eα(a−εx) − e−β(a−εx)
F̄ (x) dx

=
1

ε

(
e−(γ+β)a

1− e−(α+β)a

)1/ε ∫ 1

exp{−(α+β)a}
(1− t)(1−ε)/ε t−κ dt,(3.23)

where κ = (γ + β)(1 + ε)/ε(α + β). The answer is therefore available in terms of incomplete
beta functions.

4. Placing of the stops. The identification of the joint Laplace transform of T and XT in
each of the previous examples now allows us to evaluate the objective ϕ (2.9), and by varying
the parameters a and b we are able to optimize ϕ. However, numerical investigation shows
that in many cases it is optimal to let a → ∞. If this happens, then there would be no reason
to place a lower stop, which is somewhat unexpected. We can analyze this phenomenon quite
completely for the case of fixed stops, which coincides with the optimal stopping problem
(2.4). In any case, since we observe that often the best thing is to use no lower stop, we are
forced to reassess the modeling assumptions.
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Accordingly, we will until further notice restrict our attention to the fixed-stops example,
Example 1. The joint Laplace transform L1 of T and XT has been found (3.5), and so we
are able to obtain an explicit expression for the value ϕ using (2.9). Since we are concerned
with the behavior of this as a → ∞ with all other parameters fixed, we shall use the (local)
notation ϕ(a), where we have explicitly

ϕ(a) =
L(ρ, 0)− eγcL(ρ, γ)

1− L(ρ, 0)

= −1 +
1− eγcL(ρ, γ)

1− L(ρ, 0)

= −1 +
eαa −B1e

−βa − (1 −B1)e
γ(a+c) −B2e

γc(eαa − e−βa)

eαa −B1e−βa − (1−B1)−B3(eαa − e−βa)
,(4.1)

where B1 = e−(α+β)b, B2 = e−(γ+β)b, and B3 = e−βb, which are positive constants less than
1. The large-a behavior of this expression is determined in the following little result.

Proposition 2. Consider the behavior of the objective (2.9) in the case of fixed stops (2.5)
as a → ∞, with b fixed.

(i) If γ > α, then

(4.2) lim
a→∞ϕ(a) = −∞.

(ii) If α > γ and b > c, then

(4.3) ϕ(a) < ϕ(∞)

for all a > 0.
Proof. The proof is given in Appendix A.
Remarks. It is easy to understand the content of Proposition 2. In the case where γ > α,

it is not advantageous to let a → ∞ because although the expectation

(4.4) E[e−ρT : XT = −a] ∼ e−αa

is getting exponentially small, the utility when this event happens is getting large negative
exponentially, and at a greater rate. In contrast, if γ < α, the exponential decay of the
expectation (4.4) beats the growth of the penalty, and the investor can ignore the penalty for
stopping at a low negative level. The condition b > c is needed for the proof but has a natural
interpretation; if b < c, we are certain to be losing money every time we review our portfolio,
so we would never consider entering this trade.

For a reasonable solution, then, it seems that we require γ > α. However, in typical
examples, this can lead to coefficients γ of absolute risk aversion so high that the value ϕ is
always negative, so we would never engage in this trade! The point is that −α solves the
quadratic (3.3), and if μ > 0, we will always have α > 2μ/σ2, a lower bound which need not
be small. So for a solution with realistic values of γ, and with a rationale for a lower stop at
a finite position, it seems that we are forced to consider situations where μ is negative. But
if the growth rate of the trade were negative, and we are paying transaction costs, we would
certainly never want to enter into it!
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764 NORA IMKELLER AND L. C. G. ROGERS

So, we incorporate an uncertainty risk into our model, which means that when we pick a
fund, we are not certain of its true value of μ. We merely have some prior distribution over
possible μ values with a positive probability that μ is negative. Then, we will find that even
for small values of γ the punishment for stopping at very low levels really hurts, and we will
want to use a finite lower stop. On the other hand, if the probability of decently positive
values of μ is quite high, we will be emboldened to take part in the trade.

Once we allow randomly picking a fund with an uncertain drift μ, there are several possible
stories which one could tell. We might have the following:

(A) Each time we come out of a trade, we go back into the same fund.
(B) Each time we come out of a trade, we pick an independent fund with the same proba-

bilistic structure and invest in that.
(C) Each time we come out of a trade on the down side, we pick an independent fund with

the same probabilistic structure and invest in that.
(D) We perform an optimal stopping analysis for the situation where the drift parameter

of the diffusion is being filtered from the observations; see, for example, [1] or [15].
Once we have picked a particular fund, we consider a learning process for the drift
of that specific fund. Having observed the data up to some time τ0, resulting in a
prior μ0, we assume the distribution of the drift to be N(μ0, σ

2/τ0). Then, by Bayes’
formula, the density of μ conditional on the observation filtration Xt yields

pμ|Xt=x(y) =
pμ(y) pXt|μ=y(x)∫
pμ(l) pXt|μ=l(x)dl

= 1√
2πvt

e
− (y−μ̂(t,x))2

2vt ,

with

μ̂(t, x) = τ0μ0+x
τ0+t and vt =

σ2

τ0+t .(4.5)

Hence, μ conditional on Xt is normally distributed with mean μ̂(t,Xt) and variance
vt. The gain process is

dXt =

(∫
y pμ|Xt

(y)dy

)
dt+ σdŴt

= μ̂(t,Xt)dt+ σdŴt,(4.6)

where Ŵt is a standard Brownian motion in the observation filtration Xt.
Each time we reach the stopping region, we invest in an independent fund with the
same probabilistic structure.

Let ϕ̄ be the value function to be optimized; then ϕ̄ depends on which of the stories we
choose and has the subsequent forms.

Let m be the distribution of μ and Eμ the expectation when the drift is μ. For (A)–(C),
every time we reallocate to a new investment, we pick a fund with constant drift according to
the distribution m. Then, ϕ̄ =

∫
ϕ(μ)m(dμ) with a different kind of ϕ(μ).
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TRADING TO STOPS 765

(A) As in (2.3), we have value ϕ(μ) given by

ϕ(μ) = Eμ
[
e−ρTU(XT − c)

]
+ Eμ

[
e−ρT

]
ϕ(μ),

which is equivalent to

ϕ(μ) =
Eμ

[
e−ρTU(XT − c)

]
1− Eμ

[
e−ρT

] ,

so the overall value this time is given by

ϕ̄ =

∫
ϕ(μ) m(dμ)

=

∫
Eμ

[
e−ρTU(XT − c)

]
1− Eμ

[
e−ρT

] m(dμ).(4.7)

(B) This time we have value ϕ(μ) given by

ϕ(μ) = Eμ
[
e−ρTU(XT − c)

]
+ Eμ

[
e−ρT

]
ϕ̄,

so the overall value will be

ϕ̄ =

∫
ϕ(μ) m(dμ)

=

∫
Eμ

[
e−ρTU(XT − c)

]
m(dμ) +

∫
Eμ

[
e−ρT

]
m(dμ) ϕ̄,

which can be rearranged to give

ϕ̄ =

∫
ϕ(μ) m(dμ) =

∫
Eμ

[
e−ρTU(XT − c)

]
m(dμ)

1− ∫
Eμ

[
e−ρT

]
m(dμ)

.(4.8)

(C) We denote by H and Hc the events that the position closes out on the high side and
down side, respectively. Then, Eμ[· : H] and Eμ[· : Hc] are the corresponding partial
expectations. Then,

ϕ(μ) = Eμ
[
e−ρTU(XT − c)

]
+ Eμ

[
e−ρT : H

]
ϕ(μ) + Eμ

[
e−ρT : Hc

]
ϕ̄,

which is equivalent to

ϕ(μ) =
Eμ

[
e−ρTU(XT − c)

]
+ Eμ

[
e−ρT : Hc

]
ϕ̄

1− Eμ
[
e−ρT : H

] ,

so the overall value is

ϕ̄ =

∫
ϕ(μ) m(dμ)

=

∫
Eμ

[
e−ρTU(XT − c)

]
1− Eμ

[
e−ρT : H

] m(dμ) +

∫
Eμ

[
e−ρT : Hc

]
1− Eμ

[
e−ρT : H

] m(dμ) ϕ̄.
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766 NORA IMKELLER AND L. C. G. ROGERS

Rearranging leads to

(4.9) ϕ̄ =

∫ Eμ[ e−ρTU(XT−c) ]
1−Eμ[ e−ρT :H ]

m(dμ)

1− ∫ Eμ[ e−ρT :Hc ]
1−Eμ[ e−ρT :H ]

m(dμ)
.

For the above three stories, the main point is that once we are able to find an explicit
expression for the Laplace transforms L(ρ, γ|μ) = Eμ[ exp(−ρT − γXT ) ] and LH(ρ, γ|μ) =
Eμ [exp(−ρT − γXT ) : H ] for the different stopping rules, we are able to deduce the value
ϕ̄ just by doing at most two integrations. L(ρ, γ|μ) was already calculated in section 3 for
all stopping rules. For Example 1, LH(ρ, γ|μ) can be obtained in the same manner by simply
changing the boundary conditions giving

LH(ρ, γ|μ) = (eαa − e−βa)e−γb

eαa+βb − e−αb−βa
,

where μ is hidden in α and β, respectively. For Example 2, LH(ρ, γ|μ) is a by-product of
(3.17):

LH(ρ, γ|μ) = e−(ν+γ)b.

(D) As in (2.4), the value must satisfy

(4.10) ϕ̄ = sup
τ≥0

E
[
e−ρτ

{
U(Xτ − c) + ϕ̄

} ]
,

but with gain process (4.6), which no longer follows a time-homogeneous diffusion. We
propose solving this by recursively solving

(4.11) ϕ̄n+1 = sup
τ≥0

E
[
e−ρτ

{
U(Xτ − c) + ϕ̄n

} ]
,

starting from ϕ̄0 = 0. We solve a Crank–Nicolson finite-difference scheme to obtain
the answer. The calculations and the proof that (4.11) has a solution are given in
Appendix B.

5. Numerical study. We shall compare the stopping rules of section 3 in several examples.
In all cases, we shall assume that σ = 0.3, γ = 2.5, c = 0.0005, and ρ = 0.1. We have
explored various other examples, and the behavior which we report in these examples appears
to be quite typical. A further comparison we make is with a fixed-revision rule, where the
investor chooses T > 0 fixed, and then revises his position at multiples of T , regardless of the
performance of the fund. The objective is once again given by (2.3), though now, of course,
T is constant. We find the investor’s best choice of fixed T and compare the performance of
this rule with the various rules determined by stops.

In the first example, we assume that the investor knows μ = 0.15 with certainty. There
are four9 stopping rules to be considered now, and the results are given in Table 1.

9The converging stops are left out in the following tables because we found that for this stopping rule it
is optimal to mimic Example 2 by setting a = b∗ε, where b∗ is the optimal upper barrier for Example 2, and
letting ε converge to 0.
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Table 1
Known μ. Example with μ = 0.15, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops ∞ 0.0184 4.1553 0.1224
Trailing stop and fixed stop ∞ 0.0184 4.1553 0.1224
Trailing stop 0.0894 0.5314 0.0983
Fixed exit time 0.8724 0.3780

Figure 1. Known μ. Two-stops rules (Examples 1 and 2). Example with μ = 0.15, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1.

As the optimal solution to (2.4) is attained by fixed stops and the parameter are such
that α > γ, the optimal stopping rule is a one-sided trigger policy, where it is optimal to stop
as soon as some threshold b is reached from below. Accordingly, with fixed stops or with a
fixed upper stop and a trailing stop, the best choice of a is a = ∞; it always pays to push the
lower stop all the way down. If this is done, then of course the two stopping rules amount to
stopping at b, and so it is no surprise that the values, the optimal choices of b, and the mean
time per trade all agree. The value ϕ as a function of a and b is displayed in Figure 1; for finite
a, the pictures for Examples 1 and 2 are in principle different, but in this example they are
not visibly different. Notice that the value for a fixed upper and trailing stop is substantially
higher than for a trailing stop only; this is of course to be expected, as we have optimized over
a larger set, but the magnitude of the improvement is noteworthy. The trailing stop example,
Example 3, is quite different in character, with a much shorter mean time in trade. The fixed
revision rule performs very poorly relative to the two-sided stops rules, Examples 1 and 2.
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As we explained in section 4, it is uncertainty in the μ which vindicates trading to stops,
and to illustrate this we study the stories where we do not suppose that μ is known. For (A)–
(C), we assume that the drift of the fund we pick is a random variable with prior N(μ0, σ

2
μ)

distribution. We suppose that μ0 = 0.15, and we take two different values for the standard
deviation: first σμ = 0.3 and second the more uncertain case σμ = 0.7.

(A) The results obtained for the story where we go back into the same fund are reported
in the following tables. Table 2 is for σμ = 0.3 and Table 3 is for σμ = 0.7.

Table 2
Story (A). Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.2159 0.0470 0.8416 0.0998
Trailing stop and fixed stop 0.2375 0.0464 0.8398 0.0984
Trailing stop 0.0603 0.2397 0.0439
Fixed exit time 0.5627 0.0670

Table 3
Story (A). Example with μ0 = 0.15, σμ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.0837 0.0559 0.4410 0.0475
Trailing stop and fixed stop 0.1069 0.0523 0.4223 0.0452
Trailing stop 0.0411 -0.4264 0.0203
Fixed exit time 0.0698 0.0290

For σμ = 0.3, the calculated values of the three stopping examples are displayed in
Figures 2 and 3, respectively. Due to the risk aversion, the values of all the rules have
dropped, particularly the stops trading rules. As with the certain growth rate, the
two-stops rules do substantially better than either the trailing stop alone or the fixed
time to revision. Mean times in trades have fallen in all cases. As before, there is
no appreciable difference between Examples 1 and 2; the trailing stop has very little
effect. Increasing the deviation of the drift to σμ = 0.7 leads to even smaller objectives.
In all cases, the parameter a has fallen to protect against huge losses.

(B) The next tables, Tables 4 and 5, show the results for σμ = 0.3 and σμ = 0.7, respec-
tively, if we pick a new independent fund each time we come out of a trade.
The values of the three stopping examples which were calculated with respect to
σμ = 0.3 are displayed in Figures 4 and 5, respectively. Compared to story (A), the
values of the stops trading rules have grown. It can be seen that the optimal lower
barriers a have fallen to much lower values, while the values for the upper barriers b
are much larger. The reason for this is that we do not want to stop a good investment
having a large positive drift, but we get rid of those investments with negative drifts
quickly. The difference in value of Examples 2 and 3 is comparatively small because
the gain process in Example 2 will only occasionally get stopped at b; most will be
caught by the trailing stop. We see, however, that the fixed-stops Example 1 performs
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TRADING TO STOPS 769

Figure 2. Story (A). Fixed stops. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Figure 3. Story (A). Trailing stop and fixed stop. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1.
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Table 4
Story (B). Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.0191 0.3409 1.4071 0.0804
Trailing stop and fixed stop 0.0985 0.6558 1.3431 0.1236
Trailing stop 0.0952 1.3354 0.1159
Fixed exit time 0.5596 0.0662

Table 5
Story (B). Example with μ0 = 0.15, σμ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.0083 0.3426 4.8955 0.0338
Trailing stop and fixed stop 0.0767 0.7572 4.1695 0.0792
Trailing stop 0.0728 4.1224 0.0720
Fixed exit time 0.0698 0.0290

better than Example 2 with a trailing stop, presumably because the trailing stop
may prematurely close out a trade which might have turned out to be profitable.
Interestingly, when we compare the values for Examples 1 and 2 in story (B) with the
values for Examples 1 and 2 in the certain-drift case, we find that for the smaller value
σμ = 0.3 we do better if we know the drift, while for the larger value σμ = 0.7 we
do better if we have uncertainty in the drift. The reason is not hard to discern. For
small σμ, risk aversion is the dominant effect, but for larger σμ we benefit from the
wider spread of μ-values; the lower stop closes down the unprofitable trades, but we
get more of an upside from the profitable trades.

(C) In story (B) we have seen that the two-stops examples have small a to shut down
the unprofitable trades and large b to let the gains accumulate when we have found a
profitable trade. In contrast, when we use story (C), which only changes funds if we
come out at the lower stop, the results in Tables 6 and 7 look quite different.10

For σμ = 0.3, the values are displayed in Figures 6 and 7, respectively. Notice first
that the values of the objectives are substantially higher, because we are allowed to
shop around for good funds, and once we have found one, we are allowed to play that
fund until we get stopped out at a lower stop. Because of this, we have to be careful
not to stop out a fund at the lower stop unless we are quite confident that it is a poor
performer; the loss of profit from killing a good fund too early would be considerable.
So this explains why we see larger a values than for story (B). We also see much
smaller b values, which we understand as a desire to book profits quickly and avoid
discounting them away; if we think we are playing a good fund, we will gladly do this,
because we can just return to playing the same good fund immediately, in contrast to
the situation of story (B) where we would have to pick a new independent fund and

10Of course, it does not make any sense to consider the single stopping rules, trailing stop, and fixed exit
time because there we cannot distinguish between upper and lower outcomes.
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TRADING TO STOPS 771

Figure 4. Story (B). Fixed stops. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Figure 5. Story (B). Trailing stop and fixed stop. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1.
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Table 6
Story (C). Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.3620 0.0239 6.8525 0.0370
Trailing stop and fixed stop 0.3735 0.0240 6.8539 0.0371

Table 7
Story (C). Example with μ0 = 0.15, σμ = 0.7, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Fixed stops 0.2020 0.0213 20.216 0.0125
Trailing stop and fixed stop 0.2119 0.0219 20.231 0.0129

take our chances on its quality.
For the first time, we see Example 2 outperforming Example 1 (but only very slightly).
This seems to be because the trailing stop will allow a slightly quicker closing out of
bad trades, and since the lower stop is initially quite far from 0, this difference matters.
Another way we could try to capture this advantage would be by adding a time-
dependent slope to the barriers, and this is examined in section 6. For the same
reasons as in story (B), a larger standard deviation σμ = 0.7 yields a better objective.

(D) The Bayesian story has similarities to story (B); the stochastic nature of the funds
is identical, but we allow any stopping rule. As was recorded at (4.6), we can model
the gain process in the observation filtration as the solution of a stochastic differential
equation, and the optimal stopping problem for this is found by solving the recursive
scheme (4.11) by Crank–Nicolson. To compare with our results for story (B) using
σμ = 0.3, we propose taking a prior distribution for μ with mean 0.15 as before and
precision τ0 = σ2/σ2

μ = 1. Table 8 compares the results from story (B) with the optimal
solution obtained using story (D). Of course, we cannot report any fixed values for the
optimal stopping solution, as the stopping boundary is a curve, which can be seen in
Figure 8, that also covers a solution of a stopping rule which is considered later.
The shape of the stopping region can be interpreted as a time-dependent decreasing
upper stop η(t) and an increasing lower stop ξ(t). The upper stop η begins at a high
level to let good investments run and the lower stop ξ starts at a small negative value to
immediately get rid of bad investments. As time goes by, the state of the gain process
updates the drift estimator (4.5). The threshold η(t) will decrease with t; if we decided
to stop at time t when the gain value Xt was y > 0, then we would certainly want to
stop at level y at any later time because our estimate of μ would then be smaller and
we would be more confident in that estimate. A corresponding argument applies to
the lower stop ξ(t).

6. Time-dependent slope. In this section, we examine what happens if some time-
dependent factors are added to the stops. Then, for a parameter q, the modified stopping
times are as follows:
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TRADING TO STOPS 773

Figure 6. Story (C). Fixed stops. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Figure 7. Story (C). Trailing stop and fixed stop. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5,
c = 0.0005, ρ = 0.1.
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Table 8
Story (D) and story (B). Example with μ0 = 0.15, σμ = 0.3, τ0 = 1, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Objective E[T ]

Optimal stopping 1.6770
Fixed stops 0.0191 0.3409 1.4071 0.0804
Trailing stop and fixed stop 0.0985 0.6558 1.3431 0.1236
Trailing stop 0.0952 1.3354 0.1159
Fixed exit time 0.5596 0.0662

Example 1 (fixed stops). We take a > 0, b > 0 and set

T ≡ inf{t : Xt = −a+ q t or Xt = b+ q t}.

Example 2 (trailing stop and fixed stop). This time we fix a > 0 and b > 0 and define
X̂t = sup0≤s≤t{Xs − q s}. Then we use the stopping time

T ≡ inf{t : Xt = X̂t − a+ q t or Xt = b+ q t}.

Example 3 (trailing stop). Fix a > 0 and set

T ≡ inf{t : Xt = X̂t − a+ q t}.

Regarding a process11 Yt ≡ Xt − q t, then for Y , the above stopping rules correspond to
the time-independent ones defined in section 2. Thus, for process X and the time-dependent
barriers, the joint Laplace transforms can be computed from the Laplace transforms of the
previous sections with respect to process Y :

LX(ρ, γ) = E[e−ρT−γXT ]

= E[e−ρT−γ(YT+qT )]

= E[e−(ρ+γq)T−γYT ]

= LY (ρ+ γq, γ).

Having added an additional parameter q which defines the slope of the barriers, we can
optimize over a, b, and q to obtain the objectives for known drift μ and for the stories (A)–
(C). As q = 0 is a feasible choice, the objectives we will find cannot be smaller than those
found in section 5. For a better comparison, in the following tables, the optimal objectives
for q = 0 are given as well. As we have seen that the upper barrier is of importance, we will
concentrate on Examples 1 and 2 only. Furthermore, in case of uncertainty, only σμ = 0.3 will
be considered. All other parameters are as in section 5.

11In what follows, Y is defined to be a new process.
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In case of certainty, the results given in Table 9 show that the optimal value for q is zero.
This is due to the fact that for known μ, the fixed-stops rule solves the optimal stopping
problem (2.4). Thus, a slope does not lead to an improvement and all results are as in Table
1.

Table 9
Known μ with slope q. Example with μ = 0.15, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Best q Objective E[T ] q = 0

Fixed stops ∞ 0.0184 0.0000 4.1553 0.1224 4.1553
Trailing stop and fixed stop ∞ 0.0184 0.0000 4.1553 0.1224 4.1553

Table 10
Story (A) with slope q. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Best q Objective E[T ] q = 0

Fixed stops 0.2244 0.0447 0.0347 0.8426 0.1005 0.8416
Trailing stop and fixed stop 0.2450 0.0441 0.0346 0.8407 0.0991 0.8398

Table 11
Story (B) with slope q. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Best q Objective E[T ] q = 0

Fixed stops 0.0345 0.2944 0.4949 1.5976 0.0782 1.4071
Trailing stop and fixed stop 0.1102 0.5445 0.2789 1.3519 0.1251 1.3431

(A) If we stick with the same fund forever, we will get the results given in Table 10.
The results are very close to those in section 5 because the optimal parameter q is
close to 0. In other words, allowing the barriers to have a time-dependent drift does
not yield a substantial improvement.

(B) Choosing a different investment from the marketplace on each side yields Table 11.
Just as in the case q = 0, we still get a large b to let good investments run and a small
a to quickly stop bad investments. The improvement in the objective is much greater
for Example 1 than for Example 2.

(C) If we pick an independent fund if we end up on the down side, this gives the results
which are summarized in Table 12.
In this case there is a 1.7% improvement of the objective due to the slope q. As
guessed above, the increasing lower barrier tackles below-average investments. The
slope parameter q is considerably larger than 0, but it is not as high as in story (B),
which reflects the risk of accidentally stopping a good investment.

(D) In section 5, we found that the objective for the best fixed-stops rule is quite far from
the optimum. However, adding a time-dependent slope yields the situation given in
Table 13.
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Table 12
Story (C) with slope q. Example with μ0 = 0.15, σμ = 0.3, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Best q Objective E[T ] q = 0

Fixed stops 0.4181 0.0192 0.1212 6.9719 0.0330 6.8525
Trailing stop and fixed stop 0.4274 0.0192 0.1209 6.9721 0.0330 6.8539

Table 13
Story (D) and story (B) with slope q. Example with μ0 = 0.15, σμ = 0.3, τ0 = 1, σ = 0.3, γ = 2.5,

c = 0.0005, ρ = 0.1.

Best a Best b Best q Objective E[T ] q = 0

Optimal stopping 1.6770
Fixed stops 0.0345 0.2944 0.4949 1.5976 0.0782 1.4071
Trailing stop and fixed stop 0.1102 0.5445 0.2789 1.3519 0.1251 1.3431

Figure 8. Story (D). Boundary of the optimal stopping problem and the optimal fixed stops with
two slopes. Example with μ0 = 0.15, τ0 = 1, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

The result of the optimal stopping problem cannot be improved, so we get the same
objective as in section 5. But the time-dependent slope pushes the fixed stop’s objec-
tive up by 13.5%, bringing the value much closer to the optimum, remarkably so given
the very simple-minded nature of the stopping rule.

The shape of the stopping region in Figure 8 suggests using a falling upper stop with a
rising lower stop. For fixed stops, this can be realized by using two different slope parameters
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qL and qH . Then, for a > 0 and b > 0, the stopping time is defined by

T ≡ inf{t : Xt = −a+ qLt or Xt = b+ qHt}.

See [8] for a derivation of the joint Laplace transform for this stopping time. The representation
of this Laplace transform contains two integrals which have to be computed numerically. This
computation is very costly, and the numerical results in Table 14 show that the improvement
of adding a second slope parameter is small. In Figure 8, the optimal fixed stops with two
slopes are overlapping the figure of the optimal stopping problem.

Table 14
Story (D) and story (B) with single slope q and two slopes qL and qH . Example with μ0 = 0.15, σμ = 0.3,

τ0 = 1, σ = 0.3, γ = 2.5, c = 0.0005, ρ = 0.1.

Best a Best b Best qL Best qH Objective q = 0

Optimal stopping 1.6770
Fixed stops (single slope) 0.0345 0.2944 0.4949 0.4949 1.5976 1.4071
Fixed stops (two slopes) 0.0324 1.1400 0.4198 -1.4532 1.6305 1.4071

7. Conclusions. There are at least three reasons why we might in practice wish to trade to
stops in some way. The first is to reduce transaction costs: trading strategies which rebalance
infrequently are always preferred, and in some asset classes, such as EM currencies where costs
might typically be 40bp, daily rebalancing will quickly eat into profits. The second reason
for wishing to trade to stops in some way is that until a position has been closed out, the
investor cannot make use of the gains. There is therefore an incentive not to let a position
run indefinitely, but to take profits at some point. Following from this is a third reason; if
our choice of stops rests on current estimates of fund dynamics, then it is important that we
not sit in the trade long after the parameter estimates have wandered away; otherwise the
expected performance may not materialize.

In this study, we have investigated several possible rules for placing fixed or moving stops
and compared their performance. We have found that uncertainty over the growth rate of
the fund is an essential feature of choosing stops; if we know that the fund is drifting up, we
would never want to place a lower stop. The possibility that the drift might be negative is
what makes us want to put in lower stops.

By hypothesizing the existence of many alternative investment opportunities, we investi-
gated a number of different responses which could be taken when our existing position stops
out. Of these, story (B), which supposes that we start with a new investment when we have
stopped out, leads to stopping rules closest to the market wisdom of “run large gains and
stop small losses”; however, the performance of the contrasting story (C), where we stick with
a trade until it stops out at a lower stop, was much better than story (B). The difference
between the performance of the fixed-stops Example 1 and the mixed-stops Example 2 was
very small in story (C), whereas in story (B) the difference was more substantial. This could
lead us to choose to use fixed stops, though the trailing stop does guard against the possibility
that the drift might deteriorate while we are in the trade; this is an effect which we have not
considered but which can be found in [8].
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Our final study simply puts a constant drift onto the stopping examples studied earlier.
Since we optimize over a larger class, the performance improves when we do this, often by
an appreciable margin. Two points are noteworthy here. The first is that if we pick an
independent fund each time we come out of the market, then the optimal solution for the full
Bayesian learning analysis is only a little better than the best fixed-stops solution (objective
1.6770 against 1.5976 in the numerical example). This means that the much simpler fixed-stops
rule applied to the fund with suitably chosen drift is close to optimal and can be recommended.

The second noteworthy point is that by far the best strategy coming out of our study is to
use fixed stops with a constant drift, but only to change the fund on those occasions when we
come out at the lower stop. Of course, this conclusion depends on the particular parameter
values chosen, but in the example we report that the value of the objective is approximately
quadrupled.

Appendix A. Proof of Proposition 2.

Proof of Proposition 2. The case γ > α is easy; the dominant term in (4.1) is the term
k1e

γ(a+c) in the numerator, and this makes it obvious12 that ϕ(a) → −∞ as a → ∞.

The second case is more delicate. The limit of ϕ(a) is easily seen to be

ϕ(∞) = −1 +
1−B2e

γc

1−B3
.

If we now consider ϕ(∞)−ϕ(a), we find a rational expression whose denominator is positive,
and whose numerator is (a positive multiple of)

(A.1) H ≡ (1−B3)z − (B2e
γc −B3)y − (1−B2e

γc),

where we set z ≡ eγ(a+c), y ≡ e−βa for brevity. Thus it will be sufficient to prove that the
expression H is nonnegative.

Since b > c, we may write ε = b− c > 0, and then H becomes

H = (1−B3)z +B3(1− e−γ−ε)y − (1−B3e
−γε)

= (1−B3)(z − 1) +B3(1− e−γε)y −B3(1− e−γε)

= (1−B3)(z − 1)−B3(1− e−γε)(1 − y).(A.2)

It is clear from the final equation that if we now hold a > 0 fixed and consider H as a function
of γ, then H is convex and vanishes as γ ↓ 0. To prove the nonnegativity of H, we now
investigate the gradient of H with respect to γ, which is

∂H

∂γ
= (1−B3)(a+ c)eγ(a+c) − εB3(1− y)e−γε

= e−γε
[
(1−B3)(a+ c)eγ(a+b) − (1− y)B3(b− c)

]
.

12The denominator is asymptotic to eαa(1−B3), which is certainly positive.

D
ow

nl
oa

de
d 

01
/0

8/
15

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRADING TO STOPS 779

As γ ↓ 0, we obtain the limit

∂H

∂γ
(0) = (1−B3)(a+ c)− (1− y)B3(b− c)

= (1− e−βb)(a+ c)− e−βb(b− c)(1 − e−βa)

= e−βb
[
(a+ c)eβb + (b− c)e−βa − (a+ b)

]
= (a+ b)e−βb

[
a+ c

a+ b
eβb +

b− c

a+ b
e−βa − 1

]

≥ (a+ b)e−βb
[
eβc − 1

]
> 0,

where we have used convexity of the exponential function for the first inequality. Since H is
convex and its derivative at zero is positive, it follows that H is increasing, and therefore is
everywhere nonnegative, since it is zero at γ = 0.

Appendix B. Crank–Nicolson finite-difference scheme. In what follows, it will be shown
how to calculate the value ϕ̄n+1 with ϕ̄n given to solve (4.11). The gain process satisfies the
diffusion equation (4.6). The stopping reward process is of the form

Z(t,Xt) = e−ρt(U(Xt − c) + ϕ̄n)

≡ e−ρtg(Xt),

where ρ ≥ 0. We fix a final time T̄ which should be large enough to be outside the continuation
region and define the value function

(B.1) V (t, x) ≡ sup
t≤τ≤T̄

E[e−ρ(τ−t)g(Xτ )|Xt = x];

then we have that V ≥ g everywhere, and that

(B.2) LV + Vt − ρV ≤ 0,

which holds with equality when V > g, where L is the generator of the diffusion,

L ≡ 1

2
σ2 d2

dx2
+ μ(t,Xt)

d

dx
.

This problem can be solved numerically by using the Crank–Nicolson finite-difference scheme.
See [4] for the original paper or [20] for a more general description. We set down a grid of
x-values and a grid 0 = t0 < t1 < · · · < tN = T̄ of time values, and we let L(n) be a discrete
approximation of the diffusion generator at t = tn. If v(n) denotes the approximation of the
value function at time tn, then the Crank–Nicolson method approximates (B.2) by

(B.3)
1

2
{L(n)v(n) + L(n+1)v(n+1)} − 1

2
ρ(v(n) + v(n+1)) + Δt−1

n (v(n+1) − v(n)) ≤ 0,

with equality where it is optimal to continue. Here, we write Δtn = tn+1 − tn. The unknown
in this equation is v(n); we start with v(N)(x) = g(T̄ , x) since, by assumption, the final time
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point T̄ is outside the continuation region, and we work recursively back through the grid in
the usual dynamic-programming fashion. Rewriting (B.3) to make the unknown the subject,
we have, say,

(L(n) − ρ− 2Δt−1
n )v(n) ≤ −(L(n+1) − ρ+ 2Δt−1

n )v(n+1)

≡ −α(n),(B.4)

with equality at all places where it is optimal to continue and with v(n)(x) = g(tn, x) in places
where it is optimal to stop.

However, the problem (B.4) is an optimal stopping problem for the Markov chain with
generator13 L(n), with discount rate ρ + 2Δt−1

n , and with running reward α(n). It is quite
straightforward (and very fast) to solve this by policy improvement. Probably the simplest
thing to do at the boundaries is to insist that the process gets absorbed there, so in the original
stopping problem, we have to stop when we reach one end or the other end of the x-grid.

Proof that (4.11) has a solution. If ϕ̄1 > 0, then from (4.11) we see that ϕ̄2 > ϕ̄1 and
hence that the sequence ϕ̄n is increasing. Similarly, if ϕ̄1 < 0, we deduce that the sequence
ϕ̄n is decreasing. Therefore a limit for the ϕ̄n exists, and what remains is to prove that this
limit must be finite. To establish a lower bound, we consider the fixed stopping time τ = 1.
Then from (4.11) we see, say,

ϕ̄n+1 ≥ e−ρE [U(X1 − c) + ϕ̄n]

≡ a+ βϕ̄n.

Iterating this inequality gives the lower bound ϕ̄n ≥ a/(1− β) for all n.
For the upper bound, we note that U(x) ≤ γx, so

(B.5) ϕ̄n+1 ≤ sup
τ

E[e−ρτ (γXτ + ϕ̄n − γc)].

This leads us to consider the problem

(B.6) V (x) = sup
τ

Ex[e−ρτ (γXτ + ϕ̄n − γc)].

By considering fixed times τ tending to infinity, it is clear that V ≥ 0. Similarly, V (·) must
be increasing and bounded below by x �→ γ(x − c) + ϕ̄n. Where we do not optimally choose
to stop, V solves

(B.7) −ρV +
1

2
σ2V ′′ + μV ′ = 0.

If −α− < 0 < α+ are the roots of the characteristic quadratic 1
2σ

2t2 + μt − ρ, the optimal
solution V is

(B.8) V (x) =
γ

α+
exp[ α+(x− c− α−1

+ + ϕ̄n/γ)].

13With a three-point finite difference scheme, the matrix L(n) will usually be a Q-matrix; the calculations
need to check this.
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Evaluating at x = 0 and writing ξn ≡ α+ϕ̄n/γ, we learn that

(B.9) ξn+1 ≤ exp(ξn − 1− cα+),

with the initial condition ξ0 = 0. The most extreme case is when this inequality holds with
equality. In that case, it is easy to see that the ξn increase to the unique fixed point less than
1 of x �→ exp(x− 1− cα+). Hence we deduce that the ϕ̄n are bounded above.

Acknowledgments. We are grateful to two careful referees, and seminar participants at
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