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Abstract 

This article investigates the use micro-capsules, containing a gelling agent hydroxypropyl 

cellulose (HPC), to alter flow paths in porous media. The aim is to preferentially block-off high 

permeability regions, thereby diverting the flow into adjacent un-swept low permeability regions. 

Micro-capsules with 2 – 7 µm in diameter, were made by polymer precipitation through solvent 

evaporation usingpoly(4-vinyl pyridine) (PVP) as the shell material. A customized flow tank was 

constructed to facilitate porous media flow and both single and dual permeability experiments 

were conducted. Even without gelling agent, the micro-capsules gradually blocked the pore 

throats of the glass beads network. Following acidification a drop in permeability was observed. 

This was because swelling of the PVP shell constricted the pore throats. The permeability drop 

was observed to be more significant for low permeability regions. Flowing micro-capsules 

through the tank with two permeability regions in parallel, allowed the high permeability region 

to be selectively blocked. 
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1.Introduction 

Micro-capsules are micron-sized particles. They comprise a shell, encapsulating an active 

ingredient, in the core. The shell acts as a barrier between the active ingredient and the 

potentially harsh external environments, which can be imposed on the micro-capsules. Such 

harsh environments can be mechanical, thermal or chemical depending on the situation. There 

are numerous examples in the pharmaceutical industry where encapsulation would be beneficial. 

For example, if biological materials such as enzymes, which are susceptible to denaturation, are 

encapsulated their biological activity can be retained (Keen et al., 2012; Nasseau et al., 2001). 

Other examples include the encapsulation of astaxanthin, a food supplement, which showed 

minimal heat degradation compared to free astaxanthin(Tachaprutinun et al., 2009). 

Encapsulation is also important in the digital display industry, for example by increasing the 

lifetime of organic light-emitting diodes, by preventing moisture and oxygen diffusion into the 

display area (Chwang et al., 2003; Seo et al., 2013).  

 

Within the oil industry, no journal articles concerning the use of micro-capsules for enhanced oil 

recovery could be found. This is likely due to the lack of an appropriate time response, cost, the 

required sub-micronparticle size for low porosity reservoirs, and harsh reservoir conditions with 

high salinities and temperatures. So far, only patents have been found studying this area (Bertkau 

et al., 2012; Montanaro, 2012). 
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During secondary oil recovery, water is pumped into an oil field, via an injector, to maintain 

reservoir pressure and to sweep more oil towards the producer. Typically, the injected water will 

propagate via the path of highest permeabilityand can leave large regions of the oil field un-

swept. The idea behind this work is to flow micro-capsules, containinga gelling polymer into a 

porous medium before a stimulus/trigger is applied to release the payload. The released polymer 

then forms a gelled network, causing a marked drop in permeability, or better still, completely 

blocking off that particular swept region. The following water is then diverted into the adjacent 

un-swept regions therebymobilising the oil trapped in these regions.  

 

Flow of micro-capsules in porous media, for temperature triggered micro-capsules, was 

investigated in a previous paper (Gun and Routh, 2013b). In this article, pH is pursued as a 

release mechanism, by using micro-capsules with a poly(4-vinyl pyridine) (PVP) shell. The 

synthesis and characterisation of these micro-capsules was reported previously (Gun and Routh, 

2013a) and release of the core material was demonstratedwhen exposed to acidic environments, 

because of dissolution of the polymeric shell.  

 

The use of pH as the release trigger is fundamentally different to temperature. The temperature 

profile within a porous medium can be externally set, but for pH release, one needs to flow an 

acidic solution into the bed. Acid injection into reservoirs is an area that is extensively 

researched. One purpose of acid injection is to dissolve carbonate minerals, opening up the rock 

for fluid flow. These highly conductive channels can then form a comprehensive network 

allowing trapped oil to be swept out. If the acid was pumped at a high pressure, rock formations 

within the reservoirs can also be fractured, allowing the acid to etch into the fractures, forming 
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more channels (Samuel and Sengul, 2003). This study uses acid to trigger microcapsule release 

and consequently is likely to be relevant to sandstone reservoirs. 

 

Another possible application for these micro-capsules would be in the field of chromatography. 

Itwould be of interest to conduct experiments with a distributed system of permeabilities,rather 

than two distinctive permeability layers, as reported in this paper. This would be relevant to 

preparative chromatography, where heterogeneity in the porosity of the chromatographic 

medium gives rise to greater dispersion of eluents. Permeability patterns in porous media 

strongly influence the flow as shown through flow visualisation work (Tchelpi et al., 1993). 

Using micro-capsules, one would decrease the permeability spread in the chromatographic 

column, allowing sharper peaks in the chromatogram, resulting in a higher separation purity. 

 

In this paper, we report the use of pH sensitive micro-capsules to release hydroxypropyl 

cellulose (HPC) into a bead pack, upon addition of acid. The aim of the paper is to demonstrate 

that flow paths within a porous medium can be altered using micro-capsules. 

 

2. Materials and Method 

2.1 Microcapsule formation and release profile 

Micro-capsules that are pH-responsive were made with a PVP (Mw~160,000, Sigma-Aldrich) 

shell and an aqueous core containing HPC (Mw 370,000, Sigma-Aldrich). They were made using 

a polymer precipitation method, which has been discussed previously (Gun and Routh, 2013a). 

These micro-capsules displayed an enhanced release when exposed to aqueous solutions below 

pH 3.5. The concentration of HPC in the core was 10 wt% in water and the capsules were 
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determined from SEM images to be 2-7 µm in diameter. SEM images of the particles are shown 

in Figure 1. 

 

2.2 Tank Set-up 

To assemble, the tank was initially flooded with deionised water 18.2 MΩ cm (Purelab Ultra 

from ELGA process water) before pouring 3 mm diameter glass beads up to a height of 40 mm. 

A photo of the tank is shown in Figure 2 with a schematic shown in Figure 3. The main reason 

for flooding the tank with deionised water was to prevent trapped air pockets within the pack. 

This was frequently observed for glass beads less than 1 mm diameter and required the glass 

beads to be stirred vigorously to remove. The tank was then filled with 0.5 mm and 1.0 mm 

diameter glass beads on the two sides, separated with an impermeable Styrofoam partition, until 

they reached a height of 160 mm. A 40 mm layer of water was placed above the 0.5 mm and 1.0 

mm beads to provide a constant pressure head. The pressure gradient, ΔP across the porous pack 

could be adjusted by changing the height of the outlet pipe. At the end of the outlet pipe was a 

mass balance, which recorded the outflow every second. By varying ΔP, we measured the 

change in actual flow rate. From the data-log, a graph of fluid mass against time was plotted and 

the gradient corresponded to the flow rate, Q. Figure 4a shows the data one obtains.To ensure 

continual flow, the tank was never allowed to drain of water. 

 

To predict the flow rate, the porous medium was made of various glass beads combinations in 

parallel and series as shown in Figure 4b. Hence, the total tank permeability, KT can be 

calculated as a function of lengths L1, L2, LT and individual permeability layers K1, K2 and K3. 
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For two regions in parallel with a third in series, it is trivial to show that the total permeability, 

KT, is given by 
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2.2.1 Pipe Losses 

The scale of the tank is much larger than that used for the temperature-responsive micro-capsules 

(Gun and Routh, 2013b). With the tank having dimensions of 250 mm × 145 mm × 10 mm, the 

flow rate is larger through the pipe outlets. Hence, the pressure losses in the pipes have to be 

accounted for, before calculating the permeability changes in the tank. The pressure drop in a 

pipe, due to friction, is given by (Sinnott, 2005),  

      
  

  

   

 
, (2) 

whereΔPf is the pressure loss (kg m
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), f is the friction factor, Lpis the pipe length (m), diis the 

pipe internal diameter (m), ρ is the fluid density (kg m
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-1

). 

 

Darcy flow is defined by: 

  
     

  
, (3) 

whereQ is the flow rate (m
3
 s

-1
), A is the flow area (m

2
), ΔP is the pressure difference (kg m

-1
 s

-

2
), µ is the fluid viscosity (kg m

-1
 s

-1
) and L is the length of the porous pack (m). 
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The friction factor is dependent on the Reynolds number,    
    

 ⁄  and pipe roughness. A 

correlation between pipe friction, Reynolds number and pipe roughness is readily available from 

Moody diagrams(Moody, 1944). 

 

To avoid the problem of pressure losses across pipes, the pressure drop across the tank, ΔP was 

decreased by reducing the output flow rate, Q, as given in Equation (3). A lower fluid velocity, u 

gave a lower pressure loss, ΔPf as shown in Equation (2). Comparisons were then made between 

the measured flow rate and that predicted using equation 1, for zero pipe losses. The pipe losses 

scale with the velocity squared whereas Darcy flow has a linear relation between pressure drop 

and flow rate. Hence, as the flow rate is reduced, the pipe losses become progressively less 

relevant. 

 

2.3 Single permeability experiments 

Before conducting dual permeability experiments, investigations on a single permeability layer 

were carried out. This was achieved by using only one side of the tank shown in Figure 2. 

 

To assemble the experiment, the tank was flooded with water, before glass beads of diameter 1 

mm were poured into the tank while stirring with a rod to remove any trapped air bubbles. Once 

the micro-capsulesreached a height of 200 mm, the remaining 40 mm height was filled with 

deionised water. For a typical experiment, the initial permeability of the tank was measured by 

flowing deionised water for a few pore volumes. This was then followed with one pore volume 

of a dispersion containing 10 vol% PVP shell micro-capsules (with HPC in the core) and then a 

further three pore volumes of deionised water. This step was repeated to determine whether a 
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gradual decrease in permeability would be seen from the accumulation of multiple micro-capsule 

flushes. After this, three pore volumes of acid were added to release the HPC in the core. 

Throughout the entire experiment, the fluid output was recorded using a mass balance. The 

experiment was also repeated for micro-capsules with only water in the core and for glass beads 

of diameter 0.5 mm, to determine the effect of initial permeability. 

 

To calculate the total permeability, the gradient of the fluid mass against time curve was 

calculated to determine the fluid flow rate Q. Using Darcy’s Law, Equation (3), the total 

permeability KT was calculated. To determine the pore volume, the tank was filled with 

deionised water followed by red dye (bright red powder by PREEMA dissolved in deionised 

water). While flowing the dye, the volume of water displaced was measured. This displaced 

volume corresponded to one pore volume of the tank. 

 

2.4 Dual permeability experiments 

For experiments with two permeability layers in parallel, a metal mesh was introduced in the 

middle of the high permeability layer as shown in Figure 2. The purpose of this metal mesh is to 

support a piece of filter paper to trap the micro-capsules, hence increasing the local concentration 

of HPC released from the cores of the PVP micro-capsules. The filter paper used was Durapore 

Membrane Filters, manufactured by Milipore, with a pore size of 0.65 µm. The addition of this 

filter paper changed the permeability of the high permeability zone by less than 8%. To enable 

the filter paper to be anchored securely on the metal mesh, the borders of the filter paper were 

sandwiched between laminations and cut into the exact size of the metal mesh support.  
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After assembly, the tank was flowed with deionised water and dye a couple of times to determine 

the initial tank permeability. 100 mL of the 10 vol% PVP shell micro-capsules, with HPC in the 

core at 10 wt%, was flowed into the high permeability layer only. This was then followed with 

two to three pore volumes of deionised water in both regions of the tank. Once again, 200 mL of 

the micro-capsule dispersion was flowed into the high permeability layer. Again, two to three 

pore volumes of water were flushed through the entirety of the pack. Pictures were then taken 

with red dye indicating the flow front progress to compare the relative flow changes in the high 

and low permeability layers. Subsequently, two pore volumes of pH 2 hydrochloric acid was 

added to release the HPC from the trapped micro-capsules by swelling the PVP shell, releasing 

the HPC core. After acid flow, the flow fronts were tracked with dye again. Whenever red dye 

was used, to track the relative flow fronts, pictures were taken every 5 seconds. 

 

In a final set of experiments, the micro-capsules were flowed through both layers 

simultaneously. 

 

3. Results and Discussion 

3.1. Pressure losses across pipes 

Table 1 shows the results of the comparison between the measured and predicted flow rates. As 

expected, higher pressure differences resulted in higher volumetric flow rates and larger 

deviations from the prediction. This is because of pressure losses in the pipes. Therefore, it was 

decided to use a pressure difference of 402 Pa, which gave a low error. It should be noted that 

the predicted flowrates neglected the thickness of the impermeable partition, between the low 
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and high permeability layer. If this were to be accounted for, the predicted flow rate would be 

slightly lower, resulting in an even lower percentage error. 

 

3.2 Single permeability experiments 

The results for permeability against pore volumes of added micro-capsules show similar patterns 

irrespective of the bead size. The initial permeability drops to its lowest point during the initial 

micro-capsule injection as the micro-capsules flow through the porous media, sticking to the 

glass beads, thus closing the pore throats. This has also been reported in our previous paper (Gun 

and Routh, 2013a) for similar experiments but with temperature-responsive micro-capsules with 

HPC in the core. With the initial pore throats of 39 m (based on 0.5 mm diameter glass beads) 

and 78 m (based on 1.0 mm diameter glass beads), the micro-capsules of sizes 2-7 µm should 

have no trouble passing through the porous medium(Avery and Ramsay, 1973; Ciftcioglu et al., 

1988; Kruyer, 1958). However, a drop in permeability suggests an interaction between the 

micro-capsules and glass beads. 

 

For the high permeability layer case with HPC in the core, as shown in Figure 5a, the 

permeability dropped to almost zero with the first pore volume of micro-capsules. After three 

pore volumes of deionised water, some of the micro-capsules remained within the pack and the 

permeability ratio did not return to its initial value. Subsequent micro-capsule and water flushes, 

denoted by , revealed a quicker drop in permeability. The final permeability ratio after the 

second micro-capsule and water flushes was lower than after the first flush, presumably due to 

accumulation of micro-capsules in the bead pack which constricted the pore throats further. 

Interestingly, with the flow of pH 2.2 hydrochloric acid, a slight drop in permeability within the 
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first pore volume was noted before the permeability ratio reaches a plateau reading of about 0.4 

by the second pore volume of acid. The increase in permeability on flowing acid could be due to 

the HPC being released from the core, and then getting flushed out with the acid. This non-

sticking behaviour of HPC was also seen in the case using a low permeability (Figure 6a). 

 

For the micro-capsules without HPC in the core, as shown in Figures 5b and 6b, the drop in 

permeability ratio is less, because of the absence of the thickening agent. Without HPC, we 

would expect no drop in permeability in acidic conditions and this is the case for the high 

permeability layer experiments, denoted by × in Figure 5b. This behaviour was not seen for the 

low permeability experiment. A drop in permeability in the first pore volume of acid flow, 

denoted by × in Figure 6b, was still encountered. This could possibly be caused by the swelling 

of the micro-capsule shells adhered onto the glass beads surface, constricting the pore throats of 

radius 39 microns in the first pore volume of acid before completely dissolving and being 

flushed out with the remaining pore volumes. This is sketched in Figure 7b. This pattern was not 

observed in the high permeability experiment as the pore throats are larger (78 microns) and the 

swelling did not significantly block the pore throats, as sketched in Figure 7a. 

 

Because the HPCappeared to have been flushed out with the macroscopic flow, some sort of 

device was required to ensure the hydroxypropyl cellulose had a high enough concentration to 

block the pore throats. This was the reason for using the filter paper, to collect the micro-

capsules and increase the local concentration of HPC,when released from the core. The HPC 

core concentration was limited to 10 wt% as higher concentrations were too solid to enable 

micro-capsule production. 
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3.3 Dual permeability experiments 

With the incorporation of the filter paper on the metal mesh, it was hoped that the increased 

concentration of HPC would cause a significant drop in the high permeability zone. The dual 

permeability experiments reported in this section were performed in two different ways. The 

difference concerned the flowing of the micro-capsule dispersion into the tank. The experimental 

results in Figure 8, were obtained by selectively flowing the micro-capsules only into the high 

permeability layer, ignoring the lower permeability layer.The experimental results in Figure 10, 

were obtained by pouring the micro-capsule dispersion in the centre of the tank, to allow free 

flow into both layersand uniform spreading. It should be noted that the numbers in parentheses in 

the figure captions indicate the flow sequence for the experiments. 

 

For the selective flow experiment, shown in Figure 8, the results demonstrate that there is an 

accumulative effect offlowing more micro-capsules into the high permeability layer. This is 

shown by the first flush, denoted by ×, and second flush, denoted by +, which showed a decrease 

in permeability ratio from a plateau value of about 0.5 to 0.4 by the end of the second micro-

capsule flow. This tallies with the single permeability experiment in Figure 5 which showed a 

progressive drop in permeability after two successive treatments of micro-capsules and chase 

water. The drop in permeability is due to the accumulation of micro-capsules both in the porous 

media network and filter paper. It should be noted that the data for the micro-capsule flow for the 

micro-capsule and water experiments, numbered as (4) and (5) in the legend of Figure 8,only 

shows the water flow. The reason for this truncation is because micro-capsuleswere selectively 

flowed into the high permeability layer, hence it would not have been consistent to plot the 
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micro-capsule flow with pore volume, sincethe pore volume involves the entire void volume in 

all layers. It was noted that during the water flushes, the permeability gradually increases as 

trapped micro-capsules are flushed out from the system, revealing larger pore throats for fluid 

flow. It is interesting that the permeability slowly changes during dye flow, denoted by Δ and ■. 

This indicates the possible rearrangement ofmicro-capsules even after flushing with three pore 

volumes of deionised water. 

 

Flow front pictures, taken during dye flows, are shown in Figure 9. These reveal that the relative 

flow fronts were altered in a similar fashion to the temperature-responsive micro-capsules 

reported previously (Gun and Routh, 2013a). By comparing the flow front heights, aided by the 

drawn arrows in the pictures, the relative flow rate of the high and low permeability layers was 

calculated. Before micro-capsule flow, shown in Figure 9a, the flow front for the high 

permeability layer was 5 times faster than the low permeability layer. This value dropped to 2.4 

after successive micro-capsule and water flushes. Here, micro-capsules were shown to block the 

high permeability layer. Even though the blocking was not complete, a significant amount of 

water was diverted into the low permeability layer. 

 

For the experiment with non-selective micro-capsule flow, shown in Figure 10, a similar pattern 

was observed. The lowest permeability was observed at about two pore volumes, as opposed to 

the temperature-responsive micro-capsule which recorded the lowest permeability reading at one 

pore volume. This can be explained in terms of the water flushes for this experiments which only 

came after 200 mL of micro-capsules (roughly two pore volumes), compared to the one pore 

volume of micro-capsules in the temperature-responsive experiments. After these two pore 
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volumes of micro-capsules, denoted by +, the deionised water then gradually flushes the micro-

capsules, as indicated by the permeability ratio which reached a plateau value of about 0.35. 

There is data scatter for the second micro-capsule and water flow experiment, denoted by, 

because the outflow was extremely slow and the pressure difference had to be increased by 

adjusting the height of the output flow pipe. After about five pore volumes, the pressure 

difference was adjusted back to 402 Pa. The permeability ratio reached a plateau value of about 

0.4. We only report the data collected when the pressure difference was 402 Pa. 

 

With acid flow, denoted by, an initial drop in permeability was seen up to about one pore 

volume before the permeability started to rise and the permeability ratio levelled off at about 0.5. 

This dropping behaviour, up to one pore volume, has been observed in the temperature-

responsive micro-capsules containing HPC as well. This could suggest the swelling of the PVP 

shell, releasing the HPC within the core. The swelling of the micro-capsules would constrict the 

pore throats of the low permeability layer substantially, as seen in the single permeability 

experiments, causing a drop in permeability. This swelling will not affect the high permeability 

layer as much because the pore throats are larger. Nevertheless, the release of HPC would 

contribute to the decrease in permeability in both layers but this effect did not last a significant 

time, as the permeability began to increase again due to the HPC being flushed out from the 

system.  

 

Flow front experiments with red dye are shown in Figure 11. Before any microcapsule treatment 

the high permeability layer is 4.5 times faster flowing than the low permeability layer. After one 

treatment of micro-capsules and a flushing of 10 pore volumes of water the high permeability 
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layer is 3 times faster flowing. After a second microcapsule treatment, followed by 9 pore 

volumes of water, the high permeability layer remains 3 times faster flowing. This reveals that 

there is no accumulative effect of flowing micro-capsules and there seems to be a threshold value 

on the amount of micro-capsules that remain attached to the glass beads after water flushes. It 

should be noted that, as expected, the experiment with selective microcapsule flow showed a 

larger overall drop in the relative flow in the two layers. 

 

It would be interesting in the future to see whether this blockage effect is seen for very small 

micro-capsules, in the sub-micron range. This could show us the extent of the polymer swelling 

for sub-micron particles in large pore throats. However, the danger with sub-micron particles is 

the low delivery of active ingredient as the core to shell ratio is extremely small. 

 

4. Conclusion 

pH-responsive micro-capsules with a core of hydroxypropyl cellulose and a shell of poly(4-vinyl 

pyridine), made using a solvent precipitation method, have been shown to preferentially block 

high permeability regions of a porous medium. The micro-capsules, of sizes 2 – 7 µm in 

diameter have a tendency to be retained in the matrix of the pack made of 0.5 and 1.0 mm glass 

beads. The swelling of the micro-capsule shell during acidification constricted the pore throats of 

the low permeability layer much more than the high permeability layer. 

 

There seems to be a threshold value for the amount of micro-capsules that can be retained in the 

glass beads matrix after successive water flushes. Selective micro-capsule flowing produced a 

larger drop in the relative flow speed in between the high and low permeability layers. The 
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release of hydroxypropyl cellulose during acidification was sufficient to continue blocking the 

pack to the same extent. 

 

The size of the microcapsules needed is governed by the pore throat sizes of the oil reservoirs. 

With sandstone reservoirs, the higher pore throat sizes would indicate the need for larger micro-

capsules to see the blockage effect from these micro-capsules. More information is required to 

get vital information about the pore throats of each individual reservoir before allowing such 

treatment to avoid plugging the reservoir with the wrong micro-capsule size. 
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Figure 1: Scanning Electron Microscope (SEM) images of Poly(lactic-co-glycolic) shell micro-

capsules with hydroxypropyl cellulose in the core (Gun and Routh, 2013a). 
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Figure 2: Photo of the flow tank with dual permeability layers in parallel and another layer in 

series (note the metal mesh included in the middle of high permeability layer). 
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Figure 3: Schematic of the flow tank, showing the different permeability regions (not to scale). 

 

 

Figure 4:(a) Typical graph of fluid flow against time from the data-logged weighing scale. (b) 

Schematic of permeability layers in parallel and series. 
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Figure 5: Graph of permeability ratio against pore volume for single permeability layer 

experiments (1.0 mm diameter glass beads) (a) With HPC in the micro-capsule core (b) Without 

HPC in the micro-capsule core. 
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Figure 6: Graph of permeability ratio against pore volume for single low permeability layer 

experiments (0.5 mm diameter glass beads) (a) With HPC in the micro-capsule core (b) Without 

HPC in the micro-capsule core. 
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Figure 7: Schematic of the pore throats before and after hydrochloric acid flow (a) High 

permeability layer (1.0 mm diameter glass beads) (b) Low permeability layer (0.5 mm diameter 

glass beads). 
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Figure 8: Graph of permeability ratio against pore volume for dual permeability layer 

experiment where the micro-capsule dispersion was selectively flowed into the high permeability 

layer (1.0 mm diameter glass beads). 
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Figure 9: Flow front pictures of dual permeability tank experiments with selective micro-capsule 

flow (a) Before micro-capsules (b) After 200 mL micro-capsules and three and a half pore 

volumes of deionised water. High permeability on the right side, low permeability on the left. 
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Figure 10: Graph of permeability ratio against pore volume for dual permeability layer 

experiment where the micro-capsule dispersion was allowed to freely flow through both the high 

and low permeability layers. 
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Figure 11: Flow front pictures of dual permeability tank experiments with non-selective micro-

capsule flow (a) Before micro-capsules (b) After 200 mL micro-capsules and ten pore volumes 

of deionised water (c) After another 200 mL micro-capsules and nine pore volumes of deionised 

water. High permeability on the right side, low permeability on the left. 
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Table 1: Comparison between predicted and measured flow rates of the tank. 

 

Pressure 

difference 

(Pa) 

Predicted flow 

rate using 

equation 1 

(10
-6

 m
3
 s

-1
) 

Measured flow rate 

(10
-6

 m
3
 s

-1
) 

% Difference between 

measured and predicted 

values 

 Experiment 

1 

Experiment 

2 

Experiment 

1 

Experiment 

2 

402 1.51 1.50 1.49 0.51 1.19 

1226 4.62 4.33 4.28 6.28 7.36 

2492 9.38 8.25 8.13 12.0 13.3 
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