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The Convective Desalination of Sea Ice
David W. Rees Jones

This thesis aims to improve our understanding of the fundamental processes affect-

ing the growth of sea ice in the polar oceans in order to improve climate models. Newly

formed sea ice contains a significant amount of salt as liquid brine in the interstices of

an ice matrix. My focus is on one of the processes by which the salt content of sea ice

decreases, namely convective desalination, which is also often called gravity drainage

by geophysicists.

Modelling convective desalination requires an understanding not only of the thermo-

dynamics of sea-ice growth but also of its internal fluid dynamics. This thesis considers

a class of physical systems called mushy layers, of which sea ice is an example. Mushy

layers are multi-component systems consisting of a porous matrix of solid phase whose

interstices contain the same substance in the liquid phase. I develop a mathematical

description of these systems in terms the of mushy-layer equations and explore the

appropriate boundary conditions at a mush–liquid interface.

I develop a simple Chimney-Active-Passive (CAP) model of convection in mushy

layers for arrays of liquid chimneys in two and three dimensions. This allows the

interstitial fluid flow and salt flux from the mushy layer to be determined in terms of

the dimensionless parameters of the system. I discuss important mathematical and

physical aspects of the CAP model.

I then explain the physics of gravity drainage from sea ice, elucidating the connec-

tion between downward flow through liquid brine channels (chimneys) and a convective

upwelling in the rest of the ice that is sustained by horizontal density differences and

provides the fluid to replace that which drains from the ice. I use the CAP model to

determine the convective upwelling velocity mathematically, deriving a new, physical

parameterization of gravity drainage. I test my predictions by investigating previous

laboratory observations of the propagation of dye fronts.

Finally, I take a one-dimensional, thermodynamic sea-ice model of the kind cur-

rently used in coupled climate models and parameterize convective desalination using

the CAP model. The parameterization allows determination of physical properties and

salt fluxes from sea ice dynamically, corresponding to the calculated, evolving salinity of

the sea ice, in contrast to older, established models that prescribe a fixed salinity. I find

substantial differences compared to previous models, particularly in terms of predicted

salt fluxes from sea ice. I explain the likely implications and potential advantages of

my parameterization for climate models.
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Chapter 1

Overview

‘Out of sight, out of mind’? Sea ice is far removed from substantial human

settlement. But though confined to the most extreme latitudes and temperatures

on Earth, sea ice is a dynamically evolving feature of the polar regions. Formed

at the interface between ocean and atmosphere, sea ice regulates the transfer

of heat between these two principal components of the physical climate system.

Evolving in space and time, sea ice has thermal and mechanical properties that

must be updated dynamically for a faithful representation within climate models.

Such models are vital tools to help people everywhere predict, avoid and mitigate

the risks of climate change. Therefore, sea ice has profound implications, not

only for those living in the polar regions, but also for those living anywhere on

Earth. For example, recent changes in the Arctic sea ice have been associated with

unusual weather patterns in European summers (Screen, 2013). Furthermore, the

seasonal growth and retreat of sea ice causes massive salt fluxes into the seawater

beneath. Salt fluxes cause ocean mixing and are a vital driver of the circulation of

the Earth’s ocean, which in turn affects the climate of the whole Earth. Sea-ice

formation causes the Labrador Current, for example, which in part drives the

North Atlantic Circulation, including the Gulf Stream). It also causes Antarctic

Bottom Water to form, which lies at the bottom of all the major oceans.

Indeed, in terms of climate change caused by changes in greenhouse gases, the

‘Arctic amplification,’ in which temperatures in the Arctic rise faster than the

global average, means that this region has offered an early warning of the potential

impact of a changing climate. The summer ice cover has been retreating markedly,
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1. OVERVIEW

and apparently at an accelerating rate (Comiso et al., 2008), leading to a much

greater proportion of first-year ice. This robust feature of climate models and

the observational record over the last three decades is driven by anthropogenic

greenhouse gas emissions (Notz & Marotzke, 2012) and is linked to feedbacks

involving sea ice and snow cover (Holland & Bitz, 2003; Screen & Simmonds,

2010), providing a strong motivation to study sea-ice processes. Interestingly,

this picture is not replicated in the Antarctic, where the ice cover has expanded

modestly, indicating that other processes (such as changes in the winds) can cause

different patterns of variation in the two hemispheres (Holland & Kwok, 2012).

To address the challenges of sea-ice modelling, this thesis considers a wider

class of physical systems called mushy layers, of which sea ice is a particular

example. Mushy layers are multiphase systems consisting of a reactive porous

matrix of solid phase whose interstices contain the same substance in the liquid

phase. We develop a mathematical description of these systems in terms of gov-

erning equations derived from fundamental physics, and use it to model processes

of interest to polar geophysics.

Newly formed sea ice contains a significant amount of salt as liquid brine

in the interstices of the ice matrix, which is essentially pure frozen water. The

salt content of sea ice is observed to decrease over time because of a variety of

processes. Our focus is on one of these processes called ‘convective desalination,’

which is often called gravity drainage by geophysicists. Modelling this process

requires an understanding not only of the thermodynamics of sea-ice growth, but

also of its internal fluid dynamics.

Chapter 2 explains motivations for sea-ice modelling, particularly focusing on

the interactions between sea ice and the physical climate of the polar regions.

These interactions can be both direct and indirect, and give rise to both positive

and negative feedbacks to changes in the polar climate, which we discuss in light

of the significant observed changes and predicted future changes. Related to this,

we review the significance of sea ice to coupled climate models, and discuss current

modelling approaches. This survey of the field highlights the need to develop a

simple, physically based parameterization of convective desalination for sea-ice

models.

Mushy-layer theory (chapter 3) provides the mathematical framework for

2



1. OVERVIEW

modelling multiphase systems, such as sea ice. It adopts a continuum approach,

averaging physical variables over a representative (control) volume containing

both solid ice and liquid brine. Although sea ice contains a large number of dif-

ferent dissolved salts, for many purposes it can be thought of as a two-component

system, called a binary alloy within mushy-layer theory. We derive continuum

equations for mass, heat, salt and momentum conservation and explore simpler,

idealized versions of these equations relevant to the convective desalination of sea

ice. The boundary conditions of these governing equations are often subtle and

depend on the interstitial fluid flow and whether the mushy layer is freezing or

melting. Therefore, we consider a simple, forced corner-flow configuration that

allows us to exhibit each possible type of boundary condition and explore the

physical relevance of these to subsequent work.

Convective desalination of sea ice is associated with the formation of liquid

brine channels. These narrow, approximately vertical structures are examples of

a general feature of convecting mushy layers which, in that context, are called

chimneys. In chapter 4 we develop a new, simple model of convection in a mushy

layer. The key insight is that we can describe a mushy layer in terms of a liquid

chimney (in which the flow can be determined analytically), an active region in

which the horizontal density gradient drives a convective flow and a passive region

that essentially supplies the fluid that replaces the fluid that drains from the ice

through chimneys. These simplifications give rise to the Chimney-Active-Passive

(CAP) model, and we proceed to apply the model to regular arrays of chimneys

in two and three dimensions. This allows the interstitial fluid flow and salt flux

from the mushy layer to be determined in terms of the dimensionless parameters

of the system.

The CAP model has a number of interesting features. Exploring the mathe-

matical structure of the model in more detail yields important, general physical

insights. In chapter 5, we consider an isolated chimney in an infinite mushy layer.

We derive boundary-layer solutions that are closely related to the active region of

the CAP model and explain why a boundary-layer model alone cannot describe

all of the essential physics of mushy-layer convection. Secondly, we examine the

existence and uniqueness of the solutions of the equations governing the CAP

model. This study shows more precisely why exactly we need an active region

3



1. OVERVIEW

coupled to a passive region in order to describe properly convection. Finally, we

find a complete asymptotic solution of the CAP model in the limit of large latent

heat. This acts as a helpful test of our model and allows us to clarify the role of

latent heat in mushy-layer convection.

While the previous chapters are deliberately general, in chapter 6 we begin

to apply this general framework to understand gravity drainage in sea ice. We

discuss various mechanisms by which sea ice desalinates and explain our focus on

gravity drainage in the context of physical arguments and previous studies. We

explain the physics of gravity drainage, elucidating the connection between down-

ward flow through liquid brine channels and a convective upwelling in the rest of

the ice that is sustained by horizontal density differences and provides the fluid to

replace that which drains from the ice. We use the CAP model to determine the

convective upwelling velocity mathematically, deriving a new, physical parame-

terization of this process in terms of two tuning parameters. In using the CAP

model, we are translating an idealized, steady result to the transient situation of

sea-ice growth. We test our predictions by investigating the experiments of Eide

& Martin (1975) and Chen (1995), explaining previously unexplained features of

these.

Having determined the convective upwelling velocity associated with gravity

drainage of sea ice, we use this to determine the evolution of the salinity field of

sea ice in a one-dimensional, thermodynamic model of sea-ice growth. In chapter

7, we develop such a model in the context of previous thermodynamic sea-ice

models, namely those based on Maykut & Untersteiner (1971) that prescribe,

rather than determine, the salinity field. We use mushy-layer theory to derive

the governing equations and the CAP model to parameterize convection. We dis-

cuss and provide details of the numerical approach adopted. Finally, we present

a broad suite of results in situations relevant to laboratory tank experiments in

order to test our model. We consider the difference between fixed and variable-

chill cooling and analyse the behaviour of our model. An emerging pattern of

discrepancies between theory and experiments suggests a weakness in the candi-

date porosity–permeability relationship, and we seek to resolve this question by

analysing a wider class of experimental results.

CICE: the Los Alamos Sea Ice Model (Hunke & Lipscomb, 2008) is a widely-

4



1. OVERVIEW

used example of a fixed-salinity sea-ice model based on Maykut & Untersteiner

(1971) via Bitz & Lipscomb (1999). Therefore, in chapter 8, we compare their

governing equations with those derived from mushy-layer theory presented in

the previous chapter, as well as alternative definitions of salt flux. We compare

the predictions of fixed-salinity models with our new dynamic-salinity model, for

growth into a finite tank and an infinite ocean. We also investigate theoreti-

cally the dependence of sea-ice thickness on sea-ice salinity. These studies allow

us to investigate the likely implications for climate models of incorporating our

dynamic-salinity model of sea ice in terms of sea-ice thickness and salt fluxes.

In chapter 9 we draw these themes together, synthesising the principal con-

clusions from the previous chapters, reflecting on the issues posed at the outset

of this thesis, and outlining the likely implications of our research and major

research questions that remain to be addressed in this field.

5
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Chapter 2

Sea-Ice Modelling

2.1 Sea ice and the polar climate

In the depths of the polar winter, vast tracts of the ocean freeze, forming or

thickening a layer of sea ice. This seasonal cycle brings substantial changes to

both the Arctic Ocean and the seas surrounding Antarctica. In the Arctic Ocean,

for instance, at its September minimum, the areal extent of the sea ice is some

5 million square kilometres, while at its March maximum, the ice covers some

15 million square kilometres. On top of this strong seasonal variation, there

is a trend towards lower areal extent (especially in the summer) on a decadal

timescale, associated with global climate change (reviewed in Weeks, 2010). The

recent indications are that this trend is accelerating (Comiso et al., 2008), which

leads us to expect that the proportion of first-year ice (ice that is newly frozen

in a given year) in the future will continue to rise. Since a substantial proportion

of the ice is new each year, any change in the atmospheric and ocean conditions

could lead to rapid change in the amount of sea ice. Therefore, sea ice is an

important, sensitive and changing component of the polar climate system.

Sea ice differs from lake ice in that it is formed from saltwater and, as the ice

freezes, a porous matrix forms in which saltwater remains within the interstices of

the solid ice (shown in darker grey in figure 2.1). Therefore, sea ice is a multiphase

system.

Both sea and lake ice can, in some sense, be grown in the laboratory: in the

7



2. SEA-ICE MODELLING

10 mm

(a) (b)

Figure 2.1: The porous nature of sea ice, adapted from Eicken et al. (2000),
showing (in darker grey) liquid pores in a horizontal cross section of sea ice, both
as a visual image (a) and as an MRI image (b).

former case by freezing a solution containing certain salts (principally sodium

chloride, but also magnesium chloride, magnesium sulphate, calcium sulphate

and potassium sulphate, and trace amounts of others) in proportions relevant

to the polar oceans (Neumann, 1966). However, there is an important sense in

which the resulting ice would not be sea ice. (Neither, for that matter, would the

resulting fresh ice be lake ice.) For sea ice forms in a particular physical context,

the Earth’s polar oceans, and as such does not exist independently of the climate

and geography of these regions. Thus in this chapter we focus on the geophysical

context, as this shapes the applicability and likely impact of our new model of sea

ice. Then in subsequent chapters, we use general theory and analogue laboratory

experiments to develop physically consistent models of sea ice.

2.1.1 The Arctic and Antarctic

The combination of thermal forcing and atmospheric dynamics (McIntyre, 2000)

causes the frigid temperatures required for sea-ice formation in the winter. In

this respect, the Arctic and Antarctic share a fundamental similarity. However,

in many ways the poles differ as much from each other as from more temperate

latitudes.

8



2.1. SEA ICE AND THE POLAR CLIMATE

Perhaps the most immediate way to appreciate this difference is to compare

maps of the two regions, as shown in figures 2.2 and 2.3. These bathymetric maps

are adapted from GEBCO, the General Bathymetric Chart of the Oceans. As an

aside, it is interesting to note that the details of these maps are incomplete and

there is an ongoing international effort to integrate different data sources con-

sistently and fill gaps in coverage. This effort has resulted in the International

Bathymetric Chart of the Arctic Ocean (IBCAO) and the forthcoming Inter-

national Bathymetric Chart of the Southern Ocean (IBSCO) (see, respectively,

Jakobsson et al., 2012; Arndt & Schenke, 2012). Indeed, recent advances are not

limited to mapping: the development of satellite technology has greatly increased

our knowledge of sea ice and this should open the possibility of new data to test

sea-ice models.

Antarctica is a frozen continent, covered by massive ice sheets of 14× 106 km2,

ringed by the Southern Ocean. By contrast, the Arctic is an ocean basin, covered

seasonally by sea ice, ringed (incompletely) by the North American and Eurasian

continents. These differences affect not only how sea ice forms, but also the

influence of the formation and melting of sea ice on the climates of these different

regions.

The central Arctic basin itself covers some 12× 106 km2, divided into the

deep Canadian and Eurasian sub-basins by the relatively shallow Lomonosov

ridge. The Eurasian basin is fringed by a wide continental shelf (600–800 km)

while the Canadian basin has only a narrow shelf. Although there are a number

of inlets to the Arctic basin, Fram Strait (2600 m deep, 600 km wide) is the sole

deep inlet; apart from this inlet, the basin is effectively landlocked.

The exchange flow through Fram Strait comprises the northerly West Spitzber-

gen Current (WSC) and the southerly East Greenland Current (EGC). These

currents interact with sea ice directly and indirectly. In particular, the EGC

transports a large volume of sea ice into the Atlantic Ocean (2200 km3 per year

on average in the 1990s, Kwok et al. (2004), although the older estimate of Aa-

gaard & Carmack (1989) is higher) and the WSC transports relatively warm,

salty water from the Atlantic Ocean (called Atlantic Water, AW) into the Arctic.

This AW feeds a layer of water (the Atlantic layer) that lies between surface water

layer (Polar Water, PW) up to 200 m depth and the deep water beneath about

9



2. SEA-ICE MODELLING

Depth (m) below sea level Key:

Bering Strait

Fram Strait

Lomonosov Ridge
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Figure 2.2: The bathymetry of the Arctic Ocean, adapted from GEBCO, the
General Bathymetric Chart of the Oceans, www.gebco.net/general_interest/
bathymetry_visualisations.html, as is figure 2.3. The narrow Lomonosov
Ridge separates the Canadian basin from the Eurasian basin. The only deep
inlet to the Arctic basin, Fram Strait, lies to the east of Greenland. At the
opposite side of the basin, the Bering Strait provides a narrow inlet.
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Figure 2.3: The bathymetry of the Southern Ocean around Antarctica. The
Weddell and Ross Seas, partially covered by the Ronne-Filchner Ice Shelf and Ross
Ice Shelf respectively, are also covered with sea ice in the winter and are significant
regions of bottom-water formation. The interaction of Antarctic Circumpolar
Current (ACC) with the shelf and the presence of a coastal countercurrent (driven
by coastal low pressure weather systems) establishes gyres within these seas that
transport sea ice. The Antarctic Peninsula extends from around 74–63◦S and
causes the ACC to divert northwards through Drake Passage.
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800m (Coachman & Aagaard, 1974). As the WSC flows northward, it plunges

under the surface due to cooling from the atmosphere and the melting of sea ice

in that region. Together with the high salinity of AW compared to PW, which

is freshened by inputs from several large rivers as well as a small, relatively fresh

inflow through the Bering Strait, this establishes a very stable stratification in

the Arctic Ocean (e.g. Perkin & Lewis, 1984; Cokelet et al., 2008). This stratifi-

cation inhibits vertical mixing and so reduces the convective heat flux from the

warm Atlantic layer to the surface layer, which would otherwise inhibit sea-ice

formation.

The effectively landlocked nature of the Arctic basin affects the transport of

sea ice within it. At least historically, it permitted a significant region of old

pack ice to persist through several summer-melt cycles at the highest latitudes,

especially off the north coast of Greenland and the islands of the Canadian Arctic.

This ice would drift slowly under the cyclonic action of the Beaufort Gyre before

being exported through Fram Strait. Recent reductions in the extent of sea ice

are associated with a reduction in this so-called ‘multi-year ice’ (ice that persists

over more than one season) and we return to the subject of the changing climate

as this motivates much of the interest in sea-ice processes, including convective

desalination.

The Antarctic is something of a mirror image. The Antarctic continent is

surrounded by the circumpolar Southern Ocean, which covers some 35× 106 km2.

The topography of this ocean is far from simple, as shown by figure 2.3. The Ross

and Weddell Seas, which are the only significant regions of continental shelf, lie at

the terminus of ice shelves and seem to be responsible for large amount of marine

ice formation in the form of platelet (frazil) ice. Strong katabatic winds maintain

open water polynyas that also contribute to rapid ice formation, since there is

minimal insulation between ocean and atmosphere from existing ice. However,

gyres within these seas circulate ice within them and then further northwards,

out to sea, which contributes to their melting and leads to even less persistence

of multi-year ice than in the Arctic.

The complex topography also affects the ocean currents around Antarctica.

In particular, the Antarctic Circumpolar Current (ACC), driven by very strong

westerly winds below the coastal latitudes, splits into multiple jets and is partially

12
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blocked by the Antarctic Peninsula. This current is far stronger – tens of times

stronger according to the estimates of Weeks (2010) – than the WSC and EGC

in the Arctic and is of great significance to the global climate as it transports

momentum, salt and heat and is connected to all the oceans of the Earth (Nowlin

& Klinck, 1986).

Many important features of the water masses of the Southern Ocean are long

established. Sverdrup et al. (1942) summarizes these elegantly and we reproduce

his summary diagram in figure 2.4. As we have seen, there is substantial sea-

ice formation on the continental shelves, and the segregated brine and cold air

temperatures combine to create a layer of extremely dense Antarctic Bottom

Water (AABW) that mixes to some extent with deep water before flowing out

under each of the Earth’s oceans, giving rise to a very stable stratification that,

to some extent, inhibits mixing.

In conclusion, the contrasting geography of Antarctica results in an even

greater seasonal cycle, with ice cover varying from 3–18×106 km2. At both poles,

the strong (increasingly strong in the Arctic) seasonal cycle means that processes

affecting first-year ice need to be modelled carefully.

2.1.2 Interactions between sea ice and the physical cli-

mate

Sea ice interacts with the main components of the Earth’s physical climate system

– the ocean and the atmosphere – in a number of important ways. Although only

a few meters thick, sea ice plays an important role in the climate system since it

has a higher albedo than open water, insulates the polar oceans, and stores latent

heat (reviewed in Weeks, 2010). In particular, the albedo (which characterizes

the proportion of the sun’s radiation that is reflected) of open ocean is less than

0.1, whereas it is 0.5–0.7 for sea ice and even higher (0.75–0.85) for snow-covered

ice (Perovich, 1996). Due to the insulating effect of the ice, the net heat flux

to the atmosphere can be 1–2 orders of magnitude greater for open water or

very thin ice compared to multi-year ice (Maykut, 1978). Thus, in the winter,

the atmosphere can be substantially colder than the upper layer of the ocean.

Furthermore, the high latent heat capacity is such that it requires about 300J to

13
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Figure 2.4: From Sverdrup et al. (1942): the currents and water masses of the
Antarctic regions. The contours are isotherms of 0–10◦C in increments of 2◦C.
Note particular that the region of sub-zero water near the coast of Antarctica
on the right of the figure is a region of strong ice production, which leads to the
production of bottom water, indicated by the dashed arrows.
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melt a cubic centimetre of ice, whereas it requires just 2J to raise the temperature

of a cubic centimetre of ice by one degree Celsius, or 4J for water (cf. table 7.1).

When the ice begins to melt and open water returns, polar waters absorb

more radiation, leading to further warming and melting of the ice. The reverse

occurs during the polar winter. This feedback mechanism could potentially lead

to accelerated global climate change and so must be carefully modelled. However,

there is some evidence from experiments conducted on climate models that the

damping effect of ice insulation (in which thinner ice increases thermal heat trans-

fer by conduction and so increases ice production) can lead to sea-ice recovery

(Tietsche et al., 2011).

The formation of sea ice is also an important driver of the thermohaline cir-

culation of the oceans. When ice forms from saltwater, water is preferentially

incorporated into the solid phase relative to salt, a process called segregation.

The rejected salt causes an increase in the density of sea water where ice forms,

leading to downward flow (see the discussion of AABW above, although in the

Arctic the downward flow typically penetrates only the upper PW). Globally, the

vertical transport of salt downwards, matched by mixing in lower latitudes, is an

integral part of thermohaline circulation. Regionally, it is a crucial salt flux for

the polar oceans, comparable to the (negative) salt fluxes from rivers and ice-sheet

melting, and drives vertical mixing of the upper layer of the ocean. The surface

salt flux from sea ice has been measured to be as high as 1–2 kg/m2/day for

new ice (Notz & Worster, 2008). Salt fluxes are known to be sensitive to short-

term changes in the external forcing (Widell et al., 2006; Jardon et al., 2013).

Consequently, the representation of salt fluxes significantly affects the salinity

structure of the ocean in climate models (Vancoppenolle et al., 2005, 2009b). In-

deed, modelling the Arctic halocline (a cold layer with a strong salinity gradient)

is a persistent problem in climate models (Holloway et al., 2007) and seems to

be connected with modelling how salt fluxes from sea ice mix the ocean (Nguyen

et al., 2009).

We seek to understand the flux of cold salty water from growing sea ice caused

by segregation. This does not happen instantaneously, at the interface between

the ice and ocean, as new ice forms. Instead sea ice is a porous medium (see figure

2.1) and the bulk-salinity field is continuous across the ice–ocean interface (Notz &
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Worster, 2008). However, the brine in the pores of the ice becomes increasingly

salty as the water continues to solidify, which creates a compositional density

gradient that can drive convection within and out of the ice, through liquid brine

channels. Of the mechanisms for salt fluxes from sea ice described by Untersteiner

(1968), convection within the ice called ‘gravity drainage’ is dominant, at least

during the winter growth season (Notz & Worster, 2009), as we discuss in chapter

6. However, this dynamic process is inadequately represented in current models

of sea ice. We aim to address this deficiency by developing a simple, cheap-to-

implement model in chapter 7.

While our research is principally concerned with the physical aspects of sea

ice, increasingly the physical climate is being considered as part of a broader

‘Earth system’ that also incorporates biological and chemical elements, such as

in the Community Earth System Model (Hurrell et al., 2013). The polar oceans

are a rich region for primary production and the role that sea ice plays in this

biosphere is an area of active research. It seems that the liquid channels within

the ice itself are important habitats for various algae because of their high salinity

and nutrient content and convective desalination may help to supply the nutrients

that sustain primary production – so our work is likely to have impacts beyond

the physical climate.

2.2 Challenges in sea-ice modelling

Sea ice forms a dynamic interface between the ocean and atmosphere, and so

constitutes an integral aspect of any coupled climate model (Gent, 2012). As we

have seen, it plays a significant role in the climate of the polar regions.

Within coupled climate models, sea ice is typically accounted for by using

a small modelling component that is coupled to ocean and atmosphere models.

The sea-ice component accounts for the thermodynamic growth and melting of

ice, the movement of ice due to wind stress, its response to internal stresses,

lateral melting and the formation of pressure ridges (e.g. Hunke & Lipscomb,

2008; Vancoppenolle et al., 2009a,b). In this thesis, we restrict attention to the

thermodynamic growth of ice and analyze the one-dimensional thermodynamic

model of ice growth that calculates the change of an ice-thickness distribution.
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Thermodynamic growth accounts for much of the change at the thin-ice end of

this distribution, which is particularly important for salt fluxes, as these are much

stronger for thinner ice.

In models derived from Maykut & Untersteiner (1971), including Bitz & Lip-

scomb (1999) which is used in CICE: the Los Alamos Sea Ice Model (Hunke &

Lipscomb, 2008), thermodynamic growth is determined by solving an equation

for conservation of heat within sea ice

c
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
− ∂

∂z
Frad, (2.1)

in which the thermal properties of ice, its heat capacity c and conductivity k,

depend on the temperature T and bulk salinity S of the ice. Here, and throughout

this thesis, I use ‘ice’ to refer to porous sea ice containing both liquid brine and

solid (pure water) ice. Frad is the flux of penetrating solar radiation. Thus the

thermal properties of sea ice are composed of those of the solid and liquid phases

that make up sea ice. Fixed-salinity models used in older, established sea-ice

models are deficient in that, while the temperature is determined as part of the

solution, the bulk salinity is prescribed. A further potential deficiency arises

in that the thermodynamic properties of sea ice depend only indirectly on ice

salinity; rather, they depend directly on the fraction of solid ice, which depends

on ice salinity.

In prescribing S, it is common to choose a fixed value or profile with low

salinity more appropriate to multi-year ice. For instance, in version 4 of CICE:

the Los Alamos Sea Ice Model (Hunke & Lipscomb, 2008), the default choice is

Si(ζ) = 0.5× 3.2
[
1− cos

(
πζ0.407/(ζ+0.573)

)]
, (2.2)

where ζ = z/h is the position relative to the total depth of the ice. It is common,

as an alternative, to choose a uniform salinity of 4 or 5 ppt (Holloway et al.,

2007). The validity of this choice is questionable, especially in significantly differ-

ent future climatic conditions when the proportion of first-year ice may be much

greater. In sea-ice models that use a ‘zero-layer’ approximation (Semtner, 1976)

to equation (2.1), a fixed-salinity model is arguably the only sensible choice. How-
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ever, the recent trend towards multilayer models of sea ice opens the possibility of

determining the salinity field dynamically. It is important to emphasize that this

needs to be done in a simple way; for instance the models in the Arctic Ocean

Model Intercomparison Project (AOMIP) use at most 4 vertical grid points when

integrating equation (2.1) (Holloway et al., 2007).

Equation (2.1) and equations for heat conservation at the interfaces of the ice

determine its growth rate ḣ. The salt flux FS is usually then determined from

the growth rate independently of the actual evolution the sea-ice salinity. Thus

if the salinity field of the sea-ice is assumed to be constant in time, the salt flux

FS = ḣ∆S, (2.3)

where ∆S is the difference between the ocean salinity and the average sea-ice

salinity. Indeed, in CICE, the average salinity for calculating the salt flux is

specified independently of the prescribed salinity profile for calculating growth.

In common with many AOMIP models, it takes an average salinity of 4 ppt,

which is significantly lower than is typical for first-year ice.

These deficiencies have led much recent interest in dynamically determining

the salinity of sea ice, both from those working at the small scale (Oertling &

Watts, 2004; Wells et al., 2011) and others working at polar-ocean scale (Van-

coppenolle et al., 2009b, 2010; Jeffery et al., 2011; Saenz & Arrigo, 2012; Turner

et al., 2013; Griewank & Notz, 2013).

One central goal of this thesis is to develop a one-dimensional model for the

thermodynamic growth of sea ice starting with the phase-averaged equations for

heat and salt conservation. In the absence of gravity drainage, Feltham et al.

(2006) have shown that these equations are essentially equivalent to equation

(2.1). Therefore, we aim to develop a new model in which we determine the

strength of gravity drainage within sea ice dynamically.
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Chapter 3

Mushy-Layer Theory

3.1 Introduction to binary alloys

Two-component mixtures (called binary alloys) exhibit richer behaviour than one-

component systems as the temperature, pressure or composition of the mixture

is varied: they are subject to a number of different thermodynamic and fluid

dynamical processes that we will explore in this chapter. Particularly relevant to

sea-ice formation, there is the possibility of segregation when the alloy is solidified.

Thus when saltwater is solidified, it is energetically unfavourable to incorporate

salt into the solid crystals, so the solid crystals are essentially pure water and the

remaining solution becomes increasingly concentrated in salt. The consequent

increase in the density of the solution can drive an convective flow.

The behaviour of a binary alloy is best summarized by a phase portrait which

shows the equilibrium phase or phases at given temperature T , pressure p and bulk

composition S (called salinity when referring to sea ice). In the geophysical and

experimental situations with which we are principally concerned, the dependence

on pressure can be neglected so we can consider a two-dimensional section through

the phase portrait at a fixed representative pressure.

Figure 3.1 shows one generic phase portrait of a type especially relevant to

aqueous salt solutions. The liquidus curve separates the region of phase space

where the mixture is purely liquid from the region where solid and liquid co-exist.

Below the solidus, the binary alloy is completely solid but in the form of a solid
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Figure 3.1: Phase portrait of a binary alloy at constant pressure, particularly
relevant to aqueous salt solutions. Below the eutectic temperature TE, the bi-
nary alloy is completely solidified and a composite containing crystals of both
components is formed. Note that CE = CL(TE).

solution, in which molecules of one component are incorporated into the lattice

of the other. Beneath the eutectic temperature TE, a composite solid forms. This

consists of crystals of both solid solutions.

The liquidus and solidus curves that separate these regions can be expressed

as functions of temperature T by the relations C = CL(T ) and C = CS(T )

respectively. Between the solidus and liquidus, the solid fraction φ satisfies

φCS(T ) + (1− φ)CL(T ) = S. (3.1)

Strictly, if the composition is measured in parts per thousand (ppt), φ is a solid

mass fraction (which is only equal to the solid volume fraction if the densities of

the phases are equal). Nevertheless, we will usually not make this distinction, as

it is usually small in the situations we consider.

Returning to the concept of segregation, we can define a segregation coefficient

kD by the approximation

CS(T ) = kDCL(T ). (3.2)

Note that kD = 0 for saltwater, since salt is completely segregated from ice
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crystals, and any salt in sea ice is contained within interstitial brine.

3.2 Introduction to mushy layers

If a binary alloy is liquid at temperature and salinity below the liquidus, it is

said to be ‘constitutionally supercooled.’ This situation happens generically at a

planar solidification front because heat diffuses more rapidly than solute in most

alloys. Supercooling is a metastable state and is typically relieved by morpholog-

ical instability of the phase boundary.

Mullins & Sekerka (1964) considered a binary alloy that is steady in the frame

of the solid–liquid interface and investigated sinusoidal perturbations to a planar

interface. They derived a criterion for an instability that is driven by supercooling

but stabilized by the surface energy of the interface. If the solidification rate is

sufficiently rapid, as occurs in sea-ice formation, then the planar interface is

unstable.

This instability causes a highly convoluted dendritic interface to form between

the solid and liquid phases, as shown in figure 3.2. Solidification and dissolu-

tion occur across a large surface area until local thermodynamic equilibrium is

achieved (supercooling is completely relieved). The concentration of the intersti-

tial liquid and the temperature lie on the equilibrium liquidus curve in figure 3.1.

The region containing both solid and liquid phases is called a mushy layer.

Our principal motivation in this thesis is sea-ice modelling but mushy layers

arise in a number of industrial, geophysical and astrophysical situations. Indus-

trially, when casting metal alloys, convection within the mushy layer is respon-

sible for macrosegregation, which is a variation in the composition of a casting

(Beckermann et al., 2000). Here, the solidification must be controlled in order

to suppress this undesirable effect. Geologically, mushy-layer theory (generalized

to account for a melt with many more than two components) may be helpful

in understanding observed features when igneous intrusions solidify (Huppert,

2000). Furthermore, there are indications that the solid core of some planets may

retain a small quantity of trapped melt – thermodynamic estimates indicate that

this should be the case, although there is considerable uncertainty. Indeed, there

may also be a thin region at the boundary between the inner and outer core of
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0.3 mm

Figure 3.2: Adapted from Worster (1997). The dendritic structure of the solid
phase when aqueous ammonium chloride is solidified.

the Earth where convection within the mush is important in understanding the

transport of light elements from the inner core that can contribute to driving

the geodynamo that generates the Earth’s magnetic field (Fearn et al., 1981).

Therefore, the study of convection within mushy layers has a broad range of ap-

plications and has been considered by researchers across these fields. These can

provide important insights into sea-ice modelling.

3.3 Mushy-layer equations

The interface between the solid and liquid phases in a mushy layer is highly con-

voluted. Therefore, instead of tracking the solid crystals separately, the approach

taken by mushy-layer theory, as reviewed in Worster (1992a, 2000), is to average

over a control volume that contains both solid and liquid phases. These averaged

quantities are summarized in table 3.1. In general the material properties of the

two phases differ. These are summarized in table 3.2.

This continuum approach allows us to write down continuum field equations

for conservation of mass, heat and solute. Mass conservation is described by

(ρs − ρl)
∂φ

∂t
+ ρl∇ · u = 0. (3.3)
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Table 3.1: Variables in mushy-layer theory
Variable Definition
T (x, t) local mean temperature
C(x, t) local mean concentration of the interstitial fluid
S(x, t) local bulk concentration averaged over both phases
φ(x, t) average (volume) fraction occupied by the solid phase
u(x, t) Darcy velocity

Table 3.2: Material properties in mushy-layer theory
Properties Definition
ρl, ρs density of the liquid and solid phases, respectively
kl, ks thermal conductivities
Dl, Ds diffusivities of salt
(cp)l, (cp)s specific heat capacities per unit mass
cl, cs (alternatively) heat capacities per unit volume
L latent heat per unit mass of solid formed
CS concentration of the solid phase
Π permeability of the mushy layer

The difference in densities between the phase drives a divergent flow u (the Darcy

velocity) as the mushy layer solidifies, even though the interstitial fluid flow is

divergence-free.

Heat conservation is described by

ρcp
∂T

∂t
+ (ρcp)lu · ∇T = ∇ · (k∇T ) + ρsL

∂φ

∂t
, (3.4)

which is a phase-averaged advection–diffusion equation with an additional term

due to latent heat release as the solid fraction changes. In this expression

ρcp = φ(ρcp)s + (1− φ)(ρcp)l is the heat capacity of a mushy layer. Since den-

drites in mushy layers usually align with temperature gradients, it is usual in

mushy-layer theory to take k = φks + (1 − φ)kl – a form which is appropriate

to laminates and is an upper bound for the thermal conductivity of an arbitrary

crystal structure (Batchelor, 1974) – and neglect the fact that k could be an

anisotropic tensor.
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Salt conservation is described by

(1− φ)
∂C

∂t
+ u · ∇C = ∇ · (D∇C) + (C − CS)

∂φ

∂t
, (3.5)

where the diffusivity of solute D = φDs + (1− φ)Dl ≈ (1− φ)Dl, since Ds � Dl

typically. This system is closed with equation (3.1) for φ. The liquidus condition,

T = TL(C), (3.6)

discussed above and shown in figure 3.1, couples equations (3.4, 3.5) such that

they constitute two equations for the two independent variables T and φ. Equiv-

alently, the independent variables are T and S and equation (3.5) becomes:

∂S

∂t
+ u · ∇C = ∇ · (D∇C), (3.7)

with C = CL(T ).

The mushy layer is a porous medium so we use Darcy’s law to describe the

flow. As we discuss later, this applies in the interior of a mushy layer but might

not hold near an interface where the solid fraction is zero (Le Bars & Worster,

2006). In general, the permeability Π is an anisotropic tensor but if for simplicity

we assume it is isotropic then Darcy’s law gives

µu = Π(−∇p+ ρlg). (3.8)

3.3.1 Ideal mushy-layer equations

Although physical binary alloys form mushy layers that require these full equa-

tions for an accurate description, we can better understand the mathematical

structure of these equations by considering the case of an ideal binary alloy. In

this idealization, we assume that the phases have the same material and thermal

properties and that the liquidus is linear

TL(C) = −mC, (3.9)
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of gradient (−m). This sign is appropriate to the left side of figure 3.1 but the

theory applies equally to the other side where the liquidus temperature increases

with concentration. We also assume that segregation is complete kD = 0, so

CS = 0. Furthermore, we take the solute diffusivity Dl to be much less than the

thermal diffusivity κ = k/ρcp, which means that we can neglect solute diffusion in

the equation for salt conservation (3.5). Since C is coupled to T by the liquidus

condition, we are not neglecting the highest derivative in equation (3.5) in a

singular fashion.

If we use a linear equation of state for density ρ = ρ0 [1 + β(C − C0)], where C0

is some appropriate reference concentration and T0 = TL(C0), and an extended

Boussinesq approximation in which we neglect density variation except in the

buoyancy term in Darcy’s law (3.8) and assume constant permeability Π = Π0,

then the ideal mushy-layer equations are (Worster, 1997, 2000)

∇ · u = 0, (3.10)

∂T

∂t
+ u · ∇T = κ∇2T − L

cp

∂φ

∂t
, (3.11)

(1− φ)
∂C

∂t
+ u · ∇C = −(C − CS)

∂φ

∂t
, (3.12)

T − T0 = −m(C − C0), (3.13)

µu = Π0 [−∇p− ρ0gβ(C − C0)ez] . (3.14)

These equations have been studied analytically and numerically in various

cases and have been used to interpret several experimental results. Most per-

tinently, linear stability analysis (Worster, 1992b) indicates that the dominant

dimensionless parameter governing the onset of convection in a mushy layer is

a type of Rayleigh number Rm, which we define below. This parameter relates

the available gravitational potential energy (dominated by the interstitial salin-

ity gradient) to the dissipation caused by thermal diffusion and fluid viscosity. A

Rayleigh number can be used to interpret the onset of convection in the experi-

ments of Wettlaufer et al. (1997a) and the confinement of convection to a lower

layer of sea ice (Notz & Worster, 2008).

However, the fully-developed convecting state with liquid chimneys is not
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amenable to complete analytical treatment. Therefore, several studies (Schulze

& Worster, 1998; Chung & Worster, 2002; Wells et al., 2010, 2013) solve the

steady ideal mushy-layer equations numerically with a prescribed periodic, pla-

nar array of chimneys. These solutions typically use analytic approximations to

account for the liquid melt region and the difficult free-surface problem of the

chimney–mush interface. The computational complexity of numerical models,

even in planar geometry and with other considerable simplifications, means that

they are not directly applicable to predictive sea-ice modelling. In sea ice, the

brine channel spacing is of the order of centimetres and so is utterly unresolv-

able in climate models. Therefore, in chapter 4, we will develop semi-analytical

convective solutions of these equations in a simple modelling framework.

3.3.2 Directional solidification – steady ideal mushy-layer

equations

Directional solidification is a configuration that admits steady solutions of the

ideal mushy-layer equations. This set-up can also be studied experimentally (Pep-

pin et al., 2007) and their apparatus is shown in figure 3.3.

In the directional solidification arrangement, a solidification cell is pulled

downwards through fixed heat exchangers at a constant speed V in the nega-

tive z-direction. There is a steady state in the laboratory frame where the solid

phase has velocity −V ez. We non-dimensionalize lengths with respect to the

thermal length scale κ/V , times with κ/V 2, velocities with V and introduce a

single dimensionless variable θ for temperature and salinity (because of the lin-

ear liquidus condition that couples these). Then the steady ideal mushy-layer

equations are

∇ · u = 0, (3.15)

u · ∇θ − ∂θ

∂z
= ∇2θ − S

∂φ

∂z
, (3.16)

u · ∇θ − (1− φ)
∂θ

∂z
= −(θ − C)

∂φ

∂z
, (3.17)

u = −Rm(∇p+ θez). (3.18)

26



3.3. MUSHY-LAYER EQUATIONS

(a) 

(b)

(c) 

12 cm

(b)

(b)

(a)(d)

(c)

(e)

(e)
(b)

T
C

T
H

x

z

V

(a)

T(z)

(a) Hele-Shaw cell

(b) Heat exchangers
(c) Thermistors 
(d) Machined screw 
     to stepper motor
(e) Aluminium frame

Figure 3.3: The directional solidification apparatus developed by Peppin et al.
(2007). The motors can be adjusted to pull the Hele-Shaw cell (a) downwards
(say) at various speeds between the fixed heat exchangers (b).
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3. MUSHY-LAYER THEORY

The dimensionless temperature and concentration

θ =
T − TL(C0)

∆T
=
C − C0

∆C
. (3.19)

The Stefan number S = L/(cp∆T ) is the ratio of latent heat L release to driving

temperature gradient ∆T = TL(C0)−TE and specific heat cp. The compositional

ratio is C = (CS − CE)/∆C, where ∆C = C0 − CE.

In a planar geometry, we can write u = (−ψz, ψx), since ∇·u = 0. Note that,

throughout this thesis, subscript x, z denote partial derivatives. Eliminating the

pressure in Darcy’s law (3.18), we find

∇2ψ = −Rmθx, (3.20)

where

Rm =
β∆CgΠ0

νV
(3.21)

is the mush Rayleigh number, with gravitational acceleration g and the kine-

matic viscosity of the liquid phase ν. This important dimensionless parameter

relates the driving compositional density difference for convective to the dissipa-

tion caused by convection within the mush, and so governs the onset of convection

within a mushy layer (Worster, 1992b). Note that the thickness of a mushy layer in

this configuration is controlled by thermal diffusion, so if we introduce H = κ/V

as this length scale, we can write

Rm =
β∆CgΠ0H

νκ
, (3.22)

which is more recognisably a Rayleigh number for convection in a porous medium.

We consider the further idealization C� 1. In this limit, the salt conservation

equation (3.17) determines the solid fraction φ through

u · ∇θ − θz = Cφz (3.23)

and so determines the latent heat release term in the heat conservation equa-

tion (3.16). Therefore we can decouple equations (3.16) and (3.17) to obtain a
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combined thermal equation (Worster, 2000; Huppert & Worster, 2012)

Ω (u · ∇θ − θz) = ∇2θ, (3.24)

where Ω = 1 + S/C is the factor by which the heat capacity of a mushy layer

is enhanced by latent heat release. We later generalize this concept to non-ideal

mushy layers.

3.4 Boundary conditions

The boundary conditions at the mush–liquid interface are one of the subtlest

aspects of solving the mushy-layer equations. This is associated with the diffi-

culty of specifying the location of the interface consistently with the continuum

approximation made. Thus an interfacial region of thickness comparable to the

pore scale lies outside the scope of the formal continuum approximation inherent

in the mushy-layer equations.

Furthermore, the appropriate boundary conditions depend on the relative

velocities of the solid and liquid phases and that of the mush–liquid interface; al-

though some individual cases had been considered previously, the first systematic

derivation of all four possible cases was given by Schulze & Worster (2005).

Nevertheless, some boundary conditions apply to every possible type of situ-

ation. Firstly, temperature is continuous across the interface

[T ]ml = 0. (3.25)

Secondly, heat is conserved at the interface and we can integrate the equation of

heat conservation (3.4), which also applies in the liquid region with φ = 0, across

the interface to show that

ρsLφmV = [kn · ∇T ]ml , (3.26)

where V is the velocity of the interface relative to the solid phase in the direction

normal to the interface (from mush to liquid). Note that this V is equivalent

to the pulling speed introduced in section 3.3.2. Thus, if the solid fraction at

29



3. MUSHY-LAYER THEORY

the interface φm is non-zero, there is a discontinuous change in the conductive

heat flux because of latent heat release at the interface. Thirdly, salt is conserved

at the interface, and we can integrate the equation of solute conservation (3.5)

across the interface to show that

− [C]ml Un = φm(Cm − CS)V, (3.27)

where Un is the velocity of the liquid relative to the mush–liquid interface, and

subscripts m and l denote quantities evaluated on the mush and liquid sides of the

interface respectively. So if [C]ml = 0 (the interstitial concentration is continuous),

then φm = 0 at the interface and vice versa. Note that we have neglected diffusion

of salt, which may not be appropriate at an interface.

As we have emphasized, the interstitial concentration within the mushy layer

is coupled to the temperature field and thus the equation of solute conservation

(3.5) determines the solid fraction φ. The equation for φ is hyperbolic and charac-

teristics follow the solid phase. Therefore, if the mushy layer is freezing (V > 0),

we must specify the solid fraction at the mush–liquid interface, whereas if it is

dissolving (V < 0), we must specify the solid fraction at some other boundary

away from the interface. In the latter case, it is inconsistent to impose, a priori,

φ = 0 at the mush–liquid interface, since φ must be determined at the interface

as part of the solution.

Similarly, in the liquid melt, in the absence of solute diffusion, characteristics

are streamlines. Therefore, in the case of ‘outflow’ (Un > 0, flow from mush to

liquid), [C]ml = 0, since any discontinuity in the concentration field would be ad-

vected away from the interface. Thus the temperature at the interface determines

the interstitial concentration Cm, which, given the flow field, determines the con-

centration everywhere in the liquid. However, in the care of ‘inflow’ (Un > 0,

flow from liquid to mush), we must impose a boundary condition on concentra-

tion away from the mush. This determines the concentration Cl, and in general

the concentration field is discontinuous across the interface. Therefore, outflow

requires φm = 0, but not inflow.

As shown in Schulze & Worster (2005), these conditions of heat and salt con-

servation are insufficient to determine the location of the interface for a freezing
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mushy layer, V > 0. (In the other case, V < 0, there is an additional imposed

condition at the mush–solid boundary.) Therefore, motivated by the fact that a

mushy layer grows to alleviate constitutional supercooling, we apply a condition

of marginal equilibrium as follows.

For inflow, Un < 0, the marginal equilibrium condition extends the liquidus

condition into the liquid such that the temperature satisfies

Tl = TL(Cl). (3.28)

Since the temperature is continuous (equation 3.25), Cl = Cm, and hence φm = 0.

However, for outflow, Un > 0, the marginal equilibrium condition requires

that

DT/Dt = 0 (3.29)

at the mush–liquid interface, where D/Dt is a Lagrangian derivative. This condi-

tion is justified as follows. Outflow requires φm = 0. The concentration is constant

along a streamline, and a fluid parcel is moving into the melt, so DT/Dt ≥ 0 on

the liquid side of the interface. But φm = 0 so by equation (3.26) [n · ∇T ] = 0

as well as [T ] = 0. (Here we have used the fact that k = kl at the interface,

since φm = 0.) Therefore DT/Dt ≥ 0 on the mush side also. C is coupled to T

through the liquidus condition, so DC/Dt ≥ 0 on the mush side. (Note that this

sign is reversed if the liquidus has negative slope.) However, equation (3.5) for

salt conservation within the mush with D = 0 can be rearranged to

DC

Dt
= φ

∂C

∂t
+ (C − CS)

∂φ

∂t
. (3.30)

Now φ ≥ 0 and ∂φ
∂t
≥ 0 since it is zero on the interface and we are solidifying.

Furthermore, ∂C
∂t
≤ 0 and C−CS ≤ 0 (these signs are reversed if the liquidus has

negative slope), so DC/Dt ≤ 0 on the mush side. Therefore DC/Dt = DT/Dt = 0

at the interface.
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3.5 Solidification with a corner flow

The appropriate boundary conditions at a mush–liquid interface depend on both

thermodynamics and fluid dynamics. However, the latter are complicated at the

boundary between a porous medium and a liquid because the averaging used to

derive Darcy’s law for fluid flow does not apply over a transition region of thick-

ness comparable to the pore scale. It is important to note that we cannot interro-

gate this region too precisely within the continuum approximation. Nevertheless,

is important to have a continuous velocity across the mush–liquid interface for

thermodynamic reasons, particularly in applying the marginal equilibrium condi-

tion. However, in treating the mushy layer and bulk liquid region as two separate

domains, a potential problem arises in that there may be a discontinuity in the

tangential velocity (a slip) at the interface.

Therefore, in this section, we take the approach of Le Bars & Worster (2006)

of extending Stokes equation (for viscous flow) into a transition region inside the

mushy layer of dimensionless thickness

δ = cD1/2, (3.31)

where the Darcy number D is the permeability of the mushy layer that has been

non-dimensionalized with respect to the square of an appropriate macroscopic

lengthscale that is also used in non-dimensionalizing δ. For c = O(1), this was

shown to give comparable results to the Darcy-Brinkman equation that smooths

the transition between liquid and mush by having one equation governing the flow

in both regions. The transition region effectively allows a slip to occur across it,

while retaining a continuous velocity. However, it is not intended to to constitute

a complete description of the fluid mechanics at a mush–liquid interface, and is

introduced solely for thermodynamic reasons.

An additional problem arises in that the marginal equilibrium boundary condi-

tion is fundamentally two-dimensional. Thus we consider a particular ‘toy’ prob-

lem that has a two-dimensional flow, and yet can be studied in a one-dimensional

fashion. This problem was originally formulated by D. Conroy and M. G. Worster

(cf. the report Conroy & Worster, 2006). Here, we develop that study by also
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Figure 3.4: Problem formulation in (a) dimensional variables and (b) dimension-
less variables.

considering the case of dissolving mushy layers (rather than only freezing ones)

and greatly simplifying the study of the marginal equilibrium condition by tak-

ing the asymptotic limit D→ 0 to explain why solutions only exist in particular

reasons of parameter space. This toy problem allows us to explore and clarify

the marginal equilibrium condition in a much simpler system than the convective

mushy layer equations that we consider in the following chapter.

3.5.1 Problem formulation

In order to investigate all four types of boundary condition, we consider a forced

flow problem and neglect natural convection. We consider a semi-infinite rect-

angular channel of width H in a directional solidification configuration (with the

pulling velocity V perpendicular to the semi-infinite boundaries). We impose

boundary temperatures T = Tm − (k1,2/H)x, 0 < x < ∞, on two permeable

walls, where x is the distance down the channel. We impose k1 > k2 such that

the lower wall, which is adjacent to a mushy layer, is colder than the upper wall,

which is adjacent to a liquid melt that occupies a fraction 1− η of the channel,

as shown in figure 3.4a. To control the flow, we impose the material flux Q1,2 at

the permeable walls, where the material flux q = u − V ez. We also impose no

horizontal velocity at the upper wall in the figure.
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Figure 3.4b shows the dimensionless version of this problem. In this section,

we non-dimensionalize lengths with respect to the dimensional channel width H,

and material fluxes with respect to Q1. This choice introduces the Péclet number

Pe = Q1H/κ (3.32)

into the dimensionless ideal mushy-layer equations (3.15–3.18). Henceforth, x

and z denote dimensionless lengths. The appropriate macroscopic lengthscale is

H so the Darcy number in this problem is

D = Π0/H
2. (3.33)

The ratio of imposed fluxes

r = Q2/Q1 (3.34)

determines the direction of the flow. So r < 1 corresponds to a flow in the positive

x-direction. We restrict attention to the case r > 0 so that the direction of the

imposed flow does not change.

Motivated by the separable solution for Stokes flow in a corner (Batchelor,

1967), we seek a solution for the dimensionless material flux in the form

q = [−xf ′(z), f(z)] . (3.35)

In the liquid and transition region the flow satisfies the Stokes equation ∇2u =

∇p. Note that the streamfunction associated with the Darcy velocity u is ψ =

xf(z) + x. Eliminating the pressure, we find that Stokes equation becomes

f (4)(z) = 0. In the mushy layer, the flow satisfies Darcy’s law (3.8), which in

the absence of convection becomes (f ′/Π)′ = 0. In the simplest case of uniform

permeability Π = Π0, the solution is

f = C0z + 1 0 ≤ z ≤ η − δ, (3.36)

f = B0(1− z)3 + A0(1− z)2 + r η − δ ≤ z ≤ 1, (3.37)

where A0, B0, and C0 are constants that can be readily determined by applying

mass conservation, no-slip and continuity of pressure at the mush–liquid interface,
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3.5. SOLIDIFICATION WITH A CORNER FLOW

respectively

[f ] = 0, [f ′] = 0, f ′′′ = −f ′/D, (z = η − δ). (3.38)

We find that

A0 = −3B0

[
1− η + δ

2
+

D

1− η + δ

]
, (3.39)

B0 =
2(r − 1)

(1− η + δ)3 + 6D(1 + η − δ) , (3.40)

C0 = 6DB0. (3.41)

Note that, in the case of uniform permeability, f is independent of θ and φ, so

is independent of the thermodynamics of the problem. Note that δ = 0 (c = 0

in δ = cD1/2) is equivalent to the no-slip condition at the mush–liquid interface.

Our choice c = O(1) means that the streamfunction f is continuously differen-

tiable (while its second derivative is not continuous). This means that there are

well-defined streamlines at the mush–liquid interface, essential to imposing the

marginal equilibrium condition.

The significant feature of this two-dimensional problem that allows us to treat

it in a one-dimensional fashion is that the imposed vertical temperature gradient

∆T scales linearly with x. In particular

∆T = (k1 − k2)x. (3.42)

We choose units such that Tm = 0 and write

T = −k2x+ ∆Tθ(z) = (k1 − k2)x(θ − T), (3.43)

where T = k2/ (k1 − k2) > 0 gives a measure of the ratio of horizontal to vertical

temperature gradients at the top boundary.
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The steady ideal mushy-layer equations (3.16, 3.17) give

fθ′ − f ′(θ − T) =
θ′′

Pe
− SVφ′, (3.44)

fθ′ − f ′(θ − T) = −V [φ(θ − T)]′ , (3.45)

where V = V/Q1 represents the ratio of the solidification rate to the imposed

flow. The Stefan number S = L/(cp(k1 − k2)x), so we can neglect latent heat

release at sufficiently large x. We therefore take S � 1 and neglect this term

completely.

Equation (3.44) is also the thermal equation for the liquid region, where φ = 0.

Salt conservation in the liquid region is governed by q · ∇C = 0 in the absence

of diffusion, so

C ∝ xf(z). (3.46)

Equation (3.45) has a first integral

φ =
1

PeV

θ′ + φc
T − θ , (3.47)

where PeV = V H/κ = VPe is a Péclet number based on the solidification rate

and φc is a constant determined by the relevant boundary conditions discussed

below. Thus the solid fraction is inversely proportional to the solidification rate

V .

3.5.2 Boundary conditions

The dimensionless boundary conditions on temperature are

θ(0) = −1, θ(1) = 0, [θ]ml = 0, [θ′]ml = 0, (3.48)

since S� 1, so latent heat release at the interface is insignificant.

Dissolving outflow. If V < 0, Un > 0, dissolution means that characteristics

of φ propagate towards the mush–liquid interface, so φ must be specified at z = 0

φ(0) = φ0, (3.49)
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where φ0 is some imposed value, which allows us to eliminate φc. Imposing the

solid fraction at z = 0 is equivalent to imposing a bulk concentration S0 =

(1− φ0) k1x/m there. We define α1 by S0 = α1x/m. Conservation of solute at

the mush–liquid interface requires that

[C]lm = 0⇒ φm = 0, (3.50)

whereby we can determine η.

Dissolving inflow. If V < 0, Un < 0, equation (3.49) continues to apply.

However, when the flow is from liquid to mush, we must impose the concentration

at z = 1, and then use conservation of solute (3.27) to determine φm.

φm =
[C]lm
Cm

f(η)

V
, (3.51)

where Cl = C(η+) is determined by q·∇C = 0 in the liquid region and a boundary

condition specifying C at z = 1. In particular, if we impose C = (α2/m)x at the

upper plate, then

Cl = x
α2

m

f(η)

f(1)
, (3.52)

and so

φm =

(
−TC

f(η)

f(1)

1

θ(η)− T
− 1

)
f(η)

V
, (3.53)

where TC = α2/ (k1 − k2). As noted previously, in general φm 6= 0.

Freezing outflow. If V > 0, Un > 0, equation (3.50) applies, which can also

be used to eliminate φc in equation (3.47). However, it is no longer appropriate

to apply a condition on φ at z = 0. Instead, we employ the marginal equilibrium

criterion

q · ∇θ = 0 (z = η). (3.54)

Freezing Inflow. If V > 0, Un > 0, we impose the concentration at z = 1

thereby fixing the solute field Cl at z = η+ (equation 3.52). In this case, marginal

equilibrium T (η) = TL(Cl) gives an interfacial temperature

θi = T − TC
f(η)

f(1)
. (3.55)
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Additionally, C is continuous since T = TL(C) on both sides of the interface and

T is continuous. Hence equation (3.50) applies and determines φc.

3.5.3 Results for one-dimensional flow

By varying Q1 and Q2, our configuration (figure 3.4) realizes all the possible types

of flow at the mush–liquid interface in a two-dimensional fashion. However, it is

simpler to first consider the one-dimensional problem, which is relevant to several

of the possible cases, to illustrate a number of important physical principles.

If r = 1, (Q1 = Q2 ≡ Q, say) then f = 1 (the flow is vertical) and the

governing equations (3.44, 3.45) become

θ′ =
θ′′

Pe
0 ≤ z ≤ 1, (3.56)

θ′ = −V [φ(θ − T)]′ 0 ≤ z ≤ η. (3.57)

Integrating (3.56), we find the temperature

θ(z) =
ezPe − ePe
ePe − 1

, (3.58)

so the shape of the temperature profile depends on the sign of Pe = QH/κ, which

is positive for outflow and negative for inflow. Equation (3.58) gives the location

of the interface

η =
log
[
θi(e

Pe − 1) + ePe
]

Pe
, (3.59)

in terms of the interfacial temperature θi = θ(η), and has a unique solution for

all −1 ≤ θi ≤ 0.

Integrating (3.57), we find that the solid fraction satisfies

Vφ(θ − T) = −θ + φc, (3.60)

where the constant φc is determined by the relevant boundary conditions. We

consider the four different cases identified previously.

Dissolving outflow. We use the boundary conditions (3.49, 3.50) to elimi-

38



3.5. SOLIDIFICATION WITH A CORNER FLOW

!"
!!

!"
"

!"
!

!"
#

"

"$#

"$%

"$&

"$'

!

θi = 0.8

0.6

0.4

0.2

!"
!!

!"
"

!"
!

!"
#

"

"$#

"$%

"$&

"$'

!

Pe

η
P0 = 0.25

4

1

(a) (b)

η

|Pe|

Figure 3.5: Exact solutions for the interface location η in the case of: (a) dis-
solving outflow and (b) freezing inflow. In (a) we show variation with imposed
flow Pe = QH/κ at various values of P0 = PeV φ0(1 + T), which increases as so-
lidification becomes more significant. In (b) we show variation at various values
of θi, which is controlled thermodynamically according to equation (3.64). The
asymptotic behaviour (equation 3.66) at large |Pe| is indicated by the dashed red
curve.

nate φc and find

θi = −1 + (−V)φ0(1 + T), (3.61)

which determines η from equation (3.59). There are a number of important

features of this solution, as shown in figure 3.5(a). In this case, V < 0, so θi ≥ −1

as required. However, the condition that θi ≤ 0 means that there is a critical

imposed flux below which there are no solutions:

Q

−V ≥ (1 + T)φ0 =
TL(S)− T |z=0

∆T
. (3.62)

As we approach the critical flux from above, the mush fills the layer. Above the

critical flux the mush thickness initially decreases (primarily due to a rapid drop

in interface temperature), then eventually increases slowly towards 1. Indeed we

have shown that η → 1 as Pe→∞ by simple asymptotic analysis of (3.59).

Dissolving inflow. This case is degenerate in that the prescribed solid frac-

tion at the lower wall and prescribed concentration at the upper wall gives two

independent measures of the solid fraction at the mush–liquid interface, which
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are consistent if and only if

1 +T−TC = Vφ0(1 +T)⇔ [T |z=0 − TL(S)|z=1] = V [TL(S)|z=0 − T |z=0] (3.63)

independently of η. This degeneracy arises because the condition of salt conser-

vation at the interface is redundant and so no longer determines η.

Freezing outflow. In this one dimensional problem, streamlines of q are

vertical, but isotherms are always curved towards the positive x-direction, so

they can never be tangent, so the marginal equilibrium condition (3.54) is never

satisfied. This motivates detailed consideration of the two-dimensional problem

in section 3.5.4.

Freezing inflow. The boundary condition (3.55) implies that the interface

temperature

θi = T − Cr. (3.64)

To ensure that this lies in the correct range, we require

k1 ≥ α2 ≥ k2 ⇔ T |z=0 ≤ TL(S)|z=1 ≤ T |z=1 . (3.65)

If these conditions are is satisfied, then the temperature of the interface is set

entirely thermodynamically. We then determine the position of the interface

from equation (3.59), as shown in figure 3.5. We analyse (3.59) asymptotically

to show

η ∼ 1 + θi as |Pe| → 0, η ∼ log(−1/θi)/|Pe| as |Pe| → ∞. (3.66)

The interface position η decreases slowly with the strength of the flow |Pe| be-

tween these two limits.

However, the solid fraction depends on the fluid flow. Applying (3.50), we

eliminate φc and find that φ increases monotonically away from the mush–liquid

interface. So φ ≤ 1 is satisfied provided φ(0) ≤ 1, so

(−V) ≥ T − TC + 1

1 + T
= 1− α2

k1

. (3.67)
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Thus there is a minimum solidification rate required for physically meaningful

solutions.

3.5.4 Results in the case of freezing outflow

The case of a freezing outflow is especially significant for our study because it

occurs in the case of flow into a chimney caused by convection within a mushy

layer analysed in chapter 4. Being able to investigate the marginal equilibrium

condition relevant to freezing outflow, which requires that streamlines are tangent

to isotherms at the mush–liquid interface, is also one of the main reasons to

introduce a two-dimensional problem. Therefore, in terms of two-dimensional

flow, we focus exclusively on freezing outflow.

Our analysis highlights two crucial issues. Firstly, the existence of a solution

to the full problem (including the marginal equilibrium condition (3.54), which

with equation (3.44) implies that θ′′(η) = 0) requires θ′′(0) < 0. The marginal

case θ′′(0) = 0 is the exact linear solution to (3.44), which occurs if and only if

r =
T

1 + T
< 1. (3.68)

For higher values of r, θ′′(0) > 0, so a universal requirement for a steady solution

is r < 1. Secondly, the existence of a transition zone of thickness δ = cD1/2 is

crucial to the existence of a solution.

Both of these features can be deduced asymptotically by taking the physically

realistic limit of small Darcy number D→ 0. Marginal equilibrium (3.54) gives

− f ′(η) ∼ fθ′

T
∼ rθ′(1)

T
. (3.69)

But the conditions on the flow (3.38) give

f ′′′+ ∼
f ′−
D
∼ f ′+

D
(z = η − δ) (3.70)

where subscript + denotes the quantity on the transition zone side of the mush–

transition zone interface and and subscript − the mush side. These scalings
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combine to give

1− η ∼ a0D
1/2, (3.71)

where we determine the prefactor a0 from the asymptotic solution for the flow

f(z) and equation (3.69). These yield the quadratic equation for a0

a0

(
c

2
+

1

a0 + c

)
=

rθ′(1)

T(1− r) . (3.72)

For any finite c > 0, this equation has exactly one positive solution a0. However,

for c = 0, there are no solutions. Therefore, the transition region is crucial for

the existence of steady solutions to the problem.

To gain further insight into the existence of solutions, we differentiate (3.44)

with respect to z, to find

θ′′′/Pe = fθ′′ − f ′′(θ − T). (3.73)

In the mushy layer (excluding the narrow transition zone) f ′′ = 0 and f > 0, so

θ′′ has a definite sign. However, in the transition zone, f ′′ 6= 0 and θ′′ changes

rapidly (as D−1/2) to satisfy θ′′(η) = 0 (cf. figure 3.8c). Given that φ(η) = 0,

φ must increase as z decreases away from the interface z = η. From equations

(3.44, 3.45), this requires θ′′(η−) < 0, so θ′′(0) < 0, as claimed.

The physical reason why the transition region is crucial can also be inferred

from equation (3.73). In the mushy layer, the horizontal velocity is uniform.

However, in the transition region it decreases rapidly (cf. figures 3.8 and 3.9 for

an example of this). This reduction means that horizontal and vertical advection

of heat balance the mush–liquid interface, as required by the marginal equilib-

rium condition (3.54). (Note that only the horizontal velocity changes across the

transition region to leading order as D→ 0.)

Furthermore, this asymptotic analysis shows that f , f ′, θ, θ′ and θ′′ are all

O(1) in the Darcy number, so the full solution for θ and θ′ can be found to

leading order in the Darcy number by solving (3.44) with linear flow function

f(z) = 1 + C0z because the mush occupies almost all the domain. Now C0 ∼
(r − 1) and for notational simplicity, we introduce a depth-dependent Péclet

42



3.5. SOLIDIFICATION WITH A CORNER FLOW

number

P (z) =
H [Q1 + (Q2 −Q1)z]

κ
, (3.74)

and difference ∆P = P (0)−P (1) > 0 (if r < 1). Then we find the exact solution

for the temperature field

θ(z) = T +K1P +K2

[√
π

2∆P
P erf

(
P√
2∆P

)
+ exp

(−P 2

2∆P

)]
, (3.75)

where K1 and K2 are constants. We determine the constants by imposing the

boundary conditions θ(0) = −1 and θ(1) = 0. Thus there is a unique solution that

satisfies the boundary conditions, except in the degenerate case of P (0) = P (1)

(i.e. r = 1, the one-dimensional case analysed in section 3.5.3). Note that

equation (3.75) holds if ∆P < 0 (r > 1), and gives real solutions in terms of

the imaginary error function, which is defined by erfi(z) = −i erf(iz), where i is

the imaginary unit and erf(z) is the error function. Thus we fully and exactly

determine θ′(1) in terms of Pe, r and T, and hence fully determine a0 from

equation (3.72) in terms of the parameters of the system.

Figure 3.6 gives a regime diagram summarizing the existence of steady so-

lutions in the case of freezing outflow. The sign of θ′′(z) in the mushy layer,

which determines the sign of φ, separates region B, where there are physically

meaningful, steady solutions, from regions A1 and A2. One further cause of the

non-existence of steady solutions emerges. As Q2 decreases, the thickness of the

liquid region decreases (figure 3.7). For sufficiently large T, the thickness can

reach zero for finite Q2 (equivalently a transect through the regime diagram has

entered region C), below which there are no steady solutions. This phenomenon

is caused by a relatively high conduction of heat in the negative x-direction,

which can cause θ′(1) to become negative, which is inconsistent with marginal

equilibrium (3.69).

We study this behaviour by considering the marginal case θ′(1) = 0, which

imposes

K1 = −K2

√
π

2∆P
erf

(
P (1)√
2∆P

)
. (3.76)

To fix ideas, consider the special case Q2 = 0 ⇔ P (1) = 0. This implies that
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Figure 3.6: A regime diagram in the case of freezing outflow. In region A1 and
A2, θ′′ > 0 in the mushy layer, which is unphysical since it forces a negative solid
fraction. This region is divided into two by the dashed line r = 1 (Q2 = Q1),
which separates flow to the left (A1) from flow to the right (A2). In region
B, for each pair (Q1, Q2), there is a unique physically meaningful solution with
θ′′ < 0 in the mushy layer, and θ′(1) > 0. The thickness of the liquid region
decreases towards region C, in which θ′(1) < 0, which means that marginal
equilibrium cannot be satisfied. The other parameters are chosen such that Pe =
1 corresponds to Q1 = 1, and T = 1. This means that P (0) = Q1 and P (1) = Q2.
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Figure 3.7: A transect through the regime diagram figure 3.6 showing the depen-
dence of the width of the liquid region in equation (3.71) on Q2 at fixed Q1 = 1,
for increasing T. Note that the case T = 4 exhibits both region C for small Q2

and region B for larger Q2. The dashed curves correspond to unphysical solu-
tions in region A2, and the fact that this occurs at a0 = 1 for each value of T is
not significant because it is a consequence of the particular choice c = 1 in the
scaling for the transition region width. All the curves approach infinity before
Q2 → Q1 = 1.

K1 = 0. Then applying the boundary conditions of θ, we find a critical T = TC

satisfying

TC =

[√
πP (0)

2
erf

(√
P (0)

2

)
+ exp

(
−P (0)

2

)
− 1

]−1

. (3.77)

Equivalently, this gives a critical P0(T) (i.e. input flux Q1), above which there

are no solutions. Note that TC ∼ 2/P (0) as P (0) → 0 and TC ∼
√

2/πP (0) as

P (0)→∞.

More generally, we find a critical curve (dividing region B and C) – defined

by, say, P (1) = P (0)rc(P (0),T) – that satisfies a transcendental equation

(1 + T) exp

(
−P (1)2

2∆P

)
− T exp

(
−P (0)2

2∆P

)
=

T

√
π

2∆P
P (0)

[
erf

(
P (0)√
2∆P

)
− erf

(
P (1)√
2∆P

)]
. (3.78)
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We have proved that this equation has a solution for all P (0) above the critical

value determined earlier. Furthermore, we have shown asymptotically that, for

large P ,

rc ∼
T

T + 1
, (3.79)

which also defines the top of region B. Thus the region of parameter space where

solutions exist becomes asymptotically narrow for large imposed fluxes.

Within narrow region B of parameter space, there are solutions specified by

equation (3.75), and we show a typical solution in the interior of the region in

figure 3.8. Then in figure 3.9, we illustrate the marginal equilibrium condition by

showing the tangency of streamlines and isotherms at the mush–liquid interface.

For clarity of the liquid and transition regions, we have used a finite value of

D. More generally, this seems to slightly increase the size of the region in which

physically meaningful solutions can be found from those shown in figure 3.6.

Throughout this section, we have not discussed the solid fraction further than

noting that θ′′ < 0 in the mushy layer ensures φ > 0. Equation (3.47) shows that

φ =
1

PeV

θ′ − θ′(η)

T − θ , (3.80)

so φ increases as z decreases away from the mush–liquid interface. The require-

ment that φ ≤ 1 gives a critical PeV (or V ) above which solutions are physically

meaningful. One important feature of the case of freezing outflow is that both

the size of the solid fraction in the mushy layer and also the concentration in the

liquid region are determined everywhere by heat and salt conservation, and not

by any imposed external boundary condition.

3.5.5 Conclusions

It is the subtle marginal equilibrium condition that is responsible for the par-

ticular (and in some respects peculiar) features of the case of freezing outflow.

It imposes conditions on the solution that can only be satisfied in certain pa-

rameter regimes. It has the effect of requiring a very narrow liquid region, the

size of which scales with D1/2. Dimensionally, the width scales with Π
1/2
0 and so

decreases as the permeability of the mushy layer goes to zero. Thus in the formal
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Figure 3.8: A typical solution in the case of freezing outflow at moderately small
Darcy number D = 0.01. The transition region between the dashed horizontal line
and the solid horizontal line representing the mush–liquid interface has thickness
δ = 0.1. Other parameters are Pe = 4, r = 0.4 and T = 1. (a) the flow function f
and the negative of its derivative, showing changes in the vertical and horizontal
velocities respectively. (b) the temperature and its derivative. (c) shows that θ′′

becomes increasingly negative in the mushy layer and only starts to increase in
the transition region, meaning that this region is vital to satisfying θ′′(η) = 0.

47



3. MUSHY-LAYER THEORY

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.98 1 1.02
0.95

0.975

1

z

x

Figure 3.9: The marginal equilibrium condition: a streamline (blue with direction
of flow indicated) and an isotherm (green). The marginal equilibrium condition
(3.54) that q · ∇θ = 0 is shown by the tangency of the streamline and isotherm
at the mush–liquid interface (see inset). Parameters are as in figure 3.8

asymptotic limit, the liquid region and transition region both scale with D1/2 (as

indeed does the pore scale). Nevertheless, the physical mechanisms that give rise

to the regime diagram (figure 3.6) still apply at moderate values of D.

In contrast, in the next chapter we consider convection through channels

driven by convection. Interestingly, in that case, we find a liquid region size

that scales independently of permeability because the strength of convection also

depends on the permeability of the mushy layer, indicating the important role

that convection plays in keeping liquid chimneys open.

By considering the simple ‘toy’ problem of solidification with a corner flow, we

have understood another feature important in convection. The need for transition

region is physically associated with the need for a rapid change in the component

of the velocity tangential to the mush–liquid interface. Similarly, in what we later

term the active region near a vertical chimney in a mushy layer with convection,

the vertical velocity changes sign. In this section, we needed a transition region

to cause this change, but in the next two chapters it is convection that causes

this change. Thus we can neglect the transition region in subsequent work.
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Therefore, in this chapter, we have developed a general theory of mushy lay-

ers that we can apply to study convection in a mushy layer in the next chapter,

and also clarified important aspects of the boundary conditions at a mush–liquid

interface. The coupling of the equations governing heat and salt conservation

through the liquidus condition was important in deriving the marginal equilib-

rium condition and also strongly constrained the region of parameter space in

which steady solutions in the corner flow geometry exist. It is necessary to have

a continuous normal and tangential velocity when applying the marginal equilib-

rium condition. Indeed, this was an assumption used in the derivation. In cases

where a slip in the tangential velocity occurs between a liquid region and a mushy

layer, this boundary condition can be applied by allowing the slip to occur across

a transition region with a width that scales with D1/2. Indeed, in the case of a

corner flow, this transition region is strictly necessary for the existence of steady

solutions.
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Chapter 4

Solute Transport in Mushy

Layers

The content of this chapter has been published in the Journal of Fluid Mechanics

(Rees Jones & Worster, 2013a).

4.1 Introduction

Mushy layers are multiphase systems, and the fluid dynamics of the interstitial

liquid can have important influences on the mushy layer. In this chapter, we

focus on solute transport within and from mushy layers. A vertical gradient in

the density of the interstitial liquid can drive convection, leading to the formation

of liquid channels called chimneys (Copley et al., 1970). Convective flows within

mushy layers transport solute, leading to segregation between the liquid melt and

the mushy layer.

In this chapter, we develop a new simple model of convection in a mushy

layer. We investigate the parametric dependence of solute fluxes in the context

of convective solutions of the ideal mushy-layer equations (Worster, 1997, 2000)

introduced in section 3.3.1. This model could be applied to solute transport in

a number of fields such as the casting of metal alloys; however, we have been

particularly motivated by sea-ice modelling, in which the simplicity of our new

model is particularly important. The applicability of mushy-layer theory to sea-
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ice modelling has been demonstrated by Feltham et al. (2006) and reviewed by

Hunke et al. (2011).

The fully developed system with chimneys is not amenable to complete ana-

lytical treatment. Therefore, some have used an enthalpy-based approach where

a single set of equations applies both to the mushy layer and to the liquid melt.

Beckermann & Wang (1995) and Boettinger et al. (2002) review the use of this

type of technique applied numerically to the casting of metal alloys, and Oertling

& Watts (2004) apply this technique to sea-ice modelling. Others (Schulze &

Worster, 1998; Chung & Worster, 2002; Wells et al., 2010, 2013) have solved sepa-

rate equations describing the mushy layer and the liquid melt. The computational

complexity of such numerical approaches, even with considerable simplifications,

means that they are not readily applicable to predictive sea-ice modelling. In

sea ice, the spacing of brine channels is of the order of centimetres and so is

unresolvable in present-day climate models.

Recently, Wells et al. (2010) investigated the dependence of solute flux on

chimney spacing and suggested that the spacing takes the value that maximizes

the flux. This dynamic maximum-flux criterion needs to be tested further but

constitutes an objective and transparent way to determine the otherwise unknown

chimney spacing. In section 4.2 we develop a simple theoretical framework for

modelling fluxes though chimneys using the idealized steady-state solidification

arrangement that we introduced in section 3.3.2. This steady-state arrangement

can be applied to unsteady situations in which the evolution of the system is much

slower than the convective turnover time, as discussed in chapter 6. In section

4.3, we make a patchwork of simplifying approximations, motivated by the case

of high Rayleigh number, that captures the essential physics while rendering the

problem analytically tractable. We use a vertically linear temperature profile,

which would be a good approximation across a thin convecting layer at the bottom

of sea ice. This linear profile allows us to find a scaled solution, reducing the full

nonlinear two-dimensional internal convection problem to readily solved ordinary

differential equations. In section 4.4, we investigate the behaviour of the solution

for a planar array of chimneys and the dependence of flux on chimney spacing.

Then in section 4.5, we apply the maximum-flux criterion to derive analytically

the dependence of heat and solute fluxes on the mush Rayleigh number and on
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Figure 4.1: (a) diagram of the problem arrangement and (b) the phase diagram
showing the phase of the binary alloy as a function of concentration and tempera-
ture. The arrows show a trajectory as the system evolves from melt to solid. Note
that V is the speed at which the solidification cell is pulled downwards between
fixed heat exchangers and equals the rate of solidification.

the other dimensionless parameters of the system.

Finally, in section 4.6, we generalize our model to three dimensions and demon-

strate that an array of chimneys can be characterized by the average drainage

area alone. We therefore solve the generalisation of our model in detail in an ax-

isymmetric geometry and determine the relationship between solute flux, mush

Rayleigh number and the other dimensionless parameters.

This work leads us to propose dimensional relationships not only for solute

and heat fluxes through chimneys, but also for the vertical structure of the inter-

stitial flow field and solid fraction distribution. In section 4.7, we discuss these

relationships and introduce their applicability to sea-ice models. After chapter 5,

the remainder of the thesis from chapter 6 onwards develops this idea further.

4.2 Problem formulation

We consider convection through a mushy layer and chimney as depicted in figure

4.1. A solidification cell, containing a binary alloy whose less dense component is

preferentially rejected on solidification, is pulled downwards at a constant speed

V through fixed heat exchangers. The steady state has a chimney centred on
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x = 0 and chimney half-spacing L, as shown in figure 4.1a. The lower heat

exchanger is held at the eutectic temperature TE, below which the alloy freezes

completely for all solute concentrations. The far field has temperature T∞ and

solute concentration C0 > CE, where CE is the eutectic concentration. Let T0 be

the liquidus temperature corresponding to C0 and let CS be the concentration of

the solid phase. These quantities are shown in figure 4.1b, which also shows the

trajectory through the phase diagram as the system evolves from melt (z > h),

to mushy layer (0 < z < h) and then to solid z < 0. The liquidus is assumed to

be linear with slope Γ > 0.

Note that this situation is dynamically equivalent to saltwater (with C0 < CE)

in a cell pulled upwards towards a eutectic heat exchanger, since, in the case of

saltwater, the more dense component is preferentially rejected on solidification.

4.2.1 Governing equations

The governing equations were introduced in section 3.3.2. Here we summarize

the important equations for this chapter. The single variable

θ = (T − TE)/∆T = (C − CE)/∆C (4.1)

describes both temperature T and interstitial concentration C, which is it at local

thermodynamic equilibrium. The temperature obeys a combined heat equation

Ωu · ∇θ = ∇2θ, (4.2)

where

Ω = 1 + S/C (4.3)

is the factor by which the heat capacity of a mushy layer is enhanced by latent

heat release, and S and C are the Stefan number and compositional number

introduced in section 3.3.2.

Under the further assumption C � 1, salt conservation determines the solid

fraction

Cφz = u · ∇θ − θz. (4.4)
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In a planar geometry the fluid flow is described by a streamfunction ψ of the

Darcy velocity u that obeys a vorticity equation

∇2ψ = −Rmθx, (4.5)

where

Rm =
β∆CgΠ0

νV
� 1 (4.6)

is the mush Rayleigh number, which we assume to be large (frame advection is

negligible compared to convective transport).

4.2.2 Boundary conditions

In section 3.4, we discussed the boundary conditions at a mush–liquid interface,

such as the interface at the chimney. At the chimney wall, x = a(z), the inter-

stitial liquid flows from the mush into the chimney (the case of ‘freezing outflow’

from the previous chapter), so the solid fraction is zero there, and marginal equi-

librium and heat conservation are expressed by

u · ∇θ = 0, θx = (ψ − x)θz (x = a), (4.7a, b)

as shown by Schulze & Worster (1999). This calculation assumes that the chimney

is narrow compared to its length, analogous to our asymptotic analysis in section

3.5.4. Conservation of mass at the chimney wall can be expressed by

ψ =
a3

3D

[
ψx +Rm(θ − C)

]
+ aψx (x = a), (4.7c)

where C is the average concentration in the chimney (Chung & Worster, 2002).

Their calculation uses the lubrication approximation to determine the flow in the

chimney. The final term aψx can be neglected if the Darcy number

D = Π0V
2/κ2 � 1. (4.8)

We adopt this simplification (taken before Rm � 1, which ensures a� 1 and so

allows us to apply (4.7a, b) at x = 0. Note that, post hoc in section 4.5.3, we find
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that aψx is asymptotically negligible provided that R2
mD� 1.

Equation (4.7c) is structurally equivalent to the relation found by Schulze &

Worster (1998) using a quadratic Polhausen approximation for the concentration

field which allows integration of the flow equation (momentum conservation). In

our variables, this is expressed by

ψ =
a3

3D

(
ψx +Rm

9

20
θ

)
(x = a),

which is structurally the same as (4.7c) except for the omitted term aψx, which

is asymptotically negligible if D � 1, but important near the bottom of the

chimney. Incidentally, in their numerical calculations, Wells et al. (2010, 2013) use

the Polhausen approximation but retain aψx. In this work we use equation (4.7c),

although there is no great difference in terms of the solute flux associated with

using the alternatives outlined here provided R2
mD� 1.

At x = L (the dimensionless chimney half-spacing), we apply symmetry

boundary conditions, namely

u · n = 0⇒ ψz = 0, n · ∇θ = 0⇒ θx = 0 (x = L). (4.9a, b)

We also impose zero vertical velocity at the lower boundary with the eutectic

solid,

u · n = 0⇒ ψx = 0 (z = 0). (4.10)

4.3 The Chimney-Active-Passive (CAP) model

We develop a simple model designed to capture the essential dynamics of convec-

tion using a patchwork of approximations in different regions (see figure 4.2) as

follows.

Away from the chimney (section 4.3.1), we assume a vertically linear and

horizontally uniform temperature field. There is no baroclinic torque, since the

temperature is horizontally uniform, so this region is essentially ‘passive’, provid-

ing the fluid flux required by the actively convecting near-chimney region.

To determine the strength of this flow, we consider the ‘active region’ near
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Figure 4.2: The CAP model – showing the active region x < xδ, passive region
xδ < x < L and thermal boundary layer to the melt above. The vertical com-
ponent of the Darcy velocity is uniform and negative in the passive region, and
most of the upward flow occurs in the chimney.

the chimney (section 4.3.2) where convection is driven by baroclinic torque. We

find a scaled solution to the mushy-layer equations that also has linear vertical

temperature variation, and we patch this to the passive region (section 4.3.3).

The flow field in the liquid region is computationally very expensive to find.

Therefore we rather balance heat fluxes across a thermal boundary layer to the

mush–liquid interface, as suggested by Fowler (1985) and implemented in some

numerical studies (Schulze & Worster, 1998; Wells et al., 2010). This gives us a

Chimney-Active-Passive (CAP) model.

4.3.1 Passive region – analysis of the bulk mush

Away from the chimney we assume that the temperature field is directly pro-

portional to z and has no horizontal variation. This automatically satisfies the

symmetry boundary condition (4.9b). Consistently with this temperature field,

we seek a solution for the flow field with horizontally uniform vertical velocity

w = ψx. The streamfunction that satisfies the vorticity equation (4.5) and the

boundary conditions (4.9a, 4.10) is

ψ ∝ z(L− x). (4.11)
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In contrast to previous numerical studies (Schulze & Worster, 1998; Chung &

Worster, 2002; Wells et al., 2010), we do not impose a condition of constant

pressure at z = h.

The passive region has a uniform depth h0 since there is no horizontal tem-

perature or vertical velocity variation in this region and the mush–liquid interface

is at a constant temperature. The depth h0 is determined by balancing advec-

tion and diffusion of heat across a thermal boundary layer at the mush–liquid

interface. This gives (Fowler, 1985)

n · ∇θ = −θ∞u · n (z = h0), (4.12)

where θ∞ = (T∞ − T0)/(T0 − TE).

The passive region has a simple structure and flow field, but the strength of

this flow must be determined by considering the active region near the chimney.

4.3.2 Active region – scaled solution near the chimney

The reduced mushy-layer equations (4.2) and (4.5),

∇2ψ = −Rmθx, Ωu · ∇θ = ∇2θ, (4.13)

admit a scaled solution

ψ = z

(
Rm

Ωh0

)1/2

Ψ(η), θ =
z

h0

Θ(η), η = x

(
RmΩ

h0

)1/2

, (4.14)

that has the same vertical structure as the passive region. The mush–liquid

interface is at z = h(x) = h0/Θ(η).

In terms of the scaled variables (4.14), the reduced mushy-layer equations

(4.13) give equations

Θ′′ = −ΨΘ′ + Ψ′Θ, Ψ′′ = −Θ′, (4.15a, b)

and the boundary conditions (4.7a, b) of marginal equilibrium and heat conser-
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vation give

Ψ′Θ = ΨΘ′, Θ′ = ΨΘ/Ω (η = 0). (4.16a, b)

These can be combined to show that the vertical velocity Ψ′ is always positive at

the chimney wall.

We determine the width of the chimney from mass conservation (4.7c) at

the mush–chimney boundary (x = a) as follows. We determine the average

concentration in the chimney in terms of our scaled variables. We neglect solute

diffusion in the chimney, so u · ∇C = 0 and C = C(ψ) only. Following Chung &

Worster (2002), we use the approximation

C(z) =
1

ψ(a(z), z)

∫ ψ(a(z),z)

0

C(ψ) dψ, (4.17)

which gives C(z) = (z/2h0)Θ0 in our scaled variables, and we use the notation

Θ0 ≡ Θ(0), for example. Then (4.7c) implies that

a ∼ D1/3R−1/6
m Ω−1/6h

1/6
0 α, where α = [3Ψ0/(Ψ

′
0 + Θ0/2)]

1/3
. (4.18)

It is important to note that the chimney width a is independent of z, so

chimneys are predicted to be straight-sided. Previously unpublished work by J.

Ashmore & M. G. Worster (see section 5.2) considers power-law background tem-

perature profiles θ ∼ zb and shows that a ∼ z(1−b)/6. Therefore a straight-sided

chimney is a consequence of the linear temperature profile we imposed in the pas-

sive region. Although our prediction of straight-sided chimneys is a consequence

of this linear profile, it is somewhat encouraging to note that this corresponds

to some experimental observations, such as those of Schulze & Worster (1998),

reproduced in figure 4.3.

4.3.3 Patching conditions

Instead of matching the active and passive regions asymptotically, in our simple

model we patch them at a position x = xδ (shown in figure 4.2) that is internally

determined by applying conditions of continuity of temperature, normal heat flux,

normal velocity and pressure there.

59



4. SOLUTE TRANSPORT IN MUSHY LAYERS
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Figure 4.3: From Schulze & Worster (1998). Photograph of an ammonium-
chloride solidification experiment, showing narrow vertical chimneys. Note that
the mush–liquid interface is peaked near the chimneys and flat in the ‘passive
zone’ further away, which corresponds to our model, shown in figure 4.2.

Let δ = xδ (RmΩ/h0)1/2. Continuity of temperature and normal heat flux

require that

Θ(δ) = 1, Θ′(δ) = 0. (4.19a, b)

Then continuity of normal velocity determines the strength of convection in the

passive region, so equation (4.11) for the streamfunction in the passive region

becomes

ψ = z

(
Rm

Ωh0

)1/2

Ψ(δ)

[
L− x
L− xδ

]
. (4.20)

Applying continuity of pressure, by integrating the vertical component of Darcy’s

law (3.18), allows us to determine xδ through

L = (RmΩ/h0)−1/2 F (δ,Ω)−1, where F (δ,Ω) ≡ (δ −Ψ(δ)/Ψ′(δ))
−1
. (4.21)

Note that F (δ,Ω) is an implicit function of Ω, since Ω affects the active-region

boundary conditions (4.16). Then equation (4.12) determines the depth of the

layer

h0 = (−θ∞RmΨ′(δ))−1. (4.22)

Substituting this equation back into equation (4.21), we find

L = R−1
m θ−1/2
∞ G(δ,Ω), where G(δ,Ω) = F (δ,Ω)−1(−ΩΨ′(δ))−1/2. (4.23)
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4.3. THE CHIMNEY-ACTIVE-PASSIVE (CAP) MODEL

4.3.4 Solute and heat fluxes

The flux of salt from the mushy layer to the liquid is equal to the total advective

flux of salt into the chimney, which is determined from the solution of the active

region. Each half chimney drains a region of mush of length L. Therefore, the

average flux of solute per unit length in the x-direction is

FSolute =
1

L

∫ h

0

[ψz(θ − 1)]x=0 dz = −1

2
Rm

Ψ0

Θ0

F (δ,Ω). (4.24)

Note that the solute flux is negative because it is solute-depleted fluid that em-

anates from the chimney (cf. figure 1b).

The dimensionless temperature difference between the top of the chimney

and the far field is θ∞ and by symmetry ψ vanishes at the centre of the chimney.

Therefore the additional heat flux per unit length, due to convection through

chimneys, is

FHeat =
1

L

∫ a

0

[ψxθ∞]z=h dx = −θ∞Rm
Ψ0

Θ0

F (δ,Ω). (4.25)

Note that FHeat is negative because the far-field temperature is greater than the

temperature at the interface.

These relations can be simply expressed (still dimensionlessly) by

FSolute = −Rmγ(δ,Ω), (4.26)

FHeat = −2θ∞Rmγ(δ,Ω), (4.27)

where

γ(δ,Ω) =
1

2

Ψ0(δ,Ω)

Θ0(δ,Ω)
F (δ,Ω). (4.28)

4.3.5 Solutions to the boundary-value problem

The equations (4.15) and boundary conditions (4.16, 4.19, 4.21) constitute a

boundary-value problem for the active region, which we solve using a fourth-

order Runge–Kutta routine and a Newton-Raphson algorithm to update initial

guesses for Ψ0, Θ0, and δ. The subsequent chapter (see section 5.3.2 in particular)
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4. SOLUTE TRANSPORT IN MUSHY LAYERS

considers both the existence and uniqueness of solutions to this boundary-value

problem. As discussed there, we restrict attention to solutions that have only

one turning point Ψ′ = 0 as these correspond to upwelling near the chimney and

downwelling everywhere else, which is required for consistency with our formula-

tion of the CAP model. This restriction is also consistent with the maximum-flux

criterion discussed in section 4.5.

4.4 Results of the model

4.4.1 Discussion of results

The general form of the solution in the reduced CAP model is shown in figure

4.4. It is encouraging to note the similarity with some experiments, such as in

figure 4.3, especially in terms of the shape of the mush–liquid interface. We

find qualitative agreement with numerical results obtained by Chung & Worster

(2002) and Wells et al. (2010). Our model reproduces the trend and main features

of the dependence of solute flux and depth of the mushy layer found numerically.

For example, figure 4.5a, b can be compared with figure 5b, c in Chung & Worster

(2002).

However, this highly simplified model does not yield quantitative agreement

with the results of Chung & Worster (2002). For instance, comparing the above

figures, we consistently predict higher solute fluxes. It is not appropriate to

undertake a full comparison because Chung & Worster (2002) use relatively high

Darcy numbers and quite moderate Rayleigh numbers, a parameter regime in

which we do not expect agreement, even before the differing assumptions. Instead,

we identify the main causes of discrepancy.

Firstly, we deliberately chose to neglect frame advection in order to render the

problem analytically tractable by scaled solution in the active region. However,

it is certainly quantitatively important at low to moderate Rayleigh numbers

and results in temperature profiles closer to the exponential profiles derived the-

oretically in the case of no convection (Hills et al., 1983; Worster, 1991) than

the linear profile we have assumed. Connected with this, we did not impose a

constant pressure at z = h, unlike Chung & Worster (2002), which means that
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0 1 2 3 4 6-1 5

Figure 4.4: A typical solution of the CAP model, showing part of a periodic array
of chimneys. Solid white streamlines have arrows that indicate the flow direction.
Isotherms in steps of 0.1 (a) and contours of solid fraction in steps of 0.005 (b)
are shown by dashed white curves. The latter start at φ = 0 at the mush–liquid
interface. For these parameters, chosen for consistency with Chung & Worster
(2002), namely Rm = 12, θ∞ = 0.4, Ω = 3.5 C = 15 and L = 2.426, the active
region occupies about 22% of the domain. The vertical and horizontal scales are
the same, and the chimney width is formally zero as the Darcy number D → 0,
but is shown indicatively.
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Figure 4.5: Dependence of (a) solute flux FSolute and (b) depth of mush h0 on
Rayleigh number Rm at fixed L = 2.16, Ω = 1.33, θ∞ = 0.4. It is believed that
the dashed portions are unstable on the basis of the numerical work of Chung &
Worster (2002).
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Figure 4.6: The dependence of solute flux on chimney spacing at three different
values of Rm. Other parameters are as in figure 4.5. There is a well defined local
maximum whose position moves to lower chimney spacing as Rm increases.

the horizontal velocity was not zero there and consequently the flow field has a

slightly different shape.

Secondly, we decoupled the heat equation from the salt conservation equation

through the effective specific heat capacity Ω and so have neglected the feedback

on permeability, which we assumed constant.

4.4.2 Dependence on chimney spacing

The flux of solute and heat through a chimney depends on the size of the convect-

ing cell. Increasing the chimney spacing increases the width of the active region,

sustaining a larger flow driven by a greater temperature difference. Therefore

the flux into an individual chimney is increased. However, while the average flux

per unit length in the x-direction initially increases (above a minimum chim-

ney spacing required to sustain flow), it eventually decreases. There is therefore

a maximum flux at some moderate chimney spacing (see figure 4.6). In their

numerical study, Wells et al. (2010, 2013) observed the existence of such maxima.

Note that for a fixed chimney spacing there is a critical Rayleigh number

required to sustain convection as shown in figure 4.5a and observed previously

(Schulze & Worster, 1998; Chung & Worster, 2002; Wells et al., 2010, 2013).

However, in contrast to their findings, as L is increased, this critical Rayleigh

number continues to decrease to 0. Therefore, at every Rayleigh number, a

sufficiently large box could sustain convection, and we find no overall critical
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4.5. MAXIMUM-FLUX CRITERION

Rayleigh number. This discrepancy is likely to be caused by our neglect of frame

advection, which dominates at low Rayleigh number.

4.5 Maximum-flux criterion

Thus far we have imposed the chimney half-spacing L; but this is undetermined

a priori. Therefore, we employ the maximum-flux criterion suggested by Wells

et al. (2010) that L takes the value that maximizes the solute flux from the mushy

layer. This approach certainly allows us to compute an upper bound on the solute

flux and importantly avoids artificially imposing a horizontal length scale.

As shown in figure 4.6, the flux is a well defined function of chimney spacing

on each branch of solutions. Therefore, we combine equation (4.26) for the flux

with equation (4.23) for the chimney spacing to find that

∂FSolute

∂L

∣∣∣∣
Rm,θ∞,Ω

= −R2
mθ

1/2
∞

(
∂G

∂δ

∣∣∣∣
Ω

)−1
∂γ

∂δ

∣∣∣∣
Ω

. (4.29)

As illustrated in figure 4.7(a) and discussed further in the next chapter, section

5.4, G(δ,Ω) is a well defined function of δ, and ∂G/∂δ is strictly positive on the

upper branch and strictly negative on the lower branch. Therefore

∂FSolute

∂L

∣∣∣∣
Rm,θ∞,Ω

= 0 ⇔ ∂γ

∂δ

∣∣∣∣
Ω

= 0. (4.30)

4.5.1 Solute fluxes under the maximum-flux criterion

Figure 4.7b illustrates the existence of a unique maximum value of γ(δ,Ω), which

we denote γc(Ω). In the case Ω→∞, we prove the uniqueness of the maximum in

the next chapter, section 5.5. We can determine γc(Ω) once and for all by solving

the active-region equations independently of all the other external parameters.

Therefore, if the maximum-flux criterion holds, equations (4.26) and (4.27) imply
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Figure 4.7: (a) shows G(δ,Ω = 1), which is proportional to the chimney spacing.
The global minimum corresponds to the minimum chimney spacing required to
sustain convection. Above this, the two solutions to G(δ,Ω) = G0 constant
correspond to the two branches in figures 4.5 and 4.6, denoted by the dashed and
solid curves. (b) shows γ(δ,Ω = 1), which is proportional to the solute flux. Below
the line δ = π/2 there are no solutions of the boundary-value problem, indicating
that there must be a finite active region where baroclinic torque occurs in order
to drive convection. These results are derived in the next chapter, section 5.4.2.

that

FSolute = −Rmγc(Ω), (4.31)

FHeat = −2θ∞Rmγc(Ω). (4.32)

An approximately linear relationship between solute flux and Rayleigh number

has also been found using direct numerical simulation of the mushy-layer equa-

tions under the maximum-flux criterion (Wells et al., 2010, 2013), although they

found a cut-off at low Rm. At sufficiently high Rm, this difference can be ne-

glected, and so our analytic derivation of this relationship under simplifying ap-

proximations provides additional assurance of the robustness of their numerical

observation obtained by testing across a subset of parameter space.

Additionally, our model, combined with the maximum-flux criterion, reduces

the parametric dependence by showing that the flux is independent of far-field

temperature θ∞. Importantly, we have also shown that while the width of the

chimney a → 0 in the limit of small Darcy number D → 0 (cf. equation 4.38

below), the flux tends to a constant value. Therefore, to leading order, the flux
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Figure 4.8: (a) The coefficient γc(Ω) in the expression for the maximum flux
(4.31). Inset shows a log–log plot with the dashed asymptotic result γc ∼ Ω−1,
derived in the next chapter, see equation (5.75). (b) shows the relationship be-
tween solute flux and Rayleigh number with a cut-off indicated by o, determined
from the condition ΩRm = (ΩRm)crit. = π2 (Huppert & Worster, 2012). Below
this, a dashed curve indicates our model results.

depends only on the Rayleigh number and the effective specific heat capacity Ω.

4.5.2 Dependence on Ω

The coefficient γc(Ω) in equations (4.31, 4.32) decreases with Ω, as shown in

figure 4.8. A high value of Ω, which corresponds to high dimensional effective

specific heat capacity cpΩ, reduces the strength of convection within the mush and

so reduces solute flux. Mathematically, this is as we expect from the boundary

conditions (4.16a, b) which imply that the strength of convection scales with Ω−1,

a result that we prove in the next chapter, section 5.5.

However, linear stability analysis shows that the onset of convection is set by

ΩRm = (ΩRm)crit. (Lapwood, 1948; Huppert & Worster, 2012). Therefore, large

Ω makes convection more likely but decreases the resulting solute flux (figure

4.8b).

4.5.3 Vertical transport, solid fraction and length scales

In addition to determining the solute and heat fluxes through chimneys, our model

also determines the interstitial velocity within the mushy layer. In particular, we
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4. SOLUTE TRANSPORT IN MUSHY LAYERS

find that the vertical component w, which controls vertical salt transport within

the ice matrix, is

w =

{
−Rm(z/h0) [−Ψ′(δ)] passive region x ≥ xδ,

−Rm(z/h0) [−Ψ′(η(x))] active region x ≤ xδ.
(4.33)

Therefore, the vertical velocity w is proportional to the distance from the eutectic

solid and proportional to the Rayleigh number. In the passive region w is inde-

pendent of x and, since under the maximum-flux criterion Ψ′(δ) depends only on

Ω, we can write

w = −Rm(z/h0)wc(Ω), where wc(Ω) = −Ψ′(δ) > 0. (4.34)

To determine the solid fraction φ, we integrate equation (4.4), neglecting frame

advection, and find that

φ =

{
wc(Ω) (Rm/2C) [1− (z/h0)2] passive region x ≥ xδ,

−Θ′′(η(x)) (Rm/2C) [Θ(η(x))−2 − (z/h0)2] active region x ≤ xδ.

(4.35)

These are equal at the patching boundary xδ and satisfy the boundary condition

φ = 0 at the mush–liquid interface z = h. The vertical structure of the solid

fraction is therefore quadratic, and contours of φ, as well as streamlines, are

shown in figure 4.4.

In summary, scalings for the depth of the mush (from equation 4.22), chimney

spacing (from equation 4.23), and chimney width (from equation 4.18) are

h0 = R−1
m θ−1
∞ hc(Ω), (4.36)

L = R−1
m θ−1/2
∞ Lc(Ω), (4.37)

a = R−1/3
m D1/3θ−1/6

∞ ac(Ω). (4.38)

The chimney width a is only weakly dependent on Ω (figure 4.9b, c). Further-

more, a is independent of the permeability, since both Rm and D are proportional

to Π0. This is significant because it is often hard to determine Π0 precisely. The

D1/3 scaling for chimney width a corresponds to the scaling of Schulze & Worster
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Figure 4.9: (a) The dependence of the horizontal and vertical length scales on
Ω. Note also that wc = 1/hc. (b) The weak dependence of chimney width on Ω.
These are shown for a larger range of Ω in (c). The dashed line has slope 1, and
both Lc, hc ∼ Ω. The aspect ratio Lc/hc → 1.23.

(1998) (and verified numerically by Chung & Worster, 2002), although the for-

mer paper proposes a ∼ R
−2/9
m . This difference occurs because we have used the

maximum-flux criterion to determine the overall horizontal length scale, rather

than imposing the chimney spacing.

In equation (4.7c), we assumed aψx was asymptotically negligible compared

to ψ. Having determined all the relevant length scales, we observe that this is

only valid if R2
mD� 1.

Wells et al. (2013) independently identified the scaling a ∼ R
−1/3
m D1/3 if

R2
mD � 1. However, they also proposed the scaling a = O(R−1

m ) in the limit

R2
mD� 1, which comes from balancing ψ and aψx in equation (4.7c). This limit

is arguably somewhat problematic, and reflects a more general issue. The under-

lying continuum approximation of ideal mushy-layer theory can break down in

this limit. Strictly speaking, we require that the pore scale is small compared to

smallest macroscopic lengthscale in the problem. This means (non-dimensionally)

that the chimney width

a� d ∼ D1/2, (4.39)

where d is a typical non-dimensionalized pore size and we have used that the

dimensional pore size scales approximately like Π1/2 (as in the standard Carmen-

Kozeny formula). Equation (4.39) is self-consistently satisfied in the scaling a ∼
R
−1/3
m D1/3 but not in the scaling a ∼ R−1

m (although Wells et al. (2013) found that
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the numerical prefactor was sufficiently small that the approximation is valid).

Furthermore, we can determine the scaling for a typical pore Reynolds number

Rep ∼ RmD1/2σ−1, (4.40)

where σ is the Prandtl number. These observations highlight the danger in in-

vestigating the behaviour of these equations at high Rm without ensuring that

RmD1/2 is small. Nevertheless these comments only apply to the chimney width,

the rest of the calculations are (to leading order) independent of D and so are

much more robust.

Figure 4.9a, c shows that hc and Lc depend approximately linearly on Ω. This

means the aspect ratio of the convecting cell L/h0 ∼ θ
1/2
∞ , and suggests that the

convecting cell has aspect ratio of order unity under the maximum-flux criterion.

Order unity aspect ratios are often observed in experiments (see figure 4.3 for

example).

4.6 Extension of the model to three dimensions

Mushy layers usually form in non-planar geometries, including in sea ice, so it is

important to consider potential three-dimensional effects. The whole dynamics

of the planar solution are driven by the structure of the active region near the

chimney. This suggests that we can reasonably generalize to a three-dimensional

mushy layer with distributed chimneys by finding an axisymmetric solution near

the chimney and then patching onto an arbitrary passive region. The generalized

CAP model is shown in figure 4.10.

In section 4.6.1, we consider an entirely axisymmetric problem in a domain

bounded by an outer cylinder of radius R, directly extending the CAP model de-

veloped in section 4.3 for a planar geometry. Then in section 4.6.2, we investigate

whether and how this can applied to a non-axisymmetric drainage area. Finally,

in section 4.6.3, we present results in the axisymmetric geometry.
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Figure 4.10: Drainage cells (Voronoi cells) in a three-dimensional section of mush,
showing the chimneys (black), an active zone (dark grey) and a passive zone (light
grey).

4.6.1 Axisymmetric chimney, active and passive zones

The axisymmetric versions of the heat conservation (4.2) and the vorticity equa-

tions (4.5) are

Ω(−ψzθr + ψrθz) = (rθr)r + rθzz, (ψr/r)r + ψzz/r = −Rmθr, (4.41a, b)

where in this section ψ denotes the Stokes streamfunction such that

u = (−ψz/r)er + (ψr/r)ez, (4.42)

where r denotes the radial coordinate from the centre of the chimney. The axisym-

metric counterparts to the conditions of marginal equilibrium, heat conservation

and mass conservation at the chimney boundary (4.7) are expressed by

ψrθz = ψzθr, θr =
ψθz
r
, ψ =

a4

16D

(
ψr
r

+Rm(θ − C)

)
+
a2

2

ψr
r

(r = a).

(4.43a, b, c)

To determine a scaled solution for the active region near the chimney, we
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introduce the scalings

ψ = z
1

Ω
Ψ(η), θ =

z

h0

Θ(η), η = r

(
RmΩ

h0

)1/2

, (4.44)

where h0 is the constant depth of the mushy layer in the passive region. This

depth is determined by a balance of the heat fluxes across the thermal boundary

layer in the liquid melt, as in the planar geometry, and satisfies

h0 = (θ∞Rmwe)
−1 , where we = −Ψ′(δ)/δ (4.45)

is the negative vertical velocity into the passive region. Substituting the scaled

variables into the governing equations (4.41), we obtain

−ΨΘ′ + Ψ′Θ = (ηΘ′)′, (Ψ′/η)
′
= −Θ′. (4.46a, b)

We employ the same techniques as in the planar geometry to show that C =

(z/2h0)Θ(α). The boundary conditions at the chimney wall (4.43) then become

Ψ′Θ = ΨΘ′, Θ′ =
ΨΘ

ηΩ
, Ψ =

α4

16EΩwe

(
Ψ′

η
+

Θ

2

)
+
α2

2

Ψ′

η
(η = α),

(4.47a, b, c)

where α ≡ a (RmΩ/h0)1/2. The solution of the active region only depends on the

dimensionless groups Ω and E, where

E = R2
mDθ∞. (4.48)

Note that, unlike in the planar geometry, the limit D → 0 can no longer be

taken nonsingularly because of the geometric constriction of the flow discussed

in section 4.6.3. Therefore we retain (4.47c) and use this additional boundary

condition to determine the free boundary α.

The passive region is analogous to that in the planar geometry. We apply

the conditions u · n = n · ∇θ = 0 at an outer cylinder r = R and assume

a linear thermal field θ = z/h0. Then by the vorticity equation (4.41b) the

Stokes streamfunction that corresponds to horizontally uniform vertical velocity
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is ψ ∝ z(R2 − r2).

We apply the same four physical conditions as in the planar case to derive

patching conditions at radius r = rδ. The thermal patching conditions are

Θ(δ) = 1, Θ′(δ) = 0, (4.49a, b)

where δ = rδ (RmΩ/h0)1/2. Then continuity of normal mass flux, which is equiv-

alent to [ψz/r] = 0, implies that the Stokes streamfunction in the passive region

is

ψ = z
1

Ω
Ψ(δ)

R2 − r2

R2 − r2
δ

rδ ≤ r ≤ R. (4.50)

Finally, continuity of pressure, which can be shown to be equivalent to [ψr/r] = 0,

implies that

R2 = R−2
m θ−1
∞ Ω−1w−1

e

(
δ2 − 2δΨ(δ)/Ψ′(δ)

)
. (4.51)

4.6.2 An approximate solution in an arbitrary geometry

Consider an axisymmetric active region of radius rδ inside a general passive region.

The pressure field that drives the flow in the active region corresponding to the

scaled solution determined above is

p =
1

ΩRm

∫ η

δ

Ψ(η′)

η′
dη′ − z2

2h0

(
Ψ′(δ)

δ
+ 1

)
. (4.52)

In the passive region, we assume a linear temperature profile θ = z/h0 and

then solve Darcy’s law (3.18) for the flow. Taking the divergence of Darcy’s law,

we find

∇2p = −θz ≡ −1/h0, (4.53)

where the right-hand side is constant. We seek a separable solution p = m(x, y)+

n(z). Let n′′(z) = n0, ∇2m(x, y) = −m0, where m0 and n0 are constants satisfy-

ing m0 = n0 + 1/h0. Note that n = (z2/2)n0, such that w = 0 at z = 0.

To patch the solutions, we impose [p] = 0 and [u · n] = 0 on x2 + y2 = r2
δ .
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Firstly, [p] = 0 implies that m = 0 on x2 + y2 = r2
δ and

n0 = − 1

h0

(
Ψ′(δ)

δ
+ 1

)
, m0 = − 1

h0

(
Ψ′(δ)

δ

)
. (4.54a, b)

Secondly, [u · n] = 0⇒ [∂p/∂r] = 0. Therefore

∂m

∂r

∣∣∣∣
x2+y2=r2δ

= (RmΩh0)−1/2 Ψ(δ)

δ
. (4.55)

Integrating ∇2m(x, y) = −m0 over the passive region using the divergence theo-

rem, and applying the boundary condition u ·n = 0⇒ ∂m/∂n = 0 on the outer

boundary, we find 〈
∂m

∂r

∣∣∣∣
x2+y2=r2δ

〉
(2πrδ) = m0Ap, (4.56)

where 〈·〉 denotes the azimuthal average and Ap is the area of of the passive

region. We substitute equation (4.56) into (4.55) to obtain the final patching

condition. Note that if the passive region is axisymmetric then Ap = π(R2 − r2
δ)

and we recover the patching condition (4.51) obtained previously.

In non-axisymmetric geometries, we can determine the extent of azimuthal

variation by finding m(x, y) numerically using a finite-element method (we use

the MATLAB PDE Toolbox). Two examples presented in figure 4.11 – square

and hexagonal arrays of chimneys with the same total area drained – illustrate

the main results. Generically, there is greater azimuthal variation for a square

array than a hexagonal array, in which case the variation is usually minimal.

In conclusion, we can approximate a drainage cell of total area A by an ax-

isymmetric region with outer cylinder radius R satisfying

R =

(
A

π

)1/2

. (4.57)

All the patching conditions are satisfied exactly, except [u ·n] = 0 which is satis-

fied only in an azimuthally averaged sense, such that mass is conserved globally.
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Figure 4.11: Example of the effect of the geometry of the chimney arrangement.
(a) Computed radial inflow |u · er| for a square (– –) and hexagonal (—–) array
of chimneys as a function of azimuthal angle φ in comparison to an axisymmetric
passive region (the solid horizontal line). Corresponding contours of |∇m(x, y)|
in the passive region as shown in (b) for hexagonal and (c) for square arrays. In
this example, Rm = 20, Ω = 4/3, D = 10−4 and θ∞ = 1.4, with outer cylinder
radius R = 0.746, which maximizes the solute flux through the chimney. For
these parameters, the azimuthal variation is about 40% for the square array, and
10% for the hexagonal.

4.6.3 Results of the model in the axisymmetric geometry

Having shown that a general drainage cell can be modelled using an axisymmetric

cell of the same area, we repeat the analysis of section 4.3.4 in axisymmetry to

find the fluxes

FSolute = −Rmγ, (4.58)

FHeat = −2θ∞Rmγ, (4.59)

where the multiplying factor,

γ =
Ψ(α)

Θ(α)

[
δ2 − 2δΨ(δ)/Ψ′(δ)

]−1
(4.60)

can be found by solving the scaled equations for the active region. The size of

the active region δ depends on the external parameters, through the radius of the

outer cylinder R, under equation (4.51).

We assume that the drainage area takes the value that maximizes the solute

flux (section 4.5). As in the planar case, we can satisfy this criterion by finding
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Figure 4.12: Behaviour of the proportionality constant γc(E,Ω) in equations
(4.61, 4.62). (a) Equally spaced contours of γc; note that they are approximately
parallel to the E-axis at large E indicating that the γc depends principally on Ω
in this region. (b) The dependence on Ω at three distinct values of E.

solutions for the active region that satisfy ∂γ/∂δ = 0. In section 4.6.1, we proved

that the equations governing the active region depend on only two dimensionless

groups: Ω and E = R2
mDθ∞. Therefore, under the maximum-flux criterion,

FSolute = −Rmγc(Ω, E), (4.61)

FHeat = −2θ∞Rmγc(Ω, E). (4.62)

Figure 4.12 shows the behaviour of the proportionality function γc(E,Ω) in these

equations, and can be used to derive and interpret the relationships between

solute flux and Rayleigh number developed in section 4.6.4.

However, it is important first to note that in axisymmetry there are additional

geometric factors that complicate the dependence of flux on drainage area. In

particular, mass conservation ∇·u = 0 means that in the axisymmetric geometry,

unlike the planar geometry, the flow is constricted as r → a+.

Flow constriction gives rise to two distinct modes of convection at certain

parameter values. Mode I (figure 4.13a) has a relatively small drainage area and

weaker flow. Mode II (figure 4.13b) has a relatively large drainage area which

supports a bigger temperature contrast and hence greater flow rates but similar

solute fluxes per unit area drained. As Rm increases, the strength of convection
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increases, which leads to geometric constriction becoming more significant. This

inhibits mode II relative to mode I (figure 4.13c, e). This complicating detail

has a minimal effect on the solute flux (figure 4.13d). Under the maximum-flux

criterion, there is a transition to a greater number of relatively weak chimneys

as Rm increases (a transition to mode I at high Rm). This fact, as well as the

observation that a much greater fraction of the volume flux occurs through the

chimney in mode I, consistent with the formulation of the CAP model, leads

us to expect that mode I will occur generically. Therefore, a hexagonal array of

chimneys would have the form shown in figure 4.14, which is similar in appearance

to the photograph of ammonium chloride solidifying in a rectangular tank by

Huppert (1990), his figure 19c).

4.6.4 Relationships between solute flux and Rayleigh num-

ber

In axisymmetry, we find nonlinear relationships between solute flux and Rayleigh

number, as shown in figure 4.15. The precise form of these relationships depends

significantly on Ω, and somewhat more weakly on D and θ∞. The departure from

linearity arises from the different behaviour near the chimney, especially in terms

of the geometric constriction of the flow discussed previously.

We firstly consider the dependence on the Darcy number D and far-field tem-

perature of the melt θ∞. These parameters only appear multiplied together in

the group E = R2
mDθ∞, so we need only consider the product Dθ∞.

In the planar geometry D and θ∞ did not affect the maximum solute flux at

all. However, they do affect the chimney radius, which in axisymmetry controls

the significance of geometric constriction, and hence they affect the solute flux

(see equation 4.47c).

Nevertheless, the slopes of the curves in figure 4.15b are approximately the

same across a wide range of Dθ∞ (we observe that this statement holds better at

higher Ω, so figure 4.15b represents the ‘worst-case scenario’ Ω = 1). Therefore, in

some circumstances it is appropriate to seek an approximate relationship between

flux and Rayleigh number that is independent of both D and θ∞, a further major

parametric simplification, as we now do.
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Figure 4.13: (a, b) The two modes of convection (I, II) for parameters Rm = 16,
θ∞ = 1.4, D = 1×10−4 and Ω = 1. Isotherms (dashed white curves), streamlines
of Darcy velocity (solid white curves) and the chimney radii at r = a are shown.
(c) Solute flux against drainage cell radius R and the change in which local
maximum (mode) has the greater flux as we increase Rm from 14 to 17; the
dashed curves are lower branches of solutions, analogous to those in figure 4.6.
The transition between modes is shown in (d, e) with open circles indicating
the value of Rm where is there is no longer a local maximum in solute flux
corresponding to the mode. (d) The maximum value of solute flux and (e) the
drainage cell radius R = Rc at which the flux is maximized. At higher values of
Ω, the transition is rapid, but no longer discontinuous in Rc.
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Figure 4.14: A hexagonal array of chimneys corresponding to mode I in figure
4.13. The thin white dashed curves are isotherms while thicker vertical white
regions are chimneys.

We secondly consider the dependence on Ω. Both the degree of nonlinearity

and the gradient of the slope of the graph of flux against Rayleigh number depend

significantly on the value of Ω, as shown in figure 4.15a. For low Rm, the flux does

not depend strongly on Ω because to some extent the weaker convection caused by

increasing Ω (as found in the planar case) is compensated by the lesser importance

of geometrical constriction. However, at high Rm, when the smaller, weaker

chimney mode of convection dominates, the solute flux is considerably lower at

higher values of Ω. Indeed, at high Rm we can approximate the relationship

between flux and Rayleigh number by a linear flux law

FSolute = Rmγ̃c(Ω)− c, where c is constant. (4.63)

The gradient γ̃c(Ω) decreases with Ω, as shown by considering any of the curves

in figure 4.12b.

4.7 Concluding discussion and applications

Convection in a mushy layer can be modelled simply using a series of approxima-

tions that capture the underlying physics while reducing a two-dimensional prob-

lem (either planar or axisymmetric) to solving ordinary differential equations. In

planar geometry, we deduced analytically that the solute and heat fluxes through
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Figure 4.15: Relationships between solute flux and Rayleigh number in axisym-
metry. (a) The relationships at different values of Ω for fixed Dθ∞ = 1.4× 10−4.
These become approximately linear at high Rm. In (b) we use different values
of Dθ∞ but fixed Ω = 1. The solid parts of the curves correspond to mode I
behaviour, and the dashed parts to mode II behaviour.

the chimney are proportional to the mush Rayleigh number, with the propor-

tionality depending on only one parameter. In axisymmetric geometry, we found

that this proportionality function depended on two dimensionless groups Ω and

E = R2
mDθ∞. This gave rise to the possibility of nonlinear relationships between

the solute flux and the mush Rayleigh number Rm.

At a foundational level, nonlinearity arises from the presence of an additional

length scale. The planar problem has only one length scale, the thermal length

scale κ/V , and so on dimensional grounds the solute flux must be proportional to

the Rayleigh number at high Rayleigh number. By contrast, in the axisymmetric

problem geometrical constriction that occurs over a length scale that depends

on the chimney radius introduces an additional length scale. Non-dimensionally,

this means that the solute flux can depend on the Darcy number in axisymmetry,

in which case there is a nonlinear relationship between solute flux and Rayleigh

number.

Nevertheless, for large Rm and only moderate variation in Dθ∞, this non-

linearity is weak, particularly at the moderately large values of Ω relevant to

sea-ice formation. Furthermore we showed that the fully three-dimensional prob-

lem can be approximated well by an axisymmetric region of the same drainage
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area. Therefore we propose the dimensional approximations

FSolute ∼ −V (C0 − CE)Rmγc(Ω), (4.64)

FHeat ∼ −2ρcpV (T∞ − T0)Rmγc(Ω), (4.65)

in which the following non-dimensional parameters of the system appear

Rm =
β(C0 − CE)gΠ0

νV
, Ω = 1 +

L

(CS − CE)Γcp
.

The flux law (4.64) simplifies the parametric dependence of the solute flux caused

by convection in a mushy layer. Solute flux depends quadratically on driving con-

centration difference (C0−CE) and linearly on permeability Π0. It is independent

of both the solidification rate V and the thermal diffusivity κ, which together set

the overall thermal length scale κ/V .

Our modelling approach provides additional evidence of the robustness of the

linear solute flux law in planar geometry, which was first proposed by Wells et al.

(2010) on the basis of numerical work over a range of values of Rm and C, holding

θ∞ and S constant (note that Ω = 1 + S/C). In particular, we were able to find

this law (at least for high Rm) across a broader range of parameter values.

Crucially, we were able to extend this approach into axisymmetry. The pos-

sibility of nonlinearity does suggest that caution should be used in applying the

planar flux law to three-dimensional problems, and suggests that variation in

Dθ∞ should be moderate in order to do so.

It is also interesting to note that, for both geometries, we reproduce the ratio

of solute flux to heat flux found by the scaling analysis of Worster (1991) and suc-

cessfully used to explain the evolution of the melt region in experiments (Worster,

1992a). That analysis left a factor in the flux laws undetermined, which did not

affect the ratio. However, we improve on that study by determining this factor

in terms of the non-dimensional parameters.

Furthermore, our approach demonstrates the need for a finite active region

where baroclinic torque occurs in order to drive the entire convective flow through

the chimneys. Our analytical approach also reveals the connection between

straight-sided chimneys and a linear temperature field, both ideas that we justify
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fully in the next chapter.

Although not capable of producing quantitative agreement with the direct nu-

merical simulations of Chung & Worster (2002) and Wells et al. (2010, 2013), for

reasons discussed earlier, our model does capture the same dynamics as numerical

simulations. This suggests that it could be used as the basis of a dynamically

informed parameterization of brine fluxes within and from sea ice. The types of

simplification used in our model are consistent with current models for sea ice.

These use a low vertical resolution (so a linear temperature profile is a reason-

able approximation when only the bottom several centimetres of sea ice actively

convect, as is typical) and also use an effective heat capacity, analogous to Ω.

Significantly, our model allows us to determine the vertical transport within

sea ice and hence also its bulk salinity, which evolves according to equation (3.7).

Along with temperature, bulk salinity is the main variable of interest to mod-

ellers. Our results for the vertical transport, which have the same structure in

both planar and axisymmetric geometry, could be applied to model the actively

convecting region at the bottom of sea ice in a one-dimensional fashion, thereby

accounting for the effects of convection semi-analytically. In particular, within

the passive region, where there is no horizontal variation, we find the dimensional

result

w = −V Rmwc ζ, (4.66)

where ζ, which equals z/h0 in our formulation, in general denotes the ratio of

the distance into the convecting region to the depth of that region, and the

appropriate interstitial concentration difference ∆C in the Rayleigh number is

that across the convecting layer only, an idea that we use to derive an effective

Rayleigh number in chapter 6. We then use this to parameterize the convective

transport of heat and salt in a one-dimensional model of sea ice in chapter 7.

Thus our simple model of convection in a mushy layer is applicable to developing

a model for sea ice in which its salt content and salt fluxes to the ocean are

determined dynamically.
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Chapter 5

Mathematical Insights into the

CAP Model

The content of this chapter has been published in the Journal of Fluid Mechanics

(Rees Jones & Worster, 2013a): a very condensed version of section 5.2 as an

appendix to the paper, and sections 5.3–5.5 as supplementary material.

This chapter explores some of the more mathematical aspects of the Chimney-

Active-Passive (CAP) model introduced in the previous chapter. It is not essential

to the main direction of the thesis, which we resume in the following chapter in

which we apply the CAP model to gravity drainage in sea ice, but nevertheless

yields helpful physical insights into convection in a mushy layer. We compare

porous medium (mushy layer) convection at a chimney with an unstable far-field

density profile to convection with a uniform far-field density (the simplest example

of which is convection at a heated plate). We show that important differences

arise from the unstable far-field density profile.

5.1 Introduction

The CAP model of convection in mushy layers (chapter 4) involves a chimney,

an active region and a passive region. Previous analytical scaling studies such

as Worster (1991) amounted to considering a chimney and active region without
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the connection to the passive region. These were unable to fully determine solute

fluxes from mushy layers. This raises the question as to why the CAP model is

able to do so.

In this chapter, we first consider why we need a finite, bounded domain (with

a passive region) by finding boundary-layer solutions to the mushy layer equations

in an infinite mush (section 5.2). This approach amounts to considering a model

that only has an unbounded active region. Conversely, we then consider the

finite boundary-value problem associated with a bounded active region (section

5.3 onwards). This allows us to explain why the active region is needed to sustain

convection. Together, this chapter uses mathematical insights into the CAP

model to explain further the physical mechanisms driving convection in a mushy

layer.

5.2 Boundary-layer solutions near a chimney

5.2.1 Scaling of the chimney width

In unpublished work by J. Ashmore & M. G. Worster, scaling relationships were

discovered between the shape of the vertical temperature variation in a mushy

layer and the width of a chimney as follows. Their work was performed in the

limit S � C which is equivalent to Ω = 1, since Ω = 1 + S/C. However, in the

following presentation we generalize to Ω > 1.

Consider an isolated chimney in a semi-infinite (both vertically and horizon-

tally) mushy layer. Look for a boundary-layer similarity solution of the heat

conservation (4.2) and vorticity (4.5) equations, appropriate to high Rayleigh

number, with far-field conditions

θ → czb, ψx → 0 (x→∞). (5.1a, b)

In the boundary layer, the dominant balances in equations (4.2) and (4.5) become

Ω(−ψzθx + ψxθz) ∼ θxx, ψxx ∼ −Rmθx. (5.2a, b)
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This is analogous to our active region. There are similarity scalings

ψ =

(
cRm

bΩ

)1/2

z(1+b)/2 Ψ(η), θ = czbΘ(η), (5.3)

where Ψ and Θ satisfy ordinary differential equations, and

η =
x

d(z)
, d(z) =

z(1−b)/2

(bcRmΩ)1/2
. (5.4)

We substitute the similarity solution into equation (4.17) to find that the

average concentration in the chimney is C ∼ czbΘ0(1 + b)/(1 + 3b). Recalling

equation (4.7c) for mass conservation, we substitute the similarity solution and

neglect the final term as asymptotically small in the limit D→ 0 to find

a ∼ D1/3

(cRmΩ)1/6
z(1−b)/6α(b), (5.5)

where

α(b) =

(
3Ψ0(1 + 3b)

b1/2 [(1 + 3b)Ψ′0 + 2bΘ0]

)1/3

. (5.6)

Therefore, a ∝ z(1−b)/6 and so straight-sided chimneys correspond precisely to

linear (b = 1) far-field temperature profiles. Note that equation (5.5) reduces to

equation (4.18) for the chimney width in the CAP model if b = 1 and c = 1/h0.

Now Ψ and Θ satisfy ordinary differential equations

−
(

1 + b

2b

)
ΨΘ′ + Ψ′Θ = Θ′′, Ψ′′ = −Θ′. (5.7a, b)

Furthermore, if D � 1, the chimneys are narrow and to leading order we can

apply the remaining boundary conditions (4.7a, b) at x = 0, as discussed in

chapter 4. In terms of the similarity variables these give

−
(

1 + b

2b

)
ΨΘ′ + Ψ′Θ = 0 ΩΘ′ = ΨΘ (η = 0). (5.8a, b)
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The far-field conditions (5.1a, b) give

Θ→ 1, Ψ′ → 0 (η →∞). (5.9a, b)

5.2.2 Solutions of the boundary-layer equations

The similarity (boundary layer) equations behave as follows. Equation (5.7b) can

be integrated directly, and far-field conditions (5.9a, b) applied, to give

Ψ′ = 1−Θ. (5.10)

This leads to a third-order equation for Ψ, from equation (5.7a),

Ψ′′′ +
1 + b

2b
ΨΨ′′ + Ψ′(1−Ψ′) = 0 (5.11)

subject to conditions, from equations (5.8a, b) and (5.9b),

(
1 + b

2b

)
ΨΨ′′ + Ψ′(1−Ψ′) = 0 (η = 0), (5.12a)

ΩΨ′′ + Ψ(1−Ψ′) = 0 (η = 0), (5.12b)

Ψ′ → 0 (η →∞). (5.12c)

These equations can be solved using a shooting method. The following solutions

extend the previous work of J. Ashmore and M. G. Worster in the important

respect of drawing out the continuous, rather than discrete, nature of the family

of solutions appropriate to the case of an infinite domain (rather than the large but

finite domain that they previously studied). These solutions can be characterized

in terms of Ψ′(0) as follows.

If Ψ′(0) > 1, then Ψ′(η) > 1 for all η so cannot satisfy the far-field condition

(5.12c). Indeed Ψ then tends to infinity in a number of possible ways depending

on b. The dominant balance for large Ψ in equation (5.11) is (1+b)ΨΨ′′ = 2b(Ψ′)2.

Integrating this once we find Ψ′Ψ−2b/(1+b) = A0, where A0 is constant. Then we
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obtain the following solutions

Ψ(η) ∼A1η
(1+b)/(1−b) (b < 1, η →∞),

Ψ(η) ∼A2e
A0η (b = 1, η →∞),

Ψ(η) ∼ (A4 − A3η)(1+b)/(1−b) (b > 1, η →∞),

where A1–A4 are constants. These solutions correspond, respectively, to algebraic

growth, exponential growth and finite blow-up.

There is a transition in behaviour at Ψ′(0) = 1. In this case Ψ′(η) = 1 for all

η, which also does not satisfy the far-field boundary condition.

If 1 > Ψ′(0) > 0 then Ψ′ → 0 and Ψ→ Ψ∞ as η →∞. Note that Ψ∞ depends

on Ψ′(0). There is a critical value Ψ′C(0), which depends on b and Ω, such that

this decay is monotonic and (asymptotically) exponential if Ψ′(0) ≥ Ψ′C(0) and

oscillatory if Ψ′(0) < Ψ′C(0). This critical value corresponds to Ψ∞ = 4b/(1 + b)

since at large η the dominant balance in (5.11) is

Ψ′′′ +
1 + b

2b
Ψ∞Ψ′′ + Ψ′ = 0, (5.13)

which has solutions emη where m = 0 or

2m = −
(

1 + b

2b
Ψ∞

)
±
√(

1 + b

2b
Ψ∞

)2

− 4. (5.14)

In the case of exponential decay, this negative root decays rapidly away and we

observe numerically that the positive root describes the asymptotic behaviour as

shown in figure 5.1. The critical value is a well-defined function of (b,Ω) and

is best found by shooting for the far-field value of Ψ. Numerically we find that

increasing b leads to increased damping and so a higher critical value. Conversely

Ω represents the heat capacity so increasing it reduces the strength of the flow

and so leads to a lower critical value. Both of these trends are shown in figure

5.2.

It is significant that the continuous spectrum of solutions has an unbounded
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range of Ψ∞. For example, when b = 1

Ψ∞ < 2 Ψ′(0) < Ψ′C(0), (5.15a)

Ψ∞ = 2 Ψ′(0) = Ψ′C(0), (5.15b)

Ψ∞ > 2 Ψ′(0) > Ψ′C(0). (5.15c)

Physically, this means that required mass flux Ψ∞ into the boundary layer is

unbounded. Later, in section 5.4.3, we contrast this with a bounded active re-

gion, in which case the required mass flux is bounded above by the critical value

Ψ∞ = 2.

5.2.3 Stability of the boundary-layer solutions

The boundary-layer equations admit a continuous family of solutions, so there is

not a unique solution to the boundary-value problem. However, it is possible that

the oscillatory solutions are unstable and so would not occur while the monotonic

solutions are stable (cf. the analogous pure fluid case, Lighthill, 1953). In order

to investigate this idea, we consider ‘structural’ perturbations (with a vertical

structure that can be considered within the boundary-layer framework) in the

example case b = 1. We introduce structural perturbations θ, ψ such that

θ = cz
[
Θ(η) + θ(η)eσt

]
, (5.16)

ψ = (cRm)
1
2 z
[
Ψ(η) + ψ(η)eσt

]
. (5.17)

Following the same analysis as for the base state, we can integrate one of the

resulting equations to find θ = −ψ′ and then the other equation becomes

(1− 2Ψ′ − σ̃)ψ′ + ψΨ′′ + ψ′′Ψ + ψ′′′ = 0, (5.18)

where we have rescaled σ̃ = σ/cRm. Boundary conditions are

(1− 2Ψ′ − σ̃)ψ′ + ψΨ′′ + ψ′′Ψ = 0 (η = 0) (5.19a)

Ωψ′′ + ψ(1−Ψ′)− ψ′Ψ = 0 (η = 0) (5.19b)

ψ′ → 0 (η →∞) (5.19c)
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By solving these equations numerically, we found that both oscillatory and

exponential base states are subject to structural instabilities. Other homogenous

equations with a parameter have a discrete spectrum of eigenfunctions and as-

sociated eigenvalues. However, for this problem, there is a continuous spectrum

of eigenfunctions. Indeed, there is an eigenfunction associated with any eigen-

value (growth rate) σ̃ < 1 for each base state. The instabilities, especially for

the oscillatory base states, have a very long range in the x-direction and appear

to be driven by the unstable density field in the far-field, and are therefore a

consequence of considering an isolated chimney in an infinite mushy layer. Fig-

ure 5.3 shows that both kinds of base state are susceptible to instability. These

boundary-layer solutions are all unstable to the particular structural perturba-

tions we considered, and they may be even more unstable to perturbations with

a more general vertical structure.

5.2.4 Conclusions

This boundary-layer analysis attractively draws out the connection between a

linear far-field temperature and a straight-sided chimney, which is an important

observation given that this is a widely observed feature of chimneys in labora-

tory experiments (see figure 4.3). Thus we can conclude that the straight-sided

chimneys in the CAP model are a consequence of imposing a vertically linear

temperature in the passive region. In the boundary-layer analysis, we can also

find the shape of the chimney with other power laws for the far-field temperature.

Figure 5.4 shows the case b = 1/2 for example, and illustrates the fact that the

chimney is typically almost straight-sided except near its base for a variety of

realistic temperature profiles, which is qualitatively similar to the shape found in

the numerical solutions of Chung & Worster (2002).

However, considering an isolated chimney in an infinite mushy layer introduces

a number of artefacts. The infinite horizontal extent means that the boundary-

layer equations possess an infinite family of solutions, all of which are unstable.

The CAP model uses a finite passive region to determine the solution completely.

It also seems likely that the finite domain also stabilizes the solutions. Some

evidence for this claim comes from the structural similarity between the CAP

90



5.2. BOUNDARY-LAYER SOLUTIONS NEAR A CHIMNEY

! "! #! $! %! &!
!!'%

!!'#

!

!'#

!'%

!'(

! "! #! $! %! &!
!"

!!'&

!

!'&

"

"'&

#

#'&

! "! #! $! %! &!
!!'&

!

!'&

"

"'&

#

#'&

0 10 20 30 40 50
0

5

10

15

20

Ψ

Ψ

Ψ′

Ψ′

Ψ′′

Ψ′′

η η

(σ̃ = 0.01)

ψ

ψ′

ψ′

ψ

(a)

(b)

(c)

(d)
(σ̃ = 0.01)

Figure 5.3: The perturbations with growth rate σ̃ = 0.01 (c, d) of the boundary-
layer solutions (a, b) at Ω = 1. Note that the instability occurs for both monotonic
(a, c) and oscillatory (b, d) base states, and also occurs for all Ω.
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Figure 5.4: A nonlinear far-field temperature b = 1/2 profile (a) gives rise to the
chimney width shown in (b). The sides remain very steep apart from near the
base. Their shape is qualitatively similar to the numerical results of Chung &
Worster (2002).
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model and the stable numerical results of Chung & Worster (2002), as discussed

in figure 4.5.

Furthermore, the continuous set of both oscillatory and monotonic boundary-

layer solutions is somewhat surprising given that the similar problem of a heated

wall with power-law temperature profile in a semi-infinite porous medium has

a unique monotonic solution, see Cheng & Minkowycz (1977) (their figure 2

with λ = 1 corresponds to a chimney with linearly increasing temperature) and

the wider review of Nield & Bejan (2006). This appears to be connected with

the unstable density in the far-field. We return to this issue in section 5.4.3

below, where we show the critical monotonic solution that divides monotonic

from oscillatory solutions in figure 5.10.

Therefore, by considering an active region around an isolated chimney, we

have demonstrated the need to consider an appropriately bounded active region

(or boundary layer) in a complete description of convection in a mushy layer.

5.3 The active region boundary-value problem

For the remainder of the chapter, we show that the CAP model needs an active

region by considering the boundary-value problem associated with it. We firstly

restate the boundary-value problem in the planar geometry (section 5.3.1) and

discuss the existence and uniqueness of solutions (section 5.3.2). The function

G(δ,Ω) (section 4.3.3) relates the width of the active region δ to the spacing

between chimneys L. We determine the asymptotic behaviour of G in various

limits (section 5.4) and reach the important conclusion that the active region

must have a finite width in order to sustain convection. In section 5.5, we consider

the limit Ω � 1 and prove the existence and uniqueness of a chimney spacing

that maximizes the solute flux. We also prove the asymptotic dependence on Ω

observed in the previous chapter.

5.3.1 Statement of problem

The solution for the active region (section 4.3.2) is governed by a fourth-order

system of ordinary differential equations, subject to four boundary conditions, on
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the domain [0, δ]. The governing equations are

Θ′′ = −ΨΘ′ + Ψ′Θ, Ψ′′ = −Θ′, (5.20a, b)

and the boundary conditions are

Ψ′0Θ0 = Ψ0Θ′0, Θ′0 = Ψ0Θ0/Ω, Θδ = 1, Θ′δ = 0 (5.21a, b, c, d)

where subscripts 0 and δ denote quantities evaluated at η = 0 and η = δ respec-

tively. The last two conditions are particular to the finite domain and correspond

physically to continuity of temperature and heat flux at the interface between

passive and active regions.

The width of the active region δ is determined as part of the solution both

in the case of fixed chimney half-spacing L, and in the case in which L takes the

value that maximizes the solute flux (the maximum-flux criterion introduced in

section 4.5).

Firstly, in the case of imposing the chimney spacing, the size of the active

region δ is determined through equation (4.23)

G(δ,Ω) = LRmθ
1/2
∞ , (5.22)

where

G(δ,Ω) = Ω−1/2(−Ψ′δ)
−1/2 (δ −Ψδ/Ψ

′
δ) , (5.23)

which we can evaluate having solved the boundary-value problem (5.20, 5.21).

Secondly, in the case of imposing the maximum-flux criterion, we look for

turning points which correspond to flux-maximising chimney spacings,

∂γ

∂δ
= 0, (5.24)

where γ is proportional to the solute flux through the chimney by equation (4.26)

FSolute = −Rmγ(δ,Ω). (5.25)
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and satisfies

γ(δ,Ω) =
1

2

Ψ0

Θ0

(δ −Ψδ/Ψ
′
δ)
−1
. (5.26)

5.3.2 Existence and uniqueness of solutions

We first investigate the existence and uniqueness of solutions to the boundary-

value problem as follows. Given Ψ0 and Θ0, we can combine (5.21a, b) to find

Ψ′0 and Θ′0. Thus we have an initial-value problem that we can solve on any

domain [0, δ], assuming the solution does not have a singularity at a finite value

of η. In this section, we restrict attention to Ψ0 > 0 (which corresponds to flow

into a chimney) and Θ0 in the range [0, 1] (which ensures that the depth of the

mushy layer increases near the chimney). However, the initial-value problem is

well posed for a wider class of initial conditions.

A solution of the full boundary-value problem must satisfy the remaining

boundary conditions (5.21c, d). Therefore, we solve the initial-value problem

introduced above to a high accuracy using the MATLAB ‘ode113’ routine, with

relative and absolute error tolerances of 1×10−12 and 1×10−15 respectively. Then

we use the MATLAB ‘isosurfaces’ routine to plot surfaces Θδ = 1, Θ′δ = 0 (the

required boundary conditions) as functions of Ψ0, Θ0 and δ. An example of this

is shown in figure 5.5, and the solutions are the intersection curves highlighted.

An alternative representation of these solutions can be obtained by taking slices

through figure 5.5 at fixed values of δ. This corresponds to making contour plots,

as shown in figure 5.6, and the solutions are the intersections of the contours

Θδ = 1 and Θ′δ = 0.

The solution branches can be categorized by the number of turning points of

Ψ. The first branch (counting from the right of figure 5.5, that is going from low

to high δ) has one turning point and each subsequent branch has an additional

turning point. This feature corresponds to the fact that Ψ′ = 0⇔ Θ′′ = 0 (from

equation 5.20a). Physically, the number of turning points corresponds to the

number of convecting cells within the active region. We have continued to higher

values of δ and this pattern continues.

The first branch has a negative value of Ψ′δ and thereafter the sign of Ψ′δ
alternates. Thus the ‘even’ branches correspond to flow from the active to the
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δ

Ψ0

Θ0

Θδ = 1
Θ′

δ = 0

Figure 5.5: Surfaces Θδ = 1 and Θ′δ = 0 calculated in the case Ω = 1. The
intersection curves, highlighted with dashed yellow lines, correspond to branches
of solutions.

passive region, and therefore correspond to flow that is from the mushy layer

into the liquid melt in the passive region. This is inconsistent with the boundary

conditions at the mush–liquid interface (equation 4.12) and so is not a valid

solution of the entire CAP model. Thus G(δ,Ω) is defined in (5.23) only for

Ψ′δ < 0. The other ‘odd’ branches (the third, fifth, and so on) are in principle

permissible. However, they are not consistent with the overall CAP model in that

the downwelling in the passive region was assumed to set the vertical velocity

scale away from the chimney. Furthermore, these higher branches correspond to

substantially lower-flux solutions of the full problem (as proved in the case Ω� 1

in section 5.5 below). Therefore, motivated by the maximum-flux criterion in

section 4.5 of the previous chapter, we restrict attention to the first branch.

The first branch of solutions starts at Ψ0 = 0, Θ0 = 1, δ = π/2, and there are

no solutions below δ = π/2. This interesting cut-off at δ = π/2 occurs because

the solutions are damped, nonlinear waves of frequency ω that is approximately

equal to the average value of Θ1/2. But Θ < 1, so ω < 1. The first branch

corresponds to ωδ = π/2 (one quarter wavelength), so δ > π/2. This argument

will be formalized in an asymptotic approximation below (section 5.4.2).
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to the three branches in figure 5.5. Note that the third branch changes rapidly as a
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96



5.4. ASYMPTOTIC BEHAVIOUR OF G(δ,Ω)

5.4 Asymptotic behaviour of G(δ,Ω)

5.4.1 Introduction

In this section, we investigate the function G(δ,Ω), which is proportional to the

chimney spacing, in order to gain insight into the relationship between solute

flux and chimney spacing. We consider two asymptotic limits for the width of

the active region δ. We consider firstly the case δ is just above the lower cut-

off at π/2, and secondly the behaviour at high values of δ. These limits can be

considered in the context of fixed chimney spacing, which corresponds to imposing

the value of G(δ,Ω). Note that the asymptotic limits considered in this section

do not correspond to the maximum solute flux.

5.4.2 Solution for δ = π/2 + ε where ε� 1

There is an exact trivial solution of the boundary-value problem (5.20, 5.21) for

all values of δ (namely Θ ≡ 1, Ψ ≡ 0), although G is not well defined for this

trivial solution, which corresponds to a stagnant mushy layer.

For δ > π/2 there is a non-trivial solution. We compute its behaviour asymp-

totically at δ = π/2 + ε, where ε� 1, by finding an expansion of the solution in

powers of ε. Let

Θ = 1 + εg1 + ε2g2 +O(ε3), (5.27)

Ψ = 0 + εf1 + ε2f2 +O(ε3). (5.28)

We substitute these equations into the governing equations and boundary condi-

tions and collect terms in powers of ε.

At O(ε), from (5.20) the differential equations are

g′′1 = f ′1, f ′′1 = −g′1, (5.29a, b)

and from (5.21) the boundary conditions are

f ′1 = 0, Ωg′1 = f1 (η = 0), g1 = 0, g′1 = 0 (η = π/2), (5.30a, b, c, d)
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where, for example, we have used

1 = Θ(δ) = Θ(π/2 + ε) = Θ(π/2) + εΘ′(π/2) +
ε2

2
Θ′′(π/2) +O(ε3)

=
[
1 + εg1 + ε2g2 + ε(εg′1) +O(ε3)

]
η=π/2

to obtain equation (5.30c, d).

At O(ε2), from (5.20) the differential equations are

g′′2 = −f1g
′
1 + f ′1g1 + f ′2, f ′′2 = −g′2, (5.31a, b)

and from (5.21) the boundary conditions are

f ′2 + f ′1g1 − f1g
′
1 = 0, Ωg′2 = f1g1 + f2 (η = 0),

g2 + g′1 = 0, g′2 + g′′1 = 0 (η = π/2). (5.32a, b, c, d)

The first-order equations are those of an unforced harmonic oscillator of fre-

quency 1, which, to leading order, is the average value of Θ1/2, as discussed in

section 5.3.2. We combine (5.29a, b) and solve subject to boundary conditions

(5.30) – one of which is redundant because of the nature of the coupling – to find

f1 = A(Ω− 1 + cos η), (5.33)

g1 = −A(1− sin η), (5.34)

where A is an unknown constant that must be determined by solving the second-

order problem.

The second-order equations have the character of an oscillator of frequency 1

that is resonantly forced by the first-order solution. This is evident upon elimi-

nating g2 between (5.31a, b) and substituting equations (5.33, 5.34) to obtain

f ′′′2 + f ′2 = A2[1 + (Ω− 1) cos η − sin η]. (5.35)
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We solve (5.31a, b) subject to (5.32a, b, c) to obtain

f2 = −B cos η +
A2

2
[(Ω− 1)(3 sin η − η cos η) + cos η + η sin η + 2η] + C,

(5.36)

g2 = −f ′2 +D, (5.37)

where

C = (Ω− 1)(−B + A2/2) D = B + A2 [π(Ω− 1)/4 + 1] ,

and B is another constant that could, in principle, be determined by proceeding

to the next order. Finally, we apply (5.30d) to find that

A2

[
1

2
(Ω− 1) +

π

4

]
− A = 0,

so either A = 0, in which case the leading-order solution is trivial, or

A =

[
1

2
(Ω− 1) +

π

4

]−1

. (5.38)

Therefore, having fully determined the asymptotic solution to first order, we

obtain

G(δ,Ω) = 2Ω−1/2A−3/2ε−1/2 +O(ε1/2),

= 2Ω−1/2

[
1

2
(Ω− 1) +

π

4

]3/2

ε−1/2 +O(ε1/2). (5.39)

In the special case Ω = 1, this simplifies to

G(δ, 1) =
π3/2

4
ε−1/2 +O(ε1/2). (5.40)

Furthermore, we find the asymptotic behaviour of γ(δ,Ω):

γ(δ,Ω) =
1

4
ΩA2ε+O(ε2) =

1

4
Ω

[
1

2
(Ω− 1) +

π

4

]−2

ε+O(ε2), (5.41)
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Figure 5.7: (a) is a log–log plot showing G(δ,Ω) at Ω = 1 (squares) and Ω = 2
(diamonds). The asymptotic predictions (solid lines) from equation (5.39) match
extremely well. Likewise (b) is a log–log plot showing γ(δ,Ω) at the same values
of Ω. Again, the asymptotic predictions (solid lines) from equation (5.41) match
extremely well.

which simplifies in the case Ω = 1 to

γ(δ, 1) = 4π−2ε+O(ε2). (5.42)

These predictions match numerical results extremely well, as shown in figure 5.7.

These values of δ correspond to the lower branch of the relationship between

flux and Rayleigh number (see the dashed portion of the curves in figures 4.5 and

4.6 in the previous chapter), so we find that at fixed chimney spacing L, FSolute

varies with the inverse square of L. In particular, since FSolute = −Rmγ(δ,Ω) and

L = R−1
m θ

−1/2
∞ G(δ,Ω), we find

FSolute = − [ARmθ∞]−1 L−2 = − [Rmθ∞]−1

[
1

2
(Ω− 1) +

π

4

]
L−2. (5.43)

Perhaps most importantly, this section formalizes the argument that the min-

imum size of the active region required to sustain convection is δ = π/2 (inde-

pendently of Ω). This demonstrates the important physical insight that there

must be a finitely wide active region, where baroclinic torque occurs, in order to

drive convection through chimneys. It is not the case that the buoyancy causes

motion in the chimney and then the rest of the mushy layer responds essentially
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passively.

5.4.3 Solution for δ � 1

Integrating equation (5.20b), we find

Θ = −Ψ′ + c, (5.44)

where c = Θδ + Ψ′δ = 1 + Ψ′δ. We find numerically that Ψ′δ → 0 exponentially,

so for now we consider this as an ansatz. If this ansatz holds, then c → 1

exponentially. Note that c is also equal to Θ0 + Ψ′0, so with boundary conditions

(5.21a, b)

Θ0 ∼ 1−Ψ2
0/Ω. (5.45)

If we substitute equation (5.44) back into (5.20a), then we find

Ψ′′′ + ΨΨ′′ + Ψ′(c−Ψ′) = 0. (5.46)

Consistently with the exponential decay of Ψ′δ, this equation can be approximated

at large η by

Ψ′′′ + ΨδΨ
′′ + Ψ′ = 0, (5.47)

which we can solve by positing the solution Ψ′ = emη. This implies

m2 +mΨδ + 1 = 0⇒ m = −Ψδ

2
± i

√
1−

(
Ψδ

2

)2

. (5.48)

Let ω =
√

1− (Ψδ/2)2. Then

Ψ′ = e−ηΨδ/2(A cosωη +B sinωη). (5.49)

From figure 5.5, we observe that the first branch has precisely one turning

point Ψ′ = 0. This is consistent with ω → 0, or equivalently Ψ→ 2 from below.

Numerically, we observe that this is an algebraic process. Then equation (5.49)

shows that our assumptions are self-consistent and Ψ′δ ∼ −e−δ+δ0 , for some con-

stant δ0.
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I have integrated the equations numerically to a high accuracy and find that

the scalings postulated on the basis of analytical arguments hold very well. I find

that Ψδ approaches 2 from below in an inversely quadratic fashion.

Indeed, the limit of large δ in the CAP model recovers the boundary-layer

analysis in section 5.2.1. However, rather than the continuous set of monotonic

and oscillatory solutions that we found in that case, each branch of solutions in

the CAP model corresponds to an oscillatory solution and there are no monotonic

solutions. Furthermore, while there is still a (discrete) family of solutions at any

fixed value of δ, as we let δ → ∞ along any branch, the solutions all approach

the critical (marginal) monotonic solution identified in section 5.2.2, as shown

in figure 5.8. Thus, Ψδ → 2− corresponds to the critical Ψ∞ = 2 (given that

b = 1 in the CAP model). Therefore, the mass flux Ψδ is bounded above in the

CAP model (whereas the monotonic boundary-layer solutions had an unbounded

Ψ∞). We find ΨC(0) = 0.8216, Ψ′C(0) = 0.6750 and ΘC(0) = 0.3250 when Ω = 1.

Figure 5.9 shows our numerical results.

Returning to the multiplicity of solutions in the boundary-layer analysis, the

CAP model has the attractive feature of selecting the critical monotonic solution

of the boundary-layer equations that separates the region of oscillatory solutions

from that of monotonic solutions. We show this critical solution in figure 5.10.

It has a similar structure to the boundary-layer solution for a heated plate in

a semi-infinite porous medium (Cheng & Minkowycz, 1977), with some minor

differences associated with the different boundary conditions at a chimney.

5.4.4 Solute fluxes for δ � 1

We now fix Ω and use ‘∼’ to include a proportionality constant that depends on

Ω. Asymptotically as δ →∞

G(δ) ∼ e3δ/2, (5.50)

γ(δ) ∼ e−δ. (5.51)

High values of δ correspond to the upper branch of the relationship between flux

and Rayleigh number (see the solid curves in figures 4.6 and 4.7 in the previous
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Figure 5.8: The strength of the horizontal flow Ψδ on the first four branches of
solutions. The solid blue curves correspond to the odd branches (that have an odd
number of turning points of the vertical velocity, see section 5.3.2) and the dashed
curves correspond to the even branches. The open circles denote a cut-off where
Θ0 = 1, although it is possible to extend the branches slightly if the condition
Θ0 ≤ 1 is relaxed. Note that all the branches tend to the critical Ψ∞ = 2,
although there are more branches (not shown) at any finite δ. Throughout Ω = 1.
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Figure 5.9: (a) is a log–linear plot showing (i) the exponential decay of −Ψ′δ.
The best-fit line is Ψ′δ = − exp(−1.013δ+ 0.05746). (b) is a log–log plot showing
the algebraic behaviour of (ii) 2−Ψδ, (iii) (Ψ0)c −Ψ0 and (iv) Θ0 − (Θ0)c. The
best-fit lines are (ii) Ψδ = 2 − 12.11 × δ−2.053, (iii) Θ0 = (Θ0)c + 1.453 × δ−2.082

and (iv) Ψ0 = (Ψ0)c − 0.9013× δ−2.088. Throughout Ω = 1.
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Figure 5.10: The critical solution of the active-region problem for large δ. (a)
temperature Θ, related to the vertical velocity by Ψ′ = 1 − Θ. (b) horizontal
velocity Ψ, which tends to 2. Throughout Ω = 1.

chapter). Now L = R−1
m θ

−1/2
∞ G(δ,Ω) so at fixed L, high values of Rm correspond

to high values of δ. So Rm � 1 corresponds to δ � 1 and so at high Rayleigh

number

L ∼ R−1
m θ−1/2
∞ e3δ/2, (5.52)

which implies that

FSolute ∼ −R1/3
m θ−1/3

∞ L−2/3, (5.53)

since FSolute = −Rmγ(δ,Ω) ∼ −Rme−δ. Therefore, at fixed chimney spacing, flux

scales with the cube root of Rayleigh number, and at fixed Rayleigh number,

flux scales with chimney spacing to −2/3 power. Therefore, at large chimney

spacing, the solute flux decreases with L−2/3. To our knowledge, this result has

not been observed before, which may be because having one convecting cell in a

large region between two chimneys is unstable to the formation of new convecting

cells and new chimneys (see previous section).

These asymptotic limits of large and small δ elucidate a number of important

features of the CAP model. However, numerical calculations of G for intermediate

values of δ (figures 4.7 and 5.11) additionally show that there is a global minimum

value of G, corresponding to the minimum spacing between chimneys, and that

γ is a bounded, positive function on π/2 < δ < ∞. Let δm be defined by

∂G/∂δ(δm,Ω) = 0, and let Gmin. be the minimum value of G, as marked in figure

104



5.5. ASYMPTOTIC SOLUTION IN THE LIMIT Ω→∞

1.5 2 2.5 3
3

10

20

30

40

50

δ

G(δ, 1)

δ = π/2

(δm, Gmin.)

Figure 5.11: Adaptation of figure 4.7a from the previous chapter, showing
G(δ,Ω = 1), which is proportional to the chimney spacing. The global minimum
corresponds to the minimum chimney spacing required to sustain convection. The
asymptotic results derived in this chapter for δ → π/2 (dashed red curve) follow
the numerical results (solid blue curve) very well. However, the δ � 1 results (not
shown) only apply for much higher values of δ (see figure 5.9). The quantities δm
and Gmin. discussed in the main text are labelled.

5.11. Then the minimum chimney spacing is

Lmin. = R−1
m θ−1/2
∞ Gmin.(Ω). (5.54)

Combined with our asymptotic observations, this shows that there is maximum

solute flux on δm < δ <∞. We prove the uniqueness of the maximum in section

5.5 for the case Ω � 1, but numerically we find that this holds in general (cf.

figure 4.7b).

5.5 Asymptotic solution in the limit Ω→∞

5.5.1 Leading-order solution

In the limit Ω → ∞, corresponding physically to large latent heat release, we

can solve the leading-order problem analytically. Thus we prove that there is a

unique chimney spacing that maximizes the solute flux.

At large values of Ω, the solution of the governing equations (5.20) is a weak
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departure from the exact solution of no flow, discussed in section 5.4.2. Consid-

ering the boundary conditions (5.21a, b) at (η = 0) leads us to posit a regular

expansion

Ψ = Ψ0 +
1

Ω
f(η) +O(Ω−2), (5.55)

Θ = 1− 1

Ω
g(η) +O(Ω−2). (5.56)

We substitute into the differential equations (5.20) and find that

g′′ + Ψ0g
′ + f ′ = 0, f ′′ = g′. (5.57a, b)

The boundary conditions (5.21) imply that

f = 0, f ′ = Ψ2
0, g′ = −Ψ0 (η = 0), g = 0, g′ = 0 (η = δ),

(5.58a − e)

Integrating equation (5.57b), we obtain

f ′ = g − C, (5.59)

where C is a constant, and substituting this into equation (5.57a), we obtain

g′′ + Ψ0g
′ + g = C. (5.60)

This has general solution

g =

[
A sin

(
η
√

1−Ψ2
0/4

)
+B cos

(
η
√

1−Ψ2
0/4

)]
e−Ψ0η/2 + C. (5.61)

The boundary condition (5.58b) with equation (5.59) shows that

B = Ψ2
0, (5.62)

and then boundary condition (5.58c) shows that

A =

(
Ψ2

0

2
− 1

)
Ψ0√

1−Ψ2
0/4

. (5.63)
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Figure 5.12: Plot of solution curves for equation (5.64) for the first four branches.
Note that there are no solutions for δ < π/2 as we found previously.

Boundary condition (5.58e) then determines the unknown Ψ0, which is expressed

implicitly by

δ(α) =
arcsinα + π(1 + 2n)/2

(1− α2)1/2
, (5.64)

where α = Ψ0/2, n is an integer and arcsin takes its principal value. These

multiple solutions, shown in figure 5.12, correspond to the multiple solutions

discussed previously. We restrict attention to α ≥ 0 (such that flow is from the

mush into the chimney). Furthermore, there are no solutions if α ≥ 1, so we need

consider only 0 ≤ α < 1.

Finally, C can then be determined from boundary condition (5.58d) to be

C = (−1)n 2α exp(−αδ). (5.65)

However, recognising that Ψ′δ = f ′(δ)/Ω = −C/Ω, we can restrict attention to

the case n even, thereby ensuring that Ψ′δ < 0, as discussed previously in section

5.3.2. Then equation (5.26) implies that

γ(δ,Ω) = C/2Ω, (5.66)

so, under the maximum-flux principle, we maximize C(δ), plotted in figure 5.13b,
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Figure 5.13: The existence of a unique maximum flux, illustrated for the case
n = 0, which is the overall maximum-flux case. C can be interpreted as a function
of α, as in (a), or δ, as in (b).

in order to determine the solute flux, which is proportional to γ.

5.5.2 Maximum-flux criterion

As discussed above, we can restrict attention to the domain 0 ≤ α < 1, and since

δ = δ(α) on each branch (as specified by equation 5.64), we can also consider C

as a function of α (figure 5.13a). Now

dC

dδ
=

(
dδ

dα

)−1
dC

dα
=

1

δ′
(1− α(αδ)′) 2 exp(−αδ). (5.67)

But

δ′(α) =
1

1− α2
+ α

arcsinα + π(1 + 2n)/2

(1− α2)3/2
> 0, (5.68)

which, by substituting (5.68) into (5.67), shows that dC/dδ = 0 if and only if

1− 2α2 =
α

(1− α2)1/2

[
arcsinα +

π(1 + 2n)

2

]
. (5.69)

Now the left-hand side decreases monotonically from 1 to −1 and the right-

hand side increases monotonically from 0 to +∞, so by the Intermediate-Value

Theorem, there is a unique solution, α = αc, to equation (5.69). Further, the
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positive function C(α) satisfies C(0) = C(1) = 0, so this turning point must be a

maximum. Having solved equation (5.69) numerically to find αc, we determine

δc = δ(αc) = 1/αc − 2αc, (5.70)

Cc = C(αc) = 2αc exp(−1 + 2α2
c). (5.71)

Therefore, we have proved the existence of a unique maximum flux on each

branch of solutions. Furthermore, the overall maximum occurs when n = 0,

which we prove as follows. Define

h(α) = (1/α− 2)(1− α2)1/2 − arcsin(α), (5.72)

which implies that

h′(α) = −(4 + 1/α2)(1− α2)1/2 < 0. (5.73)

But h(α), which decreases from +∞ to −π/2 over [0, 1), satisfies

h(αc) = π(1 + 2n)/2, (5.74)

and so as n increases, αc decreases. Then Cc = 2αc exp(−1 + 2α2
c) must also

decrease with n. Therefore, solutions with a greater number of convecting cells

have a lower associated solute flux, and the maximum-flux criterion leads us to

consider solutions which have only one convecting cell.

In the case n = 0, we find αc = 0.3582, δc = 2.0749, and Cc = 0.3407. This

leads to the asymptotic prediction

γc(Ω) ∼ 0.1704 Ω−1 (5.75)

for the proportionality constant in the relation FSolute = −Rmγc(Ω), as is con-

firmed by the numerical calculations presented in the previous chapter (see figure

4.8a).

This asymptotic limit proves the uniqueness of the flux-maximising chimney

spacing in the limit Ω� 1. However, this result actually holds for all Ω. Indeed,
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this asymptotic calculation captures a number of features relevant to all values of

Ω. In particular, figure 5.12 is structurally the same as a projection of the dashed

curves in figure 5.6, which is the case Ω = 1. Furthermore, a graph of γ(δ,Ω) along

the first branch of solutions in figure 5.6 corresponds to figure 5.13. Thus this

asymptotic proof provides valuable corroboration of our numerical observation

that there is always a unique value of δ, and hence of L such that the solute flux

is maximized, and that we need only consider solutions with one convecting cell.

5.6 Conclusions

The CAP model is a simple, semi-analytical description of convection in a mushy

layer. By mathematically analysing its structure we are able to demonstrate

important features of convection in a mushy layer. Firstly, we have shown that the

boundary-layer solutions to the mushy-layer equations near an isolated chimney

are unstable. The nonlinear development of this instability would likely cause the

formation of new chimneys. Therefore, it is important to consider a full convecting

cell, with both upwelling in (and near) the chimney, and downwelling in the bulk

of the mushy layer away from the chimney. In the CAP model, we consider this

latter region to be passive. Furthermore, the boundary-layer solutions are an

infinite family of both monotonic and oscillatory solutions. Our analysis of the

CAP model shows that the oscillatory solutions all tend to the critical monotonic

solution identified in the boundary-layer analysis that separates the region where

there are oscillatory solutions from that where there are monotonic solutions.

Thus we can recover a unique solution of a kind similar to that found for the case

of a heated plate in a semi-infinite porous medium.

Secondly, we have shown that there is a minimum width of the active region

required to sustain convection within a mushy layer. This width is physically

determined by the need to have a turning point in the vertical velocity within the

active region, from upwards near the chimney, to downwards away from it. This

important general feature arises because of the marginal equilibrium condition,

as we showed in the corner flow problem in section 3.5. Thus the structure of the

active region in the CAP model is an essential aspect of any reduced description

of convection in a mushy layer.
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Chapter 6

Gravity Drainage in Sea Ice

The content of this chapter has been published in the Geophysical Research Letters

(Rees Jones & Worster, 2013b).

6.1 Introduction

The polar seasonal cycle sees an enormous volume of sea ice frozen each year.

As leads (which are areas of open water between ice floes) open up and refreeze,

and as pack ice thickens over the winter, brine is initially held within a matrix

of porous sea ice. A number of different mechanisms lead to the subsequent

desalination of sea ice observed over time in field measurements (Nakawo & Sinha,

1981; Eicken, 1992).

Untersteiner (1968) reviewed and estimated the strength of the mechanisms of

brine-pocket migration, brine expulsion and flushing, which we discuss in section

6.2, as well as gravity drainage. In this chapter we focus on gravity drainage (Eide

& Martin, 1975; Cox & Weeks, 1975), which is the dominant process causing

desalination while ice grows during the winter.

Gravity drainage occurs when the interstitial brine becomes increasingly con-

centrated in salt, which is segregated from the solid phase as the ice continues to

freeze. The increasingly dense brine can then drain from the ice under the action

of gravity, reducing the salinity of the ice and causing plumes of dense brine to

sink into the polar oceans, deepening the mixed layer and increasing the potential
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for bottom-water formation and vertical mixing.

However, while the significance of gravity drainage to brine fluxes from sea

ice during its winter growth has long been acknowledged (Untersteiner, 1968;

Niedrauer & Martin, 1979; Notz & Worster, 2009), it has proved difficult to in-

corporate this process directly in the sea-ice component of Global Climate Models

in a sufficiently simple fashion (Hunke et al., 2011). Indeed, even the most re-

solved, established sea-ice models (such as version 4 of CICE: the Los Alamos

sea ice model, Hunke & Lipscomb, 2008) prescribe the bulk salinity of the ice,

use it to calculate its thermal properties and then calculate the thermodynamic

growth of the ice (Maykut & Untersteiner, 1971; Bitz & Lipscomb, 1999). Al-

though this approach is a reasonable starting point, determining the bulk salinity

dynamically would constitute a major advance and would increase confidence in

the predictions of Global Climate Models in significantly changed climatic con-

ditions in which the proportion of first-year ice might be much higher and the

previously prescribed salinity profiles, which are more appropriate to multi-year

ice, might consequently be less appropriate. We develop such a one-dimensional

dynamic-salinity sea-ice model in chapter 7.

Some recent theoretical studies approach this challenge by treating sea ice as

a two-phase reactive porous medium and numerically solving partial differential

equations in two dimensions for heat, salt and mass conservation, using Darcy’s

law for the interstitial fluid flow. Oertling & Watts (2004) and Wells et al. (2011)

constitute important, contrasting studies in this vein.

In this chapter, we apply the CAP model of convective desalination from chap-

ter 4 to describe and determine mathematically the essential physics of gravity

drainage, elucidating the connection between downward flow in brine channels

and a convective upward flow in the rest of the porous ice. We develop a sim-

ple theoretical parameterization of gravity drainage in sea ice by calculating the

strength of the interstitial upwelling away from the main channels required to

replace the interstitial liquid that flows into the brine channels and thence into

the ocean. We then use our results to interpret the previous laboratory experi-

ments of Eide & Martin (1975) concerning dye-front propagation in sea ice and

an analogous experiment of Chen (1995), which provide a consistency check for

our model.
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6.2 Mechanisms of desalination

Gravity drainage is only one of a number of processes that cause the salinity of

sea ice to decrease over time. We now review these in the context of growing

first-year ice during the polar winter.

Firstly, brine-pocket migration (Whitman, 1926) is driven by the temperature

gradient within sea ice, hence its alternative name in materials science, ‘tempera-

ture gradient zone melting’ (e.g. Tiller, 1963). The vertical temperature gradient

in winter from cold at the ice–atmosphere interface to warm at the ice–ocean

interface establishes an interstitial salinity gradient from salty to less salty within

brine held in the pore space. This salinity gradient means that salt diffuses to-

wards the ice–ocean interface. In the summer, when the temperature gradient is

reversed, the direction of such diffusive salt transport is reversed.

Macroscopically, this mechanism is usually described in terms of an individual

brine pocket. Here, the diffusion of salt downwards within the brine pocket causes

the bottom of it to be dissolved, and the whole brine pocket moves (or migrates)

downwards, a process that can be observed and measured (e.g. Harrison, 1965).

However, while the speed of migration of a brine pocket can be investigated

theoretically for various geometrically regular liquid inclusions (Tiller, 1963), the

approach of mushy-layer theory is to average over the details of the geometry of

the inclusions. In particular, equation (3.7) captures the average desalination rate

caused by this mechanism and shows very concisely that the desalination rate is

proportional to the (molecular) diffusivity of salt in water and the concentration

(and hence temperature) gradient.

Since the diffusivity of salt in water is very low, brine-pocket migration is

very slow, typically a small number of centimetres per month (Untersteiner, 1968;

Weeks, 2010). It accounts for little salt transport, so we neglect it in this chapter.

Secondly, brine expulsion (Bennington, 1963) is caused by the smaller density

of solid ice compared to liquid water, a difference of approximately 10%. As sea

ice grows, brine at a given position within the ice becomes colder, and so the

solid fraction rises, expelling brine downwards on average. The mechanism is

sometimes described more mechanically, in terms of a pressure buildup causing a

failure of the ice.
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As with brine-pocket migration, we can describe this mechanism within mushy-

layer theory using equation (3.3). A simple scaling analysis on this equation sug-

gests that brine expulsion induces a vertical Darcy transport that is proportional

to the density difference between the phases and the ice growth rate. This con-

cords with the fuller analysis of Cox & Weeks (1975) and Notz (2005). One of

the assumptions that we make below (section 6.4.1) is that the Darcy velocity

associated with gravity drainage is much smaller than the ice growth rate, so ne-

glecting brine expulsion is consistent with that assumption. In conclusion, brine

expulsion redistributes salt within the ice. However, this mechanism causes no

net salt flux from ice to the ocean (Notz, 2005; Notz & Worster, 2009), and we

neglect it in this chapter.

Thirdly, there are a number of externally caused, pressure-driven flows inside

sea ice. For example, there are high levels of snowfall off Antarctica, which can

depress sea ice. This can cause brine to be displaced upwards and is thought to

be the most important mechanism by which the snowpack is flooded with salty

water (Maksym & Jeffries, 2000).

In terms of downwards transport of salt, flushing by meltwater that ponds on

the surface of the ice is very significant in the summer when water from melt ponds

can lead to rapid desalination of ice. Eicken et al. (2004) modelled this flow using

Darcy’s law, and it can be treated within the mushy-layer equations (section 3.3)

through boundary conditions on the pressure field. Untersteiner (1968) estimated

the magnitude of flushing and showed that it can account for much of the shape

of the salinity profile of multi-year ice. However, for the purposes of this thesis,

in which we focus on growing first-year ice, we neglect flooding and flushing, and

instead focus on gravity drainage.

6.3 Physical description of gravity drainage

Fluid flow in sea ice associated with gravity drainage is not restricted to liquid

brine channels; rather, that flow is part of a convective circulation that occurs

throughout the porous ice, since the brine-rich liquid that leaves the ice through

brine channels must necessarily be replaced by liquid flowing into the ice from

the ocean. Therefore, there is a net upwelling in the bulk of the ice, a phe-
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nomenon that has been observed by Eide & Martin (1975), who describe this as

entrainment, but whose significance is arguably under appreciated.

In growing ice, convection is sustained by the following physical mechanism.

The ice near a brine channel (both the solid matrix and interstitial brine) is cooled

by conduction from the cold liquid flowing down the channel; relatively cold inter-

stitial brine is also relatively concentrated, since the freezing temperature of salt

water decreases with salinity, and to a very good approximation the interstitial

brine is at local thermodynamic equilibrium (Feltham & Worster, 2000; Feltham

et al., 2006). This establishes the horizontal density gradient of the interstitial

brine that sustains convection, and we determine this flow mathematically in

section 6.4.

However, while postmortems of sea ice often reveal a brine drainage network

that persists through much of its depth (e.g. Lake & Lewis, 1970), there is evidence

(for example Eide & Martin (1975), discussed in section 6.5 below) that after an

initial transient period when convection leading to brine transport can occur

within the whole depth of ice, convection is confined to a relatively thin layer at

the bottom of the ice, as indicated in figure 6.1. Confinement of convection arises

where there is insufficient gravitational potential energy within the compositional

density gradient to overcome thermal diffusion and viscous dissipation. This

competition can be described by a local mush Rayleigh number: the upper part

of the mushy layer has a Rayleigh number below the critical value required for

convection and so is stagnant, whereas the lower part of the mushy layer has a

Rayleigh number above the critical value and so convects. This interpretation was

made following the field experiments of Notz & Worster (2008), developing the

previous observation that the delayed onset of gravity drainage is controlled by

a critical Rayleigh number (Worster, 1997; Wettlaufer et al., 1997b). The brine

in the stagnant layer is not necessarily ‘trapped’ in the sense of the ice being

impermeable. Indeed, the permeability of sea ice remains a major open question

(Freitag, 1999; Petrich et al., 2006; Golden et al., 2007) to which we return in

section 7.4.

The flow within a brine channel itself is only part of the overall mechanism of

gravity drainage in sea ice. While the channel flow has received much attention

(for example Lake & Lewis (1970) use the theoretical study of convection in a
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Figure 6.1: (a) schematic diagram of a one-dimensional model of sea ice showing
typical temperature T and interstitial salinity C profiles. (b) sketch of convective
flow within the ice (thin arrows) and down through brine channels into the ocean
(thick arrows). Often this flow only occurs in a lower convecting layer between
z = zc and z = h, as indicated. However, this is not a restriction imposed by our
model.

semi-closed pipe by Lighthill (1953) to interpret flow in a brine channel, which is

not appropriate since the surrounding ice is a porous medium), continuity requires

that any description of gravity drainage must include the sustaining convective

flow in the bulk of the ice.

6.4 Mathematical model

Here we present a simple framework in the context of idealized governing equa-

tions to determine the structure of this sustaining convective flow.

6.4.1 Governing equations

In the sense that sea ice is a two-phase, reactive porous medium, it constitutes

a mushy layer (Feltham et al., 2006). The mushy-layer equations introduced

in section 3.3 adopt the approach of continuum mechanics in averaging equa-

tions of heat, salt and mass conservation over the two phases, using Darcy’s law

for the interstitial fluid flow, described by the Darcy velocity u and pressure p.
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The temperature T and interstitial brine salinity C are coupled by local ther-

modynamic equilibrium and we assume that the associated liquidus relationship

is linear. This allows us to introduce a single dimensionless variable for both:

θ = (T − T0)/∆T = −(C − C0)/∆C, where, in this chapter, ∆T = T0 − Ta and

∆C = Ca−C0 are the temperature and interstitial salinity differences across the

whole depth of ice, as shown in figure 6.1. Note that the liquidus temperature

decreases with salinity and we are working on the left side of the phase portrait in

figures 3.1 and 4.1b. However, as sea ice is solidified from above, it is dynamically

equivalent to the situation considered in section 4.2. Taking the idealizations that

we discuss below in the context of sea ice, we use the steady ideal mushy-layer

equations introduced in section 3.3.2. These are given non-dimensionally by

Ωu · ∇θ = ∇2θ, (6.1)

∇ · u = 0, (6.2)

u = Ra (−∇p+ θk) , (6.3)

where k is a unit vector in the vertical direction.

The group Ω = 1+L/c (Tm − Ta), where Tm = 0◦C is the freezing point of pure

water, c is the heat capacity of the ice and L is the latent heat of solidification,

is the factor by which the effective heat capacity of sea ice is enhanced by phase

change (Huppert & Worster, 2012). In particular, Ωc is a simplified form of the

dimensional effective heat capacity derived by Feltham et al. (2006).

The important dimensionless Rayleigh number, which represents the ratio of

available potential energy for convection to diffusive and dissipative effects, is

defined by

Ra = gβ∆CKH/νκ, (6.4)

where g is acceleration due to gravity, κ is the thermal diffusivity, ν and ρ are the

kinematic viscosity and density of water, β = ρ−1∂ρ/∂C is a solutal expansion

coefficient (because salinity dominates temperature in causing variation in the

density of the interstitial liquid) and K is a typical permeability. Note that in this

chapter and the next, we use K rather than Π0 for permeability, and Ra rather

than Rm for the Rayleigh number, for consistency with the geophysical literature.
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The permeability depends on the local porosity of the convecting layer; however,

for practical applications of our model, K can be taken as a mean value over

the convecting layer (cf. Notz & Worster, 2008, and section 7.2.3 below). The

use of a uniform permeability in the CAP model is one of the most important

simplifications. We use a quasi-steady approximation in which the growth rate

ḣ is constant on the timescale of convective turnover (ḣ � w) in which case an

appropriate vertical length scale is H = κ/ḣ, cf. equation (3.22).

The idealizations made in (6.1–6.3) isolate the mechanism of gravity drainage

as follows. Firstly, we neglect the diffusion of salt, which accounts for brine pocket

migration. Secondly, we neglect all differences in the properties of the phases,

including the roughly 10% difference in density that accounts for brine expulsion.

Note that there are more significant differences in the thermal properties (see

table 7.1 in the following chapter). Thirdly, we assume that ḣ� w, the vertical

Darcy velocity, such that the dominant balance in the heat equation is between

conduction and convective transport. The resulting equations (6.1–6.3) provide

the simplest meaningful mathematical description of convection within sea ice.

Given the assumptions underlying the ideal mushy-layer equations, the equa-

tion expressing conservation of salt (3.7)

∂S

∂t
= −w∂C

∂z
(6.5)

is decoupled from equations (6.1–6.3) describing buoyancy-driven flow (cf. Worster,

1997). In this equation, S = (1 − φ)C is the bulk salinity, since we may neglect

the salt content of solid ice, which is very small, and we have also neglected diffu-

sion of salt as discussed above. Then, having determined the upwelling velocity

w as we describe below, equation (6.5) can be used to determine the evolution of

bulk salinity field and hence the solid fraction φ.

6.4.2 CAP model for sea ice

The Chimney-Active-Passive (CAP) model provides a simple characterization of

convective solutions to (6.1–6.3). Full mathematical details are presented in chap-

ter 4. The CAP model can be applied in both two and three dimensions. Here,
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Figure 6.2: The Channel-Active-Passive (CAP) model. The vertical component
of Darcy velocity w is uniform in the passive region but changes in the active
region owing to the horizontal density gradient driving convection. Note that the
shape of the isotherms is similar to the profile of vertical velocity: the temperature
is horizontally uniform in the passive region and lower in the active region near
the brine channel.

we review the approach as applied to a periodic planar array of brine channels of

separation 2L in the case of a confined convecting layer zc ≤ z ≤ h, as shown in

figure 6.2. Note that we have moved from steady, directional solidification to the

transient growth of sea ice by means of the quasi-steady assumption introduced

in the previous section.

The temperature in the passive region is horizontally uniform and vertically

linear, which is appropriate for a relatively thin convecting layer. Therefore,

θ = θ0 (z − h) / (zc − h) , zc ≤ z ≤ h, (6.6)

where θ0 = −∆Ce/∆C, in which ∆Ce = Cc − C0 is the interstitial brine salinity

difference across the convecting layer. Although there are known to be hori-

zontal inhomogeneities in bulk salinity caused by brine channels (Cottier et al.,

1999), the temperature field away from brine channels is assumed to be horizon-

tally homogenous in experimental measurements of sea ice. Horizontally uniform

upwelling velocities are consistent with horizontally uniform solutions for θ and
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the most general streamfunction of this form that satisfies no flow through the

periodic boundary at x = L or at the top of the convecting region at z = zc is

ψ ∝ (L− x)(z − zc), (6.7)

which corresponds to horizontally uniform upwelling.

The overall strength of the flow, or equivalently the proportionality factor

in (6.7), is determined by matching this uniform upwelling in the passive region

to the active region near the channel where the temperature is not horizontally

uniform.

The salt flux from the ice into the ocean depends on channel spacing L. In

section 4.4, we showed that there is both a minimum channel spacing and also a

minimum width of the active region needed in order to sustain gravity drainage

through channels. Therefore, horizontal density gradients in the surrounding ice

sustain gravity drainage through channels.

However, the (mean) channel spacing L remains undetermined. As discussed

in section 4.5, we assume that L takes the value that maximizes the salt flux.

This avoids prescribing L, which is not an external parameter in sea-ice formation

(in contrast to some experimental systems, such as Zhong et al., 2012), and

importantly allows us to determine the solution completely in terms of a single

proportionality factor W (Ω) which can be computed cheaply. Note that, in terms

of the quantities discussed in section 4.5,

W (Ω) = 1/hc(Ω) ≈ 2γc(Ω), (6.8)

where γc is the proportionality factor in the relationship between solute flux and

Rayleigh number. The latter relationship in (6.8) is as we would expect from

scaling analysis. We show a graph of the proportionality factors in figure 6.3.

However, since the model includes a number of idealizations, for quantitative

implementation we propose tuning this factor with experimental results.

In conclusion, the dimensional vertical component of Darcy velocity w in the

passive region, which gives a measure of the mean upwelling outside the brine
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Figure 6.3: The behaviour of the proportionality factor W (Ω). For reference we
include γc(Ω) from figure 4.8.

channel, is

w = − κ

h− zc
Rae

z − zc
h− zc

W (Ω), (6.9)

where

Rae = [gβ∆CeK (h− zc)] /νκ, (6.10)

is an effective Rayleigh number across the convecting layer, generalizing the result

(equation 4.34) found for full-depth convection. The fact that w is proportional

to a Rayleigh number strictly only applies in a planar geometry, but can be

considered a reasonable approximation across a limited parameter range in three

dimensions. The result that w is vertically linear applies both in planar and

axisymmetric geometries. By integrating equation (6.5) for local salt conservation

using equation (6.9) for the upwelling velocity w, we can determine the net salt

flux from the mushy layer due to gravity drainage.

6.4.3 Comparison with some alternative models

Studies of sea ice at the polar-ocean scale use parameterizations of gravity drainage

(Vancoppenolle et al., 2009b, 2010; Petrich et al., 2011; Jeffery et al., 2011; Saenz

& Arrigo, 2012; Turner et al., 2013; Griewank & Notz, 2013). Our conclusions

contrast with some of these recent suggestions about parameterizations of gravity
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drainage. They are fundamentally different to enhanced molecular diffusion or

mixing-length diffusion (Vancoppenolle et al., 2010; Jeffery et al., 2011); gravity

drainage is an advective process. Consistent with this, our advective parameter-

ization always transports salt (and any passive tracers) in the direction of the

fluid flow, and necessarily desalinates ice. By contrast, diffusive parameteriza-

tions imply down-gradient transport.

Our model is closer to the prescription of a vertical velocity proportional to

a Rayleigh number proposed by Petrich et al. (2011); our mathematical mod-

elling provides a solid justification for this kind of approach. However, whereas

they impose a vertically uniform vertical velocity, we determine a linear structure

(6.9). Our concept of the passive region matched to the active region around

brine channels shows theoretically that horizontally uniform vertical velocity cor-

responds to vertically linear vertical velocity. The concept of Petrich et al. (2011)

requires much of the interstitial liquid to enter the brine channel at the top of

the convecting region by conservation of mass. This seems unlikely both given

the description of the nature of convection we argued for in section 6.3, and also

given the observed tributary structure to the brine drainage systems (e.g. Lake &

Lewis, 1970). Furthermore, the linear structure of the vertical component of the

Darcy velocity given in (6.9) that we found is consistent with the experimental

observations of Eide & Martin (1975) and Chen (1995), as we demonstrate below.

However, our model is closest to Turner et al. (2013) and Griewank & Notz

(2013). Nevertheless, as with Petrich et al. (2011), there are important differences

between these models and our own in terms of the vertical structure of w. We

discuss the parameterizations of Turner et al. (2013) and Griewank & Notz (2013)

in section 8.1.3 in the context of implementation of the parameterizations in a

one-dimensional sea-ice model.

6.5 Analysis of previous experiments

Eide & Martin (1975) investigated the interstitial flow by injecting dye into the

liquid beneath growing ice in a laboratory and observing its horizontally uniform

“entrainment” into the ice. For two cases, they measure the average height of the

dye front as a function of time, which we reproduce in figure 6.4, to which they
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Figure 6.4: Reproduced from Eide & Martin (1975). Height of dye front
above interface height for two experiments. The exponential fits of the form
a [1− exp(−bt)] are part of the original figure. For both experiments b =
7 × 10−5 s−1, while, for experiment 1, a = 1.8 cm, and, for experiment 2 when
the ice was three times thicker, a = 5.75 cm. That b is approximately unchanged
hints at the possibility that the permeability K has increased to compensate for
the likely slackening of the brine salinity gradient ∆Ce/h− zc. Combined with
the increase in a = h− zc, equation (6.14) suggests that the effective Rayleigh
number Rae increased. However, it is difficult to draw comparisons between
only two experiments, especially as in the first experiment the ice was growing
sufficiently rapidly that the quasi-steady approximation is unreliable.

fit exponential curves of the form a [1− exp(−bt)].

The exponential time-dependence is explained by our simple model, and fun-

damentally arises from the linear vertical structure we found for the vertical

velocity. Neglecting diffusion of the dye, the position of the dye front zd(t) is

governed by
dzd
dt

= w (zd, t) = −b (zd − zc) , (6.11)

using (6.9), where b = RaeW (Ω)κ/ (h− zc)2. This equation can be integrated

immediately, assuming that the depth of the convecting layer h− zc evolves slowly

compared to the dye-front position zd. Integrating equation (6.11) with the initial

condition zd(0) = h, we find that the height of the dye front satisfies

h− zd = (h− zc) [1− exp(−bt)] . (6.12)
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Figure 6.5: Reprocessed data from Chen (1995) showing that a straight line
through the origin gives a good fit, as predicted by (6.11).

This exponential time-dependence contrasts, for example, with the piecewise lin-

ear time-dependence that results from the model of Petrich et al. (2011). Equation

(6.12) provides a simple interpretation of a and b in Eide & Martin (1975):

a = h− zc, (6.13)

the depth of the convecting layer, and, on rearrangement,

b = Rae
κ

(h− zc)2W (Ω) ≡ gβ

ν

∆Ce
h− zc

KW (Ω). (6.14)

Further confirmation of the linear vertical structure in (6.11) comes from the

experiments of Chen (1995) on a different physical system. In these experiments

ammonium-chloride solution was solidified from below and dye injected into the

liquid melt. By using finite differences, and making a correction for a dye-sinking

rate extracted from a control experiment before the onset of convection within

the mushy layer, we could estimate a net dye-front velocity caused by convection,

extending a calculation by Chen (1995). Motivated by (6.11), we plot this velocity

against the dye-front position in figure 6.5. The reasonable fit provides further

confirmation of the linear structure of w and the slope of this graph is a measure

of b. Note that, for this experiment, convection appeared to penetrate the whole
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depth of the mushy layer and so zc = 0. This is likely to be caused by the high

permeability of the mushy layer of ammonium-chloride crystals that formed in

this experiment.

6.6 Conclusions

Gravity drainage is the most important mechanism by which first-year ice desali-

nates. Brine-pocket migration and brine expulsion are observable but very slow

processes that can be neglected during first-year growth, although brine expulsion

may be somewhat important in redistributing salt within sea ice. Only after the

first winter of growth does meltwater flushing become significant, although other

pressure-driven flows such as flooding may be important in the winter, especially

in the Antarctic.

Therefore, we developed a series of idealizations that isolate the mechanism

of gravity drainage. We derived a new parameterization of gravity drainage in

sea ice theoretically in terms of two unknown parameters. Our mathematical

modelling and experimental comparison indicate the existence of a convecting

layer in which the mean upwelling velocity is vertically linear and proportional to

an effective Rayleigh number. The dye-front experiments described above offer a

systematic way to investigate both the behaviour of the tuning parameter W (Ω)

and also the question of how the depth of the convecting layer h− zc is determined

physically. A theoretical determination of the latter is required for a complete

implementation of our model, and we develop such a proposal in section 7.2.3

below.

The CAP model constitutes a new dynamical approach to modelling gravity

drainage from sea ice. Using the CAP model to determine the vertical upwelling

velocity w allows a thermodynamic sea-ice model to determine, rather than pre-

scribe, the bulk salinity profile, and we implement this idea in the following chap-

ter. Such a modified sea-ice model conserves salt as well as heat in the ice–ocean

system, and dynamically determines the heat capacity and thermal conductivity

of the ice, the additional vertical heat transport due to convection within the ice,

and net brine fluxes into the ocean.
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Chapter 7

One-dimensional model of sea ice

The content of this chapter has been submitted to the Journal of Geophysical

Research (Rees Jones & Worster, 2013c).

7.1 Introduction

7.1.1 Sea ice: climate and models

Sea ice forms a dynamic interface between the ocean and atmosphere and so

constitutes an integral aspect of any coupled climate model (Gent, 2012). It

plays an important role in the regional and global climate, as discussed in section

2.1.

Coupled climate models account for the thermodynamic growth and melting of

sea ice, the movement of sea ice due to wind stress, its response to internal stresses,

lateral melting and the formation of pressure ridges (e.g. Hunke & Lipscomb,

2008; Vancoppenolle et al., 2009a,b), as discussed in section 2.2. In this chapter,

we restrict attention to the thermodynamic growth of sea ice, which is a one-

dimensional process. This accounts for much of the change at the thin-ice end

of the ice-thickness distribution used in climate models, and so is particularly

important for salt fluxes, as these are much greater for thinner ice. The one-

dimensional, dynamic-salinity model that we develop is structurally similar to

fixed-salinity models currently used in coupled climate models. Fixed-salinity

models solve a heat equation in which the thermal properties of ice – its heat
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capacity and conductivity – depend on the temperature and salinity of the ice.

They are deficient in that, while the temperature is determined as part of the

solution, the salinity field is prescribed. By contrast, in our new model, the

salinity is determined dynamically.

There has been much recent interest in determining the salinity of sea ice dy-

namically. Some studies are at a small scale and resolve gravity drainage in two-

dimensional numerical simulations (Oertling & Watts, 2004; Wells et al., 2011).

Other studies are at the polar-ocean scale and parameterize gravity drainage

(Vancoppenolle et al., 2009b, 2010; Jeffery et al., 2011; Saenz & Arrigo, 2012;

Turner et al., 2013; Griewank & Notz, 2013). Their parameterizations variously

involve, sometimes in combination, relaxation of the salinity profile, enhanced

molecular diffusion, mixing-length diffusion, empirical formulae based on the mea-

surements of Cox & Weeks (1988), and a local Rayleigh number. Our approach

is to take the simple theoretical model of gravity drainage in terms of a Rayleigh

number derived from small scale models developed in the previous chapters and

cast it in a form appropriate to these large scale models. The other mechanisms

of desalination discussed in section 6.2 could in principle also be included in a

model – here we focus on the most important mechanism in first-year ice (and

indeed in the laboratory experiments we consider). Our model can be considered

one of a new generation of dynamic-salinity sea-ice models and is most similar

to Turner et al. (2013) and Griewank & Notz (2013). We discuss how our model

compares to those two models in section 8.1.3.

7.1.2 Desalination of sea ice: modelling gravity drainage

In chapter 4, we developed the CAP model, which allows us to parameterize the

convective upwelling velocity in a way that captures the underlying physics. The

interstitial brine is relatively saline compared with the ocean, so the convective

upwelling amounts to a net desalination. The upwelling is balanced by downward

flow in the brine channels and results in brine fluxes into the ocean. Two param-

eters in our model – a critical Rayleigh number and a proportionality constant

– have been calculated in idealized situations, for example by Wells et al. (2010,

2013) and also in figure 6.3. However, in this chapter, we treat them as tuning
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parameters that we adjust to describe the laboratory experiments of Wettlaufer

et al. (1997a) and Notz (2005).

For all but the thinnest ice, only the lowermost regions of sea ice convects,

as discussed in the previous chapter. There we identified the need to determine

the depth of the convecting layer theoretically. It is now well established that

a Rayleigh number governs the onset of convection in mushy layers such as sea

ice (Worster, 1992b, 1997) and so we propose using a local Rayleigh number to

determine the thickness of the convecting layer, as suggested by Notz & Worster

(2008). In sea ice, strongly varying permeability is responsible for the confinement

of convection; in other physical systems, the mechanism can differ. For instance,

in experiments analogous to sea ice but using sugar instead of salt (Aussillous

et al., 2006) and in the ‘stagnant-lid’ mode of convection in magma chambers

(Davaille & Jaupart, 1993), confinement is thought to be caused by the strong

variation of viscosity with temperature. Our approach here, which is based on

fundamental physical principles, should be generalizable to such systems.

In section 7.2, we develop our model starting with the phase-averaged mushy-

layer equations for heat and salt conservation in one spatial dimension from chap-

ter 3. In the case of non-convecting sea ice, Feltham et al. (2006) have shown that

these equations are essentially equivalent to those used in generations of models

derived from the fundamental description given by Maykut & Untersteiner (1971),

including Bitz & Lipscomb (1999) which is used in CICE: the Los Alamos Sea

Ice Model (Hunke & Lipscomb, 2008). Our model develops these further by de-

termining a convecting upwelling velocity internal to the sea ice and we compare

our model to CICE in chapter 8.

In section 7.3, we compare results from our model with measurements from

laboratory experiments in order to test the predictive ability of our model in

terms of sea-ice growth and salt fluxes.

Finally, in section 7.4, we consider the open question of the permeability of

sea ice, which in part determines the strength of gravity drainage. We test the

approach adopted in previous sections by applying our model to a wide range

of problems in order to analyze indirectly the relationship between the porosity

and permeability of sea ice, highlighting the distinction between local and bulk

permeability.
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7.2 Model formulation

7.2.1 Model configuration

We consider ice grown from an upper cold plate of temperature TB(t), as shown

in figure 7.1. This configuration allows for comparison with experiments. Our

model dynamically evolves the internal temperature T and bulk salinity S of the

ice using a parameterized vertical Darcy velocity w. It is important to note that

the bulk salinity is always less than the interstitial salinity C, which is not an

independent variable but coupled to T through the liquidus relation C = CL(T ),

since sea ice can be assumed to be at local thermodynamic equilibrium internally

(Feltham & Worster, 2000; Feltham et al., 2006). We use T = TL(C) to denote

the inverse of this relationship. The salinities S and C are related through the

solid fraction φ, previously introduced in equation (3.1), by

S = (1− φ)C + φCs ≈ (1− φ)C, (7.1)

given that the salinity of solid ice Cs ≈ 0. We rearrange equation (7.1) to deter-

mine the solid fraction

φ(T, S) = 1− S/CL(T ). (7.2)

Sea ice of thickness h(t) grows into a tank of fixed depth H. We take the

purely liquid region in the tank (which in this chapter we refer to as the ‘ocean’)

to be well mixed, owing to thermal and compositional convective mixing, having

temperature Tl(t) and salinity Cl(t). This treatment of the ocean is approximate

but is appropriate for this study as it is not part of the sea-ice component of a

coupled climate model.

7.2.2 Model equations

Sea ice is a multiphase, reactive porous medium and so is an example of a wider

class of systems called mushy layers, which we introduced in chapter 3. The

mushy-layer equations discussed in that chapter for heat and salt conservation

(3.4, 3.5) can be used to derive our model equations in one spatial dimension,
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TL(Cl) h(t)

z

zc(t)

w(z, t)

T (z, t)

H

Tl(t) Cl(t)

Stagnant sea ice

Convecting sea ice

Well-mixed ocean

S(z, t)

TB(t)

Figure 7.1: One-dimensional model of convection. The sea ice (mushy layer) is
divided into a stagnant layer and a convecting layer, as discussed in the text.
Note that there is a thin thermal boundary layer (exaggerated) at the interface
between the mushy layer and the ocean (the purely liquid region) across which
the modelled temperature field is discontinuous.
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generalizing Feltham et al. (2006),

ci
∂T

∂t
+ cww

∂T

∂z
=

∂

∂z

(
ki
∂T

∂z

)
, (7.3)

∂S

∂t
= −w∂C

∂z
, (7.4)

in which the major novelty is that we include a convective Darcy velocity w due

to gravity drainage

w =





−αRae
kl
cl

z − zc
(h− zc)2 if z ≥ zc

0 if z < zc

(7.5)

where α is a dimensionless prefactor (called W (Ω) in chapter 6), Rae is an ef-

fective Rayleigh number and zc is the position of the top of the convecting layer

determined in section 7.2.3 (cf. figure 7.1). Since we focus on gravity drainage,

we have neglected diffusion of salt in (7.4), which is small.

Volumetric heat capacities of sea ice are determined by averaging over the

two phases and accounting for the latent heat of fusion L per unit volume of

solid formed at 0◦C (Notz, 2005; Feltham et al., 2006). In this, we generalize

the ‘classical’ expression (Malmgren, 1927) to a nonlinear liquidus. We neglect

the difference between the heat capacities of the solid and liquid phases (which

is equivalent to a temperature-dependent latent heat) and the heat of solution,

as these are both O(1%) combined on average, as shown in figure 7.2. Thus

ci(T, S) = cs − LSC ′LC−2
L , (7.6)

cw(T, S) = cl −
LC ′L
CL

. (7.7)

Likewise, the thermal conductivity of sea ice (Ono, 1968; Batchelor, 1974)

ki(T, S) = ks − (ks − kl)SC−1
L , (7.8)

In these expressions, subscripts s and l represent properties of solid and liquid

phase respectively. In this, we relax the assumptions of ideal mushy-layer theory
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Figure 7.2: The heat capacity of sea ice is dominated by latent heat release (a).
Corrections due to the difference in heat capacities between the phases and the
heat of solution Hsol are shown in (b). Note the different vertical axes, which must
both be multiplied by S/CL in equation (7.6) to obtain the contribution to the
heat capacity of sea ice. Note also that the interstitial salinity axis is equivalent
to a temperature axis running from about −2◦C to −20◦C.

(section 3.3.1) that these properties are independent of phase. Throughout this

chapter we take parameter values, listed in table 7.1, appropriate to the solidifi-

cation of aqueous sodium chloride, since it is the most abundant salt in seawater

and allows direct comparison with the laboratory experiments discussed in section

7.3.1. We use a cubic

CL(T ) = −17.6T − 0.389T 2 − 0.00362T 3 (7.9)

for the liquidus salinity (Weast, 1971), and C ′L denotes the derivative of CL with

respect to T . For sea ice, the expression given by Assur (1958) should be used.

7.2.3 Parameterization of convective velocity w: applying

the CAP model

The key novelty in our model is that we determine the convective velocity w

dynamically from a simple physical parameterization. In chapter 6, we applied

a steady-state study of mushy-layer convection (chapter 4) to transient sea-ice

growth, which we now apply to a one-dimensional model as follows.
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Parameter Value (cgs units) Reference
cl 4.0 J/cm3/deg Weast (1971)
cs 1.9 J/cm3/deg Weast (1971)
kl 0.00523 J/s/cm/deg Lange & Forke (1952)
ks 0.0214 J/s/cm/deg Slack (1980)
L 306 J/cm3 Kerr et al. (1990)
g 980 cm/s2

ν 0.018 cm2/s Ozbek et al. (1977)
K0 10−4 cm2 Freitag (1999)
β 7.5× 10−4 1/ppt Ruddick & Shirtcliffe (1979)
λ 0.12 Wettlaufer et al. (1997a)

Table 7.1: Material parameters used in calculations. Note that sometimes a
measurement per unit mass has been converted to a one per unit volume. Many
quantities vary with temperature but we have chosen a representative value.

The thickness of the convecting layer and the strength of convection are set

by a depth-dependent local Rayleigh number introduced in section 6.3

Ra(z) =
clgβ

klν
[CL(T (z))− CL(Tl)] (h− z)K(z), (7.10)

based on the ratio of the potential energy difference from a height z to the ice–

ocean interface h relative to the thermal diffusion and the viscous dissipation

caused by the flow required to replace the fluid that moves into the ocean. When

this ratio is sufficiently large, there is enough potential energy for convection to

occur. Note that the ratio of an advective to a diffusive timescale discussed in

Griewank & Notz (2013) is better thought of as Péclet number, which is itself a

function of the Rayleigh number.

We take the harmonic mean permeability

K(z) = K0

[
1

h− z

∫ h

z

1

Kl(φ(z′))
dz′
]−1

, (7.11)

where K0 is a dimensional constant (see table 7.1) and Kl(φ) = (1 − φ)3 is a

dimensionless local relationship between porosity and permeability. The latter

was suggested by Worster (1992b) as a simplified form of the Kozeny porosity–

permeability relationship and used by various subsequent studies of convection in
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a mushy layer (e.g. Amberg & Homsy, 1993; Schulze & Worster, 1998; Chung &

Worster, 2002; Wells et al., 2010, 2013). The harmonic mean in equation (7.11)

reduces to K = K0(1− φ)3 if φ is constant, which is approximately the same as

the experimental fit to measurements of Freitag (1999), K ∝ (1 − φ)3.1. The

harmonic mean is appropriate in that it is the bulk permeability of a series of

layers of varying permeability (Phillips, 1991), on the assumption that the flow is

dominantly vertical. This measure appropriately accounts for the fact that a fluid

parcel being replaced at the top of the mushy layer needs to move through all the

layers beneath it. Note that, in their expressions for the local Rayleigh number,

Notz & Worster (2008) and Vancoppenolle et al. (2010) take K(z) to correspond

to the least-permeable layer between height z and the ice–ocean interface, which

is comparable since the harmonic mean is dominated by the least permeable

region. From a computational perspective, their expressions have the potential

disadvantage of behaving very non-locally. However, we acknowledge that our

expression is only tentative. The uncertainty arises from difficulties in making

direct measurements, and we discuss recent suggestions and our own contribution

in section 7.4.

The local Rayleigh number defined by equation (7.10) is used to determine

both the region of convection (figures 7.1 & 7.3) and also an effective Rayleigh

number governing the strength of convection in equation (7.5) as follows. If Ra(z)

is everywhere less than a critical value Rc (figure 7.3a), there is no convecting

layer and Rae = 0. Otherwise, there is convection in the region between the

ice–ocean interface z = h and some critical depth z = zc, which we determine

as follows. If Ra(0) ≥ Rc, then the whole mushy layer convects (zc = 0, figure

7.3c, d). Otherwise, if Ra(0) < Rc, there is a first point zc such that Ra(zc) = Rc

(figure 7.3b). A fluid parcel at this depth has enough potential energy to convect

through the whole depth below it zc ≤ z ≤ h, being replaced by fluid rising up

through the rest of the layer.

Finally, motivated by Wells et al. (2010, 2011, 2013), we define an effective

Rayleigh number in terms of the degree of supercriticality,

Rae = max
zc≤z≤h

Ra(z)−Rc, (7.12)
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Figure 7.3: The convecting layer with various types of local Rayleigh number
profile. (a) No convection, since Ra(z) is everywhere subcritical. (b) A lower
layer convects. The effective Rayleigh number Rae is specified in equation (7.12)
and used in equation (7.5). (c, d) Full-depth convection. We also investigated
an alternative parameterization in which convection is confined below the dashed
red line in (c).

as marked in figure 7.3b. Other parameterizations are possible; in particular, we

investigated both confining convection in the case of figure 7.3c and also letting

Rae = max
zc≤z≤h

Ra(z), (7.13)

which shares with (7.12) the property that flux is proportional to Rayleigh number

at large Rayleigh number (as shown for a planar array of channels in chapter 4,

cf. also Wells et al., 2010, 2013), but found that these parameterizations were

less satisfactory.

7.2.4 Boundary conditions at the ice–ocean interface

Here, we apply and in some cases extend the boundary conditions introduced

in section 3.4. We assume that the temperature of the interface is equal to the

liquidus temperature at the salinity of the well mixed ocean (Worster, 1986) and

that the bulk salinity is continuous, which is equivalent to a zero solid fraction

at the interface, consistent with the field observations of Notz & Worster (2008).
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Therefore,

T = TL(Cl), S = Cl (z = h). (7.14)

The growth of sea ice is determined by conservation of heat at the interface.

A balance of heat fluxes across a control volume enclosing the interface and the

thin thermal boundary layer in the ocean gives

cl [Tl − TL(Cl)]
(
ḣ− w |z=h

)
+ Lḣφ |z=h + FT = km

∂T

∂z

∣∣∣∣
z=h−

. (7.15)

In laboratory experiments, the turbulent heat flux from the ocean FT is caused

by natural convection driven by the density difference between fluid at the inter-

face and fluid in the interior, in which case

FT =
(
24/3λ

)
kl

(
αTgcl
klν

)1/3

[Tl − TL(Cl)]
4/3, (7.16)

where αT = αT (TL (Cl) , Cl) is a temperature and salinity-dependent thermal

expansion coefficient calculated from the density measurements of Ruddick &

Shirtcliffe (1979). This is appropriate for a tank (or ocean mixed layer) of constant

depth, although the mixed-layer depth changes significantly over the course of the

winter. The ocean is cooled by the turbulent heat flux and evolves according to

cl(H − h)
dTl
dt

= −FT . (7.17)

For implementation in a climate model, a friction velocity could be used in cal-

culating FT (Maykut & McPhee, 1995). Indeed, sea-ice thickness after sufficiently

long times is known to be very sensitive to the parameterization of oceanic heat

flux (e.g. Maykut & Untersteiner, 1971; Holland et al., 1997), and weaknesses

in our parameterization of FT may explain some of the discrepancy between

our model and experimental observations shown in section 7.3.4. Note that, in

our model, the term for latent heat released at the interface in equation 7.15

Lḣφ |z=h = 0, since the solid fraction there is zero. However, we retain it to

accommodate fixed-salinity models, in which the solid fraction at the interface is

nonzero, in section 8.
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The salt flux from the sea ice to the ocean, the definition of which we discuss

in more detail in section 8.2, is given by

FS = −
∫ h

0

∂S

∂t
dz + ḣ∆S. (7.18)

The salt flux consists of the net change in the internal salinity of the ice and brine

rejection at the ice–ocean interface associated with a salinity discontinuity ∆S

there. In our model, ∆S = 0 (from equation 7.14) and the change to internal

salinity is caused by gravity drainage alone.

As ice grows, the salinity of the remaining well mixed ocean increases accord-

ing to

(H − h)
dCl
dt

= FS. (7.19)

However, within our numerical scheme, we prefer to apply global conservation

explicitly using quadrature. Further details about our numerical method are

given in appendix 7.A.

7.2.5 Model calculations

In order to illustrate the behaviour of our model, figure 7.4 shows our results

for a simulation in which ice is grown from a cold plate at constant tempera-

ture TB = −20◦C. For this calculation, we fixed the salinity Cl = 35.5 ppt and

temperature Tl = −1.9◦C of the ocean to simulate a constant ocean heat flux

of 2.25 W/m2 appropriate to the polar oceans (Maykut & Untersteiner, 1971).

As the sea ice grows, we continually update the temperature and salinity fields

within the ice and use these to calculate the solid fraction (equation 7.2) and local

Rayleigh number (equation 7.10) used in our parameterization of convection.

The temperature field (figure 7.4a) is approximately linear with depth, so the

sea ice grows approximately diffusively with a balance between internal latent

heat release and conduction to the cold plate. At later times the temperature

gradient becomes shallower, so the heat flux from the ocean becomes significant

and slows the ice growth, eventually leading to a steady state. In these respects,

our model differs little from other thermodynamic sea-ice models.

However, by allowing the salinity field (figure 7.4b) to evolve, our model cap-
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tures the gradual desalination of sea ice caused by convection, which leads to

C-shaped salinity profiles, as are commonly observed in first-year ice. Through-

out the calculation, the salinity at the interface with the ocean region remains

fixed. The amount of desalination is controlled by the choice of critical Rayleigh

number Rc: at smaller Rc, the ice desalinates more before convection shuts down.

We explore this effect more thoroughly in section 7.3, in which we compare pre-

dicted salt fluxes against those observed in laboratory experiments. At the ice–

cold-plate interface, the salinity is steady since the vertical upwelling velocity

associated with convective desalination is zero there.

The desalination of the sea ice causes the local solid fraction to increase over

the course of the experiment (figure 7.4c). Note that the rapid change in solid

fraction near the ice–ocean region interface causes a rapid change in thermal

properties of the ice, causing some nonlinearity in the temperature field (which

is sometimes more pronounced than in figure 7.4a).

The local Rayleigh number (figure 7.4d) typically peaks around the chosen

Rc because desalination causes the local Rayleigh number to relax back towards

this value. There is usually one peak near the ice–ocean interface, and another

near the cold plate. We suspect the latter is a result of our neglect of solar

radiation, and brine expulsion, which would transport salt downwards within

the ice, increasing the solid fraction in the upper ice and thereby reducing the

permeability and local Rayleigh number. We discuss its evolution further in

section 7.3.3 when discussing convection in laboratory experiments.

7.3 Results compared to laboratory experiments

7.3.1 Discussion of experimental systems

We test our parameterization of gravity drainage by comparing its predictions

to the results of two sets of laboratory experiments reported in Wettlaufer et al.

(1997a) and Notz (2005). The latter are also reported in less detail in Notz et al.

(2005) and Notz & Worster (2008). The basic systems are very similar: a coolant

is circulated to maintain at constant temperature a brass cold plate mounted at

the top of an insulated tank of horizontal size 20×20 cm and vertical size 37.6
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Figure 7.4: A series of profiles through the sea ice of (a) temperature, (b) salinity,
(c) solid fraction and (d) local Rayleigh number. The calculations were performed
for growth into a deep ocean with parameters Rc = 40 and α = 0.03. The dashed
curve gives profiles at the final time (20 days) at Rc = 20 and α = 0.03.

cm for Wettlaufer et al. (1997a) and 39.5 cm for Notz (2005). Temperature is

measured with thermistors and salinity by measuring with an optical refractome-

ter small samples withdrawn from the tank using a hypodermic syringe. The

resolution of the refractometer used to measure salinity is approximately 1 ppt

so measurements near the onset of convection (when salinity begins to rise from

the initial value) are difficult. We also mention more briefly the older experiments

of Cox & Weeks (1975), which differ more significantly from the other two sets.

The most significant difference for our purposes is the size of the tank, which is

cylindrical, 14 cm in diameter and 69 cm deep.

To make a fair comparison with our model, it is important to be aware of

experimental uncertainties. It is well known that heat fluxes from the laboratory

affect ice growth and need to be minimized. In Wettlaufer et al. (1997a) the

insulated tank was placed in a larger environment, held at roughly 4◦C. In Notz

(2005), the tank was placed inside a freezer whose temperature was controlled

to lie between 0◦C and −1.5◦C. The other significant difference is that in Notz

(2005) a wire harp was fixed inside the tank to measure the electrical impedance

between pairs of wires to determine the local solid fraction, while in Wettlaufer

et al. (1997a), measurements of volume expansion were used to determine the
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average solid fraction in the sea ice. The wire harp may have artificially increased

brine drainage. Other differences are either unspecified or thought to be minor,

at least at moderate to late times. Only the initial growth is sensitive to the

control protocol used to set the constant temperature of the cold plate.

To some extent we privilege the experiments of Wettlaufer et al. (1997a), not

because they are necessarily better, but because they were conducted across a

wider range of experimental conditions, which gives a more thorough test of our

parameterization of gravity drainage.

Our approach complements the focus of Turner et al. (2013) and Griewank &

Notz (2013) in that they each consider one laboratory experiment and one field

experiment. Taken together with our study, they show the predictive capabilities

of new parameterizations of gravity drainage. Whereas the previous two of these

studies focus on salinity profiles take from the data of Notz (2005), we focus

on measurements of the salinity of the ocean as a measure of the geophysically

important salt flux from sea ice. Griewank & Notz (2013) acknowledge that the

profiles they use have an uncertainty of around 5 ppt (and perhaps even more

than this for high solid fractions), and our analysis suggests that they system-

atically underestimate the salinity of the ice. By comparison, we estimate that

the uncertainty in the ocean salinities corresponds to an uncertainty of around

2 ppt in average ice salinity, but with a bias towards overestimation caused by

very salty water ponding at the bottom of the tank. For example, Notz (2005)

observed a difference between measurements of salinity at the bottom and middle

of the tank (figure 7.5) that may indicate ponding, as well as some experimental

scatter. By contrast, measurements of thickness are more repeatable. If the av-

erage ice salinity is calculated without accounting for the mass of salt contained

in liquid that overflows due to the lower density of ice (data for the overflow is

not always available to us, so we do not use it in our calculations), there is a

further overestimation of ice salinity by around 2–3 ppt in our treatment of the

experimental data.

There are inconsistencies between experiments carried out at nominally equiv-

alent conditions. Our comparison (figure 7.5a) between the experiments suggests

that the thickness of sea ice observed by Wettlaufer et al. (1997a) is less (by up

to 15%) than that observed by Notz (2005) and Cox & Weeks (1975). There
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Figure 7.5: Experimental comparison in the case TB = −10◦C: (a) sea-ice thick-
ness and (b) ocean salinity measurements of Wettlaufer et al. (1997a) (black
circles), Notz (2005) (blue triangles; in (b) upward triangles correspond to sam-
ples from the middle of the tank, downward from the bottom, where it appears
some ponding of more saline water may occur) and Cox & Weeks (1975) (red,
right-pointing triangles). For reference, we show predictions of our model at
Rc = 20 and α = 0.03. The different depths of the tank H = 37.6, H = 39.5
and H = 69 cm (dot–dashed, solid, dashed), corresponding to the experiments
above, give negligible differences in sea-ice thickness but significant ones in ocean
salinity.
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is also almost certainly some differences in ocean salinity (figure 7.5b), since the

different depths of the tank do not explain all the discrepancies between measure-

ments. The experimental inconsistencies and biases in processing data must be

remembered when comparing our models and choice of tuning parameters. These

uncertainties should be addressed in future experiments.

7.3.2 Typical results for a fixed cold-plate temperature

We consider a constant cold-plate temperature of TB = −20◦C and initial salinity

35.5 ppt, and compare our model results to the experimental observations of

Wettlaufer et al. (1997a). The relatively cold temperature of the cold plate

means that heat gains from the laboratory are somewhat less important.

We show results for a range of tuning parameters and discuss sensitivity to

them below. Our model predicts the approximately diffusive growth of sea ice

over time reasonably well (figure 7.6a). Our model also reproduces the evolution

of the ocean salinity well (figure 7.6b) for parameters around Rc = 40, α = 0.03.

However, it predicts an onset time that is somewhat too early.

The temperature of the ocean (figure 7.6c) has been difficult to model across

all the experiments. This discrepancy may arise owing to problems in our model,

such as the assumption that the ocean is well mixed, or experimental problems

such as heat gains from the laboratory. The latter is suggested by the fact that

the amount of superheat Tl − TL(Cl) increases after the first 10 hours, while our

model predicts that it remains roughly steady.

7.3.3 Parameterization of convection and sensitivity to

tuning parameters

In our parameterization of convection, a smaller value of Rc (which corresponds

to a smaller critical thickness of ice for the onset of convection) means that

convection begins earlier (figure 7.6b). However, Rc also determines the late-time

evolution of the salinity field. A smaller Rc means that that ice can desalinate

more (corresponding to a higher solid fraction and a smaller permeability) before

convection shuts down, leading to a more saline ocean.
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Figure 7.6: Results of our model at TB = −20◦C: (a) sea-ice thickness, and
(b) salinity and (c) temperature of the ocean. Open symbols are experimental
measurements from Wettlaufer et al. (1997a). Calculations are run for the case
of no convection (Rc =∞) and for three different values of Rc (indicated in b),
at fixed α = 0.03. Experimental results for salinity of the ocean after 30 hours
agree well with Rc ≈ 40.
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The sea-ice thickness predicted by our model without convection is consis-

tently greater than that measured in experiments (figure 7.6a). All the parame-

terizations that include convection do a better job of describing the thickness, and

can do so within the range of experimental uncertainty. However, the thickness

appears relatively insensitive to the value of Rc because, although the thermal

properties of ice depend significantly on salinity, the reduced thermal conductiv-

ity of more saline ice is almost balanced out by the lower latent heat release. The

trend towards slightly thicker ice when Rc is larger is consistent with the fact

that more saline ice is slightly thicker, as discussed in section 8.4.

More systematically, in figure 7.7 we consider how the predicted salinity of

the ocean and sea-ice thickness after 30 hours depend on the tuning parameters.

Hitherto we have considered two independent tuning parameters. However, figure

7.7c,d shows that the dependence on α is very weak in the range suggested

by idealized studies, so we fix α = 0.03, a typical value in these studies (cf.

figure 6.3 and note that in this chapter we use α in place of W (Ω) and Ω ≈
10). There is some early-time sensitivity to α, but very little sensitivity several

hours after the onset of convection because of the following negative feedback.

A greater initial desalination increases the solid fraction, thereby reducing the

Rayleigh number and so reducing later desalination. Figure 7.7a,b shows the

experimental uncertainty in ocean salinity corresponds (at least in this parameter

range) to a large uncertainty in Rc. We suggest using Rc = 40 for the Wettlaufer

et al. (1997a) experiments, although note that a range 20 < Rc < 45 would be

reasonable.

Our parameterization allows convection to be confined to a lower layer of ice.

The detailed behaviour is sensitive to the precise details of the parameterization

– using the approach described in section 7.2.3 leads to cycles of full-depth and

confined convection, at least for the early part of ice growth in a confined tank

(figure 7.8). The basic physical mechanism driving these cycles is as follows: a

shift to confined convection reduces the salt flux from the ice, leading to a slower

increase in solid fraction and slower decrease in permeability. However, the growth

rate is almost unchanged, so the local Rayleigh number can increase sufficiently

to allow full-depth convection. The more rapid desalination then decreases the

permeability faster, leading to convection being confined again. This behaviour is
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Figure 7.7: Model sensitivity to tuning parameters at TB = −20◦C (circles).
Predictions of the ocean salinity (a, c) and sea-ice thickness (b, d) at t = 30
hours. We show variation with Rc at α = 0.03 in (a, b), and variation with α at
Rc = 40 (c, d). The dashed, horizontal line shows the experimentally observed
ocean salinity. The horizontal shaded region gives a rough (high) estimate of the
uncertainty, accounting for the ±1 ppt resolution of the refractometer used and
the +1.5 ppt bias towards underestimating the ocean salinity associated with the
ponding and overflow discussed in section 7.3.1. The vertical shaded region shows
the consequent uncertainty in choice of Rc. The solid, horizontal lines show the
case of no convection.
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Figure 7.8: The depth of the convecting layer at the conditions described in figure
7.6 for parameters Rc = 40, α = 0.03.

quite common in our model and indeed the signature of these oscillations is shown

in the Ra-profiles shown in figure 7.4d for a deep tank with the Rayleigh number

at the top of the tank Ra(0) switching between being just supercritical and just

subcritical. This switching allows the upper regions of ice to desalinate slowly

(cf. figure 7.4c) within our single parameterization of gravity drainage, which may

have a similar effect to the additional ‘slow mode of gravity drainage’ of Turner

et al. (2013), discussed in section 8.1.3. We note in passing that oscillations

in gravity drainage have previously been reported in experiments; for instance

Eide & Martin (1975) report oscillations with a period of roughly an hour in 10

cm-thick ice.

7.3.4 Model predictions with fixed chill

The usefulness of our model depends not on its ability to predict a single exper-

iment. Arguably, it is not surprising that any reasonable model could achieve

this by adjusting tuning parameters. Therefore, we run our model with the same

tuning parameters Rc = 40, α = 0.03 suggested by the cold plate temperature

TB = −20◦C over a range of TB.

There is a tendency to overestimate sea-ice thickness in our model, which oc-

curs to greater extent at warmer TB (figure 7.9a). This overestimation may arise

from the fact that our expression for the thermal conductivity of ice (7.8), which

uses the arithmetic mean, applies to lamellae orientated parallel to the tempera-

ture gradient, and is an upper bound for arbitrary crystal structure (Batchelor,
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The inset in (b) shows the onset of convection.

1974). However, calculations in which the harmonic, rather than arithmetic,

mean are used suggest this effect is no more pronounced at warmer TB. The

overestimation seems more likely to result from the heat gains from the labora-

tory discussed in section 7.3.1.

In terms of ocean salinity, the onset of convection is poorly described by our

model. According to our model, the onset is earliest in the case TB = −10◦C,

which is the reverse of the experimental observations (figure 7.9b, inset). Given

that predictions of sea-ice thickness for early times are reasonably accurate, this

discrepancy is most likely to be connected to difficulties in calculating the per-

meability of mushy layers. There appears to be a systematic tendency to overes-

timate the permeability of relatively porous ice (TB = −10◦C) but underestimate

the permeability of less porous ice (TB = −20◦C). We return to this question in

section 7.4. Nevertheless, our model describes the evolution of both the sea-ice

thickness and salinity of the ocean across all three experiments in a reasonably

successful fashion.
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Figure 7.10: Experiment in which TB is switched between −5◦C to −10◦C every
twelve hours. Symbols are as in figure 7.5. The blue curve shows Rc = 20 and
the black dashed curve shows Rc =∞ (our model without convection).

7.3.5 Model predictions with variable chill

We compare our model to an experiment by Notz (2005) in which the cold plate

temperature was switched every twelve hours, a timescale chosen to mimic a

diurnal cycle. We use tuning parameters Rc = 20, α = 0.03 suggested by the

equivalent experiment at fixed cold-plate temperature (cf. figure 7.5, and note

that the different Rc is associated with the experimental inconsistency discussed

in section 7.3.1). Our model does a very good job of reproducing the observed

sea-ice thickness and desalination of the ice (figure 7.10). Although these step

changes in temperature are somewhat artificial, very similar results were obtained

in our model with a sinusoidally varying cold-plate temperature.

7.3.6 Conclusions

Calculations of sea-ice thickness are sensitive to knowledge of the thermal prop-

erties of sea ice. In our calculations, we have made a number of approximations,

such as ignoring the variation in these properties with temperature. Neverthe-

less, we are able to predict sea-ice growth within experimental uncertainty (albeit
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with a bias towards over-predicting growth). Crucially, a single choice of tuning

parameter can successfully describe the evolution of the salinity of the ocean in

a range of experiments at different conditions. Therefore, our parameterization

represents promising progress in the accurate, time-dependent, prediction of salt

fluxes in sea-ice models.

However, there are differences between experiments (which we do not fully

understand) and biases in processing experimental data that would lead to differ-

ent (lower) choices of critical Rayleigh number compared to those based on the

measured ocean salinity in the experiments of Wettlaufer et al. (1997a) on which

we have focused. Further experiments are required to resolve the final choice.

7.4 Porosity–permeability relationship

Our dynamic-salinity model of sea ice applies to a much wider class of problems

than simply those growing sea ice from saltwater with a salinity of about 35 ppt,

because it is derived from fundamental physics and was not particularly tuned

to sea ice (with the exception of the tuning parameters Rc and α, which we do

not use in this section because here we only consider behaviour before the onset

of convection). Thus we have used it to investigate the full set of experiments

considered in Wettlaufer et al. (1997a), which were conducted at different initial

saltwater salinities from 20 to 140 ppt. These lead to the formation of ice with

different porosities, allowing an indirect study of the relationship between porosity

and permeability.

The relationship between the porosity and permeability of a reactive porous

medium, such as sea ice, is an intrinsically difficult problem, because direct mea-

surements alter the structure of the medium. Some recent progress, reviewed by

Golden et al. (2007), has been made by taking essentially microstructural models

that have some form of local permeability and using them to establish a bulk

permeability for a layer of sea ice (e.g. Petrich et al., 2006; Zhu et al., 2006).

Here, we extend a suggestion of Wettlaufer et al. (1997a, 2000): the hypoth-

esis of a constant critical Rayleigh number can be used to collapse data from

the full range of experiments to a single curve and this curve used to infer the

(bulk) permeability. We extend this suggestion by inferring a consistent local
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permeability.

Our procedure is as follows. We take the experimental measurements in Wet-

tlaufer et al. (1997a) of ocean salinity as a function of sea-ice thickness and use

them to calculate a critical thickness for the onset of convection (at which the

ocean salinity starts to increase from its initial value). We then use our model,

forced at the relevant experimental conditions, to calculate the growth of the

mushy layer until the experimental critical thickness is reached. We calculate

the local Rayleigh number from equation (7.10) at the critical thickness assum-

ing a given relationship for the local permeability Kl(φ) = (1 − φ)b in equation

(7.11). We then plot the maximum value of the Rayleigh number Ramax against

the calculated mean solid fraction φ. We look for a horizontal line of best fit,

because a constant Ramax with φ corresponds to the hypothesis of a constant

critical Rayleigh number.

In figure 7.11a, we show that local permeability Kl(φ) = (1− φ)3 does not ap-

pear consistent with a constant critical Rayleigh number. The cubic relationship

seems to overestimate the permeability for low solid fraction and underestimate

it for high solid fraction, consistent with the pattern observed in figure 7.9 and

also the measurements of Eicken et al. (2004). A better choice, shown in figure

7.11b, is Kl(φ) = (1− φ)2, which successfully removes most of the trend evident

in figure 7.11a and is consistent with the hypothesis of a constant critical Rayleigh

number. It also corrects the problems with predicting onset noted in figure 7.9b

and improves predictions throughout the range of times considered.

It is important to note that, in the interpretation of experiments in figure

7.12, the hypothesis of a constant critical bulk Rayleigh number is nevertheless

consistent with a bulk permeability that varies cubically with mean porosity,

i.e. K ∝ (1− φ)3, a relationship commonly suggested following Freitag (1999).

This suggests that caution should be used when calculating a local Rayleigh

number using formulae appropriate to the bulk permeability. A local permeability

Kl(φ) = (1 − φ)2 corresponds to a microstructural model of cylindrical tubes

orientated parallel to the temperature gradient (e.g. Phillips, 1991), which is

plausible for sea ice. Coupled with the promising results from our model, this

leads us to propose investigating this relationship in future when calculating local

Rayleigh numbers.
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Figure 7.11: Maximum Rayleigh number Ramax against mean solid fraction φ
for different initial salinities C0 (see legend) calculated using our model on the
experiments of Wettlaufer et al. (1997a) using the methodology discussed in the
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Figure 7.12: Bulk permeability inferred from the experiments of Wettlaufer et al.
(1997a) using equation (7.10) with a single bulk permeability K under the hy-
pothesis that the onset of convection is determined by a critical bulk Rayleigh
number Rc = 40. The legend is as in figure 7.11. The solid curve is a best fit cubic
K = 2.24× 10−5(1− φ)3, which is perhaps a slightly better fit than the best fit
quadratic K = 1.48× 10−5(1− φ)2, (cf. figure 7b in Wettlaufer et al., 2000, for
a complementary approach).
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7.5 Conclusions

Our new dynamic-salinity sea-ice model contains a parameterization of gravity

drainage derived from fundamental physical principles. Thus it can account for

important dynamical feedbacks that regulate the desalination of sea ice, such as

the relationship between ice salinity, porosity, permeability and the desalination

rate (which we use a local Rayleigh number to represent), as well as varying

external forcing from the atmosphere and ocean.

Our simple parameterization benefits from being a single governing equation

for the vertical transport of heat and salt caused by convection, with only one

dynamically important tuning parameter, a critical Rayleigh number Rc. We

have expressed our parameterization in terms of the underlying partial differen-

tial equations, rather than a particular numerical scheme, such that it can be

implemented readily in climate models using any desired numerical method.

As well as being physically based (in common with some of the other new

generation of dynamic-salinity sea-ice models), our model has been thoroughly

tested against a wide range of published laboratory experiments. Our success

in using a single choice of tuning parameter to predict the salt fluxes across a

change of experimentally imposed external conditions leads us to conclude that

our parameterization represents the correct physics. There are some inconsisten-

cies and biases between experiments at the same nominal conditions, that lead to

some uncertainty in the final choice of tuning parameter Rc. Further laboratory

experiments (and perhaps field observations) are needed to resolve this choice.

We discuss the implications of our parameterization for climate modellers in

chapter 8 by analysing the behaviour of a fixed-salinity model in comparison with

the dynamic-salinity model developed in this chapter.
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7.A Appendix: Numerical method

7.A.1 Non-dimensionalization, rescaling and discretization

We non-dimensionalize the governing equations and boundary conditions for nu-

merical convenience. We define the dimensionless temperature of the ice and

ocean

θ =
T − TL(C0)

TL(C0)− TB
, θl =

Tl − TL(C0)

TL(C0)− TB
, (7.20)

respectively, where C0 is the initial salinity of the ocean and TB is the initial

temperature of the cold plate. There is a choice in how to non-dimensionalize

the bulk salinity of the ice and ocean. In order to avoid inverting the liquidus

relationship T = TL(C) at various points it is more convenient to choose

θb =
TL(S)− TL(C0)

TL(C0)− TB
, θcl =

TL(Cl)− TL(C0)

TL(C0)− TB
, (7.21)

for the bulk salinity and ocean salinity respectively.

Sea ice occupies the region 0 ≤ z ≤ h(t). It is moderately difficult to accom-

modate a time-dependent domain numerically, although this is sometimes done

in so-called ‘enthalpy-methods’ (e.g. Oertling & Watts, 2004; Notz & Worster,

2006), including, for example, version 4 of CICE (Hunke & Lipscomb, 2008). In

this chapter, we map the sea ice to [0, 1] which avoids the need to re-map a numer-

ical grid, and the additional nonlinearity in the equations is not especially costly

because the equations are already nonlinear. It has the computational advan-

tage that the temperature is approximately steady in these changed coordinates.

Rather than directly calculating h(t), we calculate h2(t) to cope better with the

initial growth. In particular, we map the mushy layer to [0, 1] by introducing the

change of variables (t, z)→ (τ, ζ), where

τ(t, z) = t, ζ(t, z) = z/y1/2(t), y = h2. (7.22)

In these mapped coordinates

∂

∂t
=

∂

∂τ
− ζ ẏ

2y

∂

∂ζ
,

∂

∂z
=

1

y1/2

∂

∂ζ
. (7.23)
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The governing equations (7.3, 7.4) give a nonlinear diffusion equation for the

dimensionless temperature θ(τ, ζ) and an advection equation for dimensionless

bulk salinity θb(τ, ζ) on 0 ≤ ζ ≤ 1. We discretize this domain into I equally

spaced intervals of length ∆ζ = 1/I and label the end-points

ζj = j∆ζ : j = 0, 1, ..., I.

Throughout, we use second-order estimates in space, appropriate to the order of

the heat equation.

We index time steps ∆τ with n. For example, if yn = y(τ), then y(τ +

∆τ) = yn+1. Similarly, we write θnj = θ(τ, ζj) and likewise for the other variables.

However, unlike ∆ζ, we do not fix ∆τ but allow it to vary over the course of the

integration.

7.A.2 Predictor–corrector routine for non-linear diffusion

equation

The heat equation (7.3) implies that the temperature θ(τ, ζ) satisfies

c
∂θ

∂τ
+

[
−cζẏ

2y
+ d

w

y1/2

]
∂θ

∂ζ
=

1

y

∂

∂ζ

(
k
∂θ

∂ζ

)
, (7.24)

where, to avoid multiple subscripts, we replace ci by c, cw by d and ki by k.

If we set w = 0, this equation reduces to an equivalent equation in Kerr et al.

(1990). Therefore, we use the same type of numerical method: a predictor–

corrector generalization of the second-order in space Crank-Nicholson routine

(Ames, 1977) solves the heat equation, and a second-order Runge–Kutta routine

solves the ordinary differential equations governing the interface location (7.15)

and the temperature of the ocean (7.17). Our approach retains the stability

advantages of semi-implicit schemes while retaining a linear tridiagonal system

that can be readily solved.

For the predictor step, we estimate all quantities at time n, except for the

highest derivative ∂
∂ζ

(
km

∂θ
∂ζ

)
in which we evaluate k at time n, but θ at time

n + 1
2
. Using a forward time step to evaluate ∂θ

∂τ
, we obtain a linear system of
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equations for θn+1/2 at the interior points j = 1, 2, ..., I − 1

yncnj

(
θ
n+1/2
j − θnj

∆τ/2

)
+

[
−cnj

ζj ẏ
n

2
+ dnjw

n
j (yn)1/2

](
θnj+1 − θnj−1

2∆ζ

)

=
1

2∆ζ2

[(
knj+1 + knj

)
θ
n+1/2
j+1 −

(
knj+1 + 2knj + knj−1

)
θ
n+1/2
j

+
(
knj + knj−1

)
θ
n+1/2
j−1

]
(7.25)

We apply the fixed-temperature boundary conditions on θ by setting θ
n+1/2
0 and

θ
n+1/2
I . We then use the Thomas Algorithm (Thomas, 1949) to solve the re-

sulting tridiagonal system of linear equations to determine an estimate for the

temperature field at the half time step.

For the corrector step, we estimate all quantities at time n+ 1/2, averaging

estimates for the highest derivatives at time n and time n+ 1. This gives a linear

system of equations for θn+1 at the interior points j = 1, 2, ..., I − 1

yn+1/2c
n+1/2
j

(
θn+1
j − θnj

∆τ

)

+

[
−cn+1/2

j

ζj ẏ
n+1/2

2
+ d

n+1/2
j w

n+1/2
j (yn+1/2)1/2

](
θ
n+1/2
j+1 − θn+1/2

j−1

2∆ζ

)

=
1

4∆ζ2

[(
k
n+1/2
j+1 + k

n+1/2
j

) (
θn+1
j+1 + θnj+1

)

−
(
k
n+1/2
j+1 + 2k

n+1/2
j + k

n+1/2
j−1

) (
θn+1
j + θnj

)

+
(
k
n+1/2
j + k

n+1/2
j−1

) (
θn+1
j−1 + θnj−1

)]
(7.26)

As before, we apply the fixed-temperature boundary conditions and solve the

tridiagonal system to determine the temperature at the next time step θn+1.

7.A.3 Advection equation for bulk salinity

The salt equation (7.4) implies that θb(τ, ζ) satisfies

∂θb
∂τ

=
ζẏ

2y
− r w

y1/2

∂θ

∂ζ
, (7.27)
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where r = C ′L(θ)/C ′L(θb) and ′ denotes a derivative with respect to the argument.

Equation (7.27) is hyperbolic and susceptible to spurious oscillations. These can

be avoided by solving the case w = 0 using interpolation (this accounts for the

frame advection ζẏ/2y in equation 7.27) and then central differencing to treat

the convective part (w 6= 0). In particular, we find

(θb)
n+1/2
j = (θb)

n
j∗ − rnj

∆t

2

wnj
(yn)1/2

(
θnj+1 − θnj−1

2∆ζ

)
, (7.28)

and

(θb)
n+1
j = (θb)

n
j∗ − rn+1/2

j ∆t
w
n+1/2
j

(yn+1/2)1/2

(
θ
n+1/2
j+1 − θn+1/2

j−1

2∆ζ

)
, (7.29)

where (θb)
n
j∗ is obtained by linearly interpolating the solution at time n to find

the value at ζj∗ = ζj(y
n+1/yn) at the full time step and similarly at the half time

step. Linear interpolation is equivalent to a central finite-difference approach at

leading order, but avoids the spurious oscillations introduced by using central

differencing to solve equations involving frame advection (the other advective

term is coupled more tightly to the thermal equation, which includes diffusion,

so this can be integrated as we have outlined above).

7.A.4 Boundary conditions

We use equations (7.15, 7.17) to determine the dimensionless thickness of sea ice

and temperature of the ocean

ẏ = 2y1/2 w|ζ=1 +
2 ∂θ/∂ζ|ζ=1− − 2y1/2Nu (θl − θcl)4/3

θl − θcl + S φ|ζ=1−
, (7.30)

(
1− y1/2

)
θ̇l = −Nu (θl − θcl)4/3 , (7.31)

where

Nu =
(
24/3λ

)(αTgclH3∆T

klν

)1/3

, S =
L

cl∆T
. (7.32)
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In order to maintain second-order accuracy in ∆ζ, we use the estimate

∂θ

∂ζ

∣∣∣∣
ζ=1−

=
3θI − 4θI−1 + θI−2

2∆ζ
. (7.33)

Our scheme to solve these ordinary differential equations is analogous to the

second-order Runge–Kutta method and was chosen for compatibility with the

predictor–corrector routine for the heat equation. We firstly estimate all quanti-

ties at time n to forward time step to n+1/2. We secondly estimate all quantities

at time n+ 1/2. This estimation requires the output from the predictor step dis-

cussed above. We then perform a full time step forward from time step n to n+1

to obtain a second-order estimate for y and θl at time n+ 1.

We could have used a similar method to calculate the solute flux and hence

the evolution of ocean salinity θcl. However, we preferred explicitly to conserve

salt globally and we used quadrature to calculate the salt flux to the ocean.

To maintain second-order accuracy, we used a modified Simpson’s rule when

evaluating the integral.

7.A.5 Parameterization of convection

At a given time, θ, θb are used to calculate the solid fraction φ. Then, using

equation (7.11), the dimensionless harmonic mean permeability

K(ζ) =

[
1

1− ζ

∫ 1

ζ

1

Kl(φ(ζ ′))
dζ ′
]−1

. (7.34)

is calculated using a modified version of Simpson’s rule. Finally, the local Rayleigh

number given in equation (7.10)

Ra(ζ) = Ra0
CL(θ(ζ))− CL(θl)

∆C0

y1/2(1− ζ)K(ζ), (7.35)

where

Ra0 = clgβ∆C0HK0/klν, ∆C0 = CL(θ(0))− CL(θl) (7.36)

evaluated at t = 0. The maximum value of Ra(ζ) is found on the discretized grid

Rai = Ra(ζi). If maxRai < Rc, the whole mushy layer is subcritical and so there
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is no convection.

In order to retain second-order spatial accuracy in calculating w, we proceed

as follows. If Rai=0 = 0, the whole layer is supercritical and ζc = 0. Otherwise,

we find the first point i such that Rai ≥ Rc, fit a quadratic to this point and

its nearest neighbours (these three points uniquely specify the quadratic, no re-

gression is required) and use the quadratic formula to determine a second-order

estimate for the root Ra(ζc) = Rc. Similarly, we fit a quadratic to the discretized

Rayleigh number about the maximum to estimate Rmax = maxRa(ζ) to second

order, except in the case of an end-point maximum, in which this is unnecessary.

7.A.6 Initial conditions

The initial conditions depend on the situation modelled and the following condi-

tions are appropriate to the laboratory experiments in section 7.3. Initially the

sea-ice thickness is zero and, before convection begins, the bulk salinity of the ice

has the same value as the initial salinity of the ocean so

h(t) = 0, S(t, z) = C0, Cl(t) = C0, Tl(t) = T0 (t = 0), (7.37)

where the initial salinity C0 and temperature T0 of the ocean must be specified.

While the initial temperature profile T (0, z) appears arbitrary, it can be

uniquely specified such that h ∼ At1/2 as t→ 0, which is exact diffusive growth,

for some constant A to be determined. Exact diffusive growth corresponds to the

initial temperature profile being steady in scaled coordinates ζ. Initially there is

no convection, as observed by Wettlaufer et al. (1997a), since the initial Rayleigh

number will be zero as the sea-ice thickness is zero. Then, asymptotically ap-

proximating the boundary condition (7.15) to determine the initial growth rate

in terms of the initial temperature profile, the heat equation (7.3) becomes an or-

dinary differential equation, which we solve numerically using a shooting method

and Runge–Kutta routine to determine the initial temperature profile uniquely.
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7.A.7 Testing and error control

The numerical method was tested against known solutions for the linear and

nonlinear heat equation without convection, and tested for resolution sensitivity.

In all our calculations for the graphs in this chapter we used 100 vertical grid

points. However, our model can certainly be run with fewer grid points. For

example, in calculations for figure 7.4, after 20 days of growth into a deep ocean

the use of 40 grid points gives a difference of 0.7% in the change in average sea-

ice salinity, 10 gives a difference of 5% in the change in average sea-ice salinity,

and 5 gives a difference of 16% in the change in average sea-ice salinity. The

differences between sea-ice thickness were small (at most about 2% after 20 days,

although higher for earlier times). This suggests that it is practical to use our

parameterization in climate models with 5 or 10 grid points, although it may be

necessary to retune parameters for the smaller number of grid points. We did

not use a fixed time step but instead controlled errors in time stepping by both

imposing a Courant condition and also by calculating the difference between two

time steps and a single time step of double the length. This gives an estimate

of the error, which we used to adjust the time step such that the error remained

below some specified tolerance. For example, in the calculation with 5 grid points

discussed above, the average time step was about 30 minutes. The variable time

step speeds up the integration as much as possible while controlling the error.
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Chapter 8

Implications for climate models

The content of this chapter has been submitted to the Journal of Geophysical

Research (Rees Jones & Worster, 2013c).

8.1 Introduction

8.1.1 Mechanisms for interaction with the climate

In this chapter, we focus on two kinds of physical mechanism, discussed in

more detail in section 2.1.2, through which our new parameterization of grav-

ity drainage might affect a climate model in which it was included. Firstly, there

are implications for the thermal properties of sea ice. Although only a few me-

ters thick, sea ice reflects a higher proportion of solar radiation than open water,

insulates the polar oceans, and stores latent heat (reviewed in Weeks, 2010). Sec-

ondly, there are implications for the transport of salt in the polar regions. The

seasonal desalination of sea ice is a crucial salt flux for the polar oceans, compa-

rable to the (negative) salt fluxes from rivers and ice-sheet melting, and drives

vertical mixing of the upper layer of the ocean. Indeed, the representation of salt

fluxes is known to significantly affect the salinity structure of the ocean in climate

models (Vancoppenolle et al., 2005, 2009b).

In full, coupled climate models there are likely to be additional effects. For

example, the mechanical properties of sea ice depend on its salinity, so our param-

eterization could affect the advective transport of sea ice due to wind stresses, as
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well as mechanisms like ridging, where the ice is thickened by collisions between

ice floes. Furthermore, in principle, the parameterized convective upwelling ve-

locity calculated in our model could also be used to calculate the transport of

nutrients and trace gases in climate models (Vancoppenolle et al., 2010). Such

processes are increasingly important in view of the transition from purely physical

models to ‘Earth system’ models that also incorporate biological and chemical

elements, such as in the Community Earth System Model (Hurrell et al., 2013).

However, these effects are rather more indirect that those concerning thermal

properties and salt fluxes that we focus on in this chapter.

8.1.2 Comparison of model formulation with CICE

Having developed a functioning dynamic-salinity sea-ice model in chapter 7, we

now assess the implications for climate models by comparing it to CICE: The Los

Alamos Sea Ice Model (version 4.1, Hunke & Lipscomb, 2008) as an example of

a fixed-salinity model.

The thermodynamic modelling in Bitz & Lipscomb (1999), incorporated into

CICE, is approximately equivalent to that derived from mushy-layer theory. In

particular, Feltham et al. (2006) show that if the liquidus relationship is taken to

be linear CL(T ) = −T/m, then equations (7.6, 7.8) for the thermal properties of

a mushy layer simplify to

ci(T, S) = cs +mL
S

T 2
, (8.1)

ki(T, S) = ks +m (ks − kl)
S

T
, (8.2)

which are exactly the same expressions used in CICE, except for the small dif-

ference that m (ks − kl) ≈ 0.0009 W/cm/ppt is replaced by a constant 0.0013

W/cm/ppt. In the case of CICE, ki artificially drops to zero at the ice–ocean

interface where the temperature TO ≈ −2◦C at bulk salinity S = ks(−TO)/0.0013

≈ 33 ppt. By contrast, in our calculations ki is always greater than the thermal

conductivity of brine and so never drops to zero.

In our comparisons, we use equations (8.1, 8.2) with the constant 0.0013

W/cm/ppt as mentioned above and parameter values taken from the CICE doc-
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umentation for consistency. The most significant difference is that the default

option in CICE for the thermal conductivity of pure ice is 0.0203 W/cm/deg,

which is lower than most estimates, including that used in table 7.1 (cf. Pringle

et al., 2007) – which has the effect of reducing ice growth slightly. In all other

respects (numerical method, treatment of the ocean, including the relationship

between its salinity and melting temperature), our models are the same. This

allows us to contrast our dynamic-salinity model with CICE, as a fixed-salinity

model, independently of additional differences such as in numerical method.

The standard option in CICE is to use a self-similar fixed-salinity profile

Si(ζ) = 0.5× 3.2
[
1− cos

(
πζ0.407/(ζ+0.573)

)]
, (8.3)

where ζ = z/h, for calculating the thermal properties of sea ice using equations

(8.1, 8.2). For ice–ocean salt exchange, it uses a constant reference salinity Si = 4

ppt.

8.1.3 Comparison with some alternative parameterizations

of gravity drainage

Version 4.1 of CICE does not feature any representation of gravity drainage and

this has prompted considerable recent interest and progress. Here, we give a

detailed comparison with the two most similar proposals by Turner et al. (2013)

and Griewank & Notz (2013), one of which (Turner et al., 2013) is incorporated

as an option in the next version of CICE (version 5).

Independently, these authors have developed parameterizations of gravity

drainage that involve a Rayleigh number. There are several important differences

compared to our proposal. Our single instantaneous effective Rayleigh number

captures the non-local nature of convection arguably better than the more local

‘rapid mode of gravity drainage’ in Turner et al. (2013) and ‘convective’ param-

eterization in Griewank & Notz (2013), since it applies to the whole flow and

means that the velocity at a given depth is related to the velocity everywhere

within the convecting layer, consistent with the detailed calculations from which

our model is derived. By contrast the other proposals amount to adding up a
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series of locally driven flows, which may have some negative features. For exam-

ple, Griewank & Notz (2013) may be prone to underestimating the desalination

of lower regions of ice, since in their parameterization, the brine flux (implicitly

vertical velocity) would not increase with z there. Likewise, the decision to mod-

erate the velocity in terms of a local Rayleigh number in Turner et al. (2013)

would also typically underestimate the desalination of the lower regions of the

ice, since the local Rayleigh number approaches zero at the ice–ocean interface.

In Turner et al. (2013), the fact that w is allowed to be non-zero at z = 0 can

lead to excessive desalination near the top of the ice. A non-zero w at z = 0 is

also inconsistent with the propagation of dye fronts discussed in section 6.5. Thus

these alternative parameterizations may implicitly cause unreasonable features in

the vertical structure of the velocity field w, and hence in the salinity profile.

For example, the C-shaped salinity profiles, as are commonly observed in first-

year ice, and elevated near-surface salinities in our model (for example in figure

7.4b) arise because w = 0 at z = 0 in equation (7.5), in contrast to Turner et al.

(2013). This has the potential to affect surface melting in periods of warming.

Furthermore, our model is entirely derived from fundamental physical mod-

els, and avoids relying on other mathematical descriptions that are not obviously

physically motivated, such as the ‘simple model’ used as a stand-alone param-

eterization in Griewank & Notz (2013) and the ‘slow mode of gravity drainage’

used as an additional part of the parameterization in Turner et al. (2013). These

extend (in different ways) a simple relaxation scheme for gravity drainage (Van-

coppenolle et al., 2009a).

In light of the critique by Turner et al. (2013) of Wells et al. (2010, 2011,

2013), we note that both the model of Wells et al. (2010, 2011, 2013) and our

own CAP model consider the flow and viscous dissipation in the brine channel,

and are more complete calculations in that they determine, rather than prescribe,

the channel width, which depends on, for example, the strength of convection, as

shown in equation (4.38).

In determining the growth rate of sea ice through equation (7.15), we differ

significantly from Turner et al. (2013) in that they treat the solid fraction at the

interface as a tuning parameter that they adjust to match ice-thickness data.
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8.2 Definition of salt flux in sea-ice modelling

Fluxes of a quantity are only properly defined with respect to a reference value

of that quantity. For example, measurements of salt fluxes from the Arctic Basin

depend on the choice a relevant reference salinity (e.g. Aagaard & Carmack, 1989).

Often various choices of definition could be made; however, a good definition will

strengthen physical insight. Here we clarify the appropriate definition of salt

flux relevant to sea-ice modelling. In doing so we discuss the definition used in

CICE. We are not correcting any mistake; if alternative definitions are properly

interpreted, they may be used. Nor is our definition novel. However, there is a

need for clarity.

8.2.1 Treatment of salt fluxes in CICE

We firstly report how salt fluxes are described in the documentation of version 4.1

of CICE: the Los Alamos Sea Ice Model (Hunke & Lipscomb, 2008). In section

2.2, ‘Ocean,’ referring to the single-layer ocean used internally, the documentation

reports:

There is a flux of salt into the ocean under melting conditions,

and a (negative) flux when sea water is freezing. However, melting

sea ice ultimately freshens the top ocean layer, since the ocean is

much more saline than the ice. The ice model passes the net flux

of salt FS to the flux coupler, based on the net change in salt for

ice in all [ice-thickness] categories. In the present configuration, Si0

[a parameter called ice ref salinity, which is given a value 4 ppt] is

used for computing the salt flux, although the ice salinity used in the

thermodynamic calculation has differing values in the ice layers.

The index of variables also reports that FS has units kg/m2/s, i.e. the dimensions

of a mass of salt transported per unit area per time.

We secondly consider the source code. Schematically, the ‘ice therm vertical’

module of CICE, version 4.1 (Lipscomb et al., 2008), determines FS as follows. It

first calculates the total change in the thickness of the ice δh over one time step

165



8. IMPLICATIONS FOR CLIMATE MODELS

Sea ice

Ocean

H

h(t)

0

Si Si(z, t)

So(t) So(t)

(a) (b)

Figure 8.1: Box model of salt fluxes from sea ice with (a) uniform, steady ice
salinity and (b) arbitrary ice salinity. We have included the possibility of a
discontinuity at the ice–ocean interface.

δt and then computes the salt flux:

FS = −0.001ρi
δh

δt
Si0 , (8.4)

where Si0 = 4 ppt is a constant reference salinity used in calculating ice–ocean

salt exchange. The factor 0.001 converts units appropriately, since 1g of salt

dissolved in 1000g of water has a salinity of 1 ppt and ρi is the density of pure

ice. In the full model, this calculation is performed on each ice-thickness category

and then the net salt flux is determined as a weighted mean over the whole grid

box.

8.2.2 Salt fluxes from a global conservation equation

We consider a minimal box model, as shown in figure 8.1a. A liquid ocean of

uniform salinity So(t) lies between h(t) < z < H and sea ice of steady, uniform

salinity Si lies between 0 < z < h(t). The vertical coordinate z points downward

from ice to ocean, consistent with our sign convention that a positive salt flux

is from ice to ocean. It is convenient for the purposes of this section to change

units. Thus we use S, with various subscripts, to denote various salt densities,

i.e. having units kg/m3, not ppt.
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The total mass of salt in the ocean and ice are, respectively,

Mo(t) = [H − h(t)]So(t), Mi(t) = h(t)Si. (8.5)

Since the total mass of salt is conserved in the ice–ocean system,

dMo

dt
= −dMi

dt
= −ḣSi. (8.6)

This expression for Ṁo corresponds exactly to the definition (8.4) for FS given

in the CICE documentation, since we have changed units so Si = 0.001ρiSi0.

Therefore, we can interpret the CICE definition as describing the partitioning

of salt between two domains. It has nothing to do with what we might call

dynamic salt flux. So in particular, in the extreme example of growing pure sea

ice (Si = 0), then the CICE definition would give zero salt flux!

However, we also have

dMo

dt
= −ḣSo + (H − h)Ṡo ⇒ (H − h)Ṡo = ḣ (So − Si) . (8.7)

Therefore, we define the dynamic salt mass flux

FS dyn. ≡ ḣ (So − Si) = (H − h)Ṡo. (8.8)

The expression ḣ (So − Si), the definition, can be interpreted physically as seg-

regation across the ice–ocean interface (cf. Tiller et al., 1953). This leads to a

simple interpretation of dynamic salt flux for this simple case of constant-salinity

ice: the salt flux to the ocean is the amount of salt segregated at the ice–ocean

interface. In this case, the flux is simply proportional to the growth rate of the

ice (equation 8.8). Note that this conclusion is drawn from a simple box model of

sea ice in which its salinity is constant and there is a discontinuity in the salinity

field across the ice–ocean interface. This does not mean segregation is a physical

mechanism of sea-ice desalination.

In the growth season, ḣ > 0 so salt flux as defined by CICE (equation 8.4)

is negative, as stated in the CICE documentation (cf. our section 8.2.1). This

highlights that the counter-intuitive sign of salt flux in CICE arises from choosing
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an inappropriate definition. By contrast, our definition of dynamic salt flux is

clearly positive in the winter growth season (equation 8.8, since the ocean salinity

So is greater than the ice salinity Si).

In CICE, FS is the rate at which the mass of salt in the remaining ocean

changes; whereas, in our definition, FS is the rate at which salt is excluded from

the growing ice. We have shown that these definitions are not the same. The

expression (H − h)Ṡo in equation (8.8) is more oceanographically important,

because it is directly proportional to the buoyancy flux, which forces convection

in the ocean. Since h is very much smaller than H, this term tells us how fast

the ocean salinity changes.

8.2.3 Generalization to an arbitrary salinity profile

The salinity profile of sea ice evolves, so in general we take Si = Si(z, t). However,

we can still use global salt conservation in a box model (shown in figure 8.1b) to

define the dynamic salt flux. Thus

0 =
d

dt

[∫ h

0

Si(z, t) dz +

∫ h

0

So(t) dz

]
(8.9)

=

∫ h

0

∂S

∂t
dz + ḣSi(h, t) + (H − h)

dSo
dt
− ḣSo. (8.10)

By analogy with the constant salinity box model, this leads us to define the

dynamic salt mass flux in general:

FS dyn. ≡ ḣ∆S −
∫ h

0

∂S

∂t
dz = (H − h)

dSo
dt

, (8.11)

where ∆S = So(t)− Si(z = h, t) is the salinity jump across the ice–ocean inter-

face. The first expression is best taken as the definition, hence our equation

(7.18). The second expression is then used to update the salinity of the ocean,

hence our equation (7.19).

For the special case of self-similar salinity profile Si(z, t) = S̃(ζ), where ζ =

z/h, (including equation (8.3) used in the CICE thermodynamic calculation, but
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not for calculating salt fluxes), we find that the salt flux

FS dyn. = ḣ
(
So − S

)
, (8.12)

where S =
∫ 1

0
S̃(ζ) dζ, the average salinity of the sea ice. Note that a numerical

integration gives S = 2.3 ppt for the CICE profile. This value is lower than

the 4 ppt used in calculating the salt flux (see section 8.2.1, a discrepancy that

is acknowledged in the CICE documentation). Comparing equation (8.12) with

(8.8) shows that, a self-similar salinity profile gives the same solute flux as a

uniform profile of the average salinity.

Again, our definition has a simple physical interpretation: salt flux from sea

ice is the sum of segregation at the ice–ocean interface and the total change in

the internal salinity of the ice. Two examples – gravity drainage and basal melt

– illustrate the physical sense of this definition.

In growing ice, processes such as gravity drainage reduce the internal salinity

(∂S/∂t < 0). As in section 7.2.4, the bulk salinity field is continuous across the

ice–ocean interface, so ∆S = 0. Therefore

FS dyn. =

∫ h

0

−∂S
∂t

dz, (8.13)

so there is a positive salt flux to the ocean, raising its salinity.

In basal-melting ice, ḣ < 0 but ∆S > 0. If we neglect changes to the internal

salinity, then

FS dyn. = ḣ∆S, (8.14)

so there is a negative salt flux to the ocean, freshening it.

In conclusion, this section offers a brief explanation of the appropriate defini-

tion of salt fluxes in climate model and justifies our choice in section 7.2.4. The

CICE definition represents the rate of change of the mass of salt in the ocean,

whereas our definition represents the rate of change of the salinity of the ocean.
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8.3 Comparison of model predictions with CICE

8.3.1 Laboratory-experiment calculations

We first compare models with laboratory experiments to assess their effective-

ness. It is important to note that CICE was not designed to simulate small-scale

experiments in which the sea ice is relatively salty and formed under largely qui-

escent conditions, whereas, in the ocean, the first few centimetres of sea ice are

often formed under turbulent conditions (Weeks, 2010). Nevertheless the compar-

ison proves an instructive starting point because we can compare the underlying

thermodynamics of growth. We initially use the standard CICE fixed-salinity

profile (equation 8.3) for calculating thermodynamic growth. For ice–ocean salt

exchange, we use a constant reference salinity Si = 4 ppt. Together, this is the

default CICE option (CICE–def), as discussed in section 8.1.2. We later con-

sider the effect of using uniform salinities Si = 4 ppt (CICE–4) and Si = 25 ppt

(CICE–25) for both thermodynamic and ice–ocean salt exchange calculations.

The latter is the average ice–salinity after 30 hours in the experiment of figure

8.2.

For a fixed cold-plate temperature, all the models do a reasonable job of

predicting sea-ice thickness (figure 8.2a), but this is only because growth depends

weakly on salinity (section 8.4.1), with a progressively worse agreement for low

ice salinity. Indeed for the very desalinated profiles typically used in CICE,

the under prediction is 5–10%. We show below (section 8.4.2) that CICE is

principally sensitive to salinity through changes to the ocean salinity, so much of

this discrepancy is explained by the very large over prediction of ocean salinity

(figure 8.2b).

Ocean salinity is a proxy for salt fluxes to the ocean, so the over prediction

of ocean salinity in the CICE calculations corresponds to an over prediction of

the initial salt flux, which arises from excessively high brine rejection at the ice–

ocean interface. Although it is possible to choose a value of the ice salinity Si to

match an experimental result of ocean salinity at a given time, CICE predictions

are fundamentally inconsistent with the evolution of the salinity. Note that the

CICE–def and CICE–4 profiles give indistinguishable predictions. This suggests
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Figure 8.2: Experimental results of Wettlaufer et al. (1997a) at fixed TB = −20◦C
(diamonds) compared to predictions of our dynamic-salinity model (solid black
curve) and fixed-salinity models at uniform CICE–25 (solid blue curve), CICE–4
(dashed red curve) and the default CICE–def (dot-dashed orange curve).

that using depth-dependent salinity profiles does not affect the initial growth of

sea ice, although for late times the salinity at the interfaces matters. We also

tested the variable cold-plate temperature scenario of section 7.3.5, which had a

similar pattern of discrepancies, which were slightly greater, suggesting that our

dynamic-salinity model copes better with varying heat fluxes (cf. figure 8.5b).

In conclusion, the differences in predictions of sea-ice thickness are relatively

small and have a similar magnitude to the uncertainties in experiments and ma-

terial properties. However, the differences in predictions of salt fluxes are large

and systematic. Therefore, the greater success of our dynamic-salinity model

strongly suggests that it would improve the representation of salt fluxes into the

polar oceans.

8.3.2 Deep-ocean calculations

Results for solidification into a deep ocean (mixed layer) are arguably more im-

portant than into a tank. However, lacking sufficient experimental data to assess

which model is superior, in this section we show that our dynamic-salinity model

gives substantially different predictions of ice growth and discuss possible impli-

cations for climate models.

To compare models, we assume the ocean is very deep and hence that its

temperature Tl = −1.9◦C and salinity Cl = 35.5 ppt are constant. This is an

considerable idealization compared to typical mixed layers in the Arctic ocean,

171



8. IMPLICATIONS FOR CLIMATE MODELS

which evolve significantly. These conditions impose a constant ocean heat flux of

2.25 W/m2. Thus we explicitly neglect changes to the salinity of ocean (which

would otherwise cause further differences between models in terms of ice growth).

A more detailed ocean model is needed to assess these feedbacks properly.

Initially, our dynamic-salinity model predicts greater growth than in CICE,

as shown in figure 8.3a. This is exactly as we found in our tank experiments. The

variation with ice salinity observed is caused by the change in physical properties

(cf. section 8.4.1).

However, after longer periods (several weeks), this trend is reversed and the

CICE model predicts greater growth than our dynamic-salinity model. At late

times, growth depends dominantly on the thermal conductivity near the ice–

ocean interface (cf. section 8.4.3). In our dynamic model, this is always equal to

the conductivity of the liquid phase (since φ = 0 at the interface, independent

of, say, the mean ice salinity) whereas in a fixed-salinity model (in which φ > 0

at the interface) the conductivity will always be higher. Therefore, our model’s

continuous bulk salinity profile at the ice–ocean interface makes a measurable

difference to predictions. In practice, the effect of thermal conductivity would

need to be considered alongside the effect of high-frequency forcing and snow

cover.

The difference in sea-ice thickness is in addition to the difference between the

models in average sea-ice salinity (figure 8.3b), which is a measure of the total

salt flux into the ocean. Note that the predicted salinities in our model are rather

high for first-year ice (Weeks, 2010), even for the smaller values of Rc suggested

by the experiments of (Notz, 2005), which is partly a consequence of our constant

atmosphere temperature. In reality, periods of warming and solar radiation would

result in a lower solid fraction and hence a more permeable mushy layer that could

desalinate further, as was observed in the simulations of Turner et al. (2013) and

Griewank & Notz (2013) with realistic forcing.

8.4 Physical mechanisms affecting ice growth

In order to justify the explanations made previously, we now present simplified

calculations at fixed, uniform ice salinity Si, used in both the thermodynamic
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Figure 8.3: Comparison between fixed and dynamic-salinity models for a deep
ocean at constant TB = −20◦C, Tl = −1.9◦C and Cl = 35.5 ppt. Note the much
longer time scale compared to previous figures. We additionally include model
calculations with Rc = 20 and Rc = 10, except in the inset for (a), which are
indicated by an arrow in the direction of increasing Rc and labelled in (b). This
compensates for the fact that the processed laboratory measurements of Wett-
laufer et al. (1997a) that suggest Rc = 40 may overestimate the ice salinity. The
insets show initial 12 hours (0.5 days) including the delayed onset of convection
in our dynamic-salinity model.
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Figure 8.4: CICE calculation of sea-ice growth into (a) a tank of depth 37.6
cm and (b) a deep ocean, with TB = −20◦C, as a function of fixed, uniform ice
salinity Si. The growth rate decreases over time (labelled in hours). The common
t = 0 curve would apply for all times if heat and salt fluxes to the ocean were
neglected. The rapid decrease at large Si is caused by the CICE expression for the
thermal conductivity of ice dropping to zero (cf. equation (8.2) and discussion
there).

and ice–ocean salt exchange calculation. We separate the effects of variation in

the thermodynamic properties with Si and changes to the environment over time,

which also depends on Si indirectly through salt fluxes.

8.4.1 Effect of the thermodynamic properties of ice

More saline ice has a lower solid fraction and so has a lower thermal conductivity.

However, there is also less latent heat of solidification, which counterbalances the

decrease in conductivity. We analyze this balance systematically by considering

an infinitely deep tank and neglecting the heat flux from the tank.

In the solid t = 0 curve in figure 8.4a (which is the same in figure 8.4b), we

show that the average growth rate, measured in cm2/hour to reflect the fact that

the growth of ice is exactly diffusive in this scenario, depends only very weakly on

the prescribed salinity of the ice. Indeed, this scenario can be analyzed asymp-

totically and this asymptotic analysis shows that this graph is representative of

a wide class of similar situations in which the thermal properties of a material

vary with salinity. In particular, the weak increase in growth rate with increas-

ing salinity is generic across the entire range of TB relevant to sea-ice formation.

Therefore, vertical salinity variation is not particularly important for the growth

rate of first-year ice. Our analysis constitutes a general explanation of this effect
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noticed for first-year ice by Vancoppenolle et al. (2005) and observed by Griewank

& Notz (2013) in their calculations.

8.4.2 Effect of changing ocean salinity over time

In a finite tank, using a lower ice salinity for the ice–ocean salt exchange means

that the ocean becomes more saline over time because there is more segregation at

the interface. This depresses the freezing temperature of the ocean TL (Cl), which

is the temperature of the ice–ocean interface, and thereby reduces the temperature

difference across the sea ice. The reduction decreases the conduction of heat

across the ice and causes slowing growth rates over time as shown in figure 8.4a.

Thus the dependence on ice salinity caused by changes to the physical properties

of ice is still present, but at later times that effect is dominated by changes to

the ocean salinity.

8.4.3 Effect of prescribed heat flux from the ocean

We prescribe a fixed heat flux and salinity of the ocean. The situation here

is more complex: at early times, the results of section 8.4.1 apply, but at late

times the heat flux from the ocean will always be significant and balanced by

the conductive heat flux from the relatively warm ocean. This balance gives a

steady-state thickness

h ∼ ki(z = h)∆T/FT . (8.15)

Although a steady state is certainly not achieved in (say) 30 days of growth,

the balance of fluxes represented by equation (8.15) is nevertheless important over

this timescale. Conversely, latent heat is somewhat less important. Therefore, the

dependence of the thermal conductivity near the ice–ocean interface on salinity

determines the growth rate: ki decreases with Si (equation 8.2, reflecting the fact

that more saline ice has a lower solid fraction) so h decreases with Si. Since the

steady-state thickness is lower for higher Si, the average growth rate at sufficiently

late times must also must also be lower, as shown in figure 8.4b. The trend is only

enhanced at later times (figure 8.3). Note that although this effect was reported

in terms of the bottom growth by Vancoppenolle et al. (2005) for multi-year ice
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at a few values of Si, in their calculations the effect was more than counteracted

by changes in surface melting, which we do not consider in our test calculations.

This suggests that our dynamic-salinity model will cause additional differences

when the ice starts to melt in the summer.

8.5 Conclusions

The treatment of the thermodynamics of sea-ice growth in our one-dimensional

model is based on mushy-layer theory, accounting for a nonlinear liquidus rela-

tionship, and is a consistent new development of previous sea-ice models such as

CICE. Our model can be solved with a variety of boundary conditions; in par-

ticular, the atmospheric and ocean heat fluxes ocean can be imposed. Thus our

model could be incorporated into a coupled climate model.

The definition of salt fluxes used in such models needs to be chosen consis-

tently between sea ice and ocean components. We showed that the definition

used in CICE represents the rate of change of the total mass of salt in the ocean,

which counterintuitively is negative when sea ice grows and is not intrinsically

important. Therefore, we propose a definition of dynamic salt flux that repre-

sents how the salinity of ocean changes due to changes in the salinity of sea ice

caused by, for example, convective desalination. Such a definition is particularly

important if our dynamic-salinity model is to be used.

We have assessed the likely direct, physical implications of using our dynamic-

salinity model in coupled climate models in terms of thermal considerations that

affect sea-ice thickness and salt fluxes that affect ocean salinity. We showed

that our dynamic parameterization of ice salinity causes some differences from

established, fixed-salinity models in terms of predicted ice thickness and much

more significant differences in terms of the qualitative pattern and quantitative

magnitude of salt fluxes (shown in figure 8.5).

The insensitivity of sea-ice thickness to salinity is an important feature that we

were able to explain systematically in terms of the competition between latent

heat release and ice conductivity. However, secondary effects through salinity

affecting thermal conductivity and hence surface and basal melting in warmer

periods may still cause greater sensitivity in some situations.
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By contrast, salt fluxes are very sensitive to calculations of sea-ice salinity.

Prescribing a low sea-ice salinity when calculating ice–ocean salt exchange in

climate models is equivalent to predicting an excessive salt flux due to segregation

at the interface and is inappropriate for thinner, first-year ice. Thus accounting

for salt transport reduces salt fluxes, consistent with the pattern found in previous

studies (e.g. Vancoppenolle et al., 2009b).

We have presented the different predictions between older, fixed-salinity model

and our new dynamic-salinity model in a number of ideal, but representative, sce-

narios. The physical basis of our model, which allows it to account for important

dynamical feedbacks, and the success of our model in predicting laboratory ex-

periments in chapter 7 gives us reason to expect that it should be more successful

in predicting salt fluxes in climate models. Therefore, we expect that our param-

eterization should improve the predictive capabilities of sea-ice models, making

them more robust to climate change and more responsive to short-term variability

in external forcing.
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Figure 8.5: Comparison between a fixed-salinity (CICE-def, red squares) and
our dynamic-salinity model (black circles) of predicted salt fluxes from sea ice.
(a & c) provide an alternative interpretation of figures 8.2 & 8.3, respectively.
(b) corresponds to the experiments in figure 7.10. We define the salt flux (rela-
tive to a reference salinity equal to the initial salinity of the ocean) as the rate
of change with time of (H − h)(Cl − C0), or equivalently h(C0 − Si), and plot
measurements averaged over an hour (a, b), and 12 hours (c). Note that the
salt flux tends to infinity as t tends to zero for the CICE calculations and we
have cropped this axis such that the first few points are removed to give a more
reasonable scale for the rest of the measurements. The short-time variability in
our model is usually associated with switches between full-depth and confined
convection.
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Chapter 9

Conclusions

Sea ice plays a crucial role in the climate, regulating the transfer of heat between

the Earth’s atmosphere and oceans, and causing massive fluxes of salt that drive

mixing in the oceans. The dynamics of small-scale sea-ice processes can have a

very significant, complex and nonlinear effect on the climate of the whole Earth.

The Earth’s climate is changing, largely in response to anthropogenic green-

house gas emissions. The Arctic is particularly sensitive and there have already

been marked changes in the extent and age of its sea ice, with a transition from

largely multi-year ice to predominantly first-year ice. In chapter 2, we showed

how the observed and predicted changes raise important modelling challenges

since many basic physical processes associated with sea ice are poorly under-

stood, particularly those associated with first-year ice. The widespread use of

prescribed salinity profiles that are more appropriate to multi-year than first-

year ice, and the poor representation of salt fluxes from sea ice, are particularly

problematic. This led us to study the convective desalination of sea ice, so that

the salinity profiles of sea ice and salt fluxes to the ocean could be determined

dynamically within a climate model.

Therefore, we used a general theory of mushy layers, which are reactive porous

media, to describe convective desalination mathematically. In chapter 3, we de-

veloped general continuum equations to describe conservation of heat, salt, mass

and momentum within mushy layers, such as sea ice, relevant to a number of

different situations. This chapter developed a general theory rather than one

specific to sea ice, which means that the models and results derived subsequently
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can be applied to other mushy layers, for example those that form in the casting

of metal alloys in industry and in the solidification of the Earth’s inner core. The

main new contribution of this section of our study was to clarify the thermody-

namic and fluid dynamical boundary conditions at the interface between a porous

mushy layer and a purely liquid region. One condition (marginal equilibrium) rel-

evant to convection in mushy layers requires that lines of constant temperature

(isotherms) are tangent to the fluid flow (streamlines) at the interface. However,

many fluid dynamical conceptions of the boundary between a porous medium

and a liquid region allow for a slip in the tangential velocity at the interface, such

that there is no well-defined tangent to a streamline at the interface. This led us

to explore the concept of a transition region, which we justified and illustrated in

a simple, forced corner-flow configuration without resorting to the full convective

mushy-layer equations. Our study highlighted the importance of a rapid change

in the tangential velocity near the interface to satisfy the marginal equilibrium

condition. In the corner-flow configuration, this change occurs in the transition

region. In a convecting mushy layer, it occurs in the ‘active region’ near the

chimney that we subsequently developed.

In chapter 4, we modelled convection in a mushy layer. We developed a simple

Chimney-Active-Passive (CAP) model that elucidates analytically the dominant

structure and driving forces of the flow. A horizontal density gradient within the

mushy layer in an active region near a liquid chimney leads to baroclinic torque,

which sustains the convective flow. In the passive bulk of the mushy layer, the

isotherms are essentially horizontal. In this region, we imposed a vertically lin-

ear temperature field and found that the flow field is a simple corner flow. We

determined the strength of the flow by finding a scaled solution to the governing

mushy-layer equations in the active region. We also determined the correspond-

ing shape of the chimney, the vertical structure of the solid fraction and the

interstitial flow field. We applied this model firstly to a periodic, planar array

of chimneys and showed analytically that the solute flux through the chimneys

is proportional to a mush Rayleigh number. Secondly we extended the model to

three dimensions and found that an array of chimneys can be characterized by the

average drainage area alone. Therefore we solved the model in an axisymmetric

geometry and found new, sometimes nonlinear, relationships between the solute
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flux, the Rayleigh number (which is the ratio of the driving gravitational force to

the dissipative forces acting on the flow) and the other dimensionless parameters

of the system. The crucial difference between planar and axisymmetric geome-

tries is that, in the latter case, the width of the chimney is important to the

dynamics of the fluid flow by means of geometric constriction in the mushy layer.

This means that the Darcy number, which is the dimensionless permeability of

the mushy layer, affects the solute flux. By contrast, in the planar geometry the

solute flux is, to leading order, independent of the Darcy number. Thus there

is an additional lengthscale to the problem in axisymmetry, which gives rise to

nonlinear relationships between solute flux and Rayleigh number.

Departing slightly from the main direction of the thesis, in chapter 5 we made

a series of mathematical insights into convection in mushy layers and the CAP

model in particular. We demonstrated the inadequacy of reduced models that

effectively consider an isolated chimney and a boundary layer in an unbounded

domain by showing that the boundary-layer equations (which are analogous to

the equations governing the active region) have an infinite family of unstable so-

lutions. The instability is driven by the unstable density profile in the far field. In

contrast to the infinite family of both monotonic and oscillatory solutions to the

boundary-layer equations, solutions of the active-region equations are all oscilla-

tory (possessing the rapid change in tangential velocity near the chimney that we

showed was necessary to satisfy the marginal equilibrium condition in chapter 3).

In the limit of an infinite active region, these solutions tend to a critical mono-

tonic solution identified in the boundary-layer analysis. We also showed why a

bounded active region is essential to sustaining the convective flow by analyzing

the mathematical structure of the governing boundary-value problem for the ac-

tive region using asymptotic analysis, showing that there is a minimum width of

the active region required to sustain convection. We then studied the asymptotic

limit of large latent heat release in which convection becomes weak. This chapter

gives important new physical insight into convection in mushy layers.

This first, more theoretical, half of the thesis raises a number of questions

concerning convection in a mushy layer. In the planar geometry, we could com-

pare our simple model with numerical solutions of the mushy-layer equations:

they share the same structure and many features. However, there are currently
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no comparable numerical solutions in axisymmetry (or three dimensions). Given

the nonlinear relationships that we found between solute flux and Rayleigh num-

ber caused by geometric constriction of the flow, this could be an interesting area

for future research. The numerical solution of our governing equations is only

moderately more challenging in the axisymmetric geometry than in the planar

geometry, so this seems entirely feasible. Furthermore, the contrasting depen-

dence on the Darcy number between the two geometries could potentially be

investigated in the asymptotic limit of small Darcy number. Our initial investi-

gation of this issue suggests that in the planar geometry the size of the chimney

tends to zero in such a way that the solute flux remains finite whereas in the ax-

isymmetric geometry both the chimney size and solute flux tend to zero. Finding

these scalings within numerical solutions would increase our confidence in their

robustness. These investigations would further our theoretical understanding of

convection in a mushy layer and clarify the appropriateness of using the results

from the planar geometry in modelling convection. It might also be possible to

parameterize the effects of geometric constriction as a function of the dimension-

less parameters of the system, modifying the planar result to account for this

potentially important effect.

The question as to what sets the horizontal size of the convecting region

(chimney spacing) remains open. While we have used a maximum-flux criterion,

this has limited explanatory power. The generic instability of the boundary-

layer solutions that we found, coupled with their similarity to the CAP model at

large chimney spacing, leads us to suspect that these large spacings may well be

unstable to the formation of new chimneys. Therefore, investigating the stability

characteristics of the CAP model may give some insight into the chimney spacing.

Additionally, more developed versions of the numerical study of Katz & Worster

(2008) in which the chimneys are allowed to evolve could also help to address this

question.

Convective desalination through liquid brine channels (chimneys) is the dom-

inant mechanism for the desalination of growing, first-year sea ice, in which the

mechanism is also called gravity drainage. In chapter 6, we compared it with other

mechanisms to demonstrate this. Then we described and determined mathemat-

ically the essential physics of gravity drainage using the CAP model. In this
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context, the simplicity of the CAP model is a particular advantage over more

complex approaches based on solving the mushy-layer equations numerically. We

elucidated the connection between downward flow in brine channels and a con-

vective upward flow in the rest of the porous ice, which we showed has a vertically

linear structure and a strength proportional to a Rayleigh number based on the

interstitial concentration difference across a convecting layer. This distinction is

important because convection in sea ice is often confined to a layer at the bottom

of the ice. We used our simple CAP model of this process to interpret the expo-

nential propagation of dye fronts observed in previous laboratory experiments.

In chapter 7, we incorporated a physically derived parameterization of gravity

drainage, in terms of the convective upwelling velocity determined in the previ-

ous chapter, into a one-dimensional, thermodynamic sea-ice model of the kind

currently used in coupled climate models. Our parameterization uses a local

Rayleigh number to represent the important feedback between ice salinity, poros-

ity, permeability and desalination rate. It allows us to determine the evolution

of the bulk salinity of the sea ice and the corresponding salt fluxes from it, in

contrast to older, established models that prescribe the salinity of sea ice. This

improves the predictive power of climate models in terms of buoyancy fluxes to

the polar oceans, and also the thermal and mechanical properties of sea ice, which

depend on its salinity. We tested our model against a series of laboratory exper-

iments, analyzed the uncertainties involved in these, and showed that we could

quantitatively predict bulk features of the experiments (the sea-ice thickness and

a measure of the cumulative salt flux) to within experimental error. Some sys-

tematic biases in our predictions led us to propose changes to the relationship

between porosity and permeability to be investigated in future research.

There has been considerable recent interest in gravity drainage from climate

modellers, because it is a crucial missing component of sea-ice models. Therefore,

in chapter 8, we compared our new parameterization of gravity drainage to the

existing fixed-salinity sea-ice model used in CICE: the Los Alamos Sea Ice Model.

Our study focused on growing first-year ice. We showed that the direct effect of

salinity on sea-ice thickness was small. However, there were substantial differences

compared to fixed-salinity models in the qualitative pattern and quantitative

magnitude of salt fluxes into the polar oceans. Theoretically, we also clarified
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the appropriate definition of salt fluxes for climate modelling and explained the

weak dependence of sea-ice thickness on salinity in terms of the balance between

latent heat release and the thermal conductivity of sea ice. In conclusion, we

expect that our dynamic model of gravity drainage for sea ice, which respects

the underlying physics of convective desalination, is likely to be more robust to

changes in polar climate and more responsive to rapid changes in the oceanic and

atmospheric conditions that drive the advance and retreat of sea ice.

This second, more applied, half of the thesis also raises several questions,

principally about how such a model would interact with other components of a

coupled climate model. While some modelling studies have shown that different

parameterizations of salt fluxes from sea ice lead to differences in the predicted

salinity structure of oceans, it is not yet known how the physically based parame-

terization that we have developed would affect the salinity structure through the

significant changes to salt fluxes that we demonstrated in chapter 8. The salt

fluxes in our model are a boundary condition for the ocean, but the complete

response involves many nonlinear processes and requires a detailed understand-

ing of ocean mixing, which is also not well understood. Furthermore, although

we found that changes to sea-ice thickness were small, there may be additional

sensitivity in terms of basal and surface melting caused by the dependence of

thermal conductivity on salinity. Likewise, gravity drainage may interact with

other mechanisms of desalination. For example, the brine channels associated

with gravity drainage may facilitate more rapid desalination by flushing from

meltponds that form in the summer. Our parameterization therefore needs to be

assessed over a longer period than a few months of growth in the winter. Given

both the similarity of our model to CICE, and the recent inclusion of an alter-

native parameterization of gravity drainage within CICE (version 5), it seems

feasible to implement our model in CICE thereby allowing others to investigate

its impact within the context of climate models.

The simulations that we performed were all conducted with rather idealized

boundary conditions, both at the ice–atmosphere and at the ice–ocean boundary.

Within the context of a one-dimensional scenario, it could be well be profitable

to investigate these further. For example, a heat flux could be prescribed at the

ice–atmosphere interface, or, more nonlinearly, its temperature could be used to
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calculate the radiative heat flux from ice to atmosphere. Particularly for Antarctic

sea ice, it would be interesting to investigate the effect of a snow layer. Likewise

the temperature and salinity of the mixed layer change over the course of the

growing season. All these effects could also be investigated using meteorological

and oceanographic data to force our model (data which is often not available

at the same location) or using synthetic forcings. It seems plausible that our

dynamic-salinity model could cause greater changes compared to fixed-salinity

models in these scenarios, and it is important to assess this.

In spite of these open questions, the developments made in modelling convec-

tive desalination in a mushy layer, applied to gravity drainage in sea ice, address

a major missing component of climate models. They will cause direct changes to

predictions of ocean circulation and indirect changes to predictions of atmospheric

circulations. Therefore, these developments offer substantial improvements in our

attempts to model the changing climate of the Earth.
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