Break-up of the Larsen B Ice Shelf Triggered by Chain-Reaction Drainage of Supraglacial Lakes

3 Alison F. Banwell^{1,2}, Douglas R. MacAyeal¹ and Olga V. Sergienko³

¹The Department of Geophysical Sciences, The University of Chicago, Chicago, IL, USA.

² Scott Polar Research Institute, University of Cambridge, Cambridge, UK.

³The Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA.

7 The explosive disintegration of the Larsen B Ice Shelf poses two unresolved 8 questions: What process (1) set a horizontal fracture spacing sufficiently small to 9 pre-dispose the subsequent ice-shelf fragments to capsize, and (2) synchronized the 10 widespread drainage of >2750 supraglacial meltwater lakes observed in the days 11 prior to break-up? We answer both questions through analysis of the ice shelf's 12 elastic-flexure response to the supraglacial lakes on the ice shelf prior to break-up. 13 By expanding the previously articulated role of lakes beyond mere water-reservoirs 14 supporting hydrofracture, we show that lake-induced flexural stresses produce a 15 fracture network with appropriate horizontal spacing to induce capsize-driven 16 break-up. The analysis of flexural stresses suggests that drainage of a single lake can 17 cause neighboring lakes to drain, which, in turn, cause farther removed lakes to 18 drain. Such self-stimulating behavior can account for the sudden, widespread 19 appearance of a fracture system capable of driving explosive break-up.

20 **1. Introduction**

21 A number of studies have documented the explosive disintegration of the Larsen B Ice

22 Shelf (LBIS) over a time period of just a few days in March 2002 [e.g., Scambos et al.,

23 2003; Shepherd et al., 2003; Rignot et al., 2004; Glasser and Scambos, 2008]. However,

24 two key questions remain unresolved. First, no previous study has suggested a

25 mechanism that drove the ice shelf to separate into thousands of fragments possessing

aspect ratios (horizontal length to ice thickness) that are less than the critical value (~0.6)

27 necessary for capsize (and thus ice-shelf disintegration through capsize-liberated energy)

28 [MacAyeal et al., 2003; 2011; Burton et al., 2012]. Second, although multiple studies 29 have documented both the emergence of >2750 supraglacial lakes during the decade prior 30 to break-up [e.g., Glasser and Scambos, 2008] and their drainage, likely by hydrofracture 31 [e.g., Scambos et al., 2000; 2003; 2009], in the days leading up to the LBIS break-up, no 32 previous study has explained the extraordinary synchronicity of lake drainage over such a 33 short time period. These two unresolved questions, however, must be answered to fully 34 understand the mechanisms which drove the break-up of the LBIS and to make 35 predictions regarding the fate of other Antarctic ice shelves.

36 2. Ice-Shelf Flexural Response to Meltwater Loads

37 Flexure of an ice shelf subject to surface meltwater loads can be modeled using thin 38 elastic (Kirchhoff) plate theory [e.g., Kerr, 1976; Sergienko, 2005; MacAyeal and 39 Sergienko, 2013, Sergienko 2013]. When a lake fills (Figure 1a), the gravitational load 40 depresses the ice shelf, and causes a flexure-induced uplift, or forebulge, to arise in a ring 41 surrounding the lake. If the lake's horizontal span is smaller than a length-scale $L \sim 1000$ 42 m, determined by flexural dynamics (see Methods 1 in the auxiliary material), as is the 43 case for the majority of lakes mapped on the LBIS [Glasser and Scambos, 2008], the 44 forebulge will be located at a distance of roughly $2L \approx 2$ km from the center of the lake 45 (see Figure S1 in the auxiliary material). In the forebulge, tensile stress at the ice-shelf 46 surface can initiate and promote fracture in the form of a ring-like surface rift [Beltaos, 47 2002], which surrounds the lake at a distance of ~ 2 km. This style of fracture occurs in 48 many other geophysical settings, e.g., as is exemplified by the study of volcanic calderas 49 and seamounts [Lambeck and Nakiboglu, 1980; Williams and Zuber, 1995]. Water, both 50 present in lakes and flowing across the surrounding bare ice, will fill the fracture, 51 enabling it to penetrate deeper [e.g. van der Veen, 1998; Scambos et al., 2000]. In 52 addition to the ring-type surface fracture, a fracture produced by tensile stress at the ice 53 shelf base, immediately below the lake, would propagate upward in a radial, linear 54 pattern [Beltaos, 2002] (Figure 1a).

55 The hydrostatic rebound of a drained lake will induce complementary fractures in the ice 56 shelf that have similar geometry to those described above, but which originate on 57 opposite surfaces of the ice shelf (Figure 1b). Under the assumption that the time-scale of 58 lake drainage is very short compared to the Maxwell time [Maxwell, 1867], an elastic 59 treatment of flexure stresses induced immediately following drainage is valid [MacAyeal 60 and Sergienko, 2013]. However, as it takes several years for a lake to develop its size 61 through filling/draining and/or refreezing of meltwater, there is a viscous component in 62 the ice-shelf response as well [Kerr, 1976; Beltaos, 2002; Sergienko, 2005]. Additionally, 63 as lake-bottom ablation will exceed the ablation of surrounding bare ice (as lake water 64 has a lower albedo than the surrounding bare ice) [*Tedesco et al.*, 2012], a fraction of the 65 ice shelf thickness is released as water accompanying the drainage of the original 66 meltwater load (Figure 1b). The empty, often uplifted lake basins are called 'dolines' in 67 analogy to sinkholes in karst terrain [Bindschadler et al., 2002; MacAyeal and Sergienko, 2013]. They are often the deepest meltwater-derived features (>10 m) on an ice shelf, 68 69 suggesting that, prior to drainage, a multi-year englacial water body existed within the ice 70 shelf[Bindschadler et al., 2002].

Cycling between filled and drained states over a period of several years suggests that the fracture patterns developed by meltwater loads and dolines (anti-loads) are likely to occur in tandem, such as is shown in Figure 1c. In this illustration, upward propagating fractures from the ice-shelf base meet downward propagating fractures from the ice-shelf surface leading to through-cutting rifts.

76 3. Fragmentation Length Scales of Ice Shelves

77 To show that the lake/doline-induced fracture process described above could have

fragmented the LBIS into pieces small enough to be capable of capsize [MacAyeal et al.,

2003], we compute the idealized fracture pattern across the LBIS using the exact analytic

80 solution [Kerr, 1976; Sergienko, 2005; MacAyeal and Sergienko, 2013] for flexure of a

81 thin elastic plate (Figure S1). For a full description of the solution, the elastic plate

82 flexure equation it obeys, and the boundary conditions, refer to *Sergienko* [2005].

83 For each lake, we associate an azimuthally symmetric stress-field filling the surrounding

84 area (r>0, where r=0 is the lake center) as if the lake were imbedded in an ice shelf of

uniform thickness, H=200 m [Sandhager et al., 2005], and of infinite extent. Figure S1

shows this stress-field, computed analytically for an example lake of 500 m radius and 1
m depth. In the following calculations, we assume that lakes are homogeneous in depth, *d*(to be described below), and choose a lake radius so that the area is equal to that of the
real lake on the LBIS, and where the lake center is located as observed.

90 Replacement of the observed lakes (by *Glasser and Scambos* [2008], from February

91 2000) by disk-shaped lakes of constant depth with equal area as the observed lakes is

92 justified when the radii of lakes on the LBIS (averaging ~170 m) are much smaller than

93 the length-scale, $L \sim 1000$ m. When this is condition is satisfied, the numerical solution

94 for an arbitrary shape/depth differs negligibly from the analytic solution for a uniform

95 disk load (refer to Methods 2 in the auxiliary material for an illustration of this).

96 With this idealization, and with a distribution of lakes on the LBIS derived from 97 observation of position and area [Glasser and Scambos, 2008], we compute the loci of ring-type fractures, by computing the radius of maximum tensile stress on the forebulge 98 99 around lake centers. (We do not consider the radial, spoke-like, linear fractures centered 100 on the lake's antipode [Beltaos, 2002], because we do not have a methodology for 101 determining their orientation. If they were considered, the aspect ratio of ice-shelf 102 fragments would be further reduced because there would be more fractures.) The 103 presence or absence of the ring-type fracture surrounding any given lake will, of course, 104 depend on whether the lake is deep enough for the stress field it creates to exceed the 105 criterion necessary for fracture initiation. It would also depend on whether there is 106 sufficient water in the area [Sergienko and MacAyeal, 2005] to support continued 107 development of the fracture via the hydrofracture mechanism discussed by Scambos et al. 108 [2000; 2003]. Thus, we simply assume that the required lake depth for ring-type fractures 109 is met at the radius where maximum tensile stress is achieved.

110 Figure 2b depicts the fracture pattern using the observed lakes represented as disk loads.

111 The areas divided by the intersecting rings represent the ice-shelf fragments that became

separate icebergs at the outset of the LBIS break-up. To determine which fragments in

113 Figure 2b would likely capsize and disintegrate, we estimated the axis of capsize

114 (horizontal axis around which the ice fragment would rotate by 90°) and compared the

115 maximum width perpendicular to this axis with the critical length scale, $_{c}H(m)$, where 116 H=200 m is ice thickness, and were c=0.6 is the critical aspect ratio necessary for 117 iceberg capsize (and subsequent break-up), as described in *Burton et al.* [2012]. If the 118 maximum width was less than this dimension, the ice fragment was deemed capsizable. 119 As Figure 2c shows, ~60% of the original ice-shelf area is broken into fragments with an 120 aspect ratio <0.6. We depict the capsized fragments in Figure 2c as blue ice mélange, 121 assuming that they are obliterated during capsize. Comparison of the immediate, post-122 collapse imagery of the LBIS [MacAyeal et al., 2003] with the depiction of capsized 123 fragments in Figure 2c suggests that the process we propose is indeed potentially 124 responsible for fragmenting the ice shelf in a manner sufficient to cause widespread 125 capsize.

126 4. Self-Catalyzed Lake Drainage

We next show that lake drainage—the event that leads to lake-induced flexure fractures—can be self-catalyzed and self-sustaining, and can cooperatively occur across widely varying flow and stress regimes of the LBIS. To demonstrate this, we again use the same analytic solution, idealizations, and lake distribution on the LBIS as described in Section 3.

132 As the elastic flexure of an ice shelf with uniform thickness is a linear process 133 [Sergienko, 2013], the linear superposition principle is applicable, and the flexural effect 134 of multiple drained lakes is a sum of the flexural effects of individual lakes. However, for 135 the purpose of demonstrating chain-reaction lake drainage, we need only to consider 136 individual, not superimposed, lake-flexure solutions. This is because, with the assumption 137 that the ice has visco-elastically relaxed in response to the emplacement of a mass of 138 many lakes, if any one single lake (known as a 'starter lake') suddenly changes (either by 139 taking on, or giving off, mass), it will have an immediate local stress-inducing effect on 140 the stress regime of the surrounding ice shelf. As the starter lake causes surrounding lakes 141 to drain, a 'propagating front' of lake drainage develops, with each stage of lake drainage 142 events occurring further away from the position of the starter lake. This drainage front is 143 always moving outward from the place where interference between individual lake

drainage events could exist (but would have no relevance to whether new lakes would
drain, as they are in a zone where all the lakes have already drained) into undisturbed,
visco-elastically relaxed, ice.

147 Therefore, considering each lake separately, we assume that its drainage removes the equivalent load of 5 m of fresh water (density 1000 kg m^{-3}). This load represents the 148 149 combination of enhanced lake-bottom ablation relative to surrounding bare ice, as well as 150 the removal of water that filled the lake, assuming that the elastic response to the water 151 load had visco-elastically relaxed [Beltaos, 2002; Sergienko, 2005] over the preceding 152 portion of the melt season leading up to the event. With this reference load, we compute 153 the von-Mises stress $(T_{\rm vM})$ induced by the drainage of one lake at the center of every 154 other lake on the ice shelf. Here, $T_{\rm vM}$ is defined to be:

155
$$T_{\rm vM} = (T_{rr}^2 + T_{\theta\theta}^2 - T_{rr}T_{\theta\theta}^{1/2}.$$
 (1)

where T_{rr} and $T_{\theta\theta}$ are the radial and azimuthal stresses, respectively, and where *r* is the radial coordinate and θ is the azimuthal coordinate for a cylindrical reference system with origin at the center of the lake. Where the von-Mises stress exceeds the critical value 70 kPa (as recommended by *Albrecht and Levermann* [2012]), we assume that a fracture will

160 develop at the bottom of the surrounding lake that can potentially drain it.

161 Figure 3a shows the single lake (labeled 'starter lake') that was found to stimulate drainage of the greatest number of surrounding lakes. With the chosen $T_{\rm vM}$ fracture 162 163 criterion of 70 kPa, the number of lakes drained by the starter lake was 63. For this starter 164 lake, we also considered the cascade of indirect influence that accounts for subsequent 165 relationships between directly drained lakes and other lakes not initially drained by the 166 starter lake. This yielded 10 stages of indirect influence and caused 227 lakes on the ice 167 shelf to drain (~8% of the total number of lakes, 2758, reported by *Glasser and Scambos* 168 [2008]). This number increased to 626 over 14 stages of indirect influence, or to \sim 23% of 169 the total number of lakes, when the $T_{\rm vM}$ fracture criterion is reduced to 35 kPa (Figure 170 3b).

171 The ultimate implication of the interrelated causality of lake drainage is that a self-172 stimulating chain-reaction of lake drainage can develop across the LBIS. We regard this 173 as a plausible explanation for the abrupt, widespread drainage of lakes observed in the 174 days prior to the LBIS break-up [Scambos et al., 2003]. We also argue that this process 175 is sufficiently independent of other ice-shelf variables (e.g., the stress regime that drives 176 glaciological ice-flow, due to the significantly slower time scale of viscous deformation 177 compared to the disintegration) as to be plausible as the mechanism that kindled the 178 explosive break-up.

179 As previously mentioned, in the computations made to create Figure 3, we assumed a 180 constant depth of 5 m for all the lakes. This is a plausible depth for observed dolines 181 [Bindschadler et al., 2002; Tedesco et al., 2012], but is at the upper limit of lake depths 182 observed using February 2000 Landsat imagery [Banwell et al., in press], acquired 2 183 years prior to the collapse, where mean lake depths were ~ 1 m. To provide an indication 184 of the sensitivity of fracture initiation to lake depth, we compute the depth needed in a 185 circular lake of radius 500 m necessary to produce $T_{\rm vM}$ in excess of 70 kPa at any given 186 distance r from the lake center. The result is shown in Figure 4. To fracture a 200 m 187 thick ice shelf (comparable to the LBIS thickness when it broke-up) at a given distance r188 from the center of the lake, the lake must have the depth corresponding to those values 189 depicted by the red curve in Figure 4. Thus, a lake has to be at least 1 m deep for the 190 flexure-induced stress at the ice-shelf surface to exceed the fracture criterion (70 kPa) for 191 a radial-type fracture to initiate at the lake center, and the lake has to be at least \sim 3.5 m 192 deep for the ring-type fracture to occur at ~1700 m from the lake center. Reducing the 193 critical stress criterion by half (to 35 kPa) necessitates only ~ 2 m depth to create the ring-194 type fracture along the forebulge.

Figure 4 also shows the effect of thinning the ice-shelf by 25 m. Such thinning could have occurred due to increased basal melting prior to the break-up of LBIS [*Shepherd et al.*, 2003; *Vieli et al.*, 2007]). This suggests that there were two avenues by which warming and enhanced ablation of the LBIS could have pushed it towards conditions primed for break-up. Surface warming would induce continued lake deepening, whereas ocean warming (and consequent ice-shelf thinning) would continue to reduce the critical lake

- 201 depth necessary to produce ring-type fractures. In addition, increased basal melting leads
- to substantial cooling of the ice shelf interior [Sergienko et al., 2013], making it more
- susceptible to fracturing due to the fact that fractures in cold ice are less likely to be
- arrested than in warm ice [e.g., *Liu and Miller*, 1979].

205 5. Conclusions and Perspectives

206 We have shown that supraglacial lakes (and drained lakes) are mass loads (or deficits) 207 that create flexure stresses on ice shelves. The estimated flexural tensile stresses are 208 sufficiently large to initiate and propagate fractures, and the spacing of the fractures is 209 determined by the spatial distribution and depths of lakes. We show that the spacing of 210 these fractures caused a large proportion of the LBIS fragments to have aspect ratios that 211 were unstable to capsize. We also show that the filling or drainage of a single 'starter 212 lake' can produce multiple fractures that are able to drain hundreds of surrounding lakes 213 through a chain-reaction process. Thus, we argue that this chain-reaction would

contribute to the abruptness of the explosive disintegration of the LBIS.

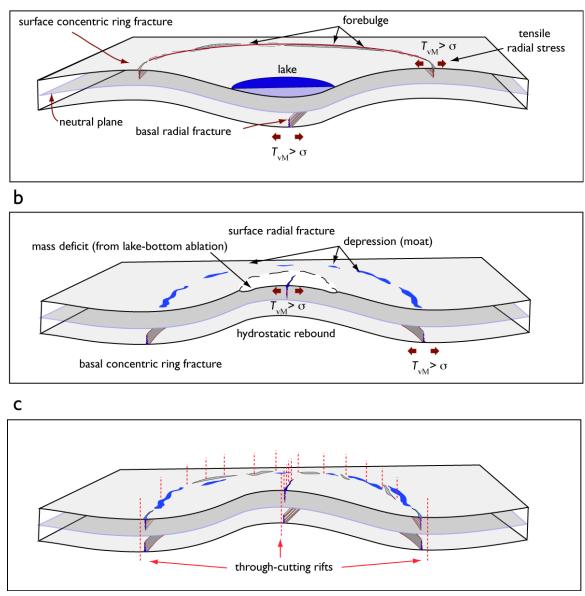
The ultimate proof for the hypotheses we have proposed here depends on observations. If current warming trends prevail, lake-induced break-up may threaten other Antarctic ice shelves. We suggest that future research should consider whether the development of a large number of supraglacial lakes constitutes the essential tipping point, which, once

219 reached, predetermines an ice shelf to break-up.

220 Acknowledgements

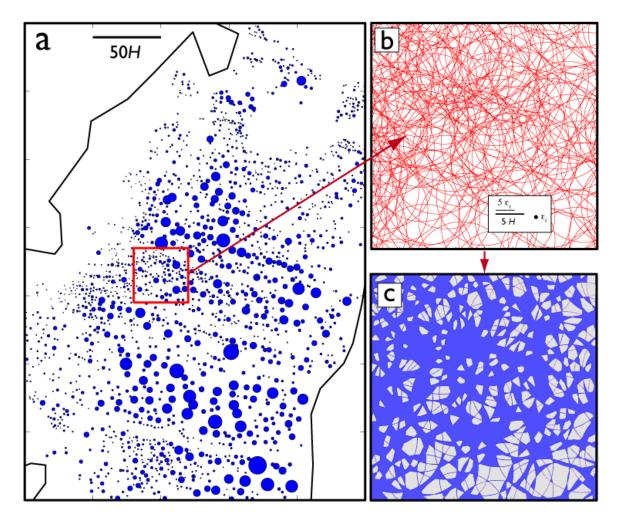
- This research is supported by the U.S. National Science Foundation under grant
- 222 GEOP/ANT 0944248 awarded to D.R.M and grants ANT-0838811 and ARC-0934534
- awarded to O.V.S. The authors acknowledge the valuable discussion and assistance of
- 224 Neil Arnold, Neil Glasser, Martamaria Caballero and Ian Willis. Neil Glasser generously
- provided digitized outlines of lakes and dolines on the LBIS used in this study. Finally,
- the authors thank Anders Levermann, one anonymous reviewer, and the editor, Julienne
- 227 Stroeve, for their valuable comments regarding our initial manuscript.

228 References


- Albrecht, T., and A. Levermann (2012), Fracture field for large-scale ice dynamics. J.
- 230 Glaciol., 58(207), 165-176.
- 231 Banwell, A. F., M. Caballero, N. S. Arnold, N. F. Glasser, L. M. Cathles, and D.
- 232 MacAyeal (in press), Supraglacial lakes on the Larsen B Ice Shelf, Antarctica, and the
- 233 Paakitsoq Region, Greenland: a comparative study. Ann. of Glaciol., 53(66), doi:
- 234 10.3189/2013AoG66A049
- Beltaos, S. (2002), Collapse of floating ice covers under vertical loads: test data vs.
- 236 theory. Cold Reg. Sci. and Tech., 34, 191-207.
- 237 Bindschadler, R., T. A. Scambos, H. Rott, P. Skvarka, and P. Vornberger (2002), Ice
- dolines on Larsen Ice Shelf, Antarctica. Ann. Glaciol., 34, 283-290.
- 239 Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-
- Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal (2012),
- 241 Laboratory investigations of iceberg capsize dynamics, energy dissipation and
- 242 tsunamigenesis, J. Geophys. Res., 117, F01007, doi:10.1029/2011JF002055.
- 243 Glasser, N. F. and T. A. Scambos (2008), A structural glaciological analysis of the 2002
- Larsen Ice Shelf collapse. J. Glaciol., 54(184), 3-16.
- 245 Kerr, A. D. (1976), The bearing capacity of floating ice plates subjected to static or quasi-
- 246 static loads. J. Glaciol., 17(76), 229-268.
- 247 Lambeck. K., and S. M. Nakiboglu (1980), Seamount loading and stress in the ocean
- 248 lithosphere. J. Geophys. Res. 85(B11), 6403-6418.
- Liu H. W., and K. J. Miller (1979). Fracture toughness of fresh water ice . *J. Glaciol.*,
 22(86), 135-143.
- 251 MacAyeal, D. R., T. A. Scambos, C. L. Hulbe, and M. A. Fahnestock (2003),
- 252 Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol.,
- 253 49(164), 22-36.

- 254 MacAyeal, D. R., D. S. Abbot, and O. V. Sergienko (2011), Iceberg capsize
- tsunamigenesis. Ann. Glaciol., 52(58), 51-56.
- 256 MacAyeal, D. R., and O. V. Sergienko (2013), Flexural dynamics of melting ice shelves.
- 257 Ann. Glaciol., 54(63), 1 10, doi: 10.3189AoG63A256.
- 258 Maxwell, J.C. (1867), On the dynamical theory of gases. Phil. Trans. R. Soc. Lond., 157,
- **259 49–88**.
- 260 Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R Thomas (2004),
- 261 Accelerated ice discharge from the Antarctic Peninsula following collapse of Larsen B
- 262 ice shelf. *Geophys. Res. Lett.*, 31 (L18401), doi: 10.1029/2004GL020679.
- 263 Sandhager, H., W. Rack, and D. Jansen (2005), Model investigations of Larsen B Ice
- Shelf dynamics prior to the breakup. *FRISP Rep.* 16, 5–12
- 265 Scambos, T. A., C. Hulbe, M. Fahnestock, and J. Bohlander (2000), The link between
- climate warming and brea-up of ice shelves in the Antarctic Peninsula. J. Glaciol.,
 46(154), 516-530.
- 268 Scambos, T. A., C. Hulbe, and M. A. Fahnestock (2003), M. A. Climate-induced ice shelf
- 269 disintegration in the Antarctic Peninsula. In Domack, E. W., et al., eds. Antarctic
- 270 Peninsula climate variability: a historical and paleoenvironmental perspective.
- 271 Washington, DC, American Geophysical Union, 79-92 (Antarctic Research Series, 79),
- doi: 10.1029/AR079p0079.
- 273 Scambos, T., H. A. Fricker, C. C. Liu, J. Bohlander, J. Fastook, A. Sargent, R. Massom,
- and A. M. Wu (2009), Ice shelf disintegration by plate bending and hydro-fracture:
- 275 Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth
- 276 Panet. Sci. Lett., 280(1-4), 51-60, http://dx.doi.org/10.1016/j.epsl.2008.12.027.
- 277 Sergienko, O. V. (2005), Surface melting of ice shelves and icebergs. PhD Thesis,
- 278 University of Chicago, pp 128.

- 279 Sergienko O. and D. R. MacAyeal (2005). Surface melting on Larsen Ice Shelf,
- 280 Antarctica. Ann. Glaciol., 40, 215-218.
- 281 Sergienko O.V., D. N. Goldberg and C. M. Little (2013), Alternative ice-shelf
- equilibriums determined by ocean environment. J. Geophys. Res., 118, 970-981,
- 283 doi:10.1002/jgrf.20054.
- 284 Sergienko O. V. (2013), Normal modes of a coupled ice-shelf/sub-ice-shelf cavity
- 285 system. J. Glaciol., 59(213), 76-80, doi:10.3189/2013JoG12J096
- 286 Shepherd, A., D. Wingham, T. Payne, and P. Skvarca (2003), Larsen ice shelf has
- 287 progressively thinned. *Science*, 302, 856-859, DOI: 10.1126/science.1089768.
- 288 Tedesco, M., M. Lüthje, K. Steffen, N. Steiner, X. Fettweis, I. Willis, N. Bayou, and A.
- Banwell (2012). Measurement and modeling of ablation of the bottom of supraglacial
- 290 lakes in western Greenland. Geophys. Res. Lett., 39, L02502,
- doi:10.1029/2011GL049882.
- van der Veen, C. J. (1998), Fracture mechanics approach to penetration of surface
- 293 crevasses on glaciers. Cold Reg. Sci. and Tech, 27, 31-47, doi: 10.1016/S0165-
- 294 232X(97)00022-0
- Vieli, A., A. J. Payne, A. Shepherd, and Z. Du (2007), Causes of pre-collapse changes of
- the Larsen B ice shelf: Numerical modelling and assimilation of satellite observations,
- 297 Earth Planet. Sci. Lett., 259, 297-306, doi:10.1016/j.epsl.2007.04.050.
- 298 Williams, K. K., and M. T. Zuber (1995), An experimental study of incremental surface
- loading of an elastic plate: application to volcano tectonics. *Geophys. Res. Lett.*, 22(15),
- 300 1981-1984, doi:10.1029/95GL02009.
- 301 Figures:


а

302

303 Figure 1. Schematic view of stress regime, flexure and fracture patterns associated with 304 loaded (filled) and unloaded (drained) supraglacial lakes on ice shelves. a) As water fills 305 an idealized circular depression, the accumulated mass creates a depression that induces 306 an upward-deflected forebulge at a radial distance of $\sim 2L$. Downward propagating, ring-307 type fractures form in the forebulge at the ice-shelf surface. At the ice-shelf base, tension 308 with upward radial propagating fractures form at the antipode of the lake. The neutral 309 plane, where flexure stresses are zero and across which flexure stresses vary linearly to 310 maximum amplitude at the surface and base of the ice shelf, is identified. b) When a lake 311 drains, hydrostatic rebound causes tensile stress to be induced in an inverted forebulge 312 (surface moat). It is here that upward-propagating ring-type fractures are likely to form. 313 The drained lake is also missing some original ice-shelf mass due to enhanced lake-314 bottom ablation. At the ice-shelf surface, tension with downward radial propagating 315 fractures form at the antipode of the lake. c) Fractures introduced by repeated filling and 316 draining of lakes over a number of years can potentially yield a mixed-mode fracture 317 pattern, consisting of ring-type fractures surrounding the lake, and radial-type fractures 318 below the lake depression.

319

320

Figure 2. Break-up patterns associated with lake-induced flexure fractures (ring-type only) on the LBIS. a) Region map of the LBIS with observed lakes [*Glasser and Scambos*, 2008] represented as circles of equal area. The red box indicates the areas

324 represented in (b, c). b) Circles representing the loci of maximum von-Mises stress 325 surrounding lakes located in the boxed region of the LBIS map shown in (a). These 326 circles depict the ring-type fracture pattern that would be induced by lake filling or 327 draining. c) Post-collapse ice-shelf fragment assemblage of the region shown in (b) 328 assuming that fragments, where one of their two horizontal spans is less than the critical 329 aspect ratio, $c \sim 0.6$, will capsize and become obliterated. Fragments that do not capsize 330 are colored grey. Fragments that are capsized and assumed obliterated are replaced with 331 blue mélange (colored blue).

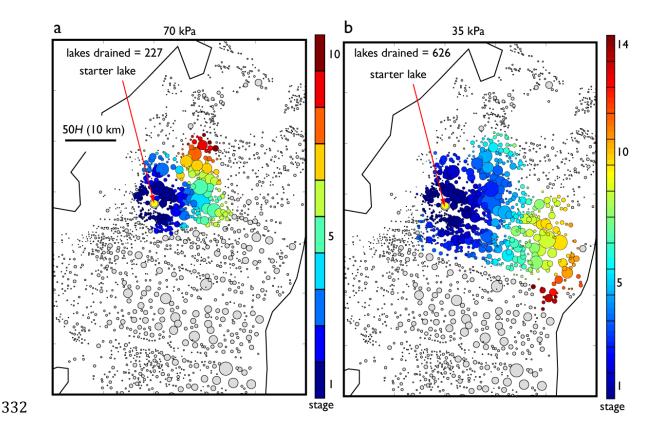


Figure 3. Chain-reaction drainage of supraglacial lakes. a) Observed lakes [*Glasser and Scambos*, 2008] are represented by circular disks of equal area and constant depth (5 m). The lake found to trigger the drainage of the most neighboring lakes is labeled 'starter lake'. Colored surrounding lakes indicate those that are induced to drain either directly by the starter lake's effect on flexure stresses (stage = 1) or indirectly by lakes which are drained at an earlier stage (stage = 2, ..., 10). The color of the lake indicates its stage according to the color bar. When the fracture criterion of 70 kPa is evaluated at each

340 lake's center, a total of 227 lakes are triggered to drain by the starter lake (either directly 341 or indirectly). The radii of colored lakes is drawn at twice the scale to promote visibility. 342 The radii of gray shaded lakes, which are not drained as a result of the chain reaction, are 343 drawn at true scale. b) As in (a), but with the fracture criterion reduced to 35 kPa. In this 344 case, a total of 626 lakes are triggered to drain by the starter lake either directly (stage = 345 1), or indirectly (stage = 2, ..., 14).

346

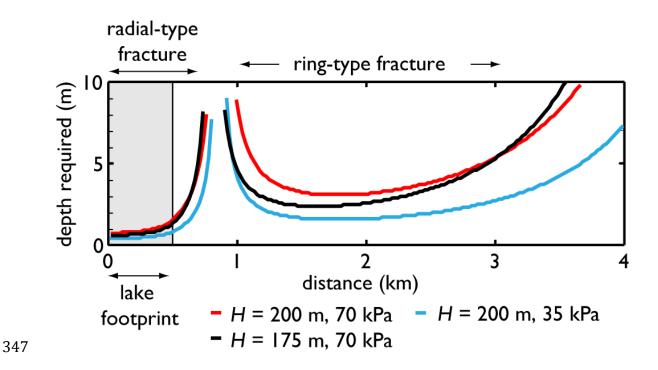
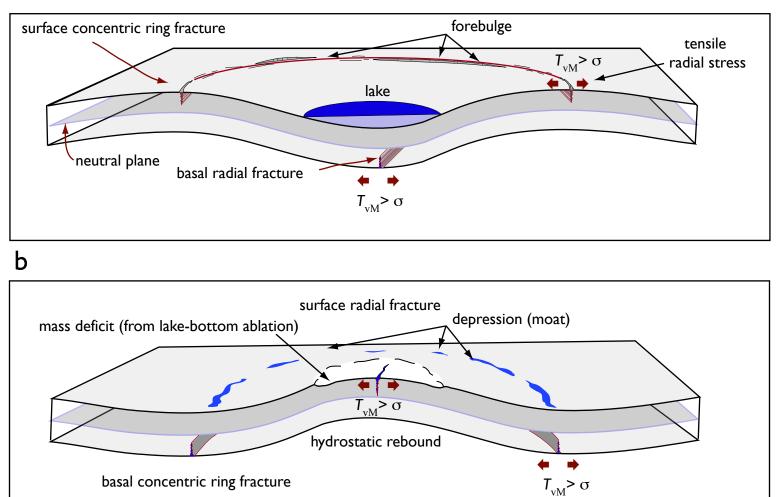
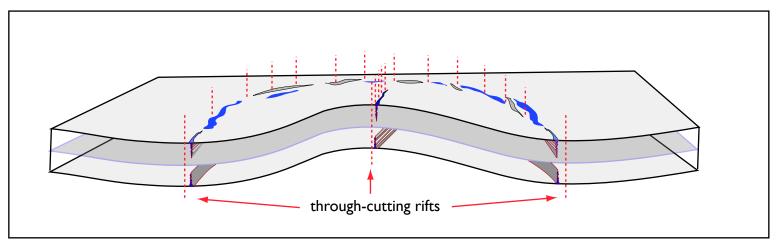
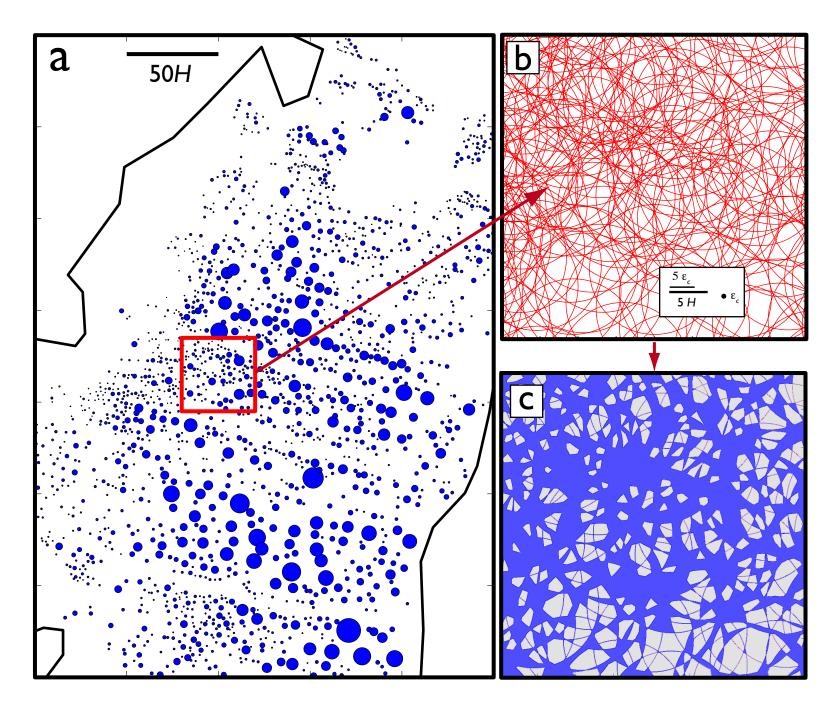
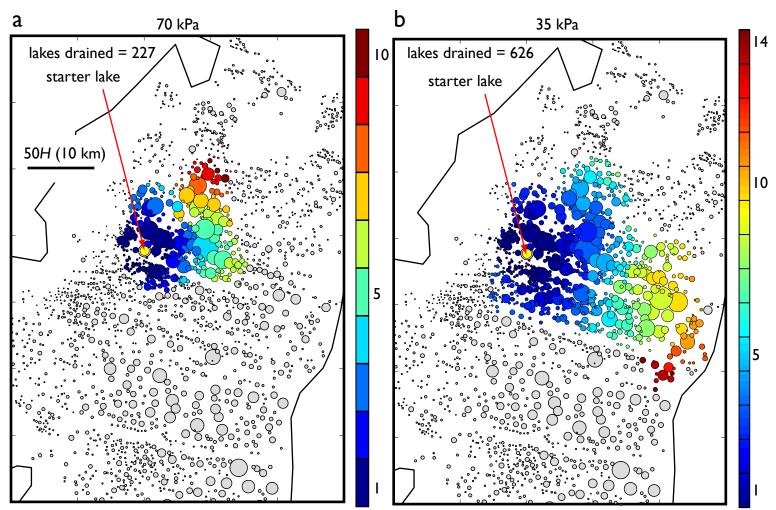
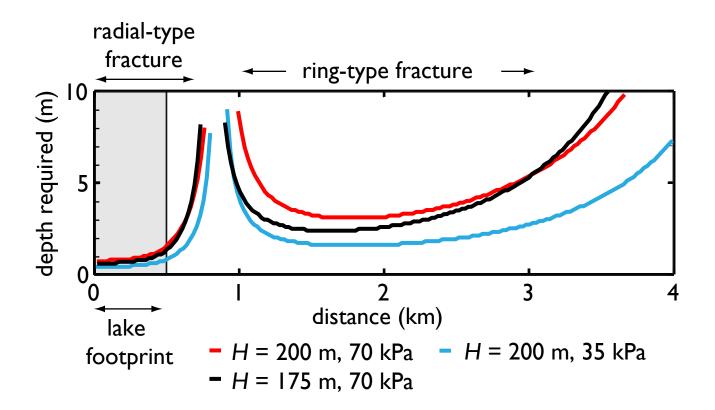




Figure 4. Critical lake depth required to induce fracture at the ice-shelf surface (ring-type fractures) or base (radial-type fractures) at a given distance (km), *r*, from the center of a circular lake with a 500 m radius assuming constant lake depth (m). For an ice-shelf thickness (*H*) of 200 m, the blue lines represent critical lake depth for a fracture criterion of 35 kPa, and the red lines represent critical lake depth for a fracture criterion of 70 kPa. The black lines represent critical lake depth if ice-shelf thickness is reduced by 25 m to *H* = 175 m. The footprint of the lake (r < 500 m) is shaded.




basal concentric ring fracture

С


а

stage

stage

