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Abstract

The results of three-dimensional Direct Numerical Simulation (DNS) of Moder-

ate, Intense Low-oxygen Dilution (MILD) and conventional premixed turbulent

combustion conducted using a skeletal mechanism including the effects of non-

unity Lewis numbers and temperature dependent transport properties are analysed

to investigate combustion characteristics using scalar gradient information. The

DNS data is also used to synthesise laser induced fluorescence (LIF) signals of

OH, CH2O, and CHO. These signals are analysed to verify if they can be used

to study turbulent MILD combustion and it has been observed that at least two

(OH and CH2O) LIF signals are required since the OH increase across the reac-

tion zone is smaller in MILD combustion compared to premixed combustion. The

scalar gradient PDFs conditioned on the reaction rate obtained from the DNS data

and synthesised LIF signals suggests a strong gradient in the direction normal to

the MILD reaction zone with moderate reaction rate implying flamelet combus-

tion. However, the PDF of the normal gradient is as broad as for the tangential

gradient when the reaction rate is high. This suggests a non-flamelet behaviour,

which is due to interaction of reaction zones. The analysis of the conditional

PDFs for the premixed case confirms the expected behaviour of scalar gradient in

flamelet combustion. It has been shown that the LIF signals synthesised using 2D

slices of DNS data also provide very similar insights. These results demonstrate
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that the so-called flameless combustion is not an idealised homogeneous reactive

mixture but has common features of conventional combustion while containing

distinctive characteristics.
Keywords: MILD combustion, flameless combustion, Scalar gradient, Direct

numerical simulation (DNS), LIF

1. Introduction

Combustion systems must be improved constantly to achieve high efficiency

and reduced emission simultaneously to meet the ever stringent emission legisla-

tion and environmental requirements. A number of approaches are being explored

to meet these requirements. Although fuel lean premixed combustion is one of the

potential methods for clean combustion, ignitability and instability of lean com-

bustion become significant issues to address. However, some of these can be

avoided by preheating the reactant mixture using the heat in the exhaust stream.

The preheating results in higher flame temperature which can cause the thermal

NOx to increase if there is substantial level of oxygen in the reactant stream. The

thermal NOx formation can also be reduced by using the exhaust gas recircula-

tion (EGR) techniques. The recirculation can be either internal or external to the

combustor and external EGR is common in heavy duty diesel engines and internal

recirculation is common in furnaces. At very high EGR rate, the oxygen available

for combustion is reduced to a very low level (typically lower than 5% by volume)

and combustion under these conditions is known as MILD (moderate or intense

low-oxygen dilution) combustion, which is also commonly known as flameless

combustion. The internal recirculation is commonly used to achieve the MILD

combustion.
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The MILD combustion technology [1, 2, 3] has potentials to achieve high

reactant temperature and low temperature rise across the combustion zone, and

thereby resulting in desirable combustion characteristics. The standard definition

of MILD combustion is as follows. The reactant temperature, Tr, is higher than

the autoignition temperature, Tign, of a given mixture and the temperature rise

during combustion, ∆T = Tp − Tr, is smaller than Tign. The symbol Tp denotes

the product temperature. In order to meet ∆T < Tign, the reactant mixture is

diluted highly with exhaust gas so that the oxygen content in the reactant mixture

is typically about 2 to 5% by volume [3]. The combustion efficiency is enhanced

because of the elevated reactant temperature [1, 2, 3] and the thermal NOx for-

mation is suppressed significantly because of low oxygen concentration and low

combustion temperature resulting from high dilution [1, 2, 3]. Typically, it takes

about few seconds to produce substantial level of thermal NOx at around 1900 K

and this reduces to few milliseconds at about 2300 K [1]. The peak temperature in

the MILD combustion is typically less than 1900 K. Also, the combustion noise

and instabilities are reduced because of low temperature rise across the combus-

tion zone [1, 2, 3]. These advantages make the MILD combustion as a potential

candidate for environmentally friendlier thermal power generation. However, our

fundamental understanding of this combustion is not complete yet.

Laser diagnostics using OH-PLIF [4, 5, 6, 7] suggested the presence of thin

reaction zones in MILD combustion. A recent DNS study [8] supported this and

showed an abundance of interacting flamelets in the MILD turbulent combustion.

In addition to these interactions, it has also been observed that propagating flames

and autoignition are present.The OH-PLIF is commonly used in laser diagnostics

of chemically reacting turbulent flows because of its high concentration and well
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understood spectroscopy characteristics [9]. However, using OH-PLIF alone may

be insufficient to investigate turbulent MILD combustion reaction zones because

of their characteristics described above and the presence of OH in the unreacted

mixture which has been diluted with exhaust gases. Furthermore, the OH level

inside these zones may not be significantly larger than that in the unburnt or burnt

regions, especially when the oxygen level is near the lower end for the MILD

combustion. This issue may be addressed through careful calibration of the OH-

LIF system. However, a second marker would be required to identify the MILD

reaction zones unambiguously.

Many previous studies [10, 11, 12, 13, 14, 15, 16, 17, 18] on turbulent pre-

mixed flames used PLIF signal of particular species such as CH and CHO, and

the products of PLIF signals of particular species such as SOH × SCH2O to iden-

tify heat releasing regions. The choice of these scalars are fuel mixture specific

[11, 19, 20] and, they have been tested and used for stoichiometric and lean pre-

mixed methane-air flames in the past. For example, the marker CH has reasonable

correlation with heat release only for undiluted reactant mixture with equivalence

ratio of around 0.8-1.2 [15]. Thus, this marker may not be a suitable choice for the

MILD combustion. The signal-to-noise ratio for CHO-PLIF imaging is generally

low compared to OH and formaldehyde [11, 14] although it is possible to get good

signal for CHO imaging using multimode lasers [15].

The PLIF measurements of OH and CH2O have been conducted for MILD

combustion in past studies [7, 21]. However, thorough and direct investigation

into the applicability of these chemical markers to estimate heat release rate has

not been carried out for MILD combustion. Thus, it is useful to test if the above

conventional markers to identify heat releasing zones work for the MILD combus-
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tion also. This is the prime motive for this study. The representative PLIF signals

of the markers OH, CH2O and CHO are constructed using direct numerical sim-

ulation (DNS) data of turbulent MILD combustion first. These signals are then

used to evaluate the adequacy of these markers by comparing the reconstructed

heat releasing regions with those from the DNS data. The third objective of this

study is to investigate the behaviour of a reaction progress variable gradient ob-

tained from the DNS data and the constructed PLIF images. Although the onset

of turbulent MILD combustion from initial mixture can be studied using DNS, as

has been done in [22, 23] for laminar conditions, it is not the focus of this study

and this will be addressed in future.

This paper is organised as follows. The DNS of the MILD combustion is

described in the next section along with the data processing techniques used in

this study. The premixing used in this study represents the turbulent mixing of

fuel, air and recirculated exhausts stream inside a MILD combustor that can occur

before a flame or an autoignition front is established. More detail on this is given

in sections 2.1 and 2.2. The results on the reaction zones and reaction progress

variable are discussed in section 3. The scalar gradients are studied in section 4.

The conclusions are summarised in the final section.

2. DNS of MILD and conventional premixed combustion

2.1. Flow configuration and numerical method

The configurations such as EGR, flue gas recirculation (FGR) and staged fuel

injection are used to achieve MILD combustion in practice by injecting fuel and

air into a stream of hot products. Although the high momentum jet typically used

in MILD combustors can enhance mixing, a limited time available for this mix-
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ing may result in a spatially and temporally inhomogeneous mixture consisting

of fresh and recirculated exhaust gases. The sizes of these pockets are random

and determined by the turbulence conditions. This inhomogeneous mixture either

autoignites or establishes a flame depending on the local turbulence and thermo-

chemical conditions. To represent this scenario, a non-uniform mixture field con-

sisting of fresh and exhaust gases is constructed carefully to mimic the mixing

processes described above and to study the evolution of MILD reaction zones un-

der non-uniformly mixed charge conditions. The steps involved in generating this

inhomogeneous field are described in section 2.2. Detailed classifications of vari-

ous MILD combustion configurations in a mixing layer can be found in previous

studies [24, 25, 26].

The computational domain has a reflecting inflow and a non-reflecting outflow

boundary specified using the Navier-Stokes Characteristic Boundary Conditions

(NSCBC) formulation [27, 28] with Local One-Dimensional Inviscid (LODI) ap-

proximation in the x direction and periodic conditions in the y and z directions.

A similar computational domain with these boundary conditions is also used for a

conventional turbulent lean premixed flame case. The schematic of these compu-

tational domains are shown in Fig. 1, which will be discussed later in Section 3.

The numerical code SENGA2 [29], an updated version of SENGA [28], used

in earlier investigations of turbulent premixed flames [30, 31] and MILD combus-

tion [8] is employed for this study. This code solves fully compressible transport

equations on a uniform mesh for mass, momentum, internal energy and scalar

mass fractions along with temperature dependent transport properties. The spatial

derivatives are obtained using a tenth order central difference scheme which grad-

ually reduces to a fourth order scheme near boundaries. The integration in time is
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(a) (b)

Figure 1: Computational domain for (a) MILD and (b) conventional premixed
combustion. The reaction rate iso-surface for ω+

cT
= 2.0 is shown for Case B in

(a) and ω+
cT

= 1.0 for Case C in (b). Note that only 5.3 ≤ x+ ≤ 22.2 of the
domain is shown for Case C. Both snapshots are taken at t = 1.5τD.

achieved using a third order Runge-Kutta scheme, although a fourth order scheme

can be used in SENGA2. The numerical stability of these schemes is maintained

by using sufficiently small time steps (∆t ≤ 1×10−10 s), which is dictated by the

acoustic CFL condition. The methane-air combustion is simulated using a skeletal

mechanism involving 16 species and 36 elementary reactions [32].

An inhomogeneous mixture containing pockets of unburnt and burnt gases

flows at an average velocity of Uin through the inflow boundary located at x = 0

of the computational domain for MILD combustion cases as shown in Fig. 1.

The inflowing fields of scalar mass fractions, Yi(x = 0, y, z, t), temperature,

T (x = 0, y, z, t), and velocity, u(x = 0, y, z, t), are specified using preprocessed

fields Ŷi[x(t), y, z], T̂ [x(t), y, z] and û[x(t), y, z], where x(t) denotes the x loca-

tion of a scanning plane at time t moving at a velocity of Uin through the prepro-
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Figure 2: Schematic illustration of an EGR type combustion.

cessed fields, which are constructed as described in section 2.2. For a conventional

premixed case, only a turbulence field û[x(t), y, z] is preprocessed and fed to the

computational domain from the inlet boundary at an average velocity of Uin.

2.2. Construction of initial and inflow fields

Direct numerical simulation of a complete MILD combustion system is not

feasible yet because of heavy computational cost involved. So, the simulation

is split into two phases to mimic the physical processes of MILD combustion as

noted in section 2.1. The first phase involves the generation of a non-uniform

and inhomogeneous mixture field which is consistent with the required turbu-

lence and combustion conditions, and the second phase is the turbulent MILD

combustion. These two phases are represented pictorially in Fig. 2. The desired

inhomogeneous fields of û and Ŷi are obtained following the steps in [8], which

are described below for the sake of completeness.

Step (i) A turbulent velocity field is simulated in a preliminary DNS of freely

decaying homogeneous isotropic turbulence inside a periodic cubic do-

main for each combustion DNS case. This flow field is first initialised
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using a turbulent kinetic energy spectrum [33] as described by [34].

After this initialisation, the simulation is continued until the veloc-

ity derivative skewness reaches an approximately a constant value of

-0.5 representing a fully developed turbulence field and desirable tur-

bulence intensity is achieved.

Step (ii) One-dimensional laminar flames freely propagating into reactant mix-

tures of a desired MILD conditions are calculated using the skeletal

mechanism of [32]. The reactants for this laminar flames is diluted

with products of fully burnt mixture (XH2O : XCO2
= 2 : 1), and

the molar fraction of O2 in the reactant mixture XO2,r is matched the

desired dilution level.

Step (iii) An initial homogeneous scalar field is obtained by specifying a scalar-

energy spectrum function as in [35]. This scalar field is taken as an

initial field of a reaction progress variable, defined as cY = 1−Yf/Yf,r

taking values between 0 to 1. The same initial cY field is used to ini-

tialise all the MILD combustion simulations conducted in this study.

The fuel mass fraction is Yf and the subscript, r, denotes reactant mix-

ture. The flame solution from Step (ii) is then mapped to this cY field

to obtain the spatial variation of Yα. The temperature is set to a con-

stant value of Tm to be specified later. Such nearly-constant temper-

ature and fluctuating species fields before combustion occur may be

observed in MILD combustor employing recuperative or regenerative

heat exchangers to heat up a mixture of fuel, air and exhaust gases [4].

The fluctuating scalar field obtained as above do not yet have any cor-
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relation with the turbulence field obtained in Step (i).

Step (iv) These scalar and turbulence fields are then allowed to evolve in the

periodic domain to mimic the EGR-mixing without any chemical re-

action. This mixing DNS is run for one large eddy time, #0/v′, which is

much shorter than the autoignition delay time for the chosen mixture.

This allows the correlation between the turbulence and scalar fields to

develop. The root-mean-square (RMS) of the turbulent fluctuations

obtained in Step (i) is v′ and its integral length scale is #0. The internal

energy equation is also solved in this step to mimic the evolution of

temperature during the mixing process, which results in a maximum

temperature fluctuation of about 2% of the mean value, Tm.

The Bilger’s mixture fraction [36] in the initial mixture field generated as de-

scribed above has a variation of about ±5% of the mean value, 〈ξ〉, which results

from the inhomogeneity in the field and difference in the mass diffusivity of the

various species. The equivalence ratio obtained using φ = (1 − ξst)ξ/(1 − ξ)ξst,

where ξst is the stoichiometric mixture fraction, gives a mean value of 〈φ〉 = 0.8

for all the cases considered in this study. The calculation of the mixture fraction

is based on the boundary condition for the air stream diluted with products to a

desired level of oxygen and a pure fuel stream as shown in Fig. 2.

2.3. Numerical conditions

The velocity and scalar fields obtained as described in Section 2.2 are used as

the initial and inflow fields in the DNS of MILD combustion. Two cases having

MILD combustion conditions (Cases A and B) and one conventional premixed

combustion case (Case C) are considered. The initial/inlet mixture for Case A is
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Figure 3: A diagram showing combustion types [3] (a) and temperature variations
in laminar MILD and conventional flames (x = 0 is the peak location of the heat
release rate) (b).

constructed based on a 1D laminar flame, Flame A, and that for Case B is based on

Flame B. The initial field for the conventional turbulent premixed flame, Case C, is

based on Flame C. These cases are shown in a combustion type diagram in Fig. 3,

and their thermochemical conditions are given in Table 1. These mixtures do yield

propagating flame solutions and thus the standard combustion characteristics such

as flame speed, flame thickness and ignition delay time can be computed for these

mixtures. These values are given in Table 1 along with product temperature and

mole fractions of various species in the reactant mixture. The laminar flame speed

is SL and the Zeldovich thickness is δF = α/SL, where α is the thermal diffusivity

of the mixture. These flame quantities are computed using 1D version of SENGA2

and these values are close to those obtained using the PREMIX code [37]. When

the reactant temperature is larger than its autoignition temperature the value of

SL may depend on the computational domain size and the values in Table 1 are

computed using a domain size of 10 mm, which is the largest length employed for
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the DNS computations (see later part of this section). Since SL is not unique [38]

for Tr ≥ Tign, retaining the computational domain size allows one to have a basis

for a meaningful analyses. For these reasons, the SL given in Table 1 for reactants

with Tr ≥ Tign must be read with caution. The autoignition delay time, τign,

given in Table 1 is computed using a zero-dimensional, constant pressure well-

stirred reactor (WSR) model available in Chemkin package [37] and employing

the maximum temperature gradient criterion. The presence of turbulence can alter

the balance among unsteady evolution, reaction and diffusion processes locally

leading to a change in ignition delay time compared to the WSR model value.

This is not considered here and thus the value of τign given in Table 1 is only for

a guidance purpose and one must use a partially stirred reactor (PaSR) model to

include turbulence effects. The PaSR will obviously introduce some uncertainties

due to modelling involved in that approach.

Although the initial mixture field for the MILD cases are constructed based on

either the Flame A or Flame B, suitable representative one-dimensional laminar

flames for these cases were found to be those having reactant mixture composi-

tion for major species equal to the spatially averaged species mass fractions of

incoming field for the DNS. Such laminar flames are called MILD Flame Element

(MIFE) to differentiate them from standard flamelets and Table 1 also summarises

the thermochemical conditions of these MIFEs. The flame speed and thickness of

these MIFEs are used to normalise DNS quantities for MILD combustion in this

study.

All of the present DNS conditions have an equivalence ratio of φ = 0.8.

Specifically, for the MILD combustion φinj marked in Fig. 2 is 0.8 and the au-

toiginition temperature is 1100 K. The inlet and initial mixture temperatures are
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Table 1: Thermochemical conditions of 1D canonical laminar flames.

Flame XCH4,r XO2,r XH2O,r XCO2,r Tr (K) Tp (K) τign (ms) SL (m/s) δF (mm)
Flame A 0.019 0.048 0.121 0.061 1500 1865 4.97 3.20 0.116
Flame B 0.014 0.035 0.132 0.066 1500 1775 6.71 2.15 0.168
Flame C 0.078 0.194 0.0 0.0 600 2179 - 1.18 0.064

MIFE A 0.0095 0.035 0.136 0.064 1500 1692 5.42 2.62 0.138
MIFE B 0.006 0.025 0.143 0.068 1500 1624 6.96 1.66 0.217

set to be Tm ≈ 1500 K for the MILD combustion cases, which is comparable to

that used in [39]. This inlet temperature together with the dilution level used in

this study (see Tables 1 and 2) shows that the combustion is strictly in the MILD

regime as shown in Fig. 3a for the conditions of the Flames A and B. A small tem-

perature rise across the MILD combustion zone, compared to a premixed flame,

is shown in Fig. 3b. The temperature rise across the reaction zones of the Flames

A and B is larger than that for the respective MIFEs. The reactant temperature

for the conventional turbulent premixed flame, Case C is set to be 600 K as noted

in Table 1. The mixture and turbulence conditions of the three turbulent MILD

combustion cases considered in this study are given in Table 2. The maximum

and averaged molar fractions of oxygen in the reactant mixtures for the MILD

cases are nearly an order of magnitude smaller than for the premixed case, Case

C. The normalised mean inflow velocity, Uin/SL, is 9.6, 15.1, and 3.0 for the

Cases A, B and C respectively. The r.m.s. of velocity fluctuations and the inte-

gral length scale of the initial turbulence field are denoted respectively as u′ and

l0 in Table 2. Although the turbulence Reynolds number Rel0 is small, it is rep-

resentative of typical values observed in experiments [40, 41, 42] and in furnaces

[21, 43, 7] with MILD combustion conditions. The Damköhler and Karlovitz
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Table 2: Three-dimensional DNS conditions for the MILD and conventional com-
bustion.

Case Xmax
O2,r

〈XO2,r〉 Uin/SL u′/SL l0/δF l0/δth Rel0 Da Ka
A 0.048 0.035 9.6 3.80 12.3 1.70 67.0 3.25 2.11
B 0.035 0.025 15.1 9.88 6.8 1.15 96.1 0.69 11.9
C 0.194 0.194 3.0 2.19 12.3 2.11 38.5 5.64 0.92

numbers are defined as Da = (l0/δF )/(u′/SL) and Ka ≈ (u′/SL)3/2(l0/δF )−1/2

respectively. The thermal thickness of the respective one-dimensional unstrained

laminar flame is defined as δth = (Tp − Tr)/|∇T |max. The first two cases, A and

B, are in the thin-reaction zones regime and Case C is near the border between

the thin-reaction zones and corrugated flamelets regimes in the classical turbulent

combustion regime diagram [44].

To make the conditions of the three flames clearer, there is one premixed,

Case C, and two MILD, Cases A and B, combustion cases. The premixed case

is used for comparative analysis and to contrast the behaviour of MILD reaction

zones. The Cases A and B are chosen carefully so that they are representative of

experimental MILD cases, as noted above, and yet have an order of magnitude

difference in Da values. This is achieved by careful selection of turbulence and

thermo-chemical conditions noted in Tables 1 and 2. The Da and Ka values are

kept similar for the Cases A and C to see if the dilution affects the reaction zone

characteristics. Indeed, as one shall see in later sections of this paper the Case A

shows distinctive changes in the reaction zone structure and behaviour.

The computational domain has dimensions of Lx ×Ly × Lz = 10.0× 10.0×

10.0 mm3 for the Cases A and B, and Lx × Ly × Lz = 10.0 × 5.0 × 5.0 mm3

for the Case C. These domain sizes give about 4 to 7 integral length, l0, in each
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direction. These domains are discretised using 512 × 512 × 512 mesh points for

the Case A, 384 × 384 × 384 mesh points for the Case B, and 512 × 256 × 256

mesh points for the Case C. These meshes ensure that there are at least 15 mesh

points inside δth to resolve chemical structure as has been shown in many earlier

studies, see for example [45].

The simulations of the MILD cases, A and B, were run for 1.5 flow-through

times before collecting data for statistical analysis. This ensured that the initial

transients had left the domain. The flow-through time τD is defined as the mean

convection time, Lx/Uin, from the inflow to the outflow boundary. The simula-

tions were then continued for one additional flow-through time and 80 data sets

(all the primitive variables) were collected. For the Case C, 93 data sets were

collected over a time of 0.56τD after allowing one flow-through time for initial

transients to exit the computational domain. These simulations have been run on

Cray XE6 systems using 4096 cores with a wall-clock time of about 120 hours for

the Case A, which has the largest number of mesh points among the MILD cases,

and using 16384 cores with 80 hours of wall-clock time for the Case C.

3. Reaction zone and progress variable variations

Figure 4 shows contours of the reaction rate field ω∗

cT in the mid x-y plane

at t = 1.5τD for the three cases considered. The reaction rate is obtained as

ωcT = Q̇/cp(Tp−Tr), where Q̇ and cp denote respectively the heat release rate and

the specific heat capacity of the local mixture. The superscript “*” denotes a nor-

malisation using the global maximum value in the corresponding two-dimensional

slice. The quantities with superscript “+” denote values appropriately normalised

using the reactant density ρr and the respective laminar flame (MIFEs for the
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(a) (b) (c)

Figure 4: (Colour online) Contours of ω∗

cT
in the mid x-y plane at t = 1.5τD

for (a) Case A, (b) Case B and (c) Case C. Thick black line:0.2, and thin lines:
0.3, 0.4, · · · , 0.9 as indicated by the colour-map. The axes are normalised using
δth.

MILD cases) quantities, SL and δth. For example, length, gradient of reaction

progress variable and reaction rate are respectively normalised using δth, 1/δth
and ρrSL/δth. The superscript “**” appearing later in this paper denotes a nor-

malisation using the global maximum value in the entire 3D domain.

The normalised reaction rate shown in Figs. 4a and 4b respectively for Cases

A and B, suggests that intense chemical activities appear in locally thin reaction

zones. These regions are highly convoluted compared to the conventional pre-

mixed case shown in Fig. 4c, and the thin reaction zones in the premixed combus-

tion case has a nearly constant thickness of about δth. The degree of convolution

increases with the levels of turbulence and dilution (compare Figs. 4a and 4b). A

comparison between Cases A (Fig. 4a) and C (Fig. 4c) shows that the level of con-

volution is large under the MILD combustion condition. In general, the degree of

flame wrinkling in turbulent premixed combustion strongly depends on the turbu-
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lence level. The spatial non-uniformity of the mixture for the MILD combustion

also affects the flame wrinkling, since the local reaction rate is influenced by the

mixture non-uniformity. This enhanced wrinkling leads to interaction of reaction

zones as has been observed in [8].

As described in the introduction, the reaction rate variation is estimated ade-

quately using PLIF signals of specific species such as OH, CH2O and CHO for

conventional premixed turbulent combustion in the past studies [11, 12, 13, 15].

However these methods have not been validated for MILD combustion yet. The

PLIF signal of a species i, Si, is related to the local species molar concentration

and temperature. This signal can be represented by:

SCH2O ∝ [CH2O]T 1−β , 2.2 ≤ β ≤ 3.0 (1)

SOH ∝ [OH]T 1−β, −2.0 ≤ β ≤ 1.0 (2)

SCHO ∝ [CHO]T 1−β , 1.0 ≤ β ≤ 1.5, (3)

for a temperature range of 1000 ≤ T ≤ 1800 K when Boltzmann equilibrium is

considered [11, 19, 46, 47, 48]. Here, the square brackets denotes molar concen-

tration of species, and the parameter β can be adjusted by the selection of particu-

lar transition used for the measurement. For the present study, the parameter β is

set to be 2.6 for CH2O, zero for OH and 1.25 for CHO signals [11, 19]. It is also

verified that the choice of β does not change the conclusions of the present study

by eliminating the temperature dependence in Eqs. (1)–(3) by setting β = 1.

Figure 5 shows variations of the actual reaction rate ω∗

cT
, and the estimated re-

action rates across the laminar flames discussed in Fig. 3b. The estimated reaction

rates are ω∗

e1 = (SOH×SCH2O)
∗ and ω∗

e2 = S∗

CHO. The peak locations of the actual
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(a) (b)

Figure 5: Variations of the actual (ω∗

cT : solid black line), estimated (ω
∗

e1: dashed
line, and ω∗

e2: ×) reaction rates, and cT (thick grey line) for the respective laminar
flames for (a) Case C (Flame C) and (b) Case B (MIFE B). The location x+ = 0
corresponds to the location of peak ω∗

cT , and x
+ < 0 and x+ > 0 correspond to

unburnt and burnt sides respectively.

and estimated reaction rates are almost identical with a small difference of about

0.06δth for the MILD laminar flame, and about 0.11δth for the premixed laminar

flame. However, the variation of the actual reaction rate across the flame is re-

produced only approximately by the estimates for premixed flames, as reported

in [13]. Specifically, the non-zero reaction rate on the burnt side is captured by

neither of the estimates, since both CH2O and CHO are consumed quickly in the

reaction zone. The estimate ω∗

e1 is reasonable and can be used to identify heat

releasing zones as has been done in previous experimental studies using PLIF

techniques for premixed combustion [11, 12, 13, 16, 49, 17, 18]. However, these

LIF markers have not been verified for MILD mixtures, thus it is worthwhile to

test these markers for turbulent MILD cases. This is because the reactant mixture

is non-uniform, which would influence reaction zone shape and its location. Fig-

ure 5b compares the actual and estimated reaction rates for MIFE B. Except for
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the burnt side, the comparison shows good agreement.

The typical estimated reaction rate fields ω∗

e1 and ω∗

e2 in the same x-y plane as

in Fig. 4 are respectively shown in Figs. 6(a-c) and (d-f). The results are shown for

both MILD and premixed cases. These estimated fields show reasonable agree-

ment with the actual field shown in Fig. 4. It is not surprising to see good agree-

ment for the premixed case. Many features of the MILD reaction zones observed

in Fig. 4 are reproduced reasonably well in Fig. 6. There are some differences

also; for example, the shape of isolated pockets of reaction zones in the estimated

field for the Case B (high dilution case) in Figs. 6b and 6e. However, the location

of local maximum reaction rate is well represented in the estimated fields. Such

observation has been made for premixed flames in earlier studies [11, 20, 13].

Figure 7 shows the variations of instantaneous ω∗

e1 and ω∗

e2 with ω∗

cT
as a scatter

plot for the Case B. The samples are obtained from the x-y plane shown in Fig. 6,

and this variation is found to be typical for other MILD and premixed cases. The

correlation between the actual and estimated values is relatively low for small

values of ω∗

cT with two distinct branches as shown in Fig. 7. The estimated reaction

rate across the flame agrees well with the actual variation in unburnt side as in

Fig. 5b, which corresponds to the left branch in Fig. 7, while the estimated value

tends to be smaller than the actual value in burnt side (the right branch). However,

the agreement of the actual and estimated values is good for high reaction rate

(ω∗

cT
≥ 0.3), and thus the estimation of the reaction rate field using the chemical

markers SOH × SCH2O and SCHO is reasonable for the MILD combustion as well

as the conventional premixed combustion.

The gradient of the progress variable is of interest in this study as noted in the

Introduction. Thus, the contours of reaction progress variable based on temper-
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(a) (b) (c)

(d) (e) (f)

Figure 6: (Colour online) Contours of ω∗

e1 (a–c), and ω∗

e2 (d–f) in the same x-y
plane as Fig. 4 for Case A (a, d), Case B (b, e) and Case C (c, f). Thick black
line:0.2, and thin lines: 0.3, 0.4, · · · , 0.9 as indicated by the colour-map.
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(a) (b)

Figure 7: Typical variations of instantaneous ω∗

e1 and ω∗

e2 with ω∗

cT for Case B.
One fourth of all the samples from the same x-y slice as in Fig. 6 are shown.

ature, cT = (T − Tr)/(Tp − Tr), are compared to those constructed using S∗

OH.

The typical results are shown in Fig. 8 for the Cases B and C. The cT contours

are shown as solid lines while the contours of the estimated progress variable field

cPLIF are shown as dashed lines. The cPLIF contours are obtained as cPLIF = S∗

OH,

where S∗

OH varies from zero to unity. This quantity S∗

OH is similar to that could

be obtained in OH PLIF measurements. As one would expect, the cPLIF field re-

produces the characteristics of cT well for the premixed case, except for a small

offset. The scatters of instantaneous cT and cPLIF shown in Fig. 9a also suggests

that cT can be reconstructed once local cPLIF is known, since the relationship be-

tween instantaneous cT and cPLIF is monotonic except for cPLIF ≥ 0.85. This

further confirms that the statistics of cT and cPLIF is similar to one another for the

premixed case.

A comparison of cT and cPLIF shown forMILD combustion, Case B, in Figs. 8d

to 8f does not show as good correlation as for the premixed case in general. How-

ever, a good agreement is observed for cT = 0.6 and cPLIF = 0.6 contours, where
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(a) (b) (c)

(d) (e) (f)

Figure 8: (Colour online) Contours of cT (solid-red line) and cPLIF (dashed line)
for Case C (a–c) and Case B (d–f) in the same x-y plane as in Fig. 4. The contour
level is 0.2 (a, d), 0.6 (b, e) and 0.8 (c, f).
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(a) (b)

Figure 9: Scatter plot of the instantaneous cT and cPLIF for (a) Case C and (b)
Case B. One fourth of all the samples in the same x-y slice as in Fig. 6 are shown
above.

the heat release peaks in the respective canonical laminar flame. For other cT con-

tours shown in Figs. 8d and 8f, there is a close match observed locally, between

cT and cPLIF in several locations. Generally the representation of cT by cPLIF in

MILD combustion is not as good as for the premixed case. The broad distribution

of the cT -cPLIF scatter in Fig. 9b also suggests this.

A close study of Fig. 8 suggests that the cT and cPLIF contours are almost par-

allel to one another in predominant portions for the MILD combustion case. Thus

a contour of particular cT value can be represented well by a contour of differ-

ent cPLIF value. This parallelism suggests that their gradient vectors point in the

same direction, which is verified by calculating the PDF of the inner product of

the gradient unit vectors conditioned on ω∗

cT . These unit vectors are defined as

ncT = ∇cT/|∇cT | and nOH = ∇cPLIF/|∇cPLIF|. The typical PDF of the inner

product conditioned on the reaction rate, ω∗

cT
calculated as P (|nOH · ncT ||ωcT ) =

P (|nOH ·ncT |,ωcT )/P (ωcT ), is shown in Fig. 10 for the MILD (Case B) and pre-
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(a) (b)

Figure 10: Contours of the conditional PDF of the inner product, p(|ncT ·
nOH||ω∗

cT
) for (a) Case C and (b) Case B. The PDF is constructed using samples

from the entire domain and sampling period for each case.

mixed (Case C) cases. Here, P (ω∗

cT
) is the marginal PDF of ω∗

cT
. The conditional

PDF shown for the premixed case peaks near |ncT ·nOH| = 1 as one would expect.

The PDF for the Case B shown in Fig. 10b is typical for the MILD combustion

cases studied here. The PDF shown for the MILD case also suggests a good align-

ment between ncT and nOH, specifically at locations with high heat release rate.

The PDF broadens slightly for small ω∗

cT
values, which come predominantly from

unburnt and burnt regions of the flame front, as shown in Fig. 5b. It has been

observed in Figs. 8d and 8f that the cT and cPLIF contours are less likely to be

parallel at regions with cT close to zero and unity. The tendency for the alignment

of these two gradients is high for ω∗

cT
≥ 0.3. Therefore, the orientation of the cT

gradient can be estimated adequately using variation of S∗

OH gradient to deduce

further insight on the scalar gradient behaviour. Also, the reaction rate signal, ω∗

e1,

can be obtained relatively easily using SOH and SCH2O. Thus, the reaction rate can
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be used to condition the scalar gradient PDF as has been done in the next section.

4. Scalar gradient behaviour

Strong scalar gradient due to the intense chemical activity within thin regions

characterises flamelet like combustion. Also, the flame normal component of the

scalar gradient is statistically very large compared to the tangential component

in the flamelet combustion. Hence the relationship between the normal compo-

nent of the scalar gradient and reaction rate in turbulent premixed flame would

be similar to that of the respective laminar flame solution. The characteristics of

this relationship can be understood by investigating the PDF of the scalar gradient

conditioned on the reaction rate, which is discussed in this section. First, a method

to construct this PDF from the DNS data is described. Then, this PDFs obtained

using the DNS and synthesised LIF fields are compared to assess the validity of

the statistics deduced from the synthesised fields. This approach is also applied to

the 2D field constructed from the DNS since 2D measurements are quite common

in laser diagnostics investigation. The comparison of 2D and 3D results (for both

DNS and constructed LIF fields) will help us to see if the laboratory measurements

can be used to construct these conditional PDFs.

4.1. Data analysis

The method used here to construct the conditional PDF from the complete

three dimensional fields of reaction rate and scalar gradient involves five steps

given below. A quantity normalised using its maximum value in the entire domain

is denoted using a superscript “**” in the following discussion.

1. The three dimensional gradient of progress variable ∇c, either cT or cPLIF,
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is computed from the primitive variables using the same numerical scheme

employed for the DNS.

2. The flame surface is identified using the local minimum value of∇ω∗∗ sub-

ject to ω∗∗ > 0.5. The method identifies the local maximum reaction rate

which correlates well with the estimates obtained using the deduced LIF

signals as shown in Fig. 5. Furthermore, it helps to avoid multiply con-

nected surfaces, which would result if a threshold value is used, especially

in the MILD cases (see Fig. 4). The surface identified thus is expressed as

(fx(s), fy(s)) for x-y, and (fx(s), fz(s)) for x-z planes, where s is a local

coordinate along the surface.

3. The normal vectors, n1,xy and n1,xz, of the surfaces are calculated in every

2D plane asn1,xy = (−dfy/ds, dfx/ds) for x-y andn1,xz = (−dfz/ds, dfx/ds)

for x-z planes. Similar procedure is followed to obtain the tangential vec-

tors, n2,xy and n2,xz, in the corresponding planes.

4. The flame normal and one of its two tangential vectors at every point on

the surface is then constructed using the respective 2D vectors obtained in

the previous step. The second tangential vector is calculated using the vec-

tor cross product rule. The normal and tangential components of ∇c are

then computed as ∇c · ni for cT and cPLIF, where i = 1, 2 and 3 denote

respectively the normal and two tangential directions.

5. The samples for constructing the PDF are collected in the normal and tan-

gential directions over a length of 2δth on either side of the point of interest.

These samples obtained from the entire computational domain are used to
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construct joint, P (ψ+
i ,ω), and marginal, P (ω), PDFs. The symbol ψ+

i de-

notes ln(|∇+c · ni|) and ω denotes ω+
cT or ω

∗∗

e1 or ω∗∗

e2 . The conditional PDF

is then obtained using the Bayes theorem: P (ψ+
i |ω) = P (ψ+

i ,ω)/P (ω).

The above steps are repeated to get the conditional PDF from 2D subsets of

the 3D data. The only difference is in the steps 3 and 4 described above for the

normal and tangential vector calculation. These vectors are obtained simply as

n1 = (−dfy/ds, dfx/ds) and n2 = (dfx/ds, dfy/ds) in a given 2D (x-y) plane.

4.2. Conditional PDFs of scalar gradients

Contours of the conditional PDF, P (ψ+
i |ω

∗∗) of 3D scalar gradient constructed

using cT and ω+
cT
, and the deduced LIF signals are shown in Fig. 11 for the two

MILD and premixed cases. The premixed case is shown in the first column and

theMILD cases are shown in the second and third columns. The PDFs constructed

using cT and ω+
cT
are in the top row and the other two rows show the PDFs for the

synthesised LIF signals. The conditional PDF for the normal component is shown

using solid lines and the tangential component is shown using the dashed line.

Since the conditional PDFs of the tangential components ψ+
2 and ψ+

3 are almost

identical, the conditional PDF is shown only for ψ+
2 . The grey line denote the

respective laminar flame (MIFEs for the MILD cases) solution (ψ+
lam,ω

∗∗

cT
). The

laminar curves shown in the bottom two rows of Fig. 11 are obtained using the

LIF signals deduced from the respective laminar flame solution as explained in

section 3.

The conditional PDF for the premixed case in Fig. 11a shows that the flame

normal component is larger than the tangential component when the reaction rate

is large (ω∗∗

cT > 0.5). The high probability density for the normal component ex-

ists in relatively narrow region compared to the tangential component. This region
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is well bounded by the laminar flame solution suggesting that the probability of

finding high gradient similar to that in the laminar flame is large. For tangen-

tial component, the PDF is distributed over a wider range of ω∗∗

cT
and ψ+ and the

peak PDF occurs for low reaction rate and scalar gradient values. The probabil-

ity of finding high value of tangential gradient in regions of high reaction rate is

negligibly small. This is what one would see in turbulent premixed combustion

in flamelets regime and the PDFs from this case serves as a baseline behaviour

to compare with. The conditional PDFs obtained using the synthesised two LIF

signals, one using SOH and SCH2O, and another one using SCHO, as explained

in section 3 are similar to that for the DNS data (cf. Figs. 11a, 11d and 11g).

The corresponding laminar solutions shown in Fig. 11d and 11g also suggests the

flamelet combustion. These laminar solutions show two values of the normalised

scalar gradient for a given value of the normalised reaction rate. This is because

of some difference in the location of peak values of the reaction rate and scalar

gradient in the laminar flame. The larger values of the scalar gradient come from

the reaction zone and the lower values are from either the preheat or hotter part of

the reactive-diffusive regions. The gap between these two branches is the largest

when SCHO is used in the analysis. However, the relative behaviour between the

turbulent case and the respective flamelet is maintained clearly showing the ex-

pected flamelet behaviour.

The conditional PDFs for the MILD cases show distinct changes. The PDFs

for the normal and tangential components are very close for low reaction rate

values unlike for the premixed case. The PDF contours for the tangential and

normal components start to deviate slowly from each other as the reaction rate

increases. This deviation starts to occur at about ω∗∗

cT ≈ 0.2 in the Case A and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: The conditional PDF, P (ψ+
i |ω

∗∗), of scalar gradient normal component
ψ+
1 (solid line) and tangential component ψ+

2 (dashed line) for the premixed case
(a, d, g), Case A (b, e, h), and Case B (c, f, i). (a-c): PDFs for the DNS fields,
(d-f): for the synthesised ωe1 and cPLIF fields, and (g-i): for the synthesised ωe2

and cPLIF. The grey line is the respective laminar flame solution, (ψ+
lam,ω

∗∗).
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about 0.3 in the Case B. The difference in the behaviour of the PDFs for the

normal and tangential components in the MILD cases is not as big as for the

premixed case, suggesting that the MILD combustion may be distributed-like,

which is because of the presence of copious interaction of reaction zones. The

distributed reaction zones are expected to have similar level of scalar gradients

in both the normal and tangential directions, which is seen in Fig. 11 for regions

with low reaction rate as noted above. This can result from flame thickening [50]

or extensive and copious interaction of flamelets. There is, however, a positive

correlation between the normal component and reaction rate over the almost entire

range of ω∗∗

cT
as shown in Figs. 11b and 11c. Such a behaviour is flamelet-like. The

distributed-like reaction zones and the positive correlation between the reaction

rate and scalar gradient suggests that the MILD combustion considered here has a

“weak” flamelet behaviour, where both flamelet and non-flamelet characteristics

are observed.

It is worth noting that the values of Da and Ka for the premixed and Case A

are similar (see Table 2). Despite this, substantially different behaviour is seen for

the Case A. The PDFs of both normal and tangential components have equally a

long negative tail even for ω∗∗

cT ≈ 0.7 in the MILD cases unlike in the premixed

case. Also, the probability to find ψ+
1 > 0 is larger in the MILD case which is

due to frequent straining thinning of the MILD reaction zones by turbulence. This

probability is increased further in the Case B because of high dilution level. A

close study of Figs. 11b and 11c shows that the probability for ψ+
1 > 0 is finite for

0.4 ≤ ω∗∗

cT ≤ 0.8. This probability decreases for ω∗∗

cT > 0.8 which is clearer for

the Case B in Fig. 11c suggesting that the turbulent straining is influential only on

the reaction zones with moderate reaction rates. The regions with top 20% of the
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reaction rate have strong thermo-chemical effects compared to turbulence. Since

the MILD combustion includes interactions of reaction zones [8], there are reac-

tion zones with smaller normal scalar gradient than the respective laminar value

as one can observe in Fig. 11c. Also the PDFs of normal and tangential compo-

nents in the MILD cases do not differ as much as in the premixed case suggesting

that the scalar gradients in the MILD conditions are less directional dependent

compared to the premixed combustion. These insights suggest that the current

surface based description of turbulent combustion may be inadequate to describe

turbulent MILD combustion and alternative methods need to be developed.

The conditional PDFs constructed using the synthesised LIF signals are shown

in the second and third rows of Fig. 11 for all the cases studied. These PDFs

are very similar to those obtained from the DNS data supporting the insights de-

scribed above. Hence, it would be very helpful and informative to construct and

study such PDFs using laser diagnostics involvingOH and CH2O PLIF. However,

full 3D PLIF is expensive and not an easy task at this time. Thus it is worth to

study these PDFs obtained using 2D slices of the DNS data and the corresponding

synthesised LIF signals to verify if the above insights can also be deduced from

these PDFs.

The conditional PDFs constructed using 2D data are shown in Fig. 12 and

the reaction rate is normalised using the respective maximum value observed in

each 2D field. The corresponding laminar flame solution (ψ+
lam,ω

∗) is also shown

(grey line) for comparison. There are some small differences in the PDF shape.

However, the relative behaviour among the normal and tangential components,

and laminar solution observed in Fig. 12 is very similar to those noted from Fig. 11

for the three dimensional data. Thus, these conditional PDFs constructed using 2D
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: The conditional PDF, P (ψ+
i |ω

∗), of normal ψ+
1 (solid line) and tan-

gential ψ+
2 (dashed line) components of 2D scalar gradient for the premixed case

(a, d, g), Case A (b, e, h), and Case B (c, f, i). (a-c): PDFs based on 2D slice
of the DNS data, (d-f): based on synthesised ωe1 and cPLIF, and (g-i): based on
synthesised ωe2 and cPLIF. The grey line is the respective laminar flame solution
(ψ+

lam,ω
∗).
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slices of three dimensional field have adequate information to gain insights into

the flamelet or non-flamelet behaviour of reaction zones in turbulent MILD and

premixed combustion.

5. Conclusions

Three-dimensional DNS data of turbulent MILD and premixed combustion

has been studied to investigate the characteristics of reaction zones. The com-

bustion kinetics in the DNS were represented using a skeletal mechanism for

methane-air combustion and two dilution levels were considered for the MILD

combustion. Generally, MILD or “flameless” combustion is expected to involve

relatively moderate and spatially uniform chemical activities. However, the anal-

yses show that there are indeed thin regions with strong reaction rate leading to

large scalar gradients implying the presence of flamelets. These flamelets interact

with one another and this interaction is very frequent in space and time leading to

substantial thickening of the flamelets and enhanced reaction rates. The character-

istics of these reaction zones are investigated here by studying the scalar gradients

of a reaction progress variable cT . Also, LIF signals of OH, CH2O and CHO

are synthesised from the DNS data to construct a reaction progress variable field,

cPLIF, its gradient, and heat release rate information that could be obtained in a

physical experiments. These synthesised signals are analysed to verify if the sci-

entific insights deduced from them corroborate well with those from the actual

scalar and reaction rate fields.

The heat release rate field obtained using the synthesised LIF signals repre-

sents the actual field from the DNS for both the MILD and premixed combustion

well. This is well known for the premixed combustion and used routinely to study
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premixed combustion using laser diagnostics, but this had not been investigated

for the MILD combustion. A good correlation between the actual and synthesised

heat release rate fields observed in this study suggests that the LIF signals of OH

and CH2O can be used for the MILD combustion of CH4 also. The spatial in-

homogeneity in the mixture composition and its temporal variation in the MILD

combustion does not seem to impart undue influences on the applicability of LIF

technique to detect MILD reaction zones. However, using only OH or CH2O or

CHO may be inadequate to study MILD combustion characteristics. Specifically,

the progress variable field, cPLIF, defined using the synthesised OH-LIF signal

does not correlate quite well with cT in MILD combustion, except for high heat

releasing regions. Although, a range of cPLIF is observed for a given cT value, the

iso-contours of these two variables are observed to be parallel in predominant re-

gions of the MILD combustion. Thus the directions of ∇cPLIF and ∇cT are quite

close. These gradients are then projected onto local flame normal and tangential

directions. The flame is identified using the reaction rate (both DNS and deduced

field using the synthesised LIF signals) gradient to avoid multiply connected sur-

faces in MILD combustion. The reaction rate and projected scalar gradients are

used to construct the PDFs of these gradients conditioned on the reaction rate.

The conditional PDFs show that the premixed case considered here has a typ-

ical flamelet combustion characteristics; stronger normal gradient compared to

tangential gradients. However, the PDFs for MILD cases are markedly different.

The PDFs of the normal component is broad in the MILD cases compared to the

premixed case. The PDFs shows that the tangential gradient in the MILD com-

bustion is not as small as in the premixed case. This suggests that the reaction

zones in the MILD combustion is non-flamelet like. However, the normal gra-
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dient is relatively stronger than the tangential gradients in the MILD combustion

also, implying the presence of thin reaction zones. Indeed these zones are ob-

served using contours of reaction rate. These reaction zones interact often, which

led to a relatively weak flamelet like combustion, in a broader sense, in the MILD

cases. These results demonstrate that the so-called flameless combustion is not an

idealised homogeneous reactive mixture but has common features of conventional

combustion while having distinctive characteristics.

The OH- and CH2O-LIF signals synthesised from the DNS data also corrobo-

rate these insights. The characteristics of reaction zones in turbulent combustion

deduced using scalar gradients are expected to be more robust than those from the

scalar field itself. It would be worthwhile to investigate these conditional PDFs

that could be obtained from laser diagnostics of premixed and MILD combustion.
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