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Abstract

In this study a 5-step reduced chemical kinetic mechanism involving 9 species

is developed for combustion of Blast Furnace Gas (BFG), a multi-component

fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and

high water fractions, for conditions relevant for stationary gas-turbine com-

bustion. This reduced mechanism is obtained from a 49-reaction skeletal

mechanism which is a modified subset of GRI Mech 3.0. These skeletal and

reduced mechanisms are validated for laminar flame speeds, ignition delay

times and flame structure with available experimental data, and using com-

putational results with a comprehensive set of elementary reactions. Overall,

both the skeletal and reduced mechanisms show a very good agreement over

a wide range of pressure, reactant temperature and fuel mixture composition.
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1. Introduction

Recent developments in gas-turbine power generation include the use of

low calorific value fuels. These fuels may be Synthetic Gas which is commonly

known as Syngas, Coke Oven Gas (COG) and Blast Furnace Gas (BFG)

or suitable combinations of these gases [1]. The constituents of and their

relative proportions in these gases vary considerably. The Syngas obtained

by coal gasification is mostly composed of hydrogen and carbon monoxide

with varying levels of carbon dioxide, water and other trace species [2, 3].

The relative proportions of the predominant gases vary widely depending on

the gasification process and the ratio of hydrogen to carbon monoxide mole

fractions, fH2 = XH2/XCO, is typically larger than 0.1 and it can be as high

as 3 [1, 2, 4, 5, 6, 7, 8]. The industrial COG includes considerable amount

of CH4 in addition to these species with fH2 as high as 11 and fCH4 ≈ 5

[9], whereas BFG has fH2,CH4 ranging from 0 to 0.15 [1, 5, 9]. In terms of

calorific values, BFG has the lowest value of about 2.95 MJ/m3N compared

to 40 MJ/m3N for the standard natural gas used in gas turbines [1].

Robust and accurate models for combustion chemistry and its interaction

with turbulence are required for the design and development of gas turbines

intend to operate with the above fuels. The combustion chemistry is of par-

ticular interest to this study and the turbulence-chemistry interaction will be

addressed in future. The wide variation in fuel mixture composition noted

above offers a considerable challenge to construct a reliable, robust and com-

putationally efficient chemical kinetic scheme. The computational efficiency

is specifically of high importance from the view point of turbulent combus-

tion calculation. Reduced mechanisms offer a convenient way to achieve this
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objective by reducing number of species involved in the combustion kinetics

and yet maintaining an acceptable level of accuracy for important attributes

such as laminar burning velocity, flame structure, ignition delays, extinction

limits etc. There have been many developments of such reduced mecha-

nisms for the most commonly used single component fuels [10, 11, 12, 13].

Generally, these mechanisms were developed systematically by introducing

steady-state and/or partial equilibrium assumptions respectively for some

species and reactions involved in a skeletal mechanism. Sensitivity analyses

were typically used to obtain a skeletal mechanism from a full comprehensive

set of elementary reactions. As noted earlier, these strategies have been used

in many past studies to obtain reduced kinetic mechanisms for single compo-

nent fuels and there has not been an attempt to obtain a reduced mechanism

for a multi-species fuel mixture such as the BFG, to the best of the authors’

knowledge. Thus, this study makes an attempt in that regard.

The range of validity of a reduced mechanism strongly depends on the

fuel composition and operating condition used to develop it. The hydrogen

content is low in the BFG as noted earlier and one may like to mix it with

small amounts of H2, CH4 and H2O or other gases containing high fractions

of these species in order to enhance the BFG combustion characteristics.

The need of a reduced mechanism for such multi-species fuels then becomes

imperative. Most of the attempts in the past to get reduced mechanisms

for a multi-species fuel mixture were for syngas and were validated only for

relatively high fH2 values and very low water vapour content [14, 15]. More

importantly, the effect of CH4 was not considered since it was generally taken

that the CH4 content in such fuels was too low to affect the combustion
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characteristics which might not be entirely correct. For example, it is later

shown in this work that small amounts of CH4 in a CO/CH4/H2O-air mixture

directly affect the flame speed response to water content in the fuel mixture.

In this study, an accurate reduced kinetic mechanism is developed from

a 49-reaction skeletal mechanism which is shown to be suitable for multi-

component fuel mixtures containing CO, H2, H2O, CO2 and CH4, with low

fH2 and fCH4 typical for the BFG mixture. This reduced mechanism is

then validated for laminar flame speed and its structure, and ignition de-

lay times for pressure and temperature conditions relevant to ground-based

heavy weight gas-turbines with typical overall pressure ratios of about 20 or

small [3, 5, 16] and combustor inlet temperature not exceeding 1000 K [3, 16].

The reduced mechanism is also assessed for its suitability for high H2O con-

tent in the fuel mixture. To the best of our knowledge this is the first attempt

to obtain a reduced mechanism for a multi-component fuel mixture with a

good accuracy over a wide range of thermodynamic and thermo-chemical

conditions.

The rest of the paper is organised as follows. The skeletal mechanism re-

quired for the development of the reduced chemistry is discussed in section 2.

The techniques used to develop the reduced mechanism is discussed in sec-

tion 3 and the reduced mechanism is presented in section 4. The validation

results are discussed section 5, its computational advantage is demonstrated

in section 6 and the conclusions are summarised in the final section.
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2. Development of skeletal mechanism: Sensitivity analysis

The chemical kinetics of CO/H2 mixture oxidation has been investigated

by numerous studies in the past and a sustained interest on the combustion

of Syngas in gas turbines for power generation has led to publication of a

dedicated volume on this topic in the Combustion Science and Technology

journal in 2008. The reviews by Chaos and Dryer [3] and Sung and Law [4]

clearly identified the important reactions for CO oxidation are CO + OH =

CO2 + H and CO + HO2 = CO2 + OH, with the second reactions becoming

important at elevated pressures. Comprehensive kinetic mechanisms for dry

and moist CO oxidation have been proposed in the past [17, 18] and has been

updated in a number of later studies as has been noted by Sung and Law [4].

The interested readers are referred to [4] for further detail.

Out of these many available comprehensive mechanisms, a set of 22-

reactions suggested in [15] as a guideline along with the GRI Mech 3.0 is

used to obtain a skeletal mechanism in this study. This choice is mainly for

the following two reasons. (i) The stiffness of the reduced mechanism, sig-

nified by the non-linear coupled equations for steady-state species, strongly

depends on the skeletal mechanism used. Wang and Rogg [15] produced

a non-stiff and working mechanism for moist CO using their 22 reactions.

(ii) The interest in this study also includes the effects of CH4 on moist CO

and thus the GRI Mech 3.0 [19] is used, since this mechanism is widely val-

idated using experimental data for methane [19], H2O-diluted and oxygen

enriched methane [20], moist H2/CO mixtures at elevated temperature [21]

and 323 K [22]. This mechanism was also observed to give reasonable results

for flame speeds and ignition delay times for multi-species fuel mixtures over
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a wide range of pressure, temperature and fuel composition. Burke et al.

[23] noted that the measured mass burning rate of laminar premixed flames

of H2/CH4/O2/He mixture of equivalence ratios from 0.3 to 1.0 at pressures

from 1 to 25 atmosphere can be obtained using the GRI Mech 3.0, but some

of the rate constants need to be adjusted empirically. Kuznetsov et al. [24]

concluded that the GRI-3.0 is reasonable to compute the laminar burning

velocity of stoichiometric flame of H2/O2/H2O for pressures ranging from 10

to 72 bar but the mechanism of Lutz [25] is better for 1 to 72 bar. The

burning velocities calculated by Boushaki et al. [26] for CH4/H2/H2O/air

atmospheric flames over a wide range of equivalence ratio with 0-30% H2,

dry (0% H2O) and wet (100% relative humidity) conditions using the GRI-

3.0 compares acceptably well with measurements. He et al. [27] concluded

that the laminar flame speeds calculated using the GRI Mech 3.0 and USC-II

mechanisms agreed well with their measurements using PLIF techniques for

lean flames and USC-II mechanism gives better agreement for flames with

equivalence ratio of 0.8 and 0.9. Vasu et al. [28] noted that the GRI-3.0 is

able to capture the trends and magnitudes of the measured ignition delays at

temperatures 974-1160 K and pressures 1.1-2.6 atmosphere for stoichiometric

H2/CO/CO2/air mixtures. The analysis of ignition data by Petersen et al.

[29] for syngas/air at 600-1148 K and 10-30 atmosphere suggested that the

available kinetic mechanisms are reasonable if the temperature is larger than

1000 K, even up to 450 atmosphere as shown in [30]. Two points become

clear from this brief survey; the BFG like fuel mixture was not considered in

earlier studies and the use of the GRI Mech 3.0 is reasonable as long as the

fuel mixture contains molecules such as CO, H2, CH4, CO2 and H2O.
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The mechanism of Wang et al. [15] contains reactions that can also be

found in the GRI Mech 3.0 which is very convenient. This is in contrast to

the 31-reaction C1/O2 subset of Li et al. [31] for example, where reactions

30 (HCO + HO2 = CO2 + OH + H) and 31 (HCO + HCO = H2 + CO +

CO) do not appear in the GRI set.

In order to identify the most important reactions for fuel mixtures involv-

ing both H2 and CH4, sensitivity analyses are performed using the GRI [19]

reaction set and, its thermodynamic and transport databases. This analysis

is discussed next.

2.1. CO/H2/H2O-air mixtures

In this section, flame speed sensitivity analyses are conducted using the

GRI [19], at high (20%) and zero water vapour content in the fuel mixture

in order to (1) identify the most important reactions in each case and (2) to

obtain a suitable skeletal mechanism for CO/H2/H2O mixtures. The skeletal

mechanism must be as detailed as possible involving a possibly minimum

number of species. This is because the number of species involved is the

most important factor affecting the computational time especially in direct

numerical simulation (DNS) studies of turbulent combustion. The first 40

most sensitive reactions for CO/H2/H2O fuel mixture at an equivalence ratio

of φ = 0.9 and reactant temperature of Tu = 323 K with fH2 = 0.053 and 20%

water vapour content are given in Table 1. The sensitivity coefficients are

normalised as Ski
v = |ki

v

∂v

∂ki
|/|ki

v

∂v

∂ki
|max where ki is the specific rate constant

for reaction i and v is the flame speed.

Consistent with the findings in [15], the majority of their 22 reactions

have the highest sensitivities, but some reactions which are not present in
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[15] have appeared in Table 1 with higher sensitivities and they must be

included. In order of decreasing sensitivity these are reactions 120, 2, 12, 5,

14, and 47. Reactions 35, 36, and 34 do appear in [15] through H + O2 +

M = HO2 +M, but in the GRI there are separate reactions for some of the

third body species and should be included. This is also the case for reactions

41, 42 and 40 through 2H + M = H2 + M and reaction 166 through HCO

+ M = H + CO + M. These reactions are shown in bold letters in Table 1.

Reactions involving atomic N are neglected since they have low sensitivities

in general. Also, note that reactions appearing twice in Table 1 are duplicate

reactions (D) in the GRI set.

Considering all of the above changes, 22 from [15], 3 duplicate and 13

additional, a 38-reaction skeletal mechanism is obtained for CO/H2/H2O-air

mixtures with large H2O percentage.

Further sensitivity analyses were conducted at various conditions. These

conditions and the results of this analysis are given in Appendix-A. The

following points can be noted from a careful study of the six figures, A1 to

A6, shown in this Appendix.

1. When the water vapor is added the sensitivity to the three body recom-

bination reaction H + O2 +H2O = HO2 +H2O becomes significantly

large, while the sensitivity of the corresponding three body reactions in-

volving N2 and M are reduced. The reaction H + HO2 = 2OH increases

the flame speed being the biggest OH-radical provider as noted in [22].

It is also observed that the sensitivity of the reaction 2OH = O+H2O

increases significantly when the moisture content in the fuel mixture

is increased thereby increasing OH radical production [21, 22]. This
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provides an extra source of OH radicals for CO oxidation through the

most dominant reaction OH + CO = H+ CO2. Also, the sensitivity

of chain propagation reaction OH + H2 = H+H2O at 20% of water

vapour content is reduced. However, as one can see an increase in H2O

concentration shifts the equilibrium of this reaction to the left resulting

in more OH which makes fuel mixtures with low H2 content to be more

sensitive to H2O addition as observed in [21, 22].

2. The chain branching reactions O + H2 = H+OH, H + O2 = O+OH

show increased sensitivities, while the chain carrier reaction OH + H2

= H + H2O shows positive sensitivity consistent with the results of [21]

when the H2 fraction in the fuel mixture is increased. Also, the recom-

bination reaction H + O2 +H2O = HO2 +H2O becomes significant in

the dry mixture due to an increased H radical level resulting from the

increased H2 fraction in the mixture. The addition of water vapour

in this case does not affect the reaction sensitivities as much for the

mixture with low H2 fraction. This implies that the positive chemical

effect of water vapour addition will be less pronounced as observed by

Das et al. [22]. The effects are similar to these when the equivalence

ratio of the fuel mixture is increased.

3. From a practical point of view in using BFG likes gases, lean mixtures

with low H2 content is of interest. Thus, the effects of reactant temper-

ature and pressure on the reaction sensitivity are also investigated in

the Appendix-A. It is well known (see for example [3]) that HO2 chem-

istry becomes important at high pressures and thus the CO consuming

reaction HO2 + CO = OH+ CO2 has large sensitivities for both dry
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and wet mixtures and OH + CO = H+ CO2 remains as the most im-

portant reaction with sensitivity nearly five times larger than for the

HO2 reaction for CO consumption. As one would expect the sensitiv-

ities to the three body recombination reactions are increased at high

pressures with H + O2 +H2O = HO2 +H2O moving up the sensitivity

coefficient ranking for wet mixtures as noted for atmospheric condi-

tions. The chain branching reaction H + O2 = O+OH becomes the

second most dominant reaction for both the dry and the wet mixture

at high pressures.

Although there is a shift in the ranking of the reactions the more dominant

reactions remain the same. Hence it is noted that the reaction make up for

the H2/CO chemistry is unaffected for the range of conditions studied here.

2.2. CO/CH4/H2O-air mixtures.

The flame speed sensitivity analyses for CO/CH4/H2O-air mixtures are

discussed in this section. This analysis helps one to identify the most im-

portant reactions involving CH4. The normalised flame speed sensitivity

coefficients are shown in Table 2 for the first 40 most sensitive reactions from

the GRI Mech 3. In this case, the most important reactions involving only

CH4, CH3 and CH2O were considered. As a result, in order of decreasing

sensitivity, reactions 52, 11, 98, 284, 10, 15, 53, 58, 101 shown in bold letters

in Table 2 are added to the 38 reactions identified above. These 9 reactions

identified here are also consistent with the study of Cherian et al. [32] al-

though no mechanism was presented in their case for mixtures with high

water vapour content, or with CH4.
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As for the CO/H2/H2O mixtures, additional sensitivity analyses were also

conducted for CO/CH4/H2O mixture with high and no water vapour. The

conditions for this analysis and the raw sensitivity coefficients for the top 20

reactions are shown in Table A1 and Figs. A7 to A12 in the Appendix-A.

The following points, in addition to those noted for CO/H2/H2O mixtures

in section 2.1, can be summarised.

1. It is obvious to expect some reactions involving CH4, CH3, CH2, HCO,

CH2O to show up for CH4 mixture. More importantly, the chain

branching reaction H + O2 = O+OHmoves from 9th rank for CO/H2/H2O

mixture to 3rd rank for the methane containing mixture and this re-

action becomes the most dominant for mixtures with fCH4 = 1. This

is because of increased level of H resulting from CH4. Close exami-

nation of the net reaction rates of reactions 41-49 ( for the methane-

containing mixtures ), has shown that they are all positive. This means

that originally, CH4 decomposes to CH3 through reactions 41 and 42.

In turn CH3 decomposes to H through reactions 43 and 44. Thus,

addition of methane to a CO mixture results in increased H radical

production rate through the above decomposition process. In turn

increased H radical production rate causes increased sensitivities of

H + O2 = O+OH and H + CH3 +M = CH4 +M. The sensitivity of

H + O2 +H2O = HO2 +H2O is also increased ( absolute value ) as a

result, and this explains why CO/CH4 mixtures are chemically less

sensitive to water vapour addition.

2. Another important difference observed is the decrease of the sensitivity

of the chain propagation OH + H2 = H+H2O, moving down from 7th
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rank to 14th in the top 20 reactions. In the H2 containing mixtures this

reaction can be seen as the fuel attacking step, but for CH4 containing

mixture the fuel attack is signified by reactions involving CH4 and thus

these reactions involving methane take precedence (see Fig. A7). In

the wet methane containing mixtures the above chain carrier reaction

moves further down in the list.

3. The reaction O + CH3 = H+H2 + CO becomes one of the top 7 reac-

tions for dry and wet mixtures with fCH4 = 1 at atmospheric pressure.

This reaction moves out of the top 20 reactions when the pressure be-

comes 10 atmosphere.

4. At high pressures (10, 20 atm.), the reaction O + CH2O = OH+HCO

appear in the top 20 reactions but moves out of this set when water

vapour is added to the fuel mixture or the pressure is atmospheric.

5. For a relatively high methane concentration in the fuel mixture, reac-

tions with CH2 and CH3O become important. For a lower methane

content these species are not important for all the conditions tested,

hence the reaction make up in the skeletal mechanism is sufficient to

describe the methane chemistry of such fuel mixtures. Thus, the effect

of small CH4 amounts in the fuel mixture is adequately captured by

the extra 9 reactions noted above, something which was neglected while

developing reduced mechanism in a previous study [14].

In order to account for the He,Ar diluted experimental conditions in

[33, 34], reactions H + O2 +Ar = HO2 +Ar and H + O2 +He = HO2 +He

are also included in the set assuming that He has the same kinetic pa-

rameters as Ar. Slight modifications were made to some of the reaction
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rate parameters with respect to their values in the GRI set to improve

the agreement with experimental results. These modifications are as fol-

lows. (1) The pre-exponential factor of the dominant CO-consuming reac-

tion OH + CO = H+ CO2 was reduced by 1.5%, and the pre-exponential

factor of the OH-producing reaction H + HO2 = 2OH was reduced by 1% for

better agreement with the experimental data on the flame speeds at high

water vapour conditions. (2) The rate of the chain-terminating reaction

H + O2 +N2 = HO2 +N2 was reduced by increasing the absolute value of

the temperature exponent n by 8% ( from n=-1.24 to n=-1.339 ) and by

reducing the pre-exponential factor by 2.5%. This was found to be necessary

since the original GRI 3.0 parameters resulted in slight over-estimation of the

ignition delay time at low pressure, low temperature conditions. (3) The ac-

tivation energy of the CO-consuming reaction HO2 + CO = OH+ CO2 was

increased by 4%. This was done for better agreement in the high pressure

and high temperature regime of the measured ignition delay times since the

original GRI 3.0 parameters under-estimated the ignition delay times slightly

for these conditions. All the changes made are thus minor and will not de-

optimize the set of original GRI Mech 3.0 reactions. These modifications are

as per the common practice [23, 35, 36] since they are within the uncertaini-

ties of the rate parameters for the above reactions.

Based on the above analysis, the final skeletal mechanism for this study

includes 38 reactions suggested in section 2.1, 9 reactions for methane mix-

tures and 2 three body recombination reaction involving Ar and He identified

in this section. Hence, there are 49 reactions involving 15 species in total

and this set is given in Table 3 along with the kinetic rate parameters.
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3. Development of reduced chemistry

From a numerical standpoint, the time advancement of the species com-

position corresponds to the solution of a system of stiff ordinary differential

equations ( ODEs ). Without transport phenomena, there are Ns ODEs

describing the net rate of change of these species as:

∂Ci

∂t
= ωi,p − ωi,d, i = 1...Ns (1)

where Ci is the concentration of species i, with a production rate of ωi,p, and

a destruction rate of ωi,d. By removing certain intermediate species from the

detailed mechanism, the computational effort is reduced as the number of

ODEs that must be solved is decreased. For a restricted regime of interest,

many intermediate species can be removed from the ODE system without los-

ing the solution accuracy. Intermediate species can be systematically identi-

fied and removed from the ODE system via two major sequential steps. First,

a skeletal mechanism is generated from the original detailed mechanism using

sensitivity analysis as discussed in Section 2. Second, further reduction of

the skeletal mechanism results in a reduced mechanism. In the second step,

the Quasi-Steady State Assumption (QSSA) (e.g. [11, 37, 38, 39, 40, 41])

can be applied to certain intermediate species. Such a reduced mechanism

with QSSA can be described as:

For non-QSS species:

∂Ci

∂t
= ωi,p − ωi,d, i = 1...Ns,reduced (2a)
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For QSS species:

0 = ωj,p − ωj,d, j = 1...(Ns,skeletal −Ns,reduced) (2b)

QSSA is applicable to an intermediate species when its production rate, ωj,p

is nearly equal in magnitude to the destruction rate ωj,d resulting in a very

small net change in concentration.

Concentrations of QSS species are solved by the non-linear algebraic sys-

tem described in Eq. (2b), without any truncation, and identified using a

relative error 100(ω̇j,p − ω̇j,d)/max(ω̇j,p, ω̇j,d) [42] , whereas non-QSS species

concentrations are resolved in the usual manner using Eq. (2a). Computation

time saving results from the further decrease in system size from Ns,skeletal to

Ns,reduced. Furthermore, the stiffness of the system is also decreased further as

species with small life times are removed using a targeted search algorithm

( TSA ) of Tham et al. [42]. For fast development of reduced chemistry,

the interactive Computer Assisted Reduction Mechanism (CARM) algorithm

[40, 43] was used for the automatic generation of reduced chemistry with the

ability to produce source codes needed for computing the chemical sources.

Numerical solutions of the zero-dimensional Perfectly-Stirred Reactor (PSR)

with the 49-reaction skeletal mechanism in Table 3 were used as input to

CARM.

4. Reduced mechanism

The reduced mechanism is derived from the 49-reaction, 15 species (H, O2,

H2O, CO, CO2, H2, H2O2, OH, HO2, HCO, O, CH4, CH3, CH2O, N2/He/Ar)

skeletal mechanism shown in Table 3. For the He-diluted mixtures the inert
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N2 is simply replaced by He along with the different third body efficien-

cies and the corresponding reaction rate constants. The same would apply

in cases where Ar is the inert. During the development, it was found that

retaining H2O2 instead of HO2 in the reduced mechanism provides a more

robust reduced chemistry. Also, for fine tuning of the reduced chemistry,

the activation energy of reaction 2 in Table 3 was increased by 27.5%, a

procedure similar to the correction factor employed by Boivin et al. [14]

to correctly predict the ignition delay times. This is done because the in-

troduction of steady-state assumptions for some of the species results in

over-estimation of their reaction rates. As a result an over-estimation in

the reaction rate of the OH radical results in an increased CO consumption

rate through the most dominant reaction CO + OH = CO2 +H, leading to

an over-estimation of the flame speed. By increasing the activation energy

of the chain branching reaction O + H2 = H+OH, the production rates of

OH and H radicals are reduced leading to the correct nominal values for

the flame speeds. Subsequently, steady-state assumptions are introduced for

HO2,HCO,CH3,CH2O,OH, and O. The resulting 5-step reduced mechanism

involving 9 species is as follows:

(1) O2 +H2O+ 3CO => 2H + 3CO2

(2) CO2 +H2 => H2O+ CO

(3) 2H + CO2 => H2O+ CO

(4) O2 + 2H2O+ 2CO => 2H + 2CO2 +H2O2

(5) 2H + 4CO2 + CH4 => 3H2O+ 5CO

The global net rates ẇk of the non steady-state species involved in the

16



above 5 steps are then given by:

ẇk =
Nr�

j=1

(ν
�� − ν

�
)kjẇkj

where Nr is the total number of reactions in the skeletal mechanism, ν
��
and

ν
�
are the molar stoichiometric coefficients of species k in reaction j on the

product and reactant side respectively, and ẇkj is the net rate of species k

in reaction j of Table 3. The rate expressions for the 15 species involved in

the above 5 steps are given in Appendix-B.

The steady-state relationships include non-linear terms and are solved by

point iteration. The steady-state relationships can be written as

dCA

dt
= ψA(ss, ss

�)− gA(ss, ss
�)CA = 0,

where ψA(ss, ss�) and gA(ss, ss�) are functions of species both in steady-state,

denoted by ss, and non steady-state, denoted by ss�. Here, ψA denotes the

sum of the rates of reactions producing A and gA is the sum of the rates of

reactions consuming A. The simple point iterative scheme of the following

form is used:

Cn+1
A =

ψA(ss, ss�)
n

gA(ss, ss�)
n ,

where n denotes the iteration number and the iteration procedure is ap-

plied sequentially to all steady-state species. The difference |Cn+1
A − Cn

A|

is monitored and the iteration is considered to be converged for a given

species A if |Cn+1
A − Cn

A| ≤ Atol where Atol is the tolerance limit defined as

Atol = max(CA · Reltol, Abstol), Reltol = 10−5, Abstol = 10−15. For reduced

chemistry with strongly coupled QSS species, a combined point iteration
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and matrix inversion [44] can be used. Since the current QSS species are not

strongly coupled, the point iteration scheme is found to be sufficient for the

present case.

5. Validation

Both the skeletal and reduced mechanisms are validated over wide range

of conditions shown in Table 4, by comparing laminar flame speeds, ignition

delay times and the flame structure with experimental results and/or the

computational results obtained using the GRI Mech 3.0 [19]. In the following

figures, fA = XA/XCO is the ratio of mole fractions of species A to CO. The

flame speeds are calculated using the PREMIX [45] code of the CHEMKIN

package [46] including the thermal diffusion and multi-component formula-

tion for the species’ diffusivities. In the cases where no experimental data are

available, the skeletal and the reduced mechanisms are validated against the

predictions of the GRI Mech 3.0 [19] and so readers are cautioned while inter-

preting this particular comparison. In these cases only the mixture-averaged

formulation for diffusion is used in order to reduce the computational time for

the GRI Mech 3.0 calculations, since a qualitative comparison between the

different mechanisms is of interest here, hence the use of multi-component

diffusion formulation is less essential.

Ignition delay times are calculated using a constant volume reactor solver

of the CHEMKIN package [46]. The ignition delay time was defined as

the instant, tign, corresponding to the maximum temperature gradient with

respect to time, dT/dt. In calculating the ignition delay times with the

reduced mechanism, the correction factor used in the study of Boivin et

18



al. [14] is employed. This correction factor was originally developed in [47]

from an analysis of the autoignition eigenvalue under lean conditions. This

correction is necessary because the steady-state assumptions for O and OH

do not hold during autoignition events leading to under-predictions of the

ignition delay times as noted in [14]. The species reaction rates Ẇk are thus

corrected by multiplying ( Ẇk

�

= Ẇk · Λ) with the correction factor Λ given

by:

Λ =
{(1 + 2B)0.5 − 1}

B
(3)

where B is given by:

B =
2 kf1CO2 (kf1CO2 + kf2CH2 + kf3CH2)

kf2kf3C2
H2

. (4)

In this study the factor 2, rather than 4 used in [14], in the expression for B is

used giving improved agreement with the experimental data. In cases where

the steady-states apply such as for example premixed flames, the correction

factor is Λ = 1.

5.1. Premixed flames

Comparisons of computed flame speeds, sL, against available experimen-

tal data for the mixtures listed in Table 4 are presented in Figs. 1-10. The

above comparisons show that overall both the skeletal and the reduced mech-

anism give good agreement with the experimental data and the computations

with the GRI Mech 3.0 [19].

Figure 1 presents results for fuel mixtures with fH2 = 5/95 and H2O

content up to 36%. Although the experimental data in Fig.1 were not a

19



target of [14], the skeletal mechanism of [14] as implemented in this study,

under-predicts the flame speeds for all equivalence ratios and the level of

under-prediction increases with the H2O content in the fuel mixture.

The skeletal mechanism in Table 3 of this work gives good agreement with

the experimental results and is slightly more accurate than the mechanism

of Li et al. [31] for φ = 0.6. The reduced mechanism also shows a good

agreement with the experimental data and captures the increase in flame

speed with water content in the fuel. The increase in the flame speed with

the addition of water vapor essentially comes from an increase in the OH rad-

ical production through the reaction O + H2O = 2OH identified in section 2

and as suggested in [22]. Consequently, this increases CO consumption rate

through the most dominant reaction CO + OH = CO2 +H as shown by the

sensitivity analyses in section 2. Figure 2 compares computational results

with the experimental data of [21] for a stoichiometric mixture at 400 K con-

taining low and high hydrogen fractions in the fuel mixture. The agreement

is very good for the entire range of water vapour content considered. The

inhibiting effect of increased hydrogen fraction in the fuel mixture is clearly

seen; for fH2 = 5/95 water vapour addition has a net positive chemical effect

on the flame speed up to about 15% whereas the water vapour addition yields

a monotonic decrease of the flame speed for fH2 = 1. As discussed by Singh et

al. [21], this is because of the reaction OH + H2 = H+H2O. For low fH2 the

reverse rate is sufficiently large resulting in high total OH production yielding

an increased CO consumption rate through OH + CO = H+ CO2. This re-

sults in a net positive chemical effect on increasing the flame speed. For high

fH2 , the forward rate is sufficiently high resulting in OH consumption. This
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combined with the negative dilution effect of water vapour reduces the flame

speed. All of these effects are captured clearly by the reduced mechanism

proposed in this study. It is to be noted that updating the heat of formation

value for OH from its default value of 9.4 to 8.9 kcal/mol as suggested in

[50, 51] yields a maximum over prediction of about 10% for φ = 0.9 case in

Fig. 1 when the moisture content is about 18%. This level of over predic-

tion can be reduced by re-optimising the rate parameters for the GRI 3.0 set,

which is not the focus of this study. Thus, the default value of 9.4 kcal/mol is

used in this study as it gives good agreement for the experimental conditions

tested in this study.

Figure 3 compares results with typical syngas mixtures from [27]. The

value of fCH4 is kept constant at 0.24 approximately with 11% CO2 and

42.7% N2 in the fuel mixture. The skeletal mechanism gives a very good

agreement with the experimental results. The reduced mechanism yields a

slightly lower values as the hydrogen fraction in the fuel mixture increases

but remains within the experimental errors as shown in Fig. 3.

Figure 4 compares the computational results using the skeletal and re-

duced mechanisms with the experimental results in [48] for CO/H2-air mix-

tures. The values of (XCO +XH2) is kept constant while the hydrogen molar

fraction, XH2 , in the fuel mixture is varied. For this case, the maximum fH2

value in the fuel is about 0.43. The agreement in Fig. 4 is observed to be

good for the entire range of XH2 values considered.

Figure 5 shows the variation of computed flame speeds with equivalence

ratio for CO/H2/O2/N2 mixtures for reactant temperature ranging from 400

to 700 K. It is to be noted that there is no H2O vapor in the fuel mixture.
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The results are shown for low (top figure) and high (bottom figure) hydrogen

fractions in Fig. 5. The experimental data of Natarajan et al. [49] are shown

for comparison. The computational results obtained with the 4-step reduced

mechanism, and the skeletal mechanism of Boivin et al. [14] as reported in

[14] are shown. The skeletal mechanism of [14] as implemented in this study

is also shown. The 4-step mechanism [14] over-predicts the flame speed by

a large factor for the entire range of equivalence ratio shown in Fig. 5. The

flame speeds computed using the skeletal and 5-step reduced mechanisms

proposed in this study agree quite well with the experimental measurements

for the range of equivalence ratio, reactant temperature and the hydrogen

fraction shown in Fig. 5.

Figure 6 shows the computed flame speeds for CO/H2/O2/N2 mixture

for equivalence ratios larger than in Fig. 5 for fH2 = 1. The experimental

data shown in Fig. 6 are from the study of Singh et al. [21]. The results

in Fig. 6 serve as the additional validation for the mechanisms proposed in

this study. At low temperatures the agreement is very good for the entire

range of equivalence ratios considered. At higher temperatures the skele-

tal and reduced mechanisms slightly over-predict the flame speed. This is

not surprising since Singh et al. [21] showed that all of the tested mech-

anisms (GRI Mech 3.0 [19], Davis [52], San Diego [53]) over predicted the

flame speed for the range of conditions tested in Fig. 6. The sensitivity

analysis by Singh et al. [21] suggested that further studies into the rate con-

stants of the elementary reactions O + H2 = H+OH, OH + H2 = H+H2O

and H + O2 +M = HO2 +M were required. These reactions are expected

to be in the top 10 reactions for rich mixture as shown in Fig. A3 in the
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Appendix-A.

The effect of CO2 dilution on the flame speed for the Syngas mixture

is shown in Fig. 7. The comparisons show that the results computed using

the current skeletal and reduced mechanisms are in good agreement with

the experimental measurements [49], and these mechanisms capture the CO2

dilution effects well.

The laminar flame speeds computed using the skeletal and reduced mech-

anisms at elevated pressures for a range of fH2 values and a wide range of

equivalence ratios are compared to the experimental measurements of Sun

et al. [33] in Fig. 8. The experimental measurements of Singh et al. [21]

at atmospheric pressure are also included in Fig. 8 for further comparison.

The agreement observed in this figure is encouraging and indeed very good.

Figure 9 compares the variation of mass burning rate with pressure for a

rich (φ = 2.5) Ar diluted mixture for fH2 = 10/90 measured by Burke et

al. [34] to the values computed in this study using the skeletal and reduced

mechanisms. The agreement is very good for pressures up to about 5 atm.

and for higher pressures in the range of 15-20 atm. There is a slight under

prediction of the mass burning rate for 5-15 atm. but it is within the exper-

imental errors as one can see in Fig. 9. In the same study [34] it was shown

that there is a maximum in mass burning flux with pressure which is more

pronounced as the fH2 ratio increases. However, none of the skeletal mecha-

nisms tested captured this effect satisfactorily, especially in the high pressure

regime, and significant deviations were observed between the different mech-

anisms. In the same study [34] it was concluded that major modifications

to the rate parameters may be required for the high pressure regime, as well
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as the inclusion of additional reactions. Such a reaction was suggested to be

O + OH+M = HO2 +M which is not included in most skeletal mechanisms.

The flame speeds of some multi-species fuel mixtures from the study of Park

et al. [54] are computed and compared in Fig. 10. The highest fH2 value for

these cases is 6.0 (bottom figure) and the lowest is 0.55 (top figure), and the

corresponding fCH4 values are 3.0 and 0.17 respectively. The middle figure

also includes the effect of CO2 dilution. As one can observe in Fig. 10, both

the skeletal and reduced mechanisms show good agreement with the exper-

imental data for all equivalence ratios considered despite the high methane

content in the bottom two plots. However, the ratio fH2/fCH4 is greater than

or equal to 2 and thus the H2 chemical kinetics become more dominant than

the methane kinetics. For the mixture with fCH4 >1 however, one observes

a slight under prediction of the flame speed for φ ≥ 0.7 since extra species

such as CH, CH2, CH3O, CH3OH, etc., identified in section 2 (see Table 2)

through the sensitivity analyses are required for improved description of the

methane chemistry.

The flame speeds computed using the skeletal and reduced mechanism

are compared to the results of the GRI mechanism [19] in Fig. 11, since no

experimental data are found for this mixture, not only for the pressure and

temperature noted in this figure but also for atmospheric conditions. The fuel

mixture is composed of CO, H2, H2O, CH4 and CO2 with fH2 = 5/95, fCH4 =

5/95 and fCO2 = 0.5. It is clear that both the reduced and skeletal mechanism

give good agreement even with a high water vapour content in the mixture

for both low and high pressures. Figure 12 shows a similar comparison with

the same fuel proportions as in Fig. 11 with fCH4 = 0 in order to elucidate
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the effect of CH4 on the dependence of flame speed on water vapour content.

For the case presented in Fig. 11, the methane content is fCH4 = 5/95,

which is quite small and corresponds to about 2.5% by volume in the fuel

mixture. In comparison to Fig. 12 this small addition of CH4 to the fuel

mixture significantly alters the chemical and thermal effect of water vapour.

That is, the small amount of CH4 causes the flame to become chemically less

sensitive to water vapour addition since the gradient of sL with respect to

H2O content is less steep. The reason for this is that less OH radicals are

available for CO oxidation through the reaction OH + CO = H+ CO2 which

is the most important path for CO consumption and the most important

reaction as one may see from the sensitivity plots in the Appendix-A. The

OH radicals are now directly consumed in the oxidation of CH4 through

OH + CH4 = CH3 +H2O giving more water vapour. This makes the mixture

chemically less sensitive to further addition of H2O, but also thermally more

sensitive since H2O production through the direct oxidation of CH4 above

will increase the product specific heat capacity. All these effects are captured

properly by both the reduced and skeletal mechanisms since they include

CH4, in contrast to any existing skeletal or reduced mechanisms for multi-

species fuel mixtures.

For the fuel mixture considered in Fig. 13, there is no CH4 or CO2. Again

there is a good agreement with the full GRI Mech 3.0 [19] and it is some-

what improved in the high pressure case, compared to the predictions of the

methane-containing fuel mixture in Fig. 11. Figure 14 shows a similar com-

parison but with no H2 or CO2. By comparing Figs. 12 and 13 one can see

the effect of CO2 – the flame speeds are reduced considerably.
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The flame structure computed using the skeletal and reduced mechanisms

are compared to those from the full GRI Mech 3.0 [19] in Figs. 15-20 over a

range of operating conditions including the effects of reactant temperature,

pressure and fuel composition. The progress variable, c, in these figures is

based on temperature with c = 0 denoting the unburnt reactant and c = 1

denoting the burnt products. Both the reduced and the skeletal mechanisms

show overall good agreement for the major species mass fractions, tempera-

ture and heat release rate with the predictions using the GRI Mech 3 [19].

The thermochemical and thermodynamic conditions chosen for Figs. 15 to

20 correspond to those considered for the flame speed comparisons discussed

earlier. These results demonstrate the robustness of the skeletal and reduced

mechanisms to get the flame structure and it laminar burning velocity over

the range of conditions considered in this study.

Although there are no experimental data available for the conditions

tested using the GRI Mech 3.0, these comparisons serve to show that (i)

the reduced mechanism derived in this study agrees well with the GRI Mech

3.0 results and (ii) the small modifications made to some of the reaction

rate parameters as discussed in section 2 do not ”de-optimize” the skeletal

mechanism.

5.2. Autoignition

Figure 21 compares the computed ignition delay times (with the correc-

tion factor in Eq. 3 applied) with the experimental results of Kalitan et al.

[55] for CO/H2 mixtures over a range of conditions listed in Table 4. Overall,

the agreement is very good for both low and high pressures and for the entire

range of temperatures considered. In the high pressure regime, the values
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computed in this study give slightly better agreement for higher tempera-

tures than the skeletal mechanism of Boivin et al. [14] as can be seen for the

fH2 = 20/80 case at 15.4 atm. Also, one may like to recall that the expression

for B in Eq. 4 is modified as noted earlier to yield the agreement shown here

and the correction factor is applied over the whole of the integration period.

Figure 22 compares ignition delay times computed for a CO2-diluted

mixture to the measured values in [28] at different pressures. The reduced

mechanism shows good agreement with the experimental data for the entire

temperature range. The skeletal mechanism also shows a good agreement

but seems to slightly over predict the ignition delay times as the pressure

is increased. As noted in [28] using sensitivity analysis, the most important

reactions at the conditions tested were the chain-branching reactions and

the three body recombination reaction H + O2 + CO2 = HO2 + CO2. In the

same study it was concluded that the rate of this recombination reaction

used in the GRI Mech 3.0 was ideal to be used for kinetic modelling for the

temperature range of 800-1305 K and 1-8 atm. Thus, a small reduction in the

rate of the chain-branching reactions would certainly improve the agreement

for higher pressures but this would only be minor.

Figure 23 shows the computed variation of ignition delay time with mix-

ture temperature for a stoichiometric CO/H2/CH4/H2O/O2/N2 mixture at

5 atm. The computational results obtained using the skeletal and reduced

mechanisms are compared to the experimental data of [56]. It is clear that

the reduced mechanism is able to give accurate ignition delay times for such

complex multi-species fuel mixture including the effect of water vapour.
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6. Speed up times

Table 5 shows the time in seconds taken for each run for each of the condi-

tions shown in Table 4. The flame speeds were calculated using the PREMIX

code [45] with thermal diffusion and a multi-component formulation for the

species’ diffusivities, in a 2.5 cm domain with adaptive grid. It is clear that

both the skeletal and reduced mechanisms reduced the computational time

significantly compared to the GRI Mech 3.0 [19], while maintaining the same

level of accuracy. In particular for case 3 the skeletal mechanism is about 50

times faster and the reduced mechanism about 300 times faster.

7. Conclusions

A 5-step reduced chemical kinetic mechanism involving 9 species for ac-

curate prediction of the combustion characteristics of multi-species fuel mix-

tures of CO/H2/H2O/CH4/CO2, having low hydrogen/methane and high

water vapour content is derived. This mechanism is obtained by applying

steady state and partial equilibrium approximations respectively for species

and elementary reactions involved in a 49-reaction skeletal mechanism. This

skeletal set is obtained from the full GRI Mech 3.0 using sensitivity analysis.

These two mechanisms are tested for their ability to predict laminar flame

speeds, flame structure and ignition delay times over a wide range of pres-

sure, temperature and fuel mixture composition. The computational results

are compared to experimental measurements of the flame speeds available

in the literature for a wide range of pressure, 1-20 atm., temperature, 298-

700 K and thermo-chemical conditions. The ignition delay times for about

1.1 ≤ p ≤ 15.4 atm and 900 ≤ T ≤ 1320 K for a range of mixture com-
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position published in earlier studies are used for validation. The ratio of

hydrogen to CO mole fractions varied from 0.05 to 6, methane to CO mole

fractions varied from 0.05 to 3 and CO2 to CO mole fractions varied from

0 to 2.1 for the mixtures tested in this study. These extensive selection of

experimental conditions and their comparisons shows a very good agreement

over the entire range of conditions considered. It is also worth to note that

these conditions are relevant for stationary gas-turbines for power genera-

tion. Furthermore, it is found that use of the reduced mechanism decreases

the computational time significantly compared to the GRI Mech 3.0, while

maintaining a a very good degree of accuracy. To the best of our knowl-

edge, this is the first attempt of a reduced mechanism which can accurately

predict the combustion characteristics of such multi-species fuels and with a

high water vapour content over a wide range of temperature, pressure and

mixture composition. However, experimental data for fuel mixture typical of

BFG, containing all of the above species with large amount of CO, equally

large amount of CO2 and small fractions of H2 and CH4, is unavailable at

this time and experimental investigation of this mixture would be useful.
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Sv
ki No. in GRI Mech 3.0 set Reaction

3.54E-05 209 NNH + H = H2 + N2

3.76E-05 40 2H + H2 = 2H2

1.13E-04 208 NNH + O = NH + NO

2.21E-04 42 2H + CO2 = H2 + CO2

3.30E-04 48 H + H2O2 = OH + H2O

3.57E-04 47 H + H2O2 = HO2 + H2

4.33E-04 116(D) 2HO2 = O2 + H2O2

5.68E-04 168 HCO + O2 = HO2 + CO

6.85E-04 14 O + HCO = H + CO2

7.97E-04 88(D) OH + H2O2 = HO2 + H2O

8.65E-04 100 OH + HCO = H2O + CO

9.79E-04 1 2O + M = O2 + M

1.12E-03 5 O + H2O2 = OH + HO2

1.43E-03 12 O + CO(+M) = CO2(+M)

1.62E-03 89(D) OH + H2O2 = HO2 + H2O

1.96E-03 2 O + H + M = OH + M

2.31E-03 120 HO2 + CO = OH + CO2

2.33E-03 115(D) 2HO2 = O2 + H2O2

2.40E-03 55 H + HCO = H2 + CO

2.83E-03 166 HCO + H2O = H + CO + H2O

3.44E-03 41 2H + H2O = H2 + H2O

3.64E-03 39 2H + M = H2 + M

5.12E-03 167 HCO + M = H + CO + M

8.38E-03 287(D) OH + HO2 = O2 + H2O

1.10E-02 34 H + 2O2 = HO2 + O2

1.51E-02 85 2OH(+M) = H2O2(+M)

1.75E-02 44 H + HO2 = O + H2O

2.14E-02 4 O + HO2 = OH + O2

3.36E-02 84 OH + H2 = H + H2O

5.23E-02 43 H + OH + M = H2O + M

5.96E-02 86 2OH = O + H2O

8.27E-02 33 H + O2 + M = HO2 + M

9.48E-02 36 H + O2 + N2 = HO2 + N2

9.66E-02 38 H + O2 = O + OH

9.72E-02 87(D) OH + HO2 = O2 + H2O

1.43E-01 3 O + H2 = H + OH

1.69E-01 35 H + O2 + H2O = HO2 + H2O

2.12E-01 45 H + HO2 = O2 + H2

3.18E-01 46 H + HO2 = 2OH

1.00E+00 99 OH + CO = H + CO2

Table 1: The first 40 most sensitive reactions from GRI-Mech 3.0. The

sensitivity analysis was conducted at Tu=323 K, φ=0.9, fH2 = 5/95 with

H2O%=20%.
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Sv
ki No. in GRI Mech 3.0 set Reaction

2.15E-03 115 2HO2 = O2 + H2O2

2.69E-03 120 HO2 + CO = OH + CO2

3.07E-03 41 2H + H2O = H2 + H2O

3.10E-03 14 O + HCO = H + CO2

3.18E-03 39 2H + M = H2 + M

3.37E-03 168 HCO + O2 = HO2 + CO

3.39E-03 144 CH2(S) + O2 = H + OH + CO

3.59E-03 126 CH + H2 = H + CH2

3.71E-03 100 OH + HCO = H2O + CO

4.16E-03 290 CH2 + O2 => 2H + CO2

4.33E-03 95 OH + CH3(+M) = CH3OH(+M)

5.36E-03 97 OH + CH3 = CH2(S) + H2O

5.81E-03 12 O + CO(+M) = CO2(+M)

7.23E-03 101 OH + CH2O = HCO + H2O

7.63E-03 58 H + CH2O = HCO + H2

7.99E-03 119 HO2 + CH3 = OH + CH3O

8.36E-03 44 H + HO2 = O + H2O

8.91E-03 287 OH + HO2 = O2 + H2O

1.01E-02 34 H + 2O2 = HO2 + O2

1.10E-02 55 H + HCO = H2 + CO

1.17E-02 84 OH + H2 = H + H2O

1.42E-02 53 H + CH4 = CH3 + H2

1.59E-02 85 2OH(+M) = H2O2(+M)

1.59E-02 15 O + CH2O = OH + HCO

2.09E-02 10 O + CH3 = H + CH2O

2.56E-02 284 O + CH3 => H + H2 + CO

4.46E-02 86 2OH = O + H2O

4.53E-02 98 OH + CH4 = CH3 + H2O

4.72E-02 11 O + CH4 = OH + CH3

4.86E-02 43 H + OH + M = H2O + M

5.50E-02 52 H + CH3(+M) = CH4(+M)

7.38E-02 87 OH + HO2 = O2 + H2O

7.74E-02 33 H + O2 + M = HO2 + M

9.20E-02 3 O + H2 = H + OH

9.44E-02 36 H + O2 + N2 = HO2 + N2

1.64E-01 45 H + HO2 = O2 + H2

1.73E-01 35 H + O2 + H2O = HO2 + H2O

1.99E-01 38 H + O2 = O + OH

2.50E-01 46 H + HO2 = 2OH

1.00E+00 99 OH + CO = H + CO2

Table 2: The first 40 most sensitive reactions from GRI-Mech 3.0. The

sensitivity analysis was conducted at Tu=323 K, φ=0.9, fCH4 = 5/95 with

H2O%=20%.
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Reaction A n Ea

1 H + O2 = O + OH 2.650E+16 -0.6707 17041.0

2 O + H2 = H + OH 3.870E+04 2.7 6260.0

3 OH + H2 = H + H2O 2.160E+08 1.51 3430.0

4 2OH = O + H2O 3.570E+04 2.4 -2110.0

5a H + O2 + M = HO2 + M 2.800E+18 -0.86 0.0

6 H + O2 + H2O = HO2 + H2O 1.126E+19 -0.76 0.0

7 H + O2 + N2 = HO2 + N2 2.535E+19 -1.3392 0.0

8 H + O2 + He => HO2 + He 7.000E+17 -0.8 0.0

9 H + O2 + Ar => HO2 + Ar 7.000E+17 -0.8 0.0

10 H + 2O2 = HO2 + O2 2.080E+19 -1.24 0.0

11 H + HO2 = 2OH 8.316E+13 0 635.0

12 H + HO2 = O2 + H2 4.480E+13 0 1068.0

13(D) OH + HO2 = O2 + H2O 1.450E+13 0 -500.0

14(D) OH + HO2 = O2 + H2O 5.000E+15 0 17330.0

15 H + HO2 = O + H2O 3.970E+12 0 671.0

16 O + HO2 = OH + O2 2.000E+13 0 0.0

17(D) 2HO2 = O2 + H2O2 1.300E+11 0 -1630.0

18(D) 2HO2 = O2 + H2O2 4.200E+14 0 12000.0

19b 2OH(+M) = H2O2(+M) 7.400E+13 -0.37 0.0

20 H + H2O2 = OH + H2O 1.000E+13 0 3600.0

21(D) OH + H2O2 = HO2 + H2O 1.700E+18 0 29410.0

22(D) OH + H2O2 = HO2 + H2O 2.000E+12 0 427.0

23 H + H2O2 = HO2 + H2 1.210E+07 2 5200.0

24 O + H2O2 = OH + HO2 9.630E+06 2 4000.0

25c 2H + M = H2 + M 1.000E+18 -1 0.0

26 2H + H2 = 2H2 9.000E+16 -0.6 0.0

27 2H + CO2 = H2 + CO2 5.500E+20 -2 0.0

28 2H + H2O = H2 + H2O 6.000E+19 -1.25 0.0

29d H + OH + M = H2O + M 2.200E+22 -2 0.0

30e 2O + M = O2 + M 1.200E+17 -1 0.0

31f O + H + M = OH + M 5.000E+17 -1 0.0

32 OH + CO = H + CO2 4.689E+07 1.228 70.0

33 HO2 + CO = OH + CO2 1.500E+14 0 24544.0

34g O + CO(+M) = CO2(+M) 1.800E+10 0 2385.0

35 H + HCO = H2 + CO 7.340E+13 0 0.0

36 OH + HCO = H2O + CO 5.000E+13 0 0.0

37 HCO + O2 = HO2 + CO 1.345E+13 0 400.0

38h HCO + M = H + CO + M 1.870E+17 -1 17000.0

39 HCO + H2O = H + CO + H2O 1.500E+18 -1 17000.0

40 O + HCO = H + CO2 3.000E+13 0 0.0

41 O + CH4 = OH + CH3 1.020E+09 1.5 8600.0

42 OH + CH4 = CH3 + H2O 1.000E+08 1.6 3120.0

43 O + CH3 = H + CH2O 5.060E+13 0 0.0

44 O + CH3 => H + H2 + CO 3.370E+13 0 0.0

45 O + CH2O = OH + HCO 3.900E+13 0 3540.0

46i H + CH3(+M) = CH4(+M) 1.390E+16 -0.534 536.0

47 H + CH4 = CH3 + H2 6.600E+08 1.62 10840.0

48 H + CH2O = HCO + H2 5.740E+07 1.9 2742.0

49 OH + CH2O = HCO + H2O 3.430E+09 1.18 -447.0

Table 3: The skeletal mechanism. Units are in cm, s, mol, cal, K.
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a: O2/0.0, H2O/0.0, CO/0.75, CO2/1.5, N2/0.0, Ar/0.0, He/0.0

b: Low:2.300E+18/-0.900/-1700.00, Troe: 0.7346/94.00/1756.00/5182.00,

H2/2.0, H2O/6.0, CH4/2.0, CO/1.5, CO2/2.0, Ar/0.7, He/0.7

c H2/0.0, H2O/0.0, CH4/2.0, CO2/0.0, Ar/0.63, He/0.63

d H2/0.73, H2O/3.65, CH4/2.0,Ar/0.38, He/0.38

e: H2/2.4, H2O/15.4, CH4/2.0, CO/1.75, CO2/3.6, Ar/0.83, He/0.83

f H2/2.0, H2O/6.0, CH4/2.0, CO/1.5, CO2/2.0, Ar/0.7, He/0.7

g: Low: 6.020E+14/0.0/3000.00, H2/2.0, O2/6.0, H2O/6.0, CH4/2.0,

CO/1.5, CO2/3.5, Ar/0.5, He/0.5

h: H2/2.0, H2O/0.0, CH4/2.0, CO/1.5, CO2/2.O

i: Low: 2.620E+33/-4.760/2440.00, Troe: 7830.0/74.00/2941.00/6964.00,

H2/2.0, H2O/6.0, CH4/3.0, CO/1.5, CO2/2.0, Ar/0.7, He/0.7
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Fuel Oxidizer fH2
= XH2

/XCO fCH4
fCO2

H2O% p(atm) Tu(K) φ Comparison

Flame speed:

CO/H2/H2O
1 Air 5/95 0 0 0-36 1 323 0.6-0.9 [? ], Fig.1

CO/H2/H2O
1 Air 5/95 0 0 0-40 1 400 0.6-0.9 [21], Fig.2

CO/H2/CH4/CO2/N2 Air Vary 0.24 11% 0 1 298 1.0,0.9,0.8 [27], Fig.3

CO/H2 Air Vary 0 0 0 1 303 - [48], Fig.4

CO/H2 Air 5/95 0 0 0 1 400-700 0.2-1.1 [49], Fig.5

CO/H2 Air 1 0 0 0 1 400-700 0.2-1.1 [49], Fig.5

CO/H2 Air 1 0 0 0 1 298-500 0.7-3.0 [21], Fig.6

CO/H2/CO2 Air 5/95 0 0.117 0 1 298 0.5-1.2 Fig.7

CO/H2/CO2 Air 1 0 0.5 0 1 298 0.5-1.2 [49], Fig.7

CO/H2 Air 5/95 0 0 0 1 298 0.5-1.2 [49], Fig.7

CO/H2 Air 1 0 0 0 1 298 0.5-1.2 [49], Fig.7

CO/H2 Air 1/99 0 0 0 1 298 0.5-5.0 [33], Fig.8

CO/H2 Air 5/95 0 0 0 1 298 0.5-5.0 [33], Fig.8

CO/H2 Air 25/75 0 0 0 1 298 0.5-5.0 [33], Fig.8

CO/H2 Air 50/50 0 0 0 1 298 0.5-5.0 [33], Fig.8

CO/H2 Air 75/25 0 0 0 1 298 0.5-5.0 [21], Fig.8

CO/H2
2 O2/He 10/30 0 0 0 5,10,20 298 0.5-5.0 [33], Fig.8

CO/H2 O2/He 1 0 0 0 5,10 298 0.5-5.0 [33], Fig.8

CO/H2 O2/Ar 10/90 0 0 0 1-20 295 2.5 [34], Fig.9

CO/H2/CH4 Air 0.55 0.17 0 0 1 298 0.4-1.2 [54], Fig.10

CO/H2/CH4 Air 6 3 0 0 1 298 0.4-1.2 [54], Fig.10

CO/H2/CH4/CO2
3 Air 4.9 2.27 0.91 0 1 298 0.5-1.2 [54], Fig.10

CO/H2/CH4/H2O/CO2 Air 5/95 5/95 0.5 0-70 1,10 600 0.7,1.0 [19], Fig.11

CO/H2/H2O/CO2 Air 5/95 0 0.5 0-70 1,10 600 0.7,1.0 [19], Fig.12

CO/H2/H2O Air 5/95 0 0 0-70 1,10 600 0.7,1.0 [19], Fig.13

CO/CH4/H2O Air 0 5/95 0 0-70 1,10 600 0.7,1.0 [19], Fig.14

Flame structure:

CO/H2 Air 5/95 0 0 0 1 400 0.8 [19], Fig.15

CO/H2 Air 5/95 0 0 0 1 700 0.8 [19], Fig.16

CO/H2 O2/He 1 0 0 0 5 298 2 [19], Fig.17

CO/H2 O2/He 1 0 0 0 10 298 2 [19], Fig.18

CO/H2/CH4/CO2/H2O Air 5/95 5/95 0.5 25 1 600 1 [19], Fig.19

CO/H2/CH4/CO2/H2O Air 5/95 5/95 0.5 25 10 600 1 [19], Fig.20

Ignition delay times:

CO/H2 Air 4 0 0 0 1.1 900-1340 0.5 [55], Fig.21

CO/H2 Air 1.5 0 0 0 1.1 900-1340 0.5 [55], Fig.21

CO/H2 Air 0.67 0 0 0 1.1 900-1340 0.5 [55], Fig.21

CO/H2 Air 0.25 0 0 0 1.2,15.4 900-1340 0.5 [55], Fig.21

CO/H2
4 Air 0.11 0 0 0 1.1,14.9 900-1340 0.5 [55], Fig.21

CO/H2/CO2 Air 0.77 0 2.1 0 1.24-2.36 900-1340 1.0 [28], Fig.22

CO/H2/H2O/CH4 Air 3 1 0 10% 5 1017-1197 1.0 [28], Fig.23

Table 4: The range of fuel composition and operating conditions tested.
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Case (sl) Conditions GRI Mech 3.0 49r-skeletal 5-step

1 H2O%=20, φ=0.9 1415.099 47.559 5.941

2 p=20atm, φ=5.0 7956.458 284.573 29.179

3 φ=1.2 2903.111 51.992 9.044

Table 5: Time in s of the run for each condition using PREMIX [45] with

thermal and multi-component diffusion.
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Fig. 1: Laminar flame speeds of CO/H2/H2O-air mixtures using the reduced (dashed

lines) and skeletal (full lines) mechanisms. Open circles: Li et al. [31] mechanism results

from [22]. Also shown are the predictions using the skeletal mechanism of Boivin et

al. (dashed lines with ×) [14]. Filled symbols: experimental results of Das et al. [22].

Tu = 323 K, p = 1 atm, fH2 = 5/95, XN2/XO2 = 3.76.
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Fig. 2: Laminar flame speeds of CO/H2/H2O mixtures using the reduced (dashed lines)

and skeletal (continuous lines) mechanisms. Filled symbols: experimental results of Singh

et al. [21]. p = 1 atm, Tu = 400 K, φ = 1, oxidiser is O2,N2 with XN2/XO2 = 3.76.
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Fig. 3: Laminar flame speeds of syngas mixtures ( CO/H2/CH4/CO2/N2-air ) using the

reduced (dashed lines) and the skeletal (full lines) mechanisms. Symbols: experimental

results of Yong et al. [27]. fCH4 = 0.24 with 11% CO2 and 42.7% N2 in the fuel mixture.

Tu = 298 K, p = 1 atm, XN2/XO2 = 3.76. Error bars from [27] are also shown.
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Fig. 5: Laminar flame speeds of CO/H2/O2/N2 mixtures using the reduced (dashed lines)

and skeletal ( continuous lines ) mechanisms. Also shown are the results using the 4-

step reduced mechanism of [14] ( open squares ), the skeletal mechanism of [14] ( open

circles ) from the same study, and the implementation of the skeletal mechanism of [14] in
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fH2 = 5/95 and 1.0, at p = 1 atm, XN2/XO2 = 3.76, for Tu = 400, 500, 600 and 700 K.
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Fig. 12: Laminar flame speeds of CO/H2/H2O/CO2/O2/N2 mixtures using the reduced

(dashed lines) and skeletal (continuous lines) mechanisms. Symbols: GRI Mech 3.0 results.

fH2 = 5/95, fCO2 = 0.5, Tu = 600 K at p = 1 and 10 atm.
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Fig. 13: Laminar flame speeds of CO/H2/H2O/O2/N2 mixtures using the reduced (dashed

lines) and skeletal (continuous lines) mechanisms. Symbols: GRI Mech 3.0 predictions.

fH2 = 5/95, Tu = 600 K at p = 1 and 10 atm.
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Fig. 14: Laminar flame speeds of CO/CH4/H2O/O2/N2 mixtures using the reduced

(dashed lines) and skeletal (continuous lines) mechanisms. Symbols: GRI Mech 3.0 pre-
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Fig. 15: Flame structure for CO/H2/O2/N2. φ = 0.8, fH2 = 5/95, Tu = 400 K, p = 1 atm.

(conditions as in Fig.5 top).
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Fig. 16: Flame structure for CO/H2/O2/N2. φ = 0.8, fH2 = 5/95, Tu = 700 K, p = 1 atm.

(conditions as in Fig.5 top).
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fH2 = 5/95, fCH4 = 5/95, fCO2 = 0.5, Tu = 600 K, p = 1 atm. (conditions as in Fig.11).
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fH2 = 5/95, fCH4 = 5/95, fCO2 = 0.5, Tu = 600 K, p = 10 atm. (conditions as in Fig.11).
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Fig. 21: Ignition delay times of CO/H2/O2/N2 mixtures ( XN2/XO2 = 3.76) for φ = 0.5

using the reduced (dashed lines) and skeletal (continuous lines) mechanisms. Symbols:

experimental results of Kalitan et al. [55]. Also shown for comparison are the results with

the skeletal mechanism of Boivin et al. [14] (dashed lines with ×) for the fH2 = 20/80
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8. Appendix A

The range of conditions considered for the sensitivity analyses are given in

Table A1. Two values for water content are considered. The raw sensitivity

coefficients ki/sl∂sl/∂ki are shown in Figs. A1 to A6 for CO/H2/H2O-air

mixtures and in Figs. A7 to A12 for CO/CH4/H2O-air mixtures. If one

were to conduct the sensitivity analyses for the ignition delays then the

results would be very similar to those shown by Kalitan et al. [55] and thus

they are not presented here.
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p (atm) Tu (K) φ fH2 fCH4 H2O%

1 323 0.9 5/95 0 0

1 323 0.9 5/95 0 20

1 323 0.9 1 0 0

1 323 0.9 1 0 20

1 323 2 5/95 0 0

1 323 2 5/95 0 20

10 600 0.9 5/95 0 0

10 600 0.9 5/95 0 20

10 1000 0.9 5/95 0 0

10 1000 0.9 5/95 0 20

20 600 0.9 5/95 0 20

1 323 0.9 0 5/95 0

1 323 0.9 0 5/95 20

1 298 0.9 0 1 0

1 323 0.9 0 1 20

1 323 2 0 5/95 0

1 323 2 0 5/95 20

10 600 0.9 0 5/95 0

10 600 0.9 0 5/95 20

10 1000 0.9 0 5/95 0

10 1000 0.9 0 5/95 20

20 600 0.9 0 5/95 20

Table A1: Conditions for sensitivity analysis.
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8.1. Sensitivity analysis results
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Fig. A 1: Tu=323 K, p=1 atm, φ=0.9, fH2 = 5/95 with H2O%=0 ( left )%, 20( right )%
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Fig. A 2: Tu=323 K, p=1 atm, φ=0.9, fH2 = 1.0 with H2O%=0 ( left )%, 20( right )%
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Fig. A 3: Tu=323 K, p=1 atm, φ=2.0, fH2 = 5/95 with H2O%=0 ( left )%, 20( right )%
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Fig. A 4: Tu=600 K, p=10 atm, φ=0.9, fH2 = 5/95 with H2O%=0 ( left )%, 20( right )%
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Fig. A 5: Tu=1000 K, p=10 atm, φ=0.9, fH2 = 5/95 with H2O%=0 ( left )%, 20( right

)%
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Fig. A 6: Tu=600 K, p=20 atm, φ=0.9, fH2 = 5/95 with H2O%=0 ( left )%, 20( right )%
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8.3. CH4 mixtures
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Fig. A 7: Tu=323 K, p=1 atm, φ=0.9, fCH4 = 5/95 with H2O%=0 ( left )%, 20( right )%
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Fig. A 8: Tu=323 K, p=1 atm, φ=0.9, fCH4 = 1.0 with H2O%=0 ( left )%, 20( right )%
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Fig. A 9: Tu=323 K, p=1 atm, φ=2.0, fCH4 = 5/95 with H2O%=0 ( left )%, 20( right )%
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Fig. A 10: Tu=600 K, p=10 atm, φ=0.9, fCH4 = 5/95 with H2O%=0 ( left )%, 20( right

)%
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Fig. A 11: Tu=1000 K, p=10 atm, φ=0.9, fCH4 = 5/95 with H2O%=0 ( left )%, 20( right

)%
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Fig. A 12: Tu=600 K, p=20 atm, φ=0.9, fCH4 = 5/95 with H2O%=0 ( left )%, 20( right

)%
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9. Appendix B

9.1. Non steady-state species rates

The global net reaction rate, Ẇk, for species k involved in the 5-step

reduced mechanism is given below. The numbers inside the bracket refer to

the elementary reaction in the skeletal set in Table 3.

ẆH=

−Ẇ (1) + Ẇ (2) + Ẇ (3)− Ẇ (5)− Ẇ (6)− Ẇ (7)− Ẇ (8)− Ẇ (9)− Ẇ (10)−

Ẇ (11)− Ẇ (12)− Ẇ (15)− Ẇ (20)− Ẇ (23)− 2Ẇ (25)− 2Ẇ (26)−

2Ẇ (27)− 2Ẇ (28)− Ẇ (29)− Ẇ (31) + Ẇ (32)− Ẇ (35) + Ẇ (38) + Ẇ (39) +

Ẇ (40) + Ẇ (43) + Ẇ (44)− Ẇ (46)− Ẇ (47)− Ẇ (48)

ẆO2=

−Ẇ (1)− Ẇ (5)− Ẇ (6)− Ẇ (7)− Ẇ (8)− Ẇ (9)− Ẇ (10) + Ẇ (12) +

Ẇ (13) + Ẇ (14) + Ẇ (16) + Ẇ (17) + Ẇ (18) + Ẇ (30)− Ẇ (37)

ẆH2O=

+Ẇ (3) + Ẇ (4) + Ẇ (13) + Ẇ (14) + Ẇ (15) + Ẇ (20) + Ẇ (21) + Ẇ (22) +

Ẇ (29) + Ẇ (36) + Ẇ (42) + Ẇ (49)

ẆCO=
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−Ẇ (32)−Ẇ (33)−Ẇ (34)+Ẇ (35)+Ẇ (36)+Ẇ (37)+Ẇ (38)+Ẇ (39)+Ẇ (44)

ẆCO2=

Ẇ (32) + Ẇ (33) + Ẇ (34) + Ẇ (40)

ẆH2=

−Ẇ (2)− Ẇ (3) + Ẇ (12) + Ẇ (23) + Ẇ (25) + Ẇ (26) + Ẇ (27) + Ẇ (28) +

Ẇ (35) + Ẇ (44) + Ẇ (47) + Ẇ (48)

ẆH2O2=

Ẇ (17) + Ẇ (18) + Ẇ (19)− Ẇ (20)− Ẇ (21)− Ẇ (22)− Ẇ (23)− Ẇ (24)

ẆCH4=

−Ẇ (41)− Ẇ (42) + Ẇ (46)− Ẇ (47)

ẆN2,He,Ar=0
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