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Abstract: 

This paper presents a three-dimensional nonlinear finite element (FE) model for prestressed 

concrete girders strengthened in shear with externally bonded carbon fibre reinforced 

polymer (CFRP) reinforcement. A total strain rotating crack model, where the crack direction 

changes with the change in the direction of the principal tensile stress, was used for the 

concrete. In this model, explicit modelling of the concrete shear behaviour after cracking, 

e.g. via a shear retention parameter, is not required as the crack plane is always a principal 

plane with no shear stresses. The FE model was validated using experimental results from 

the literature. An extensive parametric study was carried out to identify the effect of the 

concrete compressive strength, CFRP width-to-spacing ratio, CFRP thickness, girder 

effective depth, shear span to effective depth ratio, level of prestress, tendon profile, pre-

cracking and CFRP-to-concrete interface model on the predicted shear force capacity. The 

results suggested that the predicted shear strength enhancement can be significant and 

increases with the increase in concrete compressive strength, CFRP width-to-spacing ratio, 

and CFRP thickness but decreases with the increase in girder effective depth and shear 

span to effective depth ratio. 

Keywords: fibre reinforced polymer; finite element; girder; prestressed concrete; shear; 

strengthening 

 

Highlights: 

 A FE model for shear-strengthened prestressed concrete girders was developed. 

 The FE model was validated using experimental results from the literature.  

 The influence of the factors affecting the predicted shear strength was identified. 

 The predicted shear strength enhancement can be significant. 
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1 Introduction 

The shear strength deficiency of existing prestressed concrete (PC) bridges is a global issue 

faced by the owners and managers of transport infrastructures (Middleton 1997; Nanni et al. 

2004; Valerio et al. 2009). The underlying causes of this issue include heavier traffic loads, 

corrosion of the internal steel reinforcement, structural deterioration due to ageing, poor 

initial design, more stringent assessment codes, aggressive exposure conditions, and 

natural or manmade extreme events (Valerio et al. 2009; Petty et al. 2011; Dirar et al. 

2013a).  

One viable solution is to use externally bonded (EB) carbon fibre reinforced polymer (CFRP) 

reinforcement as shear strengthening systems for existing PC bridges. EB CFRP shear 

strengthening systems have several advantages over traditional strengthening systems, 

such as high strength to weight ratio, ease of use, and resistance to corrosion (ACI 440R-07 

2007; Murphy et al. 2012). In recent years, the successful use of the EB CFRP shear 

strengthening technique for PC girders has been demonstrated (Petty et al. 2011; Murphy et 

al. 2012; Kang and Ary 2012). However, a careful review of the published literature reveals 

that the majority of the research work has been experimental and focused on verifying the 

effectiveness of the technique. Although physical testing provides valuable information on 

the overall performance of girders and the local behaviour of constituent materials, high 

costs associated with the production of large-scale specimens often restricts the evaluation 

of the parameters influencing the shear behaviour of the strengthened girders (You et al. 

2011).  

The Finite Element Method (FEM) provides a cost-effective tool for carrying out extensive 

parametric studies on CFRP shear-strengthened PC girders. The FEM can be used to model 

various combinations of geometric and loading conditions. The nonlinear behaviour of CFRP 

shear-strengthened PC girders can be taken into consideration by incorporating appropriate 

constitutive laws and iterative procedures (You et al. 2011). Nonetheless, numerical 
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research studies on CFRP shear-strengthened PC girders (Petty et al. 2011; You et al. 

2011) are scarce. Moreover, to date, extensive studies examining the influencing parameters 

of the behaviour of CFRP shear-strengthened PC girders have not been found. This was 

partially attributed to the complex behaviour of CFRP shear-strengthened PC girders (You et 

al. 2011).  

This paper presents a three-dimensional nonlinear finite element (FE) model for CFRP 

shear-strengthened PC girders using the commercial FE package DIANA Version 9.4.4 

(DIANA User’s Manual 2012). The FE model is validated by using experimental results from 

the published literature (Kang and Ary 2012). The validated FE model is then used to 

examine the effect of the concrete compressive strength, CFRP width-to-spacing ratio, 

CFRP thickness, girder effective depth, shear span to effective depth ratio, level of 

prestress, tendon profile, pre-cracking, and CFRP-to-concrete interface model on the 

predicted strength of PC girders strengthened in shear with EB CFRP reinforcement.  

 

2 Summary of the experimental work 

The FE model reported in this paper was validated using the experimental work carried out 

by Kang and Ary (2012). They tested three I-shaped PC girders in a four-point-bending 

configuration. One girder was used as a control specimen whereas the remaining two 

girders (IB-05 and IB-10) were strengthened with U-shaped EB multi-directional CFRP strips 

before testing. The three girders had a shear span to effective depth ratio (a/d) of 2.5 and 

were designed to fail in shear.  

The unstrengthened cross-section of the tested girders is shown in Fig. 1. Each girder had 

two Ø12 mm steel bars in the compression flange. The tension flange reinforcement 

included two Ø25 mm bars, two Ø20 mm bars, and two Ø12.5 mm tendons prestressed to 

1075 MPa. Single-leg Ø10 mm steel bars were used as stirrups within the constant moment 

zone whereas no internal shear reinforcement was used within the shear spans. In practice, 
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however, prestressed concrete girders usually include at least a minimum amount of internal 

steel shear reinforcement. Kang and Ary (2012) reported that they excluded steel shear 

reinforcement from the shear spans because their experimental programme was designed to 

study the bond behaviour between EB CFRP shear reinforcement and concrete in the 

absence of internal steel shear reinforcement.  

The external shear reinforcement consisted of one layer of 76 mm wide × 1.25 mm thick EB 

CFRP strips. Strip spacing was the only studied parameter in the experimental programme. 

The centre-to-centre spacing between the EB CFRP strips was 127 mm in the case of IB-05 

and 254 mm in the case of IB-10 as shown in Fig. 2. 

Table 1 summarises the mechanical properties of the concrete, steel reinforcement bars, 

seven-wire strands (tendons), and EB CFRP strips used in the experimental investigation. 

 

3 Finite element model 

In order to properly model the bond-slip behaviour at the CFRP-to-concrete interface, a 

three-dimensional FE model incorporating interface elements was developed. The 

constitutive models and element types were carefully selected to model the experimental 

behaviour of the tested girders. The double symmetry of the tested girders about both the 

mid-span and mid-width planes enabled a quarter-model to be developed as depicted in Fig. 

3. Appropriate boundary conditions were applied by restraining the movement of the planes 

of symmetry at mid-span and mid-width in the X and Z directions (see Fig. 3) respectively 

and allowing movement in the vertical (Y) direction.  

The following subsections describe briefly the element types and constitutive models used in 

the FE model. Further information can be found in DIANA User’s Manual (2012). 

3.1 Concrete 
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The concrete was modelled using eight-node isoparametric solid brick elements that have 

three translational degrees of freedom at each node. The stress field in these elements is 

three-dimensional, and both the loading and principal stress can be in any direction. Several 

concrete element sizes were investigated. An average element size of 3da (30 mm) gave the 

best predictions as demonstrated in Section 4 (da is the maximum aggregate size). This is 

consistent with the recommendation of Bažant and Oh (1983) to use an element size of 

three times the maximum aggregate size.   

A total strain rotating crack model based on the smeared crack concept was used for the 

concrete. In this model, the crack direction changes with the change in the direction of the 

principal tensile stress. Hence, the crack plane is always a principal plane with no shear 

stresses. Therefore, explicit modelling of the concrete shear behaviour after cracking, e.g. 

via a shear retention parameter, is not required. 

The behaviour of concrete in compression and tension was modelled with a uniaxial stress-

strain relationship which is evaluated in the principal direction of strains. A Poisson’s ratio of 

0.15 gave the best predictions as demonstrated in Section 4. This is consistent with the 

recommendation of CEB-FIP Model Code 1990 (1993).   

The concrete in compression was modelled by Thorenfeldt et al.’s (1987) stress-strain curve 

which is given by: 
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where   

  is the concrete compressive strength,     is the strain corresponding to the 

concrete compressive strength (automatically calculated by the FE package),        

   
     , and k is a parameter controlling the post-peak branch of the stress-strain curve. The 

only parameter required by the FE package to define the stress-strain curve is the concrete 
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compressive strength. The softening of concrete in compression due to lateral tensile strain 

was considered by incorporating the model proposed by Vecchio and Collins (1993).  

For concrete in tension, a multi-linear quasi-brittle model was used. This model consisted of 

a linear tensile stress-tensile strain relationship up to the value of the concrete tensile 

strength with a slope equal to the concrete elastic modulus. The post-peak behaviour was 

represented by a drop in the tensile stress to a value just higher than zero so as to ensure 

analysis stability. The use of this quasi-brittle model may be justified by the fact that internal 

reinforcement was not used in the shear spans of the girders.  

3.2 Steel plates 

Three steel plates were used in the FE model, namely loading, support and end plates. The 

loading and support plates were modelled by solid six-node isoparametric wedge elements, 

whereas solid eight-node isoparametric brick elements were used to model the end plate. 

The end plate was used to avoid stress concentrations in the concrete elements. Such 

stress concentrations are caused by the prestressing force and may lead to convergence 

difficulties. 

The behaviour of the three steel plates in both compression and tension was modelled by an 

elastic-perfectly plastic model with von-Mises yield criterion (DIANA User’s Manual 2012). 

3.3 Steel reinforcement and tendons 

Both the steel reinforcement and tendons were represented by embedded bar elements. The 

embedded bar elements are truss-like elements with no degrees of freedom of their own and 

their strains are calculated from to the displacement field of the surrounding concrete 

elements (DIANA User’s Manual 2012). Bond failure was not the governing failure mode 

hence perfect bond was assumed between the embedded bar elements and the concrete 

elements. 
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An elastic-perfectly plastic model was used for both the longitudinal steel reinforcement and 

the stirrups. The experimentally measured yield strength values, as reported in Table 1, 

were used. 

For the prestressing tendons, an elastic-plastic model combined with von-Mises yield 

criterion (DIANA User’s Manual 2012) was employed. The experimental stress-strain 

relationship depicted in Fig. 4 was considered.  

3.4 CFRP strips 

The CFRP strips were modelled as an isotropic material because multi-directional fibres 

were used in the experimental work. Geometrical modelling comprised four-node 

quadrilateral isoparametric curved shell elements which are a combination of plate bending 

and plane stress elements (DIANA User’s Manual 2012). Material modelling consisted of a 

linear stress-strain relationship up to the ultimate tensile strength of the CFRP strips (see 

Table 1). 

3.5 CFRP-to-concrete interface 

The bond zone between the concrete and EB CFRP strips was simulated using eight-node 

plane quadrilateral interface elements. These elements are used to connect two planes in 

three-dimensional models. For further details, see DIANA Element Library (DIANA User’s 

Manual 2012). 

In this study, the bi-linear bond-slip model developed by Sato and Vecchio (2003) was 

adopted for modelling the CFRP-to-concrete interface. This model assumes that bond failure 

occurs within a thin layer of concrete adjacent to the concrete-to-adhesive interface because 

the adhesive is usually stronger than the concrete. Hence, the bond-slip model simulates the 

overall behaviour of the CFRP-to-concrete interface rather than the adhesive material. 

The adopted bi-linear bond-slip model is shown in Fig. 5 and given by: 
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where      is the peak bond stress,    is the slip corresponding to the peak bond stress, 

   is the ultimate slip, and      is the interfacial fracture energy. Debonding starts when the 

slip value exceeds   . Complete debonding occurs when the slip value reaches   .   

3.6 Solution procedure 

DIANA Phased Analysis Module (DIANA User’s Manual 2012) was used to model the 

different construction and loading stages of the tested girders. A phased analysis consists of 

several calculation phases. The FE model may be modified amongst phases by the addition 

or removal of elements or boundary conditions. In nonlinear phased analysis, the results of 

the last step in a given phase are used as initial values for the first step in the following 

phase (Dirar et al. 2013b).  

Except for the pre-cracked FE models described in Section 5.8, two nonlinear calculation 

phases were used throughout this study. In Phase I, the elements representing the EB 

CFRP reinforcement and the FRP-to-concrete interface were set as inactive and the 

unstrengthened FE model was prestressed. Phase II included activating the elements 

representing the EB CFRP reinforcement and the FRP-to-concrete interface, and then 

loading the FE model up to failure. This technique accurately modelled the physical tests. 

An incremental-iterative procedure was employed to achieve convergence. Loads were 

applied using vertical displacement increments of 0.1 mm. The quasi-Newton iteration 

method (or Secant method) was used, together with a displacement-based convergence 
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criterion, to achieve equilibrium at the end of each increment. Based on Hee and Jefferson 

(2008), a displacement norm value of 0.001 was used to specify convergence. This strategy 

proved to be successful as convergence was achieved at every load increment. 

 

4 Validation of the FE model 

The experimental work described in Section 2 was used to validate the developed FE model. 

The comparison between the numerical and experimental results included the shear force 

capacity, shear-force versus mid-span deflection curves and crack patterns at failure. No 

strain gauges were used to measure the CFRP strain during testing. Therefore, the CFRP 

strain predictions are not presented herein. 

Table 2 gives the experimental (V Exp.) and FE-predicted (V FE) shear forces at failure. The 

FE model predicted the experimental shear force capacities of the tested PC girders with a 

mean experimental/predicted ratio of 0.90 and a standard deviation of 0.10. The mid-span 

deflections at failure of the tested PC girders were predicted with a mean 

experimental/predicted ratio of 1.06 and a standard deviation of 0.10.  

Fig. 6 presents the shear-force versus mid-span deflection results for both the experimental 

and FE work. It should be noted that Fig. 6 does not show the camber due to prestress. Both 

the experimental and FE-predicted curves are quasi-linear up to crack formation. After crack 

formation, both the experimental and numerical curves turned nonlinear due to stiffness 

deterioration. The post-cracking stiffness, i.e. the slope of the shear force-deflection curve 

after crack formation, was well modelled. Upon further loading, the post-cracking stiffness 

continued to deteriorate until failure occurred. At failure, there is a sudden drop in load at 

peak shear force, which is a characteristic of brittle (shear) failure.  

As can be seen from Table 2 and Fig. 6, the FE model with a concrete compressive strength 

of 59 MPa overestimated the shear force at failure for IB-10. It may be argued that shear 

failure of concrete beams occurs due to discrete major cracks whereas the FE model is 
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based on smeared cracking without explicit attention to modelling fast fracture which the 

mere use of fracture energy on its own, as in the developed FE model, does not capture. 

However, such an argument is at variance with the experimental/predicted shear force 

capacity ratios of 0.91 and 1.00 for the control and IB-05 girders respectively (see Table 2). 

The discrete crack approach, which employs interface elements to introduce a gap in the FE 

mesh after cracking, is more realistic in modelling shear failure of concrete beams than the 

smeared crack approach. However, the overall structural behaviour can be well modelled 

using the smeared crack approach (Sagaseta and Vollum 2009).        

A careful analysis of the experimental results (Kang and Ary 2012) shows that IB-10 had a 

significant lower initial un-cracked stiffness compared to the other two girders (Control and 

IB-05). Furthermore, the EB CFRP strips used to strengthen IB-10 fractured at failure. 

Nonetheless, the experimental results suggested that the EB CFRP strips did not enhance 

the shear force capacity of IB-10 over that of the control girder (see Table 2). These two 

contradicting results together with the lower un-cracked stiffness for IB-10 may be reconciled 

by considering a lower compressive strength, and consequently lower initial un-cracked 

stiffness and unstrengthened shear force capacity, for IB-10. Using a concrete cylinder 

compressive strength value of 45 MPa gave the best numerical results for IB-10 (see Fig. 

6c) in terms of the initial un-cracked stiffness, cracked stiffness, shear force capacity, and 

mid-span deflection at failure. Further experimental testing for IB-10 with concrete cylinder 

compressive strengths of 45 MPa and 59 MPa is required in order to confirm the above 

explanation.  

Fig. 7 shows the experimental crack patterns at failure for the three girders together with 

contour plots of the predicted principal tensile strain in the concrete at the predicted failure 

loads. It can be seen that the FE model correctly predicted the shear failure mode of the 

tested girders. The FE model also correctly predicted that the control girder failed due to a 

major diagonal crack that ran from the support to the loading plate (see Fig. 7a). The 
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strengthened girders had more distributed diagonal cracks due to the presence of the EB 

CFRP strips. 

 

5 Parametric study 

The following subsections detail the parametric study. A total of 61 nonlinear analyses were 

carried out to investigate the effect of the parameters influencing the strength of PC girders 

strengthened in shear with EB CFRP reinforcement. It should be noted that the predicted 

results reflect the performance of the FE model rather than that of actual girders. Further 

testing is recommended to confirm the predicted results.   

Except for the FE models used to investigate the effect of concrete compressive strength, all 

the FE models considered in the parametric study had a concrete cylinder compressive 

strength of 59 MPa. All the modelled girders reported in this study failed in shear. In order to 

investigate the effect of a given parameter, only its value was varied whereas the values of 

the other parameters were kept unchanged. For a given FE model, the shear force gain was 

calculated by subtracting the predicted unstrengthened shear force capacity from the 

corresponding predicted strengthened shear force capacity. 

5.1 Effect of concrete compressive strength 

Concrete cylinder compressive strength values of 30 MPa, 40 MPa, 50 MPa, 59 MPa (i.e. 

similar to the average concrete compressive strength of the tested girders), and 70 MPa 

were considered for the control as well as the strengthened girders. The FE models used to 

investigate the effect of concrete compressive strength were nominally identical to those 

validated in Section 4.   

Fig. 8a depicts the influence of concrete compressive strength on the predicted shear force 

capacity. The FE model predicted that the shear force capacity of the PC girders varies 

approximately linearly with the cylinder compressive strength. The predicted shear force 

capacity of the unstrengthened, IB-10, and IB-05 PC girders increased by 62.7%, 61.3%, 
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and 65.1% respectively when the concrete compressive strength was increased from 30 

MPa to 70 MPa. Such significant increases were to be expected because, for PC girders 

without internal shear reinforcement, the concrete contribution to the shear force capacity is 

significant. Increasing the concrete compressive strength will therefore increase the concrete 

contribution and enhance the shear force capacity.  

The variation of predicted shear force gain (i.e. predicted CFRP contribution to the shear 

force capacity) with concrete compressive strength is shown in Fig. 8b. It can be seen that 

the increase in concrete compressive strength resulted in a corresponding increase in the 

predicted CFRP contribution especially for the case of IB-05 where a higher CFRP 

reinforcement ratio was used. The predicted CFRP contributions of IB-10 and IB-05 girders 

increased from 14.32 KN and 20.64 KN respectively to 21.8 KN and 36.2 KN respectively 

due to the increase in concrete compressive strength from 30 MPa to 70 MPa. This increase 

may be attributed to the role of concrete compressive strength in enhancing the bond 

performance between the EB CFRP reinforcement and the concrete (see Eq. 2). However, 

the increase in concrete compressive strength did not significantly affect the percentage 

increase in CFRP contribution; i.e. for a given girder, the CFRP contribution and the 

concrete contribution increased by approximately equal rates. The average percentage 

increase in CFRP contribution for IB-10 and IB-05 girders was 14.7% and 23.3% 

respectively.  

5.2 Effect of CFRP width-to-spacing ratio 

In order to investigate the effect of CFRP width-to-spacing ratio (wcfrp/scfrp), a FE model 

nominally identical to those validated in Section 4, but with the EB CFRP reinforcement 

attached to the full span, was developed. Hence, three CFRP width-to-spacing ratios were 

considered, namely 0.3 (i.e. 76 mm / 254 mm), 0.6 (i.e. 76 mm / 127 mm), and 1.0 (i.e. 

continuous CFRP reinforcement).  
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As can be seen in Fig. 9, the predicted results suggest that both the shear force capacity 

and the contribution of the EB CFRP reinforcement increase linearly with the increase in 

CFRP width-to-spacing ratio. The predicted CFRP contribution increased from 22.9 KN 

(17.6%) to 44.3 KN (34.2%) when the CFRP width-to-spacing ratio was increased from 0.3 

to 1.0. The linear variation between the CFRP contribution and the CFRP width-to-spacing 

ratio is adopted by existing design guidelines (ACI 440.2R-08 2008; Concrete Society TR55 

2012). It is based on the truss analogy which models the EB CFRP reinforcement as 

external shear links that contribute to the shear resistance by controlling and limiting the 

progress of inclined cracks. 

5.3 Effect of CFRP thickness 

The effect of CFRP thickness was studied by modelling PC girders nominally identical to the 

strengthened models validated in Section 4. Three CFRP thickness values were considered 

for each series, namely 1.25 mm (i.e. similar to the experimental value), 2.50 mm, and 3.75 

mm. 

Figs. 10a and 10b show the variation of predicted shear force capacity and predicted CFRP 

contribution with CFRP thickness respectively. Similar to the effect of CFRP width-to-spacing 

ratio, the increase in CFRP thickness enhanced the predicted CFRP contribution and 

consequently the predicted shear force capacity. The predicted CFRP contributions of IB-10 

and IB-05 girders increased from 22.9 (17.6%) and 32.5 KN (25.1%) respectively to 32.5 KN 

(25.1%) and 50.2 KN (38.8%) respectively when the CFRP thickness was increased from 

1.25 mm to 3.75 mm. This may be attributed to the fact that thicker CFRP reinforcement 

have higher axial rigidity and therefore provide higher resistance to crack propagation. 

5.4 Effect of effective girder depth 

Effective depth is a major factor affecting both the shear force capacity and behaviour of 

concrete beams/girders. However, its influence on the shear force capacity of CFRP-

strengthened PC girders has not been fully investigated. In concrete members without 



 15/42 
 

internal shear reinforcement, the increase in effective depth is associated with a strong size 

effect (Bažant and Cao 1986; Tan et al. 2005), which may be defined as the reduction in 

shear stress at failure of deeper sections attributable to wider shear cracks (Dirar et al. 

2013a). The girder width has no or very limited influence on the shear behaviour (Kani 1967) 

and therefore was not considered in this study.   

In addition to the FE models developed for Control, IB-10, and IB-05 girders, which had an 

effective depth (d) of 457 mm, additional FE models with effective depths of 343 mm (i.e. 

0.75d) and 686 mm (i.e. 1.5d) were developed for each series in order to investigate the 

influence of effective girder depth. Other parameters; such as a/d, prestressing tendons 

ratio, and longitudinal steel ratio; were kept constant.  

Fig. 11a shows that the predicted shear stress at failure drops significantly with the increase 

in effective girder depth, suggesting a strong size effect in both unstrengthened and CFRP-

strengthened PC girders without internal shear reinforcement. The shear stress at failure for 

the control, IB-10, and IB-05 series decreased by 24.7%, 26.1%, and 23.3% respectively 

when the effective depth was increased from 343 mm to 686 mm. As explained above, this 

reduction may be attributed to wider shear cracks in deeper sections.   

The influence of effective girder depth on the percentage CFRP contribution is presented in 

Fig. 11b.  It can be seen that for effective depths lower than 457 mm, the percentage CFRP 

contribution increases with the increase in effective beam depth. Size effect is likely to be 

negligible within such relatively low effective depth values. Hence the increase in effective 

girder depth leads to a corresponding increase in the CFRP effective bond length which, in 

turn, enhances the CFRP contribution. On the other hand, for effective depths higher than 

457 mm, the percentage CFRP contribution decreases with the increase in effective beam 

depth. This reduction may be related to size effect. Further experimental testing is required 

to confirm the predicted results. 

5.5 Effect of shear span to effective depth ratio 
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The shear span to effective depth (a/d) ratio is one of the significant factors that influence the 

shear behaviour and failure mode. A concrete member with a/d ratio less than 2.5 resists 

shear forces by arch-action whereas a member with a/d ratio greater than 2.5 resists shear 

forces by beam-action. Recent research work (Sayed et al. 2013) on FRP-strengthened 

reinforced concrete (RC) beams has revealed that the FRP contribution depends strongly on 

a/d ratio. Research investigations on the effect of a/d ratio on CFRP-strengthened PC 

girders are scarce. 

FE models nominally identical to those validated in Section 4, but with varying shear spans, 

were developed. Shear span to effective depth ratios in the range of 2.5 - 5.5 were 

considered in this study. Fig. 12a shows the influence of a/d ratio on the predicted shear 

force capacity. The results, which are in accordance with the findings of Kani et al. (1979) for 

RC beams, reveal that the higher the a/d ratio, the lower the shear force capacity. This 

reduction may be related to the shift from arch-action, which provides higher resistance, to 

beam-action. 

Fig. 12b presents the influence of a/d on the predicted CFRP contribution. The general trend 

that can be observed in Fig. 12b is that the predicted CFRP contribution decreased with the 

increase in a/d ratio. The CFRP contributions of series IB-05 and IB-10 decreased by 69% 

and 71.5% respectively when a/d ratio was increased from 2.5 to 5.5. This result is important 

because current design guidelines (ACI 440.2R-08 2008; Concrete Society TR55 2012) do 

not consider the effect of a/d on the CFRP contribution. 

5.6 Effect of prestress 

In order to investigate the effect of axial prestress, FE models nominally identical to those 

validated in Section 4, but with different levels of prestress in the tendons, were developed. 

Three levels of prestress in the tendons were considered, namely 830 MPa, 1075 MPa, and 

1328 MPa. These prestress levels represented 50%, 65%, and 80% of the tendon yield 

strength respectively.  
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Except for the FE model for IB-10 with a prestress level of 1328 MPa, Fig. 13a shows that 

the predicted shear force capacity is marginally enhanced by the increase in axial prestress. 

The percentage increase in the predicted shear force capacity of the modelled girders varied 

from 3.97% to 6.75% when the tendon prestress level was increased from 830 MPa to 1328 

MPa. The axial prestress reduces crack widths and consequently enhances the concrete 

contribution to the shear force capacity.  

Fig. 13b presents the variation of predicted CFRP contribution with prestress level. Except 

for the FE model for IB-10 with a prestress level of 1328 MPa, the change in prestress level 

did not have a significant effect on the predicted CFRP contribution. The marginal increase 

in the predicted shear force capacity of the strengthened girders (see Fig. 13a) is therefore 

caused by the increase in predicted concrete contribution as explained above. 

5.7 Effect of tendon profile 

For simply supported beams, it is well known that when a parabolic or harped tendon profile 

is used, a resultant upward force, which may enhance the shear force capacity, acts on the 

concrete section. Therefore, the effect of tendon profile was investigated by developing FE 

models nominally identical to those validated in Section 4 but with a double-harped tendon 

profile. At girder ends, the tendons were positioned at the concrete centroid. They 

descended linearly to the level of the straight tendon at loading points (see Fig. 14). 

The predicted shear force capacities of the control, IB-10, and IB-05 girders with a double-

harped tendon profile were 154.9 KN, 169.5 KN, and 180.0 KN respectively. This represents 

an increase of 19.6%, 11.2% and 11.1% respectively over the predicted shear strength of 

the corresponding girders with a straight tendons profile.  

The predicted CFRP contributions of IB-10 and IB-05 girders with a double-harped tendon 

profile were 14.6 KN and 25.1 KN respectively whereas the predicted CFRP contributions for 

the corresponding girders with a straight tendon profile were 22.9 KN and 32.5 KN 

respectively. This result indicates that, for the girders with a double-harped tendon profile, 
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the concrete contribution increased whereas the CFRP contribution decreased. Further 

research is required to better understand the interaction between tendon profile and the 

CFRP contribution to the shear force capacity. 

5.8 Effect of pre-cracking 

EB CFRP reinforcement may be used to strengthen cracked PC members. Hence, it is 

important to investigate the effect of pre-cracking on the shear force capacity of CFRP-

strengthened PC girders. To accomplish this, six FE models nominally identical to those for 

IB-05 and IB-10, were developed. The nonlinear analysis of these models included three 

calculation phases. In Phase I, the unstrengthened FE models, with the elements 

representing the EB CFRP reinforcement and the FRP-to-concrete interface set as inactive, 

were prestressed. Phase II included loading the unstrengthened FE models to 75%, 85% or 

95% of their unstrengthened shear force capacity. Phase III included activating the elements 

representing the EB CFRP reinforcement and the FRP-to-concrete interface, and then 

loading the FE models up to failure. 

Fig. 15 presents the variation of predicted shear force capacity with normalised pre-crack 

load (pre-cracking level). It can be seen that, up to a pre-cracking level of 85%, there was no 

significant effect on the predicted shear strength. Comparable results (Dirar et al. 2012) were 

reported for CFRP-strengthened RC beams where it was found that a pre-cracking level of 

70% had insignificant effect on the shear force capacity. At a pre-cracking level of 95%, the 

EB CFRP strips enhanced the shear force capacity of IB-10 and IB-05 girders by 5.5 KN 

(4.2%) and 3.98 KN (3.1%) respectively. Failure was governed by excessive opening of the 

existing diagonal cracks. The results imply that EB CFRP reinforcement can be effectively 

used to retrofit cracked PC girders.  

5.9 Effect of CFRP-to-Concrete bond-slip model 

The CFRP-to-concrete bond-slip model plays an important role in FE modelling of concrete 

structures strengthened with EB CFRP reinforcement. In addition to the bond-slip model 
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adopted in this study (Sato and Vecchio 2003), the simplified bond-slip model proposed by 

Lu et al. (2005) was considered. The latter model assumes that the bond stress varies 

nonlinearly with slip (for more details see Lu et al. 2005). For approximately equal values of 

peak bond stress and interfacial fracture energy, the predictions of the two bond-slip models 

were practically similar suggesting that the shape of the bond-slip model had no influence on 

the overall behaviour. Similar findings were reported by Niu and Wu (2006). 

 

6 Conclusions 

This paper presents a three-dimensional nonlinear FE model for PC girders strengthened in 

shear with EB CFRP strips. The FE model was validated using experimental results from the 

published literature. An extensive parametric study was carried out to investigate the effect 

of the concrete compressive strength, CFRP width-to-spacing ratio, CFRP thickness, girder 

effective depth, shear span to effective depth ratio, level of prestress, tendon profile, pre-

cracking and CFRP-to-concrete interface model on the predicted the shear force capacity.  

Based on the obtained numerical results, the following conclusions were drawn. Further 

experimental testing is recommended to confirm the FE-predicted results and increase the 

database of PC girders strengthened in shear with EB CFRP reinforcement.  

1. The concrete compressive strength had a significant influence on both the concrete 

and CFRP contributions to the predicted shear force capacity. The percentage 

increase in predicted shear force capacity ranged from 61.3% to 65.1% when the 

concrete compressive strength was increased from 30 to 70 MPa. 

2. The predicted CFRP contribution increased from 22.9 KN (17.6%) to 44.3 KN 

(34.2%) when the CFRP width-to-spacing ratio was increased from 0.3 to 1.0. 

3. The increase in the CFRP thickness enhanced the predicted CFRP contribution and 

consequently the predicted shear force capacity. The percentage increase in CFRP 
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contribution to the shear force capacity ranged from 17.6% to 38.8% when the CFRP 

thickness was increased from 1.25 mm to 3.75 mm. 

4. A strong size effect was predicted for both the unstrengthened and CFRP-

strengthened PC girders without internal shear reinforcement. The percentage 

reduction in predicted shear stress at failure ranged from 23.3% to 26.1% when the 

effective depth was increased from 343 mm to 686 mm. 

5. The predicted CFRP contributions of the strengthened beams decreased by 69% to 

71.5% when the shear span to effective depth ratio was increased from 2.5 to 5.5. 

6. The level of prestress in the tendons significantly influenced neither the predicted 

CFRP contribution nor the predicted shear force capacity. 

7. The change in tendon profile from a straight to double-harped shape increased the 

predicted total shear force capacity but had a detrimental effect on the predicted 

CFRP contribution to the shear force capacity.  

8. Pre-cracking loads of up to 85% of the unstrengthened shear force capacity did not 

have a significant effect on the predicted strengthened capacity. At higher pre-

cracking load levels, the predicted CFRP contribution was insignificant.  

9. For approximately equal values of peak bond stress and interfacial fracture energy, 

the shape of the CFRP-to-concrete bond-slip model had no influence on the overall 

behaviour of the modelled girders.  
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Table 1   Material properties 

Material 

Elastic 

modulus 

(MPa) 

Cylinder 

compressive 

strength 

(MPa) 

Modulus 

of rupture 

(MPa) 

Ultimate 

strain 

mm/mm 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Concrete 39314 59.0 4.9 - - - 

Ø10 mm bar 198927 - - - 439.2 699.0 

Ø12 mm bar 186648 - - - 414.4 711.5 

Ø20 mm bar 204547 - - - 476.4 766.0 

Ø25 mm bar 192922 - - - 433.0 752.2 

Ø12.5 mm tendon 200548 - - - 1656.8 1811.2 

CFRP strips 6585 - - 0.015 - 98.7 
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Table 2   Experimental and FE results 

Beam 
V Exp. 

(KN) 

V FE 

(KN) 

V Exp. 

V FE 

Δ Exp. 

(mm) 

Δ FE 

(mm) 

Δ Exp. 

Δ FE 

Control 117.4 129.5 0.91 12.58 11.33 1.11 

IB-05 161.9 162.0 1.00 16.13 14.38 1.12 

IB-10 119.2 149.7 0.80 12.34 13.18 0.94 
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Fig. 1   Unstrengthened cross-section of the tested girders (Kang and Ary 2012) 
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(a) 

 

(b) 

 

(c) 

Fig. 2   Details of tested PC girders: (a) control specimen, (b) IB-05, and (c) IB-10 (Kang and 

Ary 2012) 
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Fig.3   Finite element model 
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Fig. 4   Stress-strain curve for the prestressing tendons (Kang and Ary 2012) 
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Fig. 5   CFRP-to-concrete bond-slip model (Sato and Vecchio 2003) 
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(a) 

 
(b) 

 
(c) 

Fig. 6   Shear force versus mid-span deflection curves: (a) control specimen, (b) IB-05, and 

(c) IB-10 (modelled using concrete compressive strengths of 45 MPa and 59 MPa) 
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(a) 

    

(b) 

    

(c) 

Fig. 7   Experimental (Kang and Ary 2012) and numerical failure modes: (a) control 

specimen, (b) IB-05, and (c) IB-10 

 

 

 

 

 

 



 35/42 
 

 

(a)                                                                                   (b) 

Fig. 8   Effect of concrete compressive strength on (a) the predicted shear force capacity 

and (b) the predicted shear force gain due to the EB CFRP reinforcement 
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(a)                                                                                   (b) 

Fig. 9   Effect of CFRP width-to-spacing ratio on (a) the predicted shear force capacity and 

(b) the predicted shear force gain due to the EB CFRP reinforcement 
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(a)                                                                                   (b) 

Fig. 10   Effect of CFRP thickness on (a) the predicted shear force capacity and (b) the 

predicted shear force gain due to the EB CFRP reinforcement 
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(a)                                                                                   (b) 

Fig. 11   Effect of effective girder depth on (a) the predicted shear stress at failure and (b) 

the predicted percentage shear force gain due to the EB CFRP reinforcement  
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(a)                                                                                   (b) 

Fig. 12   Effect of shear span to effective beam depth on (a) the predicted shear force 

capacity and (b) the predicted shear force gain due to the EB CFRP reinforcement 
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(a)                                                                                   (b) 

Fig. 13   Effect of prestress on (a) the predicted shear force capacity and (b) the predicted 

shear force gain due to the EB CFRP reinforcement 
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Fig. 14   Double-harped tendon profile 
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Fig. 15   Effect of pre-cracking level on the predicted shear force capacity 


