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Abstract
A geometrical analysis of the bulk and anti-de Sitter boundary unitarity con-
ditions of 3D ‘minimal massive gravity’ (MMG) (which evades the ‘bulk/
boundary clash’ of topologically massive gravity) is used to extend and
simplify previous results, showing that unitarity selects, up to equivalence, a
connected region in parameter space. We also initiate the study of flat-space
holography for MMG. Its relevant flat space limit is a deformation of 3D
conformal gravity; the deformation is both nonlinear and non-conformal,
implying a linearization instability.

Keywords: massive gravity, unitarity, holography

(Some figures may appear in colour only in the online journal)

1. Introduction

A recently proposed model of 3D massive gravity [1], dubbed ‘minimal massive gravity’
(MMG), has bulk properties that are identical to those of ‘topologically massive gravity’
(TMG) (which propagates a single massive spin-2 mode [2]) but its boundary properties (for
AdS asymptotics) are different. Specifically, MMG evades the ‘bulk/boundary clash’ of
TMG; this is the impossibility (for TMG) of arranging for both central charges of the
asymptotic conformal symmetry algebra to be positive while also arranging for the bulk mode
to have positive energy.

In this paper we present a greatly simplified, and geometrical, analysis of the unitarity
conditions of MMG. Our results confirm those of [1] but we also consider a slightly larger
class of models by leaving free the normalization of the parameters of the MMG action, and
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we cut in half the relevant parameter space by establishing equivalence under a ‘duality’
transformation in the full parameter space. The final result is that unitarity restricts the
parameters to a connected region of parameter space, up to equivalence.

It has been proposed [3, 4] that the relevant asymptotic symmetry algebra for 3D gravity
with flat-space asymptotics is the 2D ‘Galilean conformal algebra’ (GCA), obtained by
contraction of the 2D conformal algebra. Based on this proposal, flat space holography for
TMG was initiated in [5], and it was argued that unitarity constraints on the central charges of
the GCA algebra could be satisfied only in a limit for which TMG degenerates to 3D
conformal gravity, which has no local degrees of freedom. Here we show that the same
analysis, applied to MMG, leads to a flat space MMG model that is not conformal and still has
local degrees of freedom, although its linearized limit coincides with linearized 3D conformal
gravity, implying a linearization instability.

2. TMG preliminaries

The TMG action can be written as the integral of a Lagrangian 3-form constructed from three
Lorentz-vector 1-forms: the dreibein e, the (dual) Lorentz connection ω and a Lagrange
multipler field h imposing a zero-torsion constraint [6, 7]. Using a 3D vector algebra notation
for Lorentz vectors we can write this Lagrangian 3-form as

ω σ Λ
μ

ω= − + × + +L e h e R e e e h T L[ , , ] ·
1

6
· ·

1
( ), (1)TMG 0 LCS

where T and R are the torsion and curvature 2-forms, respectively, and LLCS is the Lorentz–
Chern–Simons (LCS) 3-form for ω. This Lagrangian 3-form is parametrized by the mass
parameter μ and the dimensionless constants σ Λ μ( , )0

2 . We refer the reader to [1] for details
of conventions.

The 1-form fields ω h( , ) can be eliminated by their joint equations of motion, leading to
an action for the 3-metric alone. For a particular choice of units for the 3D Newton constant
G3 (which has dimensions of inverse mass for unit speed of light), the resulting action is

σ Λ
μ

= +I g I g I g[ ] [ ; ]
1

[ ], (2)TMG EH LCS

where IEH is the (3D) Einstein–Hilbert action, together with a cosmological constant term
(σΛ Λ= 0); the LCS term is now the Chern–Simons action for the Levi-Civita affine
connection. Variation of this action yields the TMG equation

σ Λ
μ

+ + =μν μν μν( )G g C
1

0, (3)

where G is the Einstein tensor and C the Cotton tensor.
The asymptotic symmetry algebra for an asymptotic AdS vacuum with cosmological

constant Λ = − ℓ1 2 is the 2D conformal algebra [8]. For TMG the (left/right) central charges
are

⎛
⎝⎜

⎞
⎠⎟σ

μ
= ±±c

ℓ

G ℓ

3

2

1
. (4)

3

In the context of an AdS/CFT interpretation, this is the leading order result in a semi-classical
approximation that is valid (re-instating factors of ℏ) when ≫ ℓ G3 , and quantum
consistency requires μ =G N8 13 for some integer N (see e.g. [5]).
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We may assume, without loss of generality, that

μ >ℓ 0. (5)

Given this, we see from (4) that −c will be negative and the (putative) dual CFT non-unitary,
unless σ > 0. However, the spin-2 bulk mode is a ‘ghost’ (i.e. has negative energy) unless
σ < 0. This is the bulk/boundary unitarity clash.

3. MMG

The MMG action cannot be written in terms of the metric alone but it can be written in terms
of the 1-form Lorentz-vector fields ωe h( , , ). The Lagrangian 3-form is [1]

ω ω α= + ×L e h L e h e h h[ , , ] [ , , ]
2

· , (6)MMG TMG

where α is a new dimensionless constant; for reasons explained in [1], the parameters are
restricted such that

σα+ ≠1 0. (7)

The 1-form fields ω h( , ) cannot be consistently eliminated from the action but the complete
set of equations of motion determine them uniquely in terms of the dreibein and its
derivatives. When the resulting equation of motion is expressed in terms of the metric, one
finds that

σ Λ
μ

γ
μ

+ + + =μν μν μν μνG g C J¯ ¯ 1
0, (8)0 2

where1

σ σ σα
α Λ

μ σα
γ α

σα
= + +

+
= −

+
¯ (1 )

2 (1 )
,

(1 )
, (9)

2
0

2 2 2

and

⎛
⎝⎜

⎞
⎠⎟Λ Λ σα

α Λ
μ σα

= + −
+

¯ 1
4 (1 )

. (10)0 0

3
0

2 2

The J-tensor is

= − + + −μν μ
ρ

ρν μν μν
ρσ

ρσ( )J S S SS g S S S
1

2
, (11)2

where = −μν μν μνS R g R(1 4) (the 3D Schouten tensor) and the scalar S is its trace. Notice
that the J-tensor involves only second derivatives of the metric, so the characteristics of the
MMG equation will be those of the TMG equation, found by setting γ = 0. We refer to [1] for
an explanation of how the MMG equation manages to be consistent with Bianchi identities
despite the fact that ≢μ

μνD J 0.

3.1. Scaling parameters

The MMG action is proportional to the integral of the Lagrangian 3-form (6) with a pro-
portionality constant that is itself proportional to G1 3. A rescaling of G3 can be compensated
by a rescaling of the MMG parameters. Specifically, if λ→G G3 3, for positive non-zero

1 We use here the version of these formulae given in [9], which are valid for any value of σ.
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constant λ, then the action is unchanged if

μ λ μ α λ α σ λσ Λ λΛ→ → → →− −, , , , (12)1 1
0 0

and

λ ω ω→ →h h e e, ( , ) ( , ). (13)

Given that σ ≠ 0, this scaling allows us to choose a normalization for the parameters such that
σ = 12 , and this choice was made in [1]. For TMG it makes sense to make this choice since
setting σ = 0 leads to inconsistent field equations unless one also sets Λ = 00 and then one is
left with 3D conformal gravity, which has no local degrees of freedom. For MMG it is
perfectly consistent to set σ = 0, and allowing for this case leads to significant simplifications.
For this reason, we impose no restriction on the parameter σ.

We could use the scaling symmetry to set α = 12 . This is especially attractive since
unitarity of MMG (with AdS asymptotics) requires α < 0 [1] so, anticipating this result, we
could restrict to α = −1. However, imposing a normalization condition on α would com-
plicate any discussion of the TMG limit. For this reason, we shall proceed without making
any choice of normalization for the MMG parameters.

3.2. A duality in parameter space

Let us define a new set of fields ωe h( ˆ, ˆ , ˆ) for the action (6) by setting

ω ω μ σα
α

μ σα
α

= = + + = − +
e e e h h eˆ, ˆ 2

(1 )
ˆ, ˆ 2

(1 )
ˆ. (14)

2

This is an invertible field redefinition and therefore has no physical effect. However, the
action in terms of the new fields has exactly the same form as it had for the old fields but in
terms of the new parameters

σ σα α Λ Λ σα
α

μ α α= − + = − + =ˆ (2 ) , ˆ 4(1 )
, ˆ . (15)0 0

3

3
2

In other words, the map

σ Λ α σ Λ α→ ( )( )H: , , ˆ , ˆ , ˆ (16)0 0

takes one MMG model into an equivalent MMG model. In particular, the MMG field
equation (8) is unchanged because the parameters σ γ Λ( ¯, , ¯ )0 are H-inert.

Notice that the H-map is an involution ( =H 12 ) so it relates pairs of equivalent models;
it is a ‘duality’ in parameter space. Notice also that

σα σα+ → − +H: (1 ) (1 ). (17)

Recall that σα+ ≠(1 ) 0 by definition, so H has no fixed points. It follows that we may
choose σα+(1 ) to have either sign, without loss of generality. Every MMG model for which

σα+ <(1 ) 0 is equivalent to one with σα+ >(1 ) 0.
This result raises a puzzle. When σα+ >(1 ) 0 we can take the α → 0 limit to recover

TMG from MMG. Given equivalence under the action of H, there should also be a limit to
TMG when σα+ <(1 ) 0, but this cannot be a simple α → 0 limit because this would change
the sign of σα+(1 ). The resolution of this puzzle is that there is indeed another, less obvious,
TMG limit when σα+ <(1 ) 0, which may be deduced by following the consequences of the
H-map. One takes
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α σ Λ→ → ∞ → ∞0, , , (18)0

in such a way that for, non-zero α

σ
α

σα Λ μ
σα

α
Λ μ= − + = −

+
+( )

( )1
2 ˆ ,

4 1 ˆ ˆ , (19)0
2

3

3 0
2

where σ̂ and Λ̂0 are finite in the α → 0 limit. This limit now yields a TMG model with

σ σ Λ Λ= =¯ ˆ , ¯ ˆ . (20)0 0

4. MMG unitarity redux

Maximally symmetric solutions of the MMG equation (8) are characterized by the value of
the cosmological constant Λ, which can be defined (in the context of a vacuum solution) via
the equation Λ= −μν μνG g . Substitution into the MMG equation yields the relation

γΛ μ σΛ μ Λ− + =4 ¯ 4 ¯ 0. (21)2 2 2
0

In the case of an AdS vacuum we have a unitarity constraint arising from the requirement of
positive central charges for the asymptotic 2D conformal algebra, in addition to the bulk
unitarity constraints. The unitarity conditions found for MMG in [1] are

• No-tachyon condition:

σ
Λ αΛ

μ σα
+

+
+

>
( )

(1 )
0. (22)2 0

2 2

• No-ghost condition. When combined with the no-tachyon condition this becomes the
inequality

σ σα
α Λ αΛ
μ σα

+ +
+
+

<
( )

(1 )
2 (1 )

0. (23)
0

2 2

• Positivity of both central charges:

σ
μ

α Λ αΛ
μ σα

− −
+
+

>
( )

ℓ

1

2 (1 )
0. (24)

0

2 2

This inequality is valid on the assumption (which we make without loss of generality)
that μ >ℓ 0 (recall that Λ = − ℓ1 2) and saturation of it defines, in analogy to TMG [10],
the ‘chiral’ limit. Properties of chiral MMG have been investigated recently in [11, 12].

For TMG it is obvious that the chiral limit implies saturation of the no-tachyon condition.
This is no longer obvious for MMG but it is true nevertheless, as will emerge from the
analysis to follow.
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4.1. Geometrical formulation of unitarity conditions

We now define new dimensionless variables (x, y) by

Λ αΛ
μ σα μ

= −
+

+
=

( )
x y

ℓ(1 )
,

2
. (25)

0

2 2

Observe that the inequality >y 0 follows immediately from our assumption that μ >ℓ 0. It
also follows that

α σα γ
μ

γΛ μ σΛ μ Λ− − + ≡ − − + =( )y x x4(1 ) 4 ¯ 4 ¯ 0, (26)2 2 2
4

2 2 2
0

where the final equality follows from (21). The new notation also simplifies the result of [1]
for the central charges of the asymptotic 2D conformal algebra, which can now be written as

σ α= + ±±c
ℓ

G
x y

3

4
(2 ). (27)

3

The unitarity conditions can now be written as linear inequalities in the (x, y)-plane:

• No-tachyon: σ<x 2.
• No-ghost: α σ σα− + + <x 2 (1 ) 0.
• Positive central charges: σ α< +y x2 .

To summarize, the ‘allowed’ region in the (x, y)-plane is defined by the linear inequalities

σ α σ σα σ α< − + + < < < +x x y x, 2 (1 ) 0, 0 2 . (28)2

Within this allowed region, each point on the ‘MMG hyperbola’

α σα= + +y x x4(1 ) , (29)2 2 2

corresponds to an MMG model with AdS3 vacuum satisfying all (bulk and boundary)
unitarity conditions.

Observe that the boundary lines σ=x 2 and σ α= +y x2 meet on the hyperbola at the
‘chiral’ point with coordinates

σ σ σα= = +x y, (2 ). (30)ch
2

ch

This confirms our earlier claim that the no-tachyon condition for MMG is saturated at the
critical point. The other intersection of the two lines σ=x 2 and σ α= +y x2 is also on the
hyperbola, but this corresponds to =+c 0, and hence to <−c 0. So boundary unitarity is
violated at this other chiral point, although it is also true (as we shall see shortly) that some
unitarity condition is violated in any neighbourhood of either chiral point.

4.2. TMG redux

We will first use this new geometrical framework to recover standard results for TMG. We
can do this by setting α = 0, in which case the MMG hyperbola becomes the TMG parabola

=y x4 . (31)2

The inequalities (28) simplify to (i) linear inequalities in the (x, y)-plane

σ σ< < <x y, 0 2 , (32)2
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which exclude the entire plane unless σ > 0, plus (ii) the (no-ghost) restriction σ < 0 on the
parabola parameters. These are contradictory requirements, so the unitarity conditions cannot
be satisfied.

4.3. Unitary MMG

The inequalities (28) imply that

α σ α ασ− < < −y x x2 2 , (33)2

and hence that

α σ< −( )y x2 . (34)2

But this contradicts the requirements that σ<x 2 and >y 0 unless

α < 0. (35)

Equivalently, unitarity requires γ > 0, in agreement with the result of [1].
Given α < 0, the second inequality of (28) can be written as another upper bound on x:

σ
α

σα< + ≡x x
2

(1 ) *, (36)

and this is a stronger upper bound than σ<x 2 when σ σα+ >(2 ) 0. Otherwise it is
weaker, so

• <x x* if σ σα+ >(2 ) 0. In this case >y 0ch but, since σ<x* 2, the chiral point is
outside the allowed region. See figure 1.

• σ<x 2 if σ σα+ <(2 ) 0. In this case <y 0ch , so the chiral point is again outside the
allowed region. See figure 2.

We learn from this that the chiral point is always outside the allowed region.
The MMG hyperbola crosses the x-axis at x = 0 and at2

σα
α

= − + ≡x x
4(1 )

. (37)
2 int

For future use we record here that

σα σ σα
α

− = + − = − + <x x
x

x*
2

(2 ),
(2 )

0. (38)int
int

int
2

2

2

The above facts suggest that we should organize the analysis according to the signs of
σα+(1 ) and σ σα+(2 ). As observed earlier, we have seen that we may choose either sign

for σα+(1 ) without loss of generality but we will ignore this fact, for now, in order to
simplify comparison with the results of [1]. This means that we have four generic cases to
consider, plus the two special cases for which σ = 0 or σα = −2. Each of the four generic
cases corresponds (given α < 0) to a definite sign of σ σα+(1 ) which we will also need
to know.

(i) σα σ σα+ > + >(1 ) 0 and (2 ) 0. In this case <x 0int , so the right-hand branch of the
hyperbola is the one passing through the origin. The chiral point is on this branch. The
two conditions imply

2 When σα+ =(1 ) 0 the hyperbola degenerates into its asymptotes, but this case is excluded by definition
of MMG.
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α σ σ σα> > ⇒ + >− 0 ( (1 ) 0). (39)1

This corresponds to the third of the possibilities deduced in [1].
The allowed region in the (x, y)-plane lies to the left of the line =x x*, which excludes
the entire right-hand branch of the hyperbola. But <x x*int , so the entire upper-half of
the left-hand branch is inside the allowed region.

(ii) σα σ σα+ > + <(1 ) 0 and (2 ) 0. Again <x 0int , so the right-hand branch passes
through the origin. This case occurs when

σ σ σα< ⇒ + <0, ( (1 ) 0). (40)

This corresponds to the first of the possibilities deduced in [1].
The allowed region now lies to the left of the line σ=x 2, and under the line

Figure 1. The MMG hyperbola ( >y 0) for σα+ >(1 ) 0 and σ σα+ >(2 ) 0. The
region defined by the inequalities (28) is shaded in blue. The chiral point is the
intersection of the hyperbola with the solid blue line, which is parallel to the left
asymptote.

Figure 2. The MMG hyperbola ( >y 0) for σα+ >(1 ) 0 and σ σα+ <(2 ) 0. The
region defined by the inequalities (28) is shaded in blue. Note that the right-hand
branch is now excluded outright; the chiral point is at <y 0ch on this excluded branch.
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α σ− =y x 2 , which now passes through the chiral point on the lower-half of the right-
hand branch of the hyperbola. This again means that the entire right-hand branch is
excluded while the entire upper-half of the left-hand branch is allowed.

(iii) σα σ σα+ < + <(1 ) 0 and (2 ) 0. In this case >x 0int , so the left-hand branch of the
hyperbola is now the one passing through the origin. This case is only realized when

σ α σ σα> ⇒ + <−2 , ( (1 ) 0). (41)1

This corresponds to part of the second possibility deduced in [1].
The allowed region lies to the left of the line σ=x 2, but since σ<xint

2, the entire upper-
half of the left-hand branch of the hyperbola is in the allowed region. The entire right-
hand branch is excluded because the line α σ− =y x 2 passes through the chiral point on
the lower-half of the right-hand branch of the hyperbola.

(iv) σα σ σα+ < + >(1 ) 0 and (2 ) 0. Again >x 0int so the left-hand branch of the
hyperbola passes through the origin. This case occurs when

α σ α σ σα> > ⇒ + <− −2 , ( (1 ) 0). (42)1 1

This corresponds to another part of the second possibility deduced in [1].
The allowed region lies to the left of the line =x x*. But > >x x* 0int , so the entire
right-hand branch of the hyperbola is excluded while the left-hand branch is allowed.

Notice that σ σα+(2 ) is H-inert, so cases (i) and (iv) and cases (ii) and (iii) are both ‘H-
pairs’. In all cases only the upper half of the left-hand branch is allowed by unitarity.

To summarize, cases (i) and (ii) cover σα+ >(1 ) 0 except σ = 0 and cases (iii) and (iv)
cover σα+ <(1 ) 0 except σα = −2. We now deal with the two special cases σ = 0 and
σα = −2. As these are mapped into each other by H-duality, we can limit the discussion to
σ = 0 without loss of generality. At σ = 0 the previous discussion goes through except that
the two figures degenerate into a single figure with the chiral point moving to the origin and
the ‘chiral boundary line’ becoming α=y x.

The upshot is that the four cases have now been reduced to just two cases, related by H-
duality. These are

σ
α

σ
α

< >1
and

1
, (43)

and in both cases only the upper half of the left-hand branch of the MMG hyperbola is
allowed by unitarity.

4.4. The left-hand branch restriction

The results of [1] for the regions in the MMG parameter space allowed by unitarity have been
recovered, and extended to include the σ = 0 case. However, each of the three allowed
parameter regions found in [1] came with a sign restriction. What we now aim to show is that
this sign restriction is equivalent to the statement that the allowed segment of the MMG
hyperbola is on its left-hand branch.

A point on the MMG hyperbola is on the left-hand branch if and only if

⎧⎨⎩
σα
σα

<
+ >
+ <

x
x , if (1 ) 0,
0, if (1 ) 0,

(44)int
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but a sufficient conditon that applies in either case is <x x 2int , or

α σα+ + <x 2(1 ) 0. (45)2

Using the definition of x given in (25), we may rewrite this inequality as

Λ αΛ σα
α

μ+ − + >2(1 )
0. (46)0

3

2
2

On the other hand, equation (21) viewed as a quadratic equation for Λ αΛ+ 0 has the
solution3

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Λ αΛ μ σ σα

α
αΛ μ

σ σα
+ = − + ∓ +

+
( ) 2 (1 )

1 1
(1 )

. (47)0
2

3
0

2

2 2

The sign choice appearing here enters into the unitarity analysis of [1]. To see the implications
of this sign, we substitute for Λ αΛ+ 0 in (46) to deduce the inequality

σ σα
αΛ μ

σ σα
σα

α
∓ + +

+
> − + >(1 ) 1

(1 )

(1 )
0. (48)0

2

2 2

2

As the left-hand side must be positive, we conclude that the sign choice is correlated with the
sign of σ σα+(1 ):

• σ σα+ >(1 ) 0 requires the bottom sign. This applies to case (i).
• σ σα+ <(1 ) 0 requires the top sign. This applies to cases (ii), (iii) and (iv).

This result agrees with [1]. Cases (iii) and (iv), together with the special case σα = −2,
jointly correspond to the second possibility deduced in [1]. Cases (i) and (ii) correspond to the
other two possibilities found in [1].

Because of the H-duality, we lose no generality by focusing on the cases (i) and (ii) if we
also allow for σ = 0. Then σα+ >(1 ) 0 and every point on the left-hand MMG hyperbola
with >y 0 has <x xint. Proceeding as before we now find that

σ σα
αΛ μ

σ σα
σα σα

α
∓ + +

+
> − + +

(1 ) 1
(1 )

(1 )(2 )
, (49)0

2

2 2

and by squaring we deduce that

Λ μ σα
α

< − +4(1 )
. (50)0

2
3

3

Each choice of Λ0 satisfying this inequality corresponds to one point on the upper left-hand
branch of the MMG hyperbola. We also learn that

αΛ μ
σ σα

σα
σ α

+
+

> + >1
(1 )

(2 )
0, (51)0

2

2 2

2

2 2

which confirms the reality of the square root in the expression on the left-hand side of (49).

3 This agrees with the corresponding equation of [1] if one sets σ = 12 , as was done there.
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5. The flat-space limit

Recall that μ=y ℓ2 ( ). This shows that the points at which the MMG hyperbola crosses the x-
axis correspond to flat space limits of AdS3. There are two such points, one on the right-hand
branch and another on the left-hand branch. The flat space limit on the left-hand branch is on
the boundary of the region allowed by bulk and boundary unitarity. Strictly speaking, this
boundary point4 is not in the allowed region. Although the bulk unitarity conditions have a
smooth flat-space limit, the asymptotic symmetry algebra changes.

It has been argued in [4] that the holographic dual to a 3D bulk gravity theory with flat-
space asymptotics should be a theory invariant under the 2D GCA. This is a Wigner–Inönü
contraction of the more usual Virasoro ⊕ Virasoro symmetry algebra. The non-zero com-
mutators of the GCA are

δ

δ

= − + −

= − + −

+ +

+ +

( )
( )

[ ]

[ ]

L L m n L
c

m m

M L m n M
c

m m

, ( )
12

, ( )
12

, (52)

m n m n m n

n n m n m n

1 3

2 3

and the central charges c1 and c2 are limits of linear combinations of the central charges ±c of
the 2D conformal algebra:

⎡⎣ ⎤⎦= − = +
→∞

+ −
→∞

−
+ −c c c c ℓ c clim ( ), lim ( ) . (53)

ℓ ℓ
1 2

1

For MMG we have, using the formula (27) and the fact that →y 0 as → ∞ℓ for fixed μ

⎜ ⎟
⎛
⎝

⎞
⎠μ

σ α= = +c
G

c
G

x3
,

3 ¯
2

, (54)1
3

2
3

where x̄ is one of the two values of x on the MMG hyperbola when y = 0; i.e. either =x̄ 0 or
=x x¯ int. As explained in section 3.2, we may choose the MMG parameters so that

σα+ >(1 ) 0 without loss of generality. Making this choice (because the TMG limit is then
simple) we have <x 0int , so that =x̄ 0 on the right-hand branch of MMG hyperbola and

=x x¯ int on the left-hand branch. Thus

σ= −c G3 (right hand branch). (55)2 3

As only the right-hand branch survives (as a parabola) in the TMG limit, we deduce that
σ=c G32 3 for flat-space TMG, in agreement with [5]. On the left-hand branch we have

α
σα= − + −c

G

3
(2 ) (left hand branch). (56)2

3

Not only is this a new possibility, not available to TMG, but also it is the value of c2 found by
choosing the flat-space limit on the boundary of the segment of the MMG hyperbola allowed
by unitarity.

It was argued in [4] that, under certain conditions, the 2D GCA algebra admits a unitary
truncation to one copy of the Virasoro algebra and the boundary theory becomes the chiral
half of a CFT. Specifically, the conditions are that

Δ> = =c c0, 0, 0, (57)1 2

where Δ is the eigenvalue of the M0 generator, equal to the graviton mass. In [5] these
conditions were satisfied by taking a σ → 0 limit in which flat-space TMG degenerates to 3D

4 On the hyperbola; it is actually a surface parametrized by σ α( , ) in the full parameter space; this becomes a curve
after a choice of normalization of parameters.
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conformal gravity. As just observed, MMG has two flat-space limits, one on the left-hand
branch of the MMG hyperbola and one on the right-hand branch, but the condition =c 02

cannot be satisfied on the left-hand branch. However, setting σ = 0 makes both c2 and Δ
vanish at the flat-space limit on the right-hand branch. At this point, the MMG equation
degenerates to

γ
μ

+ =μν μνC J 0. (58)

Taking the trace we deduce that

− =μν
μνR R R

3

8
0. (59)2

The left-hand side of this equation is the curvature-squared scalar of new massive gravity
(NMG) [13]. There are some similarities here with ‘new topologically massive gravity’
(NTMG) [14, 15] for which the field equation is the same as (58) but with the K-tensor of
NMG replacing the J-tensor of MMG; as observed in [9], both tensors have the same scalar
trace. The J-tensor does not contribute to linear order in the equation (58), so its linearization
(about flat space) is just linearized 3D conformal gravity, which does not propagate any
modes. In contrast, the nonlinear theory does have local degrees of freedom; a slight
modification of the Hamiltonian analysis of [1] (to allow for σ = 0) shows that the physical
phase-space of the nonlinear theory has dimension 2 per space point. There is therefore a
linearization instability of the MMG model with field equation (58), analogous to the
linearization instability of NTMG [16].

Linearization instabilities of this type occur when the linearized theory has a gauge
invariance that is explicitly broken by interactions in the full theory. This phenomenon does
not occur for TMG (the linearization instability at the chiral point discussed in [17] is of
another type) but it does occur for NMG at partially massless AdS vacua [18], where the
accidental gauge invariance of the linearized theory is again linearized Weyl invariance. The
(unique) AdS vacuum at the ‘merger point’ of MMG is ‘partially massless’, implying a
linearization instability in that case too [19]; in fact, equation (58) is the flat space limit of the
MMG equation at its merger point.

6. Discussion

We have presented a geometrical re-analysis of the bulk and boundary unitarity condition
found in [1] for the 3D MMG model with AdS3 asymptotics. The four (un-normalized)
dimensionless parameters of the MMG action are considered in two pairs; one pair (essen-
tially, the cosmological constant and cosmological parameter in units of the square of the
TMG mass parameter) parametrizes a plane. The unitarity conditions are linear inequalities in
the plane but an AdS3 vacuum exists only for points lying on a hyperbola in this plane. We
have called this the MMG hyperbola; it degenerates to a parabola in the TMG limit. Both the
linear inequalities and the hyperbola depend on the other two parameters, which are the
coefficient σ of the Einstein–Hilbert term and the coefficient α of the new MMG term, which
are restricted by the condition σα+ ≠(1 ) 0. The linear inequalities are inconsistent unless
α < 0, in which case they determine an ‘allowed’ region in the plane. In all cases, only the
upper left-hand branch of the MMG hyperbola is in this region, and this corresponds to a sign
choice in the quadratic equation that gives the AdS radius in terms of a cosmological para-
meter Λ0, which is restricted only by a simple inequality.
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In our analysis, the values of σ for which σ σα+ =(2 ) 0 are special, and this leads to
four cases, depending on the signs of σ σα+(2 ) and σα+(1 ). Only three cases arose in the
analysis of [1] because σ = 0 was excluded but σα = −2 was not singled out as special. Once
both the σ = 0 and σα = −2 cases are included, the number of connected parameter regions
allowed by unitarity is reduced to two which differ according to the sign of σα+(1 ).
However, we have shown that any MMG model with σα+ >(1 ) 0 is equivalent to some
MMG model with σα+ <(1 ) 0, and vice versa. We may therefore choose either sign for

σα+(1 ) without loss of generality. The choice σα+ >(1 ) 0 has the advantage that it
simplifies the TMG limit, and the net result for this choice is that the only restrictions on the
parameter space imposed by unitarity (given AdS3 asymptotics) are, up to equivalence

α σ
α

Λ μ σα
α

< < < +
0,

1
,

4(1 )
. (60)0

2
3

3

This defines a single connected region in the space of parameters of the MMG action5. It
excludes TMG.

If we fix the scaling invariance (induced by a rescaling of the 3D Newton constant) by
choosing α = −1 then the above unitarity restriction reduces (up to equivalence) to

σ Λ μ σ α< < − − = −1, 4(1 ) , ( 1). (61)0
2 3

Of course, this is only a necessary condition for the unitarity of any 2D CFT dual to MMG,
but that is all we can test at the level of semi-classical effective 3D gravity, and it is a test that
TMG fails but MMG passes.

We have also used our results to investigate Minkowski vacua in the context of the
particular proposal for flat-space holography put forward in [4], and to compare with the
situation for TMG. One new feature of MMG is the existence of two flat space limits. One is a
Minkowski limit of an MMG model with AdS asymptotics satisfying all unitarity conditions,
but this does not appear to be useful. Instead, the flat-space limit that is available to both TMG
and MMG is the one for which proposed unitarity conditions on central charges of the GCA
algebra can be satisfied. In this limit TMG degenerates to 3D conformal gravity but MMG
degenerates to a very different theory with local degrees of freedom, although this are not
apparent from the linearized theory. It thus appears that MMG has implications not only for
AdS holography but also for flat-space holography.
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