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Boussinesq salt-water laboratory experiments of Rayleigh–Taylor instability can achieve
mixing efficiencies greater than 0.75 when the unstable interface is confined between two
stable stratifications. This is much greater than that found when Rayleigh–Taylor in-
stability occurs between two homogeneous layers when the mixing efficiency has been
found to approach 0.5. Here, the mixing efficiency is defined as the ratio of energy used
in mixing compared to the energy available for mixing. If the initial and final states are
quiescent then the mixing efficiency can be calculated from experiments by comparison of
the corresponding density profiles. Varying the functional form of the confining stratifi-
cations has a strong effect on the mixing efficiency. We derive a buoyancy-diffusion model
for the rate of growth of the turbulent mixing region, ḣ = 2

√
αAgh (where A = A(h)

is the Atwood number across the mixing region when it extends a height h, g is ac-
celeration due to gravity and α is a constant). This model shows good agreement with
experiments when the value of the constant α is set to 0.07, the value found in experi-
ments of Rayleigh–Taylor instability between two homogeneous layers (where the height
of the turbulent mixing region increases as h = αAgt2, an expression which is equivalent
to that derived for ḣ).

Key words: buoyancy-driven instability, turbulent mixing, mixing efficiency, Rayleigh–
Taylor instability

1. Introduction

Turbulent mixing in stratified flows is often characterised by a mixing efficiency. This
mixing efficiency compares the energy used in irreversible mixing, increasing the mini-
mum gravitational potential energy that can be stored in the density field, to the total
change in mechanical energy during the mixing process. It can be defined either as an
integral quantity, calculated between quiescent initial and final conditions or as a ratio
of the energy flux to mixing and the power into the system. These two definitions can
give different values if the system is not in steady state. Mixing efficiency is particularly
significant in oceanography as mixing is required to maintain the overall stratification
in a steady state ocean (Munk & Wunsch 1998). The total amount of mixing in the
oceans is equal to the product of the power input to the ocean and the average mixing
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Figure 1: Sketch of (a) the classical case of Rayleigh–Taylor instability (a layer of dense
fluid above a layer of light fluid) and (b-d) the initial density stratifications used in
experiments. The two quadratic profiles (b,d) differ by having a density gradient that

either increases ((b); d2ρ
d|z|2 > 0) or decreases ((d); d2ρ

d|z|2 < 0) away from the unstable

interface.

efficiency (Wunsch & Ferrari 2004). In this article we seek to gain a better understanding
of turbulent mixing in general and, more specifically, of the limits of mixing efficiency.

For shear instability between two otherwise stably-stratified layers, a value for the mix-
ing efficiency that is commonly quoted is ∼ 0.2 (Peltier & Caulfield 2003) and mixing
efficiency is sometimes taken to be equal to this value in general. More recent labora-
tory experiments of exchange flows suggest that, for sufficiently high Reynolds number,
the mixing efficiency of shear instability is closer to 0.11 (Prastowo et al. 2008). In
comparison, the mixing efficiency of the Rayleigh–Taylor instability in laboratory exper-
iments approaches 1

2 (when the two homogeneous layers are of equal depth but different
densities), though it can be shown that this value is the maximum possible for this con-
figuration (Lawrie & Dalziel 2011a). As Rayleigh–Taylor instability has a relatively high
mixing efficiency, it appears to be a good candidate for investigating the upper limits of
mixing efficiency.

Although the primary motivation of this article is to gain a greater understanding of
the limits of mixing efficiency, additional motivations are in the area of oceanography.
Examples of gravitationally unstable buoyancy driven mixing in the ocean include river
in-flows, hydrothermal plumes and radiative cooling of the ocean surface and these flows
must be characterised in ocean models. A more specific example is the breaking of internal
waves, a flow which could potentially look similar to the density profiles investigated
(figure 1).

Rayleigh–Taylor (RT) instability occurs when the pressure gradient opposes the density
gradient, ∇p · ∇ρ < 0 (Rayleigh 1900; Taylor 1950). The classical case of this instability
occurs when a layer of fluid with density ρu is resting on a layer of fluid of density ρl,
where ρu > ρl and the whole system is in a gravitational field g. A sketch of this classical
case can be seen in figure 1a. Perturbations in the interface between the two layers will
grow. In general, for miscible fluids the two layers will mix together if the Reynolds
number (Re = ul

ν , where u and l are flow velocity and length scales respectively and ν is
the kinematic viscosity) becomes sufficiently high.

For sufficiently high Reynolds number, the governing parameter in Rayleigh–Taylor
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instability is the non-dimensional density difference or Atwood number,

A0 =
ρu − ρl
ρu + ρl

, (1.1)

where ρu and ρl are the densities of the fluid just above and below the Rayleigh–Taylor
unstable interface. The Atwood number scales the effect of the destabilising acceleration
and is related to the ‘reduced gravity’ by g′ = 2A0g. We can also relate the Reynolds
number to the Atwood number as, for a given experimental set-up, increasing A0 will
increase the maximum velocity in the flow, thereby increasing the energy contained in
the large scales (the precise relation will be discussed in §5).

Due to the significance of RT instability in astrophysics (Cabot & Cook 2006) and
inertial confinement fusion (Petrasso 1994), there is a large body of literature, comprising
experimental, numerical and theoretical studies. The reviews of Sharp (1984), Dimonte
et al. (2004) and Andrews & Dalziel (2010) examine previous work, which has mainly
focused on the growth of the turbulent mixing region that develops between the two
homogeneous layers of the classical instability.

When the instability is between two homogeneous layers, dimensional analysis shows
that when the flow enters a high Reynolds number, self-similar regime, the penetration
of the light fluid into the dense fluid (also known as the height of the mixing region, h)
will develop as h ∼ f(A0)gt2 (see Youngs 1984). If there is only a small density difference
between the layers (A0 � 1), the instability is symmetric: the light fluid rises into the
dense fluid at the same rate as the dense fluid falls into the light fluid. There is a wealth of
experimental and computational evidence to show that for A0 � 1, f(A0) = A0, making
h = αA0gt

2, where α is a constant. This relationship can be derived in a variety of ways:
through a buoyancy-drag model (Youngs 1984); an energy or force balance (Inogamov
et al. 2001; Jacobs & Dalziel 2005); through a bubble competition and merger model
(Alon et al. 1995); or directly from the Navier-Stokes equations with an assumption that
the density profile evolves self-similarly (Ristorcelli & Clark 2004).

Although there have been many experimental studies (see Read (1984); Dalziel (1993);
Linden et al. (1994); Snider & Andrews (1994); Dalziel et al. (1999); Ramaprabhu &
Andrews (2004); Mueschke et al. (2009); Boffetta et al. (2010); Lister et al. (2011), and
Tsiklashvili et al. (2012), among others), few examine anything other than the classical
case of two layers of constant density. Exceptions include Jacobs & Dalziel (2005), who
examined the instability when both a stable and an unstable density interface were
present in the system. In that study, evidence was found of mixing of the stable interface
by turbulence generated in the RT unstable region.

Lawrie & Dalziel (2011a) presented a series of experiments where a RT unstable inter-
face was confined between two stable linear density profiles (a sketch of this configuration
can be seen in figure 1c). They found that the mixing efficiency for this configuration was
higher than that of the simple two-layer case, but experimental limitations prevented the
determination of a precise value. In that paper they also derived a model for h in this
stratified case using an energy balance that required assuming a functional form for the
density profile within the mixing region. A second paper by the same researchers exam-
ined RT instability, still confined by a stable linear density stratification, but now in a
high aspect ratio tank (HW = 40 where H is the height and W is the width of the tank)
(Lawrie & Dalziel 2011b). In this second paper, a hierarchy of models was presented: a
zero-dimensional self-similar turbulent diffusion model for h(t), a numerically integrated
one-dimensional turbulent diffusion model for ρ(z, t), and an implicit large eddy simula-
tion (ILES) approach. ILES uses no explicit sub-gridscale model for dissipation, instead
relying on numerical dissipation as a proxy for physical viscosity (Grinstein et al. 2007).
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The turbulent diffusion model in both the zero- and one-dimensional cases was derived
using a balance between buoyancy and inertia. They found that h was well described by
a one-dimensional turbulent diffusion model.

In this paper we extend the work of Lawrie & Dalziel (2011a), investigating the mix-
ing efficiency of stratification confined Rayleigh–Taylor instability (RTI) for a variety of
initial density profiles. These profiles are shown in figure 1(b-d). In §2 of this paper we
describe what we mean by mixing in this context, define a mixing efficiency, and examine
some possible final density profiles. Next, we describe the experimental procedures and
density profiles used in §3. Our experimental results and analysis of the mixing will be
presented in §4, where we describe how the initial density profile and Atwood number
for an experiment affect mixing efficiency. We find that the final density profile in experi-
ments (and therefore the mixing efficiency) can be predicted assuming that as the system
nears equilibrium, the turbulent mixing region that developed on the unstable interface
is well mixed (and thus nearly uniform in density), and the instability halts when the
density profile is overall stable. In §5, we adapt the zero-dimensional, self-similar turbu-
lent diffusion model employed by Lawrie & Dalziel (2011b) to the standard low-aspect
ratio geometry used in the present study and show that this model compares well with
experiments. Finally, conclusions are presented in §6.

2. Energetics and mixing

In a closed system, we consider mixing to have occurred when the probability density
function (pdf) of density has changed due to molecular diffusion. The mixing of two fluids
of different densities is a two step process comprising stirring and diffusion. Diffusion is
promoted by stirring, which stretches density surfaces and increases the density gradients
across them. Rayleigh–Taylor instability is particularly effective at mixing, as there is
a co-location of vorticity deposition by the baroclinic instability (which stretches fluid
interfaces) and the density gradients that control diffusion (Lawrie & Dalziel 2011a;
Linden et al. 1994).

In the following analysis we will assume a linear equation of state for salt-water, where
overall changes in internal energy are negligible compared to changes in the gravitational
potential energy and kinetic energy. Under some oceanic conditions, the full non-linear
equation of state for density, which is a function of temperature, pressure and salinity,
ρ = ρ(T, p, S), must be used (Tailleux 2009). However, in the laboratory, temperature
changes of the environment are small (generally T = 19 ± 1◦C and the temperature
change of the laboratory during an experiment is ∆T � 1◦C). Low Atwood numbers
mean that the heat of dilution, released when the two fluids are mixed, is also small. These
small temperature changes result in a negligible change in density and in the thermal
expansion and haline contraction coefficients. The O(1m) length-scales that occur in the
laboratory mean that pressures do not vary significantly from atmospheric and water can
be considered incompressible.

We ignore laminar diffusion associated with flat, horizontal interfaces as the time-scale

for these processes is large, τL ∼ H2

κm
(where H is the height of the tank and κm is the

molecular diffusion coefficient) compared to the time-scale for the flux associated with

RTI, τT ∼
√

H
A0g

(where g is gravitational acceleration). We will assume a closed system

where there are no transfers (advective or diffusive) of heat or mass across the boundaries
of the system. Although the tank walls are not insulated, the temperature changes from
ambient are small and so heat transfer to and from the environment is slow (mass transfer
is small and will be discussed in §3).
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In our experiments, only one-dimensional density measurements will be taken, and all
horizontal density variations will be assumed to be zero ( ∂ρ∂x = ∂ρ

∂y = 0). This will be
true so long as measurements of the density profile are taken when the experiment is
quiescent. Other assumptions include that the fluids are miscible and that there is no
surface tension or electrical potential energy between them, both valid for laboratory
experiments using salt and fresh water.

2.1. Mixing efficiency

We wish to understand how the mixing process redistributes energy. Following Winters
et al. (1995), we begin by partitioning gravitational potential energy in the flow,

Ep = g

∫
V

zρdV, (2.1)

into that which is available to do work and background potential energy.
If every fluid parcel were allowed to rise and fall adiabatically and without mixing until

in equilibrium, the system would have been rearranged into a state of minimum potential
energy (Lorenz 1954). This can be considered to be our reference state (Tailleux 2013).
The background potential energy Eb, is this minimum potential energy

Eb = g

∫
V

zρ̂dV, (2.2)

where ρ̂ is the rearranged density profile. Note that some authors use the equivalent
expression of Eb = g

∫
V
ẑρdV , where ẑ gives the vertical position of a parcel of fluid

in the reference state (Winters et al. 1995). For many unstable profiles (two layers of
constant density for example) there is not a unique ẑ, i.e. a parcel of fluid does not
always have a unique position in the adiabatically rearranged state.

Allowing parcels of fluid of density ρ(x, t) to rise and fall until the system is in equi-
librium effectively sorts the profile by density, which leaves us with the sorted density
profile ρ̂(z, t) in which ∂ρ̂

∂z 6 0. Note that the probability density functions of density for
ρ(x, t) and ρ̂(z, t) are identical (i.e. the two density profiles contain the same amounts of
each density). The background potential energy Eb depends only on the pdf of density
for the flow and not on the spatial distribution of density. In a closed system, only irre-
versible diabatic mixing can alter the pdf, reducing the variance of density and increase
Eb. Energy locked-up by irreversible mixing of the density profile (directly associated
with changes in the pdf of density) can be measured by calculating the change in Eb
between the initial and final states of an experiment (Winters et al. 1995).

The available potential energy of a flow is the change in the potential energy that would
occur through the same adiabatic rearrangement we used to calculate Eb,

Ea = Ep − Eb = g

∫
V

z(ρ− ρ̂) dV. (2.3)

The total energy that is available to do work includes any kinetic energy Ek in the system
and the available potential energy. This total available energy is

ET = Ea + Ek =

∫
V

1

2
ρ|u|2 + gz(ρ− ρ̂) dV. (2.4)

For a turbulent event that gives a change in the distribution of energy in the system, we
can define a mixing efficiency which measures how much of the initially available energy
in the system is used in (or lost by) irreversible mixing, as opposed to being dissipated
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by viscosity (neglecting any net changes in internal energy),

η =
|∆Eb|

|∆(Ea + Ek)|
, (2.5)

where ∆ represents the change in the energy between the start and end states of the
system. If we assume that the initial and final states of our experiment are quiescent
(∆Ek = 0), this simplifies to

ηRT =
|∆Eb|
|∆Ea|

. (2.6)

We shall refer to this as the ‘Rayleigh–Taylor mixing efficiency’.
Although Tailleux (2009) has pointed out that the route to background potential en-

ergy is via the internal energy of the fluid, it is instructive to consider a simplified view.
In particular, diffusion acts to homogenise intermingled parcels of fluid of different den-
sities (an arrangement containing available potential energy) to produce a more uniform
density field with a higher background potential energy. Thus we can view diffusion as
providing a flux of energy from Ea to Eb. In our simplified view, during the evolution of
an instability, available potential energy is converted into background potential energy
though irreversible mixing. Conversion of available potential energy into kinetic energy
also occurs and this assists the mixing of fluid parcels by stirring the flow. This kinetic
energy is then either transferred back into available potential energy by raising the centre
of mass of a fluid parcel or is dissipated by viscosity. Therefore energy is either used in
mixing or is dissipated by viscosity.

For some flow systems, the initial configuration imposes limits on the mixing efficiency
since once the density field is homogeneous, no further mixing is possible. For any purely
odd monotonic statically unstable stratification, the mixing efficiency of RTI is limited
to a maximum of 1

2 (Lawrie & Dalziel 2011a). In the simple two-layer case of RTI, when
all the fluid has mixed until the system is homogeneous in density, it is possible that
there is additional kinetic energy left in the system. However, as it is not possible for
further mixing to occur, this additional kinetic energy must be dissipated by some other
means, imposing a limit of 1

2 on the mixing efficiency of the system.
As we are interested in the limits of mixing efficiency, we must examine a situation

where the mixing is limited only by the energetics of the system and not by the se-
lected initial configuration. This is the case when the interface is confined only by stable
stratification, thereby removing the upper bound on the mixing that can be done and
enabling the possibility of mixing efficiencies closer to the energetically imposed limit

of 1. We examine three cases, with varying curvature in the initial density profile ∂2ρ
∂|z|2

(positive, negative or zero). The three cases are shown in figure 1(b-d). All the cases are
anti-symmetric around (z = 0, ρ = ρ). The idealised equations for each density profile
can be found in §3. First, however, we shall explore a range of feasible end-states for each
stratification.

2.2. Possible final profiles

For a one-dimensional density profile in a closed system, the pdf is calculated by

pdf(ρ) =

∣∣∣∣ 1

z+ − z−
dz

dρ

∣∣∣∣ , (2.7)

where the pdf is defined over the interval z− < z < z+. This is the fraction of height dz,
occupied by each density ρ (assuming ρ(z) is a bijective function and dz

dρ < 0). In finding
the pdf of a profile we lose information on the spatial distribution of density. For the



Rayleigh–Taylor instability within a stable stratification 7

initial RT unstable profiles ρ(z) is not bijective, but each layer is separately. Therefore
the initial pdfs of the upper and lower layers are calculated separately by (2.7), and the
layer pdfs are added to find the total pdf of the whole system. Any mixing that occurs
will change this total pdf, reducing the associated variance in the density field.

We will now examine some possible final profiles (see figure 2) and their corresponding
pdfs (figure 3). Instability can be removed from a profile by some combination of mixing
and sorting of fluid parcels. To get from some arbitrary unstable profile to equilibrium
either the fluid must be mixed completely (removing unstable density gradients) or fluid
parcels which are Rayleigh–Taylor unstable must pass each other (vertically) without
completely mixing (resulting in a residual stratification in the final state). In this paper
we will use the word ‘sorting’ to refer to both the physical process of fluid parcels moving
vertically and adiabatically without complete mixing, and to the analytical process of
sorting the elements of a vector or array by value as there is a strong analogy between
the two.

The first situation we consider is where no mixing occurs. In this case all parcels of
fluid rise and fall, without mixing, until the system is in equilibrium. This profile will
not occur in experiments as there will always be some molecular diffusion. As no mixing
occurs, the pdf of density does not change, ∆Eb = 0, and η = 0. The final profiles are
shown in figures 2(a-c) and the pdf of the density profiles are shown in figures 3(a-c). A
mixing efficiency of zero is the only value for which there is a unique final density profile
as there is only one way in which the system can achieve stability without mixing. For
any other value of mixing efficiency, mixing can be combined with sorting to create any
of a number of profiles.

We may consider a region as perfectly mixed if its density is uniform; no further mixing
is possible in that region without bringing fluid into it from elsewhere. Under this defi-
nition, the final state of the classical two-homogeneous layer Rayleigh–Taylor instability
may be considered perfectly mixed when η = 1/2. For our stratified layers we can extend
this idea and pose a second possible final profile where a central turbulent mixing region
increases in height until the system is stable and that, when this occurs, this central
region is perfectly mixed. Fluid outside the perfectly mixed central region can move but
must return to its initial height, leaving the stratification there unchanged. The result is
a locally homogeneous region embedded in a profile that is overall stable.

We have denoted this final profile as the perfect mixing profile and its associated mixing
efficiency ηp (this profile is also described as perfect mixing in Lawrie & Dalziel (2011a)).
We could also have called this the profile of minimum vertical extent as the density profile
has changed over the minimum vertical extent to achieve a stable state. The final profiles
for this case can be seen in figure 2(d-f) and the associated pdfs in 3(d-f). The central
peak in the pdf of the final density profile is a delta function. Any spread in this central
peak implies some sorting must have occurred in the central mixing region.

The perfect mixing efficiency, ηp depends on the initial density profile. For the three
density profiles shown in figure 2(d-f), the perfect mixing efficiency for each can be found
in table 1. The mixing efficiency for this final state is ηp < 1. We can generalise this
idea of the perfect mixing profile for any initial density profile ρ0 = ρ(z, t = 0), stable
everywhere apart from an unstable interface at z = 0. If ρ∗ is the density in the uniform
mixed region that develops as t → ∞ and z+, z− are the upper and lower limits of this
region (z+ > 0 > z−), then conservation of mass can be used to find ρ∗ as∫ z+

z−

ρ0(z) dz = (z+ − z−)ρ∗ where ρ0(z+) = ρ0(z−) = ρ∗. (2.8)
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Figure 2: Possible Final States: Grey lines are initial density profiles, black lines show
possible final density profiles, (a-c) sorted density profiles (η = 0), (d-f) perfect mixing
profiles (η = 0.682, 0.78 and 0.78), (g-i) examples of η = 1 profiles.

The values of ρ∗, z+ and z− define what the perfect mixing profile will be and predict
the perfect mixing efficiency for a particular initial density profile.

A third possibility (and the final one we will consider here) is that all the available
energy is used in mixing, resulting in η = 1. This situation is not physical as it would
require there to be stirring with no viscous dissipation The profile for η = 1 is not unique
(indeed there are an infinite number of final profiles with this property), but a possible
profile can be constructed as an extension to the idea of the perfect mixing profile.
Excess kinetic energy, no longer being dissipated by viscosity, erodes away at the stable
profile above and below the central well mixed region, extending this region vertically.
This profile can be seen in figures 2(g-i) and the corresponding pdfs are in figures 3(g-i).
There is still a delta function in the pdf at the perfect mixing density as this is the
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Figure 3: pdfs of possible final states: Grey lines are the initial layer pdfs, black lines
show a possible final density pdf, (a-c) total initial pdf or sorted pdf (the sum of the pdfs
of the initial layers), (d-f) perfect mixing pdf, (g-i) possible η = 1 pdf

Figure 2 Profile Perfect Mixing Efficiency, ηp

(d) Quadratic (with increasing density gradient) π−1
π
≈ 0.682

(e) Linear 3
4

= 0.75

(f) Quadratic (with decreasing density gradient) 3(1+π)−8
√
2

3π−8
≈ 0.780

Table 1: Mixing efficiency if the mixing region at the unstable interface is perfectly
mixed and grows only until the system is overall stable.

density of the well mixed region. However, around this delta function the pdf is zero as
the surrounding densities have been incorporated into the central mixing region.

There are two ways of viewing this final state. If, once the system is stable, the kinetic
energy that remains in the mixing region erodes the stable density profiles above and
below the mixing region, this erosion could be regarded as a type of external mixing (first
defined by Turner (1973)), where turbulence generated elsewhere results in mixing of a
stable density profile. If the mixing region can only be extended by this late stage mixing
of the stable profiles, outside the turbulent mixing region, then it would appear unlikely
that anything like the η = 1 profile described above would be seen in experiments as
the mixing efficiency of stable density profiles has been found to be low (e.g. η ∼ 0.11,
Prastowo et al. (2008)). Alternatively, mixing of the stable profiles could result from
behaviour similar to penetrative convection where a convectively unstable layer erodes a
stable stratification (Turner 1973). At this point, the distinction between these scenarios
is not critical. Turbulent erosion of a stable interface by RT instability has been previously
investigated by Jacobs & Dalziel (2005) who found the erosion of the stable interface was
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 0.4 m

 0.5 m

 0.2 m

Figure 4: A sketch of the tank with the barrier (shown in grey) half removed.

small and the entrainment rate followed a power law with Richardson number,

Ri =
∆ρgl

ρu2
, (2.9)

where l and u are characteristic length and velocity scales, ρ is a characteristic density,
and ∆ρ is the density difference across the interface between the layers.

3. Experimental setup

The experimental apparatus is similar to that used by Linden et al. (1994), Dalziel
(1993), Dalziel et al. (1999), Jacobs & Dalziel (2005) and Lawrie & Dalziel (2011a)
(though the barrier used differs from that used in the last four of these studies). In
the present work, for any experiment a pair of stable density profiles are set up, one
either side of a solid stainless steel barrier, such that the interface between the stable
stratifications is unstable to RT instability. The barrier supports the unstable interface
while the experiment is being set up. The tank itself is constructed of acrylic and has
internal dimensions 0.2 m × 0.4 m × 0.5 m. A sketch of the tank with the barrier slightly
less than half removed is shown in figure 4.

Three initial density profiles were investigated, all of the form

ρ(z, t=0) = ρ0(z) =


(

1 +A0f
(
z
zn

))
ρ, for z > 0(

1−A0f
(
− z
zn

))
ρ for z < 0,

(3.1)

where A0 = ∆ρ
2ρ , ρ = 1

2 (ρu + ρl), ∆ρ = ρu − ρl, and ρu and ρl are the densities of the
fluid just above and below the unstable interface. The length-scale zn is the height above
(below) the barrier at which ρ0(z) is equal to the density immediately below (above) the
barrier (i.e. f(1) = −f(0)). If there were no mixing then the density profile would change
over a vertical height 2zn to achieve stability. The functional forms of the density profiles
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investigated are as follows (expressed in terms of ẑ = z
zn

); sketches of these profiles can
be seen in figures 1(b-d).

(a) Quadratic (increasing density gradient, d2ρ
d|z|2 > 0)

f(ẑ) = 1− 2ẑ2. (3.2)

(b) Linear (constant density gradient, d2ρ
d|z|2 = 0).

f(ẑ) = 1− 2ẑ. (3.3)

(c) Quadratic (decreasing density gradient, d2ρ
d|z|2 < 0)

f(ẑ) = 1− 4ẑ + 2ẑ2. (3.4)

The stratified layers were created using a pair of computer-controlled peristaltic pumps,
one of which pumped fresh water, the other a solution of NaCl. The two flows were mixed
before being pumped into the bottom of the tank though a stainless steel tube. This tube
had a hollow cylinder of foam (2 cm long) at the exit point to remove the majority of the
kinetic energy of the flow. When filling the bottom layer the tube was positioned such
that the cylinder of foam rested on the floor of the tank.

The lower layer was filled from the bottom, with the least dense fluid added first, and
filling was stopped when the surface was 3 cm above the height of the barrier. Once the
lower layer had been constructed and the density profile measured, the barrier was moved
into place and the excess lower layer fluid, now located above the barrier, was removed.
The upper layer was then added to the top half of the tank through the filling tube,
the end of which was now positioned to be on top of the barrier. The barrier supported
the unstable interface between the two layers, while the upper layer was being added.
Once the upper layer was filled, the density profile of the upper layer was measured,
approximately an hour after the density profile of the lower layer was measured and five
minutes before the barrier was removed. The final density profile was measured twenty
minutes after the barrier was withdrawn (by which time all visible motion had decayed).

An aspirating conductivity probe, constructed in-house, combined with a fast response
thermistor (General Electric type NTC P25) was used to measure the initial and final
density profiles. For each measurement of the density profile, the probe was traversed
downwards at a speed of 4 mm s−1 and conductivity measurements recorded at a fre-
quency of 50 Hz. The temperature measurement was important for the accurate mea-
surement of density. The mixing of the two layers results in the release of a heat of
dilution (which can be either positive or negative over the values of density considered)
and there is evaporative cooling at the surface of the fluid layers. This thermal signal has
a negligible direct effect on the density (via thermal expansion), but a small effect on the
conductivity for a given salinity, necessitating the calibration of the conductivity probe
with both conductivity and temperature in order to measure the density profiles to the
desired accuracy. The accuracy of the probe is limited by electronic noise, introducing
a random error in the density measurement at a given point of 7× 10−5g/cm3 which is
0.2% of the range of ρ measured by the probe.

Aspiration of the probe removes a measurement volume of 18ml for every 0.5m that is
traversed. This equates to a volume of 3 mm3 per sample, where a sample is the density
measurement at a particular height. A single traverse will take up to 6250 samples (when
the entire depth of the tank is traversed). The density of a sample will be the density
averaged across this volume (and therefore the density averaged across a finite height,
∆z). Where there is a strong density gradient, the majority of this measurement volume
will be drawn from the current height of the probe tip (reducing the error in measurement
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height). Where there is a weak stratification the volume may be taken from just above
and below the measurement position (at most ±0.7mm) but as the density variation is
necessarily smaller in this case the resultant error is still small.

The barrier that separates the unstable interface before the start of an experiment is
removed by a motor at a speed of U = 0.08 m s−1. The composite barrier used in other
studies was constructed so as to reduce the shear between the barrier and the fluid, but
unavoidably results in more leakage from the tank. Using a solid barrier (similar to that
used by Linden et al. (1994)) it was possible to achieve a far better seal on the tank,
eliminating the errors in calculating the potential energy which stem from fluid being
lost in this way from the tank over the course of an experiment. The addition of a motor
(not used in any of the previous studies) substantially improved the repeatability of the
barrier removal. It is clear that the barrier will have a significant effect on the initial
conditions of a flow. However, it is not possible to set up the configurations required
using an accelerated box, magnetic fields or overturning of a stable situation, as the
density profiles we are investigating are unstable to acceleration in both the upwards
and downwards directions.

The effect of the barrier on the initial conditions of the flow can be split into three
contributions. Firstly, there is a potential energy change associated with the downward
movement of the upper layer. This dominates all other contributions but is exactly bal-
anced out by the work done on the end of the barrier by the hydrostatic pressure as the
barrier is removed and may therefore be ignored (Dalziel 1994). Secondly, kinetic energy
is added to the flow due to the formation of viscous boundary layers above and below
the barrier. This contribution scales as U

3
2 and for these experiments is a maximum of

3% of the initially available potential energy (the calculation of this is detailed below).
Thirdly, there is an addition of kinetic energy associated with non-hydrostatic pressure
fluctuations at the end of the barrier due to the removal of a finite volume. This scales
as U2 and for these experiments is O(10−4)% of the initial Ea. Although the magnitude
of this contribution is small it has an effect on the structure of the initial conditions as it
results in a jet down the right-hand side-wall of the tank. Experiments were performed
to investigate the effect of this jet (these are detailed below).

A linear approximation for the kinetic energy that the barrier adds to the flow through
the formation of a viscous boundary layer can be made by assuming that the Rayleigh
layer that forms above and below the barrier, due to velocity being diffused vertically by

viscosity, has the profile u(z, t) = U erfc
(
|z|

2
√
νt

)
(where U is the velocity of the barrier

and ν is the kinematic viscosity). If we ignore end effects, the total kinetic energy input
is equal to

Ek = 2 νρ̄ LWU

∫ T

0

∂u

∂z

∣∣∣∣
z=0

dt, (3.5)

=
8

3

√
ν

π
Wρ̄(UL)

3
2 , (3.6)

where W is the width of the barrier, L is the length of the barrier, and T = L
U the

time taken to withdraw the barrier. For the experiments presented in this paper, Ek
was less than 3.06% of the initially available potential energy (for the lowest Atwood
number cases) and was less than 1.5% of Ea(t= 0) for A0 > 0.006. A naive assumption
might be to expect the mixing efficiency calculated purely from measured density profiles
(i.e. ηRT ) to be around 3% more than the true mixing efficiency (as we are adding 3%
more available energy than we have accounted for in our calculation of mixing efficiency).
However, the barrier adds a two-dimensional perturbation to the flow at a wavelength
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set by the instability in the barrier wake. This can be see in figure 5a where a regular
wavelength appears on the surface of the mixing region as the barrier is removed. Here
the flow was visualised by dyeing the lower layer with red and blue food dye, along with
the fluorescent green dye fluorescein disodium. The upper surface of the mixing region
is illuminated with halogen lamps. A video of the instability using the same method for
visualization was submitted by the authors to the APS gallery of fluid motion in 2012
and a similar video is included with this paper as supplementary material. A similar
series of images for the classical two-layer case can be seen in Dalziel et al. (1999).

The wavelength introduced by the instability of the barrier’s wake breaks down quickly
in the presence of RTI, leaving the three-dimensional bubbles shown in figure 5b. The
finite wavelength at which the barrier adds kinetic energy influences the barrier’s effect
on the mixing efficiency. This will be discussed further in §4.

When the barrier exits the tank the viscous boundary layer is stripped off. Two strong
vortices are created, one above and one below the slot where the barrier exits the tank.
This injects kinetic energy into the flow as the shear stress here will be greater than over
the rest of the barrier. This vortex can be seen at the left hand side of figure 5b. The
energy of this is included in the calculation in (3.6), though the length-scale of this vortex
is much larger than the wavelength introduced by the instability in the barrier wake.

For a standard experiment, the removal of the finite volume of the barrier results in a
downward jet on the right-hand side-wall of the tank. The upper layer can move down
to fill the void left by the barrier, but the lower layer cannot move (as it does not have
a free surface). The result is the formation of a Kutta condition and separation region
at the trailing edge of the barrier. A potential flow solution for this contribution to
the kinetic energy (with experimentally derived coefficients) is descried in Dalziel et al.
(1999). At the barrier speeds used in this investigation the contribution from the finite
volume removal is small (O(10−4)% of the initial APE). To assess the effect of this,
some experiments were performed where, as the barrier was removed, fluid was pumped
into a bag placed at the bottom of the tank. This was an attempt to reverse the initial
conditions generated by the volume removal, so that the jet formed on the right hand
wall would be upwards rather than downwards. While we succeeded in reversing this jet,
no significant differences were found in the shape of the final profile or in the value of the
mixing efficiency, though the error in these experiments was much higher. This increased
error was due to the high degree of accuracy required for the measurement of the fluid
being pumped into the base (as this represents a relatively large addition of potential
energy).

4. Observations and measurements

4.1. Development of the mixing region

In the classical case of two RT unstable layers, each of constant density, the growth
of the turbulent mixing region has several regimes: (i) linear stability analysis shows
that initially small perturbations grow exponentially; (ii) when the amplitude of the
most unstable wave reaches a magnitude comparable with half its wavelength, growth
becomes non-linear; (iii) a non-linear growth phase which will be self-similar if all memory
of initial conditions are lost (Ramaprabhu & Andrews 2004). The growth of the instability
continues to accelerate until the mixing region fills the domain of the experiment.

In the stratified case, the initial behaviour of the instability is similar to the classical
case, but rather than continuing to accelerate, the stable stratification begins to reduce
and eventually reverses the acceleration, slowing the growth of the mixing region. The
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(a)

(b)

Figure 5: Photograph showing the upper surface of the mixing region when (a) t = 4s,
the barrier is in the process of being removed and (b) t = 11s, the mixing region has
developed a three-dimensional structure. A vortex introduced by the barrier is visible
on the left hand side of the image. The barrier starts moving at t = 0 at the standard
withdrawal speed. The lower layer of the tank was dyed with red, blue and fluorescent
green dye for this visualisation. This experiment was at a much lower Atwood number
than other experiments, A0 = 7 × 10−4. This view was taken with the camera looking
slightly down at the upper layer.

development of the instability, when it is confined by stratification, is shown in the
shadowgraph images of figure 6. This experiment had an initially quadratic density profile
with a density gradient which increased away from the unstable interface (figure 1b shows
a sketch) and an Atwood number of A0 = 9× 10−3. The times quoted for this figure are

non-dimensional, τ =
√

A0g
zn

t.

When the barrier is removed, a turbulent mixing region develops at the unstable in-
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(a) (b)

(c) (d)

Figure 6: Shadowgraph images showing the development of the instability for A0 =
9 × 10−3, (a) τ = 3.3, a mixing region develops at the unstable interface; (b) τ = 6.6,
stable stratification slows the growth of the mixing region; (c) τ = 13.3, turbulent mixing
continues but there is no further growth of the mixing region; (d) τ = 53.2, motion has
died away in the central region but internal waves remain in the stratification above
and below this region. These images are of the side of the tank and are integrated views
across the tank. The horizontal white line through the centre of each image is the original
location of the barrier.

terface. Figure 6a (τ = 3.3) shows the flow when the barrier has just exited out of the
left hand side of the tank. The turbulent mixing region grows with time into the stably-
stratified layers above and below. The stratification initially accelerates the growth of
the mixing region, but eventually this acceleration slows and the stratification begins to
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decelerate the growth of the mixing region, eventually arresting its growth as the profile
becomes stably stratified. The vortex due to the stripping the boundary layers from the
barrier (as discussed in §3) is shown to be relatively weak in this higher A0 experiment
(compared to figure 5b), as it does not produce a visible signal.

As the stratification has an increasing density gradient, the growth decelerates faster
the further the mixing zone extends. In figure 6b (τ = 6.6) the mixing region has reached
its final extent on the right hand side of the tank, while elsewhere in the flow the height
of the mixing region is smaller and still increasing. Although the flow is clearly still
turbulent and large scales are present, confinement by the stratification is inevitable. By
τ = 13.3 (figure 6c) the mixing region has reached its final extent throughout the tank and
further growth is inhibited by the stable stratification. The mixing region still appears to
be turbulent with fine-scale mixing occurring. The reduced texture of the shadowgraph
indicates that density differences within the mixing region are greatly diminished. By
figure 6d (τ = 53.2), density differences in the central mixing region have been smoothed
out, leaving internal waves in the remaining stratified zones above and below the central
region. These internal waves have small amplitudes and long wavelengths (comparable
with the width of the tank), which contribute to the dissipation of the remaining energy.
For the experiment shown in figure 6, the energy contained in the internal waves outside
the mixing zone is estimated to be less than 0.2% of the initial available potential energy.

The development of structures on the surface of the mixing region can be seen in figure
7, which uses the same visualization method as figure 5 (described in §3). As with the
experiment shown in figure 6, this experiment had an initially quadratic density profile
with an increasing density gradient (A0 = 2×10−3). This method of visualization allows
us to observe (figure 7a, τ = 4.1) the progression of bubbles of low density fluid (from
the lower layer), as they rise up though the stable stratification in the upper layer. The
length-scale of these bubble-like structures scales with the height of the mixing region,
therefore they increase in size as they grow into the upper layer. Similar structures from
the upper region descend into the lower layer.

By τ = 9.1 (figure 7b) further vertical growth of the mixing region has been arrested
on the right hand side of the tank by the stable stratification. A range of scales can
be observed, from large scale bubbles that span the height of the mixing region to small
bubbles on scales ∼ O(4 mm). When compared with figure 7a, there has been a flattening
of structures due to the effects of the stable stratification. By τ = 13.4 (figure 7c) bubble-
like structure of the top of the mixing region have disappeared and the mixing region
appears homogeneous, although internal waves remain on the upper surface of the mixing
region. Wisps of green fluid appear just above the central mixing region, showing that
a small amount of fluid that originated in the lower layer ends up outside the central
mixing region. Long term behaviour cannot be observed as the arc lamps used for this
visualisation heat the dyed fluid from the lower layer more than the clear fluid from the
upper layer. This results in a double diffusive instability at late times or if the Atwood
number is reduced further.

4.2. Final density profiles

The initial and final density profiles for three typical experiments, one for each of the
profiles investigated, are shown in figures 8 to 10. Many more than three experiments were
performed (more than 150) and these profiles were found to be repeatable. The final state
in experiments was found to be similar to that defined as the perfect mixing profile (see
figures 2(d-f)): there is a central well-mixed region of almost constant density, surrounded
by stable stratifications. This surrounding stable stratification is nearly unchanged from
the original profile.



Rayleigh–Taylor instability within a stable stratification 17

(a)

(b)

(c)

Figure 7: Photographs showing the mixing region being confined by the stable density
stratification: (a) τ = 4.14, large-scale structures extend upwards into the mixing region
from the lower layer; (b) τ = 9.07, the stratification has arrested further vertical growth of
the mixing region; (c) τ = 13.37, motion has decayed, except for internal waves present on
the upper surface of the mixing region. A0 = 2×10−3, initial stratification was quadratic
with increasing density gradient. This view was taken with the camera looking slightly
down at the upper layer.
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Figure 8: Quadratic (increasing density gradient) initial density profile: (a) Density pro-
files and (b) pdf of density. A = 5.80 × 10−3 and ηRT = 0.657 ± 0.004. (ηp = 0.682, as
calculated from ρ0.)

The mixing efficiency of all these experiments was close to the perfect mixing efficiency,
as calculated from the initial density profiles. For the quadratic case with increasing
density gradient, the mixing efficiency was 0.657± 0.004 (= 0.96× ηp), in the linear case
the mixing efficiency was 0.741 ± 10−4 (= 0.99 × ηp) and in the quadratic case with
decreasing density gradient the mixing efficiency was 0.759± 10−4 (= 0.98× ηp).

In all experiments there was some sorting within the central region, a process that
reduces the mixing efficiency compared with perfect mixing. In some cases this was partly
offset by a slight alteration of the stable profiles outside the central region, a feature that
contributes to an increased mixing efficiency. We can see examples of the latter in figures
8a and 9a.

We wish to quantify the effect on the mixing efficiency of sorting where the fluid could
have mixed to become stable (i.e. in the central region), which decreases the mixing
efficiency, with mixing of the stable density profiles outside the central mixing region
(where mixing is not necessary for stability) which increases the mixing efficiency. We
can quantify the effect of the mixing of the stable profiles by comparing the potential
energy increase above and below where the final density profile crosses the perfect mixing
profile. Similarly, we can quantify the amount of sorting within the central region by
comparing the potential energy of the central region (between the points in the upper
and lower layers where the final density profile crosses the perfect mixing profile) to the
potential energy that the perfect mixing profile would result in.

In the experiment shown in figure 8a, the mixing of the stable profile above and below
the central mixing region increases the mixing efficiency by 2.3% and the residual strati-
fication within the central region reduces the mixing efficiency by 4.8% compared to the
perfect mixing value. In contrast, the alteration of the stable profiles does not appear in
figure 10a, where we can see a residual stratification in the central region but no signifi-
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Figure 9: Linear (constant density gradient) initial density profile: (a) Density profiles
and (b) pdf of density. A = 1.01×10−2 and ηRT = 0.741±10−4. (ηp = 0.75, as calculated
from ρ0.)
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Figure 10: Quadratic (decreasing density gradient) initial density profile: (a) Density
profiles and (b) pdf of density. A = 1.11× 10−2 and ηRT = 0.759± 10−4. (ηp = 0.777, as
calculated from ρ0.)
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cant mixing in the stable profiles outside the mixing region. This residual stratification
reduces the mixing efficiency by 1.8% (as compared to the perfect mixing profile).

The pdfs of density for these experiments are shown in figures 8b, 9b and 10b. If the
density in the central mixing region were constant (perfectly mixed), then the peak in
the pdf would be a delta function as shown in figures 2(d-f). The spread of the peak in
the pdf for each experiment is a measure of the sorting that has occurred in the central
mixing region.

We can relate the mixing of the stable profiles outside the central mixing region to the
gradient Richardson number, as measured across the edge of the mixing region, towards
the end of the development of the flow. The gradient Richardson number is defined as

Rie =
N2

( du/dz)2
, (4.1)

where N is the Brunt-Väisälä or buoyancy frequency, N2 = − gρ
dρ
dz and u is a velocity.

Mixing here is driven by potential energy released from the unstable density profile. Let
us assume that the kinetic energy available for mixing the stable profiles,

1

2
V ρu2 ∼ ∆Ep, (4.2)

where ∆Ep is the change in gravitational potential energy of the density profile between
the initial state and the corresponding perfect mixing profile and V is the volume of the
mixing region (V = WLzp, where zp is the height of the perfect mixing region and W
and L are the width and length of the tank). This gives us a way of estimating how
the turbulent velocity scale u, just inside the mixing region, will change for profiles with
different ∆Ep and zp. There is little motion outside the mixing region (compared to the
turbulence within it), therefore if the mixing of stable profiles is occurring in a thin layer
that has thickness δ, then we can assume that the velocity gradient across this layer
scales like du

dz ∼
u
δ . We can use these arguments to find Rie for each density profile.

For example, in the linear density profile case, ∆Ep = 1
24gz

2
n∆ρWL, the height of the

perfect mixing region zp = zn
2 and dρ

dz = −∆ρ
zn

. Putting all this into equation (4.1) we find

that Rie ∼ 6 δ
2

z2n
. For the quadratic with increasing density gradient Rie ∼ 4 δ

2

z2n
and for

the quadratic with decreasing density gradient Rie ∼ 6(
√

2−1)

(8
√

2−11)
δ2

z2n
≈ 7.9 δ

2

z2n
at the perfect

mixing height.

Another way of viewing this is if mixing around the central region occurs at some
critical Richardson number Ric, then we would expect the distance across which mixing
occurs δ to be different for each of the profiles considered. If Rie ∼ Ric, then δ ∼√

Ricrit
c × zn, where c is a different constant for each of the profiles considered (c = 4,

6 and 7.9 for the quadratic with increasing density gradient, linear and quadratic with
decreasing density gradient, respectively). If c is larger, we expect the region where mixing
occurs in the stable regions outside the central mixed region to be smaller and this is
what is observed in experiments.

These results show that mixing of the stable profiles occurs to a greater degree in
density profiles where the gradient Richardson number is lower as the density profile
approaches stability. This behaviour was also found by Jacobs & Dalziel (2005), where
mixing of a stable interface by turbulence generated in a Rayleigh–Taylor unstable region
was found to be a function of Richardson number.
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4.3. Effect of barrier speed on mixing efficiency

Until now we have been using η interchangeably with ηRT (defined in §2). In using ηRT we
have assumed that the initial conditions are quiescent (or rather that ∆Ek = 0, indicating
there is no change in kinetic energy between the initial and final states). As noted in §3,
the barrier introduces kinetic energy into the initial conditions, therefore the underlying
mixing efficiency, η 6 ηRT (in calculating η we must include in the denominator the small
contribution from kinetic energy that was neglected in ηRT ).

To investigate the effect of barrier withdrawal speed (and hence ∆Ek) on the mixing
efficiency, a series of experiments were performed where the barrier speed was varied from
0.02m/s to 0.8m/s. If we add kinetic energy (Ek) into the system in the initial conditions
then we might expect this extra energy to do some mixing and increase the change in
background potential energy. When we calculate ηRT we assume the initial conditions
are quiescent. In other words, when we add Ek we expect more mixing (which increases
the numerator of ηRT ) but we have not accounted for the extra energy in the system
(by increasing the denominator). This means we would expect ηRT to increase when the
barrier is withdrawn faster.

Contrary to expectations, we find that the total mixing achieved decreases when the
barrier is withdrawn faster, indicating that both the mixing efficiency calculated under
the assumption of quiescent initial conditions, ηRT , and the one taking into account the
initial kinetic energy, η, are decreased by faster withdrawals. When the barrier speed was
increased, the final profile had a more strongly stratified central region, indicating that
additional sorting had occurred. The extra kinetic energy available at the start of the
instability is at finite length-scales and appears to be preferentially sorting the profile,
rather than mixing it. This effect is more significant at barrier speeds less than 0.08m/s.
As it is desirable to keep the spatial variation of the instability to a minimum, a barrier
speed of 0.08m/s was used for all experiments described here.

4.4. Effect of Atwood number on mixing efficiency

To investigate the effect of Atwood number on mixing efficiency, a set of twenty-six
experiments with linear profiles and Atwood number varying from 4×10−3 to 7×10−2 was
performed (figure 11). As all these experiments were performed in the same apparatus
with the same functional form for the density profile, this range of Atwood numbers
spanned Reynolds numbers over the range Re = 1000 to 4200. Here the Reynolds number

is defined as the maximum of Re = hḣ
ν (where h is the height of the mixing region and ν

is kinematic viscosity) using the model for h which will be described in §5. The mixing
efficiency of these experiments was always at least 95% of the perfect mixing efficiency,
ηp = 0.75± 0.002 (where ηp was calculated from the measured initial density profile of
each experiment).

The ratio of the height of the stratification relative to the height of the tank was one
of two values in these experiments. Most of the experiments were with zn ≈ 2

5H, but
some have zn ≈ 1

2H (where H is the total height of fluid in the tank). This was found to
have little effect on the mixing efficiency so long as the final height of the mixing region
was much less than the height of the tank and zn 6 1

2H.
These experiments show an increase in mixing efficiency with Atwood number, al-

though there is some uncertainty as to whether this increase is due directly to Atwood
number or to the dependence of Reynolds number on A0. As we saw in the previous sub-
section, increasing the kinetic energy introduced by the barrier lead to a greater degree
of sorting in the central mixed region. It is therefore conceivable that the decrease in η at
lower A0 is due to the increased relative importance of this kinetic energy compared with
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Figure 11: Mixing efficiency of experiments with linear stratifications in the upper and
lower layers. zn ≈ 2

5H (#), zn ≈ 1
2H (4). Dashed line shows perfect mixing efficiency

ηp, which for all experiments was 0.75± 0.002. All experiments had a mixing efficiency
of at least 0.95× ηp.

the initially available potential energy, the ratio of which scales (for a given functional

form of the density profile) as
√
ν
g

U
3
2

A0z2n
.

When the effect of the barrier is expected to be small (i.e. the higher Atwood number
experiments) the mixing efficiency is higher than the perfect mixing efficiency ηp. In
these experiments the mixing of the stable profiles outside the central well-mixed region
increases the mixing efficiency beyond the perfect mixing value.

There is more variation at very low Atwood numbers as many of the effects that
result in variation between experiments are more significant. For example, the relative
magnitude of the kinetic energy of the barrier, as compared with the initially available
potential energy, is much greater for these experiments (3% of APE rather than ∼ 1%).
The signal to noise ratio for the lower Atwood number experiments (A < 0.01) and the
mid-range Atwood number experiments (0.03 < A < 0.05) is larger. Noise in the signal
from the conductivity probe is a greater proportion of the density range that is being
measured, fluctuations are 0.8% of the range of ρ rather than 0.2% for experiments with
0.01 < A < 0.03. The mid-range Atwood number experiments are affected as the probe
was recalibrated for a higher density range for (A > 0.03). The signal to noise ratio is
also large in the very high Atwood number experiments (A > 0.06) as the gradient of
conductivity with density is smaller when the salt solution nears saturation. Therefore
noise in the signal has a greater effect at these Atwood numbers.
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5. Model for the height of the mixing region

5.1. Turbulent diffusion model

We will now construct a model for the height of the mixing region, under the assumption
of self-similarity, for the case where the unstable density interface is surrounded by stable
stratifications. This is a stratified version of the model described in the introduction
(h = αA0gt

2). We will begin with a buoyancy-drag model (following Dalziel et al. (2008)
and similar to Cook et al. (2004)) and assume an instantaneous balance between the two
forces present in the flow, buoyancy and inertia,

∆ρ g l ∼ ρ u2. (5.1)

Here ∆ρ is a typical density difference over a distance l, the buoyancy length-scale, u
is an inertial velocity scale, and ρ is the mean density in the flow. We assume that the
buoyancy length will scale with the height of the turbulent mixing region l ∼ h, making
∆ρ the density difference across the mixing region, ∆ρ = ρ0(h)− ρ0(−h).

We proceed by describing the mixing by a turbulent diffusivity κT ∼ uT lT . The size
of the largest turbulent eddies in the flow will scale with the height of the mixing region
lT ∼ h and the turbulent velocity scale can be related to the forcing in the flow by uT ∼ u
that we obtain from (5.1), giving

κT ∼
(

∆ρgh

ρ

) 1
2

h. (5.2)

In scaling the size of turbulent fluctuations lT ∼ h, we are ignoring any global overturning
of the flow and any non-equilibrium acceleration.

In the two-layer classical case, the size of the mixing region is easily defined as the
region that has changed density from the initial conditions. The only way a region of
fluid in the upper layer can change density is if it contains fluid that began in the lower
layer. This is not true for the stratified case as there are parcels of fluid of the complete
range of densities in the tank in the initial conditions for both the upper and lower layers.
Therefore it is useful to consider a one-dimensional passive scalar φ (such as a dye), which
marks fluid originating from the upper layer (initially φ = 1 for z 6 0 and φ = 0 for
z < 0).

Assuming the profile evolves self-similarly, we introduce a similarity variable ξ = z
h(t) ,

where φ(z, t) = φ(ξ), rescaling the flow by the instantaneous height of the mixed region.
Although the stratification introduces an additional length-scale which will always be
present, there is some experimental evidence for the stratified case exhibiting features of
self-similarity in the dye profiles of Lawrie & Dalziel (2011a).

The rate of increase of total amount of passive scalar in the lower half of the domain
will be equal to the flux of the scalar though z = 0. Assuming this is controlled by
turbulent diffusion then

∂

∂t

∫ 0

−∞
φdz = κT

dφ

dz

∣∣∣∣
z=0

. (5.3)

Introducing our similarity variable we find

dh

dt

∫ 0

−∞
φ(ξ) dξ =

κT
h

dφ

dξ

∣∣∣∣
z=0

. (5.4)

We can simplify this considerably, under self similarity, as
∫ 0

−∞ φ(ξ) dξ and dφ
dξ

∣∣∣
z=0

are

constant with time, yielding the dimensionally obvious relation hḣ ∼ κT . Combining this
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with (5.2) we obtain the relation

dh

dt
∼

√
∆ρgh

ρ
. (5.5)

As ∆ρ is the density difference across h, we can define an instantaneous Atwood number

A(h) = ∆ρ(h)
2ρ , i.e. the Atwood number across the mixing region at a instant in time for

a stratified system,

A(h) =
ρ0(h)− ρ0(−h)

ρ0(h) + ρ0(−h)
, (5.6)

where ρ0(z) = ρ(z, t=0). This can be written in terms of the equations that are used to
describe the initial density profiles in §3,

A
(
ĥ
)

= A02f
(
ĥ
)
, (5.7)

where ĥ = h
zn

. Substituting A = ∆ρ
2ρ into (5.5), we obtain

dh

dt
∼
√
Agh. (5.8)

We can compare this expression to the classical case, where A is constant throughout
the instability (A(h) = A0) and h = αA0gt

2, to write this equation in terms of the
constant α

dh

dt
= 2
√
αAgh. (5.9)

A related differential equation (with constant A) was obtained for the classical case by
Ristorcelli & Clark (2004) who showed it can be derived directly from the Navier-Stokes
equations, using an assumption of self-similarity.

For the case of a linear density profile, (5.9) yields the analytical solution

h =
zn
2

sin2

(
t

√
2αA0g

zn

)
. (5.10)

Unfortunately, for the two quadratic profiles the analytical solution is not so compact
and must be expressed in terms of hyper-geometric functions. The model predicts the
final height of the mixing region to be h∞

zn
= 1√

2
for the quadratic with increasing density

gradient case (d
2ρ
dz2 > 0); h∞

zn
= 1

2 for the linear case (d
2ρ
dz2 = 0); and h∞

zn
= 1 − 1√

2
for

the quadratic with decreasing density gradient case (d
2ρ
dz2 < 0). This is the same as the

final height of the mixing region for the perfect mixing profiles. A plot of the predictions
of the model against non-dimensional time is shown in figure 12a. Each of these curves
have the same zn and hence different h∞. The insert shows how the evolution compares
if zn for each profile is rescaled such that h∞ for all of the profiles is 1

2 .
The linear case is symmetric around zn

4 : the growth of the mixing region accelerates
until this point and decelerates thereafter. For the quadratic with increasing density
gradient, the turning point in ḣ occurs after the half way point, h∞/2, and for the quadratic
with decreasing density gradient the turning point occurs before.

The approach used for deriving this model is different from those used in Lawrie &
Dalziel (2011a), who assumed a functional form for the density profile within the mixing
region. However, the final model is similar to that derived in the present paper. The
model in Lawrie & Dalziel (2011a), which was derived only for the linear case, can be
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Figure 12: Model prediction for (a) height of the mixing region predicted by the turbulent
diffusion model (solid line) and the model derived in Lawrie & Dalziel (2011a) (dashed
χ = 3

4 , dash-dot χ = 0.65, where χ is a fitting constant in the model defined in 5.11),
inset shows the model predictions with density profiles adjusted such that h∞ = 1/2; (b)
Reynolds number (solid line) and (dh/dt)2 which is proportional to kinetic energy density
(dashed line) with time for A0 = A(t=0) = 0.01. The dark grey line (red on-line) shows
the quadratic with increasing density gradient, mid-grey line (blue on-line) shows the
linear profile and the light grey line (orange on-line) shows the quadratic with decreasing
density gradient.

written as

dh

dt
∼

√
ghA0

(
1− h

χzn

)
. (5.11)

where χ 6 3
4 and must be fitted to experiments. This model is plotted on figure 12a

(using the same constant of proportionality as we used for (5.9)), with two values of the
constant χ, the maximum value (dashed line) and that found from fitting to experiments
in Lawrie & Dalziel (2011a) (dash-dot line). As χ must be fitted to experiments and the
constant of proportionality is not clear in (5.11), this model does not predict h∞. If χ
were set at the maximum 3

4 then the mixing region would extend to ± 3zn
4 and would

have a mixing efficiency of η = 1.
The model derived in the present paper, (5.9), essentially predicts a value of χ = 1

2
and allows for a direct comparison between a stratified model for h and previous models
for the classical instability (by casting the constant of proportionality in (5.8) in terms
of the classically derived α). This new model is also valid in general for any symmetric
stratification confined Rayleigh–Taylor instability, unlike (5.11) which is only valid for
the linear profile case.

We shall compare the model predictions with our experimental observations shortly.
First, however, we shall explore a number of features of the model. Using our model

we can express the Reynolds number, Re = hḣ
ν , in terms of the instantaneous Atwood

number,

Re =

√
αAgh3

ν
, (5.12)
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Thus the maximum Reynolds number in the flow scales as Re ∼
√
A0, but the instanta-

neous values will vary as some function of h during the development of the flow. Figure

12b shows the Reynolds number (solid lines) and the kinetic energy density (
(
dh
dt

)2
;

dashed lines), against time for each of the three cases, with an initial Atwood number
of 0.01 (which is at the lower end of the range for the experiments shown in figure 11)
and zn = 0.2 m. In each case, the peak Reynolds number occurs after the peak velocity
in the flow, as although the velocity has started to decay (due to the effect of the stable
stratification), the length-scale of eddies in the mixing region is still increasing. This was
also seen in the model derived by Lawrie & Dalziel (2011a) for the linear case. After
this peak the model predicts a sharp decline in the Reynolds number as the stable strat-
ification slows the growth of the mixing region. In reality, the Reynolds number of the
flow does not reach zero when the mixing region reaches its equilibrium height as there
is still kinetic energy remaining in the mixing region (as seen in figure 6c), a feature not
captured in the model.

The assumption of an instantaneous balance between buoyancy and inertia is equiva-
lent to asserting the flow evolves at a constant (negative) Richardson number within the
mixing region. Specifically we can define a Richardson number within the mixing region
as

Ri = −2gA
h

( dh/dt)2
. (5.13)

This is different to the gradient Richardson number, Rie, for the edge of the mixing
region we defined earlier. Substituting for dh

dt in (5.13) we find that the model predicts a
Ri which is constant and negative

Ri = − 1

2α
. (5.14)

This is also the case for the model for the classical two layer instability (h = αA0gt
2).

In experiments, kinetic energy remains after all negative density gradients in the system
have been removed, therefore the Richardson number within the mixing region in reality
increases to become positive in the late stages of the instability. Mixing continues until
Ri is larger than some critical Ric.

The model derived in Lawrie & Dalziel (2011a) does not make the assumption of an
instantaneous balance between buoyancy and inertia. There Riχ was defined as

Riχ ∼
2ĥ− 1

1− ĥ/χ
. (5.15)

Again we can see that if χ = 1/2 then we recover the constant, negative Richardson
number found above. Increasing χ allows mixing to continue after the profile is overall
stable by allowing a greater proportion of Ea to be released into Ek. This results in a
positive Ri at late times.

5.2. Comparison with experiments

A comparison of the predictions of this model with experiments using dyed fluid is shown
in figure 13. Dyed fluid attenuates light that passes through it, as described by Allgayer
& Hunt (2012), Cenedese & Dalziel (1998) and Holford & Dalziel (1996), and used in the
investigation of Rayleigh–Taylor instability by Dalziel et al. (2008). In the present work,
attenuation was used to determine how the height of the mixed region evolves in time.
The upper layer was dyed with a constant concentration of methylene blue dye. Figure 13
shows the evolution of the horizontally-averaged dye concentration. The spatial variation
present due to the finite speed of the barrier was removed by taking each column of a
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video and shifting it according to the time at which the barrier passed that point and
then averaging. The colour in figure 13 shows |φ− φ0|, where φ is the dye concentration
(normalized by the initial concentration in the upper layer, 0 > φ > 1) and φ0 = φ(t = 0).

In making this comparison between experiment and model, we use our measurements
of ρ0(z) for each experiment to determine A(h). The effect of the barrier on the initial
conditions for the flow is included in the model by initialising h with the thickness of
the barrier (2.55 mm), effectively setting the scale of the initial perturbations. The only
fitting constant in this model is α.

In the past there has been much disagreement over the value of the constant α between
experiments and simulations of classical Rayleigh–Taylor. Many authors now believe that
this is due to differences in initial conditions (e.g. Dalziel et al. (1999), Ramaprabhu &
Andrews (2004), Tsiklashvili et al. (2012)), though another suggested explanation for the
variation in α is the difference in Schmidt number (Sc = ν

D , where ν is the kinematic
viscosity and D is the mass diffusivity) between experiments and numerics (Glimm et al.
2001). In experimental procedures there is inevitably some memory of initial conditions,
as large wavelength perturbations of the order of the dimensions of the container will be
present (Youngs 1984; Dalziel 1993; Snider & Andrews 1994). Experiments of two-layer
Rayleigh–Taylor instability with widely varying experimental procedures have found a
value of α that is around 0.07 (Dalziel 1993; Ramaprabhu & Andrews 2004; Tsiklashvili
et al. 2012), though other experimental studies have found values that are somewhat
lower, e.g. 0.057 (Dimonte et al. 2004). In comparing our model to experiments we have
simply taken α = 0.07. We have not attempted to determine α from our present ex-
periments, but instead aim to show that the value found in experiments of the classical
instability is still appropriate in our model for the stratified case.

The model appears to work well in the cases shown in figures 13(b) and (c), and less
well in the case shown in (a) (the quadratic with increasing density gradient). Even in
(a), the initial behaviour of the mixing region (up to ∼ 3s) is well modelled. Although
the model does not appear to predict the exact height with time of the mixing region
well in all cases, it does correctly predict the time constant for the development of the
mixing region.

When the initial density profile is a quadratic with increasing density gradient, there
is initially no density gradient immediately to either side of the unstable interface. This
means that this density profile is more likely to be strongly affected by the initial con-
ditions than the other two profiles, as there are no strong density gradients near the
unstable interface to damp out disturbances and flatten the vortical structures produced
by withdrawal of the barrier. This could be the reason for the discrepancy for t > 3s
between model and experiment in figure 13a. The model assumes that the length-scale
controlling the development of the mixing region scales with the height of the mixing
region. It is possible that the length scale of the initial perturbation remains important
and acts as a barrier to the growth of the turbulent length scale. This would result in
the slower growth that we see in experiments of this case.

One of the limitations of the model derived in the present paper, (5.9), is that it
does not allow for sorting within the central region as sorting indicates that there is
not an instantaneous balance between buoyancy and inertia. The model cannot predict
any transport of turbulent kinetic energy in the flow, which removes the possibility of
modelling mixing of the stable profiles above and below the central turbulent region. The
lack of any mechanism for sorting within the central mixing region is the reason why the
model slightly under predicts the height of the mixing region at late times. A possible
next step would be a model that includes some transport of kinetic energy, releasing the
assumption of an instantaneous balance.
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Figure 13: Comparison with dyed experiments with the model ḣ = 2
√
αAgh, where

α = 0.07 and A(h) is calculated from the measured initial density profile. h(t = 0) is equal
to the thickness of the barrier. Initial density profile: (a) quadratic with increasing density
gradient, (b) linear, (c) quadratic with decreasing density gradient. The colour shows
|φ − φ0|, where φ is the dye concentration normalized by the initial dye concentration
in the upper layer. Dashed line on (a) is an adjusted model with the size of turbulent
eddies scaling as lT ∼ λb.
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6. Conclusions

We have shown that the final state of Rayleigh–Taylor instability between two stably-
stratified layers has an almost perfectly mixed central region, surrounded by relatively
unchanged stable stratifications. The mixing efficiency is generally greater than 95% of
the perfect mixing efficiency ηp, which is calculated assuming the final state has a central
well mixed region, surrounded by regions which are unaltered from the initial state. The

mixing efficiency increases as the curvature of the density field d2ρ
d|z|2 decreases, though the

height mixed, as a proportion of the height of the stratification, decreases with decreasing
d2ρ

d|z|2 .

In some cases there is evidence of a small amount of mixing in the stable stratification
above and below the central mixing region. This occurs when the gradient Richardson
number at the edge of the mixing region (Rie) is small when the mixing region reaches a
height at which the profile is overall stable (the perfect mixing height). This relationship
between Richardson number and mixing of a stable interface by turbulence generated in
a Rayleigh–Taylor unstable region was also found by Jacobs & Dalziel (2005).

Some sorting within the central region appears in the final density profiles of all exper-
iments. Sorting within the central region decreases the mixing efficiency (as compared to
the perfect mixing efficiency) as stability is achieved by sorting within the gravitation-
ally unstable region rather than by mixing. In general, for Atwood numbers A < 0.04,
sorting within the central region had a stronger effect than mixing of the stable strat-
ifications outside the central region, resulting in a mixing efficiency slightly below the
perfect mixing value.

If the central region becomes homogenised (making the profile overall stable) only
mixing of the stable profiles above and below the central region can increase the potential
energy (as no further mixing is possible in a region of constant density). This occurred
when the Atwood number was high (A > 0.04), but as the kinetic energy must first be
converted into available potential energy (by moving a parcel of fluid into a region where
it is surrounded by parcels of a different density), mixing by this mechanism is much
less efficient compared to mixing which is directly driven by gravitational instability.
Therefore it seems unlikely that the mixing efficiency will ever increase much beyond the
perfect mixing value.

Surprisingly, the amount of mixing decreases with the introduction of additional kinetic
energy from the removal of the barrier. When the barrier speed was increased, increasing
the kinetic energy present in the initial conditions, less mixing and more sorting was
apparent in the central region of the final density profile (resulting in a stronger residual
stratification), leading to a decrease in the mixing efficiency even if the additional energy
input is not taken into account. (Had the final stratification remained unchanged, then
the kinetic energy input from the barrier would have represented a decrease in the actual
mixing efficiency.)

A theoretical model was developed for the height of the mixing region, ḣ = 2
√
αAgh,

where A = A(h) is the instantaneous Atwood number across the mixing region, α =
0.07 (a typical experimental value in classical RTI) and g is gravitational acceleration.
The only fitting constant in this model is α, a value for which was taken from earlier
two-homogeneous layer Rayleigh–Taylor instability experiments. This model was seen
to match the growth of the mixing region well for early times in experiments and also
matches the overall time-scale for the growth of the mixing region. The departure from
this model in the case when there is no density gradient close to the unstable interface
may be due to the effect of the initial perturbations imposed by the barrier.

We have shown that the maximum mixing efficiency possible is greater than 0.75. The
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assumption that is sometimes made, that η can be approximated by 0.2 in all mixing
situations is unjustified. In regions of the ocean that have unstable density gradients (e.g.
river outflows and regions where surface cooling makes the mixed layer of the ocean con-
vectively unstable) there is the potential for much higher mixing efficiencies. It is clear
that mixing efficiency can vary widely, particularly where unstable density gradients exist
in an otherwise stably stratified flow.
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