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Abstract 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality, affecting both 

developed and developing countries. Whilst it is well recognized that our risk of CVD can be 

determined by the interaction between our genetics and lifestyle, this only partly explains the 

variability at the population level. Based on these well-known risk factors, for many years 

intervention and primary prevention strategies have focused on modifying lifestyle factors in 

adulthood. However, research shows that our risk of CVD can be pre-determined by our early life 

environment and this area of research is known as the Developmental Origins of Health and Disease.  

The aim of this review is to evaluate our current understanding of mechanisms underlying the 

programming of CVD. 
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Ageing and cardiovascular disease 

Life expectancy is increasing worldwide. World Health Organization statistics state that by 2050, 2 

billion people will be older than 60 years of age [1]. This increase in lifespan brings about a rise in 

age-associated conditions such as type 2 diabetes, cancer and cardiovascular disease (CVD). As CVD 

has a long pre-clinical phase resulting in diagnosis in old age, the identification of biomarkers that 

precede the clinical state is critical in defining an individual’s risk in later life. Left unresolved sub-

clinical conditions manifest into diseases such as atherosclerosis, myocardial infarction, stroke and 

heart failure. Although adverse lifestyle choices in adulthood (poor diet and lack of exercise) are 

known to prematurely cluster these risk factors in individuals, evidence from the field of 

Developmental Origins of Health and Disease (DOHaD) shows that a suboptimal early life 

environment leads to the premature presentation of these pre-clinical conditions. Consequently, 

such programming effects are associated with higher incidence of cardiovascular conditions and 

premature mortality in these individuals.  

 

The importance of the early life environment in shaping our vulnerability to disease  

The DOHaD hypothesis emphasizes the concept that during early life, insults that occur during 

critical periods of development can alter offspring structure, function and/or molecular phenotypes 

that persist into adulthood. Specifically, exposure to adverse conditions in utero leads to the sparing 

of vital organs (such as the brain) at the expense of considered less-essential organs such as the 

pancreas, resulting in asymmetric growth and altered function [2]. Whilst these adaptations may 

initially prove beneficial for survival in the short-term, they ultimately lead to increased disease 

susceptibility. According to the theory of the Predictive Adaptive Response proposed by Mark 

Hanson and Peter Gluckman [3], the propensity for disease in adult life is reduced if the postnatal 

environment matches the intrauterine “prediction”. In contrast, if the pre- and postnatal 

environments differ, adaptations made in utero no longer prove advantageous and therefore 

manifest in increased adulthood diseases.  

Much research has highlighted the importance of the early life environment beginning 

before conception, spanning across pregnancy, lactation and into the postnatal period. 

Epidemiological studies have shown that individuals born low birth weight have aortic wall 

thickening at birth and elevated blood pressure and impaired endothelial function in adulthood [4-

6]. Notably, these individuals also showed the greatest risk of atherosclerosis, coronary heart 

disease, myocardial infarction, stroke and premature mortality from ischemic heart disease [7-11]. In 
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addition to low birth weight, other proxy markers of an adverse intrauterine environment, including 

ponderal index and placental weight, have also been associated with adverse cardiovascular 

outcomes in adulthood [12, 13]. Whilst such proxy markers are useful tools in assessing the quality 

of the intrauterine environment, they are indirect measures and therefore have limited predictive 

ability. For instance, there is evidence to suggest that fetal growth does not need to be impaired to 

have a long-term influence on offspring disease susceptibility [14]. Furthermore, in addition to low 

birth weight there is evidence to suggest that offspring born high birth weight (greater than 4kg) also 

have an increased propensity for metabolic diseases in adult life [15]. Therefore, assessing the 

quality of the intrauterine environment requires elaborate study designs. However, through unusual 

circumstances such as famine (macronutrient deficiency), researchers have been able to assess the 

direct impact of nutritional deprivation in early life on risk of CVD. 

 

Maternal macronutrient deficiency 

Epidemiological evidence – The Dutch Hunger Winter was a famine that occurred in 1944-45 due to 

a German blockade that prevented delivery of food and fuel to the western region of the 

Netherlands. The famine affected individuals of all social classes and led to nutritional deprivation of 

between 400-800 calories per day. Offspring exposed to the famine in early gestation were at 

greater risk for the development of obesity, increased systolic (SBP) and diastolic blood pressure 

(DBP) in response to stress and premature presentation of coronary artery and heart disease [16-

19]. Whilst a difference was observed in blood pressure following a stressor response, no differences 

were observed in relation to basal blood pressure between individuals exposed or un-exposed to the 

famine in utero. However, an inverse relationship between birth weight and blood pressure was 

identified, with those born low birth weight having a higher blood pressure [20]. Interestingly, 

offspring exposed in late gestation were more likely to develop metabolic abnormalities such as 

impaired glucose tolerance [21]. These studies highlighted that the organs and/or systems affected 

in adulthood often reflected the period at which the insult occurred during development [22].  

The Leningrad famine (1941-1944) was a more severe famine in an area now known as St 

Petersburg, with an average ration during the ‘Hunger Winter’ period (November 1941 – February 

1942) of 300 calories per day, mostly consisting of carbohydrate [23]. Unlike the Dutch Hunger 

Winter, nutritional deprivation was lower both prior to and following the famine. Offspring exposed 

to the Leningrad famine during gestation showed no increase in blood pressure, atherogenic lipid 

profile or impaired glucose tolerance. However, exposed offspring showed evidence of endothelial 
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dysfunction and raised von Willebrand factor [23]. These variations in outcomes could be attributed 

to the fact that individuals from the Dutch Hunger Winter were well nourished prior to and after the 

famine, therefore helping to drive catch-up growth which is associated with an increased propensity 

for both metabolic and CVD [22]. In contrast, following the end of the Leningrad famine, food still 

remained scarce and therefore offspring exposed to the famine were born into a nutritional 

deprived environment that matched their experiences in utero. Thereby supporting the role of the 

Predictive Adaptive Response [22].  

The Dutch Hunger Winter was based on a population not previously malnourished prior to the 

famine. Consequently, this data cannot be generalized to individuals from nations who live on a 

malnourished background. Therefore, the Biafran and Chinese famines have proved critical in our 

understanding of the long-term impact to these individuals. The Biafran famine occurred as a result 

of the start of the Nigerian Civil War that broke out in July 1967 and ended in January 1970. 

Offspring exposed to the Biafran famine in early life (fetal-infant exposure) had elevated SBP, DBP 

and impaired glucose tolerance measured at approximately 40 years of age [24]. The Chinese famine 

affected the whole country following a decline in grain production. Unlike famines that had a more 

defined period, the Chinese famine was prolonged with debate as to its beginning and end, making it 

more difficult to distinguish individuals’ true famine exposure. The famine significantly affected rural 

but not urban populations. Exposure to the famine in early postnatal life led to development of 

hypertension in rural populations only [25].  

Animal models – Whilst human studies provide us with information on the associations between 

the early life environment and later disease risk in the offspring, they are unable to address 

causality. Animal models have proved to be an invaluable resource for evaluating the underlying 

mechanisms. The power of these models stems from the opportunity for direct manipulation of 

exposure variables whilst controlling for confounders. Moreover, due to the short lifespan of many 

laboratory animals, in particular rodents, long-term effects on the cardiovascular system spanning 

from markers of CVD risk to clinical cardiovascular conditions can be addressed in the same animal 

longitudinally, using invasive and non-invasive techniques. Such experiments would be difficult to 

perform in a human setting due to a significantly longer lifespan. 

The importance of nutrient access prior to conception has been highlighted by a number of 

studies that have addressed the impact of periconceptional undernutrition on fetal and adult 

phenotypes. In an ovine model of preconceptional undernutrition 60 days prior to conception (70% 

of control food allowance), fetal arterial blood pressure was significantly increased and this was 

independent of activation of the renin-angiotensin system (RAS) [26]. Another study used a more 
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severe nutrient restriction model (50% of control food allowance) to study both preconceptional  (30 

days prior to conception) and periconceptional (15 days either side of conception) undernutrition. 

Adult female offspring of both exposures had impaired vasorelaxation and enhanced 

vasoconstriction of femoral and coronary arteries, respectively [27]. There is also evidence that 

periconceptional undernutrition accelerates development of the hypothalamic pituitary axis, 

increasing risk of premature delivery and altered physiology with a predisposition to CVD in later life 

[28].  

Maternal calorie restriction is an example of a model used to study the long-term effects of 

maternal global undernutrition. The extent of calorie restriction varies from as little as 30% to 70% 

of the daily-recommended intake [29, 30]. One of the most consistent offspring phenotypes 

following maternal caloric restriction during pregnancy is an increased SBP. This observation has 

been noted in a range of species, including mice, rats, sheep and cows [29, 31-33]. Whilst in two 

studies offspring were growth restricted at birth [34, 35], not all studies showed a difference in birth 

weight [33]. In addition to a raised blood pressure, offspring exposed to maternal caloric restriction 

showed signs of vascular dysfunction and fibrosis [30, 32]. In terms of the cardiac tissue, offspring 

developed cardiomegaly, associated with an increase in cardiomyocyte size [30].  

Maternal protein restriction is one of the most widely studied models of maternal 

undernutrition and similarly to global caloric restriction, offspring of protein-restricted dams have 

been shown to have high blood pressure in adulthood [36-39]. However, not all models of maternal 

protein restriction show evidence of hypertension or an adverse cardiovascular phenotype [40]. The 

differences between offspring outcomes have been attributed to the dietary composition of the 

maternal diet rather than the protein restriction per se. This has been reviewed in detail by Langely-

Evans (2001) who compared the dietary composition of two low protein diets with differing offspring 

cardiovascular outcomes. Key differences were noted in both the fat and carbohydrate composition 

[41]. This hypothesis was supported by replication of the offspring phenotype on a diet enriched for 

fat [42]. In addition to changes in blood pressure, maternal protein restriction in rodents has been 

shown to lead to other offspring phenotypes including, accelerated atherosclerotic lesion 

progression, hypercholesterolemia, accelerated growth of the heart, delayed formation of the 

coronary artery, cardiomyocyte cell loss and cardiac dysfunction coupled with an attenuated -

adrenergic responsiveness as a consequence of both impaired adrenergic and insulin signaling [38, 

43-46].  

Evidence from humans supports that poor fetal growth (i.e. low birth weight), followed by rapid 

postnatal growth (catch-up growth) is associated with increased risk of CVD [47, 48]. The 
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recuperated animal model is used to study the effects of undernutrition during pregnancy followed 

by rapid catch-up growth. Catch-up growth is achieved by cross-fostering offspring from 

undernourished dams to control females (fed 20% protein) during lactation. Offspring from this 

model have a shorter lifespan, metabolic abnormalities and age-associated changes in the kidney 

[49, 50]. 

For many years research in the field has focused on the long-term impact of maternal 

undernutrition on offspring cardiovascular health. However, due to rising levels of obesity across the 

globe, in particular in women of childbearing age [51, 52], the research focus is shifting to studying 

the long-term cardiovascular consequences of early life exposure to maternal overnutrition and/or 

obesity. 

 

Maternal overnutrition and obesity 

Epidemiological evidence – There have been a handful of studies performed to date that have 

addressed the impact of early life exposure to maternal obesity on long-term clinical CVD and 

mortality. Data from a cohort of individuals recruited in Helsinki at birth and followed up across their 

life-course, has shown that offspring whose mothers had a high BMI during pregnancy, and were 

thin at birth, had increased risk of dying from coronary heart disease [53]. A more recent study 

showed a correlation between maternal BMI and offspring incidence and mortality from CVD [54]. 

Specifically, males at the greatest risk of death from CVD had a low ponderal index and were born to 

mothers with a high BMI. Similarly, data from a British cohort based in Aberdeen showed premature 

mortality from all causes in offspring of obese mothers [55]. Furthermore, these individuals were 

more likely to be admitted to hospital for cardiovascular events. 

Maternal obesity in humans has been shown to impair diastolic function during fetal life [56]. In 

terms of cardiac structure, weight gain until late pregnancy has been associated with an increase in 

left ventricular mass of offspring at 6 weeks and 6 months of age [57], highlighting the persistent 

alteration of cardiac structure, even when removed from the maternal environment. Studies have 

also consistently shown a positive association between maternal BMI and clustering of CVD risk 

factors in children, adolescents and adults. Risk factors include a raised SBP, lower high-density 

lipoprotein and a high BMI [58-60]. There is evidence to suggest that the clustering of such risk 

factors may be driven through an increase in offspring adiposity [59]. In addition to maternal 

obesity, increased gestational weight gain has also been associated with an adverse cardiometabolic 

profile in the offspring [59, 61].  
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Whilst a handful of studies have assessed the impact of early life exposure to maternal obesity 

on end-point CVD and mortality, the majority of human studies in this area have investigated the 

prevalence of CVD risk factors in the offspring during childhood or young adult life. The study of 

cardiovascular risk factors in children and young adults is critical, as blood pressure, BMI and lipid 

levels measured in childhood track into adult life and therefore predispose individuals to premature 

cardiovascular conditions [62-65]. 

In human population studies, the genetic heritability of obesity is often a confounding factor 

when investigating the association between maternal and offspring obesity. Understanding this is 

important, as offspring obesity may be a key player in the clustering of CVD risk factors following 

exposure to maternal obesity. Intervention studies in siblings born before and after bariatric surgery 

have proved critical in disentangling individual contributions of both the genes and environment in 

offspring exposed to maternal obesity. Siblings born after bariatric surgery had an improved lipid 

profile, lower prevalence of obesity, reduced C-reactive protein and leptin relative to their sibling 

born before weight loss [66, 67]. An improvement in the offspring’s cardiometabolic phenotype 

post-surgery has further been associated with alterations of both the transcriptome and methylome, 

in particular genes important for improving cardiometabolic disease risk [68]. Accordingly, 

epigenetic modifications in key offspring genes in response to changes in the maternal environment 

have been hypothesized to be one of the mechanisms by which disease risk is transferred following 

adverse conditions in utero.  

 Animal models – Studying the mechanisms by which early life exposure to maternal obesity 

impacts on long-term offspring health is complex. Maternal obesity itself is often complicated by the 

presence of other co-morbidities that include pre-existing conditions such as type 2 diabetes, 

hypertension and hypercholesterolemia. Furthermore, obese women are at higher risk of developing 

complications during pregnancy, including gestational diabetes mellitus and preeclampsia. In 

addition to understanding the contribution of these co-morbidities, dissecting out the role of the 

maternal diet becomes almost impossible when addressing such questions in a human setting. As a 

consequence, there is a large range of animal models that include overnutrition in the presence or 

absence of obesity, dietary manipulations such as high-fat only or high-fat supplemented with a 

sugar component and studies assessing different windows of exposure across the early life period 

(pre-conception, gestation, lactation, post-weaning). 

 There are a number of studies from ovine models of maternal overnutrition where offspring 

showed evidence of impaired cardiac development in fetal life. Overfeeding of ewes prior to 

conception and throughout gestation increased heart weight, collagen deposition, led to the 
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activation of hypertrophic and stress signaling pathways and impaired ventricular contractility in 

response to elevated workload stress [69-71]. A change in diet at conception was sufficient to 

increase fetal heart weight [72]. In nonhuman primate offspring exposed to mothers fed a high-fat 

diet (HFD) long-term prior to conception, developed vascular wall thickening and impaired 

vasorelaxation in the abdominal aorta, when they themselves were weaned onto a HFD [73]. 

Although this provides evidence of the negative long-term effects of maternal obesity and 

overnutrition in large animals, the majority of research in this area has focused on small rodent 

models. 

Consistent with the larger animal models of maternal overfeeding, exposure to a HFD prior to 

conception and maintained throughout pregnancy and lactation in rodents led to vascular 

dysfunction, hypertension and dyslipidaemia in adult offspring [74-78]. It has also been shown that 

exposure to a maternal HFD during either the pregnancy or suckling period separately was sufficient 

to program hypertension in the offspring [79]. With the aim of better modeling a human Western 

diet, researchers began to study the long-term effects of a maternal high-fat high-sugar diet on the 

cardiovascular health of the offspring. Females exposed to this diet for 6 weeks prior to mating 

become obese by the time of conception and offspring from these dams developed cardiac 

hypertrophy as early as 3 weeks of age. Furthermore, these offspring showed pathological re-

expression of cardiac fetal genes and increased oxidative stress by young adolescence [80, 81]. By 

young adulthood and independent of their current body weight, offspring had impaired baseline left 

ventricular contractility, stiffening and sympathetic dominance, with the latter being a pre-eminent 

marker of cardiac failure [80]. At the vascular level, offspring developed resistance artery 

dysfunction at 12 weeks of age and hypertension by 6 months [82]. A similar phenotype has been 

observed in a rat model of maternal diet-induced obesity, whereby offspring displayed an increase in 

mean arterial pressure associated with increased sympathetic responsiveness, prior to the onset of 

obesity [83]. 

Animal models of genetic obesity are instrumental in understanding the importance of obesity 

susceptibility genes independent of the maternal diet. In an example of such a model, offspring 

exposed to obese dams with the agouti yellow (Ay) mutation had increased susceptibility to cardiac 

injury following ischemia-reperfusion, by occlusion of the left coronary artery [84]. 

 

 

 



9 | P a g e  
 

Impact on the heart in early life 

If the early life environment were to play a critical role in influencing future cardiac structure and 

function that persists into adult life, the expectation is that there should be signs of potential 

dysfunction as early as fetal life. A study into the cardiac function of human fetuses exposed to 

maternal obesity, showed evidence of impaired cardiac function [56]. Assessment of offspring by 

echocardiography born small for gestational age, showed signs of both systolic and diastolic 

dysfunction with impaired ventricular relaxability and a higher blood pressure [85].  

Animal models have proved useful in establishing the effect on the fetal cardiovascular 

system following a variety of insults including maternal overfeeding and growth restriction. In 

multiple studies using ovine models of maternal overnutrition, fetal heart weight and collagen 

deposition was increased [69, 72], with other models showing left and right ventricular wall 

thickening, altered myofiber organisation, inflammation and lipid deposition [86]. In addition to 

structural changes, fetal hearts exposed to maternal overfeeding showed dysregulation of key 

signaling pathways including over activation of the JNK-IRS-1 pathway and down regulation of 

cardioprotective proteins such as AMPK [70]. An increased fetal heart weight, coupled with 

cardiomyocyte hypertrophy was associated with molecular changes, specifically an increase in 

hypertrophic proteins, mTOR, NFATc3 and Calcineurin A [71]. In a rabbit model of surgery induced 

intrauterine growth restriction, echocardiography revealed a globular shaped heart, with no 

difference to controls in terms of wall thickness. Whilst there was no difference in ejection fraction, 

sarcomere length in the growth-restricted fetus was smaller. As the sarcomere is critical for cardiac 

contractility, this adaptation in utero may predispose to future cardiovascular dysfunction [87]. 

 

Transgenerational programming of cardiovascular disease 

Whilst an adverse early life environment is known to increase susceptibility to non-communicable 

adulthood disease in the exposed offspring (F1 generation), there is emerging evidence that the risk 

can be propagated across generations (F2 generations and further) [88]. When the mother presents 

with an adverse in utero environment, it directly affects the F1 generation and its germ cells that will 

become the F2 generation. Consequently, by definition, transgenerational inheritance should only 

include offspring from the F3 generation to avoid the confounding effects of the direct exposure to 

the initial maternal insult. However, as there are fewer studies addressing the F3 generation and 

beyond, the majority of studies are assessing the multigenerational transmission to the F2 

generation [88, 89].  
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 In terms of CVD, there are several studies showing multigenerational transmission of 

adverse cardiovascular phenotypes following early life exposure to adverse environmental insults 

including maternal undernutrition, micronutrient deficiency and placental insufficiency. The 

phenotypes transmitted across generations have included a reduced nephron number, arterial and 

endothelial dysfunction, and hypertension [90-92]. In a rat model of maternal low protein, the 

adverse cardiovascular phenotype (elevated blood pressure and reduced nephron number) was 

observed in both the F1 and F2 generations across both the maternal and paternal lines, but did not 

transmit to the F3 [91].  

 

Mechanisms underlying the programming of offspring cardiovascular disease 

Although the focus of this review is on the long-term impact of nutritional exposures on the 

cardiovascular health of the offspring, it should be noted that exposure to non-nutritional insults 

also results in similar phenotypes (Table 1). This implies the possibility of convergent programming 

pathways (Figure 1). In terms of programming CVD, there are a number of proposed mechanisms 

such as activation of the RAS, structural changes, oxidative stress and epigenetics.   

Renin Angiotensin System – The RAS is a key player in the maintenance of cardiovascular 

homeostasis and body fluid balance. Dysregulation of this system at both the individual and systemic 

level has been implicated in the pathogenesis of a variety of conditions. Hypertension is one of the 

most consistent phenotypes in human and animal models following a variety of early life 

environmental insults (Table 1). Interestingly, altered expression of both the angiotensin II type 1 

(AT1) and type 2 (AT2) receptor has been observed in response to maternal undernutrition and 

hypoxia [30, 33, 93-96]. Moreover, the enzyme renin was reduced in newborn pups from low protein 

fed dams, and was concomitant with decreased glomerular flow rate, glomerular number and 

increased blood pressure in adulthood [36]. As nephrogenesis in rodents continues through early 

postnatal life, insults that occur during this critical period of development are likely to affect organ 

development, structure and function, thus increasing susceptibility to adulthood disease [97]. 

Inhibition of the RAS during this critical early postnatal period in pups from healthy dams, reduced 

glomerular number and flow rate and increased blood pressure in adult life [98]. Suppression of the 

RAS in newborn offspring is thought to result in impaired kidney development, affecting long-term 

function and leading to the premature pathogenesis of disease.  

In comparison, adult offspring of obese dams have raised blood pressure and an increased 

renal renin and norepinephrine content. Hypertension in these offspring was abolished through α/β 
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adrenergic blockade, suggesting hyper-responsiveness of sympathetic tone [83]. Moreover, 

maternal HFD led to altered renin and Na+/K+ ATPase activity in offspring renal tissue [74]. Increased 

angiotensin converting enzyme in the heart, kidney and lungs was observed in offspring exposed to 

maternal diabetes [99].  Finally, in addition to both the intra-renal and circulating RAS, maternal HFD 

has been shown to alter components of the adipocyte RAS which has been associated with offspring 

hypertension [100].  

 The importance of the RAS in the programming of hypertension following exposure to a 

suboptimal early life environment has been further supported by the use of transgenic models and 

through intervention studies. Programmed increases in adult offspring blood pressure were 

abolished through the use of the AT1 receptor antagonist Losartan, whereas treatment with 

Nifedipine, a calcium channel blocker, had no effect [101]. Further support comes from a transgenic 

mouse model over-expressing the AT1 receptor associated protein (ATRAP-Tg), an inhibitor of AT1 

receptor signaling [37]. Although ATRAP-Tg mice had a reduced blood pressure compared to control 

mice, birth weight was significantly lower in controls compared to the transgenic animals. The 

interpretation of such data is complicated, as it is unclear whether the effect on birth weight had a 

direct role [37].  

Structural effects on kidney development and nephron endowment – Offspring exposed to 

maternal undernutrition, diabetes and hypoxia have a reduced kidney nephron number and size in 

conjunction with a hypertensive phenotype [33, 102, 103]. Whilst, reduced nephron number has 

been suggested to play a role in the development of hypertension based on Brenner’s theory of 

hyperfiltration [104], it is debated as to whether a reduction in nephron number alone is sufficient to 

result in pathology. In one study of prenatal protein restriction, adult offspring had a reduced 

nephron number that was associated with a lower mean arterial pressure [105]. Instead, it is 

hypothesised that it is the combination of phenotypes in the offspring (such as altered RAS activity, 

glomerular hypertrophy, sympathetic tone, obesity and a HFD) coupled with a reduction in nephron 

number that is likely to predispose individuals to hypertension (reviewed in [106, 107]). 

Oxidative stress – A situation of oxidative stress occurs as a consequence of excess 

production of reactive oxygen species (ROS) relative to antioxidant defense capacity. Although ROS 

are bi-products of physiological respiration, they are responsible for cellular damage and are key 

players in the pathogenesis of a variety of diseases. Elevated ROS levels in tissues associated with 

the cardiovascular system have been found in a number of programming animal models, some of 

which include maternal undernutrition, obesity, hypoxia and treatment with glucocorticoids [81, 

108-110].  
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Intervention studies using antioxidants targeting both the mother and offspring support the 

mechanistic role of oxidative stress in the programming of CVD. Maternal treatment with vitamin C 

ameliorated the adverse effects of maternal hypoxia on the cardiovascular health of adult rat 

offspring [108]. Similarly, treating HFD fed dams with the antioxidant quercetin prevented the 

development of hypertension, obesity and premature aging in mouse offspring [77]. In a rodent 

model of postnatal catch-up, treatment of exposed offspring with a mitochondrial antioxidant 

(Coenzyme Q) prevented premature cardiac aging, coupled with a reduction in oxidative and 

nitrosative stress [110]. 

Sympathetic dominance, leptin and insulin signaling – One of the phenotypes consistently 

associated with the programming of adulthood hypertension in offspring of obese dams is an 

increased sensitivity and activation of the sympathetic nervous system, coupled with selective leptin 

hypersensitivity [83]. While these offspring are resistant to the appetite suppressing effects of leptin, 

they are highly sensitive to its action on the renal sympathetic nerve. A prolonged neonatal leptin 

surge in early postnatal life has been suggested as a potential mediator of increased cardiac 

sympathetic activity in rodent offspring of obese dams [83]. Evidence to support this hypothesis 

comes from an experiment whereby neonatal pups from healthy dams were given exogenous leptin 

to mimic the prolonged and elevated leptin surge in offspring from obese dams [111]. Accordingly, 

pups exposed to excess exogenous leptin in early postnatal life developed a cardiovascular 

phenotype that mirrored offspring of obese dams, with premature onset of hypertension, increased 

renal norepinephrine, elevated stress response and altered heart rate variability (indicative of 

increased sympathetic efferent tone) [111]. The causal role for increased sympathetic tone in 

programming of hypertension in this model was further supported following the normalization of 

blood pressure after treatment with an adrenoreceptor antagonist. In agreement with these 

findings, rabbit offspring exposed to maternal HFD developed hypertension that was associated with 

increased activity of the renal sympathetic nerve [112, 113]. Similarly to the rodent model, these 

offspring also showed altered responses to leptin, both in terms of appetite and cardiovascular 

control. The relationship between leptin and increased renal sympathetic nerve activity is 

complicated by the knowledge that offspring obesity itself has a direct impact on circulating leptin 

levels. However, there is evidence to support the role of leptin in programming offspring blood 

pressure prior to the onset of obesity [83, 111]. This highlights that the combined effects of obesity 

and leptin hypersensitivity may exaggerate the offspring phenotype. 

 With regards to cardiac tissues, sympathetic dominance has been reported in mouse 

offspring of obese dams and was explained by an increase in protein expression of the β1 adrenergic 
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receptor [80]. In addition to cardiac sympathetic dominance, these offspring developed early cardiac 

hypertrophy and hyperinsulinemia. As chronic hyperinsulinemia in humans is an important predictor 

of heart failure and premature mortality [114], increased insulin signaling in cardiac tissue has been 

suggested as a potential mechanism driving impaired cardiac development and function in offspring 

exposed to maternal obesity [80]. At 8 weeks of age, despite reduced levels of the cardiac insulin 

receptor, downstream components of the insulin-signaling pathway were up regulated (p-AKT, p-

ERK, p-mTOR, p38MAPK) [81]. Furthermore, in an ovine model of maternal overnutrition, there was 

dysregulation of insulin signaling components (FOXO3a, mTOR, NFATc3) in fetal cardiac tissue that 

was coupled with presence of left ventricular wall thickening [71].  

Glucocorticoids and programming of CVD – Glucocorticoids play a critical role in tissue 

maturation, in particular at and around birth. Until late gestation, fetal glucocorticoid exposure is 

restricted by the activity of placental enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). 

Maternal treatment with dexamethasone in rats, increased fetal exposure to glucocorticoid due to 

the inability of 11β-HSD2 to inactivate dexamethasone [115]. Maternal exposure to dexamethasone 

in rats and sheep, programs an increased blood pressure and cardiac hypertrophy [115, 116]. The 

importance of the placental enzyme 11β-HSD2 for preventing early exposure of the fetus to 

glucocorticoids was demonstrated through inhibition of the enzyme using carbenoxolone [117]. 

Offspring of mothers treated with carbenoxolone during pregnancy had an identical phenotype to 

those offspring of mothers treated with dexamethasone. Further support for the role of 

glucocorticoids in programming of CVD, comes from evidence in rats that showed reduced placental 

11β-HSD2 enzymatic activity in a model of maternal protein restriction [118]. Notably, the 

phenotype was reversed by inhibiting glucocorticoid synthesis and recapitulated by the replacement 

with corticosterone [119].   

Epigenetics – Epigenetics is the process by which DNA/chromatin modifications, as well as non-

coding RNAs (e.g. microRNA) result in heritable alterations in gene expression, without affecting the 

DNA sequence. These mechanisms provide phenotypic plasticity, allowing one genotype to present 

with multiple phenotypes, in response to varying environmental conditions and are therefore of 

great interest to the DOHaD field [120]. There is evidence to suggest that some epigenetic 

modifications can be passed to subsequent generations. Consequently, inheritance of such 

epigenetic marks provides a potential mechanism for the transgenerational inheritance of disease 

risk. 

Changes to maternal diet (such as restriction of folate, B12 and methionine) led to epigenetic 

modifications in the offspring coupled with an increase in offspring obesity and blood pressure [121]. 
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Evidence from humans provides support that epigenetic modifications are stable long-term. 

Offspring exposed to the Dutch Hunger Winter in early gestation showed reduced methylation of 

IGF2 60 years after the famine [122]. Using a model of maternal low protein in the rat, 

hypomethylation of the adrenal AT1b receptor was associated with increased gene expression and 

offspring hypertension at 4 weeks of age. Maternal glucocorticoid exposure was shown to mediate 

this effect as both hypomethylation and hypertension in the offspring was abolished following 

maternal treatment (for the first 14 days of pregnancy) with 11β-hydroxylase inhibitor metyrapone 

[123]. Hypomethylation of the p53 promoter and reduced DNA cytosine 5 methyltransferase 1 

(DNMT1) activity in the rat kidney of growth restricted offspring exposed to uteroplacental 

insufficiency, was associated with increased p53 expression levels, apoptosis and reduced 

glomerular number [124]. Human cells from growth-restricted pregnancies showed altered mRNA 

expression of endothelial nitric oxide synthase (eNOS) and arginase 2. Partial silencing of DNMT1 

restored aberrant eNOS expression [125].  

In addition to epigenetic modifications that have direct effects on DNA/chromatin, microRNAs 

have also been implicated in the DOHaD field. MicroRNAs are small (22-25 nucleotides long) non-

coding RNA molecules that play a critical role in post-transcriptional regulation of gene expression by 

suppressing translation or inducing mRNA degradation. Exposure to maternal obesity in nonhuman 

primates led to the differential expression of microRNAs that were associated with disorders of 

development and CVD [126].  

 

Future directions 

The success of traditional intervention measures for the prevention of CVD has reached a plateau. 

However, studies into the early origins of CVD highlight that if interventions were focused on both 

the mother and her offspring in early life, incidence and premature mortality from CVD may be 

reduced, propagating a reduction in risk that extends to future generations. Studies into such 

intervention strategies, aimed at the pregnant and nursing mother and her offspring, will provide 

further clarification on the underlying mechanisms involved in the programming of CVD. In a time 

when population age is increasing, now more than ever the focus must be on reducing the CVD risk 

of future generations. 
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Table Title 

Table 1: Animal models and offspring cardiovascular phenotype 

 

Figure Legend 

Figure 1: Exposure to an adverse early life environment programs premature cardiovascular aging 

and mortality. CHD: Coronary heart disease. IHD: Ischemic heart disease. 
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Abbreviations 

11β-HSD2 - 11β-hydroxysteroid dehydrogenase type 2 

AT1: Angiotensin receptor type 1 

AT2: Angiotensin receptor type 2 

ATRAP-Tg: Angiotensin II type 1 receptor-associated protein-transgenic 

BMI: Body Mass Index 

CVD: Cardiovascular disease 

DBP: Diastolic Blood Pressure 

DNMT1: DNA cytosine 5 methyltransferase 1 

DOHaD: Developmental Origins of Health and Disease 

eNOS: Endothelial nitric oxide synthase 

HFD: High-fat diet 

SBP: Systolic blood pressure 

RAS: Renin angiotensin system 

ROS: Reactive oxygen species 


